
Object Interconnections

Programming Asynchronous Method Invocations with CORBA Messaging
(Column 16)

Douglas C. Schmidt Steve Vinoski
schmidt@cs.wustl.edu vinoski@iona.com

Department of Computer Science IONA Technologies, Inc.
Washington University, St. Louis, MO 63130 60 Aberdeen Ave., Cambridge, MA 02138

This column will appear in the February 1999 issue of the
SIGS C++ Report magazine.

1 Introduction

Welcome to our continuing coverage of asynchronous mes-
saging and the new CORBA Messaging specification [1].
Our previous column presented an overview of the specifica-
tion. It also outlined how the Messaging specification allevi-
ates the tedium of programming with deferred synchronous
operations via the Dynamic Invocation Interface (DII) and
avoids the weak reliability semantics of oneway operations.

In this column, we focus on asynchronous method invo-
cation (AMI), which is a core part of the new CORBA Mes-
saging specification. A key feature of CORBA AMI is that
operations can be invoked asynchronously using thestatic
invocation interface(SII), thereby eliminating much of the
complexity inherent in the DII deferred synchronous model.
This column illustrates how to write CORBA applications
using the two AMI programming models:

Polling model: In this model, each asynchronous two-way
invocation returns aPoller valuetype, which is a new IDL
type introduced by the newObjects-by-Value(OBV) specifi-
cation [2]. Avaluetype is very much like a C++ or Java
class in that it has both data members and methods, which
when invoked are just local C++ member function calls and
not distributed CORBA operation invocations.

The client can use thePoller methods to check the sta-
tus of the request and to obtain the value of the reply from the
server. If the server hasn’t returned the reply yet, the client
can elect to block awaiting its arrival, just as with the DII
deferred synchronous mode shown in our previous column.
Alternatively, the client can return to the calling thread im-
mediately and check on thePoller later when convenient.

Callback model: In this model, the client passes an ob-
ject reference for aReplyHandler object as a parame-
ter when it invokes a two-way asynchronous operation on
a server. When the server responds, the client ORB receives
the response and dispatches it to the appropriate C++ method
on theReplyHandler servant so the client can handle the
reply. In other words, the ORB turns the response into a re-
quest on the client’sReplyHandler .

In general, the callback model is more efficient than the
polling model because the client need not poll for results.
However, it forces clients to behave as servers, which in-
creases the complexity of certain applications, particularly
“pure” clients.

2 Using CORBA Asynchronous
Method Invocations (AMI)

To illustrate CORBA AMI, we use the followingQuoter
interface, which we’ve used as a running example in many
of our previous columns.

module Stock
{

// Requested stock does not exist.
exception Invalid_Stock {};

interface Quoter {
// Two-way operation to retrieve current
// stock value.
long get_quote (in string stock_name)

raises (Invalid_Stock);
};

// ...
}

To make our example more interesting, we’ll write a client
get stock quotes helper function using three imple-
mentations: (1) a synchronous model, (2) an asynchronous
polling model, and (3) an asynchronous callback model.
Theget stock quotes function will invoke the two-way
get quote operation defined in theQuoter interface to
retrieve the current stock value for various publicly traded
ORB vendors. We’ll use the following global variables for
each implementation:

// NASDAQ abbreviations for ORB vendors.
static const char *orbs[] =
{

"IONAY" // IONA Orbix
"BEAS" // BEA systems M3
"INPR" // Inprise VisiBroker
"IBM" // IBM Component Broker
"SUNW" // Sun/Chorus COOL

}

// Set the max number of ORBs.
static const int MAX_ORBS =

1



sizeof (orbs) / sizeof (*orbs);

// Keep track of the asynchronous
// reply count.
static int reply_count = MAX_ORBS;

We show each implementation below.

2.1 Synchronous Model

Implementation: Assuming we’ve got an object reference
of type Quoter , here’s a quick refresher on the steps re-
quired to write a clientget stock quotes method that
uses the synchronous model:

1. Generate stubs from the IDL file: In this step, we
run theStock module through a conventional IDL com-
piler. The IDL compiler automatically generates the stubs
that implement the SII C++ mapping.

2. Write the client using stubs: In this step, we simply
use the stubs generated by the compiler to write our client
get stock quotes method, as follows:

void get_stock_quotes
(CORBA::ORB_ptr orb,

Stock::Quoter_ptr quoter_ref)
{

// Make synchronous two-way calls.
for (int i = 0; i < MAX_ORBS; i++) {

CORBA::Long value =
quoter_ref->get_quote (orbs[i]);

cout << "Current value of "
<< orbs[i] << " stock: "
<< value << endl;

}

// ...
}

Each call to theget quote operation causes the stub to
transmit the request to the object. The client then blocks
synchronously in the stub waiting for the reply to return from
the server.

Evaluating the synchronous model: This code is obvious
and natural to most C++ programmers because it uses two-
way synchronous calls. However, the overall time required
to complete thefor loop will depend largely on the latency
of the longest two-way call. Moreover, if earlier calls take a
long time to return, subsequent calls will be delayed, even if
they could return immediately.

While the calling thread is blocked waiting for each re-
sponse, there is nothing else that it can do. Moreover, if the
client is single-threaded, this means that the whole process is
blocked while waiting for each reply. Many types of appli-
cations, particularly real-time applications that monitor em-
bedded control systems [3], cannot afford to block an entire
process while waiting for a reply.

To work around the limitations with
the synchronous model shown above, we reimplement the
clientget stock quotes function below using the asyn-
chronous polling model defined in the CORBA Messaging
AMI specification.

2.2 Asynchronous Polling Model

Implementation: The AMI polling model implementation
for the clientget stock quotes function requires the
following steps:

1. Generate “implied IDL” for polling signatures: In
this step, we run theStock module through an IDL com-
piler that supports the C++ mapping for the AMI polling
model. Such a compiler maps operations and attributes in
each IDL interface to implied IDL. The termimplied
IDL refers to the fact that the IDL compiler “logically” gen-
erates additional IDL based on the standard IDL declarations
fed into it, and then compiles the original IDL and the im-
plied IDL into stubs and skeletons.

In the implied IDL mapping for the polling model, the IDL
compiler generates polling operation and attribute names that
are prefixed by “sendp .” In general,in and inout pa-
rameters in each original IDL operation map toin parame-
ters in eachsendp operation.

In the stock quote example, the automatically-generated
implied polling operation is calledsendp get quote and
has the following signature:

namespace Stock
{

class Quoter
: public virtual CORBA::Object

{
public:

Stock::AMI_QuoterPoller *
sendp_get_quote (const char *stockname);

// ...
};

};

Rather than blocking until the reply
arrives, thesendp get quote operation returns a pointer
to a Stock::AMI QuoterPoller , which is defined by
the following automatically-generated implied class:

namespace Stock
{

class AMI_QuoterPoller
: public Messaging::Poller

{
public:

virtual void get_quote
(CORBA::ULong timeout,

CORBA::Long_out ami_return_val);
};

}

The client can subsequently
query anAMI QuoterPoller object to retrieve the stock
value when the reply arrives from the server. Because
AMI QuoterPoller is a valuetype , an invocation of
the get quote method on anAMI QuoterPoller ob-
ject is alwayscollocated, i.e., the call is invoked locally and
does not go across the network.

In general,inout and out parameters and return val-
ues for each operation in an IDL interfaceFoo map toout
parameters in each method in the automatically generated
AMI FooPoller class. Moreover, each method can be

2



given a timeout to bound the amount of time the client is will-
ing to wait for the reply to return. If the operation invocation
results in an exception, its correspondingAMI FooPoller
method throws that exception when you invoke it.

2. Rewrite the client to usePoller s: In this step,
we reimplement the clientget stock quotes function
to use the generatedsendp get quote operation, which
invokes the calls asynchronously, as follows:

void get_stock_quotes
(CORBA::ORB_ptr orb,

Stock::Quoter_ptr quoter_ref)
{

Stock::AMI_QuoterPoller *pollers[MAX_ORBS];
int i;

// Make asynchronous two-way calls using
// the polling model.
for (i = 0; i < MAX_ORBS; i++)

pollers[i] =
quoter_ref->sendp_get_quote (orbs[i]);

Once all the calls have been invoked asynchronously, the
client can query thePoller objects for the replies. In this
example, theget stock quotes function will first try to
obtain all the replies without blocking,i.e., it will perform a
“nonblocking poll” by setting the timeout parameter to 0, as
follows:

// Set to the minimum timeout value,
// i.e., "return immediately".
CORBA::ULong min_timeout = 0;

// Obtain the results via
// "immediate polling".
for (i = 0; i < MAX_ORBS; i++) {

try {
CORBA::Long value;
// Don’t block if the result isn’t
// ready.
pollers[i]->get_quote (min_timeout,

value);
cout << "Current value of "

<< orbs[i] << " stock: "
<< value << endl;

// Zero-out the ORB name
// once we get a return value.
orbs[i] = 0;
reply_count--;

}
// Catch exception indicating
// response is not yet available.
catch (const CORBA::NO_RESPONSE &)
{}

}

Only if all the replies haven’t arrived, i.e., the
reply count is > 0, do we actually block the client by
setting the timeout parameter to�1, as follows:

// Set to the larger timeout value,
// i.e., "block forever".
CORBA::ULong max_timeout =

CORBA::ULong (-1);

// Obtain any remaining results via
// "indefinite polling".
for (i = 0; i < MAX_ORBS; i++) {

// Skip replies we’ve already obtained.
if (orbs[i] == 0)

continue;

CORBA::Long value;
// Block indefinitely until the result
// is ready.
pollers[i]->get_quote (max_timeout,

value);
cout << "Current value of "

<< orbs[i] << " stock: "
<< value << endl;

// Zero-out the ORB name
// once we get a return value.
orbs[i] = 0;

}

// ...
}

In this implementation, theget stock quotes func-
tion does nothing other than poll for the results. Programs
that use the AMI polling model would normally perform
other processing, however,e.g., they would service a GUI
or update a sensor reading in between calls to thePoller s.

Evaluating the AMI polling model: The AMI polling
model requires programmers to write more C++ code than
they do for synchronous two-way calls. For instance, the
AMI polling implementation ofget stock quotes must
keep track of theAMI QuoterPoller results returned
from the sendp get quote call. Once all the calls are
invoked, programmers must then query thePoller s ex-
plicitly to retrieve the reply. In contrast, conventional syn-
chronous two-way CORBA calls wait for replies in their
generated stubs, which alleviates the need for application
polling.

An implementation-related drawback to using AMI
polling is that it requires you to use Objects-by-Value (OBV)
in your application. The OBV specification is overly com-
plicated and has no track record of success in any real-world
applications. Unlike most OMG specifications, OBV was
mostly invented on-the-fly, with the submitters often making
significant changes to the specification only hours before its
revision deadlines passed. Because of the low quality and
high complexity of the OBV specification, it will take a long
time before ORBs properly support it. You may want to
avoid it until ORB vendors and the OMG can work all the
kinks out of it.

Another drawback with the AMI polling model is that
it doesn’t really solve the inefficiency of waiting for long
latency calls to complete, which was a problem with the
synchronousget stock quotes implementation shown
in Section 2.1. In both cases, one long-running call could
unduly delay the client from completing other calls. To
work around this problem, we’ll next implement the client
get stock quotes function using the AMI callback
model instead of the polling model.1

2.3 Asynchronous Callback Model

Implementation: The AMI callback model implementa-
tion for the clientget stock quotes function requires

1Another way to work around this problem is to usePollableSet s,
which we’ll discuss in a subsequent column.

3



the following steps:

1. Generate implied IDL for callback signatures: In
this step, we run theStock module through an IDL com-
piler that supports the C++ mapping for the AMI callback
model. Such a compiler will map operations and attributes in
each IDLinterface to implied IDL, as described in Sec-
tion 2.2. In the implied IDL mapping for the callback model,
operation and attribute names are prefixed by “sendc .”

As with the polling model,in and inout parameters
in each operation in an IDL interfaceFoo map to in pa-
rameters in eachsendc operation. In addition, the first
parameter of eachsendc method is a callback of type
AMI FooHandler ptr that is implicitly registered with
the client ORB after the call is made. This callback will be
invoked by the ORB after the reply returns from the server.

In the stock quote example, the implied callback operation
is calledsendc get quote and has the following signa-
ture:

namespace Stock
{

class Quoter
: public virtual CORBA::Object

{
public:

void sendc_get_quote
(Stock::AMI_QuoterHandler_ptr

const char *stockname);

// ...
};

};

The client application is responsible for providing an ob-
ject that implements the callback. It passes the ob-
ject reference for this object as the first parameter to the
sendc get quote function. Rather than blocking until
the reply arrives, thesendc get quote operation returns
immediately.

2. Implement the ReplyHandler servant: In this step,
the client developer must implement
a ReplyHandler servant. This servant inherits from the
POAStock::AMI QuoterHandler implied IDL skele-
ton, which is generated automatically by the IDL compiler,
as follows:

namespace POA_Stock
{

class AMI_QuoterHandler
: public POA_Messaging::ReplyHandler

{
public:

virtual void get_quote
(CORBA::Long l) = 0;

virtual void get_quote_excep
(Stock::AMI_QuoterExceptionHolder *excep)
= 0;

};
}

Theget quote operation handles normal replies, whereas
the get quote excep operation handles exceptional
replies. For example, if the client invokesget quote and
passes a valid stock name, the client ORB will invoke the

AMI QuoterHandler::get quote to handle the reply,
passing in the value of the requested stock. Conversely, if the
client passes an unknown stock name, the reply must consist
of theStock::Invalid Stock exception.

For synchronous calls, the ORB propagates exceptions up
the runtime stack to the client function that invoked the op-
eration. For asynchronous calls, however, the ORB can’t re-
liably propagate the exception up the stack because the reply
may return to a different context than the one in which the
original request was made. By callingget quote excep ,
therefore, the ORB signifies to the client application that its
original request raised an exception.
For ourget stock quotes example, the servant imple-
mentation is defined as follows:

class My_Async_Stock_Handler
: public POA_Stock::AMI_QuoterHandler

{
public:

My_Async_Stock_Handler (const char *stockname)
: stockname_ (CORBA::string_dup (stockname))

{ }

˜My_Async_Stock_Handler (void) { }

virtual void get_quote (CORBA::Long value)
throw (CORBA::SystemException) {
cout << "Current value of "

<< stockname_ << " stock: "
<< value << endl;

// Decrement the number of replies.
reply_count--;

}

virtual void get_quote_excep
(Stock::AMI_QuoterExceptionHolder *excep)
throw (CORBA::SystemException,

Stock::Invalid_Stock) {
try {

excep->raise_get_quote ();
} catch (const Stock::Invalid_Stock &)
{

cerr << stockname_ << " is not valid!"
<< endl;

} catch (const CORBA::SystemException &ex)
{

cerr << "get_quote() raised " << ex
<< " for " << stockname_ << endl;

}

// Decrement the number of replies.
reply_count--;

}

private:
CORBA::String_var stockname_;

};

When the reply for an invocation of theget quote oper-
ation returns successfully, the ORB and the POA dispatch it
to the servant’sget quote reply handler method, passing
theCORBA::Long return value as anin argument.

Unlike the reply for a synchronous invocation, the reply
for an asynchronous invocation is not received in the call-
ing context. The stock name we passed when we originally
called theget quote operation is not passed to the ser-
vant’s method because it’s part of the request, not part of the
reply. Therefore, whenever aReplyHandler ’s actions are

4



based on its input arguments, such as in our example where
we print the name of the stock, you must provide those input
values explicitly to theReplyHandler servant. We do this
by passing the stock name to the servant’s constructor.

3. Rewrite the client to use callbacks: This step
involves reimplementing the clientget stock quotes
function. It uses the generatedsendc get quote oper-
ation to invoke the calls asynchronously and initializes the
ReplyHandler callbacks, as follows:

void get_stock_quotes
(CORBA::ORB_ptr orb,

Stock::Quoter_ptr quoter_ref)
{

My_Async_Stock_Handler *
handlers[MAX_ORBS];

Stock::AMI_QuoterHandler_var
handler_refs[MAX_ORBS];

int i;

// Initialize ReplyHandler servants.
for (i = 0; i < MAX_ORBS; i++)

handlers[i] =
new My_Async_Stock_Handler (orbs[i]);

// Initialize ReplyHandler object refs.
for (i = 0; i < MAX_ORBS; i++)

handler_refs[i] = handlers[i]->_this ();

// Make asynchronous two-way calls using
// the callback model.
for (i = 0; i < MAX_ORBS; i++)

quoter_ref->sendc_get_quote
(handler_refs[i],

orbs[i]);

Once the asynchronous calls are all invoked, the client can
simply wait in the ORB’s event loop for replies to arrive, as
follows:

// Callbacks are invoked during the ORB’s
// event loop processing. We’ll keep
// iterating until all replies have been
// received.
while (reply_count > 0)

if (orb->work_pending ())
orb->perform_work ();

// ...
}

Because this client runs an ORB event loop, it effectively
plays the role of both a serverand a client. As before, the
get stock quotes function doesn’t do anything other
than wait for result callbacks, although theperform work
method can dispatch other CORBA requests, as well. Appli-
cations that use the AMI callback model would normally per-
form other processing in between calls toperform work ,
however, and thus would avoid busy loops like the one shown
here. It is important to note thatperform work is essen-
tially a nonblocking call. Unlike the blockingORB::run
function we’ve used in previous columns,perform work
carries out an implementation-defined unit of work (if any)
and then returns. Thework pending function returns true
only when the ORB has work to do.

Evaluating the AMI callback model: A benefit of the
AMI callback model is that it helps solve the problems with

waiting efficiently for long latency calls to complete. With
this technique, long-running calls don’t interfere with other
calls. It also allows single-threaded applications to avoid
blocking while waiting for responses. This feature poten-
tially makes programming easier and avoids the need to de-
termine the best threading model to use for the application.

We described problems with callback-based servers in a
previous column [4]. For instance, we pointed out problems
with distributed callbacks that are caused by the server hav-
ing to manage and keep track of many callback objects, their
registrations, and the data sent to them. Fortunately, these
problems do not arise with the AMI callback model because
the server ORB treats the asynchronous request as it does a
synchronous request,i.e., it dispatches the request and re-
turns the reply. The client ORB, not the server, handles the
asynchronous aspects of the reply. In fact, existing CORBA
servers need not be changed at all to handle AMI requests.

The AMI callback model requires client programmers to
write more code than either the synchronous model or the
AMI polling model, however. In particular, client program-
mers must write theMy Async Stock Handler servant,
as well as the associated client event loop code to manage
the asynchronous replies.

For applications that are already event-driven, this extra
code may not incur much additional effort. However, for
“pure” clients it can be inconvenient to restructure the code
to support callbacks. For instance, memory management
is more complicated, as is scoping of variables needed in
the callback methods. Our simple example solved the lat-
ter problem by defining several global variables. However,
the use of global variables generally yields overly coupled
applications.

Therefore, despite being simpler than the equivalent DII
code, the AMI programming model is not as simple as that of
synchronous invocations. In fact, asynchronous applications
can be difficult to understand and maintain because their
code structures do not represent their calling patterns [5]. In
addition, handling exceptions by writing separate methods is
nonintuitive.

3 Concluding Remarks

This column illustrated how to write C++ programs that use
the polling and callback models defined in the asynchronous
method invocation (AMI) section of the new CORBA Mes-
saging specification. An important consequence of both the
callback and polling models is that multiple two-way AMIs
can be processed asynchronously within a single thread of
control. This design simplifies the need for concurrency con-
trol that would otherwise be required if multiple threads were
used to process multiple two-way synchronous calls simul-
taneously.

Interestingly, the CORBA Messaging specification allows
clients to use the AMI models without requiring any mod-
ifications to servers. That’s because the CORBA Messag-
ing specification treats asynchronous invocations as a client-

5



side language mapping issue. Our next column will ex-
plore several other key aspects of the Messaging specifica-
tion, such as theinteroperable routing protocol(IRP) and
time-independent invocations(TII).

As always, if you have any questions about the material
we covered in this column or in any previous ones, please
email us atobject_connect@cs.wustl.edu .

References

[1] Object Management Group,CORBA Messaging Specifi-
cation, OMG Document orbos/98-05-05 ed., May 1998.

[2] Object Management Group,Objects-by-Value, OMG
Document orbos/98-01-18 ed., January 1998.

[3] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The
Design and Performance of a Real-time CORBA Event
Service,” inProceedings of OOPSLA ’97, (Atlanta, GA),
ACM, October 1997.

[4] D. Schmidt and S. Vinoski, “Distributed Callbacks and
Decoupled Communication in CORBA,”C++ Report,
vol. 8, October 1996.

[5] D. C. Schmidt and C. D. Cranor, “Half-Sync/Half-
Async: an Architectural Pattern for Efficient and Well-
structured Concurrent I/O,” inPattern Languages of Pro-
gram Design(J. O. Coplien, J. Vlissides, and N. Kerth,
eds.), Reading, MA: Addison-Wesley, 1996.

6


