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Abstract
Standards-based quality of service (QoS)-enabled com-

ponent middleware is increasingly being used as a plat-
form for developing distributed real-time embedded (DRE)
systems that execute in open environments where opera-
tional conditions, input workload, and resource availabil-
ity cannot be characterized accurately a priori. Although
QoS-enabled component middleware offers many desirable
features, until recently it lacked the ability to allocate re-
sources efficiently and configure platform-specific QoS set-
tings based on utilization of system resources and applica-
tion QoS. Moreover, it has also lacked the ability to monitor
and enforce application QoS requirements.

This paper presents two contributions to research on
adaptive resource management for component-based DRE
systems. First, we describe the structure and functionality of
the Resource Allocation and Control Engine (RACE), which
is an open-source adaptive resource management frame-
work built atop standards-based QoS-enabled component
middleware. Second, we demonstrate the effectiveness of
RACE in the context of NASA’s Magnetospheric Multi-scale
Mission system, which is a representative DRE system.

1 Introduction
Emerging trends and challenges. Distributed real-

time and embedded(DRE) systems form the core of many
mission-critical domains, such as shipboard computing en-
vironments, avionics mission computing, multi-satellite
missions, and intelligence, surveillance and reconnaissance
missions.Quality of service (QoS)-enabled distributed ob-
ject computing (DOC) middlewarebased on standards like
Real-time CORBA (RT-CORBA) and the Real-Time Spec-
ification for Java (RTSJ) have been used to develop such
DRE systems. More recently,QoS-enabled component
middleware, such as the Lightweight CORBA Component
Model (CCM) [16] and PRiSm [21], have been used as the
middleware for DRE systems.
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Compared to QoS-enabled DOC middleware, QoS-
enabled component middleware capabilities enhance the de-
sign, development, evolution, and maintenance of DRE sys-
tems. Examples of additional capabilities offered by QoS-
enabled component middleware include (1) standardized in-
terfaces for application component interaction, (2) model-
based tools for deploying and interconnecting components,
and (3) standards-based mechanisms for installing, initial-
izing, and configuring application components, thus sepa-
rating concerns of application development, configuration,
and deployment.

In prior work, we developed a domain-specific modeling
language (DSML) called thePlatform-Independent Compo-
nent Modeling Language(PICML) [1] that alleviates many
complexities associated with developing component-based
DRE systems using theComponent-Integrated ACE ORB
(CIAO) [24]. CIAO abstracts key Real-time CORBA QoS
concerns (such as priority models, thread-to-connection
bindings, and timing properties) into elements that can be
configured declaratively via Lightweight CCM metadata
(such as standards for specifying, implementing, packaging,
assembling, and deploying components). PICML enables
DRE system developers to (1) design component interfaces
and compose applications by interconnecting components,
(2) specify QoS and resource utilization characteristics of
applications such as end-to-end deadlines,estimatedCPU,
memory, and network bandwidth utilization characteristics,
(3) specify middleware, OS, and network configuration pa-
rameters, (4) specifyestimatedresource availability of the
DRE system, (5) allocate resource to components that make
up the application, and (6) generate deployment metadata
used by component middleware to deploy applications.

Although CIAO and PICML raise the level of abstraction
used to develop DRE systems relative to DOC middleware,
unresolved challenges remain. In particular, when DRE
system developers allocate resources to, and configure QoS
settings of, applications using PICML, these operations are
performed based onestimatedresource utilization of ap-
plications andestimatedavailability of system resources.
These estimates may be imprecise for open DRE systems



that execute in environments where operational conditions,
input workload, and resource availability cannot be charac-
terized accuratelya priori.

In general, there are limited mechanisms in existing
QoS-enabled component middleware platforms to (1) spec-
ify end-to-end QoS requirements and (2) monitor appli-
cation behavior to ensure that these QoS requirements
are met. Moreover, when applications are composed at
runtime by intelligent mission planners [9], only end-to-
end QoS requirements of the applications are specified.
What is needed, therefore, are middleware-centric capa-
bilities for allocating resources automatically and monitor-
ing/(re)configuring QoS settings of applications to enforce
their end-to-end QoS requirements.

Solution: A component-based adaptive resource man-
agement framework. To address the needs of DRE sys-
tem developers outlined above, we have developed theRe-
source Allocation and Control Engine(RACE), which is
an adaptive resource management framework built atop our
CIAO QoS-enabled component middleware. As shown in
Figure 1, RACE provides (1)resource monitorcomponents
that track utilization of various system resources, such as
CPU, memory, and network bandwidth, (2)QoS monitor
components that track application QoS, such as end-to-end
delay, (3)resource allocatorcomponents that allocate re-
sources to components based on their resource requirements
and current availability of system resources, (4)configura-
tor components that configure QoS parameters of applica-
tion components, (5)controller components that compute
end-to-end adaptation decisions to ensure that QoS require-
ments of applications are met, and (6)effectorcomponents
that perform controller-recommended adaptations.

RACE supports multiple applications running in various
DRE system environments and allows applications with di-
verse QoS requirements to share resources simultaneously.
RACE’s allocator and controller entities can be configured
with multiple resource allocation and control algorithms.
This paper provides two contributions to research on adap-
tive resource management for component-based DRE sys-
tems: (1) it describes the component-based design of the
RACE framework and (2) we evaluate the effectiveness
of RACE in resolving key adaptive resource management
challenges of a representative DRE system.

The remainder of the paper is organized as follows: Sec-
tion 2 motivates the use of RACE in the context of a repre-
sentative DRE system; Section 3 describes the architecture
of RACE and shows how it meets the QoS requirements of
the DRE system described in Section 2; Section 4 compares
our research on RACE with related work; and Section 5
presents concluding remarks.

CIAO/DAnCE
Target

Manager

Allocators Controllers

Historian

Configurators

Centralized

QoS Monitor

Application

QoS

System

Resource

Utilization

Input Adapter

System domain with time-varying

resource availability 

Application

Monitors
Resource

Monitors

Applications

DeploymentPlan

Deploy Components

Orchestrator

Conductor

Effectors

Figure 1: Resource Allocation and Control Engine

2 Motivating Application Scenario

We use the NASA’s upcoming Magnetospheric
Multi-scale (MMS) mission (stp.gsfc.nasa.gov/
missions/mms/mms.htm) as a motivating DRE system
example to evaluate the effectiveness and performance of
RACE. We first present an overview of the MMS mission
and then describe the resource and QoS management
challenges involved in developing the MMS mission using
QoS-enabled component middleware.

2.1 MMS Mission Overview

The goal of the MMS mission is to study the micro-
physics of three fundamental plasma processes occurring
in the earth’s magnetosphere: magnetic reconnection, parti-
cle acceleration, and turbulence. MMS mission consists of
a constellation of identical spacecraft that maintain a spe-
cific formation while orbiting over region of scientific inter-
est (ROI). Since the plasma processes are inherently tran-
sient (especially magnetic reconnection), MMS missions
requires reactive on-board autonomy to enable the space-
craft to transition between three modes of operation:slow
survey, fast survey, andburst.

Slow survey mode is entered outside the ROI and enables
minimal data acquisition (primarily for health monitoring).
The fast survey mode is entered when the spacecraft are
within a ROI, which enables data acquisition for all payload



sensors at a moderate rate. While in fast survey mode, the
data from a subset of the payload sensors is analyzed on
board to detect the likelihood of a transient plasma event. If
any plasma activity is detected, all the spacecraft enter the
burst mode and all payload instruments acquire data at high
rates.

To address the challenges associated with efficient oper-
ation of the different configurations/modes outlined above
and the transitions between them, on board intelligent mis-
sion planners such asspreading activation partial order
planner (SA-POP) [9] have been developed. SA-POP
decomposes overall mission goal(s) into sets of applica-
tions that can be executed concurrently. SA-POP employs
decision-theoretic methods and other AI schemes (such
as hierarchical task decomposition) to decompose mission
goals into navigation, control, data gathering, and data
processing applications.

In addition to initial generation of applications, SA-POP
incrementally generates new applications in response to
changing mission goals and/or degraded performance re-
ported by the mission and system monitors. These appli-
cations are classified into two classes (importantandbest-
effort) based on the operation performed by the applica-
tion. For example, applications that are responsible for
the guidance–navigation–controlof the spacecraft belong
to the importantclass, where as data analysis applications
belong to the best-effort class.

2.2 Challenges of Developing the MMS Mission
using QoS-enabled Component Middleware

As discussed in Section 1, the use of QoS-enabled com-
ponent middleware to develop DRE systems (such as the
NASA MMS mission) significantly improves the design,
development, evolution, and maintenance of these large-
scale systems. In the absence of an adaptive resource man-
agement framework like RACE, however, several key chal-
lenges remain unresolved when using component middle-
ware. Below we present the key resource and QoS man-
agement challenges associated with the MMS mission DRE
system.

Challenge 1: Efficient resource allocation to applica-
tions. Applications generated by SA-POP areresource sen-
sitive, i.e., end-to-end QoS is reduced significantly if the
required type and quantity of resources are not provided to
the applications at the right time. System resources should
therefore be allocated in a timely fashion to components of
applications such that their resource requirements are met.
In open DRE systems like MMS, however, input workload
affects utilization of system resources by, and QoS of, ap-
plications. These parameters of the applications may there-
fore vary significantly from their estimated values. More-
over, system resource availability, such as available network
bandwidth, may also be time variant. A resource manage-

ment framework like RACE must therefore support multiple
resource allocation strategies to handle the needs of hetero-
geneous applications, which include guidance, navigation,
control, data acquisition, data handling, and data analysis
applications.

Challenge 2: Configuring platform-specific QoS pa-
rameters. The QoS of applications depend on various
platform-specific real-time QoS configurations including
(1) QoS configuration of the QoS-enabled component mid-
dleware, such as priority model, threading model, and re-
quest processing policies, (2) OS QoS configuration, such
as real-time priorities of the process(es) and thread(s) that
host and execute within the components, respectively, and
(3) networks QoS configurations, such asdiffserv code-
points of the component interconnections. Since these con-
figurations are platform-specific, it is tedious and error-
prone for system developers or SA-POP to specify them
in isolation. An adaptive resource management frame-
work like RACE should therefore provide abstractions that
shield developers and/or SA-POP from low-level platform-
specific details and define higher-level QoS specification
models.

Challenge 3: Monitoring end-to-end QoS and en-
suring QoS requirements are met. To meet the end-to-
end QoS requirements of applications, an adaptive resource
management framework like RACE must provide monitors
that track QoS of applications at run-time. Although some
QoS properties (such as accuracy, precision, and fidelity of
the produced output) are application-specific, certain QoS
(such asend-to-end delay) can be tracked by the frame-
work without involving the application. The framework
should also provide hooks into which application specific
QoS monitors can be configured. The framework should
enable the system toadapt to dynamic changes, such as
variations in operational conditions, input workload, and/or
resource availability, and thereby ensure that QoS require-
ments of applications are not violated.

3 Structure and Functionality of RACE

RACE is built atop the QoS-enabled component mid-
dleware CIAO andDeployment and Configuration Engine
(DAnCE) [5] , which are open-source implementations of
the OMG Lightweight CCM [16], Deployment and Config-
uration (D&C) [15], and RT-CORBA [14] specifications.

As shown in Figure 1, RACE is composed of
the following components: (1)InputAdapter, (2)
Orchestrator, (3) Conductor, (4) Allocators,
(5) Controllers, (6) Configurators, and (7)
Historian. RACE also monitors application QoS
and system resource usage via itsCentralizedQos-
Monitor andTargetManager components. All com-
ponents of RACE are deployed and configured using
DAnCE. This section motivates and describes the design



of RACE by showing how it resolves the three challenges
presented in the MMS case study from Section 2.

3.1 Efficient Resource Allocation
To allocate resources efficiently in an open DRE system,

such as NASA’s MMS mission system, RACE performs the
following steps: (1) it parses the metadata that describes the
application to obtain the resource requirement(s) of com-
ponents that make up the application, (2) obtains current
resource utilization from resource utilization monitors,and
(3) selects and invokes an appropriate implementation(s) of
resource allocation algorithm depending on the properties
of the application and the overhead associated with the im-
plementation(s). Below we describe the RACE components
that work together to perform the steps outlined above and
resolve the resource allocation challenges of the MMS mis-
sion as described in Section 2.2.

• InputAdapter. End-to-end applications can be com-
posed in many ways. For example, an application can
be composed by using a DSML like PICML at system
design-time and/or by an intelligent mission planner like
SA-POP at run-time. When an application is composed us-
ing PICML, metadata describing the application is captured
in an XML file based on thePackageConfiguration
schema defined by the OMG D&C specification [15]. When
applications are generated during runtime by SA-POP,
metadata is captured in an in-memory structure defined by
the planner.

RACE can be configured using a DSML (such as
PICML) along with an appropriateInputAdapter that
parses the metadata that describes the application into an in-
memory end-to-end (E-2-E) IDL structure that is managed
internally by RACE. TheE-2-E IDL structure populated
by theInputAdapter contains information regarding the
application, including (1) components that make up the ap-
plication and their resource requirement(s), (2) interconnec-
tions between the components, (3) application QoS proper-
ties (such as relative priority) and QoS requirement(s) (such
as end-to-end delay), and (4) mapping of components onto
domain nodes.1

• TargetManager. As shown in Figure 1, RACE em-
ploys theTargetManager to obtain information regard-
ing system resource utilization.TargetManager [18]
uses a hierarchical design and receives periodic resource
utilization updates fromResourceMonitors within the
domain. It uses these updates to track resource usage of all
resources within the domain.

• Allocators are implementations of resource allocation
algorithms that allocate various domain resources (such as
CPU, memory, and network bandwidth) to components of

1The mapping of components onto nodes need not be specified in the
metadata that describes the application which is given to RACE. If an map-
ping is specified, it is honored by RACE; if not, a mapping is determined
at run-time by RACE’sAllocators.

an application by determining the mapping of components
onto nodes in the system domain. For certain applications—
usually the mission-critical ones—staticmapping between
components and nodes may be specified at design-time by
system developers. To honor these static mappings, RACE
therefore provides astatic allocator that ensures compo-
nents are allocated to nodes in accordance with the static
mapping specified in the application’s metadata.

If no static mapping is specified, however,dynamic al-
locatorsdetermine the component to node mapping at run-
time based on resource requirements of the components and
current resource availability on the various nodes in the
domain. Input toAllocators include theE-2-E IDL
structure corresponding to the application and the current
utilization of system resources. SinceAllocators them-
selves are CCM components, RACE can be configured with
newAllocators by using PICML.

The current version of RACE supports following algo-
rithms asAllocators: (1) CPU allocator, (2) mem-
ory allocator, (3) network-bandwidth allocator, (4) PBFD
allocator [4] that allocates CPU, memory, and network-
bandwidth, and (5) static allocator. Metadata is associated
with each allocator and captures its type (i.e., static, single
dimension bin-packing [11], or PBFD) and associated re-
source overhead (such as CPU and memory utilization).

• Orchestrator and Conductor. After the metadata
describing the application is parsed by RACE’sInput-
Adapter, the in-memoryE-2-E IDL structure is passed
onto theOrchestrator. This component processes the
E-2-E structure to determine the types of resources (e.g.,
CPU, memory, or network bandwidth) required and whether
a static allocation is specified. If a static allocation is
specified, the static allocator is selected; otherwise a dy-
namic allocator(s) is selected based on the type(s) of re-
sources required. This selection process is captured in the
Composition structure.

The Orchestrator passes theComposition and
the E-2-E to theConductor, which then performs the
desired orchestration by invoking theAllocator(s)
specified in theComposition, along with the re-
source utilization information obtained from theTarget-
Manager to map components onto nodes in the sys-
tem domain. After resources are allocated to the ap-
plication, theConductor converts the application from
RACE’s internalE-2-E IDL structure into the standard
DeploymentPlan IDL structure defined by the D&C
specification [15]. TheDeploymentPlan IDL structure
is then passed to the underlying DAnCE middleware to de-
ploy the components on the designated target nodes.

Since the elements of RACE are developed as CCM
components, RACE itself can be configured using DSML
tools, such as PICML. Moreover, newInputAdapters
and Allocators can be plugged directly into RACE



without modifying RACE’s existing architecture. RACE
can be used to deploy and allocate resources to applications
that are composed at design-time and run-time. RACE’s
Allocatorswith inputs from theTargetManger allo-
cates resource to application components based on runtime
resource availability, thereby addressing the resource allo-
cation challenge for DRE systems identified in Section 2.2.

3.2 QoS Parameter Configuration
RACE shields application developers and SA-POP from

low-level platform-specific details and defines a higher-
level QoS specification model. Developers and/or SA-POP
specify only QoS characteristics of the application, such as
QoS requirements and relative importance, and RACE au-
tomatically configures platform-specific parameters accord-
ingly. Below, we describe the RACE components that work
together to provide these capabilities and resolve the QoS
configuration challenges of the MMS mission described in
Section 2.2.

• Configurators determine values for various low-
level platform-specific QoS parameters, such as middle-
ware, OS, and network settings for an application based
on its QoS characteristics and requirements, such as rel-
ative importance and end-to-end delay. For example,
theMiddlewareConfigurator configures component
Lightweight CCM policies, such as threading policy, pri-
ority model, and request processing policies, based on the
class of the application (important and best-effort). The
OperatingSystemConfigurator configures OS pa-
rameters, such as the Rate Monotonic Scheduling (RMS)-
based [11] or Maximum Urgency First (MUF)-based [23]
priorities of theComponent Serversthat host the compo-
nents. Likewise, theNetworkConfigurator config-
ures network parameters, such asdiffserv code-points
of the component interconnections. Like other entities of
RACE,Configurators are implemented as CCM com-
ponents, so new configurators can be plugged into RACE
by (re)configuring RACE using PICML.

• Orchestrator and Conductor. Based on the QoS
properties of the application captured in theE-2-E
IDL structure, theOrchestrator selects appropriate
Configurators to configure QoS properties for the
application. As before, this orchestration is captured in
the Composition IDL structure and passed onto the
Conductor, which invokes theConfigurators spec-
ified in theComposition to configure the system QoS
parameters for the application.

RACE’s configurators, orchestrator, and
conductor coordinate with one another to configure
platform-specific QoS parameters for applications appropri-
ately. These components provide higher level abstractions
and shield system developers and SA-POP from low-level
platform-specific details, thus resolving the challenges as-
sociated with configuring platform-specific QoS parameters

identified in Section 2.2.

3.3 Dynamic System Adaptation

When resources are allocated to components at design-
time by system designers using PICML, these operations
are performed based on estimated resource utilization of
applications and estimated availability of system resources.
Allocation algorithms supported by RACE’sAllocators
map resources to components based on current system re-
source utilization and component’s estimated resource re-
quirements. In open DRE systems, however, there is often
no accuratea priori knowledge of input workload or the
relationship between the resource requirement and QoS of
components that make up the application. In these systems,
moreover, operational conditions and resource availability
cannot be characterized accuratelya priori.

To resolve the above described challenges, as well as the
ones described in 2.2, RACE’s control architecture employs
a feedback loop to manage system resource and applica-
tion QoS and ensure that (1) QoS requirements of applica-
tions are met at all times and (2) system stability by main-
taining utilization of system resources below their speci-
fied set-points. The feedback loop in RACE’s control ar-
chitecture consists of three main components,Monitors,
Controllers, andEffectors, as shown in Figure 2
and described below.
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Figure 2: RACE’s Feedback Control Loop

• Monitors. To ensure system stability and meet QoS
requirements of applications, RACE’s control architecture
monitors both system QoS and resource utilization. As
shown in Figure 2, RACE employs the Lightweight CCM’s
TargetManager to monitor system resource utilization.

CCM containersprovide application components with
an execution environment and enables them to commu-
nicate via the underlying middleware. Since each con-
tainer is aware of all interactions of a component, the end-
to-end delay of an application can therefore be measured
in an application-transparent way. QoS properties, such



as accuracy, precision, and fidelity of the produced out-
put, are application-specific, however, and thus cannot be
measured by the middleware without help from applica-
tion components. We extended the container of our mid-
dleware (CIAO) to embedMonitors, calledapplication-
QoS-monitors, to measure end-to-end application delay.

CIAO and DAnCE currently implement inter-component
interactions (bothfacet/receptacleinteractions andevent
source/sinkinteractions) as two-way calls. End-to-end de-
lay of an application can therefore be obtained by mea-
suring the round-trip delay at the “source” of the applica-
tion. Application-QoS-monitorsuse high resolution timers
(ACE High Res Timer) to measure this round-trip de-
lay and periodically send the collected end-to-end delays to
thenode-QoS-monitorthat is collocated on the same node.
Node-QoS-monitorsin turn periodically send the collected
end-to-end delay of all the applications on its node to the
centralized-QoS-monitor. Moreover, application-specific
QoS monitors can send QoS information to the central mon-
itor by invoking the same interface. The update period of
both application-QoS-monitorsandnode-QoS-monitorsis
configurable.

As shown in Figure 2, RACE’s QoSMonitors are
structured in the hierarchical fashion. Anapplication-QoS-
monitor tracks the QoS of an application, anode-QoS-
monitortracks the QoS of all the applications running on its
node, and thecentralized-QoS-monitor tracksthe QoS of
all the applications running the entire domain, which cap-
tures the system QoS. RACE’sController(s) obtain
the system QoS from thecentralized-QoS-monitor.

• Controllers enable a DRE system to adapt to chang-
ing operational context and variations in resource availabil-
ity and/or demand. The RACEControllers implement
various control algorithms that manage runtime system per-
formance, including EUCON [13], HySUCON [10], and
FMUF [3]. Based on the control algorithm they imple-
ment, Controllers modify configurable system para-
meters (such as execution rates and mode of operation of
the application), real-time configuration settings (such as
OS priorities ofcomponent serversthat host the compo-
nents), and networkdiffserv code-points of the compo-
nent interconnections. RACE can be configured with new
Controllers by using PICML sinceControllers
are also implemented as CCM components.

• Effectors modify system parameters, including re-
sources allocated to components, execution rates of ap-
plications, and OS/middleware/network QoS setting for
components, to achieve the controller recommended adap-
tation. As shown in Figure 2,Effectors are de-
signed hierarchically. Thecentralized effectorfirst com-
putes the values of various system parameters for all the
nodes in the domain to achieve theController rec-
ommended adaptation. The computed values of sys-

tem parameters for each node are then propagated to
Effectors located on each node, which then modify
system parameters of its node accordingly. The hierarchi-
cal design ofResourceMonitors (TargetManager),
QoSMonitors, and RACE’sEffectors is scalable and
can handle many applications and nodes in the domain.

• Historian, Orchestrator, and Conductor. TheHis-
torian maintains the history of all deployed applica-
tions along with their QoS characteristics and mapping
of components to nodes. Theorchestrator employs
theHistorian to obtain information regarding the QoS
characteristics of application that have been deployed in
the system to select the appropriate controller to manage
the system. For example, if all the deployed applications
can be operated at various rates, theOrchestrator se-
lects the EUCON controller to manage the system. The
Conductor invokes thecontroller selected by the
Orchestrator to manage the DRE system.

RACE’s monitoring framework,controllers, and
effectors coordinate with one another and other entities
of RACE to ensure (1) QoS requirements of applications are
met and (2) utilization of system resources are maintained
within the specified utilization set-point set-point(s). Thus,
RACE resolves the challenges associated with runtime end-
to-end QoS management identified in Section 2.2.

4 Related Work
This section compares our work on RACE with re-

lated research on building large-scale DRE systems. As
shown below, we classify this research along two orthog-
onal dimensions: (1) QoS-enabled DOC middleware vs.
QoS-enabled component middleware and (2) design-time
vs. run-time QoS configuration, optimization, analysis,
and evaluation of constraints, such as timing, memory, and
CPU.

4.1 QoS-enabled DOC Middleware
Design-time. RapidSched [26] enhances QoS-enabled

DOC middleware, such as RT-CORBA, by computing
and enforcing distributed priorities. RapidSched uses
PERTS [12] to specify real-time information, such as
deadline, estimated execution times, and resource re-
quirements. Static schedulability analysis (such as rate-
monotonic analysis) is then performed and priorities are
computed for each CORBA object in the system. After the
priorities are computed, RapidSched uses RT-CORBA fea-
tures to enforce these computed priorities.

Run-time. Early work on resource management mid-
dleware for shipboard DRE systems presented in [17] moti-
vated the need for adaptive resource management middle-
ware. This work was further extended by QARMA [6],
which provides resource management as aservicefor ex-
isting QoS-enabled DOC middleware, such as RT-CORBA.
Kokyu [7] also enhances RT-CORBA QoS-enabled DOC



middleware by providing a portable middleware scheduling
framework that offers flexible scheduling and dispatching
services. Kokyu performs feasibility analysis based on es-
timated worst case execution times of applications to de-
termine if a set of applications isschedulable. Resource
requirements of applications, such as memory and network
bandwidth, are not captured and taken into consideration by
Kokyu. Moreover, Kokyu lacks the capability to track uti-
lization of various system resources as well as QoS of ap-
plications. To address these limitations, research presented
in [2] enhances QoS-enabled DOC middleware by combin-
ing Kokyu and QARMA.

Our work on RACE extends this earlier work on QoS-
enabled DOC middleware by providing an adaptive re-
source management framework for DRE systems built atop
QoS-enabled component middleware. DRE systems built
using RACE benefit from the additional capabilities offered
by QoS-enabled component middleware compared to QoS-
enabled DOC middleware, as described in Section 1. More-
over, the elements of RACE are designed as CCM compo-
nents, so RACE itself can be configured using DSML tools,
such as PICML [1].

4.2 QoS-enabled Component Middleware
Design-time. Cadena [8] is an integrated environment

for developing and verifying component-based DRE sys-
tems by applying static analysis, model-checking, and light-
weight formal methods. Like PICML, Cadena also provides
a component assembly framework for visualizing and de-
veloping components and their connections. VEST [22] is
a DSML that enables embedded system composition from
component libraries and checks whether timing, memory,
power, and cost constraints of real-time and embedded ap-
plications are satisfied.

These tools are similar to PICML and useestimates, such
as estimated worst case execution time, estimated CPU,
memory, and/or network bandwidth requirements. These
tools are targeted for systems that execute inclosedenviron-
ments, where operational conditions, input workload, and
resource availability can be characterized accuratelya pri-
ori. Since RACE tracks and manages utilization of various
system resources, as well as application QoS, it can be used
in conjunction with these tools to build DRE systems that
execute in open environments.

Run-time. QoS provisioning frameworks, such as QuO
and Qoskets [19] help ensure desired performance of DRE
systems built atop QoS-enabled DOC middleware and QoS-
enabled component middleware, respectively. When ap-
plications are designed using Qoskets (1) resources are
dynamically (re)allocated to applications in response to
changing operational conditions and/or input workload and
(2) application parameters are fine-tuned to ensure that
allocated resources are used effectively. With this ap-
proach, however, applications are augmented explicitly at

design-time with Qosket components, such as monitors,
controllers, and effectors. This approach thus requires re-
design and reassembly of existing applications built without
Qoskets. When applications are generated at run-time (e.g.,
by intelligent mission planners [9]), this approach would
require planners to augment the applications with Qosket
components, which may be infeasible since planners are de-
signed and built to solve mission goals and to work atop any
component middleware, not just CCM.

Compared with related work, RACE provides adaptive
resource and QoS management capabilities in a more trans-
parent and non-intrusive way. In particular, it allocates
CPU, memory, and networking resources to application
components and tracks and manages utilization of various
system resources, as well as application QoS. In contrast
to our own earlier work on QoS-enabled DOC middleware,
such as FC-ORB [25] and HiDRA [20], RACE is a QoS-
enabledcomponentmiddleware framework that enables the
deployment and configuration of feedback control loops in
DRE systems.

In summary, RACE’s novelty stems from its combina-
tion of design-time DSML tools and QoS-enabled compo-
nent middleware run-time platforms. RACE can be used
to deploy and manage component-based applications that
are composed at design-time via the PICML [1] DSML, as
well as at run-time the SA-POP [9] intelligent mission plan-
ner (described in Section 2.1). Moreover, RACE’s reusable
entities, such as resource monitors, QoS monitors, and ef-
fectors, can be configured to incorporate a range of exist-
ing control algorithms, such as EUCON [13] and HySU-
CON [10], as well as future algorithms.

5 Concluding Remarks
This paper described RACE, which is our adaptive re-

source management framework that provides end-to-end
adaptation and resource management for open DRE sys-
tems built atop QoS-enabled component middleware. We
demonstrated how RACE helps resolve key resource and
QoS management challenges associated with a prototype of
the NASA MMS system.

Since the elements of RACE are designed and imple-
mented as CCM components, RACE itself can be config-
ured using DSML tools, such as PICML. Moreover, new
InputAdapters, Allocators, Configurators,
and Controllers can be plugged into RACE using
PICML without any modifications to the existing archi-
tecture. RACE can be used to deploy, allocate resources
to, and manage performance of, applications that are com-
posed both at design time as well as at runtime. More-
over, due to the ease with which RACE can be config-
ured, RACE can be employed in a wide range of DRE sys-
tems. CIAO, DAnCE, and RACE are available in open-
source for download athttp://deuce.doc.wustl.
edu/Download.html.
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