
Activator 1
Activator
Authors

Michael Stal, Siemens Corporate Technology, Munich, Germany

Douglas C. Schmidt, Vanderbilt University, Nashville, TN, USA

Abstract

The Activator design pattern automates scalable on-demand activation and
deactivation of service execution contexts to run services accessed by
many clients without consuming resources unnecessarily.

Example Many distributed systems have constraints on the computing resources
they can allocate and manage. In the industry automation domain, for
example, distributed traffic control systems and manufacturing plants are
increasingly implemented using embedded devices known as controllers
that communicate via networks. When software developers build
distributed automation systems, they must determine how to provide
services, such as inventory trackers, system monitors, and command and
control services, in a manner that scales gracefully as the size of the
network topology and number of clients increases.

In automation systems, service processing must be scalable since multiple
clients may access embedded devices simultaneously. One service
deployment strategy is to apply an eager resource allocation strategy
[POSA3], which activates processes in controllers during system
initialization and runs all services in processes while the system is
operational, irrespective of which services are actually accessed by clients.
Embedded devices, however, often have a limited amount of computing
resources, such as main memory, CPU time, and network connections
[SmallMemory]. As the number of clients or services increases, therefore,
an eager resource allocation strategy scales poorly because unused server
processes consume computing resources that could be allocated more
effectively to services actually being accessed by clients.

A typical scenario in the lifetime of an eager resource allocation strategy
for a controller in an industrial automation system is shown in the figure
below. The “System Load” rectangle in the diagram depicts the current
11.09.2005 Activator.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

2

CPU load of the embedded controller that falls into the range between 0%
and 100%.

Request
Reply

SERVICE 1

SERVICE 2

SERVICE 3

SERVICE 4

Request

OverloadError

EMBEDDED CONTROLLER

Client 1

Client 2
= Service is running

System Load
0%

100%

 In this eager resource allocation scheme, all services are

activated automatically at system initialization and consume significant
amounts of available system resources as the increased CPU load
indicates. In the depicted time span above only service 1 is accessed
successfully by a client increasing CPU load to 80% because all other
services are in memory busy waiting for incoming requests. The
consumption of resources by allocated − but unused − server processes can
therefore increase unnecessarily.

• Service response time, e.g., by competing for resources with services
actually accessed by clients, and

• Hardware costs, e.g., by requiring more main memory and CPU than
would otherwise be needed to handle clients simultaneously.

In the figure above, a second client tries to access service 3 but obtains an
overload error since the embedded controller has dedicated its resources to
service 1 and to the eager allocation strategies of other services. This
overload error gets generated because the CPU load reaches a predefined
overload barrier of 90%. In the example system embedded controllers
won’t initiate any new tasks when overload barriers are reached.
© Douglas C. Schmidt 2005, all rights reserved, © Siemens AG 2005, all rights reserved
11.09.2005 Activator.fm

Activator 3
Better service activation strategies are therefore necessary to optimize
resource usage and enhance scalability when resources are scarce.
Depending on the software technologies used in the automation system,
these activation strategies can be implemented using operating system
(OS) and middleware superservers, such as Inetd [Ste90], the CORBA
Implementation Repository [HV99], or system-specific variants of these
technologies, based on the Activator pattern described in this paper.

Context A resource-constrained distributed computing environment without
stringent real-time requirements whose services (1) can be accessed by
multiple clients simultaneously, (2) require non-trivial utilization of
resources, such as memory or processing time, (3) are activated quickly
relative to service processing time, and (4) are not accessed continuously
throughout the system lifetime.

Problem In distributed systems, multiple clients often simultaneously access
services (such as e-commerce web services, audio/video streaming
services, or lower-level OS/network services like DNS or FTP) that
perform functionality on behalf of the clients. These services are deployed
in service execution contexts (such as operating system processes, threads,
and/or component containers) and consume scarce system resources (such
as network/database connections, threads, virtual memory, process table
slots, and open files). As a consequence, it is often necessary to balance
the following forces:

• Parsimony. Service execution contexts available in the system should
only consume resources for services that are accessed actively by
clients.

• Transparency. Clients should be shielded as much as possible from
where services are located, how they are deployed onto hosts in a
network, and how their lifecycle is managed.

Solution Minimize resource consumption by activating service execution contexts
on demand, running service implementations in these contexts, and
deactivating services and their contexts when they are no longer being
accessed by clients. Use proxies to transparently decouple client access
from service behavior and lifecycle management.

In detail: Implement services that have service identifiers and offer
functionality to client applications via their service proxys. Use service
execution contexts to manage the lifecycle of these services, in particular
11.09.2005 Activator.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

4

their activation, processing, and deactivation. Implement an activator that
uses an activation table to activate service execution contexts on demand
and deactivate them when clients no longer access them. Provide a
registration interface that services can use to register and unregister their
availability with the activator. Use the service proxy to ensure clients only
access services via activators. If a service is not running when a client tries
to access it, an activator automatically creates the appropriate service
execution context and arranges for the service to process the client’s
request(s) in this context.

Structure A client is an application that uses services to perform portions of its
computations. It accesses the services remotely using service proxys,
which are proxies it obtains from an activator.

Class
Client

Responsibility
• Uses services to perform

portions of its computation
• Accesses services via service

proxys
• Obtains service proxys from

activator

Collaborator
• Activator
• Service

å In our industrial automation system, clients access services within
embedded devices by connecting to these devices remotely. Example
clients include material flow controllers that identify optimal paths for
delivering goods to their destinations and administration consoles that
monitor and control an automation system. o

A service identifier is some type of entity, such as a web service universal
resource locator (URL), CORBA interoperable object reference (IOR), or
COM+ moniker, that clients use to identify a particular service. A service
identifier can be created by a server and/service proxyor a client. A client
passes a service identifier to an activator, which extracts the information
required to locate and provide the requested service.

Class
Service Identifier

Responsibility
• Identifies a service

Collaborator
• service proxy
• Client
• Service
© Douglas C. Schmidt 2005, all rights reserved, © Siemens AG 2005, all rights reserved
11.09.2005 Activator.fm

Activator 5
å In our automation example, the service identifier is an IOR that
opaquely encodes a single service’s addressing information, including the
host address of its embedded device, the port number on which an
activator listens for incoming requests, and addititional context
information, such as the particular object that implements the service and
its security credentials.

Class
Service Proxy

Responsibility
• Serves as a proxy to the actual

service
• Hides (de)activation details

from clients.
• Encodes information about

the service and service
execution context

Collaborator
• Activator
• Service

o

A service proxy is a proxy [POSA1, GoF] that resides with the client and
facilitates its communication with the activator and service. It also shields
clients from an activator’s involvement in connecting clients and services.
In addition, a service proxy can encode information about the service
identifier, service, and the service execution context that can be used to
optimize communication and enhance availability. The service proxy can
either be an explicit proxy with concrete operations (as in the case of
CORBA or EJB) or it can be more implicit (as is the case with web clients
that activate HTTP servers by establishing TCP/IP connections).

å In our automation example, the service proxy is an explicit proxy
object that shields the client from system-level details of communication
and activation. The service proxy uses the service identifier to extract the
host, port, and other context information needed to direct client requests to
their destinations. o

A service execution context runs on a server, executes services, and
controls their activation and deactivation lifecycles. Lower-level service
execution contexts include operating system processes (which provide the
unit of memory protection and resource allocation) or threads (which
provide the unit of execution for instructions within a process). Higher-
level service execution contexts include containers in component
middleware that provide the context for processing operation invocations
on components. Container-based service execution contexts often provide
11.09.2005 Activator.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

6

a factory to create services and/or lookup functionality to obtain existing
services.

Class
Service Execution Context

Responsibility
• Manages service lifecycle, e.g.,

creates new services or obtains
existing services

Collaborator
• Activator
• Service

å Our example uses thread-based service execution contexts to run
automation services implemented as C++ objects. After activating a
service, the service execution context invokes a method on the service to
initialize itself. o

A service is an entity that runs on a server and is executed in a service
execution context and provides functionality and/or resources to clients.
Services are named by their service identifiers and accessed by clients via
their service proxys. A service must be registered with an activator
manually by users or by some administrative entity.

Class
Service

Responsibility
• Provides functionality or

resources to clients

Collaborator
• Client
• Service execution

context

å In our automation example, embedded system controllers provide
remotely accessible services, such as command and control functionality
that allows adminstrators to check and change the current system
configuration. These service instances run in threads and consume various
system resources, such as main memory, CPU time, sockets, or database
connections. Multiple clients access these service components at various
frequencies, i.e., not all services are accessed all the time. o

An activator is a mediator [GoF] between services and their clients. It may
run on each server or may be shared by a group of servers, but in either
case it activates service execution contexts on demand. The activator uses
an activation table to insert and remove registration information about
services and their associated service execution contexts. When a client
needs to access a currently inactive service, the activator activates a
© Douglas C. Schmidt 2005, all rights reserved, © Siemens AG 2005, all rights reserved
11.09.2005 Activator.fm

Activator 7
service execution context and arranges for the service to process the
client’s request(s) in this context.

A client obtains a service proxy from the activator, which it then uses to
invoke operations on the service. The activator uses information in its
activation table to activate the appropriate service if it is currently inactive.
Clients that query the activator for a service must indicate the desired
service via a service identifier, which the activator uses to find the
associated entry in its activation table.

Class
Activator

Responsibility
• Activates and deactivates service

execution contexts to run service
implementations

Collaborator
• Service
• Activation

Table

å Activation in our automation example can involve different
activities. An activator can be implemented as a remote gateway listening
on a network port for incoming client requests. A client request is typically
initiated via a service proxy. If the service’s execution context has already
been created, the activator simply forwards the client request to the
service. If the service execution context has not been activated, however,
the activator creates a thread to execute the service and initializes the
service. After this initialization phase, the service proxy on the client is
associated with the service execution context and the client request is
forwarded to the service transparently.

Class
Activation Table

Responsibility
• Map service identifiers to service

implementations
• Manage (i.e., insert, delete,

change, and lookup) information
on services

Collaborator
• Service

o

An activator uses its activation table to map service identifiers to service
implementations and service execution contexts. An activator uses this
table to store associated registration and deregistration information when
new services become available. These entries may include the execution
path of the service executable or DLL, a reference to the service’s
interface, activation policies, and other configuration information.
11.09.2005 Activator.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

8

å The activation table in our automation example is implemented by a
hash table that maps service identifiers to associated information, such as
the port address of the service execution context, the address of the
external service interface, information about the concrete service, a flag
indicating whether the service execution context and the service are
currently running, and other bookkeeping information. o

The UML class diagram below illustrates the relationships between the
Activator design pattern participants described above.

Service Identifier

Service Execution
Context

activateService()
findService()
runService()

Service Proxy

serviceOperation()

Service

serviceOperation()

<<uses>>

<<activation &

1

*

<<find

Activator

createService()
findService()
activate()
deactivate()
addService()
remService()

1

*

Activation Table

map of service identifiers
and service
implementations

lookup()
insert()
delete()

<<forwards

Client

doWork()

Service>>

deactivation>>

<<uses>>

<<names>>

to>> <<runs
in>>

Dynamics There are three phases to the dynamics in this pattern: service registration,
service activation and access, and service deactivation, as discussed
below.

Service registration. This phase involves the following two steps:

1 A service developer implements a service using appropriate
programming language and platform libraries or middleware.

2 The service is registered with the activator, which keeps track of where
to locate the service implementation and under what conditions to
activate it.
© Douglas C. Schmidt 2005, all rights reserved, © Siemens AG 2005, all rights reserved
11.09.2005 Activator.fm

Activator 9
The following figure illustrates the service registration phase.

: Activator :Activation
Table

<<enter>>Service

<<register>>

: Service
Execution
Context

Service
Inform.

Service registration is discussed further in implementation activity 3.1.

Service activation and access. This phase involves the following six
steps:

1 A client uses the service’s identifier to obtain a reference to a service,
e.g., it can locate the reference in a naming service via its service
identifier.

2 The client then invokes an operation on the service via its reference.

3 The client’s request is first sent to the activator, which determines the
service from the identifier in the request and finds the corresponding
entry in the activation table.

4 The activator checks whether a service execution context running the
service is currently active. If it is inactive, the activator uses activation-
related information in its activation table to activate the service
execution context that runs the service.

5 The activator waits for acknowledgement that the service execution
context and the service it implements are activated and ready to receive
requests.

6 The activator then transparently delegates the request to the service
execution context, which performs the client’s request and returns a
reply if necessary.
11.09.2005 Activator.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

10
Other aspects of service activation and access are discussed in
implementation activity 3.2.

Service deactivation. The service deactivation process involves the
following two steps:

1 A service can be deactivated when no clients are accessing it.

2 Deactivation may cause the service to store any non-volatile state
information in persistent storage and then terminate the service
execution context it is running in.

Service deactivation strategies are discussed in implementation activity
3.3. The following figure illustrates the service activation and access and
service deactivation phases described above.

: Client : Activator :Activation
Table

<<lookup>>

<<activateService>>

Service
 ID

<<find

Info

Service

<<serviceOperation>>

: Service
Execution
Context

<<ready>>

<<deactivate>>

<<delete>>

Service
 ID

Service
 ID

Reference
:Service

Service>>

Implementation There are many ways to instantiate the Activator pattern. The following
activities focus on the key design and implementation issues, rather than
covering all the details.
© Douglas C. Schmidt 2005, all rights reserved, © Siemens AG 2005, all rights reserved
11.09.2005 Activator.fm

Activator 11
1 Define the services and service identifiers. The services provided by a
distributed system are usually specified in a requirements or system
architecture/design document. If this information is not readily available,
conduct domain analysis to determine the types of services that
applications will need. Likewise, representations of service identifiers are
also often defined in various specifications or requirements documents. If
not, consider using well-known service identifier representations, such as
URLs, IORs, or TCP/IP port numbers and network addresses.

å Embedded system controllers typically require services for
configuring, monitoring, and effecting parts of the automation system.
These activities represent service types in this application domain. o

2 Identify services that should be activated and deactivated on demand. For
this activity, iterate through the following subactivities:

2.1 For each service determine the costs of activating and deactivating
services on demand versus keeping them alive for the duration of the
sytsem. The latter costs are measured in terms of resources required by the
service types. For this pattern to be effective, the time/space overhead used
to activate services should be significantly lower than the time/space
resource consumptions of the services that are activated.

å For example, although an embedded controller contains a limited
amout of computing resources, such as CPU time or memory, monitoring
services typically incur high usage of both resources. In contrast,
activation time is relatively low (essentially the time needed to spawn a
thread), so it makes sense to implement on-demand activation strategies
for embedded controller services that do not have hard real-time
requirements. o

2.2 Determine client/service usage profiles and identify quality of service
(QoS) requirements. If instances of a particular service are used
continuously throughout the whole lifecycle of their clients − and/or if it is
critical that clients have low and predictable latency − they may not be
good candidates for on-demand activation. For example, it may not be
feasible to activate a real-time controller for an anti-lock braking system on
demand due to its stringent latency and jitter requirements. In contrast, an
FTP or SSH login service are often accessed by clients sporadically and do
11.09.2005 Activator.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

12
not have stringent latency and predictability requirements, so they are more
suitable for on-demand activiation. Another part of the service usage
profile is how many instances of a given service must be active − and thus
competing for the same resources − at the same time.

2.3 Identify services for on-demand activation. Using the results of the
previous subactivities, determine all services that are subject to on-demand
activation. As a rule of thumb, such services have the following properties:

• They are used temporarily − not continuously − by clients, so it makes
sense to activate/deactivate them on-demand to minimize resource
consumption.

• The costs for activating and deactivating these services is negligible
compared with the QoS requirements of clients, as well as with the time
periods when these services must be available.

å No services in our automation system example have stringent real-
time requirements, so they are all candidates for on-demand activation via
the Activator pattern. o

3 Develop a service activation and deactivation strategy. For every service,
determine the details of service activation and deactivation by performing
the following subactivities:

3.1 Define the service execution context representation and associated service
registration strategy. A service execution context can be implemented in
various ways and at various levels of abstraction, including:

• Lower-level service execution context, such as an operating system
process or thread.

• Higher-level service execution context, such as a container in
component middleware, which provides the runtime context for a
service implemented as a component.

The type of execution context representation selected typically dictates the
service registration strategy. For example, the UNIX Internet daemon
(Inetd) superserver [Ste90] uses a text file called inetd.conf to define
the Internet services that will be registered and activated by Inetd.
Conversely, containers in component middleware typically have well-
defined − often standard − APIs and protocols for registering services
implemented as components.
© Douglas C. Schmidt 2005, all rights reserved, © Siemens AG 2005, all rights reserved
11.09.2005 Activator.fm

Activator 13
å Our automation system implements service execution contexts
using threads. All registration information, such as the factory for creating
service implementations, is specified in a text file read by the Activator
when it starts running. o

3.2 Define the service activation and access strategies. There are several
dimensions to this implementation activity, including:

• Define the service initialization strategy. If all services are stateless,
little or no initialization may be required when activation occurs. If they
are stateful, however, they must be initialized when they are activated.
In some cases, the activator or the service execution context can handle
initialization issues, e.g., an activator can invoke internal initialization
methods of the service based on information stored in its activation
table. In some cases, a service may perform its own initialization. In yet
other cases, clients may be responsible for initializing their services.

• Define the request delegation strategy. After the activator has
initialized the service, the client request must be delegated to it. There
are two general delegation strategies:

• Server-mediated delegation, where the activator simply forward the
request to the service. The benefit of this approach is that there’s no
extra communication between the server and the client, i.e., the
request is processed directly. The downside of this approach is that
a client who converses with the same service for multiple requests
will have to send each request through the activator .

• Client-mediated delegation, where the activator sends back
information to the client that updates the service proxy to point to
the activated service. The benefit of this approach is that
conversational clients can cache the updated service proxy and use
it to optimize subsequent communication with the activated service.
The downside is that the first request will incur extra
communication back to the client before being forwarded to the
service running on the server.

Broker pattern implementations [POSA1] offen apply these delegation
strategies with the broker playing the role of the activator.

å In the automation example, all services are stateless so initialization
is simplified and self-contained. Since clients often communicate with the
11.09.2005 Activator.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

14
same service for an extended period of time the client-mediated delegation
strategy is used. o

3.3 Define the service deactivation strategy. There are several strategies for
deactivating services:

• Service-triggered deactivation. In this strategy, a service decides to
deactivate itself, e.g., a service could deactivate itself if a designated
period of time elapsed without any clients sending the service requests.
This strategy is commonly known as the Evictor pattern [POSA3,
HV99].

• Client-triggered deactivation. In this strategy, a client explicitly
invokes an operation to trigger deactivation of the service. To
implement client-triggered deactivation, the service must be notified
whenever a client is obtaining a reference or releasing its reference to
this particular service. Internally, the service may keep a reference
count that it increments/decrements on service access/release. When
the count reaches zero, the service could deactivate itself to release its
resources.

• Activator-triggered deactivation. In this strategy, the activator decides
when to deactivate a service. For example, the activator might track
resource usage on a particular computing node and deactivate services
after a certain threshold is reached. Naturally, care must be taken to
deactivate services gracefully to avoid disrupting vital processing and
losing important state information.

In most cases, once the service is ready for deactivation it should inform
its execution context so any resources allocated to the service can be
released. The subsequent behavior of the execution context will depend on
how it is represented. For example, if the service is implemented as a
component and service execution context is implemented as a container,
the container will delete the memory allocated to the component.
Likewise, if the service is implemented within an OS process, the process
may simply exit, thereby releasing the memory resource automatically.

å Our automation example uses service-triggered deactivation via the
Evictor pattern, i.e., services deactivate themselves and terminate their
service execution context if they do not receive any client requests after a
certain period of time. o
© Douglas C. Schmidt 2005, all rights reserved, © Siemens AG 2005, all rights reserved
11.09.2005 Activator.fm

Activator 15
4 Define the interoperation between services and the service execution
context. The service execution context may provide opperations to (1)
access information and resources managed by the execution context, (2)
request service deactivation, and (3) modify the behavior of the service
manager. Likewise, services might provide (1) global operations for
service instantiation or (2) callback operations that the services execution
context invokes automatically upon the occurrence of certain service
lifecycle events, such as service creation/activation and deactivation/
destruction.

å Services in the automation example implement a callback interface
invoked automatically by the service execution context before a service is
created and activated and before it is deactivated and destroyed. The
services use these callback methods to acquire or release resources. o

5 Implement the activator. This step involves the following subactivities:

5.1 Determine the association between activators and services. There are a
number of ways to associate activators and services, including:

• Singleton activator. Make the activator a singleton and have all services
share it within a particular environment, such as a process or a
computing node. In this approach, an activation table keeps track of the
services controlled by the activator.

• Exclusive activator. Provide each service or service execution context
with its own activator. In this approach, an activation table can be used
as a global repository accessible by all activator instances. The
advantage of this approach is its higher scalability and reliability.
Activator instances must coordinate access to the activation table,
however, which can increase complexity.

• Distributed Activator. This approach generalizes the singleton
activator. A local activator is placed on each computing node. When a
clients asks for a particular service, the local node’s activator checks
whether the corresponding service is available locally or remotely. In
the former case, the workflow continues as in the singleton activator. In
the latter case, however, the local activator determines where the
appropriate service is available and then connects to the remote
activator, on that computing node, which retrieves a reference to the
service and returns it to the local activator. The local activator then
returns the service proxy to the client.
11.09.2005 Activator.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

16
å In the automation example, the activator implementation uses the
singleton activator approach. Whenever a new request arrives for any
service provided by a computing node, the singleton activator instantiates
the appropriate service on demand. o

5.2 Determine the degree of transparency. There are various degrees of
transparency from the client’s perspective, including:

• Explicit activator. In some implementations of the Activator pattern,
clients or their service proxys may be aware that they are retrieving
services via an activator. In this case, an activator is a separate
component that clients can contact explicitly to activate a service. The
activator could also invoke the service and return the result to the client.
Examples of explicit activation include network and system
management systems, where administrators use management consoles
to activate services on remote clients. In these systems, remote
management agents provide management interfaces that contain
operations for starting and stopping services explicitly to reduce
resouce contention on managed objects. In this context, management
agents play the role of explicit activators.

• Transparent activator. It is often beneficial to shield clients from the
activator, so they believe they are accessing the service directly rather
than indirectly via the activator. To implement a transparent activator,
therefore, the Interceptor pattern [POSA2] can be used to contact the
activator implicitly before the service is created. For example, an EJB
or CCM container uses an interceptor to activate components on
demand. Likewise, CORBA’s General Inter-ORB Protocol (GIOP)
provides a special message (LocateRequest) that an
Implementation Repository activator uses to intercept client requests,
create service execution contexts on demand, and redirect clients to the
newly activated service.

As explained in implementation activity 3.3, an activator implementation
should work together with services and/or service execution contexts to
cleanup resources when services are deactivated.

å In the automation example, the activator implementation uses the
Interceptor pattern. Whenever a new request arrives, the communication
framework notifies the activator, which then instantiates the appropriate
service on demand and deactivates it later using the Evictor pattern. o
© Douglas C. Schmidt 2005, all rights reserved, © Siemens AG 2005, all rights reserved
11.09.2005 Activator.fm

Activator 17
6 Define the necessary contracts between interoperating participants. A
contract specifies the set of interfaces implemented by each pair of parties
that communicate and protocols they must obey. Activity diagrams or
interaction diagrams can be used to model the protocol; class diagrams
can be used to model the interfaces.

First, determine the internal contracts that are not visible to clients, such
as:

• The contract between the activator and the service execution context,
which specifies how an activator locates, registers/unregisters, and
(re)activates a service, as well as (re)activates and registers/unregisters
services managed by the service execution context. This contract can
also limit the number of copies of a service execution context that an
activator should activate, which can be used to prevent intentional or
accidental denial of service attacks.

• The contract between the service execution context and its services,
which introduces interfaces for creating, initializing, and releasing
services. It also specifies how a service can notify its service execution
context about its deactivation.

Second, define the external contracts that are visible to clients, such as:

• The contract between the client and the activator, which defines how a
client obtains a service proxy from the activator. This contract defines
a service identifier that encapsulates addressing information for the
service and service execution context where the service
implementation runs. An activator knows how to extract this
information from a service identifier.

• The contract between the client and the service, which defines (1) the
set of operations a client can use to access the functionality of the
service via its service proxy and (2) the means of disconnecting from
and/or deactivating the service after its processing is complete. The
service proxy is often implemented as a proxy that exposes this contract
via explicit operations, as is the case with CORBA or EJB. It is
possible, however, to implement this contract implicitly via lower-level
means, such as TCP/IP connections or messages, as is the case with
Internet services like HTTP, FTP, and SSH servers.

å The stateless instances of services in our automation example
system are created by the service execution context on demand and
11.09.2005 Activator.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

18
deactivated using the Evictor pattern [POSA3]. The service execution
context is implemented as a remote object that the activator contacts to
forward client requests. Since services are stateless, there is a 1:1 mapping
between service execution requests and services, which simplifies the
interface between the activator and the service execution context. The
eviction strategy is configured statically into the system. All service
instances are preinstantiated and organized in a pool that can shrink or
increase as required.

The interface between clients and activators is also straightforward.
Clients obtain service identifiers from a central database. service proxys
are instantiated from a client-side library, passing the service identifier as
an argument. The service proxy implements the service interface and
shields the client from lower-level network programming details. The
service proxy sends requests to the activator and passes results back to the
client, thereby shielding the client from changes to the activator
implementation. For example, while subsequent versions of the
automation system might configure each service execution context to use
thread pools to pre-instantiate groups of service instances, clients will not
be affected by these changes. o

Variants One service per service execution context. Instead of allowing a service
execution context to provide multiple service types, this variant enforces
a 1:1 relationship between service execution contents and services. Each
service execution context implements exactly one service. The advantage
of this approach is the reduced complexity of the activator
implementation. Resource contention increases, however, when more
service execution contexts are available. This approach is therefore most
useful when services have a long execution time or when the number of
services is relatively small.

Combined Component Configurator and Activator. This compound
pattern combines the Component Configurator pattern [POSA2] with the
Activator pattern to provide the ultimate in on-demand flexibility. In this
variant, an activator is responsible for activating/deactivating service
execution contexts in which services run, whereas a component
configurator is responsible for determining what service implementations
are actually linked into a server from a dynamic link library (DLL). This
compound pattern approach leads to a highly flexible design with well-
defined separation of concerns. For example, the activator in such systems
could spawn a process to serve as the service execution context and then
© Douglas C. Schmidt 2005, all rights reserved, © Siemens AG 2005, all rights reserved
11.09.2005 Activator.fm

Activator 19
use a component configurator to link service implementations on-demand
from DLLs into the process.

Example Resolved Applying the Activator pattern as described in the Implementation section
improved the scalability of the industrial automation system by ensuring
that computing resources are consumed only by services being accessed
by clients. The diagram below shows that activating services on demand
improves system scalability.

Request
Reply

SERVICE 1

SERVICE 2

SERVICE 3

SERVICE 4

Request

EMBEDDED CONTROLLER

Client 2

Client 3

= Service is running

System Load
0%

100%

Activator
activate forward evict

activate forward

evict

Client 1

Request

activate

forward

Reply

Reply

evict

In the initial implementation shown in the

Example section, only a small number of clients could access the system
simultaneously since scarce system resources were devoted to running
unused services. In the refactored implementation, however, a larger
number of clients can access the same (or different) services
simultaneously without incurring overload. Even three clients
concurrently accessing the embedded controller do not incur more than
50% CPU load, so the overload threshold will not be reached.
11.09.2005 Activator.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

20
After refactoring of the initial eager resource allocation strategy, the
revised system uses a singleton activator to create service execution
contexts and activate services on-demand. It uses the Evictor pattern to
deactivate services when clients do not access them after a designated
period of time. Some addition runtime overhead is caused by the activator
spawning threads to run newly activated services, but this overhead is
negligible since each client exchanges a number of requests with the
service before focusing its attention elsewhere.

Known Uses Object Request Broker (ORB) and Component Middleware
frameworks, such as CORBA, CORBA Component Model (CCM),
Microsoft COM+, and Java RMI use the Activator pattern in several ways.
For example, they use the pattern to transparently spawn server processes
when clients invoke operations on remote objects, as follows:

• In COM+ the Service Control Manager (SCM) can spawn server
processes on demand. It then connects to the appropriate class factory
and creates a new instance of a COM object. The activation table is
implemented by a combination of the Windows registry and internal
tables. A global DLL, called OLE32.DLL encapsulates access to the
activator implementation transparently for clients.

• CORBA ORBs use transparent activators to activate servers on
demand. When a client invokes an operation on an object reference, the
call initially goes to an Implementation Repository [VH99], which
plays the role of the activator in this pattern. The Implementation
Repository checks to see if a server process containing the object being
accessed by the client is running. If it is not running, the server process
is spawned. After the Implementation Repository verifies the process
is running, it returns a LOCATION_FORWARD exception to the client
ORB, which updates the object reference to note the new location and
reissues the call to the server transparently to the client application.

Component middleware uses the Activator pattern to activate components
transparently via a hierarchy of activators. For example, in the CORBA
Component Model (CCM) the Implementation Repository is used to
spawn server processes. Servant activators can then be used to create
containers that provide the runtime environment for managing the
lifecycle of component implementations. Similar mechanisms are
available in Enterprise JavaBeans.
© Douglas C. Schmidt 2005, all rights reserved, © Siemens AG 2005, all rights reserved
11.09.2005 Activator.fm

Activator 21
OS superservers. The Activator pattern has been used in OS
‘superservers’ that manage network servers. Two widely available OS
superservers are Inetd [Ste90] and Listen [Rago93], which consult
configuration scripts that specify (1) service names, such as the standard
Web and Internet services HTTP, TELNET, FTP, DAYTIME, and ECHO,
(2) port numbers to listen on for clients to connect with these services, and
(3) an executable file to invoke and perform the service when a client
connects.

Both Inetd and Listen contain a master acceptor process that monitors
a set of port numbers associated with the services. When a client
connection occurs on a monitored port, the acceptor process accepts the
connection and demultiplexes the request to the appropriate pre-registered
service handler. This handler performs the service, either reactively,
proactively, or as an active object [POSA2], and returning results to the
client as needed.

Web servers use the Activator pattern to start services on demand when
HTTP requests arrive. Plug-ins may be registered with the Web server
(e.g., using configuration files or Component Configurators [POSA2]),
which represent service execution contexts. These plug-ins handle HTTP
requests for specific URL addresses. For example, when a URL specifies
a file with a PHP file-extension, a PHP-plug-in is accessed by the web
server to handle this kind of request. Handling the request in this context
means to load the PHP interpreter, execute the PHP-script specified, and
return an HTML page to the originator of the request. To optimize
performance, the server only activates plug-ins on demand when an
appropriate request arrives.

Human usage. A human known use of the Activator pattern is a call
center used to provide technical help desk services, credit card fraud
reporting, or airline reservations. Here the resources to be optimized are
telephone lines, computer and databased connections, and call center
operators. The activator is the central system that is called by customers.
After a customer has specified their service indentifier via voice or
touchtone input, the call center activator connects the customer to the
appropriate operator, after first activating the resources needed by the
operator to handle the call, which can involve establishing network and
database connections, preparing information on the user interface display,
etc. The customer is then connected directly to the operator. Hanging up
11.09.2005 Activator.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

22
the telephone triggers service deactivation and releases the allocated
resources for use in servicing other customer calls.

Consequences The Activator pattern offers the following benefits:

Scalable resource usage. Service execution contexts only run when
services are being accessed by clients. They are deactivated and
reactivated on demand, which helps improve the scalability of the overall
system by allocating resources more parsimoniously.

Implicit initialization. All details of service and service execution context
activation and deactivation are encapsulated by the activator interface,
which enables service developers to initialize services when they are
activated. For example, service state can be stored in a database and loaded
whenever the service execution context is activated., so clients may not
need to initialize services explicitly themselves.

Exchangeable strategies due to transparent service creation. As a
consequence of using activators as intermediaries, the service creation
strategy can be exchanged without impacting clients. For example, an
activator can choose between different services supporting the same
service type via load balancing or fault tolerance replication mechanisms.

Location transparency with respect to services. If the service proxys
returned by the activator point to proxies, the location of the service can
be made invisible to clients. Clients can thus access services residing on
remote machines transparently.

Efficient and fast service access. After clients have obtained updated
service proxys from an activator, they can access the services directly,
bypassing further indirection and delegation.

The Activator pattern also has following liabilities:

QoS penalties due to activation overhead. When a client first accesses an
inactive service, the activator must activate a server execution context to
run the service, which increases the latency and jitter of the initial access.
It is also possible for clients to trigger intentional or accidental denial-of-
service attacks by activating many services unnecessarily.

Complex state management. If service execution contexts running services
are deactivated and activated on demand, any non-volatile state must be
persisted across succeeding passivation and activation events, which can
complicate service development.
© Douglas C. Schmidt 2005, all rights reserved, © Siemens AG 2005, all rights reserved
11.09.2005 Activator.fm

Activator 23
Debugging and testing can be hard. Decoupling clients from the activation
of services can make it harder to determine why failures occur. For
example, if there is not enough memory to activate a service in a service
execution context, the client may not be able to ascertain what caused the
problem since service activation is supposed to be transparent.

See Also The Component Configurator pattern [POSA2] allows applications to
dynamically link and unlink their component implementations at run-time
without having to modify, recompile, or statically relink application code.
The primary difference between Component Configurator and Activator is
that Activator focuses on activating/deactivating a service execution
context on-demand, whereas Component Configurator focuses on
dynamic linking/unlinking the code that runs within an execution context.
The Component Configurator and Activator patterns can be combined to
form a compound pattern, as described in the Variants section.

The Virtual Component [PLoP9] and Virtual Proxy patterns [POSA1] can
also be used in conjunction with the Component Configurator pattern to
provide an transparent way of loading and unloading components that
implement middleware and/or application software functionality. These
patterns ensure that the software provides a rich and configurable set of
functionality, yet occupies main memory only for components that are
actually being used. Whereas the Virtual Component and Virtual Proxy
patterns focus largely on creating component memory on demand, the
Activator pattern focuses on a broader set of issues, such as locating
services and activating/deactivating service execution contexts on
demand.

The Broker pattern [POSA1] structures distributed software systems with
decoupled components that interact via local and/or remote invocations. A
broker component is responsible for coordinating communication, such as
establishing connections and forwarding requests, as well as for handling
results and exceptions. Remote objects represent services that reside in
servers. For performance and scalability reasons, these Broker systems
often instantiate the Activator pattern to spawn server processes on
demand. A common example is the Implementation Repository in
CORBA-based ORBs [VH99].

The Lazy Acquisition pattern [POSA3] defers the acquisition of resources
late in the system lifecycle, e.g., at installation- or run-time. Although this
pattern is similar to the Activator pattern, these patterns address different
11.09.2005 Activator.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

24
problem contexts at different levels of abstraction. The Lazy Acquisition
pattern defines a broad strategy for allocating resources, such as shared,
passive entities like memory or connections, to active entities, such as
services. Activator, in contrast, is a more focused pattern that addresses the
activation and deactivation of service execution contexts and services in
resource-constrained distributed computing environments.

The small memory patterns in [SmallMemory] describe a range of other
techniques that can be applied to reduce the consumption of memory in
embedded systems and handheld devices with their limited computing
horsepower.

Acknowledgements Thanks to our shepherd Jeffrey Overbey and to the participants in group 1
for helping improve this paper at the PLoP 12 conference.

References

[GoF] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[JavaRMI] W. Grosso, Java RMI, O’Reilly, 2001.

[PLoP9] A. Corsaro, D. Schmidt, R. Klefstad, and C. O'Ryan, “Virtual Component: a
Design Pattern for Memory-Constrained Embedded Applications,” Proceedings of
the 9th Annual Conference on the Pattern Languages of Programs, Monticello,
Illinois, September, 2002.

[POSA1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal: Pattern-
Oriented Software Architecture – A System of Patterns, John Wiley & Sons, 1996.

[POSA2] D.C. Schmidt, M. Stal, H. Rohner, F. Buschmann: Pattern-Oriented Software
Architecture, Volume 2 – Pattern for Concurrent and Networked Objects, John
Wiley & Sons, 2000.

[POSA3] M. Kircher and P. Jain: Pattern-Oriented Software Architecture, Volume 3 -
Patterns for Resouce Management, John Wiley & Sons, 2004.

[Rago93] S. Rago: UNIX System V Network Programming, Addison-Wesley, 1993.

[SOAP] E. Newcomer, Understanding Web Services, XML, WSDL, SOAP, and UDDI,
Addison-Wesley, 2002.

[Ste90] R. Stevens, UNIX Network Programming, Prentice Hall, 1990.
© Douglas C. Schmidt 2005, all rights reserved, © Siemens AG 2005, all rights reserved
11.09.2005 Activator.fm

Activator 25
[VH99] S. Vinoski and M. Henning: Advanced CORBA Programming with C++, Addison-
Wesley, 1999.

[SmallMemory] C. Weir and J. Noble, Small Memory Software, Addison-Wesley, 2000
11.09.2005 Activator.fm

© Douglas C. Schmidt and Siemens AG 2005, all rights reserved, Permission granted to print for PLoP

26
© Douglas C. Schmidt 2005, all rights reserved, © Siemens AG 2005, all rights reserved
11.09.2005 Activator.fm

	Activator
	Authors
	Abstract
	Example
	Context
	Problem
	Solution
	Structure
	Dynamics
	1 A service developer implements a service using appropriate programming language and platform libraries or middleware.
	2 The service is registered with the activator, which keeps track of where to locate the service implementation and under what conditions to activate it.

	1 A client uses the service’s identifier to obtain a reference to a service, e.g., it can locate the reference in a naming service via its service identifier.
	2 The client then invokes an operation on the service via its reference.
	3 The client’s request is first sent to the activator, which determines the service from the identifier in the request and finds the corresponding entry in the activation table.
	4 The activator checks whether a service execution context running the service is currently active. If it is inactive, the activ...
	5 The activator waits for acknowledgement that the service execution context and the service it implements are activated and ready to receive requests.
	6 The activator then transparently delegates the request to the service execution context, which performs the client’s request and returns a reply if necessary.

	1 A service can be deactivated when no clients are accessing it.
	2 Deactivation may cause the service to store any non-volatile state information in persistent storage and then terminate the service execution context it is running in.

	Implementation
	1 Define the services and service identifiers. The services provided by a distributed system are usually specified in a requirem...
	2 Identify services that should be activated and deactivated on demand. For this activity, iterate through the following subactivities:
	2.1 For each service determine the costs of activating and deactivating services on demand versus keeping them alive for the dur...
	2.2 Determine client/service usage profiles and identify quality of service (QoS) requirements. If instances of a particular ser...
	2.3 Identify services for on-demand activation. Using the results of the previous subactivities, determine all services that are subject to on-demand activation. As a rule of thumb, such services have the following properties:
	3 Develop a service activation and deactivation strategy. For every service, determine the details of service activation and deactivation by performing the following subactivities:
	3.1 Define the service execution context representation and associated service registration strategy. A service execution context can be implemented in various ways and at various levels of abstraction, including:
	3.2 Define the service activation and access strategies. There are several dimensions to this implementation activity, including:
	3.3 Define the service deactivation strategy. There are several strategies for deactivating services:
	4 Define the interoperation between services and the service execution context. The service execution context may provide oppera...
	5 Implement the activator. This step involves the following subactivities:
	5.1 Determine the association between activators and services. There are a number of ways to associate activators and services, including:
	5.2 Determine the degree of transparency. There are various degrees of transparency from the client’s perspective, including:
	6 Define the necessary contracts between interoperating participants. A contract specifies the set of interfaces implemented by ...
	Variants
	Example Resolved
	Known Uses
	Consequences
	See Also
	Acknowledgements
	References
	[GoF]
	[JavaRMI]
	[PLoP9]
	[POSA1]
	[POSA2]
	[POSA3]
	[Rago93]
	[SOAP]
	[Ste90]
	[VH99]
	[SmallMemory]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

