
Towards Highly Optimized Real-time Middleware for Software Product-line
Architectures

Arvind S. Krishna
�
, Aniruddha Gokhale

�
and Douglas C. Schmidt

�
,

Venkatesh Prasad Ranganath
�

and John Hatcliff
�

�
Dept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN�

Dept. of Computing and Information Sciences, Kansas State University, Manhattan, KS

Abstract
This paper provides the following contributions to the study of
middleware optimization techniques for product line architec-
tures in real-time systems. First, we identify different dimen-
sions of generality in standards based middleware implemen-
tations. Second, we describe how specialization approaches
used in other domains including OS, compiler and program-
ming languages can be applied to address middleware gener-
ality challenges. Third, we present preliminary results from the
application of our specialization techniques. Our results illus-
trate that specialization techniques represent a promising ap-
proach for minimizing time/space overheads in middleware.

1 Introduction
Emerging trends & challenges. Product-line architectures
(PLAs) [1] are a promising technology for systematically ad-
dressing the challenges of large-scale software systems. In
contrast to conventional software processes that produce sep-
arate point solutions, PLA-based processes create families of
product variants [2] that share a common set of capabilities,
patterns, and architectural styles. PLA based development
processes are also desirable for Distributed Real-time and Em-
bedded (DRE) systems [2, 3] that are characterized by their
multiple, simultaneous constraints across different quality of
service (QoS) dimensions (such as memory footprint, weight,
and performance), which often makes them harder to develop,
maintain, and evolve than mainstream desktop and enterprise
software.

DRE systems QoS challenges have hitherto led developers
to (re)invent custom applications that are tightly coupled to
specific hardware/software platforms, which is tedious, error-
prone, and costly to evolve over product lifecycles. During
the past decade, therefore, a key technology for alleviating the
tight coupling between applications and their underlying plat-
forms has been middleware, which (1) functionally bridges the
gap between applications and platforms, (2) controls many as-
pects of end-to-end QoS, and (3) simplifies the integration of
components developed by multiple technology suppliers.

However, key challenges must be overcome before middle-
ware can be applied broadly to support the QoS needs of PLA-
based DRE systems. In particular, R&D is needed to help
resolve the tension between (1) the generality of standards-
based middleware platforms, which benefit from reusable ar-
chitectures designed to satisfy a broad range of application
requirements, and (2) application-specific product variants,
which benefit from highly-optimized, custom middleware im-
plementations. In resolving this tension, solutions should ide-
ally retain the portability and interoperability afforded by stan-
dard middleware.

Specialization techniques for resolving middleware gener-
ality challenges. A promising solution approach to allevi-
ate middleware generality for PLAs is the use of specializa-
tion techniques such as partial evaluation (PE). Jones et.al [4],
define partial evaluation as a technique that creates a special-
ized version of a general program, which is more optimized for
speed and size than the original program. Specialization tech-
niques draw from and have characteristics of language mech-
anisms such as program optimization techniques [5], compil-
ers [6] and program generation [7] and generative program-
ming techniques [8].

2 Overview of Specialization Tech-
niques

Specialization approaches tailor code based on ahead of time
known invariant assumptions. Consider a given program � ,
and inputs �����	� and �
����� such that �����	� is known a priori.
Given the invariant, i.e., �
���� is known ahead of time spe-
cialization technique can be used to produce a corresponding
program �	����� that takes only input argument �����	� , where:

���	� � �	��� ���� ��� � �	��� � ����� � (1)
� �	����� � ��! � �	����� � ������"� (2)

which are necessary conditions and

�$#&% � � ��(' �$#&% � � �	�����)� (3)

is a desirable condition. Specialization techniques simulta-
neously combine characteristics of: (1) program optimizer,
by producing a specialized program, which has the same be-
havior as the original version, but takes lesser steps, (2) com-
piler, by using techniques like constant propagation (replacing
�����	� with the constant value), and (3) program generator, by
generating the optimized version of the program, either source
or object code directly.

2.1 Specialization Example
In this section we show a concrete example of program spe-
cialization technique based on the C++ Standard Template Li-
brary (STL) that provides a set of containers (Abstract Data
Types) and algorithms that can be used for PE. The code snip-
pet below illustrates how template meta programming tech-
niques can be used as a mechanism for partial evaluation.
t emplate i n t X'
s t r u c t f ibo num *

s t a t i c c o n s t num = f ibo num X + 1 ' ::num +
f ibo num X + 2 ' ::num ;,

t emplate �'
s t r u c t f ibo num 0 '-*

s t a t i c c o n s t num = 1 ; / . 0 t h number . /,
t emplate �'
s t r u c t f ibo num 1 '-*

s t a t i c c o n s t num = 1 ; / . 1 s t number . /,
t emplate �'
s t r u c t f ibo num 2 '-*

s t a t i c c o n s t num = 1 ; / . 2 nd number . /,

The code above computes the n /"0 fibonacci number. How-
ever, this computation is done at compile time using PE as
follows. Consider the following statement:
c o n s t i n t f i b o 1 0 = f ibo num 10 ' ::num ;

To evaluate fibo 10, a C++ compiler recursively instanti-
ates templates fibo num 9...1 ' to compute the 10 /"0 number.
Thus all occurrences of fibo 10 are substituted with the value
directly thereby improving program space and speed.

2.2 Specialization Mechanisms Applied to Dif-
ferent Domains

Specialization mechanisms have been applied to different do-
mains including scientific applications, functional program-
ming, operating systems and database systems. In computer
graphics for example, ray tracing algorithms compute infor-
mation on how light rays traverse a scene based on differ-

ent origination. Specialization of these algorithms [9] for a
given scene have yielded better performance rather than gen-
eral purpose approaches. Similarly in databases [10], general
purpose queries have been transformed into specific programs
optimized for a given input. Similarly, training neural net-
works [11] for a given scenario has improved its performance.

The earliest of the efforts in Synthesis Kernel [12] pioneered
the idea of generating custom system calls for specific situ-
ations. The motivation was to collapse layers and to elimi-
nate unnecessary procedure calls. Others have extended this
approach to use incremental specialization techniques. For
example in their work [13], Pu et al., have identified sev-
eral invariants for a operating system read call for HP UX
platform. Based on these invariants, code is synthesized to
adapt to different situations. Once the invariants fail, either
re-plugging code is used to adapt to a different invariant or
default unoptimized code is used.

3 Specializing Middleware Implemen-
tations

Traditional specialization techniques have been used to opti-
mize applications in function/logic programming. There does
not exist any partial evaluation tool for object oriented pro-
gramming languages such as C++ or Java. Other program spe-
cialization techniques are commonly used in optimizing com-
pilers. Middleware displays several characteristics amenable
to specialization such as (1) ability to run on different plat-
forms, (2) multitude of configuration options and (3) design
for flexibility and generality. Using a similar approach as an
optimizing compiler, specialization may be used to produce
leaner and meaner middleware implementations more tailored
to the operating context

This section presents sources and methods of applying spe-
cialization techniques to middleware. The description for
each of the specialization techniques are structured as follows:
We first describe the motivation and opportunity for special-
ization, then at a high level illustrate how the specialization
can be carried out. Finally, we show preliminary empirical
results from our specialization application on the TAO [14]
open-source C++ CORBA middleware that is widely used in
production DRE systems (www.dre.vanderbilt.edu/
users.html).

3.1 Opportunities for Middleware Specializa-
tion

To improve performance and footprint for different applica-
tions, middleware implementations incorporate several hori-
zontal (general purpose) optimizations such as predictable and

2

scalable (1) request demultiplexing techniques, that ensure1 � ��� look up time [15] and collocation optimization, which
bypasses the network when client and server reside in the same
address space. However, these optimizations are still generic,
for example redundant checks for remoting are performed to
accommodate for generality, i.e., capability to communicate
over the wire as well. In the remainder of this section, we de-
scribe different dimensions of middleware specializations that
we are working on to improve middleware QoS above and be-
yond existing general-purpose optimizations.
Specialization for target location. The collocation opti-
mization in middleware bypass the network completely when
both the client and server objects are collocated. However,
in this situation, middleware is also general purpose, i.e., it
still can send and request remote CORBA requests. Similarly,
an object may be a “sink”, i.e., only receive events and up-
dates from other sources but never send out any events itself.
General purpose middleware works in both cases, however,
considerable footprint and performance improvements can be
obtained by eliminating unnecessary checks and code within
the middleware.

For example, in the special collocation case where there is
no remoting, i.e., there is no need to make remote calls and the
code required to make remote connections (connection han-
dling code) can be eliminated; same case for sink components.
Further, in the collocated case, as all calls are known a priori
to be on the same node, checks to see if a call is remote or lo-
cal can also be eliminated. These checks span multiple layers
within the middleware, including message invocation classes
in the I/O layer and object proxies in the ORB core layers.
Extrapolate rather than send. HTTP caching works by
storing web pages in a local machine and servicing requests
to the remote page from the local cache. After a given time,
the web page expires and a remote request is sent. A CORBA
client/server performance can be improved via caching. For
example, before sending a request to the server, a client
can check to see if it has a previous response which is still
valid. This eliminates a roundtrip overhead. Some middleware
implementations, including ACE+TAO support a mechanism
called Smart Proxies [16] which enable extrapolation rather
than sending a request to the server.
Specialize middleware framework implementations.
Middleware is often developed as a set of frameworks that can
be extended and configured with alternative implementations
of key components, such as different types of transport
protocols (e.g., TCP/IP, VME, or shared memory), event
demultiplexing mechanisms (e.g., reactive-, proactive-, or
thread-based), request demultiplexing strategies (e.g., dy-
namic hashing, perfect hashing, or active demuxing), and
concurrency models (e.g., thread-per-connection, thread
pool, or thread-pre-request). However, most applications
only use a subset of the different features provided by the

middleware framework. For example, certain applications
use only the TCP/IP protocol for communication or use the
thread-per-connection concurrency strategy. In this situation,
the frameworks can be specialized to eliminate dynamic dis-
patching overheads based on the type of concrete component
used by the application that is know a priori.
Specialize deployment platform characteristics Another
key dimension of generality stems from the deployment plat-
forms on which middleware and PLA applications are hosted.
Examples of this deployment platform generality include dif-
ferent OS-specific system calls, compiler flags and optimiza-
tions, and hardware instruction sets. Every OS, compiler, and
hardware platform provide different configuration settings that
perform differently and can be tuned to minimize the time/-
space overhead of middleware and applications. For example,
sendfile() optimizations available on certain platforms, such
as Linux can be used to avoid data copies between middleware
and kernel buffers thereby minimizing end-to-end latencies for
application using the middleware.

3.2 Preliminary Results
In this section we present preliminary empirical results for
target object location specialization discussed in Section 3.1.
This specialization targets collocated components that do not
require remoting capabilities. In this case, remoting checks
along the request/response processing path within the middle-
ware can be eliminated. This specialization is applied above
and beyond the standard collocation optimization supported
in a Real-time CORBA implementation and completely elim-
inates remoting tests (the generality) in the collocation opti-
mization. The specialization is compatible with the CORBA
specification since no changes are made to the CORBA inter-
faces.

Figure 1 shows the footprint and throughput improvements
accrued by the target object location specialization. As shown
in the figure, footprint for a collocated application improves
by 2 40 kiloBytes, which is a 12% improvement over the
general-purpose TAO implementation. This specialization
also removes redundant tests along the critical path, which
improves end-to-end throughput by 2 7% over the general-
purpose collocation optimization implemented by TAO. These
results show how eliminating redundant remoting functional-
ity can improve size and performance of general-purpose mid-
dleware.

4 Concluding Remarks & Future
Work

Traditional program specialization techniques such as partial
evaluation have been used to specialize a given program based

3

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

ca
lls

/s
ec

General
Specialized

Throughput

0

500

1000

1500

2000

2500

3000

si
ze

 (k
.B

)

Size

Figure 1: Results for Target Object Location Specialization

on ahead of time known invariant properties. This paper de-
scribed how such specialization techniques are also applica-
ble to standards-based middleware implementations for PLAs.
Our preliminary results show that application of specialization
techniques can minimize the time/space overheads of applica-
tions using standards based middleware without (1) changes
to the application code and (2) compromising compliance to
the CORBA specification. Our ultimate goal is to enable other
middleware developers to analyze and implement the special-
izations. We are working on developing a comprehensive
CORBA specialization model based on [17] that – indepen-
dent of a particular CORBA implementation – identifies (1)
points in an ORB architecture where specialization is bene-
ficial and (2) API extensions to the architecture that provide
hooks for achieving effective specialization.

Our preliminary implementation of the specialization tech-
niques illustrated that manually applying these specializations
to thousands of lines of C++ middleware code would be infea-
sible. Our future work therefore focuses on developing lan-
guages and tools to automate static and dynamic analysis to
identify opportunities for specialization and to collect infor-
mation that can drive the specialization process. We are also
developing transformation engines that automatically perform
the refactoring, partial evaluation, and code weaving necessary
to achieve specialized middleware implementations.

References
[1] D. L. Parnas, “On the Design and Development of Program

Families,” IEEE Transactions on Software Engineering,
vol. SE-2, no. 1, pp. 1–9, 1976.

[2] D. C. Sharp, “Reducing Avionics Software Cost Through
Component Based Product Line Development,” in Proceedings
of the 10th Annual Software Technology Conference, Apr.
1998.

[3] B. S. Doerr and D. C. Sharp, “Freeing Product Line
Architectures from Execution Dependencies,” in Proceedings
of the 11th Annual Software Technology Conference, Apr.
1999.

[4] N. Jones, C. Gomard, and P. Sestoft, Partial Evaluation and
Automatic Program Generation. Englewood Cliffs, NJ:
Prentice Hall, 1993.

[5] V. Itkin, “On Partial and Mixed Program Execution,” in
Program Optimization and Transformation, pp. 17–30, CCN,
1983. (In Russian).

[6] S. Abramov and N. Kondratjev, “A Compiler Based on Partial
Evaluation,” in Problems of Applied Mathematics and Software
Systems, pp. 66–69, Moscow, USSR: Moscow State University,
1982. (In Russian).

[7] P. Thiemann and M. Sperber, “Program Generation With
Class,” in Informatik’97, Aachen, Germany, September 1997
(M. Jarke, K. Pasedach, and K. Pohl, eds.), Berlin:
Springer-Verlag, 1997.

[8] K. Czarnecki and U. Eisenecker, Generative Programming:
Methods, Tools, and Applications. Boston: Addison-Wesley,
2000.

[9] P. Andersen, “Partial Evaluation Applied to Ray Tracing,”
DIKU Research Report 95/2, DIKU, 1995.

[10] C. Sakama and H. Itoh, “Partial Evaluation of Queries in
Deductive Databases,” New Generation Computing, vol. 6,
no. 2,3, pp. 249–258, 1988.

[11] L. Lei, G.-H. Moll, and J. Kouloumdjian, “A Deductive
Database Architecture Based on Partial Evaluation,” SIGMOD
Record, vol. 19, pp. 24–29, September 1990.

[12] C. Pu, H. Massalin, and J. Ioannidis, “The Synthesis Kernel,”
Computing Systems, vol. 1, pp. 11–32, Winter 1988.

[13] C. Pu, T. Autery, A. Black, C. Consel, C. Cowan, J. W.
Jon Inouye, Lakshmi Kethana, and K. Zhang, “Optimistic
Incremental Specialization: Streamlining a Commercial
Operating System,” in Symposium of Operating System
Principles, (Copper Mountain Resort, Colorado), Dec. 1995.

[14] Institute for Software Integrated Systems, “The ACE ORB
(TAO).” www.dre.vanderbilt.edu/TAO/, Vanderbilt University.

[15] A. S. Krishna, D. C. Schmidt, R. Klefstad, and A. Corsaro,
“Towards Predictable Real-time Java Object Request Brokers,”
in Proceedings of the 9th Real-time/Embedded Technology and
Applications Symposium (RTAS), (Washington, DC), IEEE,
May 2003.

[16] N. Wang, K. Parameswaran, and D. C. Schmidt, “The Design
and Performance of Meta-Programming Mechanisms for
Object Request Broker Middleware,” in Proceedings of the 3�465
Conference on Object-Oriented Technologies and Systems,
(San Antonio, TX), pp. 103–118, USENIX, Jan/Feb 2000.

[17] G. Daugherty, “A proposal for the specialization of ha/dre
systems,” in Proceedings of the ACM SIGPLAN 2004
Symposium on Partial Evaluation and Program Manipulation
(PEPM 04), (Verona, Italy), ACM, Aug. 2004.

4

