
Dynamically Configuring Communication Services

with the Service Configurator Pattern

Prashant Jain and Douglas C. Schmidt
pjain@cs.wustl.edu and schmidt@cs.wustl.edu

Department of Computer Science

Washington University
St. Louis, MO 63130, (314) 935-7538

This article appeared in the June ’97 C++ Report magazine.

1 Introduction

A rapidly growing collection of communication services
are now available on the Internet. A communication ser-
vice is a component in a server that provides capabilities to
clients. Services available on the Internet include: WWW
browsing and content retrieval services (e.g., Alta Vista,
Apache, Netscape’s HTTP server); software distribution ser-
vices (e.g., Castinet), electronic mail and network news
transfer agents (e.g., sendmail and nntpd), file access
on remote machines (e.g., ftpd), remote terminal access
(e.g., rlogind and telnetd), routing table management
(e.g., gated and routed), host and user activity reporting
(e.g., fingerd and rwhod), network time protocols (e.g.,
ntpd), and request brokerage services (e.g., orbixd and
RPC portmapper).

A common way to implement these services is to develop
each one as a separate program and then compile, link, and
execute each program in a separate process. However, this
“static” approach to configuring services yields inflexible, of-
ten inefficient, applications and software architectures. The
main problem with static configuration is that it tightly cou-
ples the implementation of a particular service with the con-
figuration of the service with respect to other services in an
application.

This article describes the Service Configurator pattern,
which increases application flexibility (and often perfor-
mance) by decoupling the behavior of services from the point
in time at which these service implementations are config-
ured into applications. This article illustrates the Service
Configurator pattern using a distributed time service written
in C++ as an example. However, the Service Configurator
pattern has been implemented in many ways, ranging from
device drivers in modern operating systems (like Solaris and
Windows NT), to Internet superservers (like inetd and the
Windows NT Service Control Manager), as well as Java ap-
plets.

2 The Service Configurator Pattern

2.1 Intent

Decouples the behavior of services from the point in time at
which service implementations are configured into an appli-
cation or system.

2.2 Also Known As

Super-server

2.3 Motivation

The Service Configurator pattern decouples the implemen-
tation of services from the time at which the services are
configured into an application or a system. This decoupling
improves the modularity of services and allows the services
to evolve over time independently of configuration issues
(such as whether two services must be co-located or what
concurrency model will be used to execute the services).

In addition, the Service Configurator pattern centralizes
the administration of the services it configures. This fa-
cilitates automatic initialization and termination of services
and can improve performance by factoring common service
initialization and termination patterns into efficient reusable
components.

This section motivates the Service Configurator pattern
using a distributed time service as an example.

2.3.1 Context

The Service Configurator pattern should be applied when
a service needs to be initiated, suspended, resumed, and ter-
minated dynamically. In addition, the Service Configurator
pattern should be applied when service configuration deci-
sions must be deferred until run-time.

To motivate this pattern, consider the distributed time ser-
vice shown in Figure 1. This service provides accurate, fault-
tolerant clock synchronization for computers collaborating in
local area networks and wide area networks. Synchronized
time services are important in distributedsystems that require
multiple hosts to maintain accurate global time. For instance,
large-scale distributed medical imaging systems [1] require

1

TIME
SERVER

CLERK

CLERK

CLIENT

CLIENTCLIENT

TIME

UPDATE

TIME

UPDATE

TIME

UPDATE

CLIENT

TIME
SERVER

TIME

UPDATE

Figure 1: A Distributed Time Service

globally synchronized clocks to ensure that patient exams
are accurately timestamped and analyzed expeditiously by
radiologists throughout the health-care delivery system.

As shown in Figure 1, the architecture of the distributed
time service contains the following Time Server, Clerk, and
Client components:

� A Time Server answers queries about the time made by
Clerks.

� A Clerk queries one or more Time Servers to determine
the correct time, calculates the approximate correct time
using one of several distributed time algorithms [2, 3],
and updates its own local system time.

� A Client uses the global time information maintained by
a Clerk to provide consistency with the notion of time
used by clients on other hosts.

2.4 A Common Solution

One way to implement a distributed time service is to stat-
ically configure the logical functionality of Time Servers,
Clerks, and Clients into separate physical processes. In this
approach, one or more hosts would run Time Server pro-
cesses, which handle time update requests from Clerk pro-
cesses. The following C++ code fragment illustrates the
structure of a statically configured Time Server process:

// The Clerk_Handler processes time requests
// from Clerks.

class Clerk_Handler :
public Svc_Handler <SOCK_Stream>

{
public:
// This method is called by the Reactor
// when requests arrive from Clerks.
virtual int handle_input (void)
{

// Read request from Clerk and reply
// with the current time.

}

// ...
};

// The Clerk_Acceptor is a factory that
// accepts connections from Clerks and creates
// Clerk_Handlers.
typedef Acceptor<Clerk_Handler, SOCK_Acceptor>

Clerk_Acceptor;

int main (int argc, char *argv[])
{
// Parse command-line arguments.
Options::instance ()->parse_args (argc, argv);

// Set up Acceptor to listen for Clerk connections.
Clerk_Acceptor acceptor

(Options::instance ()->port ());

// Register with the Reactor Singleton.
Reactor::instance ()->register_handler

(&acceptor, ACCEPT_MASK);

// Run the event loop waiting for Clerks to
// connect and perform time queries.

for (;;)
Reactor::instance ()->handle_events ();

/* NOTREACHED */
}

This program uses the Reactor pattern [4] and the Acceptor
pattern [5] to implement a statically configured Time Server
process.

Each host that requires global time synchronization would
run a Clerk process. The Clerks periodically update their
local system time based on values received from one or more
Time Servers. The following C++ code fragment illustrates
the structure of a statically configured Clerk process:

// This class communicates with the Time_Server.
class Time_Server_Handler { /* ... */ };

// This class establishes connections with the
// Time Servers and periodically queries them for
// their latest time values.
class Clerk : public Svc_Handler <SOCK_Stream>
{
public:
// Initialize the Clerk.
Clerk (void) {

Time_Server_Handler **handler = 0;

// Use the Iterator pattern and the
// Connector pattern to set up the
// connections to the Time Servers.

for (ITERATOR iterator (handler_set_);
iterator.next (handler) != 0;
iterator.advance ()) {

connector_.connect (*handler);

Time_Value timeout_interval (60);

// Register a timer that will expire
// every 60 seconds. This will trigger
// a call to the handle_timeout() method,

2

// which will query the Time Servers and
// retrieve the current time of day.
Reactor::instance ()->schedule_timer
(this, timeout_interval);

}

// This method implements the Clock Synchronization
// algorithm that computes local system time. It
// is called periodically by the Reactor’s timer
// mechanism.

int handle_timeout (void) {
// Periodically query the servers by iterating
// over the handler set and obtaining time
// updates from each Time Server.

Time_Server_Handler **handler = 0;

// Use the Iterator pattern to query all
// the Time Servers

for (ITERATOR iterator (handler_set_);
iterator.next (handler) != 0;
iterator.advance ()) {

Time_Value server_time =
(*handler)->get_server_time ();

// Compute the local system time and
// store this in shared memory that
// is accessible to the Client processes.

}

private:
typedef Unbounded_Set <Time_Server_Handler *>

HANDLER_SET;
typedef Unbounded_Set_Iterator

<Time_Server_Handler *> ITERATOR;

// Set of Clerks and iterator over the set.
HANDLER_SET handler_set_;

// The connector_ is a factory that
// establishes connections with Time Servers
// and creates Time_Server_Handlers.
Connector<Time_Server_Handler,

SOCK_Connector>
connector_;

};

int main (int argc, char *argv[])
{

// Parse command-line arguments.
Options::instance ()->parse_args (argc, argv);

// Initialize the Clerk.
Clerk clerk;

// Run the event loop, periodically
// querying the Time Servers to determine
// the global time.

for (;;)
Reactor::instance ()->handle_events ();

/* NOTREACHED */
}

This program uses the Reactor pattern [4] and the Connector
pattern [6] to implement a statically configured Clerk process.

Client processes would use the synchronized time reported
by their local Clerk. To minimize communication overhead,
the current time could be stored in shared memory that is
mapped into the address space of the Clerk and all Clients
on the same host. In addition to the time service, other
communication services (such as file transfer, remote login,
and HTTP servers) provided by the hosts would also execute
in separate statically configured processes.

2.5 Traps and Pitfalls with the Common Solu-
tion

Although the use of patterns like Reactor, Acceptor, and
Connector improve the modularity and portability of the
distributed time server shown above, configuring commu-
nication services using a static approach has the following
drawbacks:

� Service configuration decisions must be made too early
in the development cycle: This is undesirable since de-
velopers may not know a priori the best way to co-locate
or distribute service components. For example, the lack of
memory resources in wireless computing environments may
force the split of Client and Clerk into two independent pro-
cesses running on separate hosts. In contrast, in a real-time
avionics environment it might be necessary to co-locate the
Clerk and Server into one process to reduce communication
latency.1 Forcing developers to commit prematurely to a
particular service configuration impedes flexibility and can
reduce performance and functionality.

� Modifying a service may adversely affect other ser-
vices: The implementation of each service component is
tightly coupled with its initial configuration. This makes
it hard to modify one service without affecting other ser-
vices. For example, in the real-time avionics environment
mentioned above, a Clerk and a Time Server might be stati-
cally configured to execute in one process to reduce latency.
If the distributed time algorithm implemented by the Clerk
is changed, however, the existing Clerk code would require
modification, recompilation, and static relinking. However,
terminating the process to change the Clerk code would ter-
minate the Time Server as well. This disruption in service
may not be acceptable for highly available systems (such as
telecommunication switches or call centers [7]).

� System performance may not scale up efficiently: As-
sociating a process with each service ties up OS resources
(such as I/O descriptors, virtual memory, and process table
slots). This design can be wasteful if services are frequently
idle. Moreover, processes are often the wrong abstraction
for many short-lived communication tasks (such as asking a
Time Server for the current time or resolving a host address
request in the Domain Name Service). In these cases, multi-
threaded Active Objects [8] or single-threaded Reactive [4]
event loops may be more efficient.

2.6 A Better Solution

Often, a more convenient and flexible way to implement
distributed services is to use the Service Configurator pat-
tern. This pattern decouples the behavior of communication
services from the point in time at which these services are

1If the Clerk and the Server are co-located in the same process, the Clerk
may optimize communication by (1) eliminating the need to set up a socket
connection with the Server and (2) directly accessing the Server’s notion of
time via shared memory.

3

configured into an application or system. The Service Con-
figurator pattern resolves the following forces:

� The need to defer the selection of a particular type, or
a particular implementation, of a service until very late
in the design cycle: This allows developers to concentrate
on a service’s functionality (e.g., the clock synchronization
algorithm), without committing themselves prematurely to
a particular service configuration. By decoupling function-
ality from configuration, the Service Configurator pattern
permits applications to evolve independently of the configu-
ration policies and mechanisms used by the system.

� The need to build complete applications or systems
by composing multiple independently developed services
that do not require global knowledge: The Service Con-
figurator pattern requires all services to have a uniform inter-
face for configuration and control. This allows the services
to be treated as building blocks that can be integrated easily
as components into a larger application. The uniform inter-
face across all the services makes them “look and feel” the
same with respect to how they are configured. In turn, this
uniformity simplifies application development by promoting
the “principle of least surprise.”

� The need to optimize, control, and reconfigure the be-
havior of a service at run-time: Decoupling the imple-
mentation of a service from its configuration makes it possible
to fine-tune certain implementation or configuration param-
eters of services. For instance, depending on the parallelism
available on the hardware and operating system, it may be
either more or less efficient to run multiple services in sepa-
rate threads or processes. The Service Configurator pattern
enables applications to select and tune these behaviors at
run-time, when more information may be available to help
optimize the services. In addition, adding a new or updated
service to a distributed system can often be performed with-
out requiring downtime for existing services.

Figure 2 uses OMT notation to illustrate the structure of
the distributed time service designed according to the Service
Configurator pattern.

ClerkClerk

init()
fini()

init()
fini()
suspend()
resume()
info()

Service

Time_ServerTime_Server

init()
fini()

ServiceService
RepositoryRepository

services

Figure 2: Structure of a Distributed Time Service

The Service base class provides a standard interface for
configuring and controllingservices (such as Time Servers or
Clerks). A Service Configurator-based application uses this
interface to initiate, suspend, resume, and terminate a service,
as well as to obtain run-time information about a service (such
as its IP address and port number). The services themselves
reside within a Service Repository and can be added
and removed to and from the Service Repository by
a Service Configurator-based application.

Two subclasses of the Service base class appear in
the distributed time service: Time Server and Clerk.
Each subclass represents a concrete Service that has spe-
cific functionality in the distributed time service. The Time
Server service is responsible for receiving and processing
requests for time updates fromClerks. TheClerk service
is a Connector [6] factory that (1) creates a new connection
for every server, (2) dynamically allocates a new handler to
send time update requests to a connected server, (3) receives
the replies from all the servers through the handlers, and (4)
then updates the local system time.

The Service Configurator pattern makes the distributed
time service more flexible by managing the configuration of
the service components in the time service, thereby decou-
pling it from the implementation issues. In addition, the
Service Configurator provides a framework to consolidate
the configuration and management of other communication
services under one administrative unit.

3 Applicability

Use the Service Configurator pattern when:

� Services must be initiated, suspended, resumed, and
terminated dynamically; and

� The implementation of a service may change, but its
configuration with respect to related services remains
the same and/or the configuration of a group of col-
located services may change, but their implementations
remain the same; or

� An application or system can be simplified by being
composed of multiple independently developed and dy-
namically configurable services; or

� The management of multiple services can be simplified
or optimized by configuring them using a single admin-
istrative unit.

Do not use the Service Configurator pattern when:

� Dynamic (re)configuration is undesirable due to security
restrictions (in this case, static configuration may be
necessary2); or

2It’s possible to use the Service Configurator pattern to statically config-
ure services by ensuring that the implementations are statically linked into
the main executable program.

4

� The initializationor termination of a service is too com-
plicated or too tightly coupled with its context to be
performed in a uniform manner; or

� A service does not benefit from dynamic configuration
since it never changes; or

� Stringent performance requirements mandate the need
to minimize the extra levels of indirection incurred by
the OS and language mechanisms used for dynamic
(re)configuration.

4 Structure and Participants

The structure of the Service Configurator pattern is illustrated
using OMT notation in Figure 3:

init()
fini()
suspend()
resume()
info()

Service

ConcreteConcrete
Service CService C

ServiceService
RepositoryRepository

services

ConcreteConcrete
Service AService A

ConcreteConcrete
Service BService B

Figure 3: Structure of the Service Configurator Pattern

The key participants in the Service Configurator pattern in-
clude the following:

� Service (Service)

– Specifies the interface containing hook methods
[9] (such as initialization and termination) used
by a Service Configurator-based application to dy-
namically configure the Service.

� Concrete Service (Clerk and Time Server)

– Implements the service’s hook methods and other
service-specific functionality (such as event pro-
cessing and communication with clients).

� Service Repository (Service Repository)

– Maintains a repository of all the services offered
by a Service Configurator-based application. This
allows administrative entities to centrally manage
and control the behavior of the configured services.

5 Collaborations

Figure 4 depicts the collaborations between components in
the following three phases of the Service Configurator pat-
tern:

S
E

R
V

IC
E

S
E

R
V

IC
E

T
E

R
M

IN
A

T
IO

N
T

E
R

M
IN

A
T

IO
N

ServiceService
ConfiguratorConfigurator

init()
insert()

ServiceService
AA

ServiceService
RepositoryRepository

ServiceService
BB

init()

insert()

svc()
svc()

fini()
remove()

fini()
remove()

RUN EVENTRUN EVENT

 LOOP LOOP

FOR EACHFOR EACH

 SERVICE DO SERVICE DOS
E

R
V

IC
E

C
O

N
F

IG
U

R
A

T
IO

N

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G

FOR EACHFOR EACH

 SERVICE DO SERVICE DO

Figure 4: Interaction Diagram for the Service Configurator
Pattern

� Service configuration – The Service Configurator initial-
izes a Service by calling its init method. Once the
Service has been initialized successfully, the Service
Configurator adds it to the Service Repository,
which manages and controls all the Services.

� Service processing – After it is configured into the sys-
tem, a Service performs its processing tasks (i.e.,
servicing client requests).3 While Service process-
ing is executing, the Service Configurator can suspend
and resume the Service.

� Service termination – The Service Configurator termi-
nates the Service once it is no longer needed by call-
ing thefini hook method on theService. This hook
allows the Service to clean up before terminating.
Once a Service is terminated, the Service Configura-
tor removes it from the Service Repository.

6 Consequences

6.1 Benefits

The Service Configurator pattern offers the following bene-
fits:

� Centralized administration: The pattern consolidates
one or more services into a single administrative unit. This
helps to simplify development by automatically perform-
ing common service initialization and termination activities
(such as opening and closing files, acquiring and releasing
locks, etc.). In addition, it centralizes the administration of
communication services by imposing a uniform set of config-
uration management operations (such as initialize, suspend,
resume, and terminate).

3Section 7 covers the details of how parameters can be passed into the
Service, as well as how the Service can be activated.

5

� Increased modularity and reuse: The pattern improves
the modularity and reusability of communication services by
decoupling the implementation of these services from the
configuration of the services. In addition, all services have a
uniform interface by which they are configured, thereby en-
couraging reuse and simplifying development of subsequent
services.

� Increased configuration dynamism: The pattern en-
ables a service to be dynamically reconfigured without mod-
ifying, recompiling, or statically relinking existing code. In
addition, reconfiguration of a service can often be performed
without restarting the service or other active services with
which it is co-located.4

� Increased opportunity for tuning and optimization:
The pattern increases the range of service configuration alter-
natives available to developers by decoupling service func-
tionality from the concurrency strategy used to execute the
service. Developers can adaptively tune daemon concurrency
levels to match client demands and available OS processing
resources by choosing from a range of concurrency strate-
gies. Some alternatives include spawning a thread or process
upon the arrival of a client request or pre-spawning a thread
or process at service creation time.

6.2 Drawbacks

The Service Configurator pattern has the following draw-
backs:

� Lack of determinism: The pattern makes it hard to de-
termine the behavior of an application until its services are
configured at run-time. This can be problematic for real-time
systems since a dynamically configured service may not per-
form predictably when run with certain other services. For
example, a newly configured service may consume excessive
CPU cycles, thereby starving out other services and causing
them to miss their deadlines.

�Reduced reliability: An application that uses the Service
Configurator pattern may be less reliable than a statically
configured application since a particular configuration of ser-
vices may adversely affect the execution of the services. For
instance, a faulty service may crash, thereby corrupting state
information it shares with other services. This is particularly
problematic if multiple services are configured to run within
the same process.

� Increased overhead: The pattern adds extra levels of
indirection to execute a service. For instance, the Service
Configurator first initializes the service and then loads it into
the Service Repository. This may incur excessive
overhead in time-critical applications. In addition, the use
of dynamic linking to implement the Service Configurator

4It is beyond the scope of the Service Configurator pattern to ensure
robust dynamic service reconfiguration. Supporting robust reconfiguration
is primarily a matter of protocols and policies, whereas the Service Config-
urator pattern primarily addresses (re)configuration mechanisms.

Step Common Alternatives
Define the service control � Services inherit from an
interface abstract base class

� Services respond to control messages
Define a Service Repository � Maintain a table of service

implementations
Select a configuration � Specify at command line
mechanism � Specify through a user interface

� Specify through a configuration file
Determine service execution � Reactive execution
mechanism � Multi-threaded Active Objects

� Multi-process Active Objects

Table 1: Steps Involved in Implementing the Service Con-
figurator Pattern

pattern adds extra levels of indirection to method invocations
and global variable accesses.

7 Implementation

The Service Configurator pattern may be implemented in
many ways. This section explains the steps and alternatives
involved when implementing the pattern. These steps and
alternatives are summarized in Table 1.

� Define the service control interface: The following is
the basic interface that services must support to enable the
Service Configurator to configure and control a service:

� Service initialization - provide an entry point into the
service and perform initialization of the service.

� Service termination - terminate execution of a service.

� Service suspension - temporarily suspend the execution
of a service.

� Service resumption - resume execution of a suspended
service.

� Service information - report information (e.g., port num-
ber or service name) that describes a service.

There are two basic approaches to defining the service
control interface, inheritance-based and message-based:

� Inheritance-based – This approach has each service in-
herit from a common base class. This is the approach
used by the ACE Service Configurator frame-
work [7] and Java applets. It works by defining an
abstract base class containing a number of pure virtual
“hook” methods, as follows:
class Service
{
public:
// = Initialization and termination hooks.
virtual int init (int argc, char *argv[]) = 0;
virtual int fini (void) = 0;

// = Scheduling hooks.
virtual int suspend (void);
virtual int resume (void);

6

// = Informational hook.
virtual int info (char **, size_t) = 0;

};

The init method serves as an entry point into a
Service. It is used by the Service Configurator to ini-
tialize the execution of a Service. The fini method
allows the Service Configurator to terminate the execu-
tion of a Service. The suspend and resumemeth-
ods are scheduling hooks used by the Service Configura-
tor to suspend and resume the execution of a Service.
The info method allows the Service Configurator to
obtain Service-related information (such as its name
and network address). Together, these methods impose
a uniform contract between the Service Configurator
and the Services that it manages.

� Message-based – Another way to control communica-
tion services is to program each Service to respond
to a specific set of messages. This makes it possible
to integrate the Service Configurator into non-OO pro-
gramming languages that lack inheritance (such as C or
Ada83).

The Windows NT Service Control Manager (SCM) uses
this scheme. Each Window NT host has a master SCM
process that automatically initiates and manages sys-
tem services by passing them various control messages
(such as PAUSE, RESUME, and TERMINATE). Each de-
veloper of an SCM-managed service is responsible for
writing code to process these messages.

� Define a Repository: A Service Repository is
used to maintain all the service implementations such as
objects, executable programs, or dynamically linked li-
brary (DLLs). A Service Configurator uses the Service
Repository to access a service when it is configured into
or removed from the system. Each service’s current status
(such as whether it’s active or suspended) is maintained in
the Repository, as well. The Service Configurator stores
and accesses the Service Repository information in
main memory, the file system, or the kernel (e.g., it may use
operations that report the status of processes and threads).

� Select a configuration mechanism: A service needs to
be configured before it can be executed. To configure a ser-
vice requires specifying attributes that indicate the location of
the service’s implementation (such as an executable program
or DLL), as well as the parameters required to initialize a ser-
vice at run-time. This configuration criteria can be specified
in various ways (such as on the command line, via environ-
ment variables, through a user interface, or in a configuration
file). A centralized configuration mechanism simplifies the
installation and administration of the services in an appli-
cation by consolidating service attributes and initialization
parameters in a single location.

�Determine the service execution mechanism: A service
that has been dynamically configured by a Service Configura-
tor can be executed using various combinations of Reactive

[4] and Active Object [8] schemes. These alternatives are
examined briefly below:

� Reactive execution - A single thread of control can be
used for the Service Configurator, as well the execution
of all the services it configures.

� Multi-threaded Active Objects - This approach runs the
dynamically configured services in their own threads of
control within the Service Configurator process. The
Service Configurator can either spawn new threads “on-
demand” or execute the services within an existing pool
of threads.

� Multi-process Active Objects - This approach runs the
dynamically configured services in their own processes.
The Service Configurator can either spawn new pro-
cesses “on-demand” or execute the services within an
existing pool of processes.

8 Sample Code

The following code presents an example of the Service Con-
figurator pattern written in C++. The example focuses on the
configuration-related aspects of the distributed time service
presented in Section 2.3. In addition, this example illustrates
the use of other patterns (such as the Reactor pattern [4] and
the Acceptor [5] and Connector [6] patterns) that are com-
monly used to develop communication services and Object
Request Brokers.

In the example below, the Concrete Service class in
the OMT class diagram shown in Figure 3 is represented by
the Time Server class, as well as the Clerk class. The
C++ code in this section implements theTime Server and
the Clerk classes.5 Both classes inherit from Service,
allowing them to be dynamically configured into an applica-
tion. In addition, the approach uses a configuration mech-
anism based on explicit dynamic linking [7] and a config-
uration file to dynamically configure the Clerk and Server
portions of the distributed time service. The service exe-
cution mechanism is based on the reactive event handling
model within a single thread of control.

The example shows how the Clerk component can change
the algorithm it uses to compute the local system time with-
out affecting the execution of other components configured
by the Service Configurator. Once the algorithm has been
modified, the Clerk component is reconfigured dynamically
by the Service Configurator.

The code shown below also includes the main driver
function, which provides the generic entry point into any
Service Configurator-based application. The implementa-
tion runs on both UNIX/POSIX and Win32 platforms us-
ing ACE [7], which can be obtained via the WWW at
www.cs.wustl.edu/�schmidt/ACE.html.

5To save space, most of the error handling code has been omitted.

7

8.1 The Time Server Class

The Time Server uses the Acceptor class to accept
connections from one or more Clerks. The Acceptor class
uses the Acceptor pattern [5] to create handlers for every
connection from Clerks that want to receive requests for time
updates. This design decouples the implementation of the
Time Server from its configuration. Therefore, developers
can change the implementation of the Time Server indepen-
dently of its configuration. This provides flexibility with
respect to evolving the implementation of the Time Server.

The Time Server class inherits from the Service
base class defined in Section 7. This enables the Ser-
vice Configurator to dynamically link and unlink a Time
Server. Before loading the Time Server service into
the Service Repository, the Service Configurator in-
vokes its init hook. This method performs the Time
Server-specific initialization code. Likewise, the fini
hook method is called automatically by the Service Configu-
rator to terminate the service when it is no longer needed.

// The Clerk_Handler processes time requests
// from Clerks.
class Clerk_Handler :
public Svc_Handler <SOCK_Stream>

{
// This is identical to the Clerk_Handler
// defined in the second section.

};

class Time_Server : public Service
{
public:
// Initialize the service when linked dynamically.
virtual int init (int argc, char *argv[]) {
// Parse command line arguments to get
// port number to listen on.
parse_args (argc, argv);

// Set the connection acceptor endpoint into
// listen mode (using the Acceptor pattern).
acceptor_.open (port_);

// Register with the Reactor Singleton.
Reactor::instance ()->register_handler
(&acceptor_, ACCEPT_MASK);

}

// Terminate the service when dynamically unlinked.
virtual int fini (void) {

// Close down the connection.
acceptor_.close ();

}

// Other methods (e.g., info(), suspend(), and
// resume()) omitted.

private:
// Parse command line arguments or those
// specified by the configuration file.
int parse_args (int argc, char *argv[]);

// Acceptor is a factory that accepts
// connections from Clerks and creates
// Clerk_Handlers.
Acceptor<Clerk_Handler, SOCK_Acceptor>
acceptor_;

// Port the Time Server listens on.
int port_;

};

Note that the Service Configurator can also suspend and
resume the Time Server by calling its suspend and

resume hooks, respectively.

8.2 The Clerk Class

The Clerk uses the Connector class to establish and
maintain connections with one or more Time Servers.
The Connector class uses the Connector pattern [6] to
create handlers for each connection to a Time Server. The
handlers receive and process time updates from the Time
Servers.

The Clerk class inherits from the Service base class.
Therefore, like the Time Server, it can be dynamically
configured by the Service Configurator. The Service Con-
figurator can initialize, suspend, resume, and terminate the
Clerk by calling itsinit, suspend, resume, and fini
hooks, respectively.

// This class communicates with the Time_Server.
class Time_Server_Handler
: public Svc_Handler <SOCK_Stream>

{
public:
// Get the current time from a Time Server.
Time_Value get_server_time (void);

// ...
};

// This class establishes and maintains connections
// with the Time Servers and also periodically queries
// them to calculate the current time.

class Clerk : public Service
{
public:
// Initialize the service when linked dynamically.
virtual int init (int argc, char *argv[]) {

// Parse command line arguments and for
// every host:port specification of server,
// create a Clerk instance that handles
// connection to the server.
parse_args (argc, argv);

Time_Server_Handler **handler = 0;

// Use the Iterator pattern and the
// Connector pattern to set up the
// connections to the Time Servers.

for (ITERATOR iterator (handler_set_);
iterator.next (handler) != 0;
iterator.advance ()) {

connector_.connect (*handler);

Time_Value timeout_interval (60);

// Register a timer that will expire
// every 60 seconds. This will trigger
// a call to the handle_timeout() method,
// which will query the Time Servers and
// retrieve the current time of day.
Reactor::instance ()->schedule_timer

(this, timeout_interval);
}

// Terminate the service when dynamically unlinked.
virtual int fini (void) {

Time_Server_Handler **handler = 0;

// Disconnect from all the time servers.

for (ITERATOR iterator (handler_set_);
iterator.next (handler) != 0;
iterator.advance ())

(*handler)->close ();

8

// Remove the timer.
Reactor::instance ()->cancel_timer (this);

}

// info(), suspend(), and resume() methods omitted.

// The handle_timeout method implements the
// Clock Synchronization algorithm that computes
// local system time. It is called periodically
// by the Reactor’s timer mechanism.

int handle_timeout (void) {
// Periodically query the servers by iterating
// over the handler set and obtaining time
// updates from each Time Server.

Time_Server_Handler **handler = 0;

// Use the Iterator pattern to query all
// the Time Servers

for (ITERATOR iterator (handler_set_);
iterator.next (handler) != 0;
iterator.advance ()) {

Time_Value server_time =
(*handler)->get_server_time ();

// Compute the local system time and
// store this in shared memory that
// is accessible to the Client processes.

}

private:
// Parse command line arguments or those
// specified by the configuration file and
// create Clerks for every specified server.
int parse_args (int argc, char *argv[]);

typedef Unbounded_Set <Time_Server_Handler *>
HANDLER_SET;

typedef Unbounded_Set_Iterator
<Time_Server_Handler *> ITERATOR;

// Set of Clerks and iterator over the set.
HANDLER_SET handler_set_;

// Connector used to set up connections
// to all servers.
Connector<Time_Server_Handler, SOCK_Connector>

connector_;
};

The Clerk periodically sends a request for time update
to all its connected Time Servers by iterating over its list
of handlers. Once the Clerk receives responses from all
its connected Time Servers, it recalculates its notion of
the local system time. Thus, when Clients ask the Clerk for
the current time, they receive a globally synchronized time
value.

8.3 Configuring an Application

8.3.1 Co-located Configuration

The following code illustrates the dynamic configuration and
execution of an application that uses a configuration file to co-
locate the Time Server and the Clerk within the same
OS process:

int
main (int argc, char *argv[])
{
// Configure the daemon.
Service_Config daemon (argc, argv);

Directive Description

dynamic Dynamically link and enable a service
static Enable a statically linked service
remove Completely remove a service
suspend Suspend service without removing it
resume Resume a previously suspended service

Table 2: Service Configuration Directives

// Perform daemon services updates.
daemon.run_event_loop ();
/* NOTREACHED */

}

This completely generic main program configures com-
munication services dynamically within the constructor of
the Service Config object. This method consults the
followingsvc.conf configuration file:

Configure a Time Server.
dynamic Time_Server Service*

netsvcs.dll:make_Time_Server()
"-p $TIME_SERVER_PORT"

Configure a Clerk.
dynamic Clerk Service*

netsvcs.dll:make_Clerk()
"-h tango.cs:$TIME_SERVER_PORT"
"-h perdita.wuerl:$TIME_SERVER_PORT"
"-h atomic-clock.lanl.gov:$TIME_SERVER_PORT"
"-P 10" # polling frequency

Each entry in the svc.conf configuration file is pro-
cessed by the ACE Service Configurator framework. The
framework interprets the dynamic directive as a command
to dynamically link the designated Service into the ap-
plication process. Table 2 summarizes the available service
configuration directives.

For example, the first entry in the svc.conf file spec-
ifies a service name (Time Server) that is used by the
Service Repository to identify the dynamically con-
figured Service. The make Time Server is a factory
function located in the dynamic link librarynetsvcs.dll.
The Service Configurator framework dynamically links this
DLL into the application’s address space and then invokes
the make Time Server Factory function. This function
dynamically allocates a new Time Server instance, as
follows:

Service *make_Time_Server(void)
{
return new Time_Server;

}

The final string parameter in the first entry specifies an en-
vironment variable containing a port number that the Time
Server will listen on for Clerk connections. The Service
Configurator converts this string into an “argc/argv”-
style vector and passes it to the init hook of the Time
Server. If the init method succeeds, the Service *
is stored in the Service Repository under the name
Time Server.

9

The second entry in the svc.conf file specifies how to
dynamically configure aClerk. As before, the Service Con-
figurator dynamically links netsvcs.dll DLL into the
application’s address space and invokes the make Clerk
factory function to create a new Clerk instance. The
init hook is passed the names and port numbers of
three Time Servers (tango.cs, perdita.wuerl, and
atomic-clock.lanl). In addition, the -P 10 option
defines how frequently the Clerk will poll the Time Servers.

8.3.2 Distributed Configuration

Suppose we did not want to co-locate the Time Server
and theClerk in order to reduce the memory footprint of an
application. Since we’re using the Service Configurator pat-
tern, all that’s required is to split the svc.conf file into two
parts. One part contains the Time Server entry and the
other part contains theClerk entry. The services themselves
would not have to change by virtue of the fact that the Service
Configurator pattern has decoupled their behavior from their
configuration. Figure 5 shows what the configuration looks
like with the Time Server and Clerk co-located in the
same process, as well as what the configuration looks like
after the split.

TimeTime
ServerServer

CO-LOCATED DECOUPLED

ClerkClerk

CristianCristian
AlgorithmAlgorithm

ClerkClerk

BerkeleyBerkeley
AlgorithmAlgorithm

TimeTime
ServerServer

Figure 5: Reconfiguring a Time Server and a Clerk

8.4 Reconfiguring an Application

Now suppose we need to change the algorithm implementa-
tion of the Clerk. For example, we may decide to switch
from an implementation of the Berkeley algorithm [2] to an
implementation of Cristian’s algorithm [3], both of which are
outlined below:

� Berkeley algorithm – In this approach, the Time
Server is an active component that polls every ma-

chine in the network periodically to ask what time it is
there. Based on the responses it receives, it computes
an aggregate notion of the correct time and tells all the
machines to adjust their clocks accordingly.

� Cristian’s algorithm – In this approach, the Time
Server is a passive entity responding to queries made
by Clerks. It does not actively query other machines to
determine its own notion of time.

A change in the time synchronization algorithm may be
necessary in response to the characteristics of the Time
Server. For instance, if the machine on which the Time
Server resides has a WWV receiver6 the Time Server
can act as a passive entity and Cristian algorithm would be
appropriate. On the other hand, if the machine on which the
Time Server resides does not have a WWV receiver then
an implementation of the Berkeley algorithm would be more
appropriate.

Figure 5 shows a change in the Clerk implementation
(corresponding to the change in clock synchronization algo-
rithm). The change takes place in the process of separating
the Time Server and the Clerk, which were previously
co-located.

Ideally, we’d like to change the algorithm implementa-
tion without affecting the execution of other services or other
components of the time service. Accomplishing this using
the Service Configurator simply requires the following mod-
ification to the svc.conf file:

Terminate Clerk
remove Clerk

The only additional requirement is to have the Service
Configurator process this directive. This can be done by gen-
erating an external event (such as the UNIX SIGHUP signal,
an RPC notification, or a Windows NT Registry event). On
receipt of this event, the applicationwould consult the config-
urationfile again and terminate the execution of the Clerk ser-
vice. The Service Configurator would call the fini method
of the Clerk and thereby terminate the execution of the
Clerk component. The execution of other services should
not be affected.

Once the Clerk service has been terminated, changes can
be made to the algorithm implementation. The code can then
be recompiled and relinked to form a new netsvcs DLL.
A similar approach can be taken to add a Clerk service back
to the Service Configurator. The configuration file would be
modified with a new directive specifying that the Clerk be
dynamically linked, as follows:

Reconfigure a new Clerk.
dynamic Clerk Service*

netsvcs.dll:make_Clerk()
"-h tango.cs:$TIME_SERVER_PORT"
"-h perdita.wuerl:$TIME_SERVER_PORT"
"-h atomic-clock.lanl.gov:$TIME_SERVER_PORT"

6A WWV receiver intercepts the short pulses broadcastedby the National
Institute of Standard Time (NIST) to provide Universal Coordinated Time
(UTC) to the public.

10

IDLEIDLE

CONFIGURECONFIGURE//
init()init()

fini()fini()

suspend()suspend()

SUSPENDEDSUSPENDED

RUNNINGRUNNING

resume()resume()
fini()fini()

RECONFIGURERECONFIGURE//
init()init()

Figure 6: State Diagram of the Service Lifecycle

"-P 10" # polling frequency

An external event would then be generated, causing the pro-
cess to reread the configuration file and add the Clerk com-
ponent to the repository. The Clerk component would begin
execution once the init method of Clerk is called by the
Service Configurator framework.

Figure 6 shows a state diagram of the lifecycle of a
Service such as the Clerk service.
Note that in the entire process of terminating and remov-
ing the Clerk service, no other active services are affected
by changes to the implementation and reconfiguration of the
Clerk service. The ease of being able to substitute a new
service implementation further exemplifies the flexibility of-
fered by the Service Configurator pattern.

9 Known Uses

The Service Configurator pattern is widely used in system
and application programming environments including UNIX,
Windows NT, ACE, and Java applets:

� Modern operating system device drivers: Most mod-
ern operating systems (such as Solaris and Windows NT)
provide support for dynamically configurable kernel-level
device drivers. These drivers can be linked into and unlinked
out of the system dynamically via init/fini/infohooks.
These operating systems use the Service Configurator pattern
to allow administrators to reconfigure the OS kernel without
having to shut it down, recompile and statically relink new
drivers, and restart the system.

� UNIX network daemon management: The Service
Configurator pattern has been used in “superservers” that
manage UNIX network daemons. Two widely available net-
work daemon management frameworks are inetd [10] and
listen [11]. Both frameworks consult configuration files
that specify (1) service names (such as the standard Inter-
net services ftp, telnet, daytime, and echo), (2) port
numbers to listen on for clients to connect with these services,

and (3) an executable file to invoke and perform the service
when a client connects. Both frameworks contain a master
Acceptor [5] process that monitors the set of ports associated
with the services. When a client connection occurs on a mon-
itored port, the Acceptor process accepts the connection and
demultiplexes the request to the appropriate pre-registered
service handler. This handler performs the service (either
reactively or in an active object) and returns any results to
the client.

� The Windows NT Service Control Manager (SCM):
Unlikeinetd and listen, the Windows NT Service Con-
trol Manager (SCM) is not a port monitor, per se. That is,
it does not provide built-in support for listening to a set
of I/O ports and dispatching server processes “on-demand”
when client requests arrive. Instead, it provides an RPC-
based interface that allows a master SCM process to au-
tomatically initiate and control (i.e., pause, resume, termi-
nate, etc.) administrator-installed services (such as remote
registry access). These services would otherwise run
as separate threads within either a single-service or a multi-
service daemon process. Each installed service is individ-
ually responsible for configuring itself and monitoring any
communication endpoints, which can be more general than
socket ports. For instance, the SCM can control named pipes
and shared memory.

� The ADAPTIVE Communication Environment (ACE)
framework: The ACE framework [7] provides a set of
C++ mechanisms for configuring and controlling com-
munication services dynamically. The ACE Service
Configurator extends the mechanisms provided by
inetd,listen, andSCM to automatically support dynamic
linking and unlinking of communication services. The code
contained in Section 8 shows how the ACE framework is used
to implement the distributed time service. The mechanisms
provided by ACE were influenced by the interfaces used to
configure and control device drivers in modern operating
systems. Rather than targeting kernel-level device drivers,
however, the ACE Service Configurator framework
focuses on dynamic configuration and control of application-
level Service objects.

� Java applets: – The applet mechanism in Java uses the
Service Configurator pattern. Java provides support for
downloading, initializing, starting, suspending, resuming,
and terminating applets. It does this by providing methods
(e.g., start and stop) that initiate and terminate threads.
A method in a Java applet can access the thread it is run-
ning under using Thread.currentThread(), and then
issue control messages to it such as suspend, resume,
and stop. [12] presents an example that illustrates how the
Service Configurator pattern is used for Java applets.

10 Related Patterns

The intent of the Service Configurator pattern is similar to
the Configuration pattern [13]. The Configuration pattern

11

decouples structural issues related to configuring services in
distributed applications from the execution of the services
themselves. The Configuration pattern has been used in
frameworks for configuring distributed systems to support
the construction of a distributed system from a set of com-
ponents. In a similar way, the Service Configurator pattern
decouples service initialization from service processing. The
primary difference is that the Configuration pattern focuses
more on the active composition of a chain of related ser-
vices, whereas the Service Configurator pattern focuses on
the dynamic initialization of service handlers at a particu-
lar endpoint. In addition, the Service Configurator pattern
focuses on decoupling service behavior from the service’s
concurrency strategies.

The Manager Pattern [14] manages a collection of objects
by assuming responsibility for creating and deleting these
objects. In addition, it provides an interface to allow clients
access to the objects it manages. The Service Configurator
pattern can use the Manager pattern to create and delete Ser-
vices as needed, as well as to maintain a repository of the
Services it creates using the Manager Pattern . However, the
functionality of dynamically configuring, initializing, sus-
pending, resuming, and terminating a Service created using
the Manager Pattern must be added to fully implement the
Service Configurator Pattern.

A Service Configurator often makes use of the Reactor
[4] pattern to perform event demultiplexing and dispatching
on behalf of configured services. Likewise, dynamically
configured services that execute for a long periods of time
often use the Active Object pattern [15].

Administrative interfaces (such as configuration files or
GUIs) to a Service Configurator-based system provide a
Facade [16]. This Facade simplifies the management and
control of applications that are executing within the Service
Configurator.

The virtual methods provided by the Service base class
are callback “hooks” [9]. These hooks are used by the Ser-
vice Configurator to initiate, suspend, resume, and terminate
services.

A Service (such as the Clerk class described in Sec-
tion 8) may be created using a Factory Method [16]. This
allows an application to decide which type ofService sub-
class to create.

11 Concluding Remarks

This article describes the Service Configurator pattern and
illustrates how it decouples the implementation of services
from their configuration. This decoupling increases the flex-
ibility and extensibility of services. In particular, service
implementations can be developed and evolved over time in-
dependently of many issues related to service configuration.
In addition, the Service Configurator patten provides the abil-
ity to reconfigure a service without modifying, recompiling,
or statically relinking existing code.

The Service Configurator pattern also centralizes the ad-
ministration of services it configures. This centralization can
simplify programming effort by automating common service
initialization tasks (such as opening and closing files, ac-
quiring and releasing locks, etc). In addition, centralized
administration can provide greater control over the lifecycle
of services.

The Service Configurator pattern has been applied widely
in many contexts. This article used a distributed time service
written in C++ as an example to demonstrate the Service Con-
figurator pattern. The ability to decouple the development of
the components of a distributed time service from their con-
figuration into the system exemplifies the flexibility offered
by the Service Configurator pattern. This decoupling allows
different Clerks to be developed with different distributed
time algorithms. The decision to configure a particular Clerk
becomes a run-time decision, which yields greater flexibility.
The article also showed how the Service Configurator pattern
can be used to dynamically reconfigure the distributed time
service without having to modify, recompile, or statically
relink running servers.

The Service Configurator pattern is widely used in many
contexts such as device drivers in Solaris and Windows NT,
Internet superservers like inetd, the Windows NT Service
Control Manager, and the ACE framework. In each case,
the Service Configurator pattern decouples the implementa-
tion of a service from the configuration of the service. This
decoupling supports both extensibility and flexibility of ap-
plications.

References
[1] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and

Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,” USENIX Comput-
ing Systems, vol. 9, November/December 1996.

[2] R. Gusella and S. Zatti, “The Accuracy of the Clock Synchro-
nization Achieved by TEMPO in Berkeley UNIX 4.3BSD,”
IEEE Transactionson Software Engineering, vol. 15, pp. 847–
853, July 1989.

[3] F. Cristian, “Probabilistic Clock Synchronization,” Dis-
tributed Computing, vol. 3, pp. 146–158, 1989.

[4] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.
Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

[5] D. C. Schmidt, “Design Patterns for Initializing Network Ser-
vices: Introducing the Acceptor and Connector Patterns,”
C++ Report, vol. 7, November/December 1995.

[6] D. C. Schmidt, “Connector: a Design Pattern for Actively
Initializing Network Services,” C++ Report, vol. 8, January
1996.

[7] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,” IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280–293, December 1994.

[8] R. G. Lavender and D. C. Schmidt, “Active Object: an Object
Behavioral Pattern for Concurrent Programming,” in Pattern

12

Languages of Program Design (J. O. Coplien, J. Vlissides,
and N. Kerth, eds.), Reading, MA: Addison-Wesley, 1996.

[9] W. Pree, Design Patterns for Object-Oriented Software De-
velopment. Reading, MA: Addison-Wesley, 1994.

[10] W. R. Stevens, UNIX Network Programming, First Edition.
Englewood Cliffs, NJ: Prentice Hall, 1990.

[11] S. Rago, UNIX System V Network Programming. Reading,
MA: Addison-Wesley, 1993.

[12] P. Jain and D. C. Schmidt, “Service Configurator: A Pat-
tern for Dynamic Configuration of Services,” in Proceedings
of the 3rd Conference on Object-Oriented Technologies and
Systems, USENIX, June 1997.

[13] S. Crane, J. Magee, and N. Pryce, “Design Patterns for Binding
in Distributed Systems,” in The OOPSLA ’95 Workshop on
Design Patterns for Concurrent, Parallel, and Distributed
Object-Oriented Systems, (Austin, TX), ACM, Oct. 1995.

[14] P. Sommerland and F. Buschmann, “The Manager Design Pat-
tern,” in Proceedings of the 3rd Pattern Languages of Pro-
gramming Conference, September 1996.

[15] R. G. Lavender and D. C. Schmidt, “Active Object: an Object
Behavioral Pattern for Concurrent Programming,” in Proceed-
ings of the 2nd Annual Conference on the Pattern Languages
of Programs, (Monticello, Illinois), pp. 1–7, September 1995.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

13

