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Abstract

This paper provides two contributions to R&D on model-
driven development (MDD) techniques that help codify the
impact of middleware configurations on end-to-end dis-
tributed real-time and embedded (DRE) system quality of
service (QoS). First, we describe how MDD techniques can
help select middleware configuration parameters that sat-
isfy key functional and QoS requirements of DRE systems.
Second, we apply our MDD techniques to empirically eval-
uate the end-to-end QoS of representative DRE systems in
the avionics and industrial manufacturing domains. Our re-
sults show how MDD techniques significantly enhance con-
ventional ad hoc processes used by developers to configure
middleware that meets the QoS needs of DRE systems.

1. Introduction

Emerging trends and challenges. Various R&D ef-
forts [14, 2] have focused recently on quality of service
(QoS)-enabled middleware to enhance the develop-
ment, time-to-market, and reuse of distributed real-time
and embedded (DRE) systems, such as avionics mis-
sion computing, industrial process automation, and
total ship computing environments. An inherent char-
acteristic of QoS-enabled middleware is its flexibil-
ity, which is needed to support the requirements of a wide
range of DRE systems that must (1) run on many hard-
ware/OS platforms and interoperate with many ver-
sions of related software frameworks/tools and (2) pro-
vide support for end-to-end QoS properties, such as low
latency and bounded jitter; These DRE system require-
ments are met in part by compile- and run-time selec-
tion of middleware configuration options, which are used
to fine-tune QoS properties of the middleware, and cus-
tomization options, which are used to tradeoff functionality
and footprint of middleware to suit DRE system require-
ments.
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QoS enabled middleware platforms such as the the
Component-Integrated ACE ORB (CIAO) [13] and
PRiSm [11], have many (i.e., 10’s-100’s) of configura-
tion options and customization parameters that appli-
cation developers can adjust to tailor the middleware
to meet various functional and QoS needs. Develop-
ing mission-critical DRE systems using such highly flexi-
ble middleware can be problematic, however, due in large
part to the complexity associated with configuring and cus-
tomizing QoS-enabled middleware.

Model-driven techniques for configuring, customizing,
and validating middleware. A promising way to address
the problems outlined above is to (1) develop a rigorous pro-
cess and a set of tools that simplify and automate the config-
uration, customization, and validation of QoS-enabled mid-
dleware and (2) apply this process and tools to DRE sys-
tems to understand how the middleware configurations af-
fect QoS properties. This paper describes model-driven de-
velopment (MDD) techniques we have developed and ap-
plied to help resolve key complexities related to middleware
configuration, customization, and validation. We focus on
an integrated set of MDD tools and an associated MDD pro-
cess for (1) configuring and customizing QoS-enabled mid-
dleware and (2) generating testsuites for empirically bench-
marking the configured middleware to evaluate its QoS.

This paper extends our earlier work on (1) Options
Configuration Modeling Language (OCML) [12], which
is an MDD tool that simplifies the specification and vali-
dation of complex DRE middleware and application con-
figurations, and (2) Benchmark Generation Modeling Lan-
guage (BGML) [6], which is an MDD tool that synthesizes
benchmarking testsuites to analyze the QoS performance
of OCML-configured DRE systems,1, by illustrating how
these MDD tools can be used to measure the impact of mid-
dleware configurations on end-to-end DRE system perfor-
mance, nor did we evaluate how these tools help alleviate
the complexities of configuring QoS-enabled middleware
to support particular DRE system requirements. This paper

1 OCML and BGML are part of an open-source MDD toolchain
called CoSMIC [3] that can be downloaded from www.dre.
vanderbilt.edu/cosmic/.



therefore enhances our earlier work by describing an MDD
process that leverages the generative capabilities of OCML
and BGML to systematically document and validate how
different configurations of QoS-enabled middleware affect
DRE system QoS. We apply this process and tools to two
CIAO-based DRE systems in the avionics and manufactur-
ing domains to quantify the variation of QoS based on con-
figuration/customization options.

The results of our research show how MDD tools and
processes enhance conventional ad hoc processes develop-
ers use today to configure middleware that meets the QoS
needs of DRE systems. In particular, our MDD tool-based
process (1) identifies options that have significant influence
on QoS, (2) checks for inconsistencies between options at
modeling time, and (3) automatically generates code for
configuration and empirical validation.

2. Key QoS-enabled Middleware Configura-
tion and Customization Challenges

Developers of large-scale DRE systems face sev-
eral challenges associated with (1) configuring and cus-
tomizing QoS-enabled middleware for DRE systems and
(2) evaluating the QoS performance of selected middle-
ware configurations. This section first describes two DRE
systems in the avionics and industrial manufacturing do-
main and describes the QoS requirement for components in
these two applications. We then use these challenges to mo-
tivate the need for the OCML and BGML MDD tools
described in Section 1. The OCML and BGML tools
were developed using the Generic Modeling Environ-
ment (GME) [7] and form part of a broader MDD toolchain
called CoSMIC [3] that supports the development, con-
figuration, and deployment of component-based DRE
systems.

2.1. Case Studies of Two DRE Systems

To motivate our MDD tools and processes, we now
briefly describe two representative DRE systems from the
avionics and the manufacturing domains based on our col-
laborations with industrial partners in the DARPA PCES
program. For each scenario, we describe components that
have similar QoS requirements. Section 3.2 then uses these
scenarios to show how our MDD process can be applied
to understand how various middleware configurations affect
QoS. The middleware we use to implement both case stud-
ies is ACE v5.4.2 + TAO v1.4.2 + CIAO v0.4.2.

2.1.1. Case Study 1: Avionics Mission Computing Sce-
nario The first case study is based on the Basic SP sce-
nario from the DARPA PCES program [11]. In this sce-
nario, a GPS device sends out periodic position updates to

a GUI display that presents these updates to a pilot. The de-
sired data request and the display frequencies are fixed at
20 Hz. The QoS-enabled component middleware architec-
ture uses a push event/pull data publisher/subscriber com-
munication paradigm.

Component interactions The component interaction for
this example is shown in Figure 1. The scenario shown in

Figure 1. The Basic SP Navigation Display
Example

this figure begins with the GPS component being invoked
by the TAO Real-time Event Service [4] (shown as a Timer
component). On receiving a pulse event from the Timer,
the GPS component generates its data and issues a data
available event. The Airframe component retrieves the
data from the GPS component, updates its state and issues
a data available event. Finally, the NavDisplay compo-
nent in turn retrieves the data from the Airframe and up-
dates its state and displays it to the pilot.

QoS requirements For the Basic SP scenario, to satisfy
the QoS requirement of ensuring display refresh rate of 20
Hz, it is necessary to configure the Airframe and Nav-
Display components appropriately. To achieve this goal,
we need to determine the appropriate configurations for the
individual components and empirically evaluate the con-
figurations to determine the configuration that satisfies the
QoS requirement. We assume the mission computing sys-
tem is configured correctly. Several characteristics of the
Basic SP components are important in determining the con-
figuration space. For example, the NavDisplay compo-
nent receives updates only from the Airframe component
and does not send messages back to the sender, i.e., it just
plays the role of a client. Likewise, the Airframe compo-
nent communicates with both the GPS and Display com-
ponents, playing the role of a peer, though not concurrently
processing requests since the events are handled sequen-
tially.

2.1.2. Case Study 2: Robot Assembly Scenario The sec-
ond case study is based on a manufacturing assembly line
system. In this scenario, a conveyor of watches passes
through a watch station where a human operator visually
examines every watch for blemishes and configures (e.g.,
sets the watch time, date, and language) the watch depend-
ing on its type. If a watch is damaged it is rejected, oth-



erwise it is passed along the conveyor to a packaging sta-
tion. The QoS-enabled component middleware architecture
uses a push event/pull data publisher/subscriber communi-
cation paradigm. As with the Basic SP example, the robot
assembly scenario is available in the CIAO and CoSMIC re-
leases.

Component interactions In this scenario, a pallet (con-
trolled by a PaletteManager component) containing
digital watches moves to a robot station (controlled by the
RobotManager component) where its time is set using
the current time provided by a periodic clock (controlled by
a WatchManager). The management for the watch setting
facility located at a remote site can send production work
orders and receive response to orders, ongoing work status,
inventory, and other messages. These instructions are sent
to the WatchManager component using Management-
WorkInstructions (MWI) component. The Watch-
Manager component interacts with a human operator who
using the HumanMachineInterface (HMI) component
accepts/rejects the watch. When the watch is accepted, the
WatchManager component uses the RobotManager
component to set the time. When a watch is rejected, how-
ever, the RobotManager component removes the watch
from the assembly line. Figure 2 illustrates this assembly of
components.

Figure 2. Robot Assembly Scenario

QoS requirements To maximize the production line ef-
ficiency in this scenario, the communication overhead be-
tween the WatchManager and HumanOperator must
be low. The round-trip latency between messages ex-
changed between the two entities should therefore be
small. To achieve this goal, we need to determine the ap-
propriate configurations for the individual components
and empirically evaluate theses configurations and de-
termine the configuration that satisfies the QoS require-
ment (minimizing round-trip latency). One characteristic of
the robot assembly components is important in determining
the appropriate configurations. In particular, the Human-
MachineInterface component only plays the role
of a client since its only source of events is the Watch-

Manager component, which also interacts with all
other entities. Similar to the Airframe component, the
WatchManager plays the role of a peer. It does not, how-
ever, process requests concurrently since the decision to
accept/reject a watch is made sequentially by a human op-
erator.

2.2. DRE System Configuration and Evaluation
Challenges

DRE systems based on QoS-enabled middleware, such
as the avionics and industrial automation scenarios de-
scribed in Section 2.1, need to resolve the following chal-
lenges:

2.2.1. Challenge 1: Configuring and Customizing QoS-
enabled Middleware for DRE Systems QoS-enabled
middleware provides a range of configuration options
that can be used to customize and tune the QoS proper-
ties of the middleware. For example, the ACE+TAO+CIAO
QoS-enabled middleware provides � 500 configuration op-
tions that can be used to tune its behavior.2 This large
number of configuration options create several prob-
lems for developers and users of middleware for DRE
systems.

For example, the case studies in Section 2.1 describe
how to configure the NavDisplay and HMI appropri-
ately, application developers need to determine the seman-
tically valid set of configuration options and their settings.
This task is complicated, however, by the explosion of the
configuration space of the CIAO QoS-enabled middleware.
For instance, DRE system developers need to configure
and tune the performance of the ACE+TAO+CIAO mid-
dleware at multiple levels, including lower-level messaging
and transport mechanisms, the object request broker (ORB)
itself, up to higher-level middleware services (such as event
notification, scheduling, and load balancing). This problem
is exacerbated by the fact that not all combinations of op-
tions form a semantically compatible set.

2.2.2. Challenge 2: Evaluating the QoS of Selected Mid-
dleware Configurations QoS-enabled middleware runs on
a multitude of hardware, OS, and compiler platforms. De-
velopers of middleware and applications often use trial-and-
error methods to select the set of configuration options that
maximizes the QoS attainable by the middleware. Unfortu-
nately, the settings that maximize performance for a partic-
ular group of platforms and applications may not be suit-
able for different ones.

2 Examples of highly configurable middleware in other domains include
(1) SQL Server 7.0, which has � 50 configuration options, (2) Oracle
9, which has over 200 initialization parameters, and (3) Apache HTTP
Server Version 1.3, which has � 85 core configuration options.



Addressing the QoS-evaluation challenges of DRE sys-
tems fielded in a particular environment requires a suite of
benchmarking tests that are customized to the system’s en-
vironment. These benchmarks must test the different con-
figurations of the fielded system and analyze the results to
evaluate whether the proper QoS is actually delivered to the
DRE system. An example of such a test would be one that
can evaluate the configurations of the NavDisplay com-
ponent in the Basic SP scenario. Such an evaluation process
would involve creating a benchmarking experiment to mea-
sure QoS properties, thereby requiring developers to write
(1) the header files and source code that implement the func-
tionality, (2) the configuration and script files that tune the
underlying middleware and automate the task of running
tests and output generation, and (3) project build files (e.g.,
makefiles) required to generate the executable code. Our ex-
perience in earlier work [8] revealed how tedious and error-
prone this process is since it requires many manual steps to
generate, execute, and analyze the benchmarks.

2.3. Resolving DRE System Configuration and
Evaluation Challenges using MDD Tools

The aforementioned challenges are resoloved the follow-
ing MDD tools:

Resolving middleware configuration problems via
OCML. OCML represents the type system used by mid-
dleware developers as a GME metamodeling paradigm.
For example, it defines a numeric option type for mid-
dleware options which can have numeric values, i.e.,
cache/buffer sizes, thread counts, etc. OCML also repre-
sents a standard set of configurations as a GME model li-
brary. It defines standard configurations that application
developers can use to specify the set of configuration op-
tions that suit their components and enforces dependency
rules that prevent application developers from choosing in-
valid combinations of configuration sets that could result
in incorrect/undefined behavior. A Configuration File Gen-
erator (CFG) application is developed for the application
developer to specify the appropriate set of option config-
urations and validation of this set. Middleware developers
define individual models of middleware configuration op-
tions using the elements and rules of OCML metamodel
to configure particular middleware platforms. For exam-
ple, the CIAO ORB configuration options defined in the
OCML metamodeling paradigm.

For configuring the components of the two application
scenarios, we used the CFG that provides a simple wizard
like interface to generate the individual configuration files.
The CFG enabled the elimination of accidental complexities
involved in validating semantically incompatible configura-
tions. For example, while configuring the Airframe com-
ponent, setting ORBReactorType to select st pre-

cludes setting of ORBReactorThreadQueue. The CFG
enabled detecting these kinds of inconsistencies at design
time preventing undefined behavior at run-time. Addition-
ally, for each selected option, the CFG displays the relevant
documentation for that option thus helping choose the ap-
propriate configuration settings.

Resolving QoS evaluation challenges via BGML.
BGML is a GME-based modeling paradigm that cap-
tures key QoS evaluation concerns of QoS-enabled mid-
dleware, such as (1) modeling how distributed system
components interact with each other and (2) represent-
ing metrics that can be applied to specific configuration
options and platforms. Middleware/application devel-
opers can use BGML to graphically model interaction
scenarios of interest. BGML automates the task of writ-
ing repetitive source code to perform benchmark experi-
ments and generates syntactically, semantically valid source
and benchmarking code. To model interactions BGML pro-
vides (1) test elements such as operations, return-types, la-
tency and throughput that can be used to represent generic
operation or a sequence or operation steps and asso-
ciate functional QoS properties with them and (2) work-
load elements such as tasks and task-set that can be used to
model and simulate background load present during the ex-
perimentation process. These workload elements are then
mapped to individual platform specific code in the interpre-
tation process.

We applied BGML to both the DRE system scenarios,
in particular to resolve the evaluation concerns. The test
elements, enabled us to model the operation/events asso-
ciated with different components and also associate QoS
parameters such as round-trip latency. For example, in the
robot assembly scenario, we used latency measures for the
WorkOrderResponse event. The interpreters then gen-
erated the benchmarking, build and glue idl files to conduct
the experiment, thus eliminating the accidental complexity
arising from handcrafting these files.

3. An MDD Process for Evaluating the QoS of
Middleware Configurations

Developers of DRE systems commonly use ad hoc pro-
cesses to identify the configuration settings for the indi-
vidual components in their applications. These ad hoc pro-
cesses entail (re)validation of the configuration settings for
different application scenarios and domains. OCML re-
duces accidental complexities associated with configuring
QoS-enabled middleware. Likewise, BGML reduces acci-
dental complexities associated with evaluating QoS char-
acteristics across different configurations of hardware, OS,
compiler, and middleware platforms. Using OCML and
BGML in isolation, however, cannot determine the most
suitable configuration for a set of application QoS require-



ments or platform characteristics since BGML does not
know what configurations resulted in the captured metric
and OCML does not know what the performance was for
the chosen configuration. This section describes an MDD
process that integrates the OCML and BGML tools pre-
sented in Section 2 to resolve the configuration and eval-
uation challenges of DRE systems. We also evaluate the ap-
plicability and generality of this process by applying it to
the DRE system scenarios from Section 2.1.

3.1. Enhancing Ad Hoc Processes via Integrated
MDD Techniques

To aforementioned challenges, we have developed an
MDD process that can be (1) used to configure DRE sys-
tems, (2) used to evaluate the QoS of different middleware
configurations, and (3) applied across different domains and
platforms. Section 3.2 describes how this process has been
applied to Basic SP and robot assembly scenarios to resolve
key configuration and deployment concerns of those sys-
tems. To demonstrate the utility of our MDD tools and pro-
cess, we describe how our approach helps in resolving the
following two concerns of DRE systems:

1. How does the configuration options affect the overall
end-to-end QoS of a component interaction scenario?
Where a scenario defines a set of component instances
interacting with each other via messages to achieve a
common purpose or a goal. In particular, are there cer-
tain configuration options that influence performance
more than the others?

2. How does the choice of underlying platform affect the
QoS for a scenario? In particular, does the QoS vary
depending on where the components are placed? Addi-
tionally, is there a way of determining the mapping be-
tween the nodes and the components for a given inter-
action scenario to achieve an acceptable level of QoS?

Our MDD approach consists of the following steps that are
performed by application developers:

Step 1. Modeling component interaction scenarios. This
first step in our process involves using PICML [1] to vi-
sually represent the interfaces of the components, their in-
terconnections, and their dependencies on external libraries
and artifacts. The PICML tool which is part of the CoSMIC
tool chain supports visual modeling of components, ports,
interfaces, and operations. This step is required for conduct-
ing any experiment since it generates XML-based metadata
for component deployment. The system is then checked for
constraint violations and XML metadata is generated.

Step 2. Determining appropriate configuration settings.
For the components that need to be configured appropri-
ately, determine the set of relevant configurations and their

individual options that is expected to provide the required
level of QoS, e.g., expressed in terms of latency, through-
put, or jitter metrics. The set of configuration and their op-
tions can be conceptualized as a configuration space, with
each combination being a point in this space. If the con-
figuration options for a component have been determined a
priori, use the OCML MDD tool to directly generate the ap-
propriate configuration file. Otherwise, use OCML to gener-
ate the various possible combination of configurations that
are to be evaluate empirically via the MDD tool. This step
involves identification and generation of the configuration
space for the individual components.

Step 3. Experimental set up. Use BGML (Sec-
tion 2) MDD tool to model the test, i.e., associate la-
tency/throughput characteristics with the component op-
erations that are to be empirically evaluated to determine
the right configurations. Then use BGML’s model inter-
preters to generate the testsuite for evaluating the QoS
delivered to the DRE system by the middleware config-
uration. This step involves the generation of the build,
benchmarking and script code code from higher level mod-
els to run the experiment.

Step 4. Choosing a target deployment platform. De-
termine the target deployment platform, i.e., the physical
nodes on which the individual components will be hosted.
Use the PICML MDD tool part of the CoSMIC toolsuite,
to to model this target deployment platform and the com-
ponent node mappings, i.e., map component instances onto
individual nodes in the domain. This step involves the gen-
eration of the XML meta-data describing the domain and
how individual components are placed is generated.

Step 5. Navigating the configuration space. For each
combination of the configuration determined in Step 2, run
the benchmarking tests generated by BGML to evaluate the
QoS. This step involves the actual running of the experi-
ment on the target platform to generate data. This stage as-
sumes that the individual components are available and does
not include the phase of writing the logic for the compo-
nents.

3.2. Applying Our MDD Process to the DRE Sys-
tem Case Studies

We applied the MDD process described in Section 3.1
to both the avionics mission computing and robot assembly
scenarios. For each step described in that process, we now
illustrate how the step maps to the two DRE systems. Fi-
nally, we discuss how our process helped in addressing the
concerns of DRE systems described in Section 3.1.

Step 1. Modeling component interaction scenarios. Use
the PICML MDD tool [1] to model each DRE system sce-



nario. This step involves modeling the artifacts (i.e., ele-
ments involved in the scenario).

Step 2. Determining appropriate configuration set-
tings. Select a set of middleware configuration options us-
ing OCML (Section 2) that are expected to provide the
necessary level of QoS. The CIAO middleware pro-
vide over 500 configuration options, though not all of
these correspond to the QoS requirements for the compo-
nents in our study. For example, the NavDisplay and
HumanMachineInterface display-related compo-
nents do not need to consider server side options as they
only act as clients. We therefore narrowed down the config-
uration space by examining the documentation.

The display-related components are configured with a
similar configuration set and common across various appli-
cations so that the standard OCML configurations library
contains the DisplayComponent option. Setting this option
for a specific application results in a CFG that narrows down
the configuration space by setting appropriate values for the
target middleware platform. Table 1 shows the relevant con-
figuration options for these displayed-related components in
our case studies. Further examination of this reduced con-

Option Label Option Name Option Settings
A ORBReactorMaskSignals

�
0, 1 �

B ORBInputCDRAllocator
�

null, thread �
C ORBReactorType

�
select st, mt �

D ORBProfileLock
�

thread, null �
E ORBObjectLock

�
thread, null �

F ORBConnectionCacheLock
�

null, thread �
G ORBClientConnectionHandler

�
RW, ST �

H ORBTransportMuxStrategy
�

EXCLUSIVE,
MUXED �

I ORBConnectionPurging
�

LF, reactive �
Strategy

J ORBConnectStrategy
�

LF, reactive �

Table 1. Configuration Space for the Display
Components

figuration space reveals that some of the configurations set-
tings can be set a priori, i.e., without experimentation. For
example, both components interact with only one source
and do not need synchronization. These option settings (op-
tions A-F) can be directly determined (shown in bold) in Ta-
ble 1. For the remaining configurations, where both options
are suitable, the possible configuration combinations were
generated using OCML and determined experimentally as
described in the next step. For the WatchManager and
Airframe components the configuration space was deter-
mined in a similar manner. Table 2 illustrates the configu-
ration space. Note that apart from the (K-L) options shown
in the table, options (A-E) shown in Table 1 are also rel-
evant to these components. After determining the relevant

Notation Option Name Option Settings
K ORBReactivationOfSystemIds � 0, 1 �
L ORBPOALockType � thread, null �

Table 2. Configuration Space for Watch-
Manager and Airframe Components

configurations, we use our OCML tool to generate the per-
mutations of configuration options for all four components.

Step 3. Experimental setup. Using the BGML MDD tool,
the QoS characteristic (in this case roundtrip latency and
throughput) to be captured in the experiment were repre-
sented in the models. Figure 3 depicts how a latency metric
was associated with the operation between the Watch-
Manager and HumanMachineInterface compo-
nents, modeled using BGML. This figure also shows three
background tasks that simulated load conditions in the sce-
nario.

Figure 3. Associating QoS with operation in
BGML

For both cases, the average latency and the required num-
ber of warmup iterations were specified in the BGML mod-
els, which then generated the scaffolding code needed to run
the experiment.

Step 4. Choosing a target deployment platform. To em-
pirically evaluate the configuration and identify the recur-
ring settings, we used the testbed shown in Table 3. The in-
dividual computers themselves then were connected via a
LAN, which simulated a deployment scenario where these
components are deployed on different nodes. After choos-
ing this scenario, we used the target modeling capability in
PICML MDD tool to visually represent this scenario. The
model interpreters then generate the XML metadata that is
used by the CIAO component runtime engine to deploy the
components.

Step 5. Navigating the configuration space. For the con-
figuration space chosen, the generated benchmarking tests
were run to evaluate QoS, which involved running 32 dif-
ferent experiments for both the scenarios. Using the results,
we identified patterns and clusters of configurations that had
the most influence on QoS.



Hosts DOC ACE TANGO

CPU AMD AMD Intel
Type Athlon Athlon Xeon
CPU Speed (GHz) 2 2 1.9
Memory (GB) 1 1 2
Cache (KB) 512 512 2048
Compiler (gcc) 3.2.2 3.3 3.3.2
OS (Linux) Red Hat 9 Red Hat 8 Debian
Kernel 2.4.20 2.4.20 2.4.23
Avionics NavDisplay Airframe GPS
RobotAssembly WatchManager PaletteManager HMI

RobotManager
MWI

Table 3. Testbed and Deployment Summary

3.3. Evaluating the Impact of Middleware Config-
uration on QoS

Below we describe how our MDD process can be used
to help developers of DRE systems configure their middle-
ware and application effectively.

Experiment description. To evaluate how the configura-
tions of the components in the Basic SP and avionics sce-
nario affected QoS, we used the process described in Sec-
tion 3.2 to empirically evaluate QoS (in both the cases
round-trip latency) for different combination of the con-
figuration settings (Step 2 in Section 3.2), resulting in 64
unique experiments. 16 experiments for configurations rel-
evant to the NavDisplay and HMI components and 4
experiment for configurations relevant to Airframe and
WatchManager component. Based on the roles of com-
ponents, client (HMI and NavDisplay) or server, we dif-
ferentiate the configurations as client- and server-side op-
tions. This separation is possible as the options themselves
are mutually exclusive.

We first vary only the client-side options, keeping the
server-side options to their default values. Once we de-
termine the best configuration at the client-side, we use it
and vary the server side configurations, allowing us to nar-
row down the number of experiments to 32. This approach
yields the same results as compared to the full 64 experi-
ment approach.

Analysis of results. Table 4 tabulates the latency distribu-
tions for the client-side display based components. We use
the notation A1, B2, etc. to identify the individual options
within each category. For example, the -ORBConnect-
Strategy value of LF is denoted as J1. The top 8 config-
urations (out of a possible 16) are shown in increasing or-
der of latency values. A closer look at the values reveals a
clear pattern of configuration options and its effect on QoS
(end-to-end) latency. For example, the option G1 has the
greatest effect on performance, i.e., changing its value to
G2 increases latency by � 4 � secs for the robot assembly
scenario and by � 50 � secs in the Basic SP scenario. Af-

ter G, the option H influences latency the most, i.e., chang-
ing its value from H1 to H2 worsens latency by � 2 � secs
in the first case and by � 30 � secs in the second case. Ta-
ble 5 shows the results for the Airframe and Watch-
Manager components. We see that the settings for G have
the greatest influence on latency, i.e., changing its value in-
creases latency the most in both the cases.

HMI Component
Setting Latency

( � secs)
(G1, H1, I2, J2) 64.70
(G1, H1, I1, J2) 65.10
(G1, H1, I2, J1) 65.40
(G1, H1, I1, J1) 65.60
(G1, H2, I2, J2) 65.80
(G1, H2, I1, J1) 66.50
(G1, H2, I1, J2) 68.11
(G1, H2, I2, J1) 68.19
(G2, H1, I1, J2) 68.30
(.............................................)

Scenario 1

Nav Display Component
Setting Latency

( � secs)
(G1, H1, I2, J2) 504
(G1, H1, I2, J1) 528
(G1, H1, I1, J2) 529
(G1, H1, I1, J1) 532
(G1, H2, I1, J1) 536
(G1, H2, I2, J1) 548
(G1, H2, I1, J2) 552
(G1, H2, I2, J1) 562
(G2, H1, I2, J2) 568
(.............................................)

Scenario 2

Table 4. Latency QoS distribution for the HMI
& Nav Display Components

Discussion. Our MDD process allows application develop-
ers to understand what configurations affect performance
the most, which we refer to as the “primary effects.” The
categorization of the latency values in decreasing order of
latency values also enables use of clustering analysis to cre-
ate distinct sets of option categories as tuple spaces:

�������	��
����������� � � ��������
����������� � ������� ��������
����������� � (1)

where
���

denotes a configuration option,

���������

its setting.
Within each set then the elements of the set being closely
related. The sets themselves can be visualized as being sep-
arated by a distance � (similar to the concept of Hamming
distance). Where moving from a configuration in one set to
another results in an improvement/degradation in the QoS
measures. As shown in the Table 4, for the robot assembly
scenario moving from the first to second set of latency val-
ues incurs a minimum latency of � 32 � secs ( �! #"%$��'&�(*)�& ).

Another interesting observation one can make from both
the tables is that there is a similarity in the configurations
that maximizes QoS for both the scenarios. For both the sce-
narios, the client-side primary effects are the same (G,H,I,J)
in that order. Understanding and identifying similar patterns
of configuration across multiple domains, would allow di-
rect generation of the configuration information based on
the QoS eliminating the need to (re) validate these across
different configurations.



Airframe Component
Setting Latency

( � secs)
(K0, L0) 452
(K1, L0) 459
(K0, L1) 462
(K1, L1) 467

Scenario 3

Watch Manager Component
Setting Latency

( � secs)
(K0, L0) 55.5
(K1, L0) 56.8
(K0, L1) 59.6
(K1, L1) 60.2

Scenario 4

Table 5. Latency QoS distribution for Air-
frame & Watch Manager Components

3.4. Evaluating the Impact of the Deployment
Platform on QoS

Apart from evaluating the impact of configuration on
performance, our MDD process can also be used to evalu-
ate the performance impact of the underlying platform. For
example, an application developer might be interested in
knowing how does the latency vary in the robot assembly
scenario if the Airframe component was placed on the
node DOC and the NavDisplay component was placed
on node TANGO.

Experiment description. To answer the question of how
deployment platform affects QoS, we used the process de-
scribed in Section 3.2 to change how components were de-
ployed on the target platform. In particular, the only change
required was in the model, i.e., just changing the node map-
ping aspect3. All the required XML metadata are then gen-
erated by the PICML and BGML model interpreters. For
this experiment, the configurations for the Display com-
ponent was (G1, H1, I2, J2) and for Airframe (K0, L0). The
respective configurations lead to minimal latencies in the
earlier experiment.

Analysis of results. Table 6 tabulates the effect of chang-
ing the node mapping in the avionics scenario. As shown in
the table, the choice was a bad one as the average roundtrip
latency increased sharply to � 1200 � secs whereas our de-
fault mapping, i.e., one used in the earlier study is signifi-
cantly better. The reason being that the GPS component that
generates requests is on a slower node (ACE) than the de-
fault case (TANGO).

Discussion. Information such as this helps the application
developers to make intelligent choices regarding how the
underlying platform influences QoS and how best to opti-
mize deployment decisions. Our MDD approach helped in
quickly identifying how the underlying platform affects per-
formance of the scenario. As described earlier, all the re-
quired changes were in the the MDD tools and the required

3 Aspects in GME are a mechanism to provide different views of the
same model, where each aspect captures a concern of the same sys-
tem

DOC ACE TANGO latency
� secs

Display Airframe GPS 504
Airframe GPS Display 1206

Table 6. Deployment Analysis

XML meta-data was synthesized eliminating the acciden-
tal complexities involved in handcrafting low level source
and XML meta-data files.

Our MDD process can also be used to provide feed-back
to developers on how their deployment decisions (compo-
nent node mappings) affect QoS. Many real-time systems
are designed in a manner where the node mappings are de-
termined a priori, which stems from the fact that the soft-
ware tends to be closely tied to the hardware on which it
runs. When nodes failure, however, it may be necessary to
determine where to place the backup components such that
the system still delivers an acceptable level of performance.
In this case, the acceptable level of performance could be a
certain latency threshold below which the DRE system can-
not function in a proper manner.

4. Related Work

This section compares our work on MDD techniques in
OCML and BGML with related research efforts, including
middleware configuration techniques and generative tech-
niques for empirical QoS evaluation.

Techniques for middleware configuration. A num-
ber of ORBs (such as VisiBroker, ORBacus, omniORB,
and CIAO) provide mechanisms for configuring and cus-
tomizing the middleware. For example, CIAO uses the ACE
Service Configurator framework [10], which can be used to
statically and dynamically configure components into mid-
dleware and applications. Likewise, Java ORBs provide
an API for configuring applications based on XML prop-
erty files. Key/value pairs for specific options are stored
in an XML-formatted files and read by applications us-
ing XML parsers or a provided API.

Similar to our OCML approach, the Micro-
QoSCORBA [5] middleware provides a GUI based
tool to determine the type of architecture on which the sys-
tem is being built. Application developers run the config-
uration tool to configure the application. Code generators
then store this information in an application specific con-
figuration file. These files along with the IDL specification
are then used to generate customized client-side stubs and
skeletons, ORB configuration files and build files. How-
ever, this tool is tied to its middleware and cannot be
applied to other middleware solutions like OCML.



Empirical QoS evaluation. Several efforts use genera-
tive techniques similar to BGML to generate testcases and
benchmarks for performance evaluation.

Performance Patterns [9] and Performance Pattern Lan-
guages (PPL) provide an automatable script-based frame-
work within which extensive ORB endsystem performance
benchmarks can be described efficiently and executed au-
tomatically. These patterns are embodied in the NetSpec
tool developed at the Kansas University. The patterns them-
selves are written using PPL. Examples of such patterns in-
clude Cubit Tests (measuring (de) marshaling overhead),
Client-Server benchmarks (simple client server two node
approach for benchmarking) and Proxy benchmarks (intro-
ducing a proxy that acts as an intermediary between the
client and server). The patterns approach can also be ex-
pressed using higher-level modeling constructs, e.g., us-
ing modeling elements in the BGML modeling paradigm.
These constructs can be used to denote patterns at the mod-
eling level. Interpreters can then mimic the same func-
tionality of scripts that parse the PPL language to gener-
ate the benchmarking scaffolding code. Providing modeling
constructs reduces accidental complexities associated with
PPL, as both middleware and application developers are not
required to grapple with language syntax and semantics.

5. Concluding Remarks

This paper describes an MDD process that lever-
ages the Options Configuration Modeling Language
(OCML) and Benchmark Generation Modeling Language
(BGML), which are MDD tools we developed to allevi-
ate complexities associated with (1) choosing syntactically-
and semantically-compatible sets of middleware configu-
rations for specific application use cases and (2) evaluat-
ing the specified configurations and assisting middleware
and application developers in deciding appropriate config-
urations for their QoS requirements, respectively. We qual-
itatively and quantitatively apply the process to two DRE
systems in the avionics and the industrial manufactur-
ing domains to evaluate (1) how middleware configurations
affect system QoS, and (2) how deployment platforms in-
fluence QoS.
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