
Object Interconnections

Distributed Callbacks and Decoupled Communication in CORBA (Column 8)

Douglas C. Schmidt Steve Vinoski
schmidt@cs.wustl.edu vinoski@ch.hp.com

Department of Computer Science Hewlett-Packard Company
Washington University, St. Louis, MO 63130 Chelmsford, MA 01824

This column will appear in the October 1996 issue of the
SIGS C++ Report magazine.

1 Introduction

We’re changing gears in this column. Our recent columns
have used a distributed stock quoting example to focus on
different concurrency models for developing multithreaded
server applications. In this column, we’ll start looking at
another aspect of distributed object computing systems: de-
coupling the relationship between “clients” and “servers.”

Our examples to date have focused exclusively on re-
quest/response communication. In this approach, requests
flow from client to server and responses flow back from
server to client. In this column, we’ll discuss distributed
callbacks and extend our stock quoting example to show why
they’re useful. We’ll also briefly discuss the OMG Events
object service [1], which supports decoupled peer-to-peer re-
lationships between consumers and suppliers. We intend to
cover the OMG Events object service in more detail in future
columns.

2 Revisiting the Distributed Stock
Quoting Application

We’re going to start off by revisiting the distributed stock
quoting application to identify the limitations with our orig-
inal client/server design. In particular, we’ll see that our
original design has serious problems that show up as our ap-
plication requirements evolve. But first, we need to define
our terminology more precisely.

2.1 “Client-Server” vs. “Peer-to-Peer”

The terms “client” and “server” are widely used in distributed
computing circles, but what do they really mean? In dis-
tributedobject computing systems these terms are useful only
to describe the sender and receiver of a single request. That
is, for a given request, the “client” is the entity making the
request, while the “server” is the entity acting upon it. More-
over, the client of one request may well be the server for

another request.
A more accurate way to view distributed object collab-

oration is to think of terms like client and server as roles
that are played by various objects at various times. In prac-
tice, distributed objects change their client and server roles
quite frequently. For instance, objects often participate in
peer-to-peer relationships, rather than in strict client-server
relationships.

2.2 The Drawbacks of Request/Response Sys-
tems

In our May 1995 column, we showed the following OMG
IDL definition for a Stock::Quoter interface:

module Stock {
// Requested stock does not exist.
exception Invalid_Stock {};

interface Quoter {
// Returns the current stock value or
// throw an Invalid_Stock exception.
long get_quote (in string stock_name)

raises (Invalid_Stock);
};

};

This interface provides aget quote operation that allows a
broker to query (i.e., poll) the stock quoter object. Since stock
trading strategies are often triggered when a stock reaches a
certain value, this design allows a broker to monitor a stock
and to buy or sell it when a desired value is reached. Figure 1
illustrates the architecture of a distributed polling quoter.

The client application code for a polling broker might look
as follows:

using namespace Stock;

// ...initialize ORB...

Quoter_var quoter =
// Use Naming or Trader service to
// get quoter object reference...

const CORBA::Long desired = TRADING_THRESHOLD;
CORBA::Long actual;

do {
actual = quoter->get_quote ("ACME ORB Inc.");

} while (actual != desired);

1

QUOTE CLIENT

: Quoter: Quoter
ProxyProxy

QUOTE SERVER

: My: My
QuoterQuoter

get_quote()get_quote()

namename

valuevalue

Figure 1: Architecture of a Distributed Polling Quoter

// Exercise buy or sell order.

While the polling approach could conceivably provide the
desired results, it suffers from a number of drawbacks, in-
cluding:

� Server saturation: This quoter application is capable of
sending many requests to the server in a very short period
of time. Depending on implementation issues (such as the
hardware platform, operating system, or concurrency model),
the server may become saturated and thus unable to fulfill new
requests. For instance, an excessive amount of memory and
CPU resources may be consumed if the server uses a thread-
per-request concurrency model. This problem is worse for
servers that take a long time to service requests. In this
case, several polling clients can easily cause these servers
to consume all their available resources while trying to keep
pace with incoming requests.

� Network saturation: Even if servers are very efficient at
servicing requests, a polling approach can still allow applica-
tions to use excessive network bandwidth. Polling applica-
tions that flood the network with request messages and their
responses may cause all services on the network to suffer
due to increased response times and error rates. Moreover,
if congestion becomes too severe, the entire network may
become incapacitated.

� Limited application utility: A polling application that
saturates its server and its network isn’t good for much else.
If it weren’t polling, it might be able to perform other useful
work (e.g., refreshing the user-interface, providing adequate
quality of service to other users or applications, etc). Per-
forming the polling in a separate thread can help alleviate
this problem, but not without increasing application resource
consumption and programming complexity.

2.3 The Distributed Callback Solution

One way to avoid the problems associated with polling is
to employ distributed callbacks. In terms of our example

QUOTE SUPPLIER

: My: My
NotifyingNotifying
QuoterQuoter

1: register_callback()
1: register_callback()

2: push()2: push()

QUOTE CONSUMER

: My: My
CallbackCallback

QUOTE CONSUMER

: My: My
CallbackCallback

: My: My
CallbackCallback

ProxyProxy

2: push()
2: push()

NETWORK

: My: My
CallbackCallback

ProxyProxy

1: registe
r_callback()

1: registe
r_callback()

Figure 2: Architecture of a Distributed Callback Quoter

described above, a distributed callback involves a “role re-
versal,” i.e., the “server” calls back to the quoter “client” ap-
plication. The Quoter object uses this callback to notify the
quoter application that the stock it’s interested in has reached
the desired value. Figure 2 illustrates the participants and
collaboration in the distributed callback solution.

2.3.1 Common Examples of Callbacks

CORBA distributed callbacks are similar to ordinary call-
backs used in C++ programming. An example of a C++ call-
back is the function pointer passed to set new handler.
If a new handler callback has been installed, any time
operator new is unable to allocate memory it will in-
voke the callback function hoping that the application or run-
time environment can somehow free up some memory. This
approach is obviously simpler than having the application
continually poll the status of the heap.

Another well-known example of a non-distributed call-
back is a function pointer registered to handle graphical user
interface (GUI) events, such as the click of a mouse button in
a window. When the button is clicked, the registered function
is called to allow the application to react to the event. By us-
ing callbacks, the user interface framework can be decoupled
from application-specific behavior performed in response to
events, thereby increasing reuse and extensibility.

Distributed callbacks should not be confused with the “up-
calls” made by the Object Adapter and the IDL skeletons,
which dispatch requests to object implementations. These
upcalls are mechanically similar to GUI callbacks, and in
fact are typically implemented by ORB vendors as ordinary
C++ callbacks. The major difference between distributed
callbacks and object implementation upcalls is that they oc-
cur at different levels in the CORBA system. In fact, object
implementation upcalls are a key component of a distributed

2

callback or any other distributed request handling mecha-
nism.

Note that the term “distributed callback” is a bit mislead-
ing. This is because an object can be located in the same
address space as its caller. In this case, a quality ORB im-
plementation will bypass remote messaging mechanisms and
perform local function calls between a caller and a target ob-
ject whenever possible. Thus, a callback in such a system
is not always necessarily “distributed.” In the current exam-
ple, however, we’ll assume that all callbacks occur between
distributed objects.

2.3.2 Problems Solved by Distributed Callbacks

The followingpoints explain how using distributed callbacks
in CORBA can help address the problems with our original
polling solution described above.

� Saturation problems: Since the quoter application isn’t
flooding the server or the network with requests any more, the
saturation problems no longer occur. However, depending
upon how the detection of the stock price changes is imple-
mented in the server, a distributed callback solution may still
cause the server to consume a large amount of computing re-
sources. For instance, it may need to filter data arriving from
a real-time quote feed to determine which events to forward
to clients that subscribe to the data.

�Limited application utility: Since the quoter application
is no longer polling, and is instead waiting for the server to
notify it, it can be used to work on other problems while it
waits. The use of distributed callbacks also alleviates the
need for multiple threads and the added complexity associ-
ated with multi-threaded programming.

Note that the definition of “distributed callback” provided
here shows the terminology problem we described in Sec-
tion 2.1: for a distributed callback, the server sends the re-
quest (and is thus a client), whereas the quoter application
receives the request (and is thus a server). As we’ll see below,
the use of distributed callbacks results in peer-to-peer rela-
tionships – the “client” and “server” are peers because each
is an object that both sends and receives requests. Therefore,
we’ll use different terminology from now on. A “supplier”
is an entity that produces events, while a “consumer” is one
that receives event notifications and data. This model, where
one or more applications register to receive data as it is gen-
erated, is often referred to as the “publish/subscribe” model.
The publish/subscribe model has its roots in patterns like
Observer [2] and Model/View/Controller [3].

3 Using Distributed Callbacks in the
Quoter Application

This section illustrates how to use distributed callbacks to
implement a more flexible, and potentially more efficient,
stock quoter application.

3.1 Defining the IDL Interface

As we’ve shown in our last few columns, CORBA appli-
cations must have an object reference before a request can
be issued. Therefore, two resources are needed before a
CORBA distributed callback can be made: a callback object
and its object reference. One way to obtain these resources is
to pass the distributed callback object reference as a parame-
ter to another object, which registers the distributed callback.
This behavior is shown by the register callback in-
vocations in Figure 2.

The example below extends the IDL declarations shown
above with a distributed callback interface and registration
operation:

module Stock {
// Requested stock does not exist.
exception Invalid_Stock {};

// Distributed callback information.
module Callback {

struct Info {
string stock_name;
long value;

};

// Distributed callback interface
// (invoked by the Supplier).
interface Handler {

void push (in Info data);
};

};

// This is the same as in our earlier columns.
interface Quoter {

long get_quote (in string stock_name)
raises (Invalid_Stock);

};

interface Notifying_Quoter {
// Register a distributed callback
// handler that is invoked when the
// given stock reaches the desired
// threshold value.
void register_callback

(in string stock_name,
in long threshold_value,
in Callback::Handler handler)

raises (Invalid_Stock);

// Remove the handler.
void unregister_callback

(in Callback::Handler handler);
};

};

Several key changes have been made to our original IDL
interface:

� A new module named Callback has been nested in-
side the Stock module. We used nesting so that both the
Info struct and the Handler interface could be prop-
erly scoped and grouped together, without having to in-
clude the string “Callback” in the name of each type (e.g.,
Callback Info).

� Within the Callback module, the Info struct and the
Handler distributed callback interface have been defined.
The Info struct is used to inform the callback object of the
name and value of the stock in question. This information
is necessary to allow one callback object to be registered for

3

multiple stock callbacks. TheHandler interface defines the
type expected for object references registered as callbacks.

� A new interface, Notifying Quoter, has been added.
It supplies two operations: register callback allows
callback handler object references to be added to the sup-
plier, while unregister callback is used to remove
callback handlers. Note that Notifying Quoter could
derive from our originalQuoter interface. However, doing
this means that all Notifying Quoter objects must sup-
port both polling and callbacks. This feature is something
that most clients are unlikely to require, so we omitted it.

3.2 Defining the Consumer’s Callback Behav-
ior

To register a distributed callback object, a consumer
passes a Callback::Handler object reference to
the Notifying Quoter::register callback op-
eration, which is implemented by the supplier. The following
class defines the callback object implementation provided by
the consumer:

// Implemented by the consumer.

class My_CallBack
: public HPSOA_Stock::Callback::Handler
// This base class is explained below.

{
public:

// ...

// Handle callback from quoter supplier.

void push (const Stock::Callback::Info& info)
{
// Class BuyOrder is defined elsewhere.
Buy_Order buy (info.stock, 1000);

// Issue a "buy" order.
buy.issue ();

// ...
}

};

The push method of My Callback is invoked by the sup-
plier when the threshold specified by the consumer is reached.
In response to this notification, the consumer creates an order
to buy 1,000 shares of the stock.

3.3 The Consumer Main Function

After defining the consumer’s callback behavior, we’ll
write our consumer application main. This function
gets the callback object reference and registers it with the
Notifying Quoter on the supplier.

// Consumer application.

int main (int argc, char *argv[])
{
using namespace Stock;

CORBA::ORB_var orb =
CORBA::ORB_init (argc, argv, 0);

CORBA::HPSOA_var hpsoa =

orb->HPSOA_init (argc, argv, CORBA::HPSOAid);

const char *stock_name = "ACME ORB Inc.";

// Create a new implementation object.
My_Callback *cb = new My_Callback;

// Get the callback object reference.
Callback::Handler_var handler = cb->_this ();

// Obtain a Notifying_Quoter object reference,
// e.g., from the Naming or Trader service
// (which is not shown).
Notifying_Quoter_var quoter = // ...
CORBA::Long threshold = TRADING_THRESHOLD;

// Register callback with the supplier.
quoter->register_callback (stock_name,

threshold, handler);

// Now instruct the object adapter to
// wait for callbacks from the supplier.
hpsoa->run ();
/* NOTREACHED */

}

In this example, we’re using the HP Simplified Object
Adapter supplied by the HP ORB Plus product to obtain
an object reference for our callback object. As we’ve de-
scribed in our previous columns, CORBA 2.0 currently lacks
a portable Object Adapter interface. Therefore, in this col-
umn we’ll use the object adapter supplied by the ORB ven-
dor we’re using. When the OMG completes its portability
enhancement work (which is currently in progress), we’ll
update our examples to use the new portable object adapter
mapping.

When the value of ACME ORB stock reaches the
“TRADING THRESHOLD” (e.g., $103.00), the supplier (in
the same process as the Quoter object, perhaps even the
Quoter itself) will call back to the registered handler object
like this:

// Implemented by the supplier.

Stock::Callback::Handler_ptr handler;
Callback::Info info;

// Assign name and value.
info.stock_name =
CORBA::string_dup ("ACME ORB Inc.");

info.threshold_value = TRADING_THRESHOLD;

// Query the real-time quote feed database
// to see if the threshold is reached.
// (see detailed implementation below).
if (reached_threshold (info.stock_name,

info.threshold_value))
{
// Disseminate info to the consumer(s).
handler->push (info);

// ...
}

Upon receiving the distributed callback from the supplier
(the quoter service), the consumer (the stock quoter applica-
tion) can examine the members of the Callback::Info
struct passed to it. The consumer application can use this
struct in various ways. For example, it can determine the
name of the stock and its current value, and use this informa-
tion to issue a buy or sell order for that particular stock.

4

Stock
Brokers

CONSUMER

CONSUMER

CONSUMER

PUSH

PUSH

PUSH

Quote
Server

REALREAL--TIMETIME

STOCK FEEDSTOCK FEED

DATABASEDATABASE
: Notifying: Notifying

QuoterQuoter

monitormonitor
realtimerealtime
feed()feed()

PULL

: Registration: Registration
MapMap

Figure 3: Internal Architecture of the Quote Supplier

If the consumer is no longer interested in receiving call-
backs, it can unregister the callback handler using the
unregister callback operation:

quoter->unregister_callback (handler);

4 Implementing the Distributed Call-
back Supplier

This section examines the implementation of the supplier-
side of the quoter service.

4.1 Supplier Architecture

Our stock quote supplier has three primary components
(shown in Figure 3):

1. Registration map – This map associates each callback
object reference with a stock name and threshold value.
To simplify programming, we use STL multimaps to
implement this association.

2. Real-time stock feed database – We assume that the
stock feed provides a continuous stream of stock
names and their associated values are stored in a
database that can be read by our implementation of the
Notifying Quoter interface.

3. Monitor for real-time stock feed – This monitor provides
up-to-date stock information to the stock quote supplier.
The supplier uses this information to determine when
callbacks should be issued to consumer (s).

OurNotifying Quoter implementation is an “active ob-
ject” [4]. It spawns a thread in its constructor to monitor the
real-time stock feed. This means that our registration and
unregistration operations must occur in their own threads.
Therefore, we must make sure that updates to the registration
map do not occur while the monitoring method accesses the

map. To do this, we’ll use mutex locks, which ensure the
integrity of our registration map.

HP ORB Plus uses a C++ threads portability class library
called MSD to achieve independence from platform-specific
threads APIs. This library is also available to applications
that use the ORB. Our Notifying Quoter implementa-
tion therefore makes use of the MSD Thread, MSD Mutex,
andMSD Lock classes provided by theMSD library to spawn
threads and provide mutual exclusion.

To actually implement a Notifying Quoter, we first
define a C++ class. ORBs generally allow the implementor to
select how to integrate their code with the skeleton generated
by the IDL compiler. As we’ve shown in previous columns,
the two main choices are variants of the Adapter pattern [2]:

� Class Adapter – which derives the implementation class
from a skeleton class generated by an OMG IDL com-
piler;

� Object Adapter – which makes a stand-alone class where
an interface (the Adapter) delegates to an object it holds
(the implementation).

In this column, we’ll use the inheritance method provided
by HP ORB Plus. Therefore, we derive our class from the
abstract HPSOA Stock::Notifying Quoter skeleton
class, as follows:

class My_Callback_Quoter
: public HPSOA_Stock::Notifying_Quoter

{
public:
My_Callback_Quoter (void) {

// Spawn a thread to monitor the feed.
thread_ = new MSD_Thread (start_thread, this);

}
˜My_Callback_Quoter (void) {

delete thread_;
}

// Register a distributed callback
// handler to callback when threshold
// is reached.
virtual void register_callback

(const char *stock,
CORBA::Long threshold_value,
Stock::Callback::Handler_ptr handler)

throw (CORBA::SystemException,
Stock::InvalidStock);

// Remove the handler when consumer is
// no longer interested in receiving callbacks.
virtual void unregister_callback
(Stock::Callback::Handler_ptr handler);

private:
// Perform the work of monitoring the real-time
// quote feed.
void monitor_realtime_feed (void);

// Determines if stock has reached its threshold.
int reached_threshold (char *, long);

// Static member function passed to
// the MSD_Thread constructor.
static void *start_monitor (void *p) {

My_Callback_Quoter *q =
static_cast<My_Callback_Quoter*> (p);

q->monitor_realtime_feed ();
return 0;

5

}

// Maps stock names to callbacks.
Callback_Map cb_map_;

// Pointer to monitoring thread.
MSD_Thread *thread_;

// Mutex for the Callback_Map.
MSD_Mutex mutex_;

// ...
};

Our Notifying Quoter implementation requires some
means to store the association between the stocks it moni-
tors and CORBA object references it maintains to distributed
callbacks. We use the STL multimap type Callback Map
for this purpose, as follows:

// Use STL pair and multimap containers.
typedef pair<Stock::Callback::Handler_ptr,

CORBA::Long> Callback_Value;
typedef multimap<string, Callback_Value>

Callback_Map;

A multimap is necessary because it allows duplicate keys.
We need this feature because multiple callbacks from multi-
ple consumers could be registered for the same stock name.
For example, two separate quoter applications could each
register a callback for the stock of “ACME ORBs, Inc.” In
addition, we’ll have to provide our own locking using the
mutex mechanisms in Hewlett-Packard’s ORB Plus product
since the STL implementation we use isn’t thread-safe.

4.2 Registering Callbacks

The register callback method can be written as fol-
lows:

void
My_Callback_Quoter::register_callback (

const char *stock,
CORBA::Long threshold,
Stock::Callback::Handler_ptr handler)

{
using namespace Stock::Callback;

// Create Callback_Value structure to hold
// threshold and Handler object reference.
Callback_Value val;
val.first = Handler::_duplicate (handler);
val.second = threshold;

// Create item type for multimap, consisting
// of the stock name and the Callback_Value.
pair<const string, Callback_Value> item;
item.first = string (stock);
item.second = val;

// Lock the callback map and insert the
// new registration item. (The destructor
// of the lock object unlocks the mutex).
MSD_Lock lock (mutex_);
cb_map_.insert (item);

}

Most of the register callback method is straightfor-
ward. When a consumer registers aCallback::Handler
we store a “pair of pairs” in the callback map. The

monitor realtime feed method shown below illus-
trates how this is used.

One tricky aspect of our design involves the use of
Handler:: duplicate. This is required because the
object reference passed to register callback is only
valid for this method invocation. Once this invoca-
tion of the register callback method returns, the
object reference might be released. For example, if
register callback is upcalled from a skeleton, the
skeleton will probably release the object reference before re-
sponding to the remote caller. Therefore, the duplicate
call ensures that the object reference we insert into cb map
does not become a dangling object reference.

4.3 Monitoring the Quote Feed

The following is a simple implementation of a method that
monitors the realtime quote feed:

// Supplier application.

void
My_Callback_Quoter::monitor_realtime_feed ()
{
using namespace Stock;

for (;;) {
// Sleep for a period to avoid ‘‘busy waiting.’’
sleep (POLL_PERIOD);

// Lock the registration table and
// iterate through it (destructor
// releases the mutex).
MSD_Lock lock (mutex_);

Callback_Map::iterator iter;

for (iter = cb_map_.begin ();
iter != cb_map_.end ();
iter++) {

// Access Callback_Value structure.
const string& stock = (*iter).first;
Callback_Value& cbv = (*iter).second;
CORBA::Long threshold = cbv.second;

// Query the real-time quote feed database
// to see if the threshold is reached.
if (reached_threshold (stock, threshold)) {

// Create Info structure to push
// to the callback consumer.
Callback::Info info;
info.stock_name =

CORBA::string_dup (stock.c_str ());
info.threshold_value = threshold;

// Retrieve Handler from Callback_Value.
Callback::Handler_ptr handler = cbv.first;

// Disseminate info the consumer (s).
handler->push (info);

// Release the handler object reference
// and destroy the callback info.
CORBA::release (handler);
cb_map_.erase (iter);

}
}

}
/* NOTREACHED */

}

As shown in Section 4.3, the monitor realtime feed

6

method is spawned by the My Callback Quoter con-
structor. This method run continuously in its own thread.
The main portion of the method iterates over all the en-
tries in the callback registration map. As explained above,
the callback map must be locked to prevent simultaneous
access by this method and the register handler and
unregister handler methods.

For each entry, the stock name and the threshold value are
passed to the reached threshold method. This method
queries the real-time quote feed database to see if that stock’s
value matches the desired threshold. If a match occurs, a
Callback::Info struct is created and initialized with the
stock name and value, the callback handler object reference
is retrieved from the callback map, and the Info struct is
“pushed” to the callback handler. Finally, the registration for
the callback that was just pushed by the supplier is destroyed.

The decision to destroy the callback handler after each
successful push is designed to prevent suppliers from flooding
consumers with multiple callbacks if the stock data remains
at the designated threshold. This implies that the quoter
application consumer must re-register the My Callback
handler if it wants to receive subsequent notifications for the
stock. There are obviously other protocols that we could
have used here, as well. The “best” approach will most
likely be revealed through prototyping and benchmarking
experiments.

4.4 Unregistering Callbacks

In addition to having successful “pushes” automatically re-
move handlers from the supplier, consumers can also unilat-
erally decide to remove callback handlers by invoking the
supplier’s unregister callback method. In this case,
the implementation of the unregister callback must
remove the given callback object reference from thecb map
multimap. This is accomplished using STL iterators, as fol-
lows:

using namespace Stock::Callback;

void
My_Callback_Quoter::unregister_callback
(Stock::Callback::Handler_ptr handler)
{
// Destructor releases lock.
MSD_Lock lock (mutex_);
Callback_Map::iterator iter;

for (iter = cb_map_.begin ();
iter != cb_map_.end ();
iter++) {

// Access Callback_Value structure.
Callback_Value& cbv = (*iter).second;

// Retrieve Handler from Callback_Value.
Handler_ptr h = cbv.first;

// Check handler equivalence.
if (h->_is_equivalent (handler)) {
CORBA::release (h);
cb_map_.erase (iter);
break;

}
}

}

This method simply iterates over the cb map multimap,
comparing each stored callback handler object reference to
the one passed in as an argument. When a match is found, the
object reference stored in the multimap is released, and then
the entry is erased, which frees up the dynamically allocated
memory.

5 Evaluation of the Distributed Call-
back Solution

One benefit of using CORBA is that the distributed call-
back architecture enables the consumer application to avoid
polling the stock quote supplier. Instead, the consumer is
notified when quotes reach their threshold, which may result
in a more efficient overall solution. However, this approach
has its own set of problems:

� Object reference ambiguity: For example, although
our unregister handler implementation appears to
be straightforward and portable, it contains a subtle prob-
lem. The means by which the object reference passed to
unregister handler is compared to those stored in
cb map (the is equivalent function) may not actu-
ally work the way we need it to!

The is equivalent function is available for all ob-
ject references because it is part of the CORBA::Object
interface, which is the base interface for all OMG IDL
interfaces. According to the CORBA 2.0 specification,
is equivalent returns true if its object reference ar-

gument and the target object reference both refer to the
same object. Unfortunately, the converse is not true: if
is equivalent returns false, it may just mean that the

ORB was unable to determine whether or not the two object
references refer to the same object. In fact, a conforming
ORB could implement the is equivalent operation to
just always return false. In CORBA, there is no guaranteed
way to determine object reference “equality” from the object
references alone.

The main reason is equivalent has these some-
what odd semantics is to allow greater freedom for ORB
implementors. The OMG members in favor of these
semantics were concerned that stronger guarantees for
is equivalent would be difficult to implement in some

CORBA environments. For more information, see [5] and
[6], which discuss the pros and cons of this issue, respec-
tively.

Since we can’t count on is equivalent in our
implementation of the unregister handler opera-
tion, our implementation must be redesigned. One way
to solve the handler identification problem is to change
register handler to return a token that can later be
passed to unregister handler. Depending upon the
quality of service offered by our Notifying Quoter im-
plementation, this token could be an integer counter, a Uni-
versal Unique Identifier (UUID), or even another object ref-
erence. Each of these token types provide different tradeoffs

7

in terms of scalability, robustness, and performance.

� Supplier-side polling: With the addition of the dis-
tributed callback capability, our stock quoter went from sim-
ply having to look up stock values from an external source
to having to continually monitor those stock values that its
consumers have subscribed for. Achieving this required non-
trivial changes in our stock quoter implementation. For in-
stance, in our implementation shown above, the data arrives
via a real-time quote feed. In this case, we’ll have a number
of design choices to avoid swamping the consumers, such as:

� We could use an active database that uses triggering and
filtering on the supplier’s side;

� We could spawn one or more threads on the supplier-side
(as we did above) to poll the quote feed continuously
looking for threshold matches.

� Callback persistence: A robust implementation of the
distributed callback service must be able to store certain in-
formation persistently. This information might include the
information in the STL multimap (such as the distributed
callback object references, their associated callback object
references, and their threshold data). Adding persistence to
our supplier will require some major modifications from our
original polling quoter. Because the previous implementation
of our stock quoter merely had to look stock values up from
an external source, it had no persistent storage requirements
(other than the quote database itself).

� Notification scalability and delivery timeliness: The
stock quoter must be able to deliver notifications quicklyafter
it detects that a stock value it monitors has reached the desired
value. This may be hard if thousands of distributed callback
objects have registered with it. Performance may suffer if
a Supplier blocks while notifying a Consumer that is slow
to accept the push when the Supplier has other consumers
to serve. Moreover, what “quick delivery” means to each
distributed callback object can differ greatly, depending on
its quality of service requirements.

There are several ways to handle these problems such as
using oneway calls, timeouts, or additional threads to imple-
ment some form of asychronous “future.” Another way to
improve the scalability of distributed callback notifications
is to utilize an ORB that supports reliable multicast seman-
tics. The CORBA 2.0 specification deals mainly with point-
to-point communication and offers no standard support for
reliable multicast. However, there are ORB implementations
(such as Electra [7] or Orbix+ISIS [8]) that extend CORBA
to provide reliable multicast and fault-tolerant group com-
munication.

� Poten-
tial for deadlock: Since unregister callback is a
twoway CORBA call, our distributed callback design can
deadlock if the Supplier tries to push to a Consumer that
simultaneously tries to unregister. This will almost certain
happen if the ORB doesn’t support “nested dispatching” of

twoway calls. Nested dispatching enables an ORB to perform
upcalls from incoming requests even while it is “blocked” on
the request portion of a twoway request/response invocation.
There are various ways to implement nested dispatching,
such as spawning off a separate thread to handle each in-
coming request or using a non-blocking event loop within
the ORB. If an ORB doesn’t support nesting dispatching,
it may be necessary to restructure the Handler::push,
Notifying Quoter::register callback,
and Notifying Quoter::unregister callback
to use oneway semantics. Oneway calls can be problematic,
however, since application developers then become respon-
sible for ensuring end-to-end reliability.

Given the severity of these problems, it appears that our
quest to avoid polling our stock quoters has revealed even
more design challenges! Unfortunately, that’s the way things
often evolve when developing and deploying practical dis-
tributed computing systems. Such problems are very com-
mon, and often don’t manifest themselves until late in a
project lifecycle. This is yet one more reason why it’s so
important to build prototypes and conduct experiments using
realistic use-cases and distributed environments [9], before
adopting a particular communication architecture wholesale.

Luckily, the flexibility and higher levels of abstraction in
CORBA help to alleviate unnecessary complexity and cou-
pling. As we’ve seen repeatedly, CORBA features like “sep-
arating interface from implementation” and “making it pos-
sible to reconfigure the objects flexibly” allow us to defer
some (but not all) of these decisions until we understand the
system better.

The problems with our notifying stock quoter described
above can be eased somewhat if we separate concerns even
further. In particular, our quoter implementation has enough
to worry about as it monitors and reports changing stock
values. Therefore, we should avoid also making it respon-
sible for delivery of multiple notifications and maintaining a
persistent table of callbacks.

One way to relieve some of the burden we’ve placed on
the stock quoter is to utilize the OMG Events Service for
notification delivery. The Events Service is part of the OMG
Common Object Services Specification (COSS) Volume 1
[1]. Its purpose is to provide delivery of event data from event
suppliers to event consumers without requiring the suppliers
and consumers to know about each other. An implementa-
tion of the Events Service acts as a “mediator” that provides
for decoupled communications between objects. Our next
column will focus on the COSS Events Service in detail.

6 Concluding Remarks

In this column, we’ve stepped away from the strict re-
quest/response model we’ve used for all of our examples to
date, and described one way to decouple communication be-
tween suppliers and consumers. We’ve examined a complete

8

design and implementation for distributed callbacks using
CORBA.

Unlike our last few columns, this column focuses only
on a solution based on the Object Management Architecture
(OMA) and CORBA. The main reason for this is that even if
we just showed the most important portions of the C and C++
code required for a solution, it would require far too much
space. This is a consequence of all the C/C++ bookkeeping
information that must be maintained for each callback, which
makes the code too complex to explain succinctly. The fact
that CORBA applications can pass object references helps
hide all the bookkeeping informationand allows us to present
a fairly complete solution, without filling up the entire issue
of C++ Report!

As always, if there are any topics that you’d like us to cover,
please send us email at object_connect@ch.hp.com.
Thanks to John Isner for his comments on the deadlock as-
pects of the distributed callback architecture.

References
[1] Object Management Group, CORBAServices: Common Object

ServicesSpecification, Revised Edition, 95-3-31 ed., Mar. 1995.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture - A System of
Patterns. Wiley and Sons, 1996.

[4] R. G. Lavender and D. C. Schmidt, “Active Object: an Object
Behavioral Pattern for Concurrent Programming,” in Pattern
Languages of Program Design (J. O. Coplien, J. Vlissides, and
N. Kerth, eds.), (Reading, MA), Addison-Wesley, 1996.

[5] M. L. Powell, Objects, References, Identifiers, and Equality
White Paper. SunSoft, Inc., OMG Document 93-07-05 ed.,
July 1993.

[6] W. Harrison, The Importance of Using Object References as
Identifiers of Objects: Comparison of CORBA Object. IBM,
OMG Document 94-06-12 ed., June 1994.

[7] S. Maffeis, “Adding Group Communication and Fault-
Tolerance to CORBA,” in Proceedings of the Conference on
Object-Oriented Technologies, (Monterey, CA), USENIX, June
1995.

[8] C. Horn, “The Orbix Architecture,” tech. rep., IONA Technolo-
gies, August 1993.

[9] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and
Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,” in Proceedings of
the 2nd Conference on Object-Oriented Technologies and Sys-
tems, (Toronto, Canada), USENIX, June 1996.

9

