
RFC 9277

On Stable Storage for Items in Concise Binary Object

Representation (CBOR)

Abstract

This document defines a stored ("file") format for Concise Binary Object Representation (CBOR)

data items that is friendly to common systems that recognize file types, such as the Unix file(1)

command.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9277

Standards Track

August 2022

2070-1721

 M. Richardson

Sandelman Software Works

C. Bormann

Universität Bremen TZI

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9277

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Richardson & Bormann Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9277
https://www.rfc-editor.org/info/rfc9277
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Terminology

1.2. Requirements for a Magic Number

2. Protocol

2.1. The CBOR-Protocol-Specific Tag

2.2. Enveloping Method: CBOR Tag Wrapped

2.2.1. Example

2.3. Enveloping Method: Labeled CBOR Sequence

2.3.1. Example

3. Security Considerations

4. IANA Considerations

4.1. Labeled CBOR Sequence Tag

4.2. CBOR-Labeled Non-CBOR Data Tag

4.3. CBOR Tags for CoAP Content-Format Numbers

5. References

5.1. Normative References

5.2. Informative References

Appendix A. Advice to Protocol Designer

A.1. Is the on-wire format new?

A.2. Can many items be trivially concatenated?

A.3. Are there tags at the start?

Appendix B. CBOR Tags for CoAP Content Formats

B.1. Content-Format Tag Examples

Appendix C. Example from Openswan

Appendix D. Using CBOR Labels for Non-CBOR Data

D.1. Content-Format Tag Examples

Acknowledgements

RFC 9277 cbor-file-magic August 2022

Richardson & Bormann Standards Track Page 2

Contributors

Authors' Addresses

1. Introduction

Since very early in computing, operating systems have sought ways to mark which files could be

processed by which programs. In Unix, everything is a stream of bytes; identifying the contents

of a stream of bytes became a heuristic activity.

For instance, the Unix file(1) command, which has existed since 1973 , has been able to

identify many file formats based upon the contents of the file for decades.

Many systems (Linux, macOS, Windows) will select the correct application based upon the file

contents if the system cannot determine it by other means. For instance, in classical Mac OS, a

resource fork was maintained separately from the file data that included file type information;

this way, the OS ideally never needed to know anything about the file data contents to determine

the media type.

Many other systems do this by using file extensions. Many common Web servers derive the

media-type information from file extensions.

Having a media type associated with the file contents can avoid some of the brittleness of this

approach. When files become disconnected from their type information, such as when

attempting to do forensics on a damaged system, being able to identify the type of information

stored in a file can become very important.

A common way to identify the type of a file from its contents is to place a "magic number" at the

start of the file contents . In the media type registration template , a magic

number is asked for, if available, as is a file extension.

A challenge for the file(1) command is often that it can be confused by recognizing the overall

encoding but not the content being encoded. For instance, an Android Package Kit APK (as used

to transfer and store an application) may be identified as a ZIP file. Additionally, both OpenOffice

and MSOffice files are ZIP files of XML files; the identification may stop at identifying them as ZIP

files.

As CBOR becomes a more and more common encoding for a wide variety of artifacts, identifying

them as just "CBOR" is probably not sufficient. This document provides a way to encode a magic

number into the beginning of a CBOR format file. As a CBOR format may use a single CBOR data

item or a CBOR sequence of data items , two possible methods of enveloping data are

presented; a CBOR Protocol designer will specify one. (A CBOR Protocol is a specification that

uses CBOR as its encoding.)

This document also gives advice to designers of CBOR Protocols on choosing one of these

mechanisms for identifying their contents. This advice is informative.

[FILE]

[MAGIC] [RFC6838]

[RFC8742]

RFC 9277 cbor-file-magic August 2022

Richardson & Bormann Standards Track Page 3

A third method is also proposed by which a CBOR format tag is prepended to identify non-CBOR

files. Further information on this method appears in Appendix D because it is not about

identifying media types containing CBOR-encoded data items. This includes a simple way to

derive a magic number for content-formats as defined in , even if the file is not in

CBOR form.

Examples of CBOR Protocols currently under development include Concise Software

Identification Tags and Entity Attestation Tokens . CBOR Object Signing and

Encryption (COSE) itself is considered infrastructure. The encoding of public keys in

CBOR as C509 as described in would benefit from being an identified CBOR Protocol.

A major inspiration for this document is observing the disarray in certain ASN.1-based systems

where most files are Privacy-Enhanced Mail (PEM) encoded; these files are all identified by the

extension "pem", which confounds public keys, private keys, certificate requests, and S/MIME

content.

While the envelopes defined in this specification add information to how data conforming to

CBOR Protocols are stored in files, there is no requirement that either type of envelope be

transferred on the wire. However, there are some protocols that may benefit from having such a

magic number on the wire if they are presently using a different (legacy) encoding scheme. The

presence of the identifiable magic sequence can be used to signal that a CBOR Protocol is being

used as opposed to a legacy scheme.

[RFC7252]

[CoSWID] [EAT]

[RFC8152]

[C509-CERT]

1.1. Terminology

Byte is a synonym for octet. The term "byte string" refers to the data item defined in .

The term "file" is understood to stand in a general way for a stored representation that is

somewhat detached from the original context of usage of that representation; its usage in this

document encompasses similar units of storage that may have different identification schemes

such as partitions or media blocks.

The term "diagnostic notation" refers to the human-readable notation for CBOR data items

defined in and .

The term "CDDL" (Concise Data Definition Language) refers to the language defined in .

The function TN(ct) is defined in Appendix B.

[STD94]

Section 8 of [STD94] Appendix G of [RFC8610]

[RFC8610]

1.2. Requirements for a Magic Number

Ideally, a magic number is a fingerprint that is unique to a specific CBOR Protocol, is present in

the first few (small multiple of 4) bytes of the file and does not change when the contents change,

and does not depend upon the length of the file.

Less ideal solutions have a pattern that needs to be matched, but in which some bytes need to be

ignored. While the Unix file(1) command can be told to ignore certain bytes, this can lead to

ambiguities.

RFC 9277 cbor-file-magic August 2022

Richardson & Bormann Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc8949#section-8
https://www.rfc-editor.org/rfc/rfc8610#appendix-G

2. Protocol

This section presents two enveloping methods. Both use CBOR tags in a way that results in a

deterministic first 8 to 12 bytes. The Protocol designer determines which one to use; see

Appendix A for some guidance.

2.1. The CBOR-Protocol-Specific Tag

In both enveloping methods, CBOR Protocol designers need to obtain a CBOR tag for each kind of

object that they might store in files. As there are more than 4 billion available 4-byte tags, there

should be little issue in allocating a few to each available CBOR Protocol.

The IANA policy for 4-byte CBOR tags is First Come First Served so only a simple

interaction (e.g., via Web or email) with IANA is required. The interaction includes filling in the

small template provided in . In the template, a reference to this

specification (RFC 9277) alongside the Description of semantics is suggested.

Allocation of the CBOR tag needs to be initiated by the designer of the CBOR Protocol, who can

provide a proposed tag number. In order to be in the 4-byte range, and so that there are no

leading zero bytes in the 4-byte encoding of the tag number, the value needs to be in the range

0x01000000 (decimal 16777216) to 0xFFFFFFFF (decimal 4294967295) inclusive. It is further

suggested to avoid values that have an embedded zero byte in the 4 bytes of their binary

representation (such as 0x12003456), as these may confuse implementations that treat the magic

number as a C string.

The use of a sequence of four ASCII codes which are mnemonic to the protocol is

encouraged, but not required (there may be reasons to encode other information into the tag; see

Appendix B for an example). For instance, Appendix C uses "OPSN", which translates to the tag

number 1330664270 registered for it.

In , the Constrained Application Protocol (CoAP) defines the "CoAP

Content-Formats" registry to assign Content-Format Numbers () to

Content Types in a specific Content Coding. For CBOR data items that form a representation that

is already described by such a Content-Format Number, a tag number has proactively been

allocated in Section 4.3 (see Appendix B for details and examples).

[RFC8126]

Section 9.2 of [STD94]

[RFC20]

[IANA.CORE-PARAMETERS]

Section 12.3 of [RFC7252]

2.2. Enveloping Method: CBOR Tag Wrapped

The CBOR Tag Wrapped method is appropriate for use with CBOR Protocols that encode a single

CBOR data item. This data item is enveloped into two nested tags:

The outer tag is a self-described CBOR tag, 55799, as described in .

The tag content of the outer tag is a second CBOR tag whose tag number has been allocated to

describe the specific Protocol involved, as discussed in Section 2.1. The tag content of this inner

tag is the single CBOR data item.

Section 3.4.6 of [STD94]

RFC 9277 cbor-file-magic August 2022

Richardson & Bormann Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc8949#section-9.2
https://www.rfc-editor.org/rfc/rfc7252#section-12.3
https://www.rfc-editor.org/rfc/rfc8949#section-3.4.6

This method wraps the CBOR data item as CBOR tags usually do. Applications that need to send

the stored CBOR data item across a constrained network may wish to remove the two tags if the

type is understood from the protocol context, e.g., from a CoAP Content-Format Option (

). Therefore, a CBOR Protocol specification may pick the specific cases where

the CBOR Tag Wrapped enveloping method is to be used. For instance, it might specify its use for

storing the representation in a local file or for Web access, but not within protocol messages that

already provide the necessary context.

Section

5.10.3 of [RFC7252]

2.2.1. Example

To construct an example without registering a new tag, we use the Content-Format ID assigned

for application/senml+cbor (112) of the "CoAP Content-Formats" registry

).

Using the technique described in Appendix B, this translates into the tag TN(112) = 1668546929.

With this tag, the SenML-CBOR pack [{0: "current", 6: 3, 2: 1.5}] would be enveloped as

follows (in diagnostic notation):

Or in hex:

At the representation level, the unique fingerprint for application/senml+cbor is composed of

the 8 bytes d9d9f7da63740171 hex, after which the unadorned CBOR data (81... for the SenML

data) is appended.

[RFC8428]

[IANA.CORE-PARAMETERS]

55799(1668546929([{0: "current", 6: 3, 2: 1.5}]))

d9 d9f7 # tag(55799)
 da 63740171 # tag(1668546929)
 81 # array(1)
 a3 # map(3)
 00 # unsigned(0)
 67 # text(7)
 63757272656e74 # "current"
 06 # unsigned(6)
 03 # unsigned(3)
 02 # unsigned(2)
 f9 3e00 # primitive(15872)

2.3. Enveloping Method: Labeled CBOR Sequence

The Labeled CBOR Sequence method is appropriate for use with CBOR Sequences as described in

.

This method prepends a newly constructed, separate data item to the CBOR Sequence, the label.

[RFC8742]

RFC 9277 cbor-file-magic August 2022

Richardson & Bormann Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc7252#section-5.10.3
https://www.rfc-editor.org/rfc/rfc7252#section-5.10.3

The label is a nesting of two tags, similar to but distinct from the CBOR Tag Wrapped methods,

with an inner tag content of a constant byte string. The total length of the label is 12 bytes.

The outer tag is the self-described CBOR Sequence tag, 55800.

The inner tag is a CBOR tag from the First Come First Served space that uniquely identifies

the CBOR Protocol. As with the CBOR Tag Wrapped method, the use of a 4-byte tag that

encodes without zero bytes is encouraged.

The tag content is a 3-byte CBOR byte string containing 0x42_4f_52 ('BOR' in diagnostic

notation).

The outer tag in the label identifies the file as being a CBOR Sequence and does so with all the

desirable properties explained in . Specifically, it does not appear to

conflict with any known file types, and it is not valid Unicode in any Unicode encoding.

The inner tag in the label identifies which CBOR Protocol is used, as described above.

The inner tag content is a constant byte string that is represented as 0x43_42_4f_52, the ASCII

characters "CBOR", which is the CBOR-encoded data item for the 3-byte string 0x42_4f_52 ('BOR'

in diagnostic notation).

The actual CBOR Protocol data then follows as the next data item(s) in the CBOR Sequence,

without a need for any further specific tag. The use of a CBOR Sequence allows the application to

trivially remove the first item with the two tags.

Should this file be reviewed by a human (directly in an editor or in a hexdump display), it will

include the ASCII characters "CBOR" prominently. This value is also included simply because the

inner nested tag needs to tag something.

1.

2.

3.

Section 3.4.6 of [STD94]

2.3.1. Example

To construct an example without registering a new tag, we use ID 272 as assigned for

application/missing-blocks+cbor-seq of the "CoAP Content-Formats" registry .

Using the technique described in Appendix B, this translates into the tag TN(272) = 1668547090.

This is a somewhat contrived example, as this is not a media type that is likely to be committed to

storage. Nonetheless, with this tag, missing blocks list 0, 8, 15 would be enveloped as (in

diagnostic notation):

Or in hex:

[RFC9177]

55800(1668547090('BOR')),
0,
8,
15

RFC 9277 cbor-file-magic August 2022

Richardson & Bormann Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc8949#section-3.4.6

At the representation level, the unique fingerprint for application/missing-blocks+cbor-seq

is composed of the 8 bytes d9d9f8da63740212 hex, after which the unadorned CBOR sequence

(00... for the missing block list given) is appended.

CBOR sequence with 4 elements
d9 d9f8 # tag(55800)
 da 63740212 # tag(1668547090)
 43 # bytes(3)
 424f52 # "BOR"
00 # unsigned(0)
08 # unsigned(8)
0f # unsigned(15)

3. Security Considerations

This document provides a way to identify CBOR Protocol objects. Clearly identifying CBOR

contents in files may have a variety of impacts.

The most obvious is that it may allow malware to identify interesting stored objects, and then

exfiltrate or corrupt them.

Protective applications (that check data) cannot rely on the applications they try to protect (that

use the data) to make exactly the same decisions in recognizing file formats. (This is an instance

of a check versus use issue.) For example, end-point assessment technologies should not solely

rely on the labeling approaches described in this document to decide whether to inspect a given

file. Similarly, depending on operating system configurations and related properties of the

execution environment, the labeling might influence the default application used to process a file

in a way that may not be predicted by a protective application.

4. IANA Considerations

These IANA considerations are entirely about CBOR tags in the "Concise Binary Object

Representation (CBOR) Tags" registry .

Section 4.1 documents the allocation for a CBOR tag to be used in a CBOR sequence to identify the

sequence (an example for using this tag is found in Appendix C). Section 4.2 documents the

allocation for a CBOR tag to be used in the CBOR-Labeled Non-CBOR Data Enveloping Method

(Appendix D, which also shows examples). Section 4.3 allocates a CBOR tag for each actual or

potential CoAP Content-Format number (examples are in Appendix B).

[IANA.CBOR-TAGS]

4.1. Labeled CBOR Sequence Tag

IANA has allocated tag 55800 for the Labeled CBOR Sequence Enveloping Method from the "CBOR

Tags" registry. IANA has updated this tag registration to point to this document.

This tag is from the First Come First Served area.

RFC 9277 cbor-file-magic August 2022

Richardson & Bormann Standards Track Page 8

The value has been picked to have properties similar to the 55799 tag ().

The hexadecimal representation of the encoded tag head is 0xd9_d9_f8.

This is not valid UTF-8: the first 0xd9 introduces a 3-byte sequence in UTF-8, but the 0xd9 as the

second value is not a valid second byte for UTF-8.

This is not valid UTF-16: the byte sequence 0xd9d9 (in either endian order) puts this value into

the UTF-16 high-half zone, which would signal that this is a 32-bit Unicode value. However, the

following 16-bit big-endian value 0xf8_xx is not a valid second sequence according to .

On a little-endian system, it would be necessary to examine the fourth byte to determine if it is

valid. That next byte is determined by the subsequent encoding, and has

already determined that no valid CBOR encodings result in valid UTF-16.

Data Item:

tagged byte string

Semantics:

indicates that the file contains CBOR Sequences

Section 3.4.6 of [STD94]

[RFC2781]

Section 3.4.6 of [STD94]

4.2. CBOR-Labeled Non-CBOR Data Tag

IANA has allocated tag 55801 for the CBOR-Labeled Non-CBOR Data Enveloping Method

(Appendix D) from the "CBOR Tags" registry. IANA updated this tag registration to point to this

document.

This tag is from the First Come First Served area.

The value has been picked to have properties similar to the 55799 tag ().

The hexadecimal representation of the encoded tag head is 0xd9_d9_f9.

This is not valid UTF-8: the first 0xd9 introduces a 3-byte sequence in UTF-8, but the 0xd9 as the

second value is not a valid second byte for UTF-8.

This is not valid UTF-16: the byte sequence 0xd9d9 (in either endian order) puts this value into

the UTF-16 high-half zone, which would signal that this is a 32-bit Unicode value. However, the

following 16-bit big-endian value 0xf9_xx is not a valid second sequence according to .

On a little-endian system, it would be necessary to examine the fourth byte to determine if it is

valid. That next byte is determined by the subsequent encoding, and has

already determined that no valid CBOR encodings result in valid UTF-16.

Data Item:

tagged byte string

Semantics:

indicates that the file starts with a CBOR-Labeled Non-CBOR Data label.

Section 3.4.6 of [STD94]

[RFC2781]

Section 3.4.6 of [STD94]

RFC 9277 cbor-file-magic August 2022

Richardson & Bormann Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc8949#section-3.4.6
https://www.rfc-editor.org/rfc/rfc8949#section-3.4.6
https://www.rfc-editor.org/rfc/rfc8949#section-3.4.6
https://www.rfc-editor.org/rfc/rfc8949#section-3.4.6

[C]

[RFC8742]

[STD94]

[C509-CERT]

[CoSWID]

5. References

5.1. Normative References

,

, , June 2018,

.

, ,

, , February 2020,

.

 and , ,

, , , December 2020,

.

5.2. Informative References

, , , , and ,

, ,

, 10 July 2022,

.

, , , and ,

, ,

, 20 July 2022,

.

4.3. CBOR Tags for CoAP Content-Format Numbers

IANA allocated the tag numbers 1668546817 (0x63740101) to 1668612095 (0x6374ffff) as follows:

Data Item:

byte string or any CBOR data item (see Appendix B)

Semantics:

the representation of content-format ct < 65025 is indicated by tag number

TN(ct) = 0x63740101 + (ct / 255) * 256 + ct % 255

Reference:

RFC 9277

The "CoAP Content-Formats" registry is defined in

.

[IANA.CORE-PARAMETERS] Section 12.3 of

[RFC7252]

International Organization for Standardization "Information technology --

Programming languages -- C" ISO/IEC 9899:2018, Fourth Edition

<https://www.iso.org/standard/74528.html>

Bormann, C. "Concise Binary Object Representation (CBOR) Sequences" RFC

8742 DOI 10.17487/RFC8742 <https://www.rfc-editor.org/info/

rfc8742>

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"

STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-

editor.org/info/std94>

Mattsson, J. P. Selander, G. Raza, S. Höglund, J. M. Furuhed "CBOR

Encoded X.509 Certificates (C509 Certificates)" Work in Progress Internet-Draft,

draft-ietf-cose-cbor-encoded-cert-04 <https://datatracker.ietf.org/

doc/html/draft-ietf-cose-cbor-encoded-cert-04>

Birkholz, H. Fitzgerald-McKay, J. Schmidt, C. D. Waltermire "Concise

Software Identification Tags" Work in Progress Internet-Draft, draft-ietf-sacm-

coswid-22 <https://datatracker.ietf.org/doc/html/draft-ietf-sacm-

coswid-22>

RFC 9277 cbor-file-magic August 2022

Richardson & Bormann Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc7252#section-12.3
https://www.iso.org/standard/74528.html
https://www.rfc-editor.org/info/rfc8742
https://www.rfc-editor.org/info/rfc8742
https://www.rfc-editor.org/info/std94
https://www.rfc-editor.org/info/std94
https://datatracker.ietf.org/doc/html/draft-ietf-cose-cbor-encoded-cert-04
https://datatracker.ietf.org/doc/html/draft-ietf-cose-cbor-encoded-cert-04
https://datatracker.ietf.org/doc/html/draft-ietf-sacm-coswid-22
https://datatracker.ietf.org/doc/html/draft-ietf-sacm-coswid-22

[EAT]

[FILE]

[IANA.CBOR-TAGS]

[IANA.CORE-PARAMETERS]

[MAGIC]

[RFC20]

[RFC2781]

[RFC6838]

[RFC7252]

[RFC8017]

[RFC8126]

[RFC8152]

[RFC8428]

[RFC8610]

, , and ,

, , , 10 July 2022,

.

, , 2 July 2022,

.

, ,

.

, ,

.

, ,

, 3 November 1971,

.

, , , ,

, October 1969, .

 and , , ,

, February 2000, .

, , and ,

, , , , January 2013,

.

, , and ,

, , , June 2014,

.

, , , and ,

, , ,

November 2016, .

, , and ,

, , , , June

2017, .

, , ,

, July 2017, .

, , , , and ,

, , , August 2018,

.

, , and ,

, ,

, June 2019, .

Lundblade, L. Mandyam, G. J. O'Donoghue "The Entity Attestation Token

(EAT)" Work in Progress Internet-Draft, draft-ietf-rats-eat-14

<https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-14>

Wikipedia "file (command)" <https://en.wikipedia.org/w/index.php?

title=File_(command)&oldid=1096086462>

IANA "Concise Binary Object Representation (CBOR) Tags" <https://

www.iana.org/assignments/cbor-tags>

IANA "Constrained RESTful Environments (CoRE) Parameters"

<https://www.iana.org/assignments/core-parameters>

Bell Labs "archive (library) file format" Unix Programmer's Manual, First

Edition: File Formats <https://www.bell-labs.com/usr/dmr/

www/man51.pdf#page=4>

Cerf, V. "ASCII format for network interchange" STD 80 RFC 20 DOI 10.17487/

RFC0020 <https://www.rfc-editor.org/info/rfc20>

Hoffman, P. F. Yergeau "UTF-16, an encoding of ISO 10646" RFC 2781 DOI

10.17487/RFC2781 <https://www.rfc-editor.org/info/rfc2781>

Freed, N. Klensin, J. T. Hansen "Media Type Specifications and Registration

Procedures" BCP 13 RFC 6838 DOI 10.17487/RFC6838 <https://

www.rfc-editor.org/info/rfc6838>

Shelby, Z. Hartke, K. C. Bormann "The Constrained Application Protocol

(CoAP)" RFC 7252 DOI 10.17487/RFC7252 <https://www.rfc-

editor.org/info/rfc7252>

Moriarty, K., Ed. Kaliski, B. Jonsson, J. A. Rusch "PKCS #1: RSA

Cryptography Specifications Version 2.2" RFC 8017 DOI 10.17487/RFC8017

<https://www.rfc-editor.org/info/rfc8017>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA

Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Schaad, J. "CBOR Object Signing and Encryption (COSE)" RFC 8152 DOI

10.17487/RFC8152 <https://www.rfc-editor.org/info/rfc8152>

Jennings, C. Shelby, Z. Arkko, J. Keranen, A. C. Bormann "Sensor

Measurement Lists (SenML)" RFC 8428 DOI 10.17487/RFC8428

<https://www.rfc-editor.org/info/rfc8428>

Birkholz, H. Vigano, C. C. Bormann "Concise Data Definition Language

(CDDL): A Notational Convention to Express Concise Binary Object

Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/

RFC8610 <https://www.rfc-editor.org/info/rfc8610>

RFC 9277 cbor-file-magic August 2022

Richardson & Bormann Standards Track Page 11

https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-14
https://en.wikipedia.org/w/index.php?title=File_(command)&oldid=1096086462
https://en.wikipedia.org/w/index.php?title=File_(command)&oldid=1096086462
https://www.iana.org/assignments/cbor-tags
https://www.iana.org/assignments/cbor-tags
https://www.iana.org/assignments/core-parameters
https://www.bell-labs.com/usr/dmr/www/man51.pdf#page=4
https://www.bell-labs.com/usr/dmr/www/man51.pdf#page=4
https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc2781
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8428
https://www.rfc-editor.org/info/rfc8610

[RFC9110]

[RFC9177]

[X.690]

, , and , ,

, , , June 2022,

.

 and ,

, ,

, March 2022, .

,

, , , February

2021, .

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD

97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/

rfc9110>

Boucadair, M. J. Shallow "Constrained Application Protocol (CoAP) Block-

Wise Transfer Options Supporting Robust Transmission" RFC 9177 DOI

10.17487/RFC9177 <https://www.rfc-editor.org/info/rfc9177>

ITU-T "Information technology - ASN.1 encoding rules: Specification of Basic

Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished

Encoding Rules (DER)" ITU-T Recommendation X.690 ISO/IEC 8825-1

<https://www.itu.int/rec/T-REC-X.690>

Appendix A. Advice to Protocol Designer

This document introduces a choice between wrapping a single CBOR data item into a pair of

identifying CBOR tags or prepending an identifying encoded CBOR data item (which, in turn,

contains a pair of identifying CBOR tags) to a CBOR Sequence (which might be a single data item).

Which should a protocol designer use?

In this discussion, one assumes that there is an object stored in a file, perhaps specified by a

system operator in a configuration file.

For example: a private key used in COSE operations, a public key/certificate in C509

or CBOR format, a recorded sensor reading stored for later transmission, or a COVID-19

vaccination certificate that needs to be displayed in QR code form.

Both the Labeled CBOR Sequence and the wrapped tag can be trivially removed by an application

before sending the CBOR content out on the wire.

The Labeled CBOR Sequence can be slightly easier to remove as, in most cases, CBOR parsers will

return it as a unit and then return the actual CBOR item, which could be anything at all and

could include CBOR tags that do need to be sent on the wire.

On the other hand, having the Labeled CBOR Sequence in the file requires that all programs that

expect to examine that file be able to skip what appears to be a CBOR item with two tags nested

around a 3-byte byte string. The 3-byte entry is not of the format the program would normally

have processed, so it may be a surprise. On the other hand, CBOR parsers are generally tolerant

of tags that appear: many of them will process extra tags, making unknown tags available as

meta information. A program that is not expecting those tags may just ignore them.

As an example of where there was a problem with previous security systems, "PEM" format

certificate files grew to be able to contain multiple certificates by simple concatenation. The

PKCS1 format could also contain a private key object followed by one or more

certificate objects, but only when in PEM format. Annoyingly, when in binary DER format (

, which like CBOR is self-delimiting), concatenation of certificates was not compatible with

most programs as they did not expect to read more than one item in the file.

[C509-CERT]

[RFC8017]

[X.

690]

RFC 9277 cbor-file-magic August 2022

Richardson & Bormann Standards Track Page 12

https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9177
https://www.itu.int/rec/T-REC-X.690

The use of CBOR Tag Wrapped format is easier to retrofit to an existing format with existing and

unchangeable stored format for a single CBOR data item. This new sequence of tags is expected

to be trivially ignored by many existing programs when reading CBOR from files or similar units

of storage, even if the program only supports decoding a single data item (and not a CBOR

sequence). But, a naive program might also then transmit the additional tags across the network.

Removing the CBOR Tag Wrapped format requires knowledge of the two tags involved. Other

tags present might be needed.

For a representation matching a specific media-type that is carried in a CBOR byte string, the byte

string head will already have to be removed for use as such a representation, so it should be easy

to remove the enclosing tag heads as well. This is of particular interest with the predefined tags

provided in Appendix B for media types with CoAP Content-Format numbers.

Some considerations in the form of survey questions follow.

A.1. Is the on-wire format new?

If the on-wire format is new, then it could be specified with the CBOR Tag Wrapped format if the

extra 8 bytes are not a problem. The stored format is then identical to the on-wire format.

If the 8 bytes are a problem on the wire (and they often are if CBOR is being considered), then the

Labeled CBOR Sequence format should be adopted for the stored format.

A.2. Can many items be trivially concatenated?

If the programs that read the contents of the file already expect to process all of the CBOR data

items in the file (not just the first), then the Labeled CBOR Sequence format may be easily

retrofitted.

The programs involved may throw errors or warnings on the Labeled CBOR Sequence if they

have not yet been updated, but this may not be a problem.

There are situations where multiple objects may be concatenated into a single file. If each object

is preceded by a Labeled CBOR Sequence label, then there may be multiple such labels in the file.

A protocol based on CBOR Sequences may specify that Labeled CBOR Sequence labels can occur

within a CBOR Sequence, possibly even to switch to data items following in the sequence that are

of a different type.

If the CBOR-Sequence-based protocol does not define the semantics for or at least tolerate

embedded labels, care must be taken when concatenating Labeled CBOR Sequences to remove

the label from all but the first part.

As an example from legacy PEM-encoded PKIX certificates, many programs accept a

series of PKIX certificates in a single file in order to set up a certificate chain. The file

would contain not just the End-Entity (EE) certificate, but also any subordinate

certification authorities (CAs) needed to validate the EE. This mechanism actually

RFC 9277 cbor-file-magic August 2022

Richardson & Bormann Standards Track Page 13

only works for PEM-encoded certificates, and not DER-encoded certificates. One of

the reasons for this specification is to make sure that CBOR-encoded certificates do

not suffer from this problem.

As an example of mixing of types, some TLS server programs also can accept both

their PEM-encoded private key and their PEM-encoded certificate in the same file.

If only one item is ever expected in the file, the use of the Labeled CBOR Sequence may present

an implementation hurdle to programs that previously just read a single data item and used it.

A.3. Are there tags at the start?

If the Protocol expects to use other tags at its top level, then the use of the CBOR Tag Wrapped

format may be easy to explain at the same place in the protocol description.

Appendix B. CBOR Tags for CoAP Content Formats

 defines the concept of a Content-Format, which is a short, 16-bit

unsigned integer that identifies a specific content type (media type plus (optionally) parameters),

optionally together with a content coding (see).

Outside of a transfer protocol that indicates the Content-Format for a representation, it may be

necessary to identify the Content-Format of the representation when it is stored in a file, in

firmware, or when debugging.

This specification allocates CBOR tag numbers 1668546817 (0x63740101) to 1668612095

(0x6374FFFF) for the tagging of representations of specific content formats.

Using tags from this range, a byte string that is to be interpreted as a representation of Content-

Format number ct, with ct < 65025 (255*255), can be identified by enclosing it in a tag with tag

number TN(ct) where:

TN(ct) = 0x63740101 + (ct / 255) * 256 + ct % 255.

(where +, *, / and % stand for integer addition, multiplication, division, and remainder as in the

programming language C .)

This formula avoids the use of zero bytes in the representation of the tag number.

Note that no tag numbers are assigned for Content-Format numbers in the following

range:

(This range is in the range reserved for Experimental Use by

. The overlap of 25 code points between this experimental range with

the range this appendix defines tag numbers for can be used for experiments that

want to employ a tag number.)

Section 5.10.3 of [RFC7252]

Section 8.4.1 of [RFC9110]

[C]

65025 ≤ ct ≤ 65535

[RFC8126] Section 12.3

of [RFC7252]

RFC 9277 cbor-file-magic August 2022

Richardson & Bormann Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc7252#section-5.10.3
https://www.rfc-editor.org/rfc/rfc9110#section-8.4.1
https://www.rfc-editor.org/rfc/rfc7252#section-12.3

Tag 55799 (Section 2.2):

Tags 55800 (Section 2.3) or 55801 (Appendix D):

Exceptionally, when used immediately as tag content of one of the tags 55799, 55800, or 55801,

the tag content is as follows:

One of:

The CBOR data item within the representation (without byte-string wrapping). This only

works for Content-Formats that are represented by a single CBOR data item in identity

content-coding.

The data items in the CBOR sequence within the representation, without byte string

wrapping, but wrapped in a CBOR array. This works for Content-Formats that are

represented by a CBOR sequence in identity content-coding.

the byte string 'BOR', signifying that the

representation of the given content-format follows in the file, in the way defined for these

tags.

1.

2.

B.1. Content-Format Tag Examples

The "CoAP Content-Formats" registry defines content formats that

can be used as examples:

As discussed in Section 2.2.1, Content-Format ID 112 represents the application/senml+cbor

media type (no parameters). The corresponding tag number is TN(112) = 1668546929.

The following CDDL snippet can be used to identify application/senml+cbor representations:

Note that a byte string is used as the type of the tag content because a media type

representation in general can be any byte string.

Content-Format ID 272 represents the application/missing-blocks+cbor-seq media type,

which is a CBOR sequence .

The corresponding tag number is TN(272) = 1668547090.

The following CDDL snippet can be used to identify application/missing-blocks+cbor-seq

representations as embedded in a CBOR byte string:

[IANA.CORE-PARAMETERS]

•

senml-cbor = #6.1668546929(bstr)

•

[RFC9177]

missing-blocks = #6.1668547090(bstr)

Appendix C. Example from Openswan

The Openswan IPsec project has a daemon ("pluto") and two control programs ("addconn" and

"whack"). They communicate via a Unix-domain socket, over which a C-structure containing

pointers to strings is serialized using a bespoke mechanism. This is normally not a problem as

the structure is compiled by the same compiler; but when there are upgrades, it is possible for

RFC 9277 cbor-file-magic August 2022

Richardson & Bormann Standards Track Page 15

the daemon and the control programs to get out of sync by the bespoke serialization. As a result,

there are extra compensations to deal with shutting the daemon down. During testing, it is

sometimes the case that upgrades are backed out.

In addition, when doing unit testing, the easiest way to load policy is to use the normal policy-

reading process, but that is not normally loaded in the daemon. Instead, the IPC that is normally

sent across the wire is compiled, serialized, and placed in a file. The above magic number is

included in the file and on the IPC in order to distinguish the "shutdown" command CBOR

operation.

In order to reduce the problems due to serialization, the serialization is being changed to CBOR.

Additionally, this change allows the IPC to be described by CDDL and any implementation

language to be used that can encode CBOR.

IANA has allocated the tag 1330664270 or 0x4f_50_53_4e for this purpose. As a result, each file

and each IPC is prefixed with a CBOR Sequence tag.

In diagnostic notation:

Or in hex:

55800(1330664270(h'424F52'))

d9 d9f8 # tag(55800)
 da 4f50534e # tag(1330664270)
 43 # bytes(3)
 424f52 # "BOR"

Appendix D. Using CBOR Labels for Non-CBOR Data

The CBOR-Labeled Non-CBOR data method is appropriate for adding a magic number to a Non-

CBOR data format, particularly one that can be described by a Content-Format tag (Appendix B).

This method prepends a CBOR data item to the Non-CBOR data; this data item is called the

"header" and, similar to the Labeled CBOR-Sequence label, consists of two nested tags around a

constant byte string for a total of 12 bytes.

The outer tag is the CBOR-Labeled Non-CBOR Data tag, 55801.

The inner tag is a CBOR tag from the First Come First Served space that uniquely identifies

the CBOR Protocol. As with CBOR Tag Wrapped, the use of a 4-byte tag is encouraged that

encodes without zero bytes.

The tag content is a 3-byte CBOR byte string containing 0x42_4F_52 ('BOR' in diagnostic

notation).

1.

2.

3.

RFC 9277 cbor-file-magic August 2022

Richardson & Bormann Standards Track Page 16

The outer tag in the label identifies the file as being prefixed by a Non-CBOR data label and does

so with all the desirable properties explained in . Specifically, it does not

appear to conflict with any known file types, and it is not valid Unicode in any Unicode encoding.

The inner tag in the label identifies which Non-CBOR Protocol is used.

The inner tag content is a constant byte string that is represented as 0x43_42_4f_52, the ASCII

characters "CBOR", which is the CBOR-encoded data item for the 3-byte string 0x42_4f_52 ('BOR'

in diagnostic notation).

The actual Non-CBOR Protocol data then follow directly appended to the CBOR representation of

the header. This allows the application to trivially remove the header item with the two nested

tags and the byte string.

As with the Labeled CBOR Sequence {#sequences}, this choice of the tag content places the ASCII

characters "CBOR" prominently into the header.

Section 3.4.6 of [STD94]

D.1. Content-Format Tag Examples

The "CoAP Content-Formats" registry defines content formats that

can be used as examples:

Content-Format ID 432 represents the application/td+json media type (no parameters).

The corresponding tag number is TN(432) = 1668547250.

The following CDDL snippet can be used to identify a CBOR-Labeled Non-CBOR data for

application/td+json representations:

Content-Format 11050 represents the application/json media type in deflate content-coding.

The corresponding tag number is TN(11050) = 1668557910.

The following CDDL snippet can be used to identify a CBOR-Labeled Non-CBOR data for

application/json representations compressed in deflate content-coding:

[IANA.CORE-PARAMETERS]

•

td-json-header = #6.55801(#6.1668547250('BOR'))

•

json-deflate-header = #6.55801(#6.1668557910('BOR'))

Acknowledgements

The CBOR WG brainstormed this protocol on January 20, 2021 via a number of productive email

exchanges on the mailing list.

Contributors

Josef 'Jeff' Sipek

 jeffpc@josefsipek.net Email:

RFC 9277 cbor-file-magic August 2022

Richardson & Bormann Standards Track Page 17

https://www.rfc-editor.org/rfc/rfc8949#section-3.4.6
mailto:jeffpc@josefsipek.net

Authors' Addresses

Michael Richardson

Sandelman Software Works

 mcr+ietf@sandelman.ca Email:

Carsten Bormann

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

 +49-421-218-63921 Phone:

 cabo@tzi.org Email:

RFC 9277 cbor-file-magic August 2022

Richardson & Bormann Standards Track Page 18

mailto:mcr+ietf@sandelman.ca
tel:+49-421-218-63921
mailto:cabo@tzi.org

	RFC 9277
	On Stable Storage for Items in Concise Binary Object Representation (CBOR)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Requirements for a Magic Number

	2. Protocol
	2.1. The CBOR-Protocol-Specific Tag
	2.2. Enveloping Method: CBOR Tag Wrapped
	2.2.1. Example

	2.3. Enveloping Method: Labeled CBOR Sequence
	2.3.1. Example

	3. Security Considerations
	4. IANA Considerations
	4.1. Labeled CBOR Sequence Tag
	4.2. CBOR-Labeled Non-CBOR Data Tag
	4.3. CBOR Tags for CoAP Content-Format Numbers

	5. References
	5.1. Normative References
	5.2. Informative References

	Appendix A. Advice to Protocol Designer
	A.1. Is the on-wire format new?
	A.2. Can many items be trivially concatenated?
	A.3. Are there tags at the start?

	Appendix B. CBOR Tags for CoAP Content Formats
	B.1. Content-Format Tag Examples

	Appendix C. Example from Openswan
	Appendix D. Using CBOR Labels for Non-CBOR Data
	D.1. Content-Format Tag Examples

	Acknowledgements
	Contributors
	Authors' Addresses

 On Stable Storage for Items in Concise Binary Object Representation (CBOR)

 Sandelman Software Works

 mcr+ietf@sandelman.ca

 Universität Bremen TZI

 Postfach 330440
 D-28359 Bremen
 Germany

 +49-421-218-63921
 cabo@tzi.org

 art
 cbor
 magic number
 file identification

 This document defines a stored ("file") format for Concise Binary
 Object Representation (CBOR) data items
that is friendly to common systems that recognize file types, such
as the Unix file(1) command.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Terminology

 . Requirements for a Magic Number

 . Protocol

 . The CBOR-Protocol-Specific Tag

 . Enveloping Method: CBOR Tag Wrapped

 . Example

 . Enveloping Method: Labeled CBOR Sequence

 . Example

 . Security Considerations

 . IANA Considerations

 . Labeled CBOR Sequence Tag

 . CBOR-Labeled Non-CBOR Data Tag

 . CBOR Tags for CoAP Content-Format Numbers

 . References

 . Normative References

 . Informative References

 . Advice to Protocol Designer

 . Is the on-wire format new?

 . Can many items be trivially concatenated?

 . Are there tags at the start?

 . CBOR Tags for CoAP Content Formats

 . Content-Format Tag Examples

 . Example from Openswan

 . Using CBOR Labels for Non-CBOR Data

 . Content-Format Tag Examples

 Acknowledgements

 Contributors

 Authors' Addresses

 Introduction
 Since very early in computing, operating systems have sought ways to mark which files could be processed by which programs.
In Unix, everything is a stream of bytes; identifying the contents of a stream of bytes became a heuristic activity.
 For instance, the Unix file(1) command, which has existed since 1973 , has been able to identify many file formats based upon the contents of the file for decades.
 Many systems (Linux, macOS, Windows) will select the correct application based upon the file contents if the system cannot determine it by other means.
For instance, in classical Mac OS, a resource fork was maintained
separately from the file data that included file type information;
this way, the OS ideally never needed to know anything about the file
data contents to determine the media type.
 Many other systems do this by using file extensions.
Many common Web servers derive the media-type information from file extensions.
 Having a media type associated with the file contents can avoid some
of the brittleness of this approach.
When files become disconnected from their type information, such as when attempting to do forensics on a damaged system, being able to identify the type of information stored in a file can become very important.
 A common way to identify the type of a file from its contents is to
 place a "magic number" at the start of the file contents . In
 the media type registration template , a
 magic number is asked for, if available, as is a file extension.

 A challenge for the file(1) command is often that it can be confused
by recognizing the overall encoding but not the content being encoded. For instance, an Android Package Kit APK (as used to transfer and store an application) may be identified as a ZIP file. Additionally, both OpenOffice and MSOffice files are ZIP files
of XML files; the identification may stop at identifying them as ZIP files.

 As CBOR becomes a more and more common encoding for a wide variety of artifacts, identifying them as just "CBOR" is probably not sufficient.
This document provides a way to encode a magic number into the beginning of a CBOR format file.
As a CBOR format may use a single CBOR data item or a CBOR sequence of
data items ,
two possible methods of enveloping data are presented; a CBOR Protocol designer will specify one.
(A CBOR Protocol is a specification that uses CBOR as its encoding.)
 This document also gives advice to designers of CBOR Protocols on
choosing one of these mechanisms for identifying their contents.
This advice is informative.
 A third method is also proposed by which a CBOR format tag is prepended to identify non-CBOR files.
Further information on this method appears in because it is not
about identifying media types containing CBOR-encoded data items.
This includes a simple way to derive a magic number for
content-formats as defined in , even if the file is
not in CBOR form.

 Examples of CBOR Protocols currently under development include Concise
Software Identification Tags and
Entity Attestation Tokens .
CBOR Object Signing and Encryption (COSE) itself is considered infrastructure.
The encoding of public keys in CBOR as C509 as described in would benefit from being an identified CBOR Protocol.
 A major inspiration for this document is observing the disarray in
certain ASN.1-based systems where most files are Privacy-Enhanced Mail (PEM) encoded;
these files are all identified by the
extension "pem", which confounds public keys, private keys,
certificate requests, and S/MIME content.
 While the envelopes defined in this specification add information to how data conforming to CBOR Protocols are stored in files, there is no requirement that either type of envelope be transferred on the wire.
However, there are some protocols that may benefit from having such a magic number on the wire if they are presently using a different (legacy) encoding scheme.
The presence of the identifiable magic sequence can be used to signal
that a CBOR Protocol is being used as opposed to a legacy scheme.

 Terminology
 Byte is a synonym for octet.
The term "byte string" refers to the data item defined in .
 The term "file" is understood to stand in a general way for a stored
representation that is somewhat detached from the original context of
usage of that representation; its usage in this document encompasses
similar units of storage that may have different identification
schemes such as partitions or media blocks.
 The term "diagnostic notation" refers to the human-readable notation
for CBOR data items defined in and .
 The term "CDDL" (Concise Data Definition Language) refers to the
language defined in .
 The function TN(ct) is defined in .

 Requirements for a Magic Number
 Ideally, a magic number is a fingerprint that is unique to a specific CBOR Protocol, is present in the first few (small multiple of 4) bytes of the file and does not change when the contents change, and does not depend upon the length of the file.
 Less ideal solutions have a pattern that needs to be matched, but in which some bytes need to be ignored.
While the Unix file(1) command can be told to ignore certain bytes, this can lead to ambiguities.

 Protocol
 This section presents two enveloping methods.
Both use CBOR tags in a way that results in a deterministic first 8 to 12 bytes.
The Protocol designer determines which one to use; see for
some guidance.

 The CBOR-Protocol-Specific Tag
 In both enveloping methods,
CBOR Protocol designers need to obtain a CBOR tag for each kind of object that they might store in files.
As there are more than 4 billion available 4-byte tags, there should be little issue in allocating a few to each available CBOR Protocol.
 The IANA policy for 4-byte CBOR tags is First Come First Served so only a simple interaction (e.g., via Web or email) with IANA is required. The interaction includes filling in the small template provided in .
In the template, a reference to this
specification (RFC 9277) alongside the Description of
semantics is suggested.
 Allocation of the CBOR tag needs to be initiated by the designer of the CBOR
Protocol, who can provide a proposed tag number.
In order to be in the 4-byte range, and so that there are no
leading zero bytes in the 4-byte encoding of the tag number, the
value needs to be in the range 0x01000000 (decimal
16777216) to 0xFFFFFFFF (decimal 4294967295) inclusive.
It is further suggested to avoid values that have an embedded zero byte in
the 4 bytes of their binary representation (such as 0x12003456), as
these may confuse implementations that treat the magic number as a C string.
 The use of a sequence of four ASCII codes which are mnemonic to the
protocol is encouraged, but not required (there may be reasons to
encode other information into the tag; see for an example).
For instance, uses "OPSN", which translates to the tag
number 1330664270 registered for it.
 In , the Constrained Application Protocol (CoAP) defines the "CoAP Content-Formats" registry to assign Content-Format Numbers () to Content Types in a specific Content Coding.
For CBOR data items that form a representation that is already described by such a Content-Format
Number, a tag number has proactively been allocated
in (see for details and examples).

 Enveloping Method: CBOR Tag Wrapped
 The CBOR Tag Wrapped method is appropriate for use with CBOR Protocols that encode a single CBOR data item.
This data item is enveloped into two nested tags:
 The outer tag is a self-described CBOR tag, 55799, as
described in .
 The tag content of the outer tag is a second CBOR tag whose tag number has
been allocated to describe the specific Protocol involved, as
discussed in .
The tag content of this inner tag is the single CBOR data item.
 This method wraps the CBOR data item as CBOR tags usually do.
Applications that need to send the stored CBOR data item across a
constrained network may wish to remove the two tags if the type is
understood from the protocol context, e.g., from a CoAP Content-Format
Option ().
Therefore, a CBOR Protocol specification may pick the specific cases
where the CBOR Tag Wrapped enveloping method is to be used.
For instance, it might specify its use for storing the representation
in a local file or for Web access, but not within protocol messages that
already provide the necessary context.

 Example
 To construct an example without registering a new tag, we use
the Content-Format ID assigned for application/senml+cbor (112)
of the "CoAP Content-Formats" registry).
 Using the technique described in , this translates into the
tag TN(112) = 1668546929.
 With this tag, the SenML-CBOR pack [{0: "current", 6: 3, 2: 1.5}] would be enveloped as follows (in diagnostic notation):

55799(1668546929([{0: "current", 6: 3, 2: 1.5}]))

 Or in hex:

d9 d9f7 # tag(55799)
 da 63740171 # tag(1668546929)
 81 # array(1)
 a3 # map(3)
 00 # unsigned(0)
 67 # text(7)
 63757272656e74 # "current"
 06 # unsigned(6)
 03 # unsigned(3)
 02 # unsigned(2)
 f9 3e00 # primitive(15872)

 At the representation level, the unique fingerprint for application/senml+cbor is composed of the 8 bytes d9d9f7da63740171 hex, after which the unadorned CBOR data (81... for the SenML data) is appended.

 Enveloping Method: Labeled CBOR Sequence
 The Labeled CBOR Sequence method is appropriate for use with CBOR Sequences as described in .
 This method prepends a newly constructed, separate data item to the
CBOR Sequence, the label.
 The label is a nesting of two tags, similar to but distinct from the
CBOR Tag Wrapped methods, with an inner tag content of a constant byte
string.
The total length of the label is 12 bytes.
 The outer tag is the self-described CBOR Sequence tag, 55800.
 The inner tag is a CBOR tag from the First Come First Served space that uniquely identifies the CBOR Protocol.
As with the CBOR Tag Wrapped method, the use of a 4-byte tag that encodes without zero bytes is encouraged.
 The tag content is a 3-byte CBOR byte string containing
0x42_4f_52 ('BOR' in diagnostic notation).

 The outer tag in the label identifies the file as being a CBOR Sequence and does so with all
the desirable properties explained in .
Specifically, it does not appear to conflict with any known file types, and it is not valid Unicode in any Unicode encoding.
 The inner tag in the label identifies which CBOR Protocol is used, as described above.
 The inner tag content is a constant byte string that is represented as
0x43_42_4f_52, the ASCII characters "CBOR",
which is the CBOR-encoded data item for the 3-byte string
0x42_4f_52 ('BOR' in diagnostic notation).
 The actual CBOR Protocol data then follows as the next data item(s) in the CBOR Sequence, without a need for any further specific tag.
The use of a CBOR Sequence allows the application to trivially remove the first item with the two tags.
 Should this file be reviewed by a human (directly in an
editor or in a hexdump display), it will include the ASCII characters "CBOR" prominently.
This value is also included simply because the inner nested tag needs to tag something.

 Example
 To construct an example without registering a new tag, we use
ID 272 as assigned for application/missing-blocks+cbor-seq of the "CoAP Content-Formats" registry .
 Using the technique described in , this translates into the
tag TN(272) = 1668547090.
 This is a somewhat contrived example, as this is not a media type that
is likely to be committed to storage.
Nonetheless, with this tag, missing blocks list 0, 8, 15 would be
enveloped as (in diagnostic notation):

55800(1668547090('BOR')),
0,
8,
15

 Or in hex:

CBOR sequence with 4 elements
d9 d9f8 # tag(55800)
 da 63740212 # tag(1668547090)
 43 # bytes(3)
 424f52 # "BOR"
00 # unsigned(0)
08 # unsigned(8)
0f # unsigned(15)

 At the representation level, the unique fingerprint for
 application/missing-blocks+cbor-seq is composed of the 8 bytes
d9d9f8da63740212 hex, after which the unadorned CBOR sequence
(00... for the missing block list given) is appended.

 Security Considerations
 This document provides a way to identify CBOR Protocol objects.
Clearly identifying CBOR contents in files may have a variety of impacts.
 The most obvious is that it may allow malware to identify interesting
stored objects, and then exfiltrate or corrupt them.
 Protective applications (that check data) cannot rely on the
applications they try to protect (that use the data) to make
exactly the same decisions in recognizing file formats.
(This is an instance of a check versus use issue.)
For example, end-point assessment technologies should not solely rely
on the labeling approaches described in this document to decide
whether to inspect a given file.
Similarly, depending on operating system configurations and related
properties of the execution environment, the labeling might influence
the default application used to process a file in a way that may not
be predicted by a protective application.

 IANA Considerations
 These IANA considerations are entirely about CBOR tags in the
"Concise Binary Object Representation (CBOR) Tags" registry .
 documents the allocation for a
CBOR tag to be used in a CBOR sequence to identify the sequence (an
example for using this tag is found in). documents the allocation for a CBOR tag to be used in the CBOR-Labeled Non-CBOR Data Enveloping Method (, which also shows examples).
 allocates a CBOR tag for each actual or
potential CoAP Content-Format number (examples are in).

 Labeled CBOR Sequence Tag
 IANA has allocated tag 55800 for the Labeled CBOR Sequence
Enveloping Method from the "CBOR Tags" registry.
IANA has updated this tag registration to point to this document.
 This tag is from the First Come First Served area.
 The value has been picked to have properties similar to the 55799 tag ().
 The hexadecimal representation of the encoded tag head is 0xd9_d9_f8.
 This is not valid UTF-8: the first 0xd9 introduces a 3-byte sequence in UTF-8, but the 0xd9 as the second value is not a valid second byte for UTF-8.
 This is not valid UTF-16: the byte sequence 0xd9d9 (in either endian order) puts this value into the UTF-16 high-half zone, which would signal that this is a 32-bit Unicode value. However, the following 16-bit big-endian value 0xf8_xx is not a valid second sequence according to .
On a little-endian system, it would be necessary to examine the fourth byte to determine if it is valid. That next byte is determined by the subsequent encoding, and has already determined that no valid CBOR encodings result in valid UTF-16.

 Data Item:

 tagged byte string

 Semantics:

 indicates that the file contains CBOR Sequences

 CBOR-Labeled Non-CBOR Data Tag
 IANA has allocated tag 55801 for the CBOR-Labeled Non-CBOR Data
Enveloping Method () from the "CBOR Tags" registry.
IANA updated this tag registration to point to this document.
 This tag is from the First Come First Served area.
 The value has been picked to have properties similar to the 55799 tag ().
 The hexadecimal representation of the encoded tag head is 0xd9_d9_f9.
 This is not valid UTF-8: the first 0xd9 introduces a 3-byte sequence in UTF-8, but the 0xd9 as the second value is not a valid second byte for UTF-8.
 This is not valid UTF-16: the byte sequence 0xd9d9 (in either endian order) puts this value into the UTF-16 high-half zone, which would signal that this is a 32-bit Unicode value. However, the following 16-bit big-endian value 0xf9_xx is not a valid second sequence according to .
On a little-endian system, it would be necessary to examine the fourth byte to determine if it is valid. That next byte is determined by the subsequent encoding, and has already determined that no valid CBOR encodings result in valid UTF-16.

 Data Item:

 tagged byte string

 Semantics:

 indicates that the file starts with a CBOR-Labeled Non-CBOR Data label.

 CBOR Tags for CoAP Content-Format Numbers
 IANA allocated the tag numbers 1668546817 (0x63740101) to
1668612095 (0x6374ffff) as follows:

 Data Item:

 byte string or any CBOR data item (see)

 Semantics:

 the representation of content-format ct < 65025 is indicated by
tag number
TN(ct) = 0x63740101 + (ct / 255) * 256 + ct % 255

 Reference:

 RFC 9277

 The "CoAP Content-Formats" registry is defined in .

 References

 Normative References

 Information technology -- Programming languages -- C

 International Organization for Standardization

 Concise Binary Object Representation (CBOR) Sequences

 This document describes the Concise Binary Object Representation (CBOR) Sequence format and associated media type "application/cbor-seq". A CBOR Sequence consists of any number of encoded CBOR data items, simply concatenated in sequence.
 Structured syntax suffixes for media types allow other media types to build on them and make it explicit that they are built on an existing media type as their foundation. This specification defines and registers "+cbor-seq" as a structured syntax suffix for CBOR Sequences.

 Concise Binary Object Representation (CBOR)

 Informative References

 CBOR Encoded X.509 Certificates (C509 Certificates)

 Ericsson AB

 Ericsson AB

 RISE AB

 RISE AB

 Nexus Group

 This document specifies a CBOR encoding of X.509 certificates. The
 resulting certificates are called C509 Certificates. The CBOR
 encoding supports a large subset of RFC 5280 and all certificates
 compatible with the RFC 7925, IEEE 802.1AR (DevID), CNSA, RPKI, GSMA
 eUICC, and CA/Browser Forum Baseline Requirements profiles. When
 used to re-encode DER encoded X.509 certificates, the CBOR encoding
 can in many cases reduce the size of RFC 7925 profiled certificates
 with over 50%. The CBOR encoded structure can alternatively be
 signed directly ("natively signed"), which does not require re-
 encoding for the signature to be verified. The document also
 specifies C509 COSE headers, a C509 TLS certificate type, and a C509
 file format.

 Work in Progress

 Concise Software Identification Tags

 Fraunhofer SIT

 National Security Agency

 The MITRE Corporation

 National Institute of Standards and Technology

 ISO/IEC 19770-2:2015 Software Identification (SWID) tags provide an
 extensible XML-based structure to identify and describe individual
 software components, patches, and installation bundles. SWID tag
 representations can be too large for devices with network and storage
 constraints. This document defines a concise representation of SWID
 tags: Concise SWID (CoSWID) tags. CoSWID supports a similar set of
 semantics and features as SWID tags, as well as new semantics that
 allow CoSWIDs to describe additional types of information, all in a
 more memory efficient format.

 Work in Progress

 The Entity Attestation Token (EAT)

 Security Theory LLC

 Qualcomm Technologies Inc.

 Qualcomm Technologies Inc.

 An Entity Attestation Token (EAT) provides an attested claims set
 that describes state and characteristics of an entity, a device like
 a phone, IoT device, network equipment or such. This claims set is
 used by a relying party, server or service to determine how much it
 wishes to trust the entity.

 An EAT is either a CBOR Web Token (CWT) or JSON Web Token (JWT) with
 attestation-oriented claims. To a large degree, all this document
 does is extend CWT and JWT.

 Work in Progress

 file (command)

 Wikipedia

 Concise Binary Object Representation (CBOR) Tags

 IANA

 Constrained RESTful Environments (CoRE) Parameters

 IANA

 archive (library) file format

 Bell Labs

 Unix Programmer's Manual, First Edition: File Formats

 ASCII format for network interchange

 UTF-16, an encoding of ISO 10646

 This document describes the UTF-16 encoding of Unicode/ISO-10646, addresses the issues of serializing UTF-16 as an octet stream for transmission over the Internet, discusses MIME charset naming as described in [CHARSET-REG], and contains the registration for three MIME charset parameter values: UTF-16BE (big-endian), UTF-16LE (little- endian), and UTF-16. This memo provides information for the Internet community.

 Media Type Specifications and Registration Procedures

 This document defines procedures for the specification and registration of media types for use in HTTP, MIME, and other Internet protocols. This memo documents an Internet Best Current Practice.

 The Constrained Application Protocol (CoAP)

 The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with constrained nodes and constrained (e.g., low-power, lossy) networks. The nodes often have 8-bit microcontrollers with small amounts of ROM and RAM, while constrained networks such as IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) often have high packet error rates and a typical throughput of 10s of kbit/s. The protocol is designed for machine- to-machine (M2M) applications such as smart energy and building automation.
 CoAP provides a request/response interaction model between application endpoints, supports built-in discovery of services and resources, and includes key concepts of the Web such as URIs and Internet media types. CoAP is designed to easily interface with HTTP for integration with the Web while meeting specialized requirements such as multicast support, very low overhead, and simplicity for constrained environments.

 PKCS #1: RSA Cryptography Specifications Version 2.2

 This document provides recommendations for the implementation of public-key cryptography based on the RSA algorithm, covering cryptographic primitives, encryption schemes, signature schemes with appendix, and ASN.1 syntax for representing keys and for identifying the schemes.
 This document represents a republication of PKCS #1 v2.2 from RSA Laboratories' Public-Key Cryptography Standards (PKCS) series. By publishing this RFC, change control is transferred to the IETF.
 This document also obsoletes RFC 3447.

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 CBOR Object Signing and Encryption (COSE)

 Concise Binary Object Representation (CBOR) is a data format designed for small code size and small message size. There is a need for the ability to have basic security services defined for this data format. This document defines the CBOR Object Signing and Encryption (COSE) protocol. This specification describes how to create and process signatures, message authentication codes, and encryption using CBOR for serialization. This specification additionally describes how to represent cryptographic keys using CBOR.

 Sensor Measurement Lists (SenML)

 This specification defines a format for representing simple sensor measurements and device parameters in Sensor Measurement Lists (SenML). Representations are defined in JavaScript Object Notation (JSON), Concise Binary Object Representation (CBOR), Extensible Markup Language (XML), and Efficient XML Interchange (EXI), which share the common SenML data model. A simple sensor, such as a temperature sensor, could use one of these media types in protocols such as HTTP or the Constrained Application Protocol (CoAP) to transport the measurements of the sensor or to be configured.

 Concise Data Definition Language (CDDL): A Notational Convention to Express Concise Binary Object Representation (CBOR) and JSON Data Structures

 This document proposes a notational convention to express Concise Binary Object Representation (CBOR) data structures (RFC 7049). Its main goal is to provide an easy and unambiguous way to express structures for protocol messages and data formats that use CBOR or JSON.

 HTTP Semantics

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document describes the overall architecture of HTTP, establishes common terminology, and defines aspects of the protocol that are shared by all versions. In this definition are core protocol elements, extensibility mechanisms, and the "http" and "https" Uniform Resource Identifier (URI) schemes.
 This document updates RFC 3864 and obsoletes RFCs 2818, 7231, 7232, 7233, 7235, 7538, 7615, 7694, and portions of 7230.

 Constrained Application Protocol (CoAP) Block-Wise Transfer Options Supporting Robust Transmission

 This document specifies alternative Constrained Application Protocol (CoAP) block-wise transfer options: Q-Block1 and Q-Block2.
 These options are similar to, but distinct from, the CoAP Block1 and Block2 options defined in RFC 7959. The Q-Block1 and Q-Block2 options are not intended to replace the Block1 and Block2 options but rather have the goal of supporting Non-confirmable (NON) messages for large amounts of data with fewer packet interchanges. Also, the Q-Block1 and Q-Block2 options support faster recovery should any of the blocks get lost in transmission.

 Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)

 ITU-T

 Advice to Protocol Designer
 This document introduces a choice between wrapping a single CBOR data item into a pair of identifying CBOR tags or prepending an identifying encoded CBOR data item (which, in turn, contains a pair of identifying CBOR tags) to a CBOR Sequence (which might be a single data item).
 Which should a protocol designer use?
 In this discussion, one assumes that there is an object stored in a file, perhaps specified by a system operator in a configuration file.
 For example: a private key used in COSE operations, a public key/certificate in C509 or CBOR format, a recorded sensor reading stored for later transmission, or a COVID-19 vaccination certificate that needs to be displayed in QR code form.
 Both the Labeled CBOR Sequence and the wrapped tag can be trivially removed by an application before sending the CBOR content out on the wire.
 The Labeled CBOR Sequence can be slightly easier to remove as, in most cases, CBOR parsers will return it as a unit and then return the actual CBOR item, which could be anything at all and could include CBOR tags that do need to be sent on the wire.
 On the other hand, having the Labeled CBOR Sequence in the file requires that all programs that expect to examine that file be able to skip what appears to be a CBOR item with two tags nested around a 3-byte byte string.
The 3-byte entry is not of the format the program would normally have processed, so it may be a surprise.
On the other hand, CBOR parsers are generally tolerant of tags that appear: many of them will process extra tags, making unknown tags available as meta information.
A program that is not expecting those tags may just ignore them.
 As an example of where there was a problem with previous security systems, "PEM" format certificate files grew to be able to contain multiple certificates by simple concatenation.

The PKCS1 format could also contain a private key object followed by one or more certificate objects, but only when in PEM format.
Annoyingly, when in binary DER format (, which like CBOR is self-delimiting), concatenation of certificates was not compatible with most programs as they did not expect to read more than one item in the file.
 The use of CBOR Tag Wrapped format is easier to retrofit to an existing format with existing and unchangeable stored format for a single CBOR data item.
This new sequence of tags is expected to be trivially ignored by many
existing programs when reading CBOR from files or similar units of storage, even if the program only
supports decoding a single data item (and not a CBOR sequence).
But, a naive program might also then transmit the additional tags across the network.
Removing the CBOR Tag Wrapped format requires knowledge of the two tags involved.
Other tags present might be needed.
 For a representation matching a specific media-type that is carried in
a CBOR byte string, the byte string head will already have to be
removed for use as such a representation, so it should be easy to
remove the enclosing tag heads as well.
This is of particular interest with the predefined tags provided in
 for media types with CoAP Content-Format numbers.
 Some considerations in the form of survey questions follow.

 Is the on-wire format new?
 If the on-wire format is new, then it could be specified with the CBOR Tag Wrapped format if the extra 8 bytes are not a problem.
The stored format is then identical to the on-wire format.
 If the 8 bytes are a problem on the wire (and they often are if CBOR is being considered), then the Labeled CBOR Sequence format should be adopted for the stored format.

 Can many items be trivially concatenated?
 If the programs that read the contents of the file already expect to process all of the CBOR data items in the file (not just the first), then the Labeled CBOR Sequence format may be easily retrofitted.
 The programs involved may throw errors or warnings on the Labeled CBOR
Sequence if they have not yet been updated, but this may not be a problem.
 There are situations where multiple objects may be concatenated into a single file.
If each object is preceded by a Labeled CBOR Sequence label, then there may be
multiple such labels in the file.
 A protocol based on CBOR Sequences may specify that Labeled CBOR
Sequence labels can occur within a CBOR Sequence, possibly even to
switch to data items following in the sequence that are of a different type.
 If the CBOR-Sequence-based protocol does not define the semantics for
or at least tolerate embedded labels, care must be taken when
concatenating Labeled CBOR Sequences to remove the label from all but
the first part.

 As an example from legacy PEM-encoded PKIX certificates, many programs accept a series of PKIX certificates in a single file in order to set up a certificate chain.
The file would contain not just the End-Entity (EE) certificate, but also any subordinate certification authorities (CAs) needed to validate the EE.
This mechanism actually only works for PEM-encoded certificates, and not DER-encoded certificates.
One of the reasons for this specification is to make sure that CBOR-encoded certificates do not suffer from this problem.
 As an example of mixing of types, some TLS server programs also can accept both their PEM-encoded private key and their PEM-encoded certificate in the same file.

 If only one item is ever expected in the file, the use of the Labeled CBOR Sequence may present an implementation hurdle to programs that previously just read a single data item and used it.

 Are there tags at the start?
 If the Protocol expects to use other tags at its top level, then the
use of the CBOR Tag Wrapped format may be easy to explain at the same
place in the protocol description.

 CBOR Tags for CoAP Content Formats
 defines the concept of a Content-Format,
which is a short, 16-bit unsigned integer that identifies a specific
content type (media type plus (optionally) parameters), optionally
together with a content coding (see).

 Outside of a transfer protocol that indicates the Content-Format for a representation, it may be necessary to identify the Content-Format of the representation when it is stored in a file, in firmware, or when debugging.
 This specification allocates CBOR tag numbers 1668546817 (0x63740101) to
1668612095 (0x6374FFFF) for the tagging of representations of specific
content formats.
 Using tags from this range, a byte string that is to be interpreted as
a representation of Content-Format number ct, with ct < 65025
(255*255), can be identified by enclosing it in a tag with tag number
 TN(ct) where:

 TN(ct) = 0x63740101 + (ct / 255) * 256 + ct % 255.

 (where +, *, / and % stand for integer addition,
multiplication, division, and remainder as in the programming language C .)

 This formula avoids the use of zero bytes in the representation of
the tag number.
 Note that no tag numbers are assigned for Content-Format numbers in
the following range:
 65025 ≤ ct ≤ 65535
 (This range is in the range reserved for Experimental Use by .
The overlap of 25 code points between this experimental range with the
range this appendix defines tag numbers for can be used for
experiments that want to employ a tag number.)

 Exceptionally, when used immediately as tag content of one of the tags
55799, 55800, or 55801, the tag content is as follows:

 Tag 55799 ():

 One of:

 The CBOR data item within the representation (without byte-string
wrapping). This only works for Content-Formats that are represented
by a single CBOR data item in identity content-coding.
 The data items in the CBOR sequence within the representation, without byte string
wrapping, but wrapped in a CBOR array.
This works for Content-Formats that are represented
by a CBOR sequence in identity content-coding.

 Tags 55800 () or 55801 ():

 the byte string 'BOR', signifying that the representation of the
given content-format follows in the file, in the way defined for these tags.

 Content-Format Tag Examples
 The "CoAP Content-Formats" registry defines content formats that can be used as examples:

 As discussed in , Content-Format ID 112 represents the application/senml+cbor media type (no parameters).
The corresponding tag number is TN(112) = 1668546929.

The following CDDL snippet can be used to identify
application/senml+cbor representations:

senml-cbor = #6.1668546929(bstr)

Note that a byte string is used as the type of the tag content because a
media type representation in general can be any byte string.

 Content-Format ID 272 represents the
application/missing-blocks+cbor-seq media type, which is a CBOR sequence
 .

The corresponding tag number is TN(272) = 1668547090.

The following CDDL snippet can be used to identify
application/missing-blocks+cbor-seq representations as embedded in a
CBOR byte string:

missing-blocks = #6.1668547090(bstr)

 Example from Openswan
 The Openswan IPsec project has a daemon ("pluto") and two control programs ("addconn" and "whack"). They communicate via a Unix-domain socket, over which a C-structure containing pointers to strings is serialized using a bespoke mechanism.
This is normally not a problem as the structure is compiled by the same compiler; but when there are upgrades, it is possible for the daemon and the control programs to get out of sync by the bespoke serialization.
As a result, there are extra compensations to deal with shutting the daemon down.
During testing, it is sometimes the case that upgrades are backed out.
 In addition, when doing unit testing, the easiest way to load policy is to use the
normal policy-reading process, but that is not normally loaded in the daemon.
Instead, the IPC that is normally sent across the wire is compiled, serialized, and placed in a file.
The above magic number is included in the file and on the IPC in order to distinguish the "shutdown" command CBOR operation.
 In order to reduce the problems due to serialization, the serialization is being changed to CBOR. Additionally, this change allows the IPC to be described by CDDL and any implementation language to be used that can encode CBOR.

 IANA has allocated the tag 1330664270 or 0x4f_50_53_4e for this purpose.
As a result, each file and each IPC is prefixed with a CBOR Sequence tag.
 In diagnostic notation:

55800(1330664270(h'424F52'))

 Or in hex:

d9 d9f8 # tag(55800)
 da 4f50534e # tag(1330664270)
 43 # bytes(3)
 424f52 # "BOR"

 Using CBOR Labels for Non-CBOR Data
 The CBOR-Labeled Non-CBOR data method is appropriate for adding a magic number to a
Non-CBOR data format, particularly one that can be described by a
Content-Format tag ().
 This method prepends a CBOR data item to the Non-CBOR data; this data
item is called the "header" and, similar to the Labeled
CBOR-Sequence label, consists of two nested tags around a constant
byte string for a total of 12 bytes.
 The outer tag is the CBOR-Labeled Non-CBOR Data tag, 55801.
 The inner tag is a CBOR tag from the First Come First Served space that uniquely identifies the CBOR Protocol.
As with CBOR Tag Wrapped, the use of a 4-byte tag is encouraged that encodes without zero bytes.
 The tag content is a 3-byte CBOR byte string containing
0x42_4F_52 ('BOR' in diagnostic notation).

 The outer tag in the label identifies the file as being prefixed by a Non-CBOR
data label and does so with all
the desirable properties explained in .
Specifically, it does not appear to conflict with any known file types, and it is not valid Unicode in any Unicode encoding.
 The inner tag in the label identifies which Non-CBOR Protocol is used.
 The inner tag content is a constant byte string that is represented as
0x43_42_4f_52, the ASCII characters "CBOR",
which is the CBOR-encoded data item for the 3-byte string
0x42_4f_52 ('BOR' in diagnostic notation).
 The actual Non-CBOR Protocol data then follow directly appended to the
CBOR representation of the header.
This allows the application to trivially remove the header item with
the two nested tags and the byte string.
 As with the Labeled CBOR Sequence {#sequences}, this choice of the tag
content places the ASCII characters "CBOR" prominently into the
header.

 Content-Format Tag Examples
 The "CoAP Content-Formats" registry defines content formats that can be used as examples:

 Content-Format ID 432 represents the application/td+json media type (no
parameters).
 The corresponding tag number is TN(432) = 1668547250.

The following CDDL snippet can be used to identify a CBOR-Labeled Non-CBOR data for application/td+json representations:

td-json-header = #6.55801(#6.1668547250('BOR'))

 Content-Format 11050 represents the application/json media type in
deflate content-coding.

The corresponding tag number is TN(11050) = 1668557910.

The following CDDL snippet can be used to identify a CBOR-Labeled Non-CBOR data for application/json representations compressed in deflate content-coding:

json-deflate-header = #6.55801(#6.1668557910('BOR'))

 Acknowledgements
 The CBOR WG brainstormed this protocol on January 20, 2021 via a number of productive email exchanges on the mailing list.

 Contributors

 jeffpc@josefsipek.net

 Authors' Addresses

 Sandelman Software Works

 mcr+ietf@sandelman.ca

 Universität Bremen TZI

 Postfach 330440
 D-28359 Bremen
 Germany

 +49-421-218-63921
 cabo@tzi.org

