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Abstract

The distributed embedded systems industry is poised to lever-
age emerging real-time operating systems, such as Inferno,
Windows CE 2.0, and Palm OS, to support mobile commu-
nication applications. Advances in off-the-shelf real-time op-
erating systems provides an enabling framework for a wide
range of mobile communication applications, such as such as
electronic mail, Internet browsing, and network management.
Ideally, these applications can be developed using standard
middleware components like CORBA to improve their qual-
ity and reduce their cost and cycle time. However, stringent
constraints on the available memory in embedded systems im-
poses a severe limit on the footprint of CORBA middleware.

This paper provides three contributions to the study and de-
sign of small footprint, real-time CORBA middleware. First,
we describe the optimizations used to develop the protocol en-
gine and CORBA IDL compiler provided by TAO, which is our
real-time CORBA implementation. TAO’s IDL compiler pro-
duces stubs that can use either compiled and/or interpretive
marshaling. Second, we compare the performance and foot-
print of TAO IDL compiler-generated stubs and skeletons that
use compiled and/or interpretive marshaling for a wide range
of IDL data types. Third, we illustrate the benefits of the small
footprint and efficiency of TAO IDL compiler-generated stubs
and skeletons for a range of standard CORBA services imple-
mented using TAO.

Our results comparing the performance of the compiled and
interpretive stubs and skeletons indicate that the interpretive
stubs and skeletons perform between 75-100% of the compiled
stubs and skeletons for a wide range of data types. On the
other hand, the code sizes for the interpreted stubs and skele-
tons were between 26-45% and 50-80% of the compiled stubs

�This work was supported in part by NSF grant NCR-9628218.

and skeletons, respectively. These results indicate a positive
step towards implementing high performance, small footprint
middleware for distributed embedded systems.
Keywords: Communication Protocols and Software, Real-
time CORBA, minimal ORB footprint, performance, hand-
held devices.

1 Introduction

Existing markets for distributed embedded systems, in particu-
lar hand-held devices like Personal Digital Assistants (PDAs),
are increasingly leveraging off-the-shelf real-time operating
systems, such as Inferno, Windows CE 2.0, and Palm OS.
Analysts estimate in excess of five million units of PDAs
being sold by 1999. However, responses to recent surveys
by users of PDAs indicate a dearth of software and applica-
tions. Many users require PDAs to possess high-speed, built-
in data/cellular/fax modems that enable the PDA to be used as
a cellular phone, a fax machine, Internet browser, as well as to
send and receive email.

Adding efficient and predictable communication capability
to distributed embedded systems yields many research chal-
lenges related to mobile computing [2]. These challenges in-
clude dealing with low bandwidth, heterogeneity in the net-
work connections, frequent changes and disruptions in the es-
tablished connections due to migrating targets, maintaining
consistency of data, and dealing with heterogeneous architec-
tures to which these devices can be docked. In addition to the
mobility issues, the restrictions on the physical size and power
consumptions of these devices constrains the amount of stor-
age capabilities they can possess.

CORBA [18] is a distributed object computing middleware
standard defined by the Object Management Group (OMG).
CORBA is designed to allow clients to invoke operations on
remote objects without concern for where the object resides
or what language the object is written in [23]. In addition,
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CORBA shields applications from non-portable details related
to the OS/hardware platform they run on and the communi-
cation protocols and networks used to interconnect distributed
objects. These benefits of CORBA make it ideally suited to
provide core communication services for distributed embed-
ded systems.

A key research challenge, however, is determining how to
maintain a small footprint for the ORB middleware and the
stubs and skeletons generated automatically by a CORBA
IDL compiler. Likewise, the performance of the generated
stubs should not be unduly compromised due to footprint con-
straints. To address these issues, the OMG has recently issued
a Request for Proposals (RFPs) for a minimal-CORBA [16]
implementation geared towards embedded systems and other
special systems that have constraints on the available resources
such as memory.

Our prior research on CORBA middleware has explored
several dimensions of real-time ORB endsystem design in-
cluding static [21] and dynamic [4] real-time scheduling,
real-time request demultiplexing [8], real-time event process-
ing [11], real-time I/O subsystem integration [20], and the
real-time performance of various commercial and research
ORBs [22] over ATM networks. This paper focuses on a previ-
ously unexamined point in the real-time ORB endsystem de-
sign space:techniques for optimizing the footprint and per-
formance of CORBA middleware in distributed embedded sys-
tems.

To address these issues, this paper compares compiled
and interpretive marshaling used by CORBA IDL stubs and
skeletons in terms of their performance and footprint. The
stubs and skeletons evaluated in this paper use a hybrid
compiled/interpreted marshaling technique generated by the
TAO [21] IDL compiler. TAO (The ACE ORB) is a real-time
ORB that complies with OMG’s recently adopted Portable Ob-
ject Adapter standard [18]. TAO’s IDL compiler-generated
stubs use a highly optimized interpretive scheme [9] to mar-
shal and demarshal data types.

Typically the code size for stubs/skeletons that use interpre-
tive schemes is smaller in size compared to the compiled form.
In addition, interpreted stubs/skeletons are slightly slower than
their counterparts. However, since TAO’s interpretive mar-
shaling engine is highly optimized, the performance of the
stubs/skeletons is almost comparable to that of the compiled
stubs. At the same time, the footprint of TAO IDL compiler
(tao idl ) generated stubs/skeletons is significantly smaller
than the compiled version. This quality makes it applicable
for PDAs and other distributed embedded systems that have
stringent memory restrictions.

This paper is organized as follows. For completeness, Sec-
tion 2 presents a brief overview of the CORBA reference
model. Section 3 summarizes the optimizations we developed
for TAO’s interpretive marshaling engine and describes the

techniques used by TAO’s IDL compiler so it generates stubs
and skeletons that have a small footprint; Section 4 describes
the experimental setup and the results of our benchmarks that
compare the performance and code size of compiled and in-
terpreted stubs and skeletons for a representative range of IDL
data types; Section 5 describes related work; and Section 6
summarizes the results.

2 Overview of the CORBA ORB Ref-
erence Model

CORBA Object Request Brokers (ORBs) [23] allow clients to
invoke operations on distributed objects without concern for:

Object location: CORBA objects can be collocated with the
client or distributed on a remote server, without affecting their
implementation or use.

Programming language: The languages supported by
CORBA include C, C++, Java, Ada95, COBOL, and
Smalltalk, among others.

OS platform: CORBA runs on many OS platforms, includ-
ing Win32, UNIX, MVS, and real-time embedded systems like
VxWorks, Chorus, and LynxOS.

Communication protocols and interconnects: The com-
munication protocols and interconnects that CORBA can run
on include TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Eth-
ernet, embedded system backplanes, and shared memory.

Hardware: CORBA shields applications from side-effects
stemming from differences in hardware such as storage layout
and data type sizes/ranges.

Figure 1 illustrates the components in the CORBA refer-
ence model, all of which collaborate to provide the portability,
interoperability, and transparency outlined above. Each com-
ponent in the CORBA reference model is outlined below:

Client: This program entity performs application tasks by
obtaining object references to objects and invoking opera-
tions on them. Objects can be remote or collocated rela-
tive to the client. Ideally, accessing a remote object should
be as simple as calling an operation on a local object,i.e.,
object !operation(args) . Figure 1 shows the under-
lying components that ORBs use to transmit remote operation
requests transparently from client to object.

Object: In CORBA, an object is an instance of an Interface
Definition Language (IDL) interface. The object is identified
by an object reference, which uniquely names that instance
across servers. AnObjectIdassociates an object with its ser-
vant implementation, and is unique within the scope of an Ob-
ject Adapter. An object has one or more servants associated
with it that implement the interface.
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Figure 1: Components in the CORBA Reference Model

Servant: This component implements the operations de-
fined by an OMG Interface Definition Language (IDL) in-
terface. In languages like C++ and Java that support object-
oriented (OO) programming, servants are implemented using
one or more objects. In non-OO languages like C, servants are
typically implemented using functions andstruct s. A client
never interacts with a servant directly, but always through an
object.

ORB Core: When a client invokes an operation on an ob-
ject, the ORB Core is responsible for delivering the request to
the object and returning a response, if any, to the client. For
objects executing remotely, a CORBA-compliant [18] ORB
Core communicates via some version of the General Inter-
ORB Protocol (GIOP), most commonly the Internet Inter-
ORB Protocol (IIOP), which runs atop the TCP transport pro-
tocol. An ORB Core is typically implemented as a run-time
library linked into both client and server applications.

ORB Interface: An ORB is an abstraction that can be im-
plemented various ways,e.g., one or more processes or a set
of libraries. To decouple applications from implementation
details, the CORBA specification defines an interface to an
ORB. This ORB interface provides standard operations that
(1) initialize and shutdown the ORB, (2) convert object ref-
erences to strings and back, and (3) create argument lists for
requests made through thedynamic invocation interface(DII).

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as a “glue” between the client and servants, respectively,
and the ORB. Stubs provide a strongly-typed,static invoca-
tion interface(SII) that marshals application parameters into a
common data-level representation. Conversely, skeletons de-
marshal the data-level representation back into typed parame-
ters that are meaningful to an application.

IDL Compiler: An IDL compiler automatically transforms
OMG IDL definitions into an application programming lan-
guage like C++ or Java. In addition to providing program-
ming language transparency, IDL compilers eliminate com-
mon sources of network programming errors and provide op-
portunities for automated compiler optimizations [1].

Dynamic Invocation Interface (DII): The DII allows
clients to generate requests at run-time. This flexibility is
useful when an application has no compile-time knowledge
of the interface it is accessing. The DII also allows clients
to makedeferred synchronouscalls, which decouple the re-
quest and response portions of twoway operations to avoid
blocking the client until the servant responds. In contrast,
SII stubs currently only supporttwoway, i.e., request/response,
andoneway, i.e., request only operations, though the OMG has
standardized an asynchronous method invocation interface in
the recent Messaging Service specification [17].

Dynamic Skeleton Interface (DSI): The DSI is the server’s
analogue to the client’s DII. The DSI allows an ORB to deliver
requests to a servant that has no compile-time knowledge of
the IDL interface it is implementing. Clients making requests
need not know whether the server ORB uses static skeletons or
dynamic skeletons. Likewise, servers need not know if clients
use the DII or SII to invoke requests.

Object Adapter: An Object Adapter associates a servant
with objects, demultiplexes incoming requests to the servant,
and dispatches the appropriate operation upcall on that ser-
vant. Recent CORBA portability enhancements [18] define
the Portable Object Adapter (POA), which supports multi-
ple nested POAs per ORB. Object Adapters enable ORBs to
support various types of servants that possess similar require-
ments. This design results in a small and simple ORB that
can still support a wide range of object granularities, lifetimes,
policies, implementation styles, and other properties.

Interface Repository: The Interface Repository provides
run-time information about IDL interfaces. Using this infor-
mation, it is possible for a program to encounter an object
whose interface was not known when the program was com-
piled, yet, be able to determine what operations are valid on
the object and make invocations on it. In addition, the In-
terface Repository provides a common location to store ad-
ditional information associated with interfaces ORB objects,
such as stub/skeleton type libraries.

Implementation Repository: The Implementation Reposi-
tory [12] contains information that allows an ORB to activate
servers to process servants. Most of the information in the Im-
plementation Repository is specific to an ORB or OS environ-
ment. In addition, the Implementation Repository provides a
common location to store information associated with servers,
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such as administrative control, resource allocation, security,
and activation modes.

3 Optimizing TAO’s IDL Compiler

This section describes the design of TAO’s IDL compiler and
presents results from experiments that compare the optimiza-
tion techniques we used to reduce the size of its generated
stubs and skeletons without unduly reducing run-time ORB
performance.

3.1 Overview of TAO’s IDL Compiler

Figure 2 illustrates the design of the TAO IDL Compiler. The
TAO IDL compiler is based on the freely available SunSoft
IDL compiler front-end.1 The front-end of the compiler parses
OMG IDL input and generates an in-memory abstract syntax
tree (AST). We customized the back-end to process the AST
and generate C++ source code that is optimized for the inter-
pretive IIOP protocol engine [9].

3.1.1 The Design of TAO’s IDL Compiler Front-end

TAO’s IDL compiler front-end contains the following compo-
nents adapted from the original SunSoft IDL compiler:

OMG IDL Parser: The parser comprises ayacc specifi-
cation of the OMG IDL grammar. The action for each gram-
mar rule invokes methods of the AST node classes to build the
AST.

Abstract Syntax Tree Generator: Different nodes of the
AST correspond to the different constructs of CORBA IDL.
The front-end defines a base class calledAST Decl that
maintains information common to all AST node types. Spe-
cialized AST node classes (such asAST Interface ) inherit
from this base class.

In addition, the TAO IDL compiler defines a class called
UTL Scope , which maintains scoping information such as
the nesting level and each component of the fully scoped
name. All AST nodes representing CORBA IDL constructs
that can define scopes (such asstructs andinterfaces )
also inherit from theUTL Scope class.

Driver program: The driver program directs the parsing
and AST generation process. It reads an input OMG IDL file
and invokes the parser and the AST generator.

1The original SunSoft IDL compiler implementation is available at
ftp://ftp.omg.org/pub/OMG IDL CFE 1.3 .
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Figure 2: The TAO IDL Compiler

3.1.2 The Design of TAO’s Back-end Code Generator

The original SunSoft IDL compiler front-end parses OMG
IDL and generates the abstract syntax tree (AST). To create
a complete CORBA IDL compiler for TAO, we developed a
back-end for the OMG IDL to C++ mapping. TAO’s IDL
compiler back-end uses several design patterns [3] such asAb-
stract Factory, Strategy, andVisitor. As a consequence, TAO’s
back-end can be reconfigured to produce stubs/skeletons that
use either compiled and/or interpretive marshaling.

The back-end of TAO’s IDL compiler produces stubs and
skeletons that integrate with TAO’s highly optimized IIOP in-
terpretive protocol engine [9]. The interpreted stubs and skele-
tons generated by TAO’s IDL compiler are explained below.
We use thetest short method from theParam Test in-
terface shown in Appendix A to explain the behavior of the
stubs and skeletons.

Interpreted stubs: The stubs produced by TAO’s IDL com-
piler use a table-driven technique to pass parameters to the un-
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derlying interpretive marshaling engine. The basic structure of
a stub is outlined below:

1. Initialize table entries describing each parameter’s type
via itsTypeCode , and its parameter passing mode.

2. Initialize a table describing the operation including its
name, whether it is oneway or twoway, the number of
parameters it takes, and a pointer to the table described in
Step 1.

3. A variable for the return value, if any, is allocated.

4. A stub object is retrieved from the object reference on
which this operation is invoked.

5. Thedo call method is invoked on this stub object pass-
ing it the operation description table and the parameter
values in the same order in which they were defined in
the IDL definition.

The do call method described above is the interface to
TAO’s interpretive IIOP protocol engine. It takes a variable
number of parameters starting with the operation description
table followed by the parameters of the operation. The stub for
thetest short operation is shown in Appendix B.1.

The table-driven technique and thedo call interface were
available in the original SunSoft IIOP implementation. How-
ever, since the SunSoft IIOP implementation did not have an
IDL compiler each stub had to be hand-crafted. In contrast,
the TAO IDL compiler automatically generates stubs that use
this scheme.

Interpreted skeletons: The skeletons use a Dynamic Skele-
ton Interface (DSI) approach for marshaling parameters. The
basic (non-optimized) algorithm for a skeleton is shown in
Figure 3 and described below:

1. Create anNVList , which is a container class, to hold the
parameters.

2. Heap allocate all thereturn , inout , andout param-
eters since they qhave to be marshaled back into the out-
going stream. Thein parameters can be allocated on the
skeleton call stack.

3. Add each parameter value to theNVList using the op-
erations provided by the DSI mechanism.

4. Use the DSI operationarguments to unmarshal incom-
ing parameters.

5. Make an upcall on the target object passing it all the un-
marshaled parameters.

6. Create aCORBA::Any to hold the return value, if any.

7. Return from the skeleton and let the ORB internally han-
dle the task of marshaling thereturn , inout , andout
parameters.

RECEIVE REQUEST

FIND TARGET OBJECT

FIND SKELETON

INVOKE SKELETON

DEALLOC PARAMS

SEND REPLY MSG

BUILD REPLY MSG

MARSHAL PARAMS

OBJECT REQUEST BROKER
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NVLIST

UNMARSHAL

PARAMETERS

INSERT RETURN
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MAKE UPCALL

DSI SKELETON

1.

6.

5.

4.

3.

2.

Figure 3: Unoptimized skeletons

The skeleton fortest short skel operation is shown in
Appendix B.2.

Memory is allocated from the heap forinout , out , and
return values. This heap allocation is essential because
these parameters are marshaled into the outgoing IIOP Reply
message after the call to the the skeleton has returned. As a
result, it is not possible to allocate the parameters on the call
stack of the skeleton. These heap allocated data structures are
owned by the ORB and are freed using an interpretive scheme
that is similar to the interpretive marshaling scheme.

As mentioned before, SunSoft IIOP does not provide an
IDL compiler and these skeletons must be hand-crafted.
TAO’s IDL compiler produces these skeletons automatically.

Compiled stubs and skeletons: For this paper, the compiled
stubs and skeletons are hand-crafted.2 The basic structure of

2We are currently implementing a back-end for TAO IDL compiler that
contains strategies for producing stubs and skeletons using compiled marshal-
ing. This enhancement will be complete in time for the final version of the
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a compiled stub is shown below. The skeleton’s algorithm is
very similar to the stub:

1. Retrieve the stub object from the object reference.

2. Setup a CDR stream object into which the parameters
will be marshaled.

3. The CDR stream object is initialized with the details of
the receiving endpoint.

4. Insert each parameter into the stream in the same order in
which they are defined in the IDL description.

5. Send the parameters and wait for return values.

6. Unmarshal all the return, inout, and out parameters and
return.

The hand-crafted compiled stub and skeleton for
test short are shown in Appendix B.3.

The compiled stubs and skeletons use overloaded
C++ iostream insertion and extraction operators,i.e.,
operator<< and operator>> , respectively, to marshal
data types to/from the underlying CORBA Common Data
Representation (CDR) stream. TAO’s ORB Core provides
these operators for primitive types. However, user-defined
types are generated by the IDL compiler. In this paper, we
hand-crafted these overloaded operators for the different
user-defined types we tested.

A significant difference between the compiled skeleton and
the interpreted skeleton is that no unnecessary heap allocation
is required in the compiled skeleton. This is due to the fact
that a compiled skeleton has static knowledge of the types it
marshals and unmarshals. At the same time, all the unmar-
shaling and marshaling of the parameters occur in the scope
of the skeleton. In contrast, in the interpretive skeletons using
the DSI scheme, the marshaing ofreturn , inout , andout
parameters occur inside the ORB after the activation record
of the skeleton has been destroyed, thereby requiring dynamic
allocation.

3.2 Techniques for Reducing Stub/Skeleton
Code Size

As described in Section 3.1 and shown in Appendix B, the size
of the interpreted stubs and skeletons is large. However, due
to stringent constraints on the available memory in hand-held
devices, it is imperative to maintain a small footprint of the
stubs and skeletons as well as the ORB core.

Therefore, we devised a technique to reduce the code size
in TAO. Our code-size reduction techniques for interpreted
stubs/skeletons are guided by the following three optimiza-
tion principles shown in Table 1. Implementing these opti-

paper.

Optimization Principles

Factor out all common features
Avoid unnecessary heap allocation
Leverage compile time knowledge of data types

Table 1: Optimization Principles

mizations required the addition of several features to TAO’s
ORB Core. In particular, it was necessary to provide a pair
of methods that marshal and unmarshal parameters while the
activation record of the stub and skeleton is active. Thus, pa-
rameters can now be allocated on the stack instead of from the
heap, which reduces dynamic memory allocation and locking.

3.2.1 Reducing the Size of Interpretive Stubs

In TAO, the interpreted stubs need the underlying stub ob-
ject on which thedo call method is invoked. For this each
stub is required to callQueryInterface on the object ref-
erence.QueryInterface is an internal operation used in
SunSoft IIOP and TAO to retrieve the stub object that contains
information necessary to identify the object. This information
contains the object key and the TCP/IP endpoint. Therefore,
we factored out common code and added an operation on the
CORBA::Object class to return the underlying stub object.
The modified code fragment is shown in Appendix B.4.

3.2.2 Reducing the Size of Interpretive Skeletons

As shown in Figure 3, each interpretive skeleton is required to
create anNVList and populate it with parameters. In addi-
tion, memory is allocated from the heap rather than on the call
stack for theinout , out , andreturn types. This is neces-
sary since the marshaling of these parameters in the outgoing
stream takes place after the call to the skeleton has returned.
Applications using DSI must comply with this style. How-
ever, the ORB Core can be modified to provide the necessary
operations that is used on by the IDL generated code. Appli-
cations cannot directly access these operations since they are
protected.

Close scrutiny of the skeleton code reveals that each skele-
ton must create anNVList and populate it with parameters.
Similarly, any return value must be stored in aCORBA::Any
data structure. These are common features that can be factored
out into a method provided by the ORB Core. Based on this
observation, we implemented a table-driven technique similar
to the one used in the stubs. We defined two new interfaces to
the marshaling engine that are similar to thedo call method.
We could not reuse thedo call method since these two in-
terfaces were required on the server-side “request” object. The
space-efficient skeleton is shown in Figure 4. The correspond-
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Figure 4: Optimized skeletons

ing code using this approach is shown Appendix B.5.
The main benefit of this scheme is that marshaling of out-

going parameters can occur while the activation record on the
call stack frame of the skeleton is still valid. As a result there is
no need to allocate theinout , out , andreturn parameters
from the heap. They can be allocated on the call stack in the
same way that the compiled skeletons do. In addition, if any of
the outgoing types is a pointer type, we can directly invoke the
C++ delete operator rather than interpretively deallocating
it.

The remainder of this paper describes the results of our ex-
periments comparing the performance of the optimized inter-
pretive stubs and skeletons with that of the hand-crafted com-
piled stubs and skeletons. In addition, we also report the indi-
vidual sizes of the stubs and skeletons for both the approaches.

4 Experimental Results Comparing In-
terpreted and Compiled Marshaling

4.1 Hardware and Software Platforms

The experiments reported in this section were conducted on
three different combinations of hardware and software, includ-
ing:

� An UltraSPARC-II with two 300 MHz CPUs, a 512
Mbyte RAM, running SunOS 5.5.1, and C++ Workshop
Compilers version 4.2;

� A Pentium Pro 200 with 128 Mbyte RAM running Win-
dows NT 4.0 and the Microsoft Visual C++ 5.0 compiler;

� A Pentium Pro 180 with 128Mb RAM running Redhat
Linux 4.2 kernel recompiled for SMP support and Lin-
uxThreads 0.5. The GNU g++ 2.7.2.1 C++ compiler was
used.

4.2 Profiling Tools

The code size information for various methods reported in
Section 4 is obtained using the GNUobjdump binary util-
ity on SunOS 5.5.1 and Linux. On Window NT, we used the
dumpbin binary utility. In both cases, we used thedisasm
and linenumbersoptions to disassemble the object code and
insert line numbers in the assembly listing, respectively. Code
size for individual stubs/skeletons is reported by counting the
total number of bytes of assembly level instructions produced.
In addition, we used the UNIXstrip utility to measure the
total size of the object code after removing the symbols and
other debug information.

The profile information for the empirical analysis was ob-
tained using theQuantify [14] performance measurement
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tool. Quantify analyzes performance bottlenecks and iden-
tifies sections of code that dominate execution time. Un-
like traditional sampling-based profilers (such as the UNIX
gprof tool),Quantify reports results without including its
own overhead. In addition,Quantify measures the over-
head of system calls and third-party libraries without requiring
access to source code.

All data is recorded in terms of machine instruction cy-
cles and converted to elapsed times according to the clock
rate of the machine. The collected data reflect the cost of the
original program’s instructions and automatically exclude any
Quantify counting overhead.

4.3 Parameter Types for Stubs/Skeletons

Appendix A provides theParam Test IDL interface and its
operations. All the operations test the four parameter passing
modes (1)in , (2) inout , (3) out , and (4)return for a
wide range of data types. The data types we tested include
primitives such asshort s, and complex data types such as
unbounded strings, fixed size structures, variable sized struc-
tures, nested structures, sequence of strings, and sequence of
structures. All operations are twoway. Sequences are limited
to a length of 9 elements and strings are 128 chars long.

4.4 Methodology

Each operation of theParam Test interface is invoked 2,000
times. We measure the average latency for making the twoway
call for the 2,000 iterations. Since we are interested in mea-
suring the performance of the stubs and skeletons, all tests
were run in the loopback mode. This way we avoided any net-
work transfer overhead. However, OS effects such as paging,
context switching, and interrupts are measured. In addition,
delays incurred due to the run-time costs of the implementa-
tion of the operation by the servant object are also measured.
The servant object implements each operation by copying its
in parameter into theinout , out , and return parame-
ters. For complex data types such asstruct sequence ,
this overhead becomes significant compared to the others.

One approach to eliminating OS effects in the measure-
ments is to use co-located objects. However, even though TAO
supports co-located objects, we cannot use them in our mea-
surements. This is due to the fact that operations on co-located
objects result in a direct C++ method call on the target ob-
ject. Co-located objects entirely bypass the stubs/skeleton that
perform the marshaling of data types. However, we are inter-
ested in measuring the overhead of marshaling. Forcing the
co-located objects to use the stubs/skeletons required signifi-
cant reengineering of the TAO ORB Core and the IDL Com-
piler. Therefore, we decided to approximate this behavior by

Data Type Compiled Interpreted
Avg time Calls/sec Avg time Calls/sec

in msec in msec
short 0.802 1,247 0.938 1,066
ubstring 0.907 1,102 1.065 938
fixed struct 0.182 1,202 1.11 901
strseq 1.852 540 1.74 576
var struct 2.014 497 2.020 493
nestedstruct 2.011 497 2.102 476
struct seq 10.99 91 10.25 98

Table 2: Twoway Latency of Stubs/Skeletons on UltraSPARC
Running SunOS5.5.1

Data Type Compiled Interpreted
Avg time Calls/sec Avg time Calls/sec

in msec in msec
short 1.234 810 1.312 762
ubstring 1.453 688 1.491 670
fixed struct 1.275 785 1.414 707
strseq 2.84 352 2.819 355
var struct 3.29 325 2.97 336
nestedstruct 3.489 325 3.02 331
struct seq 22.93 44 17.247 58

Table 3: Twoway Latency of Stubs/Skeletons on Pentium Pro
200 Running Windows NT 4.0

running the tests in loopback mode. We configured our pro-
filing tool Quantify (explained in Section 4.2) to measure
only the overhead of the stubs and skeletons.

The code size of individual stubs and skeletons is measured
using the GNU binary utilityobjdumpand Windows NT’s
dumpbinas explained in Section 4.2.

4.5 Comparing Interpreted versus Compiled
Marshaling

This section describes the results comparing the performance
and code size of stubs and skeletons using interpretive and
compiled form of marshaling. As explained in Section 4.4,
each operation of theParam Test interface is invoked 2,000
times. The tests are performed in a loopback mode to avoid
unnecessary network delays. The twoway average latency of
invoking the operations is reported. First, we report the per-
formance results followed by comparison of the code sizes.

4.5.1 Comparing Twoway Average Latencies

Tables 2, 3, and 4 depict the twoway average latency for invok-
ing different methods of theParam Test for 2,000 iterations
for the UltraSPARC, a PC running NT, and PC running Linux,
respectively. Figure 5 illustrates this information graphically
for UltraSPARC.

These tables indicate that the twoway latency of the in-
terpreted stubs and skeletons is within 75 to 95 % of
the compiled stubs for primitive types such asshorts ,

8



sh
or

t

un
b_

str
ing

fix
ed

_s
tru

ct

str
se

q

va
r_

str
uc

t

ne
ste

d_
str

uc
t

str
uc

t_s
eq

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

C
al

ls
 p

er
 s

ec
on

d

Compiled
Interpreted

Figure 5: SPARC Performance

Data Type Compiled Interpreted
Avg time Calls/sec Avg time Calls/sec
in msec in msec

short 0.745 1,342 0.8277 1,226
ubstring 0.114 1,094 0.982 1,017
fixed struct 0.7735 1,293 0.898 1,112
strseq 2.21 452 1.814 551
var struct 2.47 406 2.05 487
nestedstruct 2.48 405 2.098 477
struct seq 22.0 44 13.22 76

Table 4: Twoway Latency of Stubs/Skeletons on Pentium Pro
180 Running Linux

Data Type Role Type Interpreted Compiled
msec called msec called

fixed struct server marshal 84.21 6,000 13.76 6,000
demarshal 57.29 4,000 9.93 4,000

client marshal 56.17 4,000 9.17 4,000
demarshal 85.89 6,000 14.90 6,000

strseq server marshal 335.46 6,000 279.00 6,000
demarshal 98.52 4,000 219.00 4,000

client marshal 95.43 4,000 68.76 4,000
demarshal 256.24 6,000 665.71 6,000

Table 5: Whitebox Analysis of Performance of
Stubs/Skeletons on UltraSPARC

and complex types such as unbounded strings and fixed
size structs. However, for other complex types such as
sequence of string s,sequence of struct s, variable-
sizedstruct s, and nestedstruct s, the twoway latency for
interpreted stubs/skeletons exceeds that of the compiled stubs.
The superior performance of the interpreted stubs/skeletons
was more prominent to that of the compiled stubs/skeletons
on the Pentium Pro 180 running Linux.

As mentioned in Section 4.4, these measurements do not
exclude the effects of the OS, as well as the runtime costs of
the implementation of the operations. The runtime costs of
the implementation of the operations is more significant for
thetest struct seq case. Eachsequence of struct s
has 9 variable sized structs. Each variable-sizedstruct ele-
ment in turn has two string members, each of length 128, and
asequence of string member. This member in turn has 9
string elements, each of length 128. The costs of copying
the in parameter into theinout, out, andreturn is significant.
However, irrespective of the type of marshaling used by the
stubs and skeletons, the implementation of the operations is
same in both cases. Hence, our comparisons of twoway la-
tency are valid.

The blackbox results presented in Tables 2, 3, and 4 donot
convey the effects of the OS, as well as runtime costs of the
implementation of the operations. To pinpoint precisely the
runtime costs of the stubs and skeletons in marshaling and de-
marshaling, we configured our profiling toolQuantify to
measure only these costs. Table 5 illustrates the Quantify anal-
ysis for thetest fixed struct and thetest strseq
tests on the UltraSPARC platform.3

Table 5 indicates that forfixed struct , the compiled
stubs and skeletons accounted for 47.76 msec compared to
283.56 msec required for the interpretive stubs and skeletons.
This explains why the compiled marshaling is significantly
better than the interpretive marshaling for fixed size structs.
On the other hand, forsequence s of string s, the com-
piled stubs and skeletons required 1,232.47 msec compared
to only 785.65 msec by the interpretive stubs and skeletons.
This explains why the interpretive stubs perform better than

3We did not have Quantify for Linux and Windows NT.
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Operator Size
operator<< (char *) 192
operator>> (char *) 240
operator<< (fixed struct) 280
operator>> (fixed struct) 256
operator<< (strseq) 312
operator>> (strseq) 264
operator<< (var struct) 176
operator>> (var struct) 192
operator<< (nestedstruct) 88
operator>> (nestedstruct) 88
operator<< (struct seq) 208
operator>> (struct seq) 208

Table 6: Sizes of Overloaded Operators for Compiled
Stubs/Skeletons on UltraSPARC

the compiled stubs for all the data types that aresequence s
or havesequence s as their members.

TAO’s interpretive marshaling engine has a highly opti-
mized component for marshalingsequence s. It defines a
generic basesequence class with virtual methods. For ev-
ery user-definedsequence , the TAO IDL compiler gener-
ates a C++ class that inherits from this basesequence class.
The C++ class generated for thesequence s (in accordance
with the IDL to C++ mapping) overrides all the methods of the
base class. The derived class does not define any data mem-
bers since these are already defined in the base class. The
interpreter marshals and demarshalssequence s by invok-
ing methods on the base class. At runtime, due to polymor-
phism and dynamic binding, these calls are made on the de-
rived class. This speeds up the marshaling and demarshaling
of sequence s significantly.

4.5.2 Comparing Code Size for Stubs and Skeletons

This section describes the measurements of code size we did
for the stubs and skeletons. As mentioned in Section 4.2,
we used the GNU binary utility calledobjdump and NT’s
dumpbin to measure the individual code sizes.

Table 6 depicts the code sizes for the overloaded opera-
tors used for marshaling and demarshaling user-defined IDL
data types. The code size of thenested struct is only
88 bytes since internally it calls the overloaded operator for
var struct .

Tables 7 and 8 illustrate the code sizes for the stubs and
skeletons, respectively. We account for the size of the ta-
bles in the size of the stubs and skeletons using interpreted
marshaling. Hence the total size of the stub/skeleton is the
size of the stub/skeleton and the size of the statically allo-
cated tables. Similarly, for the compiled marshaling, we ac-
count for the size of helper overloaded operator methods used
to marshal/demarshal user-defined data types. Since these
helper methods are not inlined by the compiler, we account
for them only once. Thus, although thenested struct ’s

Stub name Interpreted size Compiled size
stub table total stub helper total

test short 320 88 408 1,112 1,112
test ubstring 352 88 440 1,000 432 1,432
test fixed struct 344 88 432 1,112 536 1,648
test strseq 496 88 584 1,120 576 1,696
test var struct 496 88 584 1,120 368 1,488
test nestedstruct 496 88 584 1,120 176 1,296
test struct seq 496 88 584 1,120 416 1,536

Table 7: Stub Sizes on UltraSPARC
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Figure 6: SPARC Stub Sizes

helper calls the helper forvar struct , we do not add the
latter’s size to the size computation of the stub/skeleton of
nested struct . Figures 6 and 7 illustrate this information
graphically for the UltraSPARC platform.

Tables 7 and 8 indicate that the stubs for interpretive mar-
shaling are much smaller than the ones for compiled marshal-
ing. As shown in Section 4.6, the interpretive stub sizes are
roughly 26-45% of the size of the compiled stubs. As shown in
Section 3, in addition to explicitly marshaling and demarshal-
ing parameters, the compiled stub must initialize a GIOP/IIOP
request message and invoke it. On the contrary, for the inter-
pretive stubs thedo call method provided by the ORB Core
handles all this. The size of skeletons for compiled marshal-
ing is relatively smaller since theServerRequest object is
already available. The skeleton code size for primitives such

Stub name Interpreted size Compiled size
skel table total skel helper total

test short skel 440 88 528 544 544
test ubstring skel 552 88 640 688 432 1,120
test fixed struct skel 480 88 568 584 536 1,120
test strseq skel 848 88 936 952 576 1,528
test var struct skel 680 88 768 784 368 1,152
test nestedstruct skel 680 88 768 784 176 960
test struct seqskel 848 88 936 952 416 1,368

Table 8: Skeleton Sizes on UltraSPARC
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Figure 7: SPARC Skeleton Sizes

operation Performance Stub size Skeleton size
test short 85.48 36.69 97.06
test ubstring 85.12 30.73 57.14
test fixed struct 74.96 26.21 50.17
test strseq 106.66 34.43 61.26
test var struct 99.20 39.25 66.66
test nested struct 95.77 45.06 80.00
test struct seq 107.69 38.02 68.42

Table 9: Comparison of Interpretive with Compiled Code on
UltraSPARC in Percentages

asshorts are comparable for interpretive and compiled mar-
shaling since the overloaded operators for primitives are pro-
vided by the ORB Core. As a result, there is no extra code
generated. However, for the rest of the data types, the skeleton
code size for the interpreted marshaling is between 50-80% of
the compiled form.

The results of code size measurements for NT and Linux
are shown in Appendix C. Although the code sizes are smaller
for both types of marshaling compared to the code size on Ul-
traSPARC, the relative measurements are comparable. There
is one exception, however, where the code for the skeleton for
shorts using compiled marshaling is slightly smaller compared
to the interpretive one. This is due primarily to the extra over-
head of the two statically allocated tables.

4.6 Summary of Comparisons

This section summarizes the results of Sections 4.5.1 and
4.5.2. Table 9 illustrates how interpreted stubs and skele-
tons compared with the compiled versions for the UltraSPARC
platform. Similar results are observed for the other two plat-
forms. Appendix C provides the detailed measurements. All
values are in percentages.

Our results comparing the performance of the compiled and

interpretive stubs indicate that on an average, the interpretive
stubs perform 86% for primitive types, 75% for fixed size
structures, and over 100% for data types withsequence s
as well as the compiled stubs. At the same time, the code size
for user-defined types for interpreted stubs was 26-45% and
for interpreted skeletons was 50-80% of the size of the com-
piled stubs and skeletons, respectively. For primitive types,
the skeleton sizes were comparable. However, the interpreted
stubs were�40% the size of the compiled stubs.

4.7 Benefits of TAO’s Interpretive Stubs and
Skeletons

This section illustrates how the efficiency and small foot-
print of TAO’s interpretive stubs and skeletons can be useful
in implementing a number of important CORBA services on
memory-constrained systems.

Table 10 depicts a number of important CORBA higher-
level services. We provide details on the number of user-
defined structures, sequences, and total number of operations
and/or attributes defined by their IDL definitions. We have not
reported other data types such as unions, enums, and excep-
tions defined by these IDLs.

As shown in Sections 3 and 4, the total size of all the stubs
and skeletons using compiled form of marshaling will exceed
that of interpretive marshaling as the number of operations and
user-defined types increase.

Table 10 shows examples of CORBA services such as the
trading service, naming service, and others. As shown in the

Service structures sequences op/attributes
Trading 11 7 63
A/V Streams 2 3 50
Property 3 5 33
Naming 2 2 13

Table 10: Number of Operations and User-defined Types in
Standard OMG Services

table, the IDL definitions for these services define a very large
number of operations and/or attributes.4 The total size of stubs
and skeletons using compiled marshaling will far exceed that
of interpretive marshaling.

In addition, for every user-defined type, the compiled form
will produce overloaded operators to marshal and demarshal
these types. As shown in Section 4, the performance of the
interpreted stubs and skeletons is comparable or exceeds that
of the compiled ones. At the same time, their code size is
much smaller than the compiled ones.

4Attributes are handled similar to operations. TAO’s IDL compiler gener-
ates two operations for each read/write attribute.
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5 Related Work

This section describes related work onCORBA performance
measurements and presentation layer marshaling.

Related work on interpretive and compiled forms of mar-
shaling: TAO uses an interpretive marshaling/demarshaling
engine. An alternative approach is to usecompiledmarshal-
ing/demarshaling. A compiled marshaling scheme is based on
a priori knowledge of the type of an object to be marshaled.
Thus, in this scheme there is no necessity to decipher the type
of the data to be marshaled at run-time. Instead, the type is
known in advance, which can be used to marshal the data di-
rectly.

[13] describes the tradeoffs of using compiled and inter-
preted marshaling schemes. Although compiled stubs are
faster, they are also larger. In contrast, interpretive marshaling
is slower, but smaller in size. [13] describes a hybrid scheme
that combines compiled and interpretive marshaling to achieve
better performance. This work was done in the context of the
ASN.1/BER encoding [15].

We are currently implementing a CORBA IDL com-
piler [10] that can generate compiled stubs and skeletons. Our
goal is to generate efficient stubs and skeletons by extending
optimizations provided in USC [19] and “Flick” [1], which is
a flexible, optimizing IDL compiler. Flick uses an innovative
scheme where intermediate representations guide the gener-
ation of optimized stubs. In addition, due to the intermedi-
ate stages, it is possible for Flick to map different IDLs (e.g.,
CORBA IDL, ONC RPC IDL, MIG IDL) to a variety of target
languages such as C, C++.

Related work on CORBA performance measurements:
[5, 6, 7] show that the performance ofCORBA middleware im-
plementations is relatively poor, compared to lower-level im-
plementations using C/C++. The primary source ofORB-level
overhead stems from marshaling and demarshaling. [5] mea-
sures the performance of the static invocation interface. [6]
measures the performance of the dynamic invocation interface
and the dynamic skeleton interface. [7] measures performance
of CORBA implementations in terms of latency and support for
very large number of objects.

However, the results of earlierCORBA benchmarking exper-
iments were restricted to measuring the performance of com-
munication between homogeneousORBs. These tests do not
explicitly measure the cost of marshaling for all the parameter
passing modes. In addition, these tests were restricted to mea-
suring the performance of compiled stubs and skeletons. Our
earlier work [9] provides a detailed analysis and optimizations
for an interpretive marshaling engine. However, that study did
not compare interpretive and compiled marshaling. In addi-
tion, it did not comment upon the relative code sizes.

6 Conclusions

The distributed embedded systems industry, particularly hand-
held devices, is poised to undergo a revolution with the emer-
gence of operating systems, such as Inferno, Windows CE 2.0,
and Palm OS, that provide support for mobile communica-
tions for applications. Ideally these applications can be de-
veloped using standard middleware components like CORBA
to leverage the benefits of distributed object computing. How-
ever, stringent constraints on the available memory in embed-
ded systems imposes a severe limit on the footprint of the
middleware, particularly the stubs and skeletons generated by
CORBA IDL compilers.

This paper compares the performance and code size of stubs
and skeletons using interpretive and compiled form of mar-
shaling. The interpretive stubs and skeletons are generated by
the TAO IDL compiler. The compiled stubs and skeletons are
hand-crafted.

Our results comparing the performance of the compiled and
interpretive stubs indicate that on an average, the interpretive
stubs perform roughly 86% for primitive types, 75% for fixed
size structures, and over 100% for data types with sequences
as well as the compiled stubs. At the same time, the code
size for user-defined types for interpreted stubs was roughly
26-45% and for interpreted skeletons was 50-80% of the size
of the compiled stubs and skeletons, respectively. For primi-
tive types, the skeleton sizes were comparable. However, the
interpreted stubs were roughly 40% of the compiled stubs.

Our results are encouraging since the code size of the gen-
erated stubs and skeletons are significantly smaller. At the
same time, they do not unduly degrade performance. Hence,
these results indicate a positive step towards implementing ef-
ficient middleware for hand-held devices and other memory-
constrained embedded systems. We are currently investigat-
ing techniques to implement the minimal ORB specification
for which the OMG has recently issued request for proposals
(RFP).
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A IDL Definition for Param Test Ex-
ample

This section provides an OMG IDL description of an interface
and its operations. In this paper, we use these operations and
its parameters to study the cost of marshaling and the size of
the generated stubs and skeletons.

interface Param_Test
{

// Primitive types.
short test_short

(in short s1,
inout short s2,
out short s3);

// Strings unbounded.
string test_unbounded_string

(in string s1,
inout string s2,
out string s3);

// Structures (fixed size).
struct Fixed_Struct
{

long l;
char c;
short s;
octet o;
float f;
boolean b;
double d;

};

Fixed_Struct test_fixed_struct
(in Fixed_Struct s1,

inout Fixed_Struct s2,
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out Fixed_Struct s3);

// Sequences and typedefs.
typedef sequence<string> StrSeq;

StrSeq test_strseq
(in StrSeq s1,

inout StrSeq s2,
out StrSeq s3);

typedef string DUMMY;
// variable structures
struct Var_Struct
{

DUMMY dummy1;
DUMMY dummy2;
StrSeq seq;

};

Var_Struct test_var_struct
(in Var_Struct s1,

inout Var_Struct s2,
out Var_Struct s3);

// Nested structs (We reuse the var_struct
// definition above to make a very
// complicated nested structure).
struct Nested_Struct
{

Var_Struct vs;
};

Nested_Struct test_nested_struct
(in Nested_Struct s1,

inout Nested_Struct s2,
out Nested_Struct s3);

// sequences of structs
typedef sequence<Var_Struct> StructSeq;

StructSeq test_struct_sequence
(in StructSeq s1,

inout StructSeq s2,
out StructSeq s3);

};

B Stubs and Skeletons

This section illustrates a stub and skeleton generated by TAO’s
IDL compiler for the test short operation described in
Appendix A.5

B.1 Unoptimized Interpreted Stub

The do call method shown below is the interface to the
interpretive marshaling engine.do call takes a variable

5Some exception handling and error checking has been omitted to reduce
space.

number of parameters. The number of parameters is deter-
mined by theTAOCall Data argument. This supplies in-
formation such as the operation name (“testshort”), whether
it is oneway or twoway, and a pointer to a table of parame-
ters (TAOParam Data ). TheTAOParam Data data struc-
ture provides theTypeCode and parameter type for each pa-
rameter of the operation.TypeCode s are CORBA pseudo-
objects that describe the format and layout of primitive and
constructed IDL data types.

CORBA::Short Param_Test::test_short
(CORBA::Short s1,

CORBA::Short &s2,
CORBA::Short_out s3,
CORBA::Environment &env)

{
static const TAO_Param_Data
Param_Test_test_short_paramdata [] =
{

{CORBA::_tc_short, PARAM_RETURN, 0},
{CORBA::_tc_short, PARAM_IN, 0},
{CORBA::_tc_short, PARAM_INOUT, 0},
{CORBA::_tc_short, PARAM_OUT, 0}

};

static const TAO_Call_Data
Param_Test_test_short_calldata =
{"test_short", 1, 4,

Param_Test_test_short_paramdata,
0, 0};

CORBA::Short retval;
STUB_Object *istub;

this->QueryInterface (IID_STUB_Object,
(void **) &istub);

// QueryInterface incremented refcount.
this->Release ();
istub->do_call

(env,
&Param_Test_test_short_calldata,
&retval, &s1, &s2, &s3);

return retval;
}

This stub first obtains the underlying stub object and then
invokes thedo call method on it. Thedo call internally
creates the IIOPRequest message and marshals all thein
and inout parameters. It then invokes the remote procedure
call. It blocks for the incoming reply if the IDL operation is
twoway; otherwise it returns immediately. The return value,
inout, andoutparameters are demarshaled from the incoming
IIOP Reply message.

B.2 Unoptimized Skeleton

For thetest short skel skeleton shown below, the skele-
ton first creates aNVList . An NVList is a CORBA
pseudo object that holds a list of parameters. The parame-
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ter types, theirTypeCodes , and memory to store their val-
ues are inserted into theNVList . The in and inout param-
eters are demarshaled via a call to theparams method on
CORBA::ServerRequest . The skeleton then makes the
upcall on the target object passing the appropriate parameters
to it.

void POA_Param_Test::test_short_skel
(CORBA::ServerRequest &_tao_server_request,

void *_tao_object_reference,
void *context,
CORBA::Environment &_tao_environment)

{
CORBA::NVList_ptr nvlist;
POA_Param_Test_ptr impl =

(POA_Param_Test_ptr) _tao_object_reference;
CORBA::Any *result;
CORBA::Short *retval = new CORBA::Short;
// Create an NV list and populate
// it with typecodes.
_tao_server_request.orb ()

->create_list (3, nvlist);

// Add each argument according to the in,
// out, inout semantics
CORBA::Short s1;
(void) nvlist->add_item

("s1", CORBA::ARG_IN,
_tao_environment)->value ()

->replace (CORBA::_tc_short, &s1,
0, _tao_environment);

CORBA::Short *s2 = new CORBA::Short;
(void) nvlist->add_item

("s2", CORBA::ARG_INOUT,
_tao_environment)->value ()

->replace (CORBA::_tc_short,
s2, 1, _tao_environment);

CORBA::Short *s3 =
new CORBA::Short;

(void) nvlist->add_item
("s3",

CORBA::ARG_OUT,
_tao_environment)->value ()

->replace (CORBA::_tc_short,
s3, 1, _tao_environment);

// Parse the arguments.
_tao_server_request.params

(nvlist, _tao_environment);
*retval = impl->test_short

(s1, *s2, *s3, _tao_environment);

// Store the result
result = new CORBA::Any

(CORBA::_tc_short, retval, 1);
// Save the Any into the server request.
_tao_server_request.result

(result, _tao_environment);
}

B.3 Compiled Stubs and Skeletons

This section illustrates the hand-crafted compiled stub and
skeleton for thetest short operation.

CORBA::Short Param_Test::test_short
(CORBA::Short s1,

CORBA::Short &s2,
CORBA::Short_out s3,
CORBA::Environment &env)

{
CORBA::Short retval = 0;
IIOP_Object *istub;

this->QueryInterface (IID_IIOP_Object,
(void **) &istub);

// QueryInterface incremented refcount.
this->Release ();

// Set up a GIOP/IIOP message.
TAO_GIOP_Invocation call

(istub, ACE_OS::strdup ("test_short"), 1);
env.clear ();
// Setup a IIOP Request message.
call.start (env);

// Get the marshal stream.
CDR &stream = call.stream ();

// Insert parameters.
stream << s1; stream << s2;

// Now invoke the request.
TAO_GIOP_ReplyStatusType status;
CORBA::ExceptionList exceptions;

exceptions.length = exceptions.maximum = 0;
exceptions.buffer = (CORBA::TypeCode_ptr *) 0;

// Send the request.
status = call.invoke (exceptions, env);

// Retrieve the parameter values.
if (status == TAO_GIOP_NO_EXCEPTION)

stream >> retval; stream >> s2; stream >> s3;
return retval;

}

The skeleton is similar and is shown below.

void POA_Param_Test::test_short_skel
(CORBA::ServerRequest &_tao_server_request,

void *_tao_object_reference,
void * context,
CORBA::Environment &_tao_environment)

{
POA_Param_Test_ptr impl

= (POA_Param_Test_ptr) _tao_object_reference;
CORBA::Short retval, s1, s2, s3;

// Get the incoming CDR stream.
CDR &instream = _tao_server_request.incoming ();

// Retrieve parameters.
instream >> s1; instream >> s2;

// Make upcall.
retval = impl->test_short
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(s1, s2, s3, _tao_environment);

// Get the outgoing CDR stream.
CDR &outstream = _tao_server_request.outgoing ();

// Create a IIOP Reply message.
_tao_server_request.init_reply (_tao_environment);

// Marshal outgoing parameters.
outstream << retval;
outstream << s2; outstream << s3;

}

B.4 Optimized Stub

// Call_Data and Param_Data tables are the same.
CORBA::Short Param_Test::test_short

(CORBA::Short s1,
CORBA::Short &s2,
CORBA::Short_out s3,
CORBA::Environment &env)

{
STUB_Object *istub = this->stubobj (env);
if (istub) {

CORBA::Short retval;
istub->do_call

(env,
&Param_Test_test_short_calldata,
&retval, &s1, &s2, &s3);

return retval;
}
return 0;

B.5 Optimized Skeletons

This section illustrates the optimized skeletons that TAO’s IDL
compiler generates. The skeleton fortest short skel is
shown.

void POA_Param_Test::test_short_skel
(CORBA::ServerRequest &_tao_server_request,

void *_tao_object_reference,
void *context,
CORBA::Environment &_tao_environment)

{
static const TAO_Param_Data_Skel
Param_Test_test_short_paramdata [] =
{

{CORBA::_tc_short, 0, 0},
{CORBA::_tc_short, CORBA::ARG_IN, 0},
{CORBA::_tc_short, CORBA::ARG_INOUT, 0},
{CORBA::_tc_short, CORBA::ARG_OUT, 0}

};

static const TAO_Call_Data_Skel
Param_Test_test_short_calldata =
{"test_short",

1,
4,
Param_Test_test_short_paramdata};

POA_Param_Test_ptr impl

= (POA_Param_Test_ptr) _tao_object_reference;
CORBA::Short retval, s1, s2, s3;

// Demarshal parameters.
_tao_server_request.demarshal

(_tao_environment,
&Param_Test_test_short_calldata,
&retval, &s1, &s2, &s3);

// Make upcall.
retval = impl->test_short

(s1, s2, s3, _tao_environment);
// Marshal outgoing parameters.
_tao_server_request.marshal

(_tao_environment,
&Param_Test_test_short_calldata,
&retval, &s1, &s2, &s3);

}

C Comparison of Performance and
Code Size for Windows NT and
Linux

This section provides the cost of marshaling and the size of the
generated stubs and skeletons for the Windows NT and Linux
platforms.

Operator Size
operator<< (char *) 111
operator>> (char *) 95
operator<< (fixed struct) 207
operator>> (fixed struct) 159
operator<< (strseq) 111
operator>> (strseq) 221
operator<< (var struct) 63
operator>> (var struct) 95
operator<< (nestedstruct) 31
operator>> (nestedstruct) 31
operator<< (struct seq) 239
operator>> (struct seq) 287

Table 11: Sizes of Overloaded Operators for Compiled
Stubs/Skeletons on PC running Windows NT

Stub name Interpreted size Compiled size
stub table total stub helper total

test short 205 88 293 570 0 570
test ubstring 205 88 293 586 206 792
test fixed struct 205 88 293 570 366 936
test strseq 269 88 357 664 332 996
test var struct 333 88 421 812 158 970
test nestedstruct 333 88 421 702 62 764
test struct seq 205 88 293 670 526 1,196

Table 12: Stub Sizes on PC running Windows NT
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Stub name Interpreted size Compiled size
skel table total skel helper total

test short skel 253 88 341 143 0 143
test ubstring skel 333 88 421 239 206 445
test fixed struct skel 285 88 373 191 366 557
test strseq skel 468 88 556 358 332 690
test var struct skel 856 88 944 794 158 952
test nestedstruct skel 867 88 955 726 62 788
test struct seqskel 615 88 703 616 526 1,142

Table 13: Skeleton sizes on PC running Windows NT

Operator Size
operator<< (char *) 92
operator>> (char *) 92
operator<< (fixed struct) 200
operator>> (fixed struct) 140
operator<< (strseq) 284
operator>> (strseq) 344
operator<< (var struct) 192
operator>> (var struct) 216
operator<< (nestedstruct) 24
operator>> (nestedstruct) 24
operator<< (struct seq) 168
operator>> (struct seq) 244

Table 14: Sizes of Overloaded Operators for Compiled
Stubs/Skeletons on PC running Linux

Stub name Interpreted size Compiled size
stub table total stub helper total

test short 104 88 192 452 0 452
test ubstring 116 88 204 492 184 676
test fixed struct 108 88 196 452 340 792
test strseq 212 88 300 576 628 1,204
test var struct 240 88 328 608 408 1,016
test nestedstruct 240 88 328 588 48 636
test struct seq 212 88 300 576 412 988

Table 15: Stub Sizes on PC running Linux

Stub name Interpreted size Compiled size
skel table total skel helper total

test short skel 136 88 224 180 0 180
test ubstring skel 228 88 316 276 184 460
test fixed struct skel 132 88 220 192 340 532
test strseq skel 308 88 396 368 628 996
test var struct skel 544 88 632 596 408 1,004
test nestedstruct skel 544 88 632 596 48 644
test struct seqskel 308 88 396 368 412 780

Table 16: Skeleton Sizes on PC running Linux
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