
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Reliable Effects Screening:

A Distributed Continuous Quality Assurance Process for

Monitoring Performance Degradation in Evolving Software

Systems

Cemal Yilmaz
���

, Adam Porter
�
, Arvind S. Krishna

�
, Atif Memon

�
, Douglas C.

Schmidt
�
, Aniruddha Gokhale

�
, Balachandran Natarajan

�
�

IBM T. J. Watson Research Center, Hawthorne, NY, 10532
�

Dept. of Computer Science, University of Maryland, College Park, MD 20742�
Dept. of Electrical Engineering and Computer Science, Vanderbilt University,

Nashville, TN 37235

Abstract

Developers of highly configurable performance-intensive software systems often use in-house

performance-oriented “regression testing” to ensure that their modifications do not adversely

affect their software’s performance across its large configuration space. Unfortunately, time

and resource constraints can limit in-house testing to a relatively small number of possible

configurations, followed by unreliable extrapolation from these results to the entire configuration

space. As a result, many performance bottlenecks escape detection until systems are fielded.

In our earlier work, we improved the situation outlined above by developing an initial qual-

ity assurance process called “main effects screening”. This process (1) executes formally de-

signed experiments to identify an appropriate subset of configurations on which to base their

performance-oriented regression testing, (2) executes benchmarks on this subset whenever the

software changes, and (3) provides tool support for executing these actions on in-the-field and

* Cemal Yilmaz was a graduate student at the University of Maryland, College Park, when this work was carried out.

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

in-house computing resources. Our initial process had several limitations, however, since it was

manually configured (which was tedious and error-prone) and relied on strong and untested

assumptions for its accuracy (which made its use unacceptably risky in practice).

This paper presents a new quality assurance process called “reliable effects screening” that

provides three significant improvements to our earlier work. First, it allows developers to eco-

nomically verify key assumptions during process execution. Second, it integrated several model-

driven engineering tools to make process configuration and execution much easier and less error

prone. Third, we evaluated this process via several feasibility studies of three large, widely-used

performance-intensive software frameworks. Our results indicate that reliable effects screening

can detect performance degradation in large-scale systems more reliably and with significantly

less resources than conventional techniques.

Index Terms

Distributed continuous quality assurance, performance-oriented regression testing, design-of-experiments

theory

I. INTRODUCTION

The quality of service (QoS) of many performance-intensive systems, such as scientific com-

puting systems and distributed real-time and embedded (DRE) systems, depend heavily on

various environmental factors. Example dependencies include the specific hardware and operating

system on which systems run, installed versions of middleware and system library implemen-

tations, available language processing tools, specific software features that are enabled/disabled

for a given customer, and dynamic workload characteristics. Many of these dependencies are

not known until deployment and some change frequently during a system’s lifetime.

To accommodate these dependencies, users often need to tune infrastructure and software ap-

plications by (re)adjusting many (i.e., dozens to hundreds) of compile- and run-time configuration

options that record and control variable software parameters. These options are exposed at mul-

tiple system layers, including compiler flags and operating system, middleware, and application

feature sets and run-time optimization settings. For example, there are � 50 configuration options

for SQL Server 7.0, � 200 initialization parameters for Oracle 9, and � 90 core configuration

options for Apache HTTP Server Version 1.3.

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

Although designing performance-intensive systems to include such configurations options

promotes code reuse, enhnaces portability, and helps end users improve their QoS, it also yields

an enormous family of “instantiated” systems, each of which might behave differently and thus

may need quality assurance (QA). The size of these system families creates serious and often

under-appreciated challenges for software developers, who must ensure that their decisions,

additions, and modifications work across this large (and often dynamically changing) space.

For example, consider that:

� Option settings that maximize performance for a particular environment may be ill-suited

for different ones. Failures can and do manifest in some configurations, but not in others.

Similarly, individual code changes can have different runtime effects in different configu-

rations.
� Individual developers, especially those in smaller companies or in open-source projects, may

not have access to the full range of hardware platforms, operating systems, middleware, class

library versions, etc. over which the system must run. In these situations, individual QA

efforts will necessarily be incomplete.
� Limited budgets, aggressive schedules, and rapidly changing code bases mean that QA

efforts frequently focus on a relatively small number of system configurations, often chosen

in an ad hoc fashion. Developers then unreliably extrapolate from this data to the entire

configuration space, which allows quality problems to escape detection until systems are

fielded.

In summary, resources constraints and the large number of possible system configurations make

exhaustive evalution infeasible for performance-intensive systems. Developers therefore need (1)

ways to identify a small core set of configurations whose QA results can be reliably generalized

across all configurations and (2) support for executing QA activities across a sufficiently rich and

diverse set of computing platforms. To address these needs, our research [33], [32], [20], [31] has

focused on system support and algorithms for distributed continuous quality assurance (DCQA)

processes. DCQA helps improve software quality iteratively, opportunistically, and efficiently by

executing QA tasks continuously across a grid of computing resources provided by end-users

and developer communities.

In prior work [20], we created a prototype DCQA support environment called Skoll that

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

helps developers create, execute, and analyze their own DCQA processes, as described in

Section II. To facilitate DCQA process development and validation, we also developed model-

driven engineering tools for use with Skoll. We then used Skoll to design and execute an initial

DCQA process, called “main effects screening” [33], whose goal was to estimate performance

efficiently across all system configurations (hereafter called the “configuration space”).

Main effects screening borrows ideas from statistical quality improvement techniques that have

been applied widely in engineering and manufacturing, such as Exploratory Data Analysis [27],

Robust Parameter Design [30], and Statistical Quality Control [23]. A central activity of these

techniques is to identify aspects of a system or process that contribute substantially to outcome

variation. We use similar ideas to identify important configuration options whose settings define

the distribution of performance across all configurations by causing the majority of performance

variation. Evaluating all combinations of these important options (and randomizing the other

options), thus provides an inexpensive, but reliable estimate of performance across the entire

configuration space.

Although our initial work on main effects screening presented in [33] showed promise, it

also had several limitations. For example, the definition and execution of the process had

many manual steps. To improve this, we have extended and better integrated several model-

driven engineering (MDE) [25] tools, including the Options Configuration Modeling Language

(OCML) [28], which models configuration options and inter-option constraints, and the Bench-

mark Generation Modeling Language (BGML) [13], which models the QA tasks that observe and

measure QoS behavior under different configurations and workloads. These MDE tools precisely

capture common and variable parts of DCQA processes and the software systems to which they

are applied. They also help reduce development and QA effort by generating configuration files

and many other supporting code artifacts [2] needed to manage and control process execution

across heterogeneous computing resources.

Another limitation with our initial main effects screening process was its dependence on strong

and untested assumptions regarding the absence of interactions among certain groups of options.

If these assumptions do not hold in practice, our results could be wildly incorrect. Moreover,

we had no way to assess the validity of the assumptions without resorting to exhaustive testing,

whose avoidance motivated our DCQA process in the first place.

To remedy these problems, this paper describes further enhancements to our earlier work that

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

significantly broadens its applicability with little additional operating costs. Our new DCQA

process, called “reliable effects screening” is implemented using Skoll and its MDE tools, and

relies on design-of-experiments (DoE) techniques called “screening designs” [30] and “D-optimal

designs” [22]. Our reliable effects screening process first identifies a small subset of the most

important performance-related configuration options by creating formally-designed experiments

and executing them across the Skoll grid. Whenever software changes occur thereafter, reliable

effects screening then uses a far smaller amount of computing resources to estimate system

performance across the entire configuration space by exhaustively exploring all combinations

of the important options, while randomizing the rest. This subsequent analysis can even be run

completely in-house, assuming appropriate computing platforms are available, since the reduced

configuration space is much smaller than the original, and thus more tractable using only in-house

resources.

In addition to describing our new reliable effect screening DCQA process, this paper also

evaluates this process empirically on ACE, TAO, and CIAO (dre.vanderbilt.edu), which

are three widely-used, production-quality, performance-intensive software frameworks. This eval-

uation indicates that (1) our reliable effects screening process can correctly and reliably identify

the subset of options that are most important to system performance, (2) monitoring only these

selected options helps to detect performance degradation quickly with an acceptable level of

effort, and (3) alternative strategies with equivalent effort yield less reliable results. These results

support our contention that reliable effects screening can cheaply and quickly alert performance-

intensive system developers to changes that degrade QoS, as well as provide them with much

greater insight into their software’s performance characteristics.

The remainder of this paper is organized as follows: Section II summarizes the Skoll DCQA

environment; Section III describes how we extended Skoll to implement the new reliable ef-

fect screening DCQA process to conduct performance-oriented regression testing efficiently;

Section IV presents the design and results of a feasibility study using ACE, TAO, and CIAO;

Section VI presents guidelines on how to use reliable effect screening; Section VII compares

our research on reliable effect screening with related work; and Section VIII evaluates threats

to the validity of our experiments and outlines future directions of our DCQA process and tool

research.

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

II. AN OVERVIEW OF THE SKOLL DCQA ENVIRONMENT

To improve the quality of performance-intensive systems across large configuration spaces, our

work focuses on distributed continuous quality assurance (DCQA) processes [20] that evaluate

various software qualities, such as portability, performance characteristics, and functional cor-

rectness “around-the-world and around-the-clock.”1 To support this methodology, we developed

Skoll, which is a model-driven engineering (MDE)-based DCQA environment (www.cs.umd.

edu/projects/skoll). Skoll divides QA processes into multiple tasks, each of which is

implemented as a generic process parametrized by one of several alternative configurations

expressed via MDE tools. Example tasks might include running regression tests in one of many

system configurations, evaluating system response time under one of several different input

workloads, or measuring code execution coverage using one of several instrumentation schemes.

As shown in Figure 1, these tasks are then intelligently and continuously distributed to – and

Computing Nodes
Cluster #1

Computing Nodes
Cluster #2

Skoll Coordinator
Site

Computing Nodes
Cluster #3

Subtask 1.1 Subtask 1.2

Subtask 1.3

Task 1

QA Task 1 is split into three subtasks
(1.1, 1.2, 1.3) and allocated to
computing node clusters 1, 2, and 3
respectively.

Fig. 1. The Skoll Distributed Continuous Quality Assurance Architecture

1Naturally, DCQA processes can also be executed effectively in more constrained and smaller-scale environments, such as

company-wide intranets.

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

executed by – clients across a grid of computing resources contributed by end-user and developer

communities. The results of individual tasks are returned to servers at central collection sites,

where they are merged and analyzed to steer subsequent iterations and ultimately to complete

the overall QA process.

This section summarizes Skoll’s key components and services, which include MDE tools

for modeling system configurations and their constraints, a domain-specific modeling language

(DSML) to describe these models, algorithms for scheduling and remotely executing tasks via

planning technology that analyzes task results and adapts the DCQA process in real time, a

DSML to package the subtasks, and techniques to interpret and visualize the results.

QA task space. Performance-intensive systems, such as the ACE+TAO+CIAO QoS-enabled

middleware, provide a range (i.e., � 500) of configuration options that can be used to tune its

behavior.2 To be effective, DCQA processes must keep track of these options, in addition to other

environmental information, such as OS platform, build tools used, and desired version numbers.

This information is used to parameterize generic QA tasks and aids in planning the global QA

process, e.g., by adapting the process dynamically and helping interpret the results.

In Skoll, tasks are generic processes parameterized by QA task options. These options capture

information that is (1) varied under QA process control or (2) needed by the software to

build and execute properly. These options are generally application-specific, including workload

parameters, operating system, library implementations, compiler flags, or run-time optimization

controls. Each option must take its value from a discrete number of settings. For example, in

other work, our QA task model include a configuration option called OperatingSystem so

Skoll can select appropriate binaries and build code for specific tasks [31].

QA task modeling. The QA task model underlies the DCQA process. Our experience [20], [13],

[32] with the initial Skoll prototype taught us that building these models manually was tedious

and error-prone. We therefore developed and integrated into Skoll the Options Configuration

Modeling Language (OCML) [28]. OCML is an MDE tool that provides a DSML for modeling

software configurations. For example, OCML defines a numeric option type for middleware

options that can have numeric values, e.g., cache, buffer, or thread pool sizes. OCML is built

2All the ACE+TAO+CIAO’s configuration options are described at www.cs.wustl.edu/˜schmidt/ACE_wrappers/

TAO/docs/Options.html.

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

atop the Generic Modeling Environment (GME) [16], which provides a meta-programmable

framework for creating DSMLs and generative tools via metamodels and model interpreters. For

the feasibility study in Section IV, we used the OCML MDE tool to define the configuration

model visually and generate the low-level formats used by other Skoll components.

Exploring the QA task space. Since the QA task spaces of many systems can be enormous,

Skoll contains an Intelligent Steering Agent (ISA) [20] that uses AI planning techniques [21]

to distribute QA tasks on available Skoll clients. When clients become available they send a

message to the Skoll server. Skoll’s ISA then decides which task to assign it by considering

many factors, including (1) the QA task model, which characterizes the subtasks that can be

assigned legally, (2) the results of previous tasks, which capture what tasks have already been

done and whether the results were successful, (3) global process goals, such as testing popular

configurations more than rarely used ones or testing recently changed features more heavily than

unchanged features, and (4) client characteristics and preferences, e.g., the selected configuration

must be compatible with the OS running on the client machine or users can specify preferences

that configurations must run with user-level – rather than superuser-level – protection modes.

After a valid configuration is chosen, the ISA packages the corresponding QA task into a job

configuration, which consists of the code artifacts, configuration parameters, build instructions,

and QA-specific code (e.g., developer-supplied regression/performance tests) associated with a

software project. Each job configuration is then sent to a Skoll client, which executes the job

configuration and returns the results to the ISA. By default, the ISA simply stores these results.

In some experiments, however, we want to learn from incoming results. For example, when

some configurations prove faulty, it makes no sense to retest them. Instead, we should refocus

resources on other unexplored parts of the QA task space. When such dynamic behavior is

desired, DCQA process designers develop customized adaptation strategies that Skoll uses to

monitor the global process state, analyze it, and use the information to modify future task

assignments in ways that improve process performance. One example of an adaptation strategy

is the nearest neighbor search strategy, which allows a process to target failing QA task

subspaces by preferentially testing the “neighbors” of a failing configuration, (i.e., other similar

configurations that differ in one configuration option value) to see if they also fail [20].

Packaging QA tasks. With the initial Skoll prototype, developers who wanted to evaluate

QoS issues had to provide hand-written benchmark programs. For example, ACE+TAO+CIAO

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

developers creating such benchmarks to measure latency and throughput for a particular workload

had to write (1) the header files and source code that implement the measurements, (2) the

configuration and script files that tune the underlying ORB and automate running tests and output

generation, and (3) project build files (e.g., makefiles) required to generate executable binaries

from source code. Our initial feasibility study [20] revealed that this process was tedious and

error-prone.

To address these problems, we developed the Benchmark Generation Modeling Language

(BGML) [14], which is an MDE tool that automates key QoS evaluation concerns of QoS-

enabled middleware and applications, such as (1) modeling how distributed system components

interact with each other and (2) representing metrics that can be applied to specific configuration

options and platforms. Middleware/application developers can use BGML to graphically model

interaction scenarios of interest. BGML automates the task of writing repetitive source code to

perform benchmark experiments and generates syntactically and semantically valid source and

benchmarking code.

Fig. 2. Associating QoS with an Operation in BGML

Figure 2 depicts how QA engineers can visually configure an experiment that measures end-

to-end latency. As shown in the figure, the latency metric was associated with an operation

(WorkOrderResponse()) using BGML. BGML’s TaskSet element was also used to create

background tasks that invoked the WorkOrderResponse() operation continuously for a fixed

number of iterations.

Analysis of results. Since DCQA processes can be complex, Skoll users often need help to

visualize, interpret, and leverage process results. Skoll therefore supports a variety of pluggable

analysis tools, such as Classification Tree Analysis (CTA) [4]. In previous work [20], [32], we

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

used CTA to diagnose options and settings that were the likely causes of specific test failures.

For the work presented in this paper, we developed statistical tools to analyze data generated by

the formally-designed experiments described next.

III. PERFORMANCE-ORIENTED REGRESSION TESTING

As software systems evolve, developers often run regression tests to detect unintended func-

tional side effects. Developers of performance-intensive systems must also detect unintended

side effects on end-to-end QoS. A common way to detect these effects is to run benchmarks

when the system changes. As described in Section I, however, these efforts can be confounded

for systems with many possible configurations because time and resource constraints (and often

high change frequencies) severely limit the number of configurations that can be examined using

only in-house resources.

For example, our earlier experiences applying Skoll to ACE+TAO [20] showed that ACE+TAO

developers have a limited view of their software’s QoS since they routinely benchmark only a

small number of common configurations. QoS degradations not readily seen in these configura-

tions, therefore, can and do escape detection until systems based on ACE+TAO are fielded by

end-users [20], [13]. The key problem here is that the ACE+TAO developers are benchmarking

a small and unrepresentative sample of system configurations, so their extrapolations from this

data are bound to be unreliable.

To address this problem we have developed and evaluated the reliable effects screening

process, which uses “design of experiments” theory [11] to determine an appropriate subset

of system configurations to benchmark when the system changes. This section describes how

we implemented the reliable effects screening process, applied it to ACE+TAO+CIAO, and

disscusses several process choices developers must make when applying it.

A. The Reliable Effects Screening Process

Reliable effects screening (RES) is a process we developed to detect performance degradation

rapidly across a large configuration space as a system changes. This process identifies a small

subset of “important” configuration options that substantially affect variation in performance.

Benchmarking a “screening suite” containing all combinations of these important option settings

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

(with other options assigned randomly) should therefore provide a reliable estimate of perfor-

mance across the entire configuration space at a fraction of the cost and effort of exhaustive

benchmarking.

At a high level the process involves the following steps:

1) Compute a formal experimental design based on the system’s QA task model.

2) Execute that experimental design across volunteered computing resources in the Skoll

computing grid by running and measuring benchmarks on specific configurations dictated

by the experimental design devised in Step 1.

3) Collect, analyze and display the data so that developers can identify the most important

options, i.e., the options that affect performance most significantly.

4) Conduct supplementary analysis again on volunteered computing resources to check the

basic assumptions underlying Step 1 and to confirm the results of Step 3.

5) Estimate overall performance (in-house, if possible) whenever the software changes by

evaluating all combinations of the important options (while randomizing all other options).

6) Frequently recalibrate the important options by restarting the process since these effects

can change over time, depending on how rapidly the subject system changes.

B. Screening Designs Background

The first step of reliable effects screening is to identify options accounting for the most

performance variation across the system’s QA task space. We do this by executing and analyzing

formally-designed experiments, called screening designs, which are described in Kolarik [11],

Wu and Hamada [30], or the NIST Engineering Statistics Handbook (www.itl.nist.gov/

div898/handbook/index.htm). Screening designs are highly economical plans for iden-

tifying important low-order effects, i.e., first-, second-, or third-order effects (where an �	��
 -order

effect is an effect caused by the simultaneous interaction of � factors).

To better understand screening designs, consider a full factorial (i.e., exhaustive) experimental

design involving � independent binary factors. The design’s run size (number of experimental

observations) is therefore �� . Although such designs allow all ����� - through ����
 -order effects

to be computed, they quickly become computationally expensive to run. Screening designs, in

contrast, reduce costs by observing only a carefully selected subset of a full factorial design.

The tradeoff is that they cannot compute most higher-order effects because the selection of

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

observations aliases the effects of some lower-order interactions with some higher-order ones,

i.e., it conflates certain high- and low-order effects.

Which effects are conflated depends on the design’s resolution. In resolution � designs, no

effects involving � factors are aliased with effects involving less than ����� factors. For instance,

a resolution III design is useful to evaluate “clear” (no two aliased together) ����� -order effects,

where all higher effects are negligible. Here all ����� -order effects will be clear, but they may be

aliased with ���� - or higher-order effects. This conflation is justified only if the high-order effects

are indeed negligible. If these assumptions are patently unreasonable, then a higher resolution

may be needed.

In practice, statistical packages are used to compute specific screening designs. We used the

SAS/QC [1] package in this work, but many other packages, such as MINITAB and SPSS, are

also applicable. these packages will produce a screening design, assuming one can be found,

given the following application-specific information: (1) a list of options and their settings, (2)

a maximum run size, and (3) the design’s resolution.

Since we already build our QA task model graphically using Skoll’s MDE tools (see Sec-

tion II), we can just use a translator to convert it into the list of options and settings expected

by our statistical package. The second and third items are interwined and must be chosen by

developers. In particular, higher resolution designs will yield more accurate estimates (assuming

some higher-level effects exist), but require more observations. It is also often advisable to

run more than the minimum number of observations needed for a given resolution to improve

precision or to deal with noisy processes. Developers must balance these competing forces.

C. Computing a Screening Design

To demonstrate these choices, consider a hypothetical software system with 4 independent

binary configuration options, � through � , each with binary settings + and -. A full factorial

design for this system involves 16 (!) observations. We assume that our developers can only

afford to gather 8 observations. With so few observations, there is no design with clear ����� - and

��"� -order effects. Developers must therefore either allow more observations or limit themselves

to capturing only the 4 � ��� -order effects, i.e., the effect of each option by itself. We assume they

choose to stay with a run size of 8 and to use a resolution IV design.

Given these choices, the developers generate one acceptable design using a statistical package.

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

The design (which appears in Table I) is identified uniquely as a $#&%')(design, which means that

the total number of options is 4, that they will observe a �+*� (#&%-, �+*�) fraction of the full

factorial design, and that the design is a resolution IV screening design. The design tool also

A B C D

- - - -

+ - - +

- + - +

+ + - -

- - + +

+ - + -

- + + -

+ + + +

TABLE I

.0/21!34�5 DESIGN (BINARY OPTION SETTINGS ARE ENCODED AS (-) OR (+))

outputs the aliasing structure � , �7698 . We can see this aliasing in Table I where the setting

of option � is the product of the settings of options � , 6 and 8 (think of + as 1 and - as � 1).

This dependence explains why the effect of option � cannot be untangled from the interaction

effect of options � , 6 , and 8 .

D. Executing and Analyzing Screening Designs

After defining the screening design, developers will execute it across the computing resources

comprising the Skoll grid. In our later feasibility studies, each experimental observation involves

measuring a developer-supplied benchmark program while the system runs in a particular con-

figuration. Our QA engineers use BGML to generate workload and benchmark code. Once the

data is collected we analyze it to calculate the effects. Since our screening designs are balanced

and orthogonal by construction (i.e., no bias in the observed data), the effect calculations are

simple. For binary options (with settings - or +), the effect of option � , :<;>=��7? , is

:@;>=��A? ,<B =��9�C?D� B =��AEF? (1)

where B =��9�C? and B =��AEF? are the mean values of the observed data over all runs where option

� is (-) and where option � is (+), respectively.

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

If required, ���� -order effects can be calculated in a similar way. The interaction effect of

options � and 6 , G�HJI9=��LKM6N? is:

G�HJI9=��9KM6N? , �+*��O!:@;P=Q6SR �AEF?T�U:@;P=Q6SR �9�C?WV (2)

, �+*��O!:@;P=��XRY6NEF?T�U:@;P=��ZR 6P�C?WV (3)

Here :@;>=�6SR �7E[? is called the conditional effect of 6 at the + level of � . The effect of one

factor (e.g., 6) therefore depends on the level of the other factor (e.g., �). Similar equations

exist for higher order effects and for designs with non-binary options. See Wu and Hamada [30]

for further details.

Once the effects are computed, developers will want to determine which of them are important

and which are not. There are several ways to determine this, including using standard hypothesis

testing. We do not use formal hypothesis tests primarily because they require strong assump-

tions about the standard deviation of the experimental samples. Instead, we display the effects

graphically and let developers use their expert judgment to decide which effects they consider

important. While this approach has some downsides (see Section VIII), even with traditional tests

for statistical significance, experimenters must still judge for themselves whether a significant

effect has any practical importance.

Our graphical analysis uses half-normal probability plots, which show each option’s effect

against their corresponding coordinates on the half-normal probability scale. If RY\]R %X^ R \]R _ ^
`a`b` ^ R \]R ' are the ordered set of effect estimations, the half-normal plot then consists of the points

=2c #&% =Qd `fe Egd `feih �j�kd `le�m *!Gn?oK�R \]R pq?Drts+u7� , ��K `b`a` KvG (4)

where c is the cumulative distribution function of a standard normal random variable.

The rationale behind half-normal plots is that unimportant options will have effects whose

distribution is normal and centered near 0. Important effects will also be normally distributed,

but with means different from 0.3 Options whose effects deviate substantially from 0 should

therefore be considered important. If no effects are important, the resulting plot will show a set

of points on an approximate line near w , d .
3Since the effects are averages over numerous observations, the central limit theorem guarantees normality.

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

E. Conduction Supplementary Analysis

At this point developers have a candidate set of important options. One potential problem,

however, is that we arrived at these options by making the following assumptions:

1) The low-order effects identified as being important really are; while the higher-order effects

they are aliased to are not.

2) Monitoring only low-order effects is sufficient to produce reliable estimates.

Since these are only assumptions, it is important to check them before proceeding since the

reliability of our results will be severely compromised if they do not hold. We therefore validate

these assumptions using two types of follow-up experiments:

1) We first examine additional configurations to disambiguate any effects aliased to our

purported low-level important options.

2) We then examine additional configurations to look for other higher-order effects.

In these follow-up experiments we rely on another class of efficient experimental designs called

D-optimal designs [22], which are again computer-aided designs. Given a configuration space

and a model the experimenter wishes to fit, a D-optimal design uses search-based computer

algorithms (e.g., hill climbing or simulated annealing) to select a set of configurations that satisfy

a particular optimality criterion. Unlike more common fractional factorial designs, therefore, the

size of D-optimal designs need not be a perfect fraction of full factorial designs. D-optimal

designs are preferable to standard classical designs when (1) the standard designs require more

observations than can be tested with available time and resources and (2) the configuration space

is heavily constrained (i.e., when not all the configurations are valid). Both factors are frequently

present in modern software systems. Full details of D-optimail designs are beyond the scope of

this paper, but can be found in books and articles (See Kolarik [11] and Mitchell [22]).

Based on the results of this D-optimal design analysis, developers may modify the set of

important options. At this point developers have a working set of important options that they

can use to create a screening suite of configurations to benchmark whenever the system changes.

IV. FEASIBILITY STUDY

This section describes a feasibility study that assesses the implementation cost and the ef-

fectiveness of the reliable effects screening process described in Section III on a suite of large,

performance-intensive software frameworks.

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

A. Experimental Design

Hypotheses. Our feasibility study explores the following three hypotheses:

1) Our MDE-based Skoll environment cost-effectively supports the definition, implementa-

tion, and execution of our reliable effects screening process described in Section III.

2) The screening designs used in the reliable effects screening correctly identifies a small

subset of options whose effect on performance is important.

3) Exhaustively examining just the options identified by the screening design gives per-

formance data that (a) is representative of the system’s performance across the entire

configuration space, but less costly to obtain and (b) is more representative than a similarly-

sized random sample.

Subject applications. The experimental subject applications for this study were based on three

open-source software frameworks for performance-intensive systems: ACE v5.4 + TAO v1.4

+ CIAO v0.4, which can be downloaded via www.dre.vanderbilt.edu. ACE provides

reusable C++ wrapper facades and framework components that implements core concurrency

and distribution patterns [26] for distributed real-time and embedded (DRE) systems. TAO is a

highly configurable Real-time CORBA Object Request Broker (ORB) built atop ACE to meet

the demanding QoS requirements of DRE systems. CIAO extends TAO to support components,

which enables developers to declaratively provision QoS policies end-to-end when assembling

DRE systems.

ACE+TAO+CIAO are ideal subjects for our feasibility study since they share many characteris-

tics with other highly configurable performance-intensive systems. For example, they collectively

have over 2M+ lines of source code, functional regression tests, and performance benchmarks

contained in � 4,500 files that average over 300 CVS commits per week by dozens of developers

around the world. They also run on a wide range of OS platforms, including all variants of

Windows, most versions of UNIX, and many real-time operating systems, such as LynxOS and

VxWorks.

Application scenario. Due to recent changes made to the ACE message queuing strategy, the

developers of ACE+TAO+CIAO were concerned with measuring two performance criteria: (1)

the latency for each request and (2) total message throughput (events/second) between the ACE+-

TAO+CIAO client and server. For this version of ACE+TAO+CIAO, the developers identified 14

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

binary run-time options they felt affected latency and throughput. The entire configuration space

therefore has %� x, ��yzKM{�|�} different configurations. To save space, we refer to these options by

their one letter indices, A-N (see Table II for more details on the mapping of letters to options).

TABLE II

SOME ACE+TAO OPTIONS

Option Index Option Name Option Settings Option Description

A ReactorThreadQueue ~ FIFO, LIFO � Order in which incoming requests

are processed in the ORB Reactor

B ClientConnectionHandler ~ RW, MT � Client side connection handler

C ReactorMaskSignals ~ 0, 1 � Enable/disable signals

during request processing

D ConnectionPurgingStrategy ~ LRU, LFU � ORB connection purging strategy

E ConnectionCachePurgePercent ~ 10, 40 � % of the ORB connection cache purged

F ConnectionCacheLock ~ thread, null � Enable/disable locking of

the ORB connection cache

G CorbaObjectLock ~ thread, null � Enable/disable locking while

synchronizing object state

H ObjectKeyTableLock ~ thread, null � Type of lock to be used

within ORB for retrieving

object keys

I InputCDRAllocator ~ thread, null � Enable/disble locking during

creating CDR streams

J Concurrency ~ reactive, ORB concurrency

thread-per-connect � reactive or thread per connection

K ActiveObjectMapSize ~ 32, 128 � Map size for holding objects

L UseridPolicyDemuxStrategy ~ linear, dynamic � Demultiplexing strategy

when user-id policy is used

M SystemPolicyDemuxStrategy ~ linear, dynamic � Demultiplexing strategy

when system id policy is used

N UniquePolicyRevDemuxStrategy ~ linear, dynamic � Specify the reverse demultiplexing

lookup strategy to be

used with the unique id policy

Using MDE tools to model experiment scenario. To ease experiment creation and generation,

we used the Skoll MDE tools to compose the experiment visually. In particular, we used BGML

to generate the platform-specific benchmarking code needed to evaluate the QoS of the ACE+-

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

TAO+CIAO software framework configurations. Figure 3 shows how we used BGML to model

the benchmark. For the experiment, we modeled the operation exchanged between the client and

Fig. 3. Using BGML to Generate Benchmarking Code

server using BGML’s operation element. We then associated this element with BGML’s latency

metric to compute the end-to-end measurements for our experiments. The number of warm

up iterations and the data type exchanged between client and server were all set as attributes

to the operation and latency elements provided by BGML. As shown in the figure, BGML

code generators generated the benchmarking code to measure and capture the latency for our

experiment.

Another step in designing our experiment involved modeling the ACE+TAO+CIAO framework

configurations. We used the OCML MDE tool to ensure that the configuration were both

syntactically and semantically valid, as shown in Figure 4. As shown in the figure, OCML was

used to enter the ACE+TAO+CIAO configurations we wanted to measure. OCML’s constraint

checker first validated the configurations we modeled, while the code generator produced the

framework configuration files.

Experimental process. Our experimental process used Skoll’s MDE tools to implement the

reliable effects screening process and evaluate our three hypotheses above. We executed the

reliable effects screening process across a prototype Skoll grid of dual processor Xeon machines

running Red Hat 2.4.21 with 1GB of memory in the real-time scheduling class. The experimental

tasks involved running a benchmark application in a particular system configuration, which

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

Fig. 4. Using OCML to Capture Experiment Configuration

evaluated performance for the application scenario outlined above. The benchmark created an

ACE+TAO+CIAO client and server and then measured message latency and overall throughput

between the client and the server.

In our experiment, the client sent 300K requests to the server. After each request the client

waited for a response from the server and recorded the latency measure in microseconds. At

the end of 300K requests, the client computed the throughput in terms of number of requests

served per second. We then analyzed the resulting data to evaluate our hypotheses. Section VIII

describes the limitations with our current experimental process.

B. The Full Data Set

To provide a baseline for evaluating our approach, we first generated and analyzed performance

data for all 16,000+ valid configurations of ACE+TAO+CIAO.4 We refer to these configurations

as the “full suite” and the performance data as the “full data set.”

We examined the effect of each option and judged whether they had important effects on

performance. Figure 5 plots the effect of each of the 14 ACE+TAO+CIAO options on latency

and throughput across the full data set. We see that options 6 and � are clearly important,

whereas options G , 8 , and � are arguably important. The remaining options are not important.

4We would not do this step in practice since it required about two days of CPU time, which would be prohibitively expensive

in most production software development environments with scores of such experiments running daily.

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

0.0 0.5 1.0 1.5

0
5

10
15

20

Half−Normal Probability Plot for Latency (Full−Factorial)

half−normal quantiles

op
tio

n
ef

fe
ct

s

H E K D G A N L M
I C F

J

B

0.0 0.5 1.0 1.5

0
50

0
10

00
15

00
20

00

Half−Normal Probability Plot for Throughput (Full−Factorial)

half−normal quantiles

op
tio

n
ef

fe
ct

s

H G A D E K N L M C I F

J

B

Fig. 5. Option Effects Based on Full Data

C. Evaluating Screening Designs

We now walk through the steps involved in conducting the reliable effects screening process,

to see whether the remotely executed screening designs can correctly identify the same important

options discovered in the full data set.

To perform these steps, we calculated and executed several different resolution IV screening

designs of differing run sizes. The specifications for these designs appear in the Appendix. The

first set of designs examined all 14 options using increasingly larger run sizes (32, 64, or 128

observations) to identify only important ����� -order effects. We refer to these screening designs as��� u"��_ , ��� u�� and
��� u % _�� , respectively. We also calculated and executed a second set of designs

that attempted to capture important ����� - and ��� -order effects.

Figure 6 shows the half-normal probability plots obtained from our first set of screening

designs. The figures show that all screening designs correctly identify options 6 and � as being

important.
��� u % _�� also identifies the possibly important effect of options 8 , G , and � . Due to

space considerations in the paper we only present data on latency (throughput analysis showed

identical results unless otherwise stated).

D. Higher-Order Effects

The Resolution IV design only calculates clear � ��� -order effects, which appears to work well

for our subject application and scenario, but might not be sufficient for other situations. Figure 7

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

0.0 0.5 1.0 1.5

0
5

10
15

20

Half−Normal Probability Plot for Latency (Resolution IV, 32−run)

half−normal quantiles

op
tio

n
ef

fe
ct

s

K M G I D L A F N C H E

J

B

Half−Normal Probability Plot for Latency (Resolution IV, 64−run)

half−normal quantiles

0.0 0.5 1.0 1.5

G N M K H E D F L C A I

J

B

Half−Normal Probability Plot for Latency (Resolution IV, 128−run)

half−normal quantiles

0.0 0.5 1.0 1.5

H K N E L M G A D C I F

J

B

Fig. 6. Option Effects Based on Screening Designs

shows the effects of all pairs of options based on the full data set and the same effects captured

via a Resolution VI screening design using 2,048 observations. From the figure we see several

things: (1) the screening design correctly identifies the 5 most important pairwise interactions

at �+*�|!��
 the cost of exhaustive testing and (2) the most important interaction effects involve

only options that are already considered important by themselves, which supports the belief that

monitoring only first-order effects will be sufficient for our subject frameworks.

E. Validating Basic Assumptions

To compute the important options, we used a resolution IV screening design, which according

to the definition given in Section III, means that (1) we aliased some �!��� -order effects with some

{!� � -order or higher effects and some �"� -order effects with other �"� -order or higher effects,

and (2) we assume that { � � -order or higher effects are negligible. If these assumptions do not

hold however performance estimations will be incorrect. Therefore, at this stage we perform two

further analyses to validate these assumptions.

In the remainder of this section we analyze the data from our %� $#n�')(, 128-run experiment.

We did this experiment because it was the only one where we identified five important options

rather than two. The analysis presented in this section is readily applicable to any screening

experiment.

1) Breaking Aliases: In the %� $#n�')(, 128-run experiment, we identified options 6 and � as

being clearly important and options 8 , � , and G as being arguably important (see Table II for

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Half−Normal Probability Plot for Latency (Full−Factorial)

half−normal quantiles

se
co

nd
−o

rd
er

 e
ffe

ct
s

IJ

AF
FG

BF

FJ

BC

CJ

BJ

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Half−Normal Probability Plot for Latency (Resolution VI, 2048−run)

half−normal quantiles

se
co

nd
−o

rd
er

 e
ffe

ct
s

DL

EG
BF

FJ

BC

CJ

BJ

Fig. 7. Pairwise Effects Based on Full and Screening Suite

the list of options). In that design, some � ��� -order effects were aliased with some { � � -order or

higher effects. Table III shows the aliasing structure for the important options up to }���
 -order

effects. Note that the complete aliasing structure for the important options contains a total of

640 aliases.

Consider the alias 6 , �78[� for the important option 6 ; the effect of option 6 is aliased with

the interaction effect of options � , 8 , and � . Since the experimental analysis cannot distinguish

6 from �78[� , there is an ambiguity whether 6 or �78[� is really important. If �78[� , not 6 , is

the important effect then our performance estimations would obviously suffer, as would the rest

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 23

Partial Aliasing Structure

B = ACH = CGKM = CKLN = DGHL = DHMN = EFHK = HIJK = ADEI = ADFJ

J = EFI = ACIK = BHIK = CDFH = DEGM = DELN = FGKN = FKLM = ABDF

C = ABH = ADMN = AIJK = BGKM = BKLN = DEHI = DFHJ = AEFK = ADGL

F = EIJ = BEHK = CDHJ = DGIM = DILN = GJKN = JKLM = ABDJ = ACEK

I = EFJ = ACJK = BHJK = CDEH = DFGM = DFLN = EGKN = EKLM = ABDE

TABLE III

PARTIAL ALIASING STRUCTURE FOR THE IMPORTANT OPTION IN THE
. 3a/21+�4Q5 , 128-RUN DESIGN

of the aliases. Ambiguities involving aliased effects for the important options should therefore

be resolved to ensure the reliability of the performance estimations.

To resolve the ambiguity in this experiment, we first formally modeled the important effects

and their 640 aliases by the following linear model:

w ,<�&� E ���j�]� E �]����� E ���]�]� E �&����� E � ' � '
E �&�i�&�������]�]�]� E � p � p�K����D� � ��O+�C8L��V (5)

where
�

is the set of all 640 aliased effects, �]� is the intercept term, ����, �[��K�� according to

the level of option B (the definitions for the other � ’s are similar), � ’s are the model coefficients,

etc.

Note that since the � ��� -order effects other than 6 , � , 8 , � , and G are negligible (Section IV-C),

we excluded them from the model. We then augmented our 128-run screening experiment using

the D-optimal design approach. This search-based technique determined an appropriate design

which required benchmarking an additional 2,328 configurations. We then collected the results

and analyzed them together with the results of the original screening experiments.

Figure 8(a) plots the Type III sum of squares for the factorial effects. In this figure, the effects

are ordered in descending order. Due to space limitations, only the top 10 effects are given. The

higher the sum of squares, the more important the effects are. As can be seen from this figure,

options 6 , � , 8 , � , and G are important, while the higher-order interactions to which they are

aliased are not, i.e., the low-order effect explains roughly 10 times the variance of its higher-

order alias. Further statistical analysis also showed that these options are statistically significant

at 99.99% confidence level or better.

Although this analysis confirmed our earlier results, it required benchmarking an additional

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 24

B J F I C

G
LM

N

E
IK

LM

FG
IK

L

B
C

D
M

N

B
H

K
LN

Type III Sum of Squares for Effecta Screening

Effects

S
um

 o
f S

qu
ar

es

0

30000

60000

120000

150000

178078
178078

34
27

9.
29

 2
07

.0
9

 1
81

.4
2

 1
80

.1
2

11

.0
7

10

.8
5

10

.7
1

10

.3
1

 9

.7
3

(a)
B J F I C

A
C

H

E
FI

E
FJ

A
B

H

E
IJ

Type III Sum of Squares for Effect Screening

Effects
S

um
 o

f S
qu

ar
es

0

3000

6000

12000

15000

17369
17369

29
36

.7
92

 2
6.

87
2

 1
8.

10
0

8.

48
3

5.

17
6

3.

56
1

1.

21
9

1.

14
9

0.

76
2

(b)

Fig. 8. (a) Complete Dealiasing Experiment and (b) Up to and Including �$�¡ -order Effects Dealiasing Experiment.

2,000+ configuration, which in large-scale systems might too expensive. To further reduce costs,

one might forego a complete dealiasing of important options, dealiasing them up to a certain

level of order (e.g., up to { � � -order or } ��
 -order effects), or dealiasing only suspected aliases

based on developer’s domain knowledge.

To see how much savings partial dealising might yield, we repeated the evaluation process,

dealiasing the important options only up to and including { � � -order effects, which required only

64 additional configurations. As can be seen in Figure 8(b), in this particular example, we were

able to reach the same conclusions as the complete dealiasing experiment.

2) Checking for Higher-Order Effects: As described earlier in this Section, our second as-

sumption was that monitoring only ����� -order effects was sufficient for our subject frameworks.

Below, we investigate the validity of that assumption. Without loss of generality, we will look

for important effects up to and including {�� � -order effects. Developers can choose up to which

level to examine, keeping in mind that as the level increases, the number of observations needed

converges to exhaustive testing.

Just as in Section IV-E.1, we augmented the %� $#n�')(, 128-run experiment using the D-optimality

criterion. this time, however, our generalized linear model consisted of all the ����� -, �"� -, and

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 25

B J F I

B
J C

G
IK D
H

E
FG

B
D

G

Type III Sum of Squares for Effect Screening

Effects

S
um

 o
f S

qu
ar

es

0

5000

20000

25000
25647

25647

44
07

.1
43

 5
1.

68
9

 2
4.

29
9

 1
6.

69
9

 1
6.

44
6

 1
0.

18
2

7.

75
5

7.

64
5

6.

42
3

Fig. 9. Looking for Higher-order Effects Upto and Including �$�� -order Effects.

{!� � -order effects. This design required only an additional 381 configurations. Figure 9 shows

the results of this study. We identified the top 6 effects: 6 , � , � , G , 6Z� , and 8 , as statistically

significant at 99.9% confidence level or better. Among these important options we have only one

interaction effect: 6Z� . Since this interaction involves only options that are already considered

important by themselves, we conclude that monitoring only first-order effects was sufficient for

our subject frameworks.

The results presented above suggest that screening designs can detect important options at a

small fraction of the cost of exhaustive testing and that techniques exist to economically check

key assumptions underlying the technique. The smaller the effect, however, the larger the run

size needed to identify it. Developers should therefore be cautious when dealing with options

that appear to have an important, but relatively small effect, as they may actually be seeing

normal variation (
�D� u¢��_ and

��� u�� both have examples of this).

F. Estimating Performance with Screening Suites

Our experiments thus far have identified a small set of important options. We now evaluate

whether benchmarking all combinations of these most important options can be used to estimate

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 26

performance quickly across the entire configuration space we are studying. The estimates are

generated by examining all combinations of the most important options, while randomizing the

settings of the unimportant options.

In the Section IV-C, we determined that options 6 and � were clearly important and that

options 8 , G , and � were arguably important. Developers therefore made the estimates based

on benchmarking either 4 (all combinations of options 6 and �) or 32 (all combinations of

options 6 , � , 8 , G , and �) configurations. We refer to the set of 4 configurations as the “top-2

screening suite” and the set of 32 configurations as the “top-5 screening suite.”

Figure 10 shows the distributions of latency for the full suite vs. the top-5 screening suite

and for the full suite vs. the top-2 screening suite. The distributions of the top-5 and top-2

60 70 80 90 100 110 120 130

60
70

80
90

10
0

11
0

12
0

13
0

Q−Q Plot for Latency

full suite

to
p−

2
sc

re
en

in
g

su
ite

60 70 80 90 100 110 120 130

60
70

80
90

10
0

11
0

12
0

13
0

Q−Q Plot for Latency

full suite

to
p−

5
sc

re
en

in
g

su
ite

Fig. 10. Q-Q plots for the Top-2 and Top-5 Screening Suites

screening suites closely track the overall performance data. Such plots, called quantile-quantile

(Q-Q) plots, are used to see how well two data distributions correlate by plotting the quantiles

of the first data set against the quantiles of the second data set. If the two sets share the same

distribution, the points should fall approximately on the ��, w line.

We also performed Mann-Whitney non-parametric tests [3] to determine whether each set of

screening data (top-2 and top-5 suites) appears to come from the same distribution as the full

data. In both cases we were unable to reject the null hypothesis that the top-2 and top-5 screening

suite data come from the same distribution as the full suite data. These results suggest that the

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 27

screening suites computed at Step 4 of the reliable effects screening process (Section III) can

be used to estimate overall performance in-house at extremely low time/effort, i.e., running 4

benchmarks takes 40 seconds, running 32 takes 5 minutes, running 16,000+ takes two days of

CPU time.

G. Screening Suites vs. Random Sampling

Another question we addressed is whether our reliable effects screening process was better

than other low-cost estimation processes. In particular, we compared the latency distributions

of several random samples of 4 configurations to that of the top-2 screening suite found by

our process. The results of this test are summarized in Figure 11. These box plots show the

fu
ll

su
ite

to
p−

2
su

ite

ra
nd

1

ra
nd

2

ra
nd

3

ra
nd

4

ra
nd

5

ra
nd

6

ra
nd

7

ra
nd

8

90

100

110

120

Latency Distributions

test suite

la
te

nc
y

Fig. 11. Latency Distribution from Full, Top-2, and Random Suites

distributions of latency metric obtained from exhaustive testing, top-2 screening suite testing,

and random testing. These graphs suggest the obvious weakness of random sampling, i.e., while

sampling distributions tend toward the overall distribution as the sample size grows, individual

small samples may show wildly different distributions.

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 28

H. Dealing with Evolving Systems

The primary goal of reliable effects screening is to detect performance degradations in evolving

systems quickly. So far, we have not addressed whether – or for how long – screening suites

remain useful as a system evolves. To better understand this issue, we measured latency on

the top-2 screening suite, once a day, using CVS snapshots of ACE+TAO+CIAO. We used

historical snapshots for two reasons: (1) the versions are from the time period for which we

already calculated the effects and (2) developer testing and in-the-field usage data have already

been collected and analyzed for this time period (see www.dre.vanderbilt.edu/Stats),

allowing us to assess the system’s performance without having to test all configurations for each

system change exhaustively.

Figure 12 depicts the data distributions for the top-2 screening suites broken down by date

(higher latency measures are worse). We see that the distributions were stable the first two days,

X
20

03
.1

2.
09

X
20

03
.1

2.
10

X
20

03
.1

2.
11

X
20

03
.1

2.
12

X
20

03
.1

2.
13

X
20

03
.1

2.
14

X
20

03
.1

2.
15

X
20

03
.1

2.
16

X
20

03
.1

2.
17

X
20

03
.1

2.
18

X
20

03
.1

2.
19

X
20

03
.1

2.
20

X
20

03
.1

2.
21

80

100

120

140

160

Screening 2 Options (4 cfgs) Over a Time Period

la
te

nc
y

Fig. 12. Performance Estimates Across Time

crept up somewhat for days 3 through 5, and then shot up the y£��
 day (12/14/03). They were

brought back under control for several more days, but then moved up again on the last day.

Developer records and problem reports indicate that problems were not noticed until 12/14/03.

Another interesting finding was that the limited in-house testing conducted by the ACE+TAO+-

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 29

CIAO developers measured a performance drop of only around 5% on 12/14/03. In contrast, our

screening process showed a much more dramatic drop – closer to 50%. Further analysis by ACE+-

TAO+CIAO developers showed that their unsystematic testing failed to evaluate configurations

where the degradation was much more pronounced.

Taken together, our results suggest that benchmarking only all combinations of the important

options identified in steps 1–4 of the reliable effects screning process gives much the same

information as benchmarking the entire configuration space, but at a substantially reduced cost.

V. DISCUSSION OF FEASIBILITY STUDY

A. Threats to Validity

All empirical studies suffer from threats to their internal and external validity. For the exper-

iments described in Section IV, we were primarily concerned with threats to external validity

since they limit our ability to generalize the results of our experiment to industrial practice. One

potential threat is that several steps in our process require human decision making and input. For

example, developers must provide reasonable benchmarking applications and must also decide

which effects they consider important.

Another possible threat to external validity concerns the representativeness of the ACE+TAO+-

CIAO subject applications, which are an integrated suite of software (albeit a very large suite

with over 2M+ lines of code). A related issue is that we have focused on the subset of the entire

configuration space of ACE+TAO+CIAO that only has binary options and has no inter-option

constraints. While these issues pose no theoretical problems (screening designs can be created

for much more complex situations), there is clearly a need to apply reliable effects screening to

larger and richer configuration spaces in future work to understand how well the process scales.

Another potential threat is that for the time period we studied, the ACE+TAO+CIAO subject

frameworks were in a fairly stable phase. In particular, changes were made mostly to fix bugs

and reduce memory footprint, but the software’s core functionality was relatively stable. For

time periods where the core software functionality is in greater flux, e.g., in response to new

requirements from sponsors or efforts to port the software to new and different platforms, it may

be harder to distinguish significant performance degradation from normal variation.

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 30

B. Hypotheses

Despite the limitations described in Section V-A, we believe the study presented in Section IV

supports our basic hypotheses presented in Section IV-A. We reached this conclusion by noting

that our study suggests that the (1) MDE-based Skoll system allows QA engineers to quickly

construct complex DCQA processes, (2) reliable effects screening processes provides developers

with fast, cheap and reliable estimates of performance across a system’s entire configuration

space; and (3) developers of ACE+TAO+CIAO believe the technique provides them with impor-

tant development information.

Benefits from applying our MDE tools. Our MDE tools helped improve the productivity of QA

engineers by allowing them to create QA task models and to compose benchmarking experiments

visually rather than wrestling with low-level formats and source code. These tools thus resolve

tedious and error-prone accidental complexities associated with writing correct code by auto-

generating them from higher level models. For example, Table IV summarizes the BGML code

generation metrics for a particular configuration.

TABLE IV

GENERATED CODE SUMMARY FOR BGML

Files Number Lines of Code Generated (%)

IDL 3 81 100

Source (.cpp) 2 310 100

Header (.h) 1 108 100

Script (.pl) 1 115 100

This table shows how BGML automatically generates 8 of 10 required files that account for

88% of the code required for the experiment. Since these files must capture specific information

for each configuration, these tools imply large improvements in productivity for performing

benchmarking QA tasks. Similarly, OCML enabled us to generate both syntactically and seman-

tically correct middleware configurations, thereby eliminating accidental complexity in generating

middleware configurations.

Reliable effects screening. Our experiments showed that the reliable effects screening process

was fast, cheap, and effective. We came to this conclusion by noting that:

1) Screening designs can correctly identify important options (Sections IV-C – IV-E).

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 31

2) These options can be used to produce reliable estimates of performance quickly across the

entire configuration space at a fraction of the cost of exhaustive testing (Section IV-F).

3) The alternative approach of random or ad hoc sampling can give highly unreliable results

(Section IV-G).

4) The reliable effects screening process detected performance degradation on a large and

evolving software system (Section IV-H).

5) The screening suite estimates were significantly more precise than the ad hoc process

currently used by the developers of ACE+TAO+CIAO (Section IV-H).

User acceptance. Informally, we found that ACE+TAO+CIAO developers have been quite happy

with the results of our experiments described in Section IV. As we move towards fully integrating

reliable effects screening into their development processes they continue to find new ways in

which this information can help them improve their development processes, including:

Using option importance to prioritize work. Our quantitative results showed that options ¤ , : ,

and H did not have a strong effect on latency and throughput. These findings surprised some

ACE+TAO+CIAO developers, who had spent considerable time optimizing code affected by

these options. Further investigation showed that the options can have a somewhat larger effect,

but only in very specific circumstances. The developers now see reliable effects screening as a

means to better understand how widespread the effects of different pending changes may be.

Using changes in option importance to detect bugs. Prior to the release of an ACE+TAO+-

CIAO beta, developers noted a significant (� 25%) drop in performance. Since reliable effects

screening had not yet been fully integrated into their development processes, the ACE+TAO+-

CIAO developers fell back on traditional ad hoc QA and debugging techniques. When they

failed to identify the problem’s cause, they froze their CVS repository and used an exhaustive

QA approach to painstakingly narrow down the change that had degraded performance.

Ultimately they found the change that caused the degradation was a feature addition that

enabled TAO+CIAO to support the IPv6 protocol. Specifically, they observed that a modification

to TAO’s connection handler had degraded performance. Interestingly, this code is controlled

by option 6 . In retrospect, a reliable effects screening would have shown a dramatic change

in the importance of option 6 , thus enabling the ACE+TAO+CIAO developers to localize the

problem quickly, i.e., because one setting of option 6 triggered the buggy code, option 6 ’s effect

would have been 2.5 times greater after the change than before it. Based on this experience, the

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 32

developers now see added value in frequently recalibrating the important options to alert them

to changes in option importance.

VI. USAGE GUIDELINES

This section focuses on providing some guidelines on how to use the Skoll-based reliable

effects screening process. We examine how to select an appropriate resolution and size for

the screening designs, how to identify the important options, and how to validate the basic

assumptions in identifying the important options. We also summarize on our experience to date

applying this process on the ACE+TAO+CIAO software frameworks.

Step 1: Choose the resolution. Leverage a priori knowledge of the software being tested, if it

is available, to decide the resolution of the screening experiment, i.e., which high-order effects

are considered important vs. negligible. If no or limited a priori information is available, use

screening experiments in an iterative manner (e.g., going from lower resolutions to higher ones)

to obtain this information. Section IV-A illustrated how we did this for the ACE+TAO+CIAO

software frameworks, where we selected 14 specific options to explore based prior knowledge

of a recent change.

Step 2: Choose the size. Depending on available resources and how fast the underlying software

changes, determine the maximum number of observations allowed in the screening experiment.

Note that the resolution of the experiment chosen in step (1) may dictate the minimum size of

the experiment. If this size is not feasible, consider lowering the resolution of the experiment

by carefully choosing the aliasing structure so that no potentially important higher-order effects

are aliased with lower-order ones. Sections IV-C and IV-D illustrate how we did this for the

ACE+TAO+CIAO software frameworks, where we created three resolution IV designs with run

sizes of 32, 64, and 128, and where we created one resolution VI design with a run size of

2,048.

Step 3: Identify the important options. After the screening design is computed, conducted, and

analyzed, use the half-normal probability plots described in Section IV-C to identify important

options. If no effects are important, these plots will show a set of points on a rough line near

w , d . Any substantial deviations from this line indicate important options. Depending on the

benchmarking test and the desired precision of the performance estimates, decide how large

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 33

effects must be to warrant attention. Section IV-C shows how we did this for the ACE+TAO+-

CIAO software frameworks, where we identified 2 important and 3 arguably important options.

Step 4: Validate the basic assumptions. If needed, validate the assumptions imposed by the

choice of the resolution. Use D-optimal designs described in Section IV-E to augment the

screening experiment to (1) dealias the important options and (2) identify remaining higher-order

effects. Section IV-E illustrated how we did this for the ACE+TAO+CIAO software frameworks

and showed that our basic assumptions helped and that our initial analysis was therefore reliable.

Step 5: Estimate performance after changing software. Focusing on important options allows

developers to reduce the effective configuration space significantly by evaluating all combinations

of the important options, while randomizing the rest. Section IV-F illustrated how we did this for

the ACE+TAO+CIAO software frameworks and showed that our approach gave reliable estimates

of performance across the entire configuration space using only 40 seconds (for top-2 suite) or

2 minutes (for top-5 suite) of CPU time.

Step 6: Frequently recalibrate important options. The importance of different options may

change as software in a system changes. We therefore recommend frequent recalibration of

the important effects. Although our feasibility study in Section IV does not show the need for

recalibration, our experience applying reliable effects screening to ACE+TAO+CIAO over time

indicates that recalibration is essential.

VII. RELATED WORK

This section compares our work on reliable effects screening and performance evaluation tech-

niques in Skoll with other related research efforts, including (1) applying design-of-experiments

(DOE) testing to software engineering, (2) large-scale testbed environments for conducting

experiments using heterogeneous hardware, OS, and compiler platforms, (3) evaluating the

performance of layered software systems, and (4) feedback-based optimization techniques that

use empirical data and mathematical models to identify performance bottlenecks.

Applying DOE to software engineering. As far as we know, we are the first to use screening

designs to assess software performance. The use of DoE theory within software engineering has

focused mostly on interaction testing, largely to compute and sometimes generate minimal test

suites that cover all combinations of specified program inputs. Mandl [19] first used orthogonal

arrays, a special type of covering array in which all ¥ -sets occur exactly once, to test enumerated

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 34

types in ADA compiler software. This idea was extended by Brownlie et al. [5] who developed

the orthogonal array testing system (OATS). They provided empirical results to suggest that the

use of orthogonal arrays is effective in fault detection and provides good code coverage.

Dalal et al. [8] argue that the testing of all pairwise interactions in a software system finds

a large percentage of the existing faults. In further work, Burr et al. [6], Dunietz et al. [9] and

Kuhn et al. [15] provide more empirical results to show that this type of test coverage is effective.

These studies focus on finding unknown faults in already tested systems and equate covering

arrays with code coverage metrics. Yilmaz et al. [32] used covering arrays as a configuration

space sampling technique to support the characterization of failure-inducing option settings.

Large-scale benchmarking testbeds. EMULab [29] is a testbed at the University of Utah that

provides an environment for experimental evaluation of networked systems. EMULab provides

tools that researchers can use to configure the topology of their experiments, e.g., by modeling

the underlying OS, hardware, and communication links. This topology is then mapped to � 250

physical nodes that can be accessed via the Internet [24] . The EMULab tools can generate script

files that use the Network Simulator (NS) (www.isi.edu/nsnam/ns/) syntax and semantics

to run the experiment.

The Skoll infrastructure provides a superset of EMULab that is not limited by resources of

a particular testbed, but instead can leverage the vast end-user computer resources in the Skoll

grid. Moreover, the Skoll’s MDE-based tools described in Section II can generate NS scripts to

integrate our benchmarks with experiments in EMULab.

Feedback-driven optimization techniques. Traditional feedback-driven optimization techniques

can be divided into online, offline, and hybrid analysis. Offline analysis has commonly been

applied to program analysis to improve compiler-generated code. For example, the ATLAS [34]

numerical algebra library uses an empirical optimization engine to decide the values of optimiza-

tion parameters by generating different program versions that are run on various hardware/OS

platforms. The output from these runs are used to select parameter values that provide the best

performance. Mathematical models are also used to estimate optimization parameters based on

the underlying architecture, though empirical data is not fed into the models to refine it.

Like ATLAS, Skoll’s MDE tools use an optimization engine to configure/customize software

parameters in accordance to available OS platform characteristics (such as the type of threading,

synchronization, and demultiplexing mechanisms) and characteristics of the underlying hardware

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 35

(such as the type of CPU, amount of main memory, and size of cache). This information can

be used to select optimal configurations ahead of time that maximize QoS behavior.

Online analysis is commonly used for feedback control to adapt QoS behaviors based on

dynamic measures. An example of online analysis is the ControlWare middleware [35], which

uses feedback control theory by analyzing the architecture and modeling it as a feedback control

loop. Actuators and sensors then monitor the system and affect server resource allocation.

Real-time scheduling based on feedback loops has also been applied to Real-time CORBA

middleware [18] to automatically adjust the rate of remote operation invocation transparently to

an application.

Though online analysis enables systems to adapt at run-time, the optimal set of QoS features

are not determined at system initialization. Using the MDE tools, QoS behavior and performance

bottlenecks on various hardware and software configurations can be determined offline and then

fed into the models to generate optimal QoS characteristics at model construction time. Moreover,

dynamic adaptation can incur considerable overhead from system monitoring and adaptation,

which may be unacceptable for performance-intensive DRE systems.

Hybrid analysis combines aspects of offline and online analysis. For example, the contin-

uous compilation strategy [7] constantly monitors and improves application code using code

optimization techniques. These optimizations are applied in four phases including (1) static

analysis, in which information from training runs is used to estimate and predict optimization

plans, (2) dynamic optimization, in which monitors apply code transformations at run-time to

adapt program behavior, (3) offline adaptation, in which optimization plans are actually improved

using actual execution, and (4) recompilation, where the optimization plans are regenerated.

Skoll’s MDE-based strategy enhances conventional hybrid analysis by tabulating platform-

specific and platform-independent information separately using the Skoll framework. In partic-

ular, Skoll does not incur the overhead of system monitoring since behavior does not change

at run-time. New platform-specific information obtained can be fed back into the models to

optimize QoS measures.

Generative Benchmarking Techniques. There have been a several initiatives that use generative

techniques similar to our approach for generating test-cases and benchmarking for performance

evaluation. The ForeSight [17] tool uses empirical benchmarking engine to capture QoS informa-

tion for COTS based component middleware system. The results are used to build mathematical

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 36

models to predict performance. This is achieved using a three pronged approach of (1) create

a performance profile of how components in a middleware affect performance, (2) construct

a reasoning framework to understand architectural trade-offs, i.e., know how different QoS

attributes interact with one another and (3) feed this configuration information into generic

performance models to predict the configuration settings required to maximize performance.

The SoftArch/MTE [10] tool provides a framework for system architects to provide higher

level abstraction of the system specifying system characteristics such as middleware, database

technology, and client requests. The tool then generates an implementation of the system along

with the performance tests that measure system characteristics. These results are then displayed

back, i.e., annotated in the high level diagrams, using tools such as Microsoft Excel, which

allows architects to refine the design for system deployment.

Our MDE approach closely relates to the aforementioned approaches. Both the ForeSight and

SoftArch tools, however, lack DCQA environments to help capture QoS variations accurately on

a range of varied hardware, OS, and compiler platforms. Rather than using generic mathematical

models to predict performance, MDD tools use a feedback-driven approach [13], wherein the

DCQA environment is used to empirically evaluate the QoS characteristics offline. This infor-

mation can then be used to provide QA engineers with accurate system information. Moreover,

platform- and application-specific optimization techniques [12] can then be applied to maximize

QoS characteristics of the system.

VIII. CONCLUDING REMARKS

This paper presents a new distributed continuous quality assurance (DCQA) process called

“reliable effects screening” that uses in-house and in-the-field resources to efficiently and reliably

detect performance degradation in performance-intensive systems that have large configuration

spaces. The novelty of our approach stems from its application of statistical quality control

techniques to efficiently identify a subset of system configurations that accurately represents the

performance of the entire configuration space. Benchmarking this subset after a change provides a

reliable estimate of the distribution of performance across all configurations. Unexpected changes

in this distribution signal unintended side effects that must be examined further.

To evaluate the reliable effects screening process, we integrated it with the Skoll DCQA

environment and applied it to three large software projects (ACE, TAO, and CIAO) using a

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 37

grid of computing resources managed by the Skoll DCQA environment. Skoll’s reliable effects

screening process is also supported by model-driven engineeering (MDE) tools that control and

manage its execution across a grid of in-house and in-the-field computing resources. The results

of our experiments in this environment indicated that:

� The reliable effects screening process helped developers detect and understand performance

bottlenecks across large configuration spaces.
� The ACE+TAO+CIAO developers used the information provided by this process as a

scalable defect detection aid, i.e., when the important options change unexpectedly (at

recalibration time), developers re-examined the frameworks to rapidly identify possible

problems with software updates.
� ACE+TAO+CIAO developers also used information provided by the reliable effects screen-

ing process to understand and arbitrate disputes about subtle changes in framework and

application performance characteristics.

In conclusion, we believe that this line of research is novel and fruitful, though much R&D

remains to be done. We are therefore continuing to develop enhanced MDE-based Skoll capabil-

ities and use them to create and validate more sophisticated DCQA processes that overcome the

limitations and threats to external validity described above. In particular, we are exploring the

connection between design-of-experiments theory and the QA of other software systems with

large software configuration spaces. We are also incorporating the tools in the Skoll environment

and the reliable effect screening process into open-source software repositories, such as ESCHER

(www.escherinstitute.org). Finally, we are conducting a much larger case study using

Skoll and reliable effect screening to orchestrate the ACE+TAO+CIAO daily build and regression

test process with 200+ machines contributed by users and developers worldwide, as shown on

our online DCQA scoreboard at www.dre.vanderbilt.edu/scoreboard.

IX. ACKNOWLEDGMENTS

This material is based on work supported by the US National Science Foundation under NSF

grants ITR CCR-0312859, CCF-0447864, CCR-0205265, and CCR-0098158, as well as funding

from BBN, Cisco, DARPA, Lockheed Martin Advanced Technology Lab and Advanced Tech-

nology Center, ONR, Qualcomm, Raytheon, and Siemens. We thank the anonymous reviewers

for their comments that helped improve this paper.

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 38

REFERENCES

[1] “SAS Institute,” www.sas.com/.

[2] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and S. Neema, “Developing applications using model-driven

design environments,” IEEE Computer, vol. 39, no. 2, pp. 33–40, 2006.

[3] G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters. New York: John Wiley & Sons, 1978.

[4] L. Breiman, J. Freidman, R. Olshen, and C. Stone, Classification and Regression Trees. Monterey, CA: Wadsworth, 1984.

[5] R. Brownlie, J. Prowse, and M. S. Padke, “Robust testing of AT&T PMX/StarMAIL using OATS,” AT&T Technical

Journal, vol. 71, no. 3, pp. 41–7, 1992.

[6] K. Burr and W. Young, “Combinatorial test techniques: Table-based automation, test generation and code coverage,” in

Proceedings of the Intl. Conf. on Software Testing Analysis & Review, 1998.

[7] B. Childers, J. Davidson, and M. Soffa, “Continuous Compilation: A New Approach to Aggressive and Adaptive Code

Transformation,” in Proceedings of the International Parallel and Distributed Processing Symposium, Apr. 2003.

[8] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and B. M. Horowitz, “Model-based testing

in practice,” in Proceedings of the Intl. Conf. on Software Engineering, (ICSE), 1999, pp. 285–294.

[9] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, and A. Iannino, “Applying design of experiments to software

testing,” in Proceedings of the Intl. Conf. on Software Engineering, (ICSE ’97), 1997, pp. 205–215.

[10] J. Grundy, Y. Cai, and A. Liu, “Generation of Distributed System Test-beds from High-level Software Architecture

Description,” in 16 ¦q§ International Conference on Automated Software Engineering, Linz Austria. IEEE, Sept. 2001.

[11] W. Kolarik, Creating Quality: Systems, Concepts, Strategies and Tools. McGraw-Hill Education, 1995.

[12] A. S. Krishna, A. Gokhale, D. C. Schmidt, V. P. Ranganath, J. H. White, and D. C. Schmidt, “Model-driven Middleware

Specialization Techniques for Software Product-line Architectures in Distributed Real-time and Embedded Systems,” in

Proceedings of the MODELS 2005 workshop on MDD for Software Product-lines, Half Moon Bay, Jamaica, Oct. 2005.

[13] A. S. Krishna, D. C. Schmidt, A. Porter, A. Memon, and D. Sevilla-Ruiz, “Improving the Quality of Performance-

intensive Software via Model-integrated Distributed Continuous Quality Assurance,” in Proceedings of the 8th International

Conference on Software Reuse. Madrid, Spain: ACM/IEEE, July 2004.

[14] A. S. Krishna, N. Wang, B. Natarajan, A. Gokhale, D. C. Schmidt, and G. Thaker, “CCMPerf: A Benchmarking Tool for

CORBA Component Model Implementations,” in Proceedings of the 10th Real-time Technology and Application Symposium

(RTAS ’04). Toronto, CA: IEEE, May 2004.

[15] D. Kuhn and M. Reilly, “An investigation of the applicability of design of experiments to software testing,” Proceedings

27th Annual NASA Goddard/IEEE Software Engineering Workshop, pp. 91–95, 2002.

[16] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom, J. Sprinkle, and G. Karsai, “Composing Domain-Specific

Design Environments,” IEEE Computer, pp. 44–51, Nov. 2001.

[17] Y. Liu, I. Gorton, A. Liu, N. Jiang, and S. Chen, “Designing a Test Suite for Empirically-based Middleware Performance

Prediction,” in 40 ¦©¨ International Conference on Technology of Object-Oriented Languages and Systems, Sydney Australia.

Australian Computer Society, Aug. 2002.

[18] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son, “Feedback Control Real-Time Scheduling: Framework, Modeling, and

Algorithms,” Real-Time Systems Journal, vol. 23, no. 1/2, pp. 85–126, July 2002.

[19] R. Mandl, “Orthogonal Latin squares: an application of experiment design to compiler testing,” Communications of the

ACM, vol. 28, no. 10, pp. 1054–1058, 1985.

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 39

[20] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C. Schmidt, and B. Natarajan, “Skoll: Distributed Continuous Quality

Assurance,” in Proceedings of the 26th IEEE/ACM International Conference on Software Engineering. Edinburgh,

Scotland: IEEE/ACM, May 2004.

[21] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Hierarchical gui test case generation using automated planning,” IEEE

Transactions on Software Engineering, vol. 27, no. 2, pp. 144–155, February 2001.

[22] T. Mitchell, “An algorithm for the construction of the ’d-optimal’ experimental designs,” Technometrics, vol. 16, no. 2,

pp. 203–210, 1974.

[23] D. C. Montgomery, Introduction to Statistical Quality Control, 3rd ed. New York: John Wiley & Sons, 1996.

[24] Robert Ricci and Chris Alfred and Jay Lepreau, “A Solver for the Network Testbed Mapping Problem,” SIGCOMM

Computer Communications Review, vol. 33, no. 2, pp. 30–44, Apr. 2003.

[25] D. C. Schmidt, “Model-driven engineering,” IEEE Computer, vol. 39, no. 2, pp. 25–31, 2006.

[26] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented Software Architecture: Patterns for Concurrent

and Networked Objects, Volume 2. New York: Wiley & Sons, 2000.

[27] J. W. Tukey, Exploratory Data Analysis. Reading, Massachusetts: Addison-Wesley, 1977.

[28] E. Turkay, A. Gokhale, and B. Natarajan, “Addressing the Middleware Configuration Challenges using Model-based

Techniques,” in Proceedings of the 42nd Annual Southeast Conference. Huntsville, AL: ACM, Apr. 2004.

[29] B. White and J. L. et al, “An Integrated Experimental Environment for Distributed Systems and Networks,” in Proceedings

of the Fifth Symposium on Operating Systems Design and Implementation. Boston, MA: USENIX Association, Dec.

2002, pp. 255–270.

[30] C. F. J. Wu and M. Hamada, Experiments: Planning, Analysis, and Parameter Design Optimization. Wiley, 2000.

[31] C. Yilmaz, M. B. Cohen, and A. Porter, “Covering arrays for efficient fault characterization in complex configuration

spaces,” IEEE Transactions on Software Engineering, vol. 31, no. 1, pp. 20–34, Jan. 2006.

[32] ——, “Covering arrays for efficient fault characterization in complex configuration spaces.” in ISSTA, 2004, pp. 45–54.

[33] C. Yilmaz, A. S. Krishna, A. Memon, A. Porter, D. C. Schmidt, A. Gokhale, and B. Natarajan, “Main effects screening:

a distributed continuous quality assurance process for monitoring performance degradation in evolving software systems,”

in ICSE ’05: Proceedings of the 27th international conference on Software engineering. New York, NY, USA: ACM

Press, 2005, pp. 293–302.

[34] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D. Padua, K. Pingali, P. Stodghill, and P. Wu, “A

Comparison of Empirical and Model-driven Optimization,” in Proceedings of ACM SIGPLAN conference on Programming

Language Design and Implementation, June 2003.

[35] R. Zhang, C. Lu, T. Abdelzaher, and J. Stankovic, “Controlware: A Middleware Architecture for Feedback Control of

Software Performance,” in Proceedings of the International Conference on Distributed Systems 2002, July 2002.

APPENDIX

The screening designs used in Section IV-C were calculated using the SAS statistical package.

(www.sas.com).��� u"��_ is a %� $#�ª')(with design generators � , �C6«8 , ¬ , �76«� , � , �78[� , G , 6«8L� ,

� , �C6«; , , �78[; , ¤ , 6«8[; , : , �C�>; , H , 6«�P; .

July 26, 2006 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 40

��� u"� is a %� $# �')(with design generators ¬ , �7698 , � , �C6«� , G , �76«; , � , �78[�>; ,

 , �76«� , ¤ , �78[�>� , : , �C8L;L� , H , �7�>;L� .��� u % _�� is a %� $#n�')(with design generators � , �7698 , G , �C6«�>; , � , �76«�>� , , �78[;9� ,

¤ , �C8L�P¬ , : , �C6«;9�[¬ , H , 6«8L�P;9�[¬ .

The screening designs used in Section IV-D were calculated using the SAS statistical package.

(www.sas.com).

It is a %� $# �(�' (2048-run) design with design generators ¤ , �7698L�>;L�L¬[�®G&�j , : , ;9�[¬L�SG��¯ ,

and H , 8L�>¬[�®G&�j .

July 26, 2006 DRAFT

