
Optimizing a CORBA Inter-ORB Protocol (IIOP) Engine
for Minimal Footprint Embedded Multimedia Systems

Aniruddha Gokhale Douglas C. Schmidt
gokhale@research.bell-labs.com schmidt@cs.wustl.edu

Bell Laboratories Dept. of Computer Science
Lucent Technologies Washington University

600 Mountain Avenue One Brookings Drive
Murray Hill, NJ 07974 St. Louis, MO 63130

Abstract

To support the quality of service (QoS) requirements of em-
bedded multimedia applications, such as real-time audio and
video, electronic mail and fax, and Internet telephony, off-the-
shelf middleware like CORBA must be flexible, efficient, and pre-
dictable. Moreover, stringent memory constraints imposed by
embedded system hardware necessitates a minimal footprint for
middleware that supports multimedia applications.

This paper provides three contributions towards develop-
ing efficient ORB middleware to support embedded multime-
dia applications. First, we describe the optimization princi-
ple patterns used to develop a time- and space-efficient CORBA
Inter-ORB Protocol (IIOP) interpreter for TAO, which is our
high-performance, real-time ORB. Second, we describe the op-
timizations applied to TAO’s IDL compiler to generate effi-
cient and small stubs/skeletons used in TAO’s IIOP protocol
engine. Third, we empirically compare the performance and
memory footprint of interpretive (de)marshaling versus com-
piled (de)marshaling for a wide range of IDL data types.

Applying our optimization principle patterns to TAO’s IIOP
protocol engine improved its interpretive (de)marshaling per-
formance to the point where it is now comparable to the per-
formance of compiled (de)marshaling. Moreover, our IDL com-
piler optimizations generate interpreted stubs/skeletons whose
footprint is substantially smaller than compiled stubs/skeletons.
Our results illustrate that careful application of optimization
principle patterns can yield both time- and space-efficient
standards-based middleware.

Keywords: CORBA performance optimizations, minimal
footprint ORBs, embedded multimedia applications.

I. I NTRODUCTION

A. Emerging trends in embedded multimedia application devel-
opment

Three trends are shaping the future development environ-
ments for embedded multimedia applications, such as MIME-
enabled email, Web browsing, and Internet telephony. First,
there is a movement away fromprogrammingapplications from
scratch using low-level protocols and operating system APIs to
integrating applications using reusable components [1]. Sec-
ond, there is great demand for middleware that provides remote

Work done by the first author while at Washington University.
This work was supported in part by Boeing, DARPA contract 9701516, Mo-

torola, NSF grant NCR-9628218, Nortel, Siemens, and Sprint.

method invocation to simplify distributed application compo-
nent collaboration [2]. Third, there are increasing efforts to
definestandardmiddleware, such as the Object Management
Group (OMG)’s Common Object Request Broker Architecture
(CORBA) [3], that permits embedded multimedia applications
to interwork seamlessly throughoutheterogeneousnetworks and
endsystems.

Standard CORBA middleware is now available that allows
clients to invoke operations on distributed components without
concern for component location, programming language, OS
platform, communication protocols and interconnects, or hard-
ware. These features of CORBA make it potentially suited to
provide communication middleware for distributed embedded
systems. However, conventional CORBA middleware gener-
ally lacks support for efficient and predictable performanceand
small footprints, which limit the rate at which performance-
sensitive embedded multimedia applications have been devel-
oped to leverage advances in standard middleware.

B. Research challenges for communication middleware

Developing efficient and predictable communication mid-
dleware like CORBA for embedded multimedia applications
yields many research challenges. For hand-held embedded de-
vices, these challenges center on meeting mobile computing de-
mands [4], [5], such as handling low bandwidth, heterogeneity
in the network connections, frequent changes and disruptions
in the established connections due migration, and maintaining
cache consistency.

In addition to the mobility challenges, there are restrictions
on the physical size and power consumption of embedded multi-
media system hardware. These restrictions constrain the amount
of storage used by these systems. Likewise, storage constraints
dictate the size, flexibility, and performance requirements of the
middleware software that supports multimedia applications on
these embedded systems.

The memory footprint of CORBA middleware is determined
largely by the static and dynamic size of the ORB Core, Ob-
ject Adapter, and stubs/skeletons generated by a OMG Interface
Definition Language (IDL) compiler [6]. The OMG’sMinimum
CORBA[7] specification defines a standard subset of CORBA
that minimizes the size of the ORB Core and Object Adapter for
embedded systems. However, the OMG does not define a stan-
dard specification for minimizing the footprint of IDL compiler-
generated stubs/skeletons, which is considered a “quality of im-
plementation” issue for ORB developers.

1



2

C. Addressing research challenges with optimization principle
patterns:

Our previous research has examined many dimensions of
high-performance and real-time ORB endsystem design, in-
cluding static [8] and dynamic [9] scheduling, event process-
ing [10], I/O subsystem integration [11], ORB Core connec-
tion and concurrency architectures [12], and Object Adapter
demultiplexing optimizations [6]. This paper focuses on an-
other dimension in the high-performance and real-time ORB
endsystem design space: theoptimization principle patterns
used to develop a time- and space-efficient CORBA Inter-ORB
Protocol (IIOP) engine for TAO [8], which is a open-source1,
standard-compliant implementation of CORBA optimized for
high-performance and real-time applications.

The optimizations used in TAO’s IIOP protocol engine are
guided by a set ofprinciple patterns[13] that have been applied
to middleware [6] and lower-level networking protocols [14],
such as TCP/IP. Optimization principle patterns document rules
for avoiding common design and implementation mistakes that
degrade the performance, scalability, and predictability of com-
plex systems. The optimization principle patterns we applied to
TAO’s IIOP protocol engine include:optimizing for the common
case; eliminating gratuitous waste; replacing general purpose
methods with specialized, efficient ones; precomputing values,
if possible; storing redundant state to speed up expensive oper-
ations; passing information between layers; optimizing for the
processor cache; and factoring common tasks to reduce foot-
print.

The performance of the optimized version of TAO is as fast,
or faster, than existing ORBs [15], [16] when using the static in-
vocation interface (SII). Moreover, depending on the data type,
it is �2 to 4.5 times faster than ORBs when using the dynamic
skeleton interface (DSI) [17].

D. Paper organization

This paper is organized as follows: Section II outlines the
CORBA reference model, the GIOP/IIOP interoperability pro-
tocols, SunSoft IIOP, and TAO; Section III presents the results
of TAO’s performance optimizations on the SunSoft IIOP in-
terpreter; Section IV presents the results of optimizing TAO’s
IDL compiler to produce efficient and small footprint stubs and
skeletons for a range of IDL data types; Section V compares our
research with related work; and Section VI provides concluding
remarks.

II. BACKGROUND

TAO is a real-time ORB based on the SunSoft IIOP proto-
col engine. TAO is targeted for applications with deterministic
and statistical QoS requirements, as well as best effort require-
ments. This section outlines the CORBA reference model, its
GIOP/IIOP interoperability protocols, SunSoft IIOP, and TAO.

A. Overview of CORBA

CORBA Object Request Brokers (ORBs) [18] allow clients
to invoke operations on distributed objects without concern for

1The source code and documentation for TAO is freely available at
www.cs.wustl.edu/ �schmidt/TAO.html .

object location, programming language, OS platform, commu-
nication protocols and interconnects, and hardware. Figure 1
illustrates the key components in the CORBA reference model
that collaborate to provide this degree of portability, interoper-
ability, and transparency. For a complete synopsis of CORBA’s

INTERFACEINTERFACE

REPOSITORYREPOSITORY

IMPLEMENTATIONIMPLEMENTATION

REPOSITORYREPOSITORY

IDLIDL
COMPILERCOMPILER

DIIDII ORBORB
INTERFACEINTERFACE

ORB  CORE GIOP/IIOP/ESIOPS

IDL
STUBS

operation()
in  args

out  args + return  value

CLIENT
OBJECT
(SERVANT)

OBJ

REF

STANDARD  INTERFACE STANDARD  LANGUAGE  MAPPING

ORB-SPECIFIC  INTERFACE STANDARD  PROTOCOL

INTERFACE

REPOSITORY

IMPLEMENTATION

REPOSITORY

IDL
COMPILER

IDL
SKELETON

DSI

OBJECT

ADAPTER

Fig. 1. Key Components in the CORBA 2.x Reference Model

components, see [3].

B. Overview of CORBA GIOP and IIOP

The CORBA General Inter-ORB Protocol (GIOP) defines an
interoperability protocol between ORBs. The GIOP protocol
provides an abstract protocol specification that can be mapped
onto conventional connection-oriented transport protocols. An
ORB is GIOP-compatible if it can send and receive all valid
GIOP messages.

The GIOP specification consists of the following elements:

B.1 A Common Data Representation (CDR) definition

The GIOP specification defines the CDR transfer syntax,
which maps OMG IDL types from the native host format into
a low-levelbi-canonicalrepresentation that supports both little-
endian and big-endian formats. All OMG IDL data types are
marshaled using the CDR syntax into anencapsulation, (which
is an octet stream that holds marshaled data) and exchanged be-
tween clients and servers.

B.2 GIOP message formats

The GIOP specification defines seven types of messages that
send requests, receive replies, locate objects, and manage com-
munication channels.

B.3 GIOP transport assumptions

The GIOP specification describes the type of transport pro-
tocols that can carry GIOP messages. In addition, the GIOP
specification defines a connection management protocol and a
set of constraints for message ordering.

The most common concrete mapping of GIOP onto the
TCP/IP transport protocol is known as the Internet Inter-ORB
Protocol (IIOP). The GIOP and IIOP specifications are de-
scribed further in [3].



3

C. Overview of the SunSoft IIOP Protocol Engine

SunSoft IIOP is a freely available, open-source2 implementa-
tion of IIOP version 1.0. The key features and architecture of
SunSoft IIOP are outlined below.

C.1 CORBA Features Supported by SunSoft IIOP

The SunSoft IIOP protocol engine is written in C++ and pro-
vides the features of a CORBA ORB Core. It handles connec-
tion management, socket endpoint demultiplexing, concurrency
control, and the IIOP protocol. It is not a complete ORB, how-
ever, since it lacks an IDL compiler, an Implementation Repos-
itory, and a Portable Object Adapter (POA).

On the client-side, SunSoft IIOP provides astatic invocation
interface(SII) and adynamic invocation interface(DII). The SII
is used by client-side stubs. The DII is used by clients that have
no compile-time knowledge of the operations they invoke. Thus,
the DII allows clients to create CORBA requests at run-time.

In SunSoft IIOP, requests are created and parameters mar-
shaled using theRequest , NVList , NamedValue , and
TypeCode pseudo-objectinterfaces defined by CORBA.
Pseudo-objects are entities that are neither CORBA primitive
types nor constructed types. Operations on pseudo-object ref-
erences cannot be invoked using the DII mechanism since the
interface repository does not keep any information about them.
In addition, pseudo-objects arelocality constrained, i.e., they
cannot be transferred as parameters to operations of an IDL in-
terface.

SunSoft IIOP supports dynamic skeletons via the dynamic
skeleton interface (DSI). The DSI is used by applications and
ORB bridges [3] that have no compile-time knowledge of the
interfaces they implement. Thus, the DSI parses incoming re-
quests, unmarshals their parameters, and demultiplexes requests
to the appropriate servants.

Servers that use the SunSoft DSI mechanism must provide
TypeCode information used to interpret incoming requests and
demarshal the parameters.TypeCode s are CORBA pseudo-
objects that describe the format and layout of primitive and con-
structed IDL data types in the incoming request stream. This
information is used by SunSoft IIOP’s interpretive marshaling
engine for each data type as it is marshaled and transmitted over
a network.

C.2 The Sunsoft IIOP Software Architecture

The components in SunSoft IIOP are shown in Figure 2. The
TypeCode (de)marshaling protocol engine is the primary com-
ponent of SunSoft IIOP. SunSoft IIOP’s protocol engine is an
interpreter that encodes or decodes parameter data by identify-
ing theirTypeCode s at run-time using thekind field of each
TypeCode object.

SunSoft IIOP uses an interpreter to reduce the space utiliza-
tion of its protocol engine. Minimizing the memory footprint of
a protocol engine is important for embedded multimedia appli-
cations, such as hand-held PDAs. SunSoft IIOP’s code size is
less than 100 Kbytes on a real-time operating system like Vx-
Works. ORBs with small memory footprints are also useful for

2See ftp://ftp.omg.org/pub/interop/ for the SunSoft IIOP
source code.

DIIDII ORBORB
INTERFACEINTERFACE

operation()operation()

OBJECTOBJECT

ADAPTERADAPTER

DSIDSI

in  argsin  args

out  args + return  valueout  args + return  value
CLIENTCLIENT

ORB  COREORB  CORE

  TYPECODE

INTERPRETER

TypeCode::traverse()

  CDR::
encoder()

visit()

deep_free()

  CDR::
decoder()

deep_copy()

  deep_free()

visit()

CDR::
decoder()

 deep_copy()
CDR::

encoder()

REQUESTREQUEST

RESPONSERESPONSE

  TYPECODE

INTERPRETER

TypeCode::traverse()

RECEIVERRECEIVERSENDERSENDER

IDLIDL
STUBSSTUBS

IDLIDL
SKELETONSKELETON

OBJECTOBJECT
((SERVANTSERVANT))

Fig. 2. Components in the SunSoft IIOP Implementation

general-purpose operating systems since the protocol interpreter
can be small enough to fit entirely within a processor cache.

Each component of the SunSoft IIOP software architecture is
outlined below:

C.2.a TheTypeCode::traverse method. The SunSoft
IIOP interpreter is implemented within thetraverse method
of theTypeCode class. All parameter marshaling and demar-
shaling is performed interpretively by traversing the data struc-
ture according to the layout of theTypeCode /Request tu-
ple passed totraverse . This method is passed a pointer to
a visit method (described below), which interprets CORBA
requests based on theirTypeCode layout. The request part of
the tuple contains the data that was passed by an application on
the client-side or received from the OS protocol stack on the
server-side.

C.2.b Thevisit method. TheTypeCode interpreter in-
vokes thevisit method to marshal or demarshal the data as-
sociated with theTypeCode it is currently interpreting. The
visit method is a pointer that contains the address of one of
the four methods described below:

� TheCDR::encoder method:Theencoder method of
theCDRclass converts application data types from their native
host representation into the CDR representation used to transmit
CORBA requests over a network.

� TheCDR::decoder method:Thedecoder method of
theCDRclass is the inverse of theencoder method. It converts
request values from the incoming CDR stream into the native
host representation.

� The deep copy method: The deep copy method is
used by the SunSoft DII mechanism to allocate storage and mar-
shal parameters into the CDR stream using theTypeCode in-
terpreter.

� The deep free method: The deep free method is
used by the SunSoft DSI server to release dynamically allocated
memory after incoming data has been demarshaled and passed
to a server application.



4

C.2.c The utility methods. The following SunSoft IIOP meth-
ods perform various ORB utility tasks:

� The calc nested size and alignment method:
This method calculates the size and alignment of composite IDL
data types likestruct s orunion s.

� Thestruct traverse method:TheTypeCode inter-
preter uses this method to traverse the fields in an IDLstruct
recursively.

Section II-C.3 examines the run-time behavior of SunSoft
IIOP by tracing the path taken by requests used to transmit the
sequence of BinStruct s shown below:

// BinStruct is 32 bytes (including padding).
struct BinStruct
{

short s; char c; long l;
octet o; double d; octet pad[8]

};

// Richly typed data.
interface ttcp_throughput
{

typedef sequence<BinStruct> StructSeq;
// similarly for the rest of the types

// Operations to send various data type sequences.
oneway void sendStructSeq (in StructSeq ts);
// similarly for rest of the types

};

The performance of SunSoft IIOP for these data types is exam-
ined in Section III.

C.3 Tracing the Data Path of a SunSoft IIOP Request

To illustrate the run-time behavior of SunSoft IIOP, we
trace the path taken by requests that transmit asequence of
BinStruct s. We show how theTypeCode interpreter con-
sults theTypeCode information as it (de)marshals parameters.
We use the sameBinStruct in this example and in our opti-
mization experiments described in Section III-B.1.

C.3.a Client-side Data Path. The client-side data path is
shown in Figure 3. This figure depicts the path traced by out-
going client requests through theTypeCode interpreter. The
CDR::encoder method marshals the parameters from native
host format into a CDR representation suitable for transmission
on the network.

The client uses thedo call method, which is the static in-
vocation interface (SII) API provided by SunSoft IIOP. This
method uses theTypeCode interpreter to marshal the parame-
ters and send the client requests. The dynamic invocation inter-
face (DII) mechanism uses thedo dynamic call method to
send client requests.

Although thedo call and do dynamic call methods
play similar roles, their type signatures are different. The
do call is used by IDL compiler-generated stubs to send
client requests. Thedo dynamic call is used by the ORB’s
DII API ( i.e., send oneway and invoke ) to send client re-
quests. Thedo dynamic call is passed anNVList that
contains the parameters of the operation being invoked. In ad-
dition, it is passed a flag indicating whether the operation is
oneway or two-way, astring argument that represents the op-
eration name, and aNamedValue pseudo-object that holds the
results.

sendStructSequence(seq)

do_call()

TypeCode::traverse(value1,
          value2,visit,strm,env)

if (primitive typecode)
    return visit(this,val1,val2,

strm,env);
switch(_kind){
//complex typecodes
case tk_sequence:

OctetSeq *seq =
(OctetSeq *)val1;

bounds = seq->length;
value1 = seq->buffer;
goto shared_array_code;

case tk_array:
bounds=ulong_param(1, env);

shared_array_code:
TypeCode_ptr tc2 =

typecode_param(0, env);
size = tc2->size(env);
while(bounds--){

visit(tc2,val1,val2,strm,env);
value1=size + (char*)val1;
value2=size + (char *)val2;

}
case tk_struct:

create an encapsulation
CDR stream for our params
struct_traverse(&encap,val1,

val2,visit, strm,env);
}

struct_traverse(encap,val1,
      val2,visit,strm,env)

skip_string; // repository id;
skip_string; // struct name;
get number of members;
for each member {

skip_string; //member name
size =
calc_nested_size_
        and_align(&tc,align);
visit(tc,val1,val2,strm,env);
val1 = size + (char*)val1;
val2 = size + (char *)val2;

}

GIOP::Invocation::invoke()

NETWORK

write()

OS  KERNEL

Create a CDR stream to send
Fill GIOP Header
Create a GIOP:Request
message
For each parameter,
        call CDR::put_param

SENDER

CDR::encoder(param_tc,
     value,0,cdr_strm,env)

CDR::put_param()

switch(tc->kind(env) {
case tk_char:
case tk_octet:

strm->put_char
(*(char *)data);

break;
case tk_short:

strm->put_short
(*(short *)data);

break;
case tk_long:

strm->put_long
(*(long *)data);

break;
case tk_double:

strm->put_longlong
(*(longlong *)data);
break;

case tk_sequence:
OctetSequence* seq =

(OctetSeq *)data;
strm->put_long
(*(long *)seq->length);
//Fall thru these cases

case tk_struct:
case tk_array:

return tc->traverse
(data, 0, encoder,

strm, env);
}

CDR::encoder(tc, data,

                   0, strm, env)

Fig. 3. Sender-side Datapath for the Original SunSoft IIOP Implementation

Thedo call method creates a CDR stream into which op-
erations for CORBA parameters are marshaled before they are
sent over the network. To marshal the parameters,do call
uses theCDR::encoder visit method. For primitive
types, such asoctet , short , long , and double , the
CDR::encoder method marshals them into the CDR stream
using the lowest-levelCDR::put methods. For constructed
data types, such as IDLstructs and sequences , the
encoder recursively invokes theTypeCode interpreter.

The traverse method of theTypeCode interpreter con-
sults theTypeCode layout passed to it by an application to de-
termine the data types contained in a composite data type, such
as astruct or union . For each member of a composite data
type, the interpreter invokes the samevisit method that in-
voked it. In our case, theencoder is thevisit method that
originally called the interpreter. This process continues recur-
sively until all parameters have been marshaled. At this point,
the request is transmitted over the network via theinvoke
method of theGIOP::Invocation class.

C.3.b Server-side Data Path. The server-side data path is
shown in Figure 4. This figure depicts the path traced by in-
coming client requests through the SunSoft IIOPTypeCode
interpreter. An event handler (TCP OA) waits in the ORB Core
for incoming data. After a CORBA request is received, its GIOP
type is decoded and the Object Adapter demultiplexes the re-
quest to the appropriate operation of the target object. The
CDR::decoder method then unmarshals the parameters from
the CDR representation into the server’s native host format. Fi-
nally, the server’s dispatching mechanism dispatches the request
to the skeleton of the target object by invoking an upcall on a



5

read_message()

RECEIVERECEIVE

MESSAGEMESSAGE

EVENT  HANDLINGEVENT  HANDLING

GIOP::

incoming_message()

TCP_OA::
handle_message()

TCP_OA::
get_request()

DEMULTIPLEXINGDEMULTIPLEXING//

DISPATCHINGDISPATCHING

    tcp_oa_dispatch()

(USER  SUPPLIED  METHOD)

 tcp_oa_dispatcher

(CREATE REQUESTHDR)

EXTRACT   GIOP HEADER

DECODE   MSG  TYPE

_ttcp_sequence_
sendStructSeq_skel()

CREATE   NVLIST  AND

POPULATE   IT  WITH

PARAMETER  TYPECODES

for each parameter
get the typecode, tc
CDR::decoder(tc,val,0,

strm,env)

ServerRequest::params()

PARSING   PARAMETERSPARSING   PARAMETERS TypeCode::traverse(value1,
          value2,visit,strm,env)

if (primitive typecode)
    return visit(this,val1,val2,

strm,env);
switch(_kind){
//complex typecodes
case tk_sequence:

OctetSeq *seq =
(OctetSeq *)val1;

bounds = seq->length;
value1 = seq->buffer;
goto shared_array_code;

case tk_array:
bounds=ulong_param(1, env);

shared_array_code:
TypeCode_ptr tc2 =

typecode_param(0, env);
size = tc2->size(env);
while(bounds--){

visit(tc2,val1,val2,strm,env);
value1=size + (char*)val1;
value2=size + (char *)val2;

}
case tk_struct:

create an encapsulation
CDR stream for our params
struct_traverse(&encap,val1,

val2,visit, strm,env);
}

struct_traverse(encap,val1,
      val2,visit,strm,env)

skip_string; // repository id;
skip_string; // struct name;
get number of members;
for each member {

skip_string; //member name
size =
calc_nested_size_
        and_align(&tc,align);
visit(tc,val1,val2,strm,env);
val1 = size + (char*)val1;
val2 = size + (char *)val2;

}

switch(tc->kind(env) {
case tk_char:
case tk_octet:

strm->get_char
(*(char *)data);

break;
case tk_short:

strm->get_short
(*(short *)data);

break;
case tk_long:

strm->get_long
(*(long *)data);

break;
case tk_double:

strm->get_longlong
(*(longlong *)data);
break;

case tk_sequence:
OctetSequence* seq =

(OctetSeq *)data;
strm->get_ulong
(seq->length);
seq->max=seq->length;
seq->buffer=0;
// get typecode of elem
tc2=typecode_param(0);
size = tc2->size(env);
//allocate buffer
seq->buffer=new uchar [
size*seq->max];
//Fall thru these cases

case tk_struct:
case tk_array:

return tc->traverse
(data, 0, decoder,

strm, env);
}

CDR::decoder(tc, data,

          parent, strm, env)

RECEIVER
NETWORKNETWORK

read()

OSOS    KERNELKERNEL

Fig. 4. Receiver-side Datapath for the Original SunSoft IIOP Implementation

user-supplied servant method.
The SunSoft IIOP receiver supports the DSI mechanism.

Therefore, anNVList CORBA pseudo-object is created and
populated with theTypeCode information for the param-
eters retrieved from the incoming request. These param-
eters are retrieved by calling theparams method of the
ServerRequest class. Similar to the client-side data path,
the server’sTypeCode interpreter uses theCDR::decoder
visit method to unmarshal individual data types into a pa-
rameter list. These parameters are subsequently passed to the
server application’s servant method.

D. Overview of TAO

To avoid unnecessarily re-inventing existing ORB compo-
nents, TAO is based on SunSoft IIOP’s protocol engine. How-
ever, SunSoft IIOP has the following limitations:

D.1 Lack of complete ORB features

Although SunSoft IIOP provides an ORB Core, an IIOP pro-
tocol engine, and a DII and DSI implementation, it lacks an
IDL compiler, an Implementation Repository, and a Portable
Object Adapter (POA). TAO implements these missing features
and provides several new features, such as real-time scheduling
and dispatching mechanisms [8].

D.2 Lack of real-time features

SunSoft IIOP provides no support for real-time features. For
instance, it uses a FIFO strategy for scheduling and dispatching
client IIOP requests. FIFO strategies can yield unbounded prior-
ity inversions when lower priority requests block the execution
of higher priority requests [12]. TAO is designed carefully to
prevent unbounded priority inversions. For instance, it provides
a flexible scheduling service [8], [9] that utilizes QoS informa-
tion associated with the I/O subsystem [11] to schedule and dis-
patch requests according to their end-to-end priorities. To enable

this, TAO extends SunSoft IIOP to allow separate IIOP connec-
tions to run within real-time threads with suitable priorities [19].

D.3 Lack of IIOP optimizations

As described in Section III, SunSoft IIOP incurs rela-
tively high performance overhead due to excessive marshal-
ing/demarshaling overhead, data copying, and high-levels of
function call overhead. Therefore, we applied the following
optimization principle patterns [14], [6] that improved its per-
formance considerably:(1) optimizing for the common case,
(2) eliminating gratuitous waste, (3) replacing general-purpose
methods with efficient special-purpose ones, (4) precomputing
values, if possible, (5) storing redundant state to speed up ex-
pensive operations, (6) passing information between layers, and
(7) optimizing for processor cache affinity.As shown in Sec-
tion III, our optimizations yielded speedups of 2 to 6.7 for vari-
ous types of OMG IDL data.

TAO alleviates the limitations with SunSoft IIOP described
above to create a complete real-time ORB endsystem. TAO is a
high-performance, real-time ORB endsystem targeted for appli-
cations with deterministic and statistical QoS requirements, as
well as “best-effort” requirements. The TAO ORB endsystem
contains the network interface, OS, communication protocol,
and CORBA-compliant middleware components and features
shown in Figure 5. TAO supports the standard OMG CORBA

RR

UU

NN

TT

II

MM

EE

 S S

CC

HH

EE

DD

UU

LL

EE

RR

HIGH-SPEED  NETWORK
INTERFACES
(e.g., APIC, VME)

ZZ

EE

RR

OO

CC

OO

PP

YY

BB

UU

FF

FF

EE

RR

SS
RTRT  I/O  I/O
SUBSYSTEMSUBSYSTEM

RTRT    OBJECTOBJECT
ADAPTERADAPTER

OO(1)  (1)  REQUESTREQUEST    DEMUXERDEMUXER

CLIENTSCLIENTS

STUBSSTUBS

SERVANTSSERVANTS

SKELETONSSKELETONS

U

RTRT    ORBORB    CORECORE

REACTORREACTOR

((PP11))

REACTORREACTOR

((PP22))

REACTORREACTOR

((PP33))

REACTORREACTOR

((PP44))

SOCKETSOCKET    QUEUEQUEUE    DEMUXERDEMUXER

PLUGGABLEPLUGGABLE    PROTOCOLSPROTOCOLS

Fig. 5. Components in the TAO Real-time ORB Endsystem

reference model [3], with many enhancements [19], [6], [11] de-
signed to overcome the shortcomings of conventional ORBs for
high-performance and real-time applications.

TAO is developed atop lower-level middleware called
ACE [20], which implements core concurrency and distribu-
tion patterns [21] for communication software. ACE provides
reusable C++ wrapper facades and framework components that
support the QoS requirements of high-performance, real-time
applications. ACE runs on a wide range of OS platforms, in-



6

cluding Win32, most versions of UNIX, and real-time operating
systems like Sun/Chorus ClassiX, LynxOS, and VxWorks.

III. O PTIMIZING TAO’ S IIOP INTERPRETER

As explained in Section II-C, SunSoft IIOP is a protocol en-
gine that implements IIOP version 1.0 using aTypeCode in-
terpreter to (de)marshal operation parameters. The interpretive
design and lack of optimizations in SunSoft IIOP degrades its
performance substantially and renders it unsuitable to support
performance-sensitive embedded multimedia applications. This
section describes how we used a measurement-driven method-
ology, guided by optimization principle patterns, to improve the
performance of SunSoft IIOP for the TAO real-time ORB.

A. CORBA/ATM Testbed Environment

A.1 Hardware and Software Platforms

The experiments in this section were conducted using a
FORE systems ASX-1000 ATM switch connected to two dual-
processor UltraSPARC-2s running SunOS 5.5.1. The ASX-
1000 is a 96 Port, OC12 622 Mbps/port switch. Each
UltraSparc-2 contains two 168 MHz Super SPARC CPUs with
a 1 Megabyte cache per-CPU. The SunOS 5.5.1 TCP/IP proto-
col stack is implemented using the STREAMS communication
framework. Each UltraSparc-2 has 256 Mbytes of RAM and an
ENI-155s-MF ATM adaptor card, which supports 155 Megabits
per-sec (Mbps) SONET multimode fiber. The Maximum Trans-
mission Unit (MTU) on the ENI ATM adaptor is 9,180 bytes.
Each ENI card has 512 Kbytes of on-board memory. A maxi-
mum of 32 Kbytes is allotted per ATM virtual circuit connection
for receiving and transmitting frames (for a total of 64 K). This
allows up to eight switched virtual connections per card. The
CORBA/ATM hardware platform is shown in Figure 6.

FORE  SYSTEMSFORE  SYSTEMS

ASX ASX 200200BXBX

ATM  SWITCHATM  SWITCH

(16(16  PORT  PORT,,    OC3OC3
155155MBPSMBPS//PORTPORT,,

9,1809,180 MTU MTU))ULTRAULTRA
SPARCSPARC    22
((FORE  ATMFORE  ATM

ADAPTORSADAPTORS

AND  ETHERNETAND  ETHERNET))

Fig. 6. Hardware for the CORBA/ATM Testbed

A.2 Traffic Generator for Throughput Measurements

Traffic for the experiments was generated and consumed by
an extended version of the widely availablettcp [22] protocol
benchmarking tool. We extendedttcp for use with SunSoft
IIOP. We hand-crafted the stubs and skeletons for the different

operations defined in the interface. Our hand-crafted client-side
stubs use SunSoft IIOP’s SII API,i.e., the do call method.
Thedo call method provides an interface to pass client opera-
tion arguments to the ORB’s interpretive (de)marshaling engine.
On the server-side, the Object Adaptor uses a callback method
supplied by thettcp server application to dispatch incoming
requests and their parameters to the target object.

Our ttcp tool measures end-to-end data transfer throughput
in Mbps from a transmitter process to a remote receiver pro-
cess across an ATM network. The flow of user data for each
version ofttcp is uni-directional, with the transmitter flooding
the receiver with a user-specified number of data buffers. Vari-
ous sender and receiver parameters may be selected at run-time.
These parameters include the number of data buffers transmit-
ted, the size of data buffers, and the type of data in the buffers. In
all our experiments the underlying socket queue sizes were en-
larged to 64 Kbytes, which is the maximum supported on SunOS
5.5.1.

The following data types were used for all the tests: primi-
tive types (short , char , long , octet , double ) and a C++
struct composed of all the primitives (BinStruct ). The
size of theBinStruct is 32 bytes. SunSoft IIOP transferred
the data types using IDLsequences , which are dynamically-
sized arrays. The sender-side transmitted data buffer sizes of a
specific data type incremented in powers of two, ranging from 1
Kbytes to 128 Kbytes. These buffers were sent repeatedly until
a total of 64 Mbytes of data was transmitted.

A.3 Profiling Tools

The profile information for the empirical analysis was ob-
tained using theQuantify [23] performance measurement
tool. Quantify analyzes performance bottlenecks and identi-
fies sections of code that dominate execution time. Unlike tradi-
tional sampling-based profilers (such as the UNIXgprof tool),
Quantify reports results without including its own overhead.
In addition,Quantify measures the overhead of system calls
and third-party libraries without requiring access to source code.

All data is recorded in terms of machine instruction cycles
and converted to elapsed times according to the clock rate of the
machine. The collected data reflect the cost of the original pro-
gram’s instructions and automatically exclude anyQuantify
counting overhead.

Additional information on the run-time behavior of the code
such as system calls made, their return values, signals, number
of bytes written to the network interface, and number of bytes
read from the network interface are obtained using the UNIX
truss utility, which traces system calls made by an applica-
tion. truss was used to observe the return values of system
calls, such asread andwrite , which indicates the number of
times that buffers were written to and read from the network.

B. Performance Results and Benefits of Optimization Principle
Patterns

B.1 Methodology

CORBA implementations like SunSoft IIOP are representa-
tive of complex communication software. Optimizing such soft-
ware is hard since seemingly minor “mistakes,” such as ex-



7

cessive data copying, dynamic allocation, or locking, can re-
duce performance significantly [15], [12]. Therefore, develop-
ing high-performance, predictable, and space-efficient ORBs re-
quires an iterative, multi-step optimization process. First, we
measured the performance of the ORB with blackbox and white-
box benchmarks to pinpoint key sources of overhead. Next,
we analyzed these sources of overhead carefully and systemati-
cally applied optimization principle patterns to remove the bot-
tlenecks. We repeated this optimization process until no major
performance bottlenecks remained.

This section describes the optimizations we applied to Sun-
Soft IIOP to improve its throughput performance. First, we
show the performance of the original SunSoft IIOP for various
IDL data types. Next, we useQuantify to illustrate the key
sources of overhead in SunSoft IIOP. Finally, we describe the
benefits applying specific optimization principle patterns to im-
prove the performance of SunSoft IIOP.

The optimizations described in this section are based on the
core principle patterns shown in Table I for implementing pro-
tocols efficiently. [14], [6] describe a family of optimization

# Principle Pattern
1 Optimize for the common case
2 Eliminate gratuitous waste
3 Replace inefficient general-purpose methods with efficient

special-purpose ones
4 Precompute values, if possible
5 Store redundant state to speedup expensive operations
6 Pass information between layers
7 Optimize for the processor cache

TABLE I

OPTIMIZATION PRINCIPLE PATTERNS FOREFFICIENT PROTOCOL

IMPLEMENTATIONS

principle patterns and illustrates how they have been applied in
existing protocol implementations, such as TCP/IP. This section
focuses on the optimization principle patterns we applied sys-
tematically to improve the performance of SunSoft IIOP. We fo-
cused on these principle patterns since our experiments revealed
they were the most strategic to improving SunSoft IIOP’s per-
formance. When describing our optimizations, we refer to these
principle patterns and empirically show how their use is justi-
fied.

The SunSoft IIOP optimizations were performed in the fol-
lowing three steps, corresponding to the principle patterns from
Table I:
1. Aggressive inlining to optimize for the common case– which
is discussed in Section III-B.3;
2. Precomputing, adding redundant state, passing information
through layers, eliminating gratuitous waste, and specializing
generic methods– which is discussed in Section III-B.4;
3. Optimizing for the processor cache– which is discussed in
Section III-B.5.

The order we applied the principle patterns was based on the
most significant sources of overhead identified empirically at
each step and the principle pattern(s) that most effectively re-
duced the overhead. For each step, we describe the principle
patterns and specific optimization techniques that were applied
to reduce the overhead remaining from previous steps. After

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0
Sender Buffer Size in Kbytes

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

130.0

T
hr

ou
gh

pu
t i

n 
M

bp
s

Baseline TCP
shorts
longs
chars/octets
doubles
structs

Fig. 7. Throughput for the Original SunSoft IIOP Implementation

each step, we show the improved throughput measurements for
selected data types. In addition, we compare the throughput ob-
tained in the previous steps with that obtained in the current step.

The comparisons focus on data types that exhibited the widest
range of performance,i.e., double and BinStruct . As
shown below, the first optimization step did not improve per-
formance significantly. However, this step was necessary since
it revealed the actual sources of overhead, which were then alle-
viated by the optimizations in subsequent steps.

B.2 Performance of the Original SunSoft IIOP Implementation

B.2.a Sender-side performance. Figure 7 illustrates the sender-
side throughput obtained by sending 64 Mbytes of various data
types for buffer sizes ranging from 1 Kbytes to 128 Kbytes
(incremented by powers of two). The figure compares Sun-
Soft IIOP with a hand-optimized baseline implementation using
TCP/IP and sockets. These results indicate that different data
types achieved substantially different levels of throughput.

The highest ORB throughput results from sendingdoubles ,
whereasBinStructs displayed the worst behavior. This vari-
ation in behavior stems from the (de)marshaling overhead for
different data types. In addition, the original implementation of
the interpretive (de)marshaling engine in SunSoft IIOP incurred
a large number of recursive method calls.

Figure 8 presents the results of usingQuantify to send
64 Mbytes ofdoubles andBinStructs using a 128 Kbyte
sender buffer. The results reveal that the sender spends�90%
of its run-time performingwrite system calls to the network.
This overhead stems from the transport protocol flow control
enforced by the receiving side, which cannot keep pace with the
sender due to excessive presentation layer overhead. Table II
provides detailedQuantify measurements indicating the time
taken by dominant operations and the number of times they were
invoked.

B.2.b Receiver-side performance. TheQuantify analysis
for the receiver-side is shown in Figure 9 and Table III. The
receiver-side results3 for sending primitive data types indicate

3Throughput measurements from the receiver-side were nearly identical to the
sender measurements and are not presented here.



8

93.33

2.69

1.92

1.55

write

put_longlong

CDR::encoder

TypeCode::traverse

88.65

2.99 1.57

1.73 1.33

write

get_long

calc_nested_size_and_alignment

CDR::encoder

TypeCode::traverse

Analysis for double s Analysis forBinStruct s
Fig. 8. Sender-side Overhead in the Original IIOP Implementation

23.80
15.10

14.22

10.51

7.32

 23.81 

Typecode::traverse

CDR::get_longlong

deep_free

CDR::decoder

read

TypeCode::kind

27.65

18.3111.94

8.22

8.20

5.12
5.04 2.68

CDR::get_long

calc_nested_size_and_
alignment
struct_traverse

CDR::decoder

TypeCode::traverse

deep_free

CDR::skip_string

CDR::get_byte

Analysis for double s Analysis forBinStruct s
Fig. 9. Receiver-side Overhead in the Original IIOP Implementation

Data Type Analysis
Method Name msec Called %

double write 78,051 512 93.33
put longlong 2,250 8,388,608 2.69
CDR::encoder 1,605 8,393,216 1.92
TypeCode::traverse 1,300 1,024 1.55

long write 134,141 512 92.92
put long 3,799 16,780,288 2.63
CDR::encoder 3,303 16,781,824 2.29
TypeCode::traverse 2,598 1,024 1.80

short write 265,392 512 93.02
put short 7,593 33,554,432 2.66
CDR::encoder 6,598 33,559,040 2.31
TypeCode::traverse 5,195 1,024 1.82

octet write 530,134 512 93.43
CDR::encoder 15,986 67,113,472 2.82
put byte 10,391 67,118,080 1.83
TypeCode::traverse 10,388 1,024 1.83

BinStruct write 588,039 512 88.65
get long 19,846 44,053,504 2.99
calc nested size... 11,499 14,683,648 1.73
CDR::encoder 10,394 31,461,888 1.57
TypeCode::traverse 8,803 4,195,328 1.33

TABLE II

SENDER-SIDE OVERHEAD IN THE ORIGINAL IIOP IMPLEMENTATION

that most run-time overhead is incurred by the following meth-
ods:
1. TheTypeCode interpreter– i.e., thetraverse method in
classTypeCode .
2. The CDR methods that retrieve the value from the incoming
data– e.g.,get long andget short .

3. Thedeep free method– which deallocates memory.
4. TheCDR::decoder method– The receiver spends a signif-
icant amount of time traversing theBinStruct TypeCode
(struct traverse ) and calculating the size and alignment
of each member in thestruct .

As noted above, the receiver’s run-time costs adversely affect
the sender by increasing the time required to performwrite
system calls to the network due to flow control.

The remainder of this section describes the various optimiza-
tion principle patterns we applied to SunSoft IIOP, as well as the
motivations and consequences of applying these optimizations.
After applying the optimizations, we examine the new through-
put measurements for sending different data types. In addition,
we show how our optimizations affect the performance of the
best case (doubles ) and the worst case (BinStruct ). Like-
wise, detailed profiling results fromQuantify are provided
only for the best and the worst cases.

Figures 8 and 9 illustrate the SunSoft IIOP receiver is the
primary performance bottleneck. Therefore, our initial set of
optimizations are designed to improve receiver performance.
Likewise, since the receiver is the bottleneck, we only show its
Quantify profile measurements.



9

Data Type Analysis
Method Name msec Called %

double TypeCode::traverse 2,598 1,539 23.81
CDR::get longlong 2,596 8,388,608 23.80
deep free 1,648 8,389,633 15.10
CDR::decoder 1,551 8,395,797 14.22
read 1,146 1,866 10.51
TypeCode::kind 799 8,389,120 7.32

long TypeCode::traverse 5,194 1,539 25.31
CDR::get long 4,596 16,783,379 22.40
deep free 3,296 16,778,241 16.06
CDR::decoder 3,099 16,784,405 15.10
read 1,682 2,574 8.20
TypeCode::kind 1,598 16,777,728 7.79

short TypeCode::traverse 10,387 1,539 27.22
CDR::get short 9,188 33,554,432 24.07
deep free 6,591 33,554,457 17.27
CDR::decoder 6,195 33,561,621 16.23
TypeCode::kind 3,196 33,554,944 8.37

octet TypeCode::traverse 20,773 1,539 29.30
CDR::decoder 13,984 67,116,053 19.73
deep free 13,182 67,109,889 18.59
CDR::get byte 10,787 67,118,113 15.22
TypeCode::kind 6,391 67,109,376 9.02

BinStruct CDR::get long 35,091 83,921,427 27.65
calc nested size... 23,001 29,370,880 18.31
struct traverse 15,154 4,194,304 11.94
CDR::decoder 10,436 33,561,621 8.22
TypeCode::traverse 10,401 6,292,995 8.20
deep free 6,492 14,681,089 5.12
CDR::skip string 6,394 33,566,720 5.04
CDR::get byte 3,399 21,153,313 2.68

TABLE III

RECEIVER-SIDE OVERHEAD IN THE ORIGINAL IIOP IMPLEMENTATION

B.3 Optimization Step 1: Inlining to Optimize for the Common
Case

B.3.a Problem: high invocation overhead for small, frequently
called methods. This subsection describes an optimiza-
tion to improve the performance of IIOP receivers. We ap-
plied principle pattern 1 from Table I, whichoptimizes for the
common case. Figure 9 illustrates that the appropriateget
method of the CDR class must be invoked to retrieve the data
from the incoming stream into a local copy. For instance, de-
pending on the data type, methods likeCDR::get long or
CDR::get longlong are called between 10-80 million times
to decode 64 Mbytes of data, as indicated in Table III. Since
theseget methods are invoked quite frequently they are prime
targets for our first optimization step.

B.3.b Solution: inline method calls. Our solution to reduce
invocation overhead for small, frequently called methods was
to inline these methods. Initially, we used the C++inline
language feature.

B.3.c Problem: lack of C++ compiler support for aggressive
inlining. Our intermediateQuantify results after inlining,
shown in Figure 10, reveal that supplying theinline keyword
to the compiler does not always work since the compiler occa-
sionally ignores this “hint.” Likewise, inlining some methods
may cause others to become “non-inlined.” This occurs since
the originally inlined operations (e.g.,ptr align binary )
now invoke newly inlined operations thereby increasing their
size. The C++ compiler then chooses not to inline operations
that were inlined originally.

B.3.d Solution: replace inline methods with preprocessor
macros. To ensure inlining for all small, frequently called

methods, we employ a more aggressive inlining strategy. This
strategyforcibly inlined methods likeptr align binary
(which aligns a pointer at the specified byte alignment) using
preprocessor macros instead of as C++inline methods.

In addition, the Sun C++ compiler did not inline certain meth-
ods, such asskip string andget longlong , due to their
length. For instance, the code in methodget longlong
swaps 16 bytes in a manually un-rolled loop if the arriving data
was in a different byte order. This increases the size of the code,
which caused the C++ compiler to ignore theinline keyword.

To workaround the compiler design, we defined a helper
method that performs byte swapping. This helper method is in-
voked only if byte swapping is necessary. This decreases the
size of the code so that the compiler selected the method for in-
lining. For our experiments, this optimization was valid since
transferred data between UltraSPARC machines with the same
byte order.

B.3.e Optimization results. The throughput measurements af-
ter aggressive inlining are shown in Figure 11. Figures 12 and

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0
Sender Buffer Size in Kbytes

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

130.0
T

hr
ou

gh
pu

t i
n 

M
bp

s
Baseline TCP
shorts
longs
chars/octets
doubles
structs

Fig. 11. Throughput After Applying the First Optimization (inlining)

13 illustrate the effect of aggressive inlining on the throughput
of doubles andBinStructs . Figures 12 and 13 also com-
pare the new results with the original results. After aggressive
inlining, the new throughput results indicate only a marginal
(i.e., 4%) increase in performance. Figures 14 and 15, and Ta-
bles IV and V show profiling measurements for the sender and
receiver, respectively. As before, the analysis of overhead for
the sender-side reveals that most run-time overhead stems from
write calls to the network.

The receiver-sideQuantify profile output reveals that ag-
gressive inlining does force operations to be inlined. How-
ever, this inlining increases the code size for other meth-
ods such asstruct traverse , CDR::decoder , and
calc nested size and alignment , thereby increasing
their run-time costs. As shown in Figures 3 and 4, these meth-
ods are called a large number of times, as indicated in Figure 15
and Table V.

Certain SunSoft IIOP methods such asCDR::decoder and
TypeCode::traverse are large and general-purpose. In-
lining the small methods described above causes further “code



10

25.62

23.63

16.25

15.34

7.32 Typecode::traverse

CDR::get_longlong

deep_free

CDR::decoder

TypeCode::kind

23.28

12.40

12.32

11.30

10.56

7.97
4.97

calc_nested_size_and_
alignment
ptr_align_binary

struct_traverse

CDR::decoder

CDR::skip_string

TypeCode::traverse

deep_free

Analysis for double s Analysis forBinStruct s
Fig. 10. Receiver-side Overhead in the IIOP Implementation After Simple Inlining

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0
Sender Buffer Size in Kbytes

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

T
hr

ou
gh

pu
t i

n 
M

bp
s

Baseline TCP
Original
Opt for expected case

Fig. 12. Throughput Comparison for Doubles After Applying the First Opti-
mization (inlining)

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0
Sender Buffer Size in Kbytes

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

T
hr

ou
gh

pu
t i

n 
M

bp
s

Baseline TCP
Original
Opt for expected case

Fig. 13. Throughput Comparison for Structs After Applying the First Optimiza-
tion (inlining)

bloat” for these methods. Thus, when they call each other recur-
sively a large number of times, very high method call overhead
results. In addition, due to their large size, it is unlikely that
code for both these methods can reside in the processor cache

Data Type Analysis
Method Name msec Called %

double write 59,260 512 92.40
CDR::encoder 3,154 8,393,216 4.92
TypeCode::traverse 1,300 1,024 2.03

BinStruct write 436,694 512 85.29
calc nested size... 14871 14,683,648 3.59
CDR::encoder 14,101 31,461,888 3.40
struct traverse 12,425 2,097,152 3.00

TABLE IV

SENDER-SIDE OVERHEAD AFTER APPLYING THE FIRST OPTIMIZATION

(INLINING )

Data Type Analysis
Method Name msec Called %

double CDR::decoder 3,402 8,393,237 35.11
TypeCode::traverse 2,598 1,539 26.82
deep free 1,648 8,389,633 17.01
TypeCode::kind 799 8,389,120 8.25

BinStruct calc nested size... 29,741 29,367,801 29.69
struct traverse 24,840 4,194,303 24.80
CDR::decoder 14,641 33,554,437 14.62
TypeCode::traverse 7,032 6,292,481 7.02
TypeCode::param count 4,020 4,195,846 4.01
deep free 6,492 14,681,089 4.97

TABLE V

RECEIVER-SIDE OVERHEAD AFTER APPLYING THE FIRST OPTIMIZATION

(AGGRESSIVE INLINING)

at the same time, which explains why inlining does not result in
significant performance improvement.

In summary, although our first optimization step did not im-
prove performance dramatically, it helped to reveal the actual
sources of overhead in the code, as explained in Section III-B.4.

B.4 Optimization Step 2: Precomputing, Adding Redundant
State, Passing Information Through Layers, Eliminating
Gratuitous Waste, and Specializing Generic Methods

B.4.a Problem: too many method calls. The aggressive in-
lining optimization in Section III-B.3 did not cause substantial
improvement in performance due to the processor cache effects
shown in this section and Section III-B.5.

Table V reveals that for sendingstructs , the high-
est cost methods arecalc nested size and alignment ,
CDR::decoder , and struct traverse . These meth-



11

92.40

4.92 2.03

write

CDR::encoder

Typecode::traverse

85.29

3.40 3.00

3.59 write

calc_nested_size_and_
alignment
CDR::encoder

struct_traverse

Analysis for double s Analysis forBinStruct s
Fig. 14. Sender-side Overhead After Applying the First Optimization (aggressive inlining)

35.11

26.82

17.01

8.25

CDR::decoder

Typecode::traverse

deep_free

TypeCode::kind

24.80

14.62

4.97 4.01
29.69

7.02

calc_nested_size_and_alignment

struct_traverse

CDR::decoder

TypeCode::traverse

deep_free

TypeCode::param_count

Analysis for double s Analysis forBinStruct s
Fig. 15. Receiver-side Overhead After Applying the First Optimization (aggressive inlining)

ods are invoked a substantial number of times (29,367,801,
33,554,437, and 4,194,303 times, respectively) to process in-
coming requests.

To see why these methods were invoked so frequently, we
analyzed the calls tostruct traverse . The TypeCode
interpreter invoked struct traverse 2,097,152 times
for data transmissions of 64 Mbytes insequences
of 32-byte Binstruct s. In addition, the SunSoft
IIOP interpreter calculated the size ofBinStruct (using
thecalc nested size and alignment function), which
calledstruct traverse internally for everyBinStruct .
This accounted for an additional 2,097,152 calls.

Although inlining did not improve performance substan-
tially, it helped to answer a key performance question:why
were these high cost methods invoked so frequently? Based
on our detailed analysis of the SunSoft IIOP implementation
(shown in Figure 4 and in the explanation in Section II-C),
we recognized that to demarshal an incomingsequence of
BinStructs , the receiver’sTypeCode interpreter method
TypeCode::traverse must traverse each of its members
using the methodstruct traverse . As each member is tra-
versed, thecalc nested size and alignment method
determines the member’s size and alignment requirements.
Each call to the calc nested size and alignment
method can invoke theCDR::decoder method, which in turn
may invoke thetraverse method.

Close scrutiny of the CORBA request datapath shown in Fig-
ure 4 reveals that thestruct traverse method calculates
the size and alignment requirements every time it is invoked. As
shown above, this yields a substantial number of method calls

for large amounts of data.
Several solutions to remedy this problem are outlined below:

B.4.b Solution 1: reduce gratuitous waste by precomput-
ing values and storing additional state. This solution
is motivated by the following two observations. First,
for incoming sequences , the TypeCode of each ele-
ment is constant. Second, eachBinStruct in the IDL
sequence has the same fixed size. These observations en-
abled us to pinpoint a key source ofgratuitous waste(prin-
ciple pattern 2 from Table I). In this case, the gratuitous
waste involves recalculating the size and alignment require-
ments of each element of thesequence . In our experi-
ments, the methodscalc nested size and alignment
andstruct traverse are expensive. Therefore, it is crucial
to optimize them.

To eliminate gratuitous waste, we canprecompute(principle
pattern 4) the size and alignment requirements of each mem-
ber and store them usingadditional state(principle pattern 5) to
speed up expensive operations. We store this additional state as
private data members of the SunSoft’sTypeCode class. Thus,
the TypeCode for BinStruct will calculate the size and
alignmentonceand store these in the private data members. Ev-
ery time the interpreter wants to traverseBinStruct , it uses
theTypeCode for BinStruct that has already precomputed
its size and alignment. Note that our additional state does not
affect the IIOP protocol since this state is stored locally in the
TypeCode interpreter and is not passed across the network.

In general, allstruct elements in asequence may not
have the same size. For instance, asequence of Anys or
struct s with string fields may have elements with vari-



12

able sizes. In such cases, this optimization will not apply. For
theBinStruct case described in this paper, however, a highly
optimizing IDL compiler, such as Flick [24], could determine
that allsequence elements have identical sizes. It could then
generate stub and skeleton code that can eliminate gratuitous
waste.

B.4.c Solution 2: convert generic methods into special-purpose,
efficient ones. To further reduce method call overhead,
and to decrease the potential for processor cache misses, we
moved thestruct traverse logic for handlingstruct s
into the traverse method. In addition, we introduced the
encoder , decoder , deep copy , and deep free logic
into the traverse method. This optimization illustrates an
application of principle pattern 3 (convert generic methods into
special-purpose, efficient ones).

We chose to keep thetraverse method generic, yet make
it efficient since we want our (de)marshaling engine to remain
in the cache. However, this scheme may not result in opti-
mal cache hit performance for embedded system hardware with
small caches since thetraverse method is excessively large.
Section III-B.5 describes optimizations we used to improve pro-
cessor cache performance.

B.4.d Problem: expensive no-ops for memory deallocation.
Figure 15 reveals that the overhead of thedeep free method
remains significant for primitive data types. This method is sim-
ilar to thedecoder method that traverses theTypeCode and
deallocates dynamic memory. For instance, thedeep free
method has the same type signature as thedecoder method.
Therefore, it can use the recursivetraverse method to navi-
gate the data structure corresponding to the parameter and deal-
locate memory.

Careful analysis of thedeep free method indicates that
memory must be freed for constructed data structures, such as
IDL sequences andstructs . In contrast, forsequences
of primitive types, thedeep free method simply deallocates
the buffer containing thesequence .

Instead of limiting itself to this simple logic, however, the
deep free method usestraverse to find the element type
that comprises the IDLsequence . Then, for the entire length
of thesequence , it invokes thedeep free method with the
element’sTypeCode . Thedeep free method immediately
determines that this is a primitive type and returns. However,
this traversal process is wasteful since it creates a large number
of “no-op” method calls.

B.4.e Solution: eliminate gratuitous waste. To optimize the
no-op memory deallocations, we changed the deletion strategy
for sequences so that the element’sTypeCode is checked
first. If it is a primitive type, such asdouble , the traversal is
not done and memory is deallocated directly.

B.4.f Optimization results. The throughput measurements
recorded after incorporating these optimizations are shown in
Figure 16. Figures 17 and 18 illustrate the benefits of the opti-
mizations from step 2 by comparing the throughput obtained for
doubles andBinStructs , respectively, with results from
previous optimization steps.

Tables VI and VII, and Figures 20 and 20 depict the
profiling measurements for the sender and receiver, respec-

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0
Sender Buffer Size in Kbytes

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

130.0

T
hr

ou
gh

pu
t i

n 
M

bp
s

Baseline TCP
shorts
longs
chars/octets
doubles
structs

Fig. 16. Throughput After Applying the Second Optimization (precomputation
and eliminating waste)

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0
Sender Buffer Size in Kbytes

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0
T

hr
ou

gh
pu

t i
n 

M
bp

s

Baseline TCP
Original
Opt for expected case
Precompute/eliminate waste

Fig. 17. Throughput Comparison for Doubles After Applying the Second Opti-
mization (precomputation and eliminating waste)

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0
Sender Buffer Size in Kbytes

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

T
hr

ou
gh

pu
t i

n 
M

bp
s

Baseline TCP
Original
Opt for expected case
Precompute/eliminate waste

Fig. 18. Throughput Comparison for Structs After Applying the Second Opti-
mization (precomputation and eliminating waste)



13

Data Type Analysis
Method Name msec Called %

double write 4,966 512 62.66
TypeCode::traverse 2,449 1,024 30.90

BinStruct write 61,641 512 76.83
TypeCode::traverse 17,505 2,098,176 21.82

TABLE VI

SENDER-SIDE OVERHEAD AFTER APPLYING THE SECOND OPTIMIZATION

(GETTING RID OF WASTE AND PRECOMPUTATION)

Data Type Analysis
Method Name msec Called %

double read 3,413 4,665 54.93
TypeCode::traverse 2,747 1,539 44.21

BinStruct TypeCode::traverse 27,976 4,195,331 91.94
TypeCode:: 1,151 4,201,475 3.78
typecode param

TABLE VII

RECEIVER-SIDE OVERHEAD AFTERAPPLYING THE SECOND

OPTIMIZATION (GETTING RID OF WASTE AND PRECOMPUTATION)

tively. The receiver methods accounting for the most execu-
tion time for doubles include traverse , decoder , and
deep free . For BinStructs , the run-time costs of the
traverse method in the receiver increases significantly com-
pared to the previous optimization steps. This is due primarily
to the inclusion of thestruct traverse , encoder , and
decoder logic. Although the run-time costs of the interpreter
increased, the overall performance improved since the number
of calls to functions other than itself decreased. As a result,
this design improved processor cache affinity, which yielded
better performance. In addition, due to precomputation, the
calc nested size and alignment method need not be
called repeatedly.

Applying the optimization described above yields a substan-
tial improvement. This result illustrates that the (de)marshaling
overhead of IIOP need not be a limiting factor in ORB perfor-
mance.

B.5 Optimization Steps 3 and 4: Optimizing for Processor
Caches

Processor caches are small, very fast memory used to signif-
icantly speed up operations [25]. To leverage the advantages
offered by the processor cache it is imperative that operation
footprints be small.

[26] describes several techniques to improve protocol latency.
One of the primary areas to be considered for improving proto-
col performance is to improve the processor cache effectiveness.
Hence, the optimizations described in this section are aimed at
improving processor cache affinity, thereby improving perfor-
mance.

B.5.a Problem: very large, monolithic interpreter. Section III-
B.4 describes optimizations based on precomputation, eliminat-
ing waste, and specializing generic methods. These optimiza-
tions yield an efficient, albeit excessively large,TypeCode in-
terpreter. The efficiency stems from the fact that the monolithic
structure results in low function call overhead. Recursive func-
tion calls are affordable since the processor cache is already

loaded with the instructions for the same function. However,
for embedded system hardware with smaller cache sizes, it may
be desirable to have smaller functions.

B.5.b Solution: split large functions into smaller ones and out-
lining. This section describes optimizations we used to improve
processor cache affinity for SunSoft IIOP. Our optimizations are
based on two principle patterns described below:

1. Splitting large, monolithic functions into small, mod-
ular functions: In our case, theTypeCode interpreter
traverse method is the prime target for this optimiza-
tion. As described earlier in Section III-B.4, the logic for
encoder , decoder , struct traverse , deep free ,
anddeep copy is merged into the interpreter, which increases
its code size. The primary purpose of merging these methods is
to reduce excessive function call overhead.

To improve processor cache affinity, however, it is desirable to
have both smaller functions and minimal function call overhead.
We accomplished this by splitting the interpreter into smaller
functions that are targeted for specific tasks, such as encoding
or decoding individual data types. This strategy is in contrast to
a generic encoder or decoder that can marshal any OMG IDL
data type. Thus, to decode asequence , the receiver uses the
decode sequence method of theCDRclass and to decode a
struct , it uses thedecode struct method.

The decode sequence method could support more spe-
cialized methods,e.g.,decode sequence long to decode a
sequence of long s, by further decomposing it. A smaller
piece of code that demonstrates high locality of reference is
more likely to reside within processor caches.

The optimization principle pattern we employed here is sim-
ilar to principle pattern 3 from Table I, which replaces general-
purpose methods with efficient special-purpose ones. In the
present case, however, the large, monolithic interpreter is re-
placed by special-purpose methods for encoding and decoding.

2. Using “outlining” to optimize for the frequently executed
case:Outlining [26] is used to remove gaps that are introduced
in the processor cache as a result of branch instructions arising
from error handling code. Processor cache gaps are undesirable
because they waste memory bandwidth and introduce useless
no-op instructions in the cache.

The purpose of outlining is to move error handling code,
which is rarely executed, to the end of the function. This en-
ables frequently executed code to remain in contiguous memory
locations, thereby preventing unnecessary jumps and hence in-
creasing cache affinity by virtue of spatial locality.

Spatial locality is a property whereby data closely associated
with currently referenced data are likely to be referenced soon.
According to the 90-10 locality principle [25], a program exe-
cutes 90% of its instructions in 10% of its code. If that 10% of
the code demonstrates spatial locality, we can derive substantial
cache affinity, which improves performance. Increased spatial
locality can be achieved by using outlining, which reduces the
number of gaps in the processor cache.

Outlining is a technique based on principle patterns 1 and 7
from Table I, which optimize for the expected case and optimize
for the processor cache, respectively.

The optimizations described in this section were applied in



14

62.66

30.90

write

Typecode::traverse

76.83

21.82

write

Typecode::traverse

Analysis for double s Analysis forBinStruct s
Fig. 19. Sender-side Overhead After Applying the Second Optimization (getting rid of waste and precomputation)

54.93

44.21

read

Typecode::traverse

91.94

3.78

TypeCode::traverse

TypeCode::typecode_param

Analysis for double s Analysis forBinStruct s
Fig. 20. Receiver-side Overhead After Applying the Second Optimization (getting rid of waste and precomputation)

two steps. Since theQuantify analysis in the previous steps
revealed the receiver as the source of overhead, we optimized
the receiver side to gain greater processor cache effectiveness.
However, the resultingQuantify analysis forBinStructs
revealed that the sender-side, which waswrite -bound after the
optimizations in step 2, spends a substantial amount of time
(88%) in the interpreter. Hence we applied the similar opti-
mizations for the cache for the sender side. Specifically, the
sender-side processor cache optimizations involve splitting the
interpreter into smaller, specialized functions that can encode
different OMG IDL data types.

B.5.c Optimization step 3: receiver-side optimizations. Fig-
ures 19 and 20 reveal that the sender is largelywrite -bound.
In contrast, the receiver spends most of its time in the inter-
preter. Therefore, it is appropriate to optimize the receiver-side
code first to improve processor cache performance.

The throughput measurements recorded after incorporating
these optimizations are shown in Figure 21. Figures 22
and 23 illustrate the benefits of the optimizations from step
3 by comparing the throughput obtained fordoubles and
BinStructs , respectively, with those from the previous op-
timization steps.

Figures 24 and 25, and Tables VIII and IX illustrate the re-
maining high cost sender-side and receiver-side methods, re-
spectively. These indicate that for primitive types, the cost
of writing to the network and reading from the network be-
comes the primary contributor to the run-time costs. These re-
sults represent a substantial improvement over the original re-
sults presented in Section III-B.2 and illustrate that IIOP’s mar-
shaling overhead need not unduly limit ORB performance. For
BinStruct s, however, the sender-side, which waswrite -
bound after the optimizations in step 2, spends a substan-

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0
Sender Buffer Size in Kbytes

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

130.0

T
hr

ou
gh

pu
t i

n 
M

bp
s

Baseline TCP
shorts
longs
chars/octets
doubles
structs

Fig. 21. Throughput After Applying the Third Optimization (receiver-side pro-
cessor cache optimization)

Data Type Analysis
Method Name msec Called %

double write 3,385 512 53.21
TypeCode::traverse 2,449 1,024 38.68

BinStruct TypeCode::traverse 17,557 2,098,176 88.16
write 1,270 512 6.37

TABLE VIII

SENDER-SIDE OVERHEAD AFTER APPLYING THE THIRD OPTIMIZATION

(RECEIVER-SIDE PROCESSOR CACHE OPTIMIZATION)



15

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0
Sender Buffer Size in Kbytes

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

T
hr

ou
gh

pu
t i

n 
M

bp
s

Baseline TCP
Original
Opt for expected case
Precompute/eliminate waste
Receiver cache opt

Fig. 22. Throughput Comparison for Doubles After Applying the Third Opti-
mization (receiver-side processor cache optimization)

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0
Sender Buffer Size in Kbytes

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

T
hr

ou
gh

pu
t i

n 
M

bp
s

Baseline TCP
Original
Opt for expected case
Precompute/eliminate waste
Receiver cache opt

Fig. 23. Throughput Comparison for Structs After Applying the Third Opti-
mization (receiver-side processor cache optimization)

tial amount of time (88%) in the interpreter. The receiver
spends most of its time in the specialized functions such
as decode sequence (30%), anddecode array (26%).
Analysis of the receiver-side revealed that the function call over-
head decreased significantly compared to step 2.

B.5.d Optimization step 4: sender-side optimizations. The
sender-side processor cache optimizations involve splitting the

Data Type Analysis
Method Name msec Called %

double read 3,392 5,688 53.21
TypeCode::decode seq 2,897 512 45.43

BinStruct CDR::decode seq 6,666 512 29.61
CDR::decode array 5,839 2,096,128 25.94
deep free seq 4,359 512 19.36
read 3,712 6,379 16.49
typecode param 1,150 4,200,963 5.11
deep free array 712 2,097,152 3.16

TABLE IX

RECEIVER-SIDE OVERHEAD AFTER APPLYING THE THIRD OPTIMIZATION

(RECEIVER-SIDE PROCESSOR CACHE OPTIMIZATIONS)

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0
Sender Buffer Size in Kbytes

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

130.0

T
hr

ou
gh

pu
t i

n 
M

bp
s

Baseline TCP
shorts
longs
chars/octets
doubles
structs

Fig. 26. Throughput After Applying the Fourth Optimization (sender-side pro-
cessor cache optimization)

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0
Sender Buffer Size in Kbytes

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

T
hr

ou
gh

pu
t i

n 
M

bp
s

Baseline TCP
Original
Opt for expected case
Precompute/eliminate waste
Receiver cache opt
Sender cache opt

Fig. 27. Throughput Comparison for Doubles After Applying the Fourth Opti-
mization (sender-side processor cache optimization)

interpreter into smaller, specialized functions that can encode
different OMG IDL data types.

The throughput measurements recorded after incorporating
these optimizations are shown in Figure 26. Figures 27
and 28 illustrate the benefits of the optimizations from step
4 by comparing the throughput obtained fordoubles and
BinStructs , respectively, with those from the previous op-
timization steps.

Figures 29 and 30, and Tables X and XI illustrate the re-
maining high cost sender-side and receiver-side methods, re-
spectively.

IV. M INIMIZING FOOTPRINT OFIDL COMPILER

GENERATEDSTUBS AND SKELETONS

A. Motivation

A OMG IDL compiler is responsible for generatingstubsand
skeletonsthat marshal and demarshal data types, respectively. In
general, compiled (de)marshaling achieve higher run-time effi-
ciency at the cost of increased memory footprint. Conversely,
interpretive (de)marshaling can be used for applications that can



16

53.21

38.68 write

TypeCode::traverse

88.16

6.37

TypeCode::traverse

write

Analysis for double s Analysis forBinStruct s
Fig. 24. Sender-side Overhead After Applying the Third Optimization (receiver-side processor cache optimization)

53.21

45.53
read

CDR::decode
_sequence

29.61

25.94

19.36

16.49

5.11 3.16
CDR::decode_sequence

CDR::decode_array

deep_free_sequence

read

TypeCode::typecode_param

deep_free_array

Analysis for double s Analysis forBinStruct s
Fig. 25. Receiver-side Overhead After Applying the Third Optimization (receiver-side processor cache optimizations)

54.3

37.75

write

CDR::encode_sequence

53.31

45.74

read

CDR::decode_sequence

Analysis for double s Analysis forBinStruct s
Fig. 29. Sender-side Overhead After Applying the Fourth Optimization (sender-side processor cache optimization)

64.93

16.9

15.27 write

CDR::encode_sequence

CDR::encode_array

33.5

29.34

21.9

5.78
5.49 3.58

CDR::decode_sequence

CDR::decode_array

deep_free_sequence

TypeCode::typecode_param

read

deep_free_array

Analysis for double s Analysis forBinStruct s
Fig. 30. Receiver-side Overhead After Applying the Fourth Optimization (sender-side processor cache optimizations)

afford to trade lower efficiency for a smaller memory footprint.
Since neither approach is optimal for all distributed embedded
multimedia applications, an OMG IDL compiler should produce
stubs and skeletons that can use compiledand/or interpretive
(de)marshaling.

This section describes the design of TAO’s IDL compiler,
which can selectively generate compiled and/or interpreted stubs

and skeletons to enhance the optimization alternatives available
to developers of embedded CORBA applications.

B. Overview of TAO’s IDL Compiler

Figure 31 illustrates the interaction between the key compo-
nents in the TAO’s IDL Compiler. The TAO IDL compiler is



17

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0
Sender Buffer Size in Kbytes

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

T
hr

ou
gh

pu
t i

n 
M

bp
s

Baseline TCP
Original
Opt for expected case
Precompute/eliminate waste
Receiver cache opt
Sender cache opt

Fig. 28. Throughput Comparison for Structs After Applying the Fourth Opti-
mization (sender-side processor cache optimization)

Data Type Analysis
Method Name msec Called %

double write 3,522 512 54.30
CDR::encode seq 2,448 512 37.75

BinStruct write 24,430 512 64.93
CDR::encode seq 6,357 512 16.90
CDR::encode arr 5,744 2,097,152 15.27

TABLE X

SENDER-SIDE OVERHEAD AFTER APPLYING THE FOURTH OPTIMIZATION

(SENDER-SIDE PROCESSOR CACHE OPTIMIZATION)

based on the freely available SunSoft IDL compiler4 front-end,
with many portability enhancements and with the defects re-
moved. The front-end of the compiler parses OMG IDL input
files and generates an abstract syntax tree (AST) that is stored
entirely in memory.

The back-end of TAO’s IDL compiler processes the AST and
generates C++ source code that is optimized for TAO’s IIOP
protocol engine. In addition to generating interpreted stubs and
skeletons, TAO’s back-end can also produce compiled stubs and
skeletons.

4The original SunSoft IDL compiler implementation is available at
ftp://ftp.omg.org/pub/OMG IDL CFE 1.3 .

Data Type Analysis
Method Name msec Called %

double read 3,376 5,470 53.31
TypeCode::decode seq 2,897 512 45.74

BinStruct CDR::decode seq 6,666 512 33.50
CDR::decode array 5,839 2,096,128 29.34
deep free seq 4,359 512 21.90
typecode param 1,150 4,200,963 5.78
read 1,093 1,985 5.49
deep free array 712 2,097,152 3.58¡

TABLE XI

RECEIVER-SIDEOVERHEAD AFTER APPLYING THE FOURTH

OPTIMIZATION (SENDER-SIDE PROCESSOR CACHE OPTIMIZATIONS)

Visitor Strategy

visitor_interface()

STRATEGY

BE Driver
driver_interface()

BACK END

Generated
AST

DRIVER

FRONT END

PARSER

AST Generator

Generated
Code

IDL
Definition

TAO IDL Compiler

interface Test_Param {
  short  test_short (in short x);
};

:be_root

:be_interface

:be_operation

:be_argument:be_primitive

:be_primitive

....

..
class Test_Param {
public:

  virtual CORBA::Short
   test_short (CORBA::Short x);
  .....
  ..
};

Fig. 31. Interactions Between Components in TAO’s IDL Compiler

B.1 The Design of TAO’s IDL Compiler Front-end

TAO’s IDL compiler front-end contains the following com-
ponents adapted from the original SunSoft IDL compiler:

B.1.a OMG IDL parser:. The parser comprises ayacc specifi-
cation of the OMG IDL grammar. The action for each grammar
rule invokes methods of the AST node classes to build the AST.

B.1.b Abstract syntax tree generator:. Different nodes of the
AST correspond to the different constructs of OMG IDL. The
front-end defines a base class calledAST Decl that maintains
information common to all AST node types. Specialized AST
node classes likeAST Interface inherit from this base class,
as shown in Figure 32.

In addition, the front-end defines theUTL Scope class,
which maintains scoping information, such as the nesting level
and each component of the fully scoped name. All AST
nodes representing OMG IDL constructs that can define scopes,
such asstructs and interfaces , also inherit from the
UTL Scope class.

B.1.c Driver program:. The driver program directs the parsing
and AST generation process. It reads an input OMG IDL file
and invokes the parser and the AST generator to create the in-
memory AST and pass it to the back-end code generator.

B.2 The Design of TAO’s Back-end Code Generator

The original SunSoft IDL compiler front-end parses OMG
IDL and generates a corresponding abstract syntax tree (AST).
To create a complete OMG IDL compiler for TAO, we devel-
oped a back-end for the OMG IDL-to-C++ mapping. TAO’s
IDL compiler back-end uses several design patterns [21], such
as Abstract Factory, Strategy, andVisitor. As a consequence



18

AST_Decl

    AST_
Operation

   AST_
Interface

   AST_
Constant

AST_Type

   AST_
EnumVal

  AST_
Module

   AST_
Attribute

    AST_
Argument

AST_Field

   AST_
Typedef

AST_Root

      AST_
InterfaceFwd

       AST_
ConcreteType

UTL_Scope

    AST_
Sequence

   AST_
Structure

AST_
Array

 AST_
String

AST_
Enum

    AST_
Predefined

   AST_
Exception

 AST_
Union

      AST_
UnionBranch

Fig. 32. TAO’s IDL Compiler AST Class Hierarchy

of using patterns, TAO’s IDL compiler back-end can be recon-
figured readily to produce stubs and skeletons that use either
compiled and/or interpretive (de)marshaling.

The interpretive stubs and skeletons produced by the back-
end of TAO’s IDL compiler integrate with TAO’s highly opti-
mized IIOP interpretive protocol engine. The interpreted stubs
and skeletons generated by TAO’s IDL compiler are explained
below.

B.2.a Interpreted stubs:. The interpreted stubs produced by
TAO’s IDL compiler use a table-driven technique to pass param-
eters to TAO’s interpretive IIOP (de)marshaling engine. The ba-
sic structure of an interpretive stub is shown in Figure 33. Each

IIOP CDR INTERPRETIVE

MARSHALING ENGINE

SEND REQUEST RECEIVE REPLY

OBJECT REQUEST BROKER

INIT TABLE ENTRIES

ALLOCATE RETURN

VARIABLE (IF ANY)

CREATE ARGUMENT LIST

RETRIEVE STUB OBJECT

INVOKE DO_STATIC_CALL

RETURN RETURN

VALUE (IF ANY)

INTERPRETED STUB

1.

5.

4.

3.

2.

6.

Fig. 33. Interpreted Stubs Generated by TAO’s IDL Compiler

step is described below:
1. Initialize table entries describing each parameter’s type via
its TypeCode and its parameter passing mode.

2. Initialize a table describing the operation, including its name,
whether it is one-way or two-way, the number of parameters it
takes, and a pointer to the table described in Step 1.
3. A variable for the return value, if any, is allocated.
4. A list that holds all the arguments is created and initialized
with the parameters in the same order they are defined in the
IDL definition of the operation.
5. A stub object is retrieved from the object reference on which
this operation is invoked.
6. Thedo static call method is invoked on this stub ob-
ject passing it the operation description table and the argument
list

Thedo static call method described above is the inter-
face to TAO’s interpretive IIOP protocol engine. It takes the
table describing the parameter types and the argument list as pa-
rameters.

The table-driven technique and thedo static call inter-
face were provided in the original SunSoft IIOP implementa-
tion.5 However, since the SunSoft IIOP implementation did not
have an IDL compiler each stub was hand-crafted. In contrast,
the TAO IDL compiler automatically generates stubs that use
interpretive (de)marshaling.

B.2.b Interpreted skeletons:. SunSoft IIOP skeletons use a Dy-
namic Skeleton Interface (DSI) [3] strategy to demarshal param-
eters. The basic (non-optimized) algorithm for an interpreted
skeleton is shown in Figure 34. Each step is described below:

RECEIVE REQUEST

FIND TARGET OBJECT

FIND SKELETON

INVOKE SKELETON

DEALLOC PARAMS

SEND REPLY MSG

BUILD REPLY MSG

MARSHAL PARAMS

OBJECT REQUEST BROKER

CREATE NVLIST

HEAP ALLOCATE

PARAMETERS

POPULATE

NVLIST

UNMARSHAL

PARAMETERS

INSERT RETURN

VALUE IN ANY

MAKE UPCALL

DSI SKELETON

1.

6.

5.

4.

3.

2.

Fig. 34. Unoptimized Skeletons

1. Create anNVList , which is a list of “name/value” pairs, to
hold the parameters.
2. Heap allocate all thereturn , inout , andout parameters
since they are marshaled back into the outgoing stream. The
in parameters can be allocated on the run-time call stack of the
skeleton.
3. Add each parameter value to theNVList using the opera-
tions provided by the ORB’s DSI mechanism.

5We renamed SunSoft IIOP’sdo call to do static call .



19

4. Use the DSI operationarguments to demarshal incoming
parameters.
5. Make an upcall on the target object, passing it all the demar-
shaled parameters.
6. Create aCORBA::Any to hold the return value, if any.
7. Return from the skeleton and let the ORB Core handle the
task of marshaling thereturn , inout , andout parameters,
which are returned back to the client.

Memory for theinout , out , andreturn values is allo-
cated on the heap, which is necessary because these parameters
are marshaled into the outgoing IIOP Reply message after the
call to the skeleton has returned. Therefore, it is not possible
to allocate the parameters on the run-time stack of the skele-
ton. The heap allocated data structures are owned by the ORB
and freed using an interpretive strategy similar to the interpretive
(de)marshaling strategy [27].

The TAO IDL compiler, in contrast, produces an optimized
version of these skeletons automatically. These optimizations
include reducing the memory allocation overhead and reducing
the size of the skeleton, as described in Section IV-C.

B.2.c Compiled stubs and skeletons:. The basic structure of
a compiled stub is shown in Figure 35. The compiled stub’s

SEND REQUEST RECEIVE REPLY

OBJECT REQUEST BROKER

ALLOCATE RETURN

VARIABLE (IF ANY)

SETUP CDR STREAM

MARSHAL IN AND

INOUT PARAMETERS

RETRIEVE STUB OBJECT

CALL INVOKE

RETURN RETURN
VALUE (IF ANY)

COMPILED STUB

1.

5.

4.

3.

2.

6.
UNMARSHAL INOUT, OUT,
RETURN PARAMETERS

7.

Fig. 35. Compiled Stubs/Skeletons

algorithm is very similar to the stub and works as follows:
1. Retrieve the stub object from the object reference.
2. Create a CDR stream object into which the parameters will
be marshaled.
3. The CDR stream object is initialized with the details of the
receiving endpoint.
4. Insert each parameter into the stream in the same order they
they are defined in the IDL description.
5. Send the parameters and wait for return values.
6. Demarshal all thereturn , inout , and out parameters
and return the results to the client.

The compiled stubs and skeletons use overloaded C++
iostream insertion and extraction operators,i.e., operator<<

and operator>> , respectively, to (de)marshal data types
to/from the underlying CORBA Common Data Representation
(CDR) stream. TAO’s ORB Core provides these operators for
primitive types. TAO’s IDL compiler generates these operators
for user-defined types.

A significant difference between the compiled skeleton and
the interpreted skeleton is that no unnecessary heap allocation
is required in the compiled skeleton. This is because a com-
piled skeleton has static knowledge of the types it (de)marshals.
Moreover, all (de)marshaling of the parameters occur in the
scope of the skeleton. In contrast, the interpretive skeletons in
the DSI strategy require dynamic allocation since they marshal
thereturn , inout , andout parameters in the ORBafter the
activation record of the skeleton has been destroyed.

C. Techniques for Optimizing Generated Stubs and Skeletons

As described in Section IV-A, it is imperative that an IDL
compiler for embedded applications generate stubs and skele-
tons with exhibit small memory footprints. Therefore, we de-
vised a technique to reduce the code size in TAO. Our code-size
reduction techniques for interpreted stubs/skeletons are guided
by the optimization principle patterns shown in Figure XII.

# Principle Pattern
1 Factor out all common features
2 Avoid unnecessary heap allocation
3 Leverage compile time knowledge of data types

TABLE XII

OPTIMIZATION PRINCIPLE PATTERNS FORSMALL FOOTPRINT

STUBS/SKELETONS

Implementing these optimizations required the addition of
several features to TAO’s ORB Core. In particular, it was nec-
essary to provide a pair of methods that marshal and demarshal
parameters while the activation record of the stub and skeleton
is active. This allows parameters to be allocated on the stack
instead of from the heap, thereby eliminating dynamic memory
allocation and locking.

Below, we describe other techniques we applied in TAO’s IDL
compiler to optimize the generated stubs and skeletons.

C.1 Optimizing DSI-style Interpretive Skeletons

As shown in Figure 34, each interpretive skeleton is required
to create anNVList and populate it with parameters. In ad-
dition, memory is allocated from the heap rather than on the
run-time stack for theinout , out , andreturn types. This is
necessary since the marshaling of these parameters in the outgo-
ing stream takes place after the call to the skeleton has returned.

Applications using the DSI must comply with the approach
shown in Figure 34. However, the ORB Core can be modified to
provide the necessary operations that is used by the IDL gener-
ated code. Applications cannot directly access these operations
since they are protected.

Close scrutiny of early versions of TAO’s IDL compiler-
generated skeleton code revealed that each skeleton created an
NVList and populated it with parameters. Similarly, the return



20

value was stored in aCORBA::Any data structure. However,
these common features can be factored out by TAO’s ORB Core.

Based on our observations, we implemented a table-driven
technique similar to the one used in the interpretive stubs.
This table-driven approach defines two new interfaces in TAO’s
(de)marshaling engine that are similar to itsdo static call
method. We could not reuse thedo static call method
since these two interfaces were required on the server-side “re-
quest” object. The space-efficient skeleton is shown in Fig-
ure 36.

BUILD REPLY MSG

MARSHAL PARAMS POPULATE NVLIST

CREATE NVLIST

UNMARSHAL PARAMS

RECEIVE REQUEST

FIND TARGET OBJECT

FIND SKELETON

INVOKE SKELETON

SEND REPLY MSG

OBJECT REQUEST BROKER

STACK ALLOCATE

PARAMETERS

 UNMARSHAL

PARAMETERS

   MARSHAL

PARAMETERS

MAKE UPCALL

TAO SKELETON

   DEALLOC

PARAMETERS

1.

5.

4.

3.

2.

Fig. 36. Optimized DSI-interpretive Skeletons

The main benefit of the table-driven technique is that mar-
shaling of outgoing parameters can occur while the activation
record on the run-time stack frame of the skeleton is still valid.
As a result, theinout , out , andreturn parameters need not
be allocated from the heap. Instead, they can be allocated on the
call stack using the same technique that TAO’s compiled skele-
tons uses. In addition, if any outgoing types are mapped into
C++ pointers, we can directly invoke the C++delete opera-
tor rather than interpretively deallocating the memory.

D. Benchmarks Comparing Interpreted and Compiled (De)marshaling

This section describes our experiments comparing the size
and performance of interpreted and compiled stubs and skele-
tons generated by TAO’s IDL compiler.

D.1 Hardware and Software Platforms

The experiments reported in this section were conducted on
three different combinations of hardware and software, includ-
ing:
� An UltraSPARC-II with two 300 MHz CPUs, a 512 Mbyte
RAM, running SunOS 5.5.1, and C++ Workshop Compilers ver-
sion 4.2;
� A Pentium Pro 200 with 128 Mbyte RAM running Windows
NT 4.0 and the Microsoft Visual C++ 5.0 compiler;
� A Pentium Pro 180 with 128Mb RAM running Redhat Linux
4.2 kernel recompiled for SMP support and LinuxThreads 0.5.
The GNU g++ 2.7.2.1 C++ compiler was used.

D.2 Profiling Tools

The code size information for various methods reported in
Section IV-D is obtained using the GNUobjdump binary util-
ity on SunOS 5.5.1 and Linux. On Window NT, we used the
dumpbin binary utility. In both cases, we used thedisasmand
linenumbersoptions to disassemble the object code and insert
line numbers in the assembly listing, respectively. Code size for
individual stubs/skeletons is reported by counting the total num-
ber of bytes of assembly level instructions produced. In addi-
tion, we used the UNIXstrip utility to measure the total size
of the object code after removing the symbols and other debug
information.

The profile information for the empirical analysis was ob-
tained using theQuantify performance measurement tool.
Quantify analyzes performance bottlenecks and identifies
sections of code that dominate execution time. Unlike tradi-
tional sampling-based profilers, such as the UNIXgprof tool,
Quantify reports results without including its own overhead.
In addition,Quantify measures the overhead of system calls
and third-party libraries without requiring access to source code.

D.3 Parameter Types for Stubs/Skeletons

We defined aninterfacein OMG IDL called Param Test
shown below.

interface Param_Test
{

// Primitive types.
short test_short

(in short s1,
inout short s2,
out short s3);

// Sequences and typedefs.
typedef sequence<string> StrSeq;

StrSeq test_strseq
(in StrSeq s1,

inout StrSeq s2,
out StrSeq s3);

// other data types and operations
// defined in a similar way

};

All the operations defined on this interface test the four pa-
rameter passing modes: (1)in , (2) inout , (3) out , and (4)
return for a wide range of data types. The data types we
tested include primitives such asshort s, and complex data
types such as unbounded strings, fixed size structures, variable
sized structures, nested structures, sequence of strings, and se-
quence of structures. All operations are two-way. Sequences are
limited to a length of 9 elements and strings contain 128 charac-
ters.

D.4 Methodology

We measured the average throughput in terms of number
of calls made per second by invoking each operation of the
Param Test interface 2,000 times. The servant object im-
plements each operation by copying itsin parameter into the
inout , out , and return parameters. For complex data
types, such asstruct sequence , this overhead becomes
significant compared to the others.



21

We are primarily interested in measuring the performance of
the stubs and skeletons. Therefore, all tests ran in loopback
mode, which avoided network transfer overhead. However, we
do measure OS effects like paging, context switching, and in-
terrupts. In addition, delays incurred due to the run-time costs
of the implementation of the operation by the servant object are
also measured.

The code size of individual stubs and skeletons is mea-
sured using the GNU binary utilityobjdumpand Windows NT’s
dumpbinas explained in Section IV-D.2.

D.5 Comparing Interpreted versus Compiled (De)marshaling

This section describes the results comparing the performance
and code size of stubs and skeletons using interpretive and com-
piled form of (de)marshaling. As explained in Section IV-D.4,
each operation of theParam Test interface is invoked 2,000
times. The tests are performed in a loopback mode to avoid un-
necessary network delays. The two-way average throughput of
invoking the operations is reported. First, we report the perfor-
mance results followed by comparison of the code sizes.

D.5.a Comparing twoway average throughput:. Figures 37,
38, and 39 depict the two-way average throughput in terms of
calls made per second for invoking different methods of the
Param Test for 2,000 iterations for the UltraSPARC, a PC
running NT, and PC running Linux, respectively. These figures

sh
or

t

un
b_

str
ing

fix
ed

_s
tru

ct

str
se

q

va
r_

str
uc

t

ne
ste

d_
str

uc
t

str
uc

t_s
eq

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

C
al

ls
 p

er
 s

ec
on

d

Compiled
Interpreted

Fig. 37. UltraSPARC Performance

sh
or

t

un
b_

str
ing

fix
ed

_s
tru

ct

str
se

q

va
r_

str
uc

t

ne
ste

d_
str

uc
t

str
uc

t_s
eq

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

C
al

ls
 p

er
 s

ec
on

d

Compiled
Interpreted

Fig. 38. NT Performance

sh
or

t

un
b_

str
ing

fix
ed

_s
tru

ct

str
se

q

va
r_

str
uc

t

ne
ste

d_
str

uc
t

str
uc

t_s
eq

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

C
al

ls
 p

er
 s

ec
on

d

Compiled
Interpreted

Fig. 39. Linux Performance

indicate that the two-way throughput of the interpreted stubs
and skeletons is within 75 to 95% of the compiled stubs for
primitive types such asshorts , and complex types, such as
unbounded strings and fixed size structs. However, for other
complex types such assequence of string s, sequence
of struct s, variable-sizedstruct s, and nestedstruct s,
the two-way throughput for interpreted stubs/skeletons is com-
parable or exceeds that of the compiled stubs. This is due to
the optimizations we developed for the TAO ORB core and its
interpretive IIOP (de)marshaling engine.

As mentioned in Section IV-D.4, these measurements include
the effects of the OS, as well as the run-time costs of the op-
eration implementations. These run-time operation implemen-
tation costs are more significant for thetest struct seq
case, where eachsequence of struct s has 9 variable-
sized structs. Each variable-sizedstruct element in turn has
two string members, each of length 128, and asequence of
string member. This member in turn has 9string ele-
ments, each of length 128.

Figures 37, 38, and 39 indicate that the two-way through-
put for complex user-defined data types such as variable-sized
struct s and sequences is significantly poorer compared to the
primitive types irrespective of the type of (de)marshaling used.
This is due to the costs of copying thein parameter into the
inout , out , andreturn in the server-side implementation
of the operation. Irrespective of the type of (de)marshaling used
by the stubs and skeletons, however, the implementation of the
operations is same in both cases. Thus, our comparisons of two-
way throughput are valid.

The blackbox results presented in Figures 37, 38, and 39
do not convey the effects of the OS or the run-time costs
of the operation implementations. To pinpoint precisely the
run-time costs of the stubs and skeletons in (de)marshaling,
we configured our profiling toolQuantify to measure only
these costs. Table XIII illustrates the Quantify analysis for the
test fixed struct and thetest strseq tests on the Ul-
traSPARC platform.6

Table XIII indicates that forfixed struct the compiled
stubs and skeletons accounted for 47.76 msec compared to
283.56 msec required for the interpretive stubs and skeletons.

6We did not have Quantify for Linux and Windows NT.



22

Data Type Role Type Interpreted Compiled
msec called msec called

fixed struct server marshal 84.21 6,000 13.76 6,000
demarshal 57.29 4,000 9.93 4,000

client marshal 56.17 4,000 9.17 4,000
demarshal 85.89 6,000 14.90 6,000

strseq server marshal 335.46 6,000 279.00 6,000
demarshal 98.52 4,000 219.00 4,000

client marshal 95.43 4,000 68.76 4,000
demarshal 256.24 6,000 665.71 6,000

TABLE XIII

WHITEBOX ANALYSIS OF PERFORMANCE OFSTUBS/SKELETONS ON

ULTRASPARC

This result explains why the compiled (de)marshaling is signif-
icantly better than the interpretive (de)marshaling for fixed size
structs. Conversely, forsequence s ofstring s, the compiled
stubs and skeletons required 1,232.47 msec compared to only
785.65 msec by the interpretive stubs and skeletons. This result
explains why the interpretive stubs perform better than the com-
piled stubs for all the data types that aresequence s or have
sequence s as their members.

TAO’s interpretive IIOP (de)marshaling engine is highly op-
timized for (de)marshalingsequence s. It defines a generic
basesequence class with virtual methods. For every user-
definedsequence , the TAO IDL compiler generates a C++
class that inherits from this basesequence class. In accor-
dance with the IDL-to-C++ mapping, the C++ class generated
for thesequence s overrides all the methods of the base class.
The derived class does not define any data members since they
are already defined in the base class.

TAO’s IIOP interpreter (de)marshalssequence s by invok-
ing methods on the base class. At run-time, these virtual method
calls are invoked on the appropriate derived class. This de-
sign significantly enhancessequence (de)marshaling perfor-
mance by allowing TAO to use compile-time knowledge of the
sequence and its element type for decoding. Thus, there is no
need to interpretively decode thesequence using expensive
typecode traversals.

D.5.b Comparing code size for stubs and skeletons:. Below,
we describe the code size measurements we conducted for stubs
and skeletons. As mentioned in Section IV-D.2, we used the
GNU binary utility calledobjdump and NT’s dumpbin to
measure the individual code sizes. Table XIV depicts the code
sizes for the overloaded operators used for (de)marshaling user-
defined IDL data types. The code size of thenested struct
is only 88 bytes since internally it calls the overloaded operator
for var struct .

Tables XV and XVI illustrate the code sizes for the stubs and
skeletons, respectively.

We account for the size of the tables in the size of the stubs
and skeletons using interpreted (de)marshaling. Therefore, the
total size of the stub/skeleton is the size of the stub/skeleton and
the size of the statically allocated tables.

For the compiled (de)marshaling, we account for the size of
helper overloaded operator methods used to (de)marshal user-
defined data types. Since these helper methods are not inlined by
the compiler, we account for them only once. Thus, although the

Operator Size
operator<< (char *) 192
operator>> (char *) 240
operator<< (fixed\_struct) 280
operator>> (fixed\_struct) 256
operator<< (strseq) 312
operator>> (strseq) 264
operator<< (var\_struct) 176
operator>> (var\_struct) 192
operator<< (nested\_struct) 88
operator>> (nested\_struct) 88
operator<< (struct\_seq) 208
operator>> (struct\_seq) 208

TABLE XIV

SIZES OFOVERLOADED OPERATORS FORCOMPILED STUBS/SKELETONS

ON ULTRASPARC

Stub name Interpreted size Compiled size
stub table total stub helper total

test short 320 88 408 1,112 1,112
test ubstring 352 88 440 1,000 432 1,432
test fixed struct 344 88 432 1,112 536 1,648
test strseq 496 88 584 1,120 576 1,696
test var struct 496 88 584 1,120 368 1,488
test nestedstruct 496 88 584 1,120 176 1,296
test struct seq 496 88 584 1,120 416 1,536

TABLE XV

STUB SIZES ON ULTRASPARC

nested struct ’s helper calls the helper forvar struct ,
we do not add the latter’s size to the size computation of the
stub/skeleton ofnested struct .

Figures 40 and 41 illustrate this information graphically for
the UltraSPARC platform. The helper operators for primitive

sh
or

t

un
b_

str
ing

fix
ed

_s
tru

ct

str
se

q

va
r_

str
uc

t

ne
ste

d_
str

uc
t

str
uc

t_s
eq

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

S
iz

e 
in

 b
yt

es

Compiled
Interpreted

Fig. 40. UltraSPARC Stub Sizes

types are not generated by the IDL compiler since they are pro-
vided by the ORB core. Therefore, they are not shown.

Tables XV and XVI indicate that the stubs for interpretive
(de)marshaling are much smaller than the ones for compiled
(de)marshaling. As shown in Section IV-D.6, the interpretive
stub sizes are�26-45% of the size of the compiled stubs. As
shown in Section IV, in addition to explicitly (de)marshaling pa-
rameters, the compiled stub must initialize a GIOP/IIOP request
message and invoke it.



23

Stub name Interpreted size Compiled size
skel table total skel helper total

test short skel 440 88 528 544 N/A 544
test ubstring skel 552 88 640 688 432 1,120
test fixed struct skel 480 88 568 584 536 1,120
test strseq skel 848 88 936 952 576 1,528
test var struct skel 680 88 768 784 368 1,152
test nestedstruct skel 680 88 768 784 176 960
test struct seqskel 848 88 936 952 416 1,368

TABLE XVI

SKELETON SIZES ON ULTRASPARC

sh
or

t

un
b_

str
ing

fix
ed

_s
tru

ct

str
se

q

va
r_

str
uc

t

ne
ste

d_
str

uc
t

str
uc

t_s
eq

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

S
iz

e 
in

 b
yt

es

Compiled
Interpreted

Fig. 41. UltraSPARC Skeleton Sizes

For interpretive stubs, GIOP/IIOP request processing is per-
formed by thedo static call method in TAO’s ORB Core.
This method is an interpreter for stubs generated statically
by TAO’s IDL compiler. The size of skeletons for compiled
(de)marshaling is relatively smaller than the compiled stubs
since theServerRequest object is already available.

The overloaded operators for primitives are provided by the
ORB Core and no extra code is generated. Therefore, the skele-
ton code size for primitives likeshort s andlong s are com-
parable for interpretive and compiled (de)marshaling. However,
for non-primitive data types, the skeleton code size for the in-
terpreted (de)marshaling is between 50-80% of the compiled
form.7

D.6 Summary of Comparisons

This section summarizes the results of Sections IV-D.5.a and
IV-D.5.b. Table XVII illustrates how interpreted stubs and
skeletons compared with the compiled versions for the Ultra-
SPARC platform (all values are in percentages). Similar results
are observed for the other two platforms.

Our results comparing the performance of the compiled and
interpretive stubs indicate that on an average, the interpretive
stubs perform 86% for primitive types, 75% for fixed size struc-
tures, and over 100% for data types withsequence s as well
as the compiled stubs. However, the code size for user-defined
types for interpreted stubs was 26-45% and for interpreted skele-
tons was 50-80% of the size of the compiled stubs and skeletons,
respectively. For primitive types, the skeleton sizes were com-

7The results of code size measurements for NT and Linux are not shown for
lack of space. However, the results are similar to those for the UltraSparc.

operation Performance Stub size Skeleton size
test short 85.48 36.69 97.06
test ubstring 85.12 30.73 57.14
test fixed struct 74.96 26.21 50.17
test strseq 106.66 34.43 61.26
test var struct 99.20 39.25 66.66
test nested struct 95.77 45.06 80.00
test struct seq 107.69 38.02 68.42

TABLE XVII

COMPARISON OFINTERPRETIVE WITHCOMPILED CODE ON

ULTRASPARCIN PERCENTAGES

parable, though the interpreted stubs were�40% the size of the
compiled stubs.

D.7 Benefits of TAO’s Interpretive Stubs and Skeletons

This section illustrates how the efficiency and small footprint
of TAO’s interpretive stubs and skeletons can be useful in imple-
menting a number of important CORBA services on memory-
constrained systems.

Table XVIII depicts the CORBA Object Services provided in
the TAO release. We provide details on the number of user-
defined structures, sequences, and total number of operations
and/or attributes defined by their IDL definitions. We have not
reported other data types, such as unions, enums, and exceptions
defined by these IDLs.

As shown in Sections IV and IV-D, the total size of all the
stubs/skeletons using compiled form of (de)marshaling will ex-
ceed that of interpretive (de)marshaling as the number of opera-
tions and user-defined types increase.

Table XVIII shows examples of standard CORBA Object Ser-
vices, such as the Trading service and Naming service, as well as
several services supported by TAO, such as a real-time Schedul-
ing service [8]. As shown in the table, the IDL definitions for

Service structures sequences op/attributes
Trading 11 7 63
A/V Streams 2 3 50
Property 3 5 33
Events 0 0 18
Naming 2 2 13
Scheduling 4 4 10
Logging 1 0 6
LifeCycle 0 1 6

TABLE XVIII

NUMBER OF OPERATIONS ANDUSER-DEFINED TYPES IN STANDARD OMG

SERVICES

these services define a very large number of operations and/or
attributes. The total size of stubs and skeletons using compiled
(de)marshaling is significantly greater than that of interpretive
(de)marshaling.

In addition, for every user-defined type, the compiled form
will produce overloaded operators to (de)marshal these types.
As shown in Section IV-D, the performance of the inter-
preted stub/skeleton strategy is comparable to, or exceeds,
the compiled strategy. However, the code size for inter-



24

preted stubs/skeletons is much smaller than the compiled
stubs/skeletons.

V. RELATED WORK

Techniques for optimizing communication middleware is an
emerging field of study. Our research on CORBA focuses on op-
timizing communication middleware at multiple protocol layers
and multiple levels of abstraction including the I/O subsystem,
communication protocols, and higher-level CORBA implemen-
tation itself. This section compares our research on TAO with re-
lated work on optimizing protocol implementations, generating
efficient stubs for (de)marshaling, and evaluating performance
of OO middleware.

A. Related Work on Optimization Principle Patterns

This section describes results from existing work on protocol
optimization based on one or more of the principle patterns in
Table I.

A.1 Optimizing for the expected case

[28] describes a technique calledheader predictionthat pre-
dicts the message header of incoming TCP packets. This tech-
nique is based on the observation that many members in the
header remain constant between consecutive packets. This ob-
servation led to the creation of a template for the expected packet
header. The optimizations reported in [28] are based on Princi-
ple Pattern 1, whichoptimizes for the common caseand Princi-
ple Pattern 3, which isprecompute, if possible. We present the
results of applying these principle patterns to optimize IIOP in
Sections III-B.3, III-B.4, and III-B.5.

A.2 Eliminating gratuitous waste

[29], [30], [31] describe the application of an optimization
mechanism calledIntegrated Layer Processing(ILP). ILP is
based on the observation that data manipulation loops that oper-
ate on the same protocol data are wasteful and expensive. The
ILP mechanism integrates these loops into a smaller number of
loops that perform all the protocol processing. The ILP opti-
mization scheme is based on Principle Pattern 2, whichgets rid
of gratuitous waste. We demonstrate the application of this prin-
ciple pattern to IIOP in Section III-B.4 where we eliminated un-
necessary calls to thedeep free method, which frees primi-
tive data types. [31] cautions against improper use of ILP since
this may increase processor cache misses.

A.3 Passing information between layers

Packet filters [32], [33], [34] are a classic example of Princi-
ple Pattern 6, which recommendspassing information between
layers. A packet filter demultiplexes incoming packets to the
appropriate target application(s). Rather than having demul-
tiplexing occur at every layer, each protocol layer passes cer-
tain information to the packet filter, which allows it to identify
which packets are destined for which protocol layer. We ap-
plied Principle Pattern 6 for IIOP in Section III-B.4 where we
passed theTypeCode information and size of the element type
of a sequence to theTypeCode interpreter. Therefore, the
interpreter need not calculate the same quantities repeatedly.

A.4 Moving from generic to specialized functionality

[35] describes a facility called fast buffers (FBUFS). FBUFS
combines virtual page remapping with shared virtual memory
to reduce unnecessary data copying and achieve high through-
put. This optimization is based on Principle Pattern 2, which
focuses oneliminating gratuitous wasteand Principle Pattern 3,
which replaces generic schemes with efficient, special purpose
ones. We applied these principle patterns for IIOP in Section III-
B.4 where we incorporated thestruct traverse logic and
some of thedecoder logic into theTypeCode interpreter.

A.5 Improving cache-affinity

[26] describes a scheme called “outlining” that when used im-
proves processor cache effectiveness, thereby improving perfor-
mance. We describe optimizations for processor cache in Sec-
tion III-B.5.

A.6 Efficient demultiplexing

Demultiplexing routes messages between different levels of
functionality in layered communication protocol stacks. Most
conventional communication models, such as the Internet model
or the ISO/OSI reference model, require some form of multi-
plexing to support interoperability with existing operating sys-
tems and protocol stacks. In addition, conventional CORBA
ORBs utilize several extra levels of demultiplexing at the ap-
plication layer to associate incoming client requests with the ap-
propriate servant and operation. Layered multiplexing and de-
multiplexing is generally disparaged for high-performance com-
munication systems [36] due to the additional overhead incurred
at each layer. [34] describes a fast and flexible message demulti-
plexing strategy based on dynamic code generation. [37] evalu-
ates the performance of alternative demultiplexing strategies for
real-time CORBA.

Our results for latency measurements have shown that with
increasing number of servants, the latency increases. This is
partly due to the additional overhead of demultiplexing the re-
quest to the appropriate operation of the appropriate servant.
TAO uses a de-layered demultiplexing architecture [37] that can
select optimal demultiplexing strategies based on compile-time
and run-time analysis of CORBA IDL interfaces.

B. Related Work on Presentation Layer Conversions

B.1 Interpretive versus compiled forms of (de)marshaling

SunSoft IIOP uses an interpretive (de)marshaling engine. An
alternative approach is to usecompiled(de)marshaling. A com-
piled (de)marshaling scheme is based ona priori knowledge of
the type of an object to be marshaled. Thus, in this scheme there
is no necessity to decipher the type of the data to be marshaled
at run-time. Instead, the type is known in advance, which can be
used to marshal the data directly.

[38] describes the tradeoffs of using compiled and interpreted
(de)marshaling schemes. Although compiled stubs are faster,
they are also larger. In contrast, interpretive (de)marshaling is
slower, but smaller in size. [38] describes a hybrid scheme that
combines compiled and interpretive (de)marshaling to achieve
better performance. This work was done in the context of the
ASN.1/BER encoding [39].



25

According to the SunSoft IIOP developers, interpretive
(de)marshaling is preferable since it decreases code size and
increases the likelihood of remaining in the processor cache.
As explained in Section VI, we are currently implementing a
CORBA IDL compiler [40] that can generate compiled stubs
and skeletons. Our goal is to generate efficient stubs and skele-
tons by extending optimizations provided in USC [41] and
“Flick” [24], which is a flexible, optimizing IDL compiler. Flick
uses an innovative scheme where intermediate representations
guide the generation of optimized stubs. In addition, due to the
intermediate stages, it is possible for Flick to map different IDLs
(e.g.,CORBA IDL, ONC RPC IDL, MIG IDL) to a variety of
target languages such as C, C++.

B.2 Presentation layer and data copying

The presentation layer is a major bottleneck in high-
performance communication subsystems [29]. This layer trans-
forms typed data objects from higher-level representations to
lower-level representations (marshaling) and vice versa (demar-
shaling). In both RPC toolkits and CORBA, this transformation
process is performed by client-side stubs and server-side skele-
tons that are generated by interface definition language (IDL)
compilers. IDL compilers translate interfaces written in an IDL
(such as Sun RPC XDR [42], DCE NDR, or CORBA CDR [3])
to other forms such as a network wire format. A significant
amount of research has been devoted to developing efficient stub
generators. We cite a few of these and classify them as below.

� Annotating high level programming languages:The Uni-
versal Stub Compiler (USC) [41] annotates the C programming
language with layouts of various data types. The USC stub com-
piler supports the automatic generation of device and protocol
header marshaling code. The USC tool generates optimized C
code that automatically aligns data structures and performs net-
work/host byte order conversions.

� Generating code based on control flow analysis of in-
terface specification:[38] describes a technique of exploiting
application-specific knowledge contained in the type specifica-
tions of an application to generate optimized marshaling code.
This work tries to achieve an optimal tradeoff between inter-
preted code (which is slow but compact in size) and compiled
code (which is fast but larger in size). A frequency-based rank-
ing of application data types is used to decide between inter-
preted and compiled code for each data type. Our implementa-
tions of the stub compiler will be designed to adapt according
to the runtime access characteristics of various data types and
methods. The runtime usage of a given data type or method can
be used to dynamically link in either the compiled or the inter-
preted version. Dynamic linking has been shown to be useful
for mid-stream adaptation of protocol implementations [43].

� Using high level programming languages for distributed
applications: [44] describes a stub compiler for the C++ lan-
guage. This stub compiler does not need an auxiliary interface
definition language. Instead, it uses the operator overloading
feature of C++ to enable parameter marshaling. This approach
enables distributed applications to be constructed in a straight-
forward manner. A drawback of using a programming language
like C++ is that it allows programmers to use constructs (such as
references or pointers) that do not have any meaning on the re-

mote side. Instead, IDLs are more restrictive and disallow such
constructs. CORBA IDL has the added advantage that it resem-
bles C++ in many respects and a well-defined mapping from the
IDL to C++ has been standardized.

B.3 Application level framing and integrated layer processing
for communication subsystems

Conventional layered protocol stacks and distributed object
middleware lack the flexibility and efficiency required to meet
the quality of service requirements of diverse applications run-
ning over high-speed networks. One proposed remedy for this
problem is to useApplication Level Framing(ALF) [29], [45],
[46] andIntegrated Layer Processing(ILP) [29], [30], [43].

ILP ensures that lower layer protocols deal with data in units
specified by the application. ILP provides the implementor with
the option of performing all data manipulations in one or two
integrated processing loops, rather than manipulating the data
sequentially. [31] have shown that although ILP reduces the
number of memory accesses, it does not reduce the number of
cache misses compared to a carefully designed non-ILP imple-
mentation.

A major limitation of ILP described in [31] is its applicability
to only non-ordering constrained protocol functions and its uses
of macros that restrict the protocol implementation from being
dynamically adapted to changing requirements.

As shown by our results, CORBA ORBs suffer from a num-
ber of overheads that includes the many layers of software and
large chain of function calls. We plan to use integrated layer pro-
cessing to minimize the overhead of the various software layers.
We are developing a factory of ILP basedinline functions
that are targeted to perform different functions. This allows us
to dynamically link required functionality as the requirements
change and yet have an ILP-based implementation.

VI. CONCLUDING REMARKS

The embedded multimedia industry is growing rapidly and
hand-held devices, such as PIMs, Web-phones, Web-TVs, and
Palm computers, running multimedia applications, such as
MIME-enabled email and Web browsing, are becoming ubiq-
uitous. Ideally, these embedded multimedia applications can be
developed using standard middleware components like CORBA,
rather than building them from scratch. However, stringent con-
straints on the available memory in embedded systems impose
a stringent limit on the footprint of the middleware, particularly
the stubs and skeletons generated by CORBA IDL compilers.

This paper illustrates the benefits of applying optimization
principle patterns to improve the performance of CORBA Inter-
ORB Protocol (IIOP) middleware substantially. The principle
patterns that directed our optimizations include:(1) optimizing
for the common case, (2) eliminating gratuitous waste, (3) re-
placing general-purpose methods with efficient special-purpose
ones, (4) precomputing values, if possible, (5) storing redundant
state to speed up expensive operations, (6) passing information
between layers, (7) optimizing for processor cache affinity, (8)
factoring out common tasks to reduce footprint, and (9) avoid-
ing heap allocation as much as possible.

Table XIX summarizes the problems encountered, the solu-
tions we applied, and the optimization principle patterns that



26

Problem Solution Principle Pattern
High overhead of C++ inline Optimize for
small, frequently hints common case
called methods
Lack of support for C preprocessor Optimize for
aggressive inlining macros common case
Too many method SpecializeTypeCode Generic to
calls interpreter specialized
Expensive no-ops for Insert a check and Eliminate
deepfree of scalar delete at top level waste
types
Repetitive size and Precompute size and Precompute
alignment calculation alignment info in extra and maintain
of sequence elements state inTypeCode extra state
Duplication of tasks Use default parameters Pass info.
between function solution and pass info. across layers
calls when appropriate
Cache miss penalty Split large interpreter Optimize

into specialized for cache
methods and outline

Repetitive Code Factor out common tasks Factoring out
and provide a single common tasks
method to perform them

Excess Allocation Try to allocate on Avoid heap
and Deallocation function call stack allocation

TABLE XIX

OPTIMIZATION PRINCIPLE PATTERNS APPLIED IN TAO

guided our solutions. The results of applying these optimization
principle patterns to SunSoft IIOP improved its performance 1.9
times fordoubles , 3.3 times forlongs , 4 times forshorts ,
5 times forchars/octets , and 6.7 times for richly-typed
structs over ATM networks.

We used the resulting optimized IIOP protocol engine as the
basis for TAO. TAO’s performance is competitive with existing
ORBs [15], [16] using the static invocation interface (SII) and
2 to 4.5 times (depending on the data type) faster than exist-
ing ORBs using the dynamic skeleton interface (DSI) [17]. Our
optimization results demonstrate empirically that performance
of complex, performance-sensitive embedded multimedia soft-
ware can be improved by a systematic application of optimiza-
tion principle patterns.

This paper also compares the performance and code
size of stubs and skeletons using interpretive and compiled
(de)marshaling. Our empirical results indicate that compared
with compiled stubs, interpretive stubs perform 86% for primi-
tive types, 75% for fixed-size structures, and over 100% for data
types with sequences. The memory footprint for user-defined
types for interpreted stubs was 26-45% and for interpreted skele-
tons was 50-80% of the size of the compiled stubs and skeletons,
respectively. For primitive types, the skeleton sizes were com-
parable. However, the interpreted stubs were�40% the size of
the compiled stubs.

Our optimizations to the interpretive SunSoft IIOP (de)marshaling
engine improve its performance substantially. It is now com-
parable to the performance of compiled stubs and skeletons.
Likewise, TAO’s IDL compiler optimizations result in stubs and
skeletons whose footprint is substantially smaller than those us-
ing compiled (de)marshaling.

We have integrated the optimized SunSoft IIOP implemen-
tation into the TAO real-time ORB [47]. TAO’s IDL compiler
generates optimized stubs and skeletons from IDL interfaces via

an optimizing code generation back-end added to the SunSoft
IDL compiler front end. These generated stubs and skeletons
transform C++ methods into/from CORBA requests via our op-
timized IIOP implementation.

REFERENCES

[1] R. Johnson, “Frameworks = Patterns + Components,”Communications of
the ACM, vol. 40, Oct. 1997.

[2] S. Vinoski and M. Henning,Advanced CORBA Programming With C++.
Addison-Wesley Longman, 1999.

[3] Object Management Group,The Common Object Request Broker: Archi-
tecture and Specification, 2.2 ed., Feb. 1998.

[4] G. Forman and J. Zahorhan, “The Challenges of Mobile Computing,”
IEEE Computer, vol. 27, pp. 38–47, April 1994.

[5] L. Chen and T. Suda, “Designing Mobile Computing Systems using Dis-
tributed Objects,”IEEE Communications Magazine, vol. 14, February
1997.

[6] I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and
A. Gokhale, “Applying Optimization Patterns to the Design of Real-time
ORBs,” in Proceedings of the5th Conference on Object-Oriented Tech-
nologies and Systems, (San Diego, CA), USENIX, May 1999.

[7] Object Management Group,Minimum CORBA - Joint Revised Submission,
OMG Document orbos/98-08-04 ed., August 1998.

[8] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Perfor-
mance of Real-Time Object Request Brokers,”Computer Communica-
tions, vol. 21, pp. 294–324, Apr. 1998.

[9] D. L. L. Christopher D. Gill and D. C. Schmidt, “The Design and Per-
formance of a Real-Time CORBA Scheduling Service,”The International
Journal of Time-Critical Computing Systems, special issue on Real-Time
Middleware, 1999, to appear.

[10] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and Perfor-
mance of a Real-time CORBA Event Service,” inProceedings of OOPSLA
’97, (Atlanta, GA), ACM, October 1997.

[11] F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design and Performance
of a Real-time I/O Subsystem,” inProceedings of the5th IEEE Real-Time
Technology and Applications Symposium, (Vancouver, British Columbia,
Canada), IEEE, June 1999.

[12] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale, “Alleviating
Priority Inversion and Non-determinism in Real-time CORBA ORB Core
Architectures,” inProceedings of the4th IEEE Real-Time Technology and
Applications Symposium, (Denver, CO), IEEE, June 1998.

[13] Alistair Cockburn, “Prioritizing Forces in Software Design,” inPattern
Languages of Program Design(J. O. Coplien, J. Vlissides, and N. Kerth,
eds.), pp. 319–333, Reading, MA: Addison-Wesley, 1996.

[14] G. Varghese, “Algorithmic Techniques for Efficient Protocol Implementa-
tions ,” in SIGCOMM ’96 Tutorial, (Stanford, CA), ACM, August 1996.

[15] A. Gokhale and D. C. Schmidt, “Measuring the Performance of Commu-
nication Middleware on High-Speed Networks,” inProceedings of SIG-
COMM ’96, (Stanford, CA), pp. 306–317, ACM, August 1996.

[16] A. Gokhale and D. C. Schmidt, “Evaluating Latency and Scalability of
CORBA Over High-Speed ATM Networks,” inProceedings of the Interna-
tional Conference on Distributed Computing Systems, (Baltimore, Mary-
land), IEEE, May 1997.

[17] A. Gokhale and D. C. Schmidt, “The Performance of the CORBA Dy-
namic Invocation Interface and Dynamic Skeleton Interface over High-
Speed ATM Networks,” inProceedings of GLOBECOM ’96, (London,
England), pp. 50–56, IEEE, November 1996.

[18] S. Vinoski, “CORBA: Integrating Diverse Applications Within Distributed
Heterogeneous Environments,”IEEE Communications Magazine, vol. 14,
February 1997.

[19] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale, “Software
Architectures for Reducing Priority Inversion and Non-determinism in
Real-time Object Request Brokers,”Journal of Real-time Systems, To ap-
pear 1999.

[20] D. C. Schmidt and T. Suda, “An Object-Oriented Framework for Dy-
namically Configuring Extensible Distributed Communication Systems,”
IEE/BCS Distributed Systems Engineering Journal (Special Issue on Con-
figurable Distributed Systems), vol. 2, pp. 280–293, December 1994.

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: El-
ements of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley, 1995.

[22] USNA, TTCP: a test of TCP and UDP Performance, Dec 1984.
[23] P. S. Inc.,Quantify User’s Guide. PureAtria Software Inc., 1996.
[24] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom, “Flick: A Flexible,

Optimizing IDL Compiler,” inProceedings of ACM SIGPLAN ’97 Confer-



27

ence on Programming Language Design and Implementation (PLDI), (Las
Vegas, NV), ACM, June 1997.

[25] J. L. Hennesy and D. A. Patterson,Computer Architecture: A Quantitative
Approach. Morgan Kauffman Publishers, San Francisco, California, 1990.

[26] D. Mosberger, L. L. Peterson, P. G. Bridges, and S. O’Malley, “Analysis
of Techniques to Improve Protocol Processing Latency,” inProceedings of
SIGCOMM ’96, (Stanford, CA), pp. 73–84, ACM, August 1996.

[27] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP Protocol En-
gine for Minimal Footprint Multimedia Systems,”Journal on Selected Ar-
eas in Communications special issue on Service Enabling Platforms for
Networked Multimedia Systems, to appear, 1999.

[28] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An Analysis of TCP
Processing Overhead,”IEEE Communications Magazine, vol. 27, pp. 23–
29, June 1989.

[29] D. D. Clark and D. L. Tennenhouse, “Architectural Considerations for
a New Generation of Protocols,” inProceedings of the Symposium on
Communications Architectures and Protocols (SIGCOMM), (Philadelphia,
PA), pp. 200–208, ACM, Sept. 1990.

[30] M. Abbott and L. Peterson, “Increasing Network Throughput by Integrat-
ing Protocol Layers,”ACM Transactions on Networking, vol. 1, October
1993.

[31] T. Braun and C. Diot, “Protocol Implementation Using Integrated Layer
Processnig,” inProceedings of the Symposium on Communications Archi-
tectures and Protocols (SIGCOMM), ACM, September 1995.

[32] S. McCanne and V. Jacobson, “The BSD Packet Filter: A New Architec-
ture for User-level Packet Capture,” inProceedings of the Winter USENIX
Conference, (San Diego, CA), pp. 259–270, Jan. 1993.

[33] M. L. Bailey, B. Gopal, P. Sarkar, M. A. Pagels, and L. L. Peterson,
“Pathfinder: A pattern-based packet classifier,” inProceedings of the1st

Symposium on Operating System Design and Implementation, USENIX
Association, November 1994.

[34] D. R. Engler and M. F. Kaashoek, “DPF: Fast, Flexible Message Demul-
tiplexing using Dynamic Code Generation,” inProceedings of ACM SIG-
COMM ’96 Conference in Computer Communication Review, (Stanford
University, California, USA), pp. 53–59, ACM Press, August 1996.

[35] P. Druschel and L. L. Peterson, “Fbufs: A High-Bandwidth Cross-Domain
Transfer Facility,” inProceedings of the14th Symposium on Operating
System Principles (SOSP), Dec. 1993.

[36] D. L. Tennenhouse, “Layered Multiplexing Considered Harmful,” inPro-
ceedings of the1st International Workshop on High-Speed Networks, May
1989.

[37] A. Gokhale and D. C. Schmidt, “Evaluating the Performance of Demul-
tiplexing Strategies for Real-time CORBA,” inProceedings of GLOBE-
COM ’97, (Phoenix, AZ), IEEE, November 1997.

[38] P. Hoschka and C. Huitema, “Automatic Generation of Optimized Code
for Marshalling Routines,” inIFIP Conference of Upper Layer Protocols,
Architectures and Applications ULPAA’94, (Barcelona, Spain), IFIP, 1994.

[39] International Organization for Standardization,Information processing
systems - Open Systems Interconnection - Specification of Basic Encod-
ing Rules for Abstract Syntax Notation One (ASN.1), May 1987.

[40] A. Gokhale, D. C. Schmidt, and S. Moyer, “Tools for Automating the Mi-
gration from DCE to CORBA,” inProceedings of ISS 97: World Telecom-
munications Congress, (Toronto, Canada), IEEE Communications Soci-
ety, September 1997.

[41] S. W. O’Malley, T. A. Proebsting, and A. B. Montz, “USC: A Universal
Stub Compiler,” inProceedings of the Symposium on Communications
Architectures and Protocols (SIGCOMM), (London, UK), Aug. 1994.

[42] Sun Microsystems, “XDR: External Data Representation Standard,”Net-
work Information Center RFC 1014, June 1987.

[43] A. Richards, R. D. Silva, A. Fladenmuller, A. Seneviratne, and M. Fry,
“The Application of ILP/ALF to Configurable Protocols,” inFirst Inter-
national Workshop on High Performance Protocol Architectures, HIP-
PARCH ’94, (Sophia Antipolis, France), INRIA France, December 1994.

[44] G. Parrington, “A Stub Generation System for C++,”Computing Systems,
vol. 8, pp. 135–170, Spring 1995.

[45] I. Chrisment, “Impact of ALF on Communication Subsystems Design and
Performance,” inFirst International Workshop on High Performance Pro-
tocol Architectures, HIPPARCH ’94, (Sophia Antipolis, France), INRIA
France, December 1994.

[46] A. Ghosh, J. Crowcroft, M. Fry, and M. Handley, “Integrated Layer Video
Decoding and Application Layer Framed Secure Login: General Lessons
from Two or Three Very Different Applications,” inFirst International
Workshop on High Performance Protocol Architectures, HIPPARCH ’94,
(Sophia Antipolis, France), INRIA France, December 1994.

[47] D. C. Schmidt, A. Gokhale, T. Harrison, and G. Parulkar, “A High-
Performance Endsystem Architecture for Real-time CORBA,”IEEE Com-
munications Magazine, vol. 14, February 1997.


