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Abstract

Commercial-off-the-shelf (COTS) middleware addresses many
design forces for developing mission-critical distributed
systems, including reducing development cost and cycle-time.
However, meeting additional requirements for real-time qual-
ity of service (QoS) in these systems is currently beyond the
state-of-the-art in available COTS middleware solutions. In
this paper, we discuss key research challenges associated with
determining the policies, mechanisms, and patterns required
to create a new generation of QoS-enabled COTS middleware
for real-time mission-critical systems.

1 Introduction

Limitations with current practice: Due to constraints on
footprint, performance, and weight/power consumption, de-
velopment of mission-critical real-time systems has histor-
ically lagged far behind mainstream software development
methodologies. As a result, real-time software systems are
extremely expensive and time-consuming to develop, validate,
optimize, deploy, maintain, and upgrade. Moreover, they are
often so specialized and tightly coupled to their current con-
figuration and operating environment that they cannot adapt
readily to new market opportunities, technology innovations,
or changes in run-time situational environments.

�This work was supported in part by Boeing, NSF grant NCR-9628218,
DARPA contract 9701516, and Nortel.

In addition to the development methodology and system
lifecycle constraints mentioned above, designers of mission-
critical real-time systems also have historically used relatively
static methods when allocating scarce or shared resources to
system components. For instance, flight-qualified avionics
mission computing systems [1] establish the priorities for all
resource allocation and scheduling decisions very early in the
system lifecycle,i.e., well before run-time. Static strategies
have traditionally been used for mission-critical real-time ap-
plications because (1) system resources were insufficient for
more computationally-intensive dynamic on-line approaches
and (2) simplifying analysis and validation was essential to re-
main on budget and on schedule, particularly when systems
were designed from scratch using low-level, proprietary tools.

Emerging trends and solutions: The next generation of
mission-critical real-time systems requires an increasingly
wide range of features to support various quality of service
(QoS) aspects, such as bandwidth, latency, jitter, and depend-
ability. These systems include avionics mission computing
systems, manufacturing process control systems, and tactical
command and control systems. In addition to requiring sup-
port for stringent QoS requirements, these systems have be-
comeenabling technologiesfor companies competing in mar-
kets where deregulation and global competition motivate the
need for increased software productivity, quality, and cost-
effectiveness.

For instance, next-generation avionics mission computing
systems [2], such as the sensor-driven example shown in Fig-
ure 1, must collaborate with remote command and control
systems, provide on-demand browsing capabilities for a hu-
man operator, and respond flexibly to unanticipated situational
factors that arise in the run-time environment [3]. More-
over, these systems must perform unobtrusively, shielding hu-
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Figure 1: Sensor-driven Avionics Mission Computing Exam-
ple

man operators from unnecessary details, while simultaneously
communicating and responding to mission-critical informa-
tion at an accelerated operational tempo.

The characteristics of next-generation real-time systems
outlined above present resource requirements that can vary
significantly at run-time. In turn, this increases the demands
on end-to-end system resource management, thereby making it
hard to simultaneously (1) create effective resource managers
using traditional statically constrained allocators and sched-
ulers and (2) achieve reasonable resource utilization. In ad-
dition, the mission-critical aspects of these systems require
that they respond adequately to changing situational features
in their run-time environment.

Meeting the increasing demands of next-generation real-
time systems motivates the need for adaptive techniques, such
as the dynamic scheduling, reconfiguration, and layered re-
source management techniques being explored in the context
of the DARPA Quorum program [4], among others. Some of
these techniques, such as the dynamic CPU scheduling strate-
gies in TAO1 [5], are intended to defer many of the resource
allocation and scheduling decisions until run-time, while still
providing QoS guarantees for critical operations [6].

Other Quorum technologies, such as DeSiDeRaTa2 [7],

1TAO was developed at Washington University.
2DeSiDeRaTa was developed at the University of Texas, Arlington and

theQuality Objects3 (QuO) distributed object middleware [8],
and the RT ARM4 adaptive resource manager [9], focus
on monitoring and adaptive management of run-time QoS.
Likewise, techniques for multi-dimensional QoS management
in operating systems have been developed outside the Quo-
rum program, including RT-Mach [10], RED-Linux [11], and
Scout [12].

Synopsis of a grand challenge: We believe that QoS-
focused research activities outlined above are necessary. How-
ever, they are not sufficient by themselves to address a key
“grand challenge” facing researchers and developers:deter-
mining the policies, mechanisms, and patterns necessary to
create commercial-off-the-shelf (COTS) middleware that can
meet the QoS requirements of next-generation mission-critical
real-time systems. COTS middleware resides between appli-
cations and the underlying operating systems, protocol stacks,
and hardware in complex mission-critical systems [13]. Com-
mon examples of COTSmiddleware, such as the Object
Management Group’s (OMG) CORBA [14] and Real-time
CORBA [15], Sun’s Jini [16], Java RMI [17], and EJB [18]
frameworks, Microsoft’s DCOM [19], and IBM’s MQSeries
message-oriented middleware (MOM) [20].

The goal of COTS middleware is to decrease the cycle-time
and effort required to develop high-quality systems by com-
posing applications out of flexible and modular reusable soft-
ware components and services, rather than building them en-
tirely from scratch. While it is possiblein theory to develop
these complex systems from scratch,i.e., without using COTS
middleware, contemporary economic and organizational con-
straints are making it implausible to do soin practice. Thus,
COTS middleware plays an increasingly strategic role in soft-
ware intensive, real-time mission-critical systems.

Paper organization: The remainder of this paper is struc-
tured as follows: Section 2 describes key research chal-
lenges and design forces that must be addressed to build next-
generation mission-critical adaptive real-time systems; Sec-
tion 3 outlines the key patterns, policies, and mechanisms
necessary to develop COTS middleware that possesses ef-
fective adaptive and dynamic resource management capabil-
ities, and shows how this approach helps resolve the chal-
lenges described in Section 2; Section 4 summarizes our cur-
rent progress in (1) developing adaptive and dynamic resource
management techniques for COTS middleware and (2) apply-
ing them to real-time mission-critical systems; and Section 5
presents concluding remarks.

Ohio University.
3QuO was developed at BBN Technologies.
4The RT ARM was developed jointly by the Honeywell Technology Cen-

ter, Texas A&M University, and the Georgia Institute of Technology.
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2 Synopsis of Key Research Challenges
and Design Forces

The following design forces characterize the key research
challenges we have identified based on our work developing
mission-critical adaptive real-time systems [1, 8, 2, 6, 3, 21].
These forces must be addressed by researchers to ensure sys-
tem correctness, adaptability, and adequate resource utiliza-
tion.

Diverse inputs: Mission-critical systems must simultane-
ously use diverse sources of information, such as raw sen-
sor data, command and control directives, and operator inputs,
while sustaining real-time timing behavior.

Diverse outputs: Mission-critical systems often must con-
currently produce diverse outputs, such as filtered sensor data,
mechanical device commands, and imagery, whose solution
quality and timeliness is crucial to other systems with which
they interact.

Shared resources: Mission-critical and/or time-critical op-
erations must effectively share resources with operations that
possess less stringent timing or criticality constraints.

Critical operations: Systems with hard timing constraints
for mission-critical operations must insulate mission-critical
operations from the resource demands of non-critical opera-
tions.

High availability: Systems must react to hardware failures
and network topology changes, and return to correct real-time
operation within a bounded interval after such a failure or
change.

Diverse resource management goals:Systems must bal-
ance different and sometimes competing resource manage-
ment goals involving different kinds of resources,e.g., maxi-
mizing utilization of the CPU or sharing link bandwidth fairly
between threads at the same priority.

End-to-end requirements: Many mission-critical real-time
systems operate in heterogeneous environments, and must
manage distributed resources to enforce QoS requirements
end-to-end. For example, such systems may need to manage
resource allocations consisting of several end-system CPUs
and network links along a request-response path between
client and server endsystems.

Programming models: Developers of real-time systems
must be able to trade off the relative complexity of different
programming models, which can increase or decrease system
development time and effort, with the real-time system perfor-
mance benefits that each programming model provides.

System configuration: Developers of real-time systems
must be able to control the internal concurrency, resource man-
agement, and resource utilization configurations throughout
middleware and applications, to provide the necessary level
of end-to-end quality of service (QoS) to applications.

System adaptation: The system must be able to (1) reflect
on situational factors as they arise dynamically in the run-time
environment and (2) adapt to these factors while preserving the
integrity of key mission-critical activities. Operators must be
insulated from the programming model for resource manage-
ment,e.g., via a set of suitable abstractions for communicating
operator QoS requirements and monitoring/controlling the re-
ceived QoS.

Development time and cost management: The time and
effort expended to develop, validate, optimize, deploy, main-
tain, and upgrade mission-critical systems must be managed
very carefully across an entire product line [21]. Thus, to
achieve an effective economy of scale, a significant portion
of the cost required to develop software for a particular appli-
cation or system should be amortized across the development
lifecycles of other applications and systems in a product line.

3 Proposed Solution: Adaptive Real-
time COTS Middleware

3.1 Overview of Real-time COTS Middleware

Although some operating systems, networks, and protocols
now support real-time scheduling, they do not providein-
tegrated end-to-end solutions. For instance, research on
QoS for ATM networks has focused largely on policies and
mechanisms for allocating network bandwidth on a virtual-
circuit basis. Likewise, recent research on Internet2 top-
ics has focused on either specific signaling and enforcement
mechanisms (such as RSVP [22]) or on broadly based and
global resource sharing techniques (such as Differentiated
Services [23]). In addition, research on real-time operating
systems [24] has focused largely on avoiding priority inver-
sions and non-determinism in synchronization and scheduling
mechanisms for multi-threaded applications.

In general, QoS research on networks and operating systems
has not addressed key requirements and end-to-end usage
characteristics of mission-critical real-time systems developed
using COTS middleware. In particular, existing approaches
have not focused on providing both avertically (i.e., network
interface$ application layer) andhorizontally (i.e., end-to-
end) integrated solution that provides a higher-level service
model, or global policy framework, to developers and end-
users. Determining how to map (1) the results from earlier
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QoS research on global policies and local enforcement tech-
niques onto (2) adaptive real-time COTS middleware is an im-
portant open research issue that is crucial to solve the grand
challenges of mission-critical real-time systems.

To meet these research challenges, and to resolve the key
design forces described in Section 2, we believe it is necessary
to devise an architectural framework that preserves the benefits
of existing research areas, while simultaneously defining new
protocols and interfaces that encompass the end-to-end net-
work and host resources needed to adequately characterize op-
erations that require the cooperation of multiple systems. One
promising architectural framework that meets these require-
ments is based on the Real-time CORBA specification [15],
which is a COTS middleware standard that supports end-to-
end predictability for operations infixed-priority5 CORBA ap-
plications.

As shown in Figure 2, the Real-time CORBA specifica-
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Figure 2: Features in the Real-Time CORBA Specification

tion defines standard APIs and policies that allow applica-
tions to configure and control (1)processor resourcesvia
thread pools, priority mechanisms, intra-process mutexes, and
a global scheduling service, (2)communication resourcesvia
protocol properties and explicit bindings, and (3)memory re-
sourcesvia request queues and bounded thread pools.

The remainder of this section is structured as follows: Sec-
tion 3.2 articulates steps that are necessary to resolve the key
design forces described in Section 2; Section 3.3 describes
steps that are beneficial, but not strictly required; Section 3.4
identifies risky or detrimental steps that should be avoided to

5Subsequent OMG specifications are standardizing dynamic scheduling
techniques, such as deadline-based [11] or value-based [25] scheduling.

achieve the full potential of COTS middleware for mission-
critical real-time systems; finally, Section 3.5 relates the adap-
tive and dynamic middleware techniques presented in this pa-
per (1) to static approaches that have been used historically
to develop real-time mission-critical systems and (2) to the
dynamic and adaptive techniques developed by the operating
system and networking research communities.

3.2 Necessary Requirements

We believe that a major step toward achieving vertical and hor-
izontal integration of QoS management capabilities into mid-
dleware for mission-critical real-time systems will occur when
the level of abstraction used by developers is raised above the
OS-level and network-level APIs provided by current COTS
tools and run-time software. One of the key leverage points
for emerging COTS middleware-based abstractions is that it
is the first protocol/interface layer to encompass both the net-
work and host resources needed to adequately characterize op-
erations that require the cooperation of multiple systems using
standard APIs and components.

The following requirements must be met to enable devel-
opers of mission-critical adaptive real-time middleware and
applications to meet the key research challenges and design
forces described in Section 2.

Achieve systematic reuse through COTS middleware
frameworks: Given sufficient time and effort, it is possible
to achieve the specific requirements of mission-critical real-
time systems in anad hocmanner. In practice, however, the
competitive business environment in which these systems are
developed places increasingly stringent constraints on time
and budgets for software development. Furthermore, the in-
creasing scarcity of qualified software professionals exacer-
bates the risk of failing to complete mission-critical projects,
unless the scope of software development required for each
project can be tightly constrained.

For these reasons, it is necessary that mission-critical real-
time systems be built as much as possible fromreusable COTS
middleware components. Figure 3 illustrates the following two
layers of middleware that can reside between the (1) underly-
ing OS and protocol stacks and (2) applications and services.

� Low-level middleware: This layer encapsulates core
OS communication and concurrency services to eliminate
many tedious, error-prone, and non-portable aspects of de-
veloping and maintaining distributed applications using low-
level network programming mechanisms, such as sockets.
A widely-used example of low-level middleware for real-
time systems is the ADAPTIVE Communication Environment
(ACE) [26].
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Figure 3: Layers of Middleware

� Higher-level middleware: This layer builds upon
the lower-level middleware to automate common net-
work programming tasks, such as parameter marshal-
ing/demarshaling, socket and request demultiplexing, and
fault detection/recovery. At the heart of higher-level real-time
middleware is Real-time CORBA [14, 15].

In general, employing low-level and higher-level COTS
middleware has the following benefits: (1) it shields soft-
ware developers from low-level, tedious, and error-prone de-
tails, such as socket level programming [27], (2) it provides
a consistent set of higher-level abstractions [6, 8] for develop-
ing adaptive mission-critical real-time systems, (3) it leverages
previous design and development expertise by capturing im-
plementations of key design patterns [28] in reusable frame-
works, and (4) it amortizes software lifecycle costs across
many development efforts.

Componentized services: Figure 3 also illustrates how a
layer of standard service components can be supported atop
the COTS middleware. These components [29] provide
domain-independent capabilities that can be reused by various
applications. Common services [30] include persistence [31],
security [32], transactions [33], fault tolerance [34], and con-
currency [35]. For example, it is essential to provide higher-
level services that allow the system to effectively manage sys-
tem resources. These distributed services manage key system
aspects, such as global scheduling parameters, I/O bandwidth,
memory allocation, or work loads.

More specifically, typical mechanisms managed by global
resource services include end-to-end global thread priorities,
pluggable mappings of global thread priorities into native end-

system thread priorities, thread pools, and synchronization
primitives, such as mutexes and semaphores. These mecha-
nisms are important building blocks and must be both acces-
sible through and configurable by the adaptive real-time mid-
dleware.

Embed configurable policies: Providing predictable end-
to-end performance requires the collaboration of different
policies and mechanisms at different locations and architec-
tural levels in the system. This mandates a framework that
supports configurable dynamic and/or adaptive resource man-
agement policies at different points along a system request-
response or request-execution path to meet different and
changing conditions.

For example, to minimize the resource demands of non-
critical, time-bounded operations, each of several identi-
fied decision points along a request-response path can check
whether a request for such an operation is still “on schedule”
to meet its deadline. If an operation cannot meet its deadline,
the request may be dropped and/or an exception propagated
back to the originating client.

Flexibly specify QoS attributes: Middleware must provide
flexible interfaces that allow applications to specify which
QoS attributes are (1) considered by resource allocation poli-
cies, (2) propagated with requests, or (3) specified by an appli-
cation. For example, applications may want to specify general
QoS attributes, such as execution deadlines, rates, or through-
put reservations. Likewise, applications should be able to use
middleware APIs to specify application QoS,e.g., to define
deadlines for individual end-to-end requests or transactions.
The middleware is also responsible for mapping these higher-
level specifications onto lower-level OS mechanisms, which
deal with I/O bandwidth, local thread scheduling parameters,
and other lower-level QoS attributes and enforcement mecha-
nisms.

Standardization: Standards for dynamic and adaptive re-
source management in COTS middleware should be based on
operational systems usedin practiceor on prototypes that re-
flect key aspects of real-world applications. This helps ensure
that the results of standardization efforts will reflect, rather
than invent, realistic dynamic and adaptive resource manage-
ment strategies. If a standard attempts to invent solutions to
dynamic and adaptive resource management for COTS mid-
dleware prior to sufficient practical experience being gained
with such systems, it increases the risk of excluding key al-
gorithms and implementation techniques that are crucial for
important use-cases.

For example, in Section 3.3, we describe notification of fail-
ure as a beneficial feature for many real-time systems, but one
that is not feasible in some use-cases. Nuances such as this
abound in active research areas, such as QoS management for
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mission-critical real-time systems. Thus, attempts to mandate
specific features prior to a reasonably thorough exploration of
the problem domain in practice can have unintended and un-
desirable consequences.

3.3 Desired Capabilities

We believe the following features are useful to developers of
mission-critical adaptive real-time systems, but are perhaps
not sufficiently general to be cast as necessary requirements
for all mission-critical real-time systems.

Start with well-known policies: Reference implementa-
tions of well-known resource allocation policies, such as the
RMS [36], EDF [36], MLF [37], and MUF [37] CPU schedul-
ing strategies, serve as starting points for development and
prototyping activities. To support these well-known policies,
the middleware framework should support sufficient general-
ity and/or flexibility in the mechanisms for resource alloca-
tion so that it is both feasible and efficient to substitute one
such policy for another. For example, the request dispatching
mechanism shown in Figure 4 can be configured to support

PPRRIIOORRIITTIIZZEEDD  DDIISSPPAATTCCHHIINNGG

TTHHRREEAADDSS

QQUUEEUUEEDD  MM EETTHHOODD

UUPPCCAALLLL  RREEQQUUEESSTTSS

AAPPPPLLIICCAATTIIOONN

CCOOMMPPOONNEENNTT

MMEETTHHOODDSS

Figure 4: Request Dispatching Mechanism

RMS, EDF, MLF, or MUF simply by specifying the number
and types of dispatching queues, and the priorities of the cor-
responding dispatching threads [6].

Identified decision points: Real-time COTS middleware
must support identifiers for resource management decision
points along each request-and-response path. Supporting such
identifiers allows real-time aspects, such as deadlines and
reservations, to be specified with respect to these individ-
ual scheduling decision points. For example, reserving CPU
cycles and network bandwidth along a distributed request-
response path requires that specific reservations be made on
identifiedendsystems and network links.

Notification of failure: It is often desirable to support ex-
ception propagation back along the request-response path
when real-time semantics fail,e.g., a deadline is missed. For
many real-time systems, failure notification is mandatory, par-
ticularly for critical operations. As discussed in Section 3.2,
however, a system may drop a request for a non-critical time-
constrained operation that will miss its deadline and thus give

no value for completion. Dropping such non-critical opera-
tions conserves resources for other more productive activities,
and it is reasonable to allow that the overhead for failure noti-
fication be avoided in such cases, as well. Therefore, we cast
exception propagation as a desirable capability, rather than a
mandatory one.

3.4 Necessary Exclusions

Based on our previous experience [1, 8, 2, 6, 3, 21] developing
a wide-range of real-time applications on QoS-enabled mid-
dleware, we believe it is necessary to make the following ex-
clusions to preserve the flexibility of developers to build cor-
rect implementations of diverse features for mission-critical
adaptive real-time systems:

Attribute restrictions: We believe there should be no re-
strictions on which attributes, such as execution time or crit-
icality, are (1) considered by a resource allocation policy, (2)
forwarded along a request-response path, or (3) supplied by
the application. While the set of attributes shown in Figure 5
has been sufficient for previous work on QoS-enabled middle-

DDEEPPEENNDDSS    UUPPOONN    ==
DDIISSPPAATTCCHHEEDD    AAFFTTEERR

ssttrruucctt    RRTT__IInnffoo
{{
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    PPeerr iioodd  ppeerr iioodd__;;
    IImmppoorr ttaannccee  iimmppoorr ttaannccee__;;
    DDeeppeennddeennccyy__IInnffoo  ddeeppeennddeenncciieess__;;
}};;

Figure 5: Operation Characteristics

ware, we anticipate that there will be use-cases where addi-
tional attributes are needed. Therefore, we do not support the
notion that any one set of attributes isnecessarilycomplete for
all systems.

Feature deprecation: No removal of features from COTS
middleware standards, such as the Real-time CORBA specifi-
cation [15], unless a fundamental contradiction with manda-
tory dynamic or adaptive resource scheduling features is dis-
covered.

Restrictions on non-real-time issues: It is important that
there be no restrictions on the ability of resource allocation
policies to address non-real-time issues such as throughput and
fairness, as well as real-time issues, such as as priority preser-
vation and deterministic timing bounds.
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3.5 Relationship to Existing Techniques and
Research Communities

We view the techniques proposed in this paper, such as
dynamic scheduling [6], multi-resource scheduling [9], and
adaptive reconfiguration [8], as necessary and appropriate ex-
tensions to the static resource allocation techniques that have
been used historically. By preserving the best attributes of
these approaches and extending their capabilities as efficiently
as possible, we believe a new generation of mission-critical
adaptive real-time systems can be realized. For example,
sensor-driven systems with hard real-time processing require-
ments can benefit greatly from dynamic scheduling capabili-
ties, particularly to make effective use of over-provisioned re-
sources during non-peak loads.

Another valuable feature used in many real-time systems is
statically allocated priority banding [6], which can be enforced
by preemptive thread priorities. Priority banding is essential
because higher priority operations can be shielded from the
resource demands of lower priority operations. Hybrid static-
dynamic scheduling techniques [37] offer a way to preserve
the off-line scheduling guarantees for critical operations, while
increasing overall system utilization.

As more real-time systems are interconnected, both with
each other and with non-real-time systems, the need to sup-
port flexible and configurable scheduling capabilities [6] be-
comes increasingly important. We also believe that emerging
standards for dynamic and adaptive resource management in
real-time mission-critical systems should extend correspond-
ing standards for static resource management. For example,
standards for dynamic CPU scheduling in real-time middle-
ware should extend the existing static CPU scheduling mecha-
nisms of current real-time middleware specifications, so that
the existing static mechanisms will interoperate with addi-
tional capabilities for dynamic scheduling.

Finally, important insights can be gleaned from the oper-
ating system and networking research communities. These
communities have developed a plethora of QoS policies and
mechanisms that address enforcement, allocation, and adap-
tation. These research activities have addressed specific is-
sues, such as hierarchical scheduling [38], fair resource alloca-
tion [39], distributed signaling protocols [40], and admission
control policies [41].

4 Progress to Date

Our progress to date in identifying key patterns and devel-
oping techniques for adaptive and dynamic resource manage-
ment and applying them to real-time mission-critical systems
can be classified into three main areas: (1)adaptive resource
management, (2) adaptive architectures, and (3)frameworks

for monitoring and visualization, which we describe below.

4.1 Adaptive Resource Management

Responsiveness to changing situational factors is a key re-
quirement of many real-time mission-critical systems. To re-
spond effectively to the new combination of situational factors,
a real-time mission-critical system must often modify its op-
erating characteristics. For instance, it may require different
strategies for allocating scarce system resources, such as CPU
cycles and network bandwidth, to respond effectively to the
new combination of situation factors.

During the past three years, we have explored several re-
lated topics in the context of real-time embedded information
systems. These topics include developing a strategized frame-
work for static, dynamic, and hybrid static/dynamic schedul-
ing [6] illustrated in Figure 6. In addition, we have applied this
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Figure 6: Strategized Scheduling Framework

framework to integrate adaptation capabilities in the applica-
tion, resource manager, and operation scheduling/dispatching
layers [3] of real-time, mission-critical avionics systems [2, 1].

4.2 Adaptive System Architectures

During our earlier efforts to manually integrate adaptation ca-
pabilities from different system layers, it became evident that
a meta-levelintegration capability was desirable for the fol-
lowing reasons:

Simplified programming model: Providing a meta-level
description of the various adaptive capabilities in different sys-
tem layers simplifies and reifies the programming model for
adaptive real-time mission-critical systems.

Application-independence: Providing a meta-level de-
scription of the system operating regions decouples the adap-
tive architecture from the particulars of any specific applica-
tion, increasing the relevance of the adaptive system architec-
ture across real-time mission-critical system domains.
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Automated language and tool support: Providing lan-
guage and tool support for these descriptions helps to automate
and decouple system aspects, such as functionality, timing be-
havior, and fault tolerance, so that (1) new aspects can be in-
tegrated when new system requirements arise and (2) interac-
tions between the various aspects can be managed effectively.

The work described in Section 4.1 involved integrating key
portions of the RT ARM [9] and TAO [5] technologies de-
veloped under the DARPA Quorum [4] program, with a sam-
ple application from the avionics domain. We are in the pro-
cess of evolving our adaptive architecture to integrate key
aspect-language and resource management capabilities from
the QuO [8] technologies, which were also developed under
Quorum. The QuO adaptive architecture is shown in Figure 7.
We envision significant applicability for this integrated adap-

Figure 7: QuO Adaptive System Architecture

tive architecture, including end-to-end control of distinct QoS
aspects in a distributed real-time environment with high vari-
ability of situational factors.

4.3 Frameworks for Monitoring and Visualiza-
tion

To integrate and demonstrate the cooperation of different
adaptation mechanisms in the work described in Section 4.1,
it was necessary to develop mechanisms for monitoring and
reporting real-time system behavior. These mechanisms were
used by the resource manager layer to identify the system’s
current operating region, so that it could make adaptation deci-
sions based on that region. These mechanisms were also used
to verify correct real-time behavior of the adaptive system as a
whole, and to assess scalability by measuring behavior under
different operating conditions.

We have implemented a generic framework for visualizing
distributed object computing systems, called DOVE [42]. We

have extended that framework to support visualizing real-time
behaviors [42], as shown in Figure 8. The extended frame-
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Figure 8: Extended Visualization Framework

work use monitoring and reporting mechanisms that are simi-
lar to the work described in Section 4.1. In addition, we have
investigated classes of real-time algorithms suitable for use in
adaptive systems, and have implemented a demonstration of a
published algorithm that represents one such class, using this
visualization framework.6

5 Concluding Remarks

Adaptive real-time COTS middleware is a promising solution
for key grand challenges facing researchers and developers of
real-world real-time mission-critical systems. However, meet-
ing the QoS requirements of next-generation systems requires
more than higher-level design and programming techniques,
such as encapsulation and separation of concerns, associated
with conventional COTS middleware. Instead, it requires an
integrated architecture, based on adaptive real-time middle-
ware patterns, policies, and mechanisms, that can deliver end-
to-end QoS support at multiple levels in distributed real-time
and embedded systems.

To support an adaptive COTS middleware architecture ef-
fectively requires new dynamic and adaptive resource man-
agement techniques that extend existing static resource man-
agement techniques. By preserving the key capabilities
of the static approaches, and generalizing those capabilities
to include dynamic and hybrid static/dynamic capabilities,
mission-critical adaptive real-time systems can be built to ad-
dress the needs of broad application categories. The key is
to support a multi-dimensional end-to-end QoS [10] frame-
work that allows middleware and application developers to
more easily effect, control, and coordinate the collection of
lower-level mechanisms that come into play, using techniques

6The visualization framework demonstration is available in the
TAO/examples/Simulator directory in the TAO ORB at URL
www.cs.wustl.edu/ �schmidt/TAO.html .
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that are simple and cost-effective to use, understand, and vali-
date. We believe the research directions outlined in this paper
provide the basis for the next-generation of mission-critical,
real-time systems.
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