
An Algorithm for Fast Convergence in Training Neural
Networks

Bogdan M. Wilamowski
University of Idaho

Graduate Center at Boise
800 Park Blvd., Boise, U.S.A.

wilam@ieee.org

Serdar Iplikci
Bogazici University

Electrical and Electronic Engineering Department
Bebek, 80815, Istanbul, Turkey,

kaynak@boun.edu.tr

Okyay Kaynak
Bogazici University

Electrical and Electronic Engineering Department
Bebek, 80815, Istanbul, Turkey

kaynak@boun.edu.tr

M. Önder Efe
Carnegie Mellon University

Electrical and Computer Engineering Department
Pittsburgh, PA 15213-3890, U.S.A.

efemond@andrew.cmu.edu

Abstract

In this work, two modifications on Levenberg-Marquardt
algorithm for feedforward neural networks are studied. One
modification is made on performance index, while the other
one is on calculating gradient information. The modified
algorithm gives a better convergence rate compared to the
standard Levenberg-Marquard (LM) method and is less
computationally intensive and requires less memory. The
performance of the algorithm has been checked on several
example problems.

1 Introduction

Although the Error Backpropagation algorithm (EBP)
[1][2][3] has been a significant milestone in neural network
research area of interest, it has been known as an algorithm
with a very poor convergence rate. Many attempts have
been made to speed up the EBP algorithm. Commonly
known heuristic approaches [4][5][6][7][8] such as
momentum [9], variable learning rate [10], or stochastic
learning [11] lead only to a slight improvement. Better
results have been obtained with the artificial enlarging of
errors for neurons operating in the saturation region
[12][13][14][15]. A significant improvement on realization
performance can be observed by using various second order
approaches namely Newton’s method, conjugate gradient’s,
or the Levenberg-Marquardt (LM) optimization technique
[16][17][18][19] [20]. Among the mentioned methods, the
LM algorithm is widely accepted as the most efficient one
in the sense of realization accuracy [19]. It gives a good
compromise between the speed of the Newton algorithm
and the stability of the steepest descent method, and
consequently it constitutes a good transition between these
methods.

The demand for memory to operate with large Jacobians
and a necessity of inverting large matrices are the major
disadvantages of the LM algorithm. The rank of the matrix

to be inverted at each iteration is equal to the number of
adjustable parameters in the system. As the dimensionality
of the network increases, it should be clear that the training
would entail costly hardware due to the exponential growth
in the computational complexity.

This paper is organized as follows: the second section
describes the Levenberg-Marquardt algorithm. In the third
section, the proposed form of the modification on
performance index is introduced. Next section focuses on
the modification of the gradient computation. Exemplar
cases are discussed in the forth section. Finally, conclusions
constitute the last part of the paper.

2 Levenberg-Marquardt Algorithm (LM)

For LM algorithm, the performance index to be optimized
is defined as

()∑ ∑
= = 











−=

P

1p

K

1k

2
kpkp od)(wF (1)

where []T
N21 w...ww=w consists of all weights of

the network, dkp is the desired value of the kth output and the
pth pattern, okp is the actual value of the kth output and the pth

pattern, N is the number of the weights, P is the number of
patterns, and K is the number of the network outputs.
Equation (1) can be written as

EEw T)(=F (2)

where

[]T
KP1PK212K111 e...e...e...ee...e=E

P,1,pK,,1,k,ode kpkpkp LL ==−=

where E is the cumulative error vector (for all patterns).
From equation (2) the Jacobian matrix is defined as

0-7803-7044-9/01/$10.00 ©2001 IEEE 1778

















































∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

N

KP

2

KP

1

KP

N

2P

2

2P

1

2P

N

1P

2

1P

1

1P

N

K1

2

K1

1

K1

N

21

2

21

1

21

N

11

2

11

1

11

w

e

w

e

w

e

w

e

w

e

w

e
w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e
w

e

w

e

w

e

L

MMM

L

L

MMM

L

MMM

L

L

J (3)

and the weights are calculated using the following equation

() t
T
t

1
t

T
tt1t EJIJJww

−
+ +−= tµ (4)

where I is identity unit matrix, µ is a learning parameter
and J is Jacobian of m output errors with respect to n
weights of the neural network. For µ = 0 it becomes the
Gauss-Newton method. For very large µ the LM algorithm
becomes the steepest decent or the EBP algorithm. The µ
parameter is automatically adjusted at each iteration in
order to secure convergence. The LM algorithm requires
computation of the Jacobian J matrix at each iteration step
and the inversion of JTJ square matrix, the dimension of
which is N×N. This is the reason why for large size neural
networks the LM algorithm is not practical. In this paper, a
novel method is proposed that provides a similar
performance, while lacks the inconveniences of LM, and,
furthermore, is more stable.

3 Modification of the performance index

Assume that the performance index of (1) is changed to the
one given below. Note that still the continuity requirements
are preserved and that the new measure can well be
considered as a measure of similarity between the desired
and the produced patterns.

()
2

1 1

2)(∑ ∑
= = 











−=

K

k

P

p
kpkp odF w (5)

This form of the performance index, which represents a
global error, leads to a significant reduction of the size of a
matrix to be inverted at each iteration step. Equation (5) can
be also written as:

EEw T ˆˆ)(=F (6)

where []TKeee ˆ...ˆˆˆ
21=E and ()∑

=
−=

P

p
kpkpk ode

1

2ˆ

with k=1,…,K. Now the modified Jacobian matrix tĴ can be

defined as



























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

N

KKK

N

N

t

w

e

w

e

w

e

w

e

w

e

w

e
w

e

w

e

w

e

ˆˆˆ

ˆˆˆ

ˆˆˆ

ˆ

21

2

2

2

1

2

1

2

1

1

1

L

MMM

L

L

J (7)

and equation (4) can be written using the modified Jacobian

matrix tĴ

() ttttttt EJIJJww ˆˆˆˆ T1T
1

−
+ +−= µ (8)

It should be noted that although tĴ is now a K by N matrix,

and there still a necessity of inverting an N by N matrix,
where N is the number of adjustable parameters. This
problem can be now further simplified using the Matrix
Inversion Lemma, which states that if a matrix A satisfies

TCCDBA 11 −− += (9)

Then

() BCBCCDBCBA TT 11 −− +−= . (10)

Let

IJJA tt
T
t µ+= (11)

IB
tµ

1
= (12)

T
tJC = (13)

ID = (14)
Substituting equations (11), (12), (13), and (14) into
equation (10), one can obtain

() t
T
tt

t

T
t

tt
tt

T
t JJJIJIIJJ ˆˆˆ1ˆ11ˆˆ

1

2

1
−

−









+−=+

µµµ
µ (15)

Note that in the right side of equation (15), the matrix to be
inverted is of size K by K. In most neural network
applications, N, which is the number of weights, is much
greater than K, which is the number of outputs. This means
that by use of equation (5) instead of equation (1) the
computational complexity of the weight adaptation problem
is significantly reduced.

1779

By inserting equation (15) into equation (8) one may have

t
T
tt

T
tt

t

T
t

tt
tt EJJJJIJIWW ˆˆˆˆˆ1ˆ11

1

21 





















+−−=

−

+ µµµ (16)

For single output networks, equation (10) becomes

t
T
tT

ttt

t
T
t

t
tt EJ

JJ

JJ
Iww ˆˆ

ˆˆ

ˆˆ1
1













+
−−=+

µµ
(17)

Note that in equation (17) matrix inversion is not required
at all. The equation is useful, because any feedforward
network with one hidden layer and K outputs can be
decoupled to a K single output network.

4 Modification of gradient computation

The major disadvantage of back-propagation algorithm,
commonly employed for training of multilayer networks, is
slow asymptotic convergence rate. For the sigmoidal
bipolar activation function given by (18)

1
) exp(1

2)(−
−+

=
net

netf λ (18)

The gradient (slope) is computed as a derivative of (18)

)21(5.0
)exp(1

)exp(2
1 f

net
net

g −=
−+

−= λ
λ

(19)

The activation function and its gradient are illustrated in
Figure 1.

Figure 1: Standard sigmoidal function for bipolar neurons
and its derivative

In the error backpropagation algorithm, the weight updates
are proportional to the error propagating from the output
through the derivatives of activation function and through
the weights. This is a consequence of using the steepest
descent method for calculating the weight adjustments.
Convergence properties of the learning process can be
improved by changing how the error propagates back
through the network. It is proposed in this paper that for
purpose of error propagation, the slope (gradient) of the
activation function is calculated as the slope of the line
connecting the output value with the desired value, rather
than the derivative of the activation function at the output
value. This is illustrated in Figure 2.

Figure 2: Illustration of the modified derivative
computation using slope of the line connecting the points of

actual output and desired output

Note that if the output is close to the desired value, the
calculated slope corresponds to the derivative of the
activation function, and the algorithm is identical to the
standard backpropagation formula. Therefore, the
“derivative” is calculated in a different manner only for
large errors when the classical approach significantly limits
error propagation.

5 Examples

The proposed algorithm has been experimented on several
problems with different network topologies and different
roughness of the error surfaces. Several benchmark
problems namely XOR, parity-3, and parity-4 have been
taken into consideration. Table I summarizes the
performance of the modified algorithm compared to
standard LM algorithm. Using the slope instead of the
derivative yields better performance in the number of
average iterations for meeting the prescribed convergence
criterion. The results have been given in Figures 3-6.

desired output

actual output

modified derivative

standard derivative

activation function

derivative of activation
function

1780

6 Conclusions

A fast and efficient training algorithm for feedforward
neural networks with one hidden layer has been presented
and tested on several examples. Since in the LM algorithm,
the size of the matrix corresponds to the number of weights
in the neural network, while the size of the matrix, in the
modified algorithm, corresponds to the number of outputs,
the modified algorithm requires less memory than that for
the standard LM algorithm. Moreover, an improvement in
the number of average iterations for convergence has been
obtained by introducing a different tool for gradient
computation.

Acknowledgments

The IEEE Neural Network Council, Student Summer
Research Support Program supports this work.

Table I. Comparison of methods

Derivative Slope

of hidden neurons 2 2
XOR

Average # of iterations 50 36

of hidden neurons 2 2

Average # of iterations 64 46

of hidden neurons 3 3
Parity-3

Average # of iterations 45 35

of hidden neurons 6 6
Parity-4

Average # of iterations 175 134

Figure 3: XOR problem with 2 hidden neurons

Figure 4: Parity 3 problem with 2 hidden neurons

Figure 5: Parity 3 problem with 3 hidden neurons

Figure 6: Parity 4 problem with 6 hidden neurons

1781

References

[1] Rumelhart, D. E., Hinton, G. E. and Williams, R. J,
“Learning internal representations by error propagation”, In
Parallel Distributed Processing, vol 1, pp. 318-362.
Cambridge, MA: MIT Press.
[2] Rumelhart, D. E., Hinton, G. E. and Wiliams, R. J,
“Learning representations by back-propagating errors”,
Nature, vol. 323, pp. 533-536, 1986.
[3] Werbos, P. J. (1988). “Back-propagation: Past and
future”, Proceeding of International Conference on Neural
Networks, San Diego, CA, 1, 343-354.
[4] Bello, M. G. (1992). “Enhanced training algorithms,
and integrated training/architecture selection for multilayer
perceptron networks”, IEEE Trans. on Neural Networks, 3,
864-875.
[5] Samad, T. (1990). “Back-propagation improvements
based on heuristic arguments”, Proceedings of International
Joint Conference on Neural Networks, Washington, 1, 565-
568.
[6] Solla, S. A., Levin, E. and Fleisher, M. (1988).
“Accelerated learning in layered neural networks”, Complex
Systems, 2, 625-639.
[7] Sperduti, A. and Starita, A. (1993). “Speed up learning
and network optimization with extended back-propagation”,
Neural Networks, 6, 365-383.
[8] Van Ooten, A. and Nienhuis, B. (1992). “Improving the
convergence of the back-propagation algorithm”, Neural
Networks, 5, 465-471.
[9] Miniani, A. A. and Williams, R. D. (1990).
“Acceleration of back-propagation through learning rate and
momentum adaptation”, Proceedings of International Joint
Conference on Neural Networks, San Diego, CA, 1, 676-679.
[10] Jacobs, R. A., “Increased rates of convergence
through learning rate adaptation”, Neural Networks, vol. 1,
no.4, pp. 295-308, 1988.
[11] Salvetti, A. and Wilamowski, B. M., “Introducing
Stochastic Process within the Backpropagation Algorithm for
Improved Convergence”, presented at ANNIE'94 - Artificial
Neural Networks in Engineering, St. Louis, Missouri, USA,
November 13-16, 1994; also in Intelligent Engineering
Systems Through Artificial Neural Networks vol 4, pp. 205-
209, ed. C. H. Dagli, B. R. Fernandez, J. Gosh, R.T. S.
Kumara, ASME PRESS, New York 1994.
[12] Balakrishnan, K. and Honavar, V. (1992). “Improving
convergence of back propagation by handling flat-spots in
the output layer”, Proceedings of Second International
Conference on Artificial Neural Networks, Brighton, U.K.
Barmann F. and Biegler-Konig, F. (1992). On class of
efficient learning algorithms for neural networks. Neural
Networks, 5, 139-144.
[13] Krogh, A., Thorbergsson, G. I. and Hertz, J. A. (1989).
“A cost function for internal representations”, In D.
Touretzky (Eds.), Advances in neural information processing
systems II (pp. 733-740). San Mateo, CA.
[14] Parekh, R., Balakrishnan, K. and Honavar, V. (1992).
“An empirical comparison of flat-spot elimination techniques
in back-propagation networks”, Proceedings of Third

Workshop on Neural Networks - WNN'92, Auburn, pp. 55-
60.
[15] Torvik, L. and Wilamowski, B. M., “Modification of
the Backpropagation Algorithm for Faster Convergence”,
presented at 1993 International Simulation Technology
Multiconference November 7-10, San Francisco; also in
proceedings of Workshop on Neural Networks WNN93 pp.
191-194, 1993.
[16] Andersen, T. J. and Wilamowski, B.M. “A. Modified
Regression Algorithm for Fast One Layer Neural Network
Training”, World Congress of Neural Networks, vol. 1, pp.
687-690, Washington DC, USA, July 17-21, 1995.
[17] Battiti, R., “First- and second-order methods for
learning: between steepest descent and Newton’s method”,
Neural Computation, vol. 4, no. 2, pp. 141-166, 1992.
[18] Charalambous, C., “Conjugate gradient algorithm for
efficient training of artificial neural networks”, IEE
Proceedings, vol. 139, no. 3, pp. 301-310, 1992.
[19] Hagan, M. T. and Menhaj, M., “Training feedforward
networks with the Marquardt algorithm”, IEEE
Transactions on Neural Networks, vol. 5, no. 6, pp. 989-
993, 1994.
[20] Shah, S. and Palmieri, F. (1990). “MEKA - A fast,
local algorithm for training feedforward neural networks”,
Proceedings of International Joint Conference on Neural
Networks, San Diego, CA, 3, 41-46.

1782

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

