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1 Introduction

This is the second half of the third article in a series that de-
scribes techniques for encapsulating existing operating sys-
tem (OS) interprocess communication (IPC) services using
object-oriented (OO) C++ wrappers. In the first half of this
article, a client/server application example was presented to
motivate the utilityof wrappers that encapsulate event demul-
tiplexing mechanisms [1]. Event demultiplexing is useful for
developing event-driven network servers that receive and
process data arriving from multiple clients simultaneously.
The previous article also examined the advantages and dis-
advantages of several alternative I/O demultiplexing schemes
such as non-blocking I/O, multiple process or thread creation,
and synchronous I/O demultiplexing (via the select and
poll system calls).

This article focuses on the design and implementation of
an object-oriented framework called the Reactor. The
Reactor provides a portable interface to an integrated col-
lection of extensible, reusable, and type-secure C++ classes
that encapsulate and enhance the select and poll event
demultiplexing mechanisms [2]. To help simplify network
programming, the Reactor combines the demultiplexing
of synchronous I/O-based events together with timer-based
events. When these events occur, the Reactor automati-
cally dispatches the method(s) of previously registered ob-
jects to perform application-specified services.

This article is organized as follows: Section 2 describes
the primary features offered by the Reactor framework;
Section 3 outlines the object-oriented design and implemen-
tation of the framework; Section 4 presents a distributed
logging example that demonstrates how the Reactor sim-
plifies the development of concurrent, event-driven network
applications; and Section 5 discusses concluding remarks.

2 Primary Features of the Reactor

TheReactor provides an object-oriented interface that sim-
plifies the development of distributedapplications that utilize

I/O-based and/or timer-based demultiplexing mechanisms.
The following paragraphs describe the primary features of-
fered by the Reactor framework:

� Export Uniform Object-Oriented Interfaces: Appli-
cations using the Reactor do not access the lower-level
I/O demultiplexing system calls directly. Instead, they in-
herit from a common Event Handler abstract base class
to form composite concrete derived classes (as illustrated
in Figure 1). The Event Handler base class specifies a
uniform interface consisting of virtual methods that handle
(1) synchronous input, output, and exceptions and (2) timer-
based events. Applications create objects of these derived
classes and register them with instances of the Reactor.

� Automate Event Handler Dispatching: When events
occur, the Reactor automatically invokes the appropri-
ate virtual method event handler(s) belonging to the pre-
registered derived class objects. Since C++ objects are reg-
istered with the Reactor (as opposed to stand-alone sub-
routines), any context information associated with an object
is retained between invocations of its methods. This is par-
ticularly useful for developing “stateful” services that retain
information in between client invocations.

� Support Transparent Extensibility: The functionality
of both the Reactor and its registered objects may be ex-
tended transparently without modifying or recompiling ex-
isting code. To accomplish this, the Reactor framework
employs inheritance, dynamic binding, and parameterized
types to decouple the lower-level event demultiplexing and
service dispatching mechanisms from the higher-level appli-
cation processing policies. Example low-level mechanisms
include (1) detecting events on multiple I/O handles, (2)
handling timer expiration, and (3) invoking the appropriate
method event handler(s) in response to events. Likewise,
application-specified policies include (1) connection estab-
lishment, (2) data transmission and reception, and (3) pro-
cessing service requests from other participating hosts.

� Increase Reuse: The Reactor’s demultiplexing and
dispatching mechanisms may be reused by many network ap-
plications. By reusing rather than redeveloping these mech-
anisms, developers are free to concentrate on higher-level
application-related issues, rather than repeatedly wrestling
with lower-level event demultiplexing details. In addition,
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subsequent bug-fixes and enhancements are transparently
shared by all applications that utilize the Reactor’s com-
ponents. Conversely, developers that access select and
poll directly must reimplement the same demultiplexing
and dispatching code for every network application. More-
over, any modifications and improvements to this code must
be replicated manually in all related applications.

�Enhance Type-Security: TheReactor shields applica-
tion developers from error-prone, low-level details associated
with programming existing I/O demultiplexing system calls.
These details involve setting and clearing bitmasks, handling
timeouts and interrupts, and dispatching “call-back” meth-
ods. In particular, the Reactor eliminates several subtle
causes of errors with poll and select that involve the
misuse of I/O handles and fd set bitmasks.

� Improve Portability: The Reactor also shields appli-
cations from differences between select and poll that
impede portability. As illustrated in Figure 5, the Reactor
exports the same interface to applications, regardless of the
underlying event demultiplexingsystem calls. Moreover, the
Reactor’s object-oriented architecture improves its own in-
ternal portability. For example, porting the Reactor from
a select-based OS platform to a poll-based platform re-
quired only a few well-defined changes to the framework.

In addition to simplifying application development, the
Reactor also performs its demultiplexing and dispatching
tasks efficiently. In particular, its event dispatching logic
improves upon common techniques that use select di-
rectly. For instance, the select-based Reactor uses
an ACE Handle Set class (described in Section 3.2) that
avoids examiningfd set bitmasks one bit at a time in many
circumstances. An article in a future issue of the C++ Report
will empirically evaluate the performance of the Reactor
and compare it against a non-object-oriented solution written
in C that accesses I/O demultiplexing system calls directly.

3 The Object-Oriented Design and Im-
plementation of the Reactor

This section summarizes the object-oriented design of the
Reactor framework’s primary class components, focus-
ing on the interfaces and strategic design decisions. Where
appropriate, tactical design decisions and certain implemen-
tation details are also discussed. Section 3.1 outlines the OS
platform-independent components; Section 3.2 covers the
platform-dependent components.

The Reactor was originally modeled after a C++ wrap-
per for select called the Dispatcher that is available
with the InterViews distribution [3]. The Reactor frame-
work described here includes several additional features. For
example, the Reactor operates transparently on top of
both the System V Release 4 poll interface and select,
which is available on both UNIX and PC platforms (via
the WINSOCK API). In addition, the Reactor framework
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Figure 1: The Reactor Inheritance Hierarchy

contains support for multi-threading. In general, a single in-
stance of the Reactor is active in a thread at any point in
time. However, there may be multiple different instances of
Reactor objects running in separate threads in a process.
The framework provides the necessary synchronization op-
erations to prevent race conditions [4].

3.1 Platform-Independent Class Components

The following paragraphs summarize the salient charac-
teristics of the three platform-independent classes in the
Reactor: the ACE Time Value, ACE Timer Queue,
and ACE Event Handler classes:

� ACE Time Value: This class provides a C++ wrap-
per that encapsulates an underlying OS platform’s date and
time structure (such as the struct timeval data type
on UNIX and POSIX platforms). The timeval structure
contains two fields that represent time in terms of seconds
and microseconds. However, other OS platforms use differ-
ent representations, so theACE Time Value class abstracts
these details to provide a portable C++ interface.

The primary methods in the ACE Time Value class are
illustrated in Figure 2. The ACE Time Value wrapper
uses operator overloading to simplify time-based compar-
isons within the Reactor. Overloading permits the use of
standard arithmetic syntax for relational expressions involv-
ing time comparisons. For example, the following code cre-
ates two ACE Time Value objects constructed by adding
user-supplied command-line arguments to the current time,
and then displaying the appropriate ordering relationship be-
tween the two objects:

int main (int argc, char *argv[])
{
if (argc != 3) {

cerr << "usage: " << argv[0]
<< " time1 time2" << endl;
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return 1;
}

ACE_Time_Value ct =
ACE_OS::gettimeofday ();

ACE_Time_Value tv1 = ct +
ACE_Time_Value (ACE_OS::atoi (argv[1]));

ACE_Time_Value tv2 = ct +
ACE_Time_Value (ACE_OS::atoi (argv[2]));

if (tv1 > tv2)
cout << "timer 1 is greater" << endl;

else if (tv2 > tv1)
cout << "timer 2 is greater" << endl;

else
cout << "timers are equal" << endl;

return 0;
}

Methods in the ACE Time Value class are implemented
to compare “normalized” time quantities. Normalization ad-
justs the two fields in a timeval structure to use a canonical
encoding scheme that ensures accurate comparisons. For ex-
ample, after normalization, the quantity ACE Time Value
(1, 1000000)will compare equal to ACE Time Value
(2). Note that a direct bitwise comparison of the non-
normalized class fields would not detect this equality.

� ACE Timer Queue: The Reactor’s timer-based
mechanisms are used useful for applications that require
timer support. For example, WWW servers require watch-
dog timers to release resources if clients that connect do not
send an HTTP request within a specific time interval. Like-
wise, certain daemon configuration frameworks (such as the
Service Control Manager in Windows NT) require
services under their control to periodically report their cur-
rent status. These “heart-beat” messages are used to ensure
that a service has not terminated abnormally.

The ACE Timer Queue class provides mechanisms that
allow applications to register time-based objects that derive
from theACE Event Handler base class (described in the
following bullet). The ACE Timer Queue ensures that the
handle timeout method in these objects is invoked at
an application-specified time in the future. The methods of
the ACE Timer Queue class illustrated in Figure 3 enable
applications to schedule, cancel, and invoke the timer objects.

An application schedules an ACE Event Handler that
will expire after delay amount of time. If it expires
then arg is passed in as the value to the event han-
dler’s handle timeout callback method. If interval
does not equal ACE Time Value::zero it is used to
reschedule the event handler automatically. The schedule
method returns a handle to a timer that uniquely identi-
fies this event handler in the timer queue’s internal table.
The timer handle can be used by cancel to remove an
ACE Event Handler before it expires. If a non-NULL
arg is passed to cancel it is set to the Asynchronous Com-
pletion Token (ACT) [5] passed in by the application when
the timer was originally scheduled. This makes it possible to
free up dynamically allocated ACTs to avoid memory leaks.

By default, the ACE Timer Queue is implemented
as a linked list of tuples containing ACE Time Value,

// Time value structure from /usr/include/sys/time.h
// struct timeval { long secs; long usecs; };

class ACE_Time_Value
{
public:
ACE_Time_Value (long sec = 0, long usec = 0);
ACE_Time_Value (timeval t);

// Returns sum of two ACE_Time_Values.
friend ACE_Time_Value operator +

(const ACE_Time_Value &lhs,
const ACE_Time_Value &rhs);
// Returns difference between two ACE_Time_Values.

friend ACE_Time_Value operator -
(const ACE_Time_Value &lhs,
const ACE_Time_Value &rhs);

// Relational and comparison operators for
// normalized ACE_Time_Values.

friend int operator <
(const ACE_Time_Value &lhs,
const ACE_Time_Value &rhs);
// Other relation operators...

private:
// ...

};
Figure 2: Interface for the ACE Time Value Class

class ACE_Timer_Queue
{
public:
ACE_Timer_Queue (void);

// True if queue is empty, else false.
int is_empty (void) const;

// Returns earliest time in queue.
const ACE_Time_Value &earliest_time (void) const;

// Schedule a HANDLER to be dispatched at
// the FUTURE_TIME.
// and at subsequent INTERVALs.

int virtual schedule
(ACE_Event_Handler *handler,
const void *arg,
const ACE_Time_Value &future_time,
const ACE_Time_Value &interval);

// Cancel all registered ACE_Event_Handlers
// that match the address of HANDLER.

int virtual cancel
(ACE_Event_Handler *handler);

// Cancel the single ACE_Event_Handler matching the
// TIMER_ID value (returned from schedule()).

int virtual cancel (int timer_id,
const void **arg = 0);

// Expire all timers <= EXPIRE_TIME
// (note, this routine must be called manually
// since it is not invoked asychronously).

void virtual expire
(const ACE_Time_Value &expire_time);

private:
// ...

};
Figure 3: Interface for the ACE Timer Queue Class
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ACE Event Handler *, and void * members. These
tuples are sorted by the ACE Time Value field in
ascending order of their “time-to-execute.” The
ACE Event Handler * field is a pointer to the timer
object scheduled to be run at the time specified by the
ACE Time Value field. The void * field is an argument
supplied when a timer object is originally scheduled. When
a timer expires, this argument is automatically passed to the
handle timeout method (described in the following bul-
let).

Each ACE Time Value in the linked list is stored in
“absolute” time units (such as those generated by the UNIX
gettimeofday system call). However, since virtual meth-
ods are used in the class interface, applications can redefine
the ACE Timer Queue implementation to use alternative
data structures such as delta-lists [6] or heaps [7]. Delta-
lists store time in “relative” units represented as offsets or
“deltas” from the earliest ACE Time Value at the front of
the list. Heaps, on the other hand, use a “partially-ordered,
almost-complete binary tree” instead of a sorted list to reduce
the average- and worst-case time complexity for inserting or
deleting an entry from O(n) to O(lgn). A heap representa-
tion may be more efficient for certain real-time application
usage patterns [7].

� ACE Event Handler: This abstract base class specifies
an extensible interface used by portions of the Reactor
class that control and coordinate the automatic dispatch-
ing of I/O and timer mechanisms. The virtual methods
in the ACE Event Handler interface are illustrated in
Figure 4. The Reactor uses application-defined sub-
classes of the ACE Event Handler base class to im-
plement its automated, event-driven call-back mechanisms.
These subclasses may redefine certain virtual methods in the
ACE Event Handler base class to perform application-
defined processing in response to various types of events.
These events include (1) different types (e.g., “reading,”
“writing,” and “exceptions”) of synchronous I/O on one or
more handles and (2) timer expiration.

An
object of a subclass derived from ACE Event Handler
typically supplies an I/O handle.1 For example, the fol-
lowing Logging Acceptor class fragment encapsulates
a “passive-mode” ACE SOCK Acceptor factory provided
by the SOCK SAP socket wrappers [8].

class Logging_Acceptor :
public ACE_Event_Handler

{
public:
Logging_Acceptor (ACE_INET_Addr &addr)
: acceptor_ (addr) { /* ... */ }

// Double-dispatching hook.
virtual ACE_HANDLE get_handle (void) const {
return this->acceptor_.get_handle ();

}

// Factory that creates and activates

1I/O handles may be omitted in derived class objects that are purely
timer-based.

typedef u_long Reactor_Mask;
typedef int ACE_HANDLE;

class ACE_Event_Handler
{
public:

// It is possible to bitwise "or" these values
// together to instruct the Reactor to check for
// multiple I/O activities on a single handle.

enum {
READ_MASK = 01,
WRITE_MASK = 02,
EXCEPT_MASK = 04,
RWE_MASK = READ_MASK | WRITE_MASK | EXCEPT_MASK

};

// Returns the I/O handle associated with the
// derived object (must be supplied by a subclass).

virtual ACE_HANDLE get_handle (void) const = 0;

// Called when object is removed from the Reactor.
virtual int handle_close (ACE_HANDLE, Reactor_Mask);

// Called when input becomes available.
virtual int handle_input (ACE_HANDLE);

// Called when output is possible.
virtual int handle_output (ACE_HANDLE);

// Called when urgent data is available.
virtual int handle_except (ACE_HANDLE);

// Called when timer expires (TV stores the
// current time and ARG is the argument given
// when the handler was originally scheduled).

virtual int handle_timeout (const ACE_Time_Value &tv,
const void *arg = 0);

// Called when signal is triggered by OS.
virtual int handle_signal (int signum);

};
Figure 4: Interface for the ACE Event Handler Class

// a Logging_Handler.
virtual int handle_input (ACE_HANDLE) {

ACE_SOCK_Stream peer_handler;

this->acceptor_.accept (peer_handler);
// Create and activate a Logging_Handler...

}
// ...

private:
// Passive-mode socket acceptor.

ACE_SOCK_Acceptor acceptor_;
};

int main (int argc, char *argv[])
{
// Event demultiplexer.
ACE_Reactor reactor;

Logging_Acceptor acceptor
((ACE_INET_Addr) PORT_NUM);

reactor.register_handler
(&acceptor, ACE_Event_Handler::READ_MASK);

// Loop ‘‘forever’’ accepting connections and
// and handling logging records.
for (;;)

reactor.handle_events ();
/* NOTREACHED */

}

Internally, the Reactor::register handler
method retrieves the underlying I/O handle by invoking the
acceptor object’s get handle virtual method. When
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theReactor::handle eventsmethod is invoked, han-
dles of all registered objects are aggregated and passed to
select (or poll). This OS-level event demultiplexing
call detects the occurrence of I/O-based events on these han-
dles. When input events occur or output events become
possible, the I/O handles become “active.” At this time,
the Reactor notifies the appropriate derived objects by
invoking the method(s) that handle the event(s).2 For in-
stance, in the example above, when a connection request
arrives the Reactor calls the handle input method of
the ACE Acceptor class. This method accepts the new
connection and creates a Logging Handler (not shown)
that reads all data sent by the client and displays it on the
standard output stream.

The ACE Timer Queue class described above handles
time-based events. When a timer managed by this queue ex-
pires, thehandle timeoutmethod of a previously sched-
uledACE Event Handler derived object is invoked. This
method is passed the current time, as well as the void * ar-
gument passed in when the derived object was originally
scheduled.

When any method in anACE Event Handlerobject re-
turns �1, the Reactor automatically invokes that object’s
handle close method. The handle close method
may be used to perform any user-defined termination ac-
tivities (such as deleting dynamic memory allocated by the
object, closing log files, etc.). Upon return of this call-back
function, theReactor removes the associated derived class
object from its internal tables.

3.2 Platform-Dependent Class Components

The ACE Reactor class provides the central inter-
face for the Reactor framework. On UNIX platforms,
this class is the only part of the framework that contains
platform-dependent code (the private representation of the
ACE Time Value class may differ on non-UNIX plat-
forms, as well).

� ACE Reactor: Figure 6 illustrates the primary methods
in the Reactor class interface, which encapsulates and ex-
tends the functionality of select and poll. These meth-
ods may be grouped into the following general categories:

� Manager methods – The constructor and open meth-
ods create and initialize objects of the ACE Reactor
by dynamically allocating various data structures (de-
scribed in Section 3.2.1 and 3.2.2 below). The destructor
and close methods deallocate these data structures.

� I/O-based event handler methods – Objects that are de-
rived from subclasses of the ACE Event Handler
class may be instantiated and registered with an in-
stance of the Reactor via the register handle

2Note that the activated I/O handle is passed as an argument to the
handle input call-back function (though it is ignored in this case since
the acceptor class instance variable keeps encapsulates the underlying
handle).

method. Event handlers may also be removed via the
remove handler method.

� Timer-based event handler methods –

ACE Time Value arguments that are passed to
the ACE Reactor’s schedule timer method are
specified “relative” to the current time. For example,
the following code schedules an object to print “hello
world” every interval number of seconds, starting
delay seconds into the future:
class Hello_World : public ACE_Event_Handler
{
public:
virtual int handle_timeout (

const ACE_Time_Value &tv,
const void *arg) {

ACE_DEBUG ((LM_DEBUG, "hello world\n"));
return 0;

}
// ...

};

int main (int argc, char *argv[])
{
if (argc != 3)

ACE_ERROR_RETURN ((LM_ERROR,
"usage: %s delay interval\n",
argv[0]), -1);

Reactor reactor;

Hello_World handler; // timer object.

ACE_Time_Value delay = ACE_OS::atoi (argv[1]);
ACE_Time_Value interval = ACE_OS::atoi (argv[2]);

reactor.schedule_timer (&handler, 0,
delay, interval);

for (;;)
reactor.handle_events ();

/* NOTREACHED */
}

However, the default implementation of the underly-
ingACE Timer Queue stores the values in “absolute”
time units. That is, it adds the scheduled time to the cur-
rent time of day.

Since the interface of the ACE Reactor class consists
ofvirtualmethods it is straight-forward to extend the
ACE Reactor’s default functionality via inheritance.
For example, modifying the ACE Timer Queue im-
plementation to use one of the alternative represen-
tations described in Section 3.1 requires no visible
changes to the ACE Reactor’s public or private
interface.

� Event-loop methods –

After registering I/O-based and/or timer-based objects,
an application enters an event-loop that calls either of the
two Reactor::handle events methods continu-
ously. These methods block for an application-specified
time interval awaiting the occurrence of (1) synchronous
I/O events on one or more handles and (2) timer-based
events. As events occur, the ACE Reactor dispatches
the appropriate method(s) of objects that the application
registered to handle these events.
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The followingparagraphs describe the primary differences
between the poll-based and select-based versions of the
ACE Reactor. Although the implementations of certain
methods in the ACE Reactor class differ across OS plat-
forms, the method names and overall functionality remain
the same. This uniformity stems from the modularity of
the ACE Reactor’s design and implementation, which en-
hances its reuse, portability, and maintainability.

3.2.1 Class Components for the select-based Reactor

As shown in Figure 5 (1), the select-based implementa-
tion of the ACE Reactor contains three dynamically allo-
cated ACE Event Handler * arrays. These arrays store
pointers to the registered ACE Event Handler objects
that process the reading, writing, exception, and/or timer-
based events. The ACE Handle Set class provides an
efficient C++ wrapper for the underlying fd set bitmask
data type. An fd setmaps the I/O handle name-space onto
a compact bit-vector representation and provides several op-
erations for enabling, disabling, and testing bits correspond-
ing to I/O handles. One or more fd sets is passed to the
select call. The ACE Handle Set class optimizes sev-
eral common fd set operations by (1) using “full-word”
comparisons to minimize unnecessary bit manipulations and
(2) caching certain values to avoid recalculating bit-offsets
on each call.

3.2.2 Class Components for the poll-based Reactor

The poll interface is more general than select, allow-
ing applications to wait for a wider-range of events (such
as “priority-band” I/O events). Therefore, the poll-based
Reactor implementation shown in Figure 5 (2) is some-
what smaller and less complicated than the select-based
version. For example, the poll-based ACE Reactor re-
quires neither the three ACE Event Handler * arrays
nor the ACE Handle Set class. Instead, a single array
of ACE Event Handler pointers and an array of pollfd
structures are dynamically allocated and used internally to
store the registeredACE Event Handler derived class ob-
jects.

4 Using and Evaluating the Reactor

The Reactor framework is intended to simplify the de-
velopment of distributed applications, particularly network
servers. To illustrate a typical usage of the Reactor, the
followingsection examines the design and implementationof
the distributed logging application presented in [1]. This sec-
tion describes the primary C++ class components in the log-
ging application, compares the object-oriented Reactor-
based solution with an earlier version written in C, and dis-
cusses the influence of C++ on both theReactor framework
and the distributed logging facility.
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class Reactor
{
public:
// = Initialization and termination methods.

enum { DEFAULT_SIZE = FD_SETSIZE };

// Initialize a Reactor instance that may
// contain SIZE entries (RESTART indicates
// to restart system calls after interrupts).

Reactor (int size, int restart = 0);

virtual int open (int size = DEFAULT_SIZE,
int restart = 0);

// Default constructor.
Reactor (void);

// Perform cleanup activities to close down
// an instance of a REACTOR.

void close (void);

// = I/O-based event handler methods

// Register an ACE_Event_Handler object according
// to the Reactor_Mask(s) (i.e., "reading,"
// "writing," and/or "exceptions").

virtual int register_handler (ACE_Event_Handler *,
Reactor_Mask);

// Remove the handler associated with the
// appropriate Reactor_Mask(s).

virtual int remove_handler (ACE_Event_Handler *,
Reactor_Mask);

// = Timer-based event handler methods

// Register a handler to expire at time DELTA.
// When DELTA expires the handle_timeout()
// method will be called with the current time
// and ARG as parameters. If INTERVAL is > 0
// then the handler is reinvoked periodically
// at that INTERVAL. DELTA is interpreted
// "relative" to the current time of day.

virtual void schedule_timer (
ACE_Event_Handler *,
const void *arg,
const ACE_Time_Value &delta,
const ACE_Time_Value &interval =
ACE_Timer_Queue::zero);

// Locate and cancel timer.
virtual void cancel_timer (ACE_Event_Handler *);

// = Event-loop methods

// Block process until I/O events occur or timer
// expires, then dispatch activated handler(s).

virtual int handle_events (void);

// Perform a timed event-loop that waits up to TV
// time units for events to occur; if no events
// occur then 0 is returned, otherwise return
// TV - (actual_time_waited).

virtual int handle_events (ACE_Time_Value &tv);

private:
// ...

};
Figure 6: Interface for the Reactor Class
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Figure 7: Run-time Activities in the Distributed Logging
Facility

4.1 Distributed Logging Facility Overview

The distributed logging facility presented below was orig-
inally designed for a commercial on-line transaction pro-
cessing product. The logger facility uses a client/server ar-
chitecture to provide logging services for workstations and
symmetric multi-processors linked across local area and/or
wide area networks. The logging facility combines the event
demultiplexing and dispatching features of the Reactor to-
gether with the object-oriented interface to BSD sockets and
the System V Transport Layer Interface (TLI) provided by
the IPC SAP wrapper library (described in [8]). Logging
provides an “append-only” storage service that records diag-
nostic information sent from one or more applications. The
primary unit of logging is the record. Incoming records are
appended to the end of a log and all other types of write
access are forbidden.

The distributed logging facility is comprised of the follow-
ing three main components depicted in Figure 7:

� Application Logging Interface: Application processes
(e.g., P1, P2, P3) running on client hosts use the Log Msg
C++ class to generate various types of logging records (such
as LOG ERROR and LOG DEBUG). The Log Msg::log
method provides a printf-style interface. Figure 8 de-
scribes the priority levels and data format for records ex-
changed by the application interface and the logging dae-
mons. When invoked by an application, the logging interface
formats and timestamps these records and writes them to a
well-known named pipe (also called a FIFO), where they are
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consumed by a client logging daemon.

�Client Logging Daemon: The client loggingdaemon is a
single-threaded, iterative daemon that runs on every host ma-
chine participating in the distributed logging service. Each
client logging daemon is connected to the read-side of the
named pipe used to receive logging records from applica-
tions on this machine. Named pipes are used since they are
an efficient form of localhost-only IPC. In addition, the se-
mantics of named pipes in System V Release 4 UNIX have
been expanded to allow “priority-band” messages that may
be received in “order-of-importance,” as well as in “order-
of-arrival” (which is still the default behavior) [9].

The complete design of the client logging daemon and
the application logging interface will appear in a subsequent
C++ Report article that presents C++ wrappers for several
“local-host” IPC mechanisms (such as System V Release 4
FIFOs, STREAM pipes, message queues, and UNIX-domain
stream sockets). In general, a client logging daemon con-
tinuously receives the logging records in priority order from
applications, converts the multi-byterecord header fields into
network-byte order, and forwards the records to the server
logging daemon (which typically runs on a remote host).

� Server Logging Daemon: The server logging daemon
is a concurrent daemon that continuously collects, reformats,
and displays the incoming logging records to various external
devices. These devices may include printers, persistent stor-
age repositories, or logging management consoles. The re-
mainder of this article focuses on the server logging daemon.
In addition, several Reactor and IPC SAP mechanisms
are also illustrated and described throughout this example.

4.2 The Server Logging Daemon

The following section discusses the interface and im-
plementation of the primary classes used to construct the
server logging daemon. The logging server is a single-
threaded, concurrent daemon that runs in a single pro-
cess. Concurrency is provided by having the Reactor
“time-slice” its attention to each active client in a round-
robin fashion. In particular, during every invocation of the
Reactor::handle events method, a single logging
record is read from each client whose I/O handle became
active during this iteration. These logging records are writ-
ten to the standard output of the server logging daemon. This
output may be redirected to various devices such as print-
ers, persistent storage repositories, or logging management
consoles.

In addition to the main driver program shown below in
Section 4.2.3, several other C++ class components appear in
the logging facility architecture. The class inheritance and
parameterization relationships between the various compo-
nents are illustrated in Figure 9 using Booch notation [10].
To enhance reuse and extensibility, the component shown in
this figure are designed to decouple the following aspects of
the application architecture:

// The following data type indicates the relative
// priorities of the logging messages, from lowest
// to highest priority...

enum Log_Priority
{

// Shutdown the logger.
LM_SHUTDOWN = 1,

// Messages indicating function-calling sequence
LM_TRACE = 2,

// Messages that contain information normally
// use only when debugging a program

LM_DEBUG = 3,
// Informational messages

LM_INFO = 4,
// Conditions that are not error condition
// but that may require special handling.

LM_NOTICE = 5,
// Warning messages

LM_WARNING = 6,
// Initialize the logger

LM_STARTUP = 7,
// Error messages

LM_ERROR = 8,
// Critical conditions, e.g., hard device errors

LM_CRITICAL = 9,
// A condition that should be corrected immediatey,
// such as a corrupted system database.

LM_ALERT = 10,
// A panic condition (broadcast to all users)

LM_EMERGENCY = 11,
// Maximum logging priority + 1

LM_MAX = 12
};

struct Log_Record
{
enum {

// Maximum number of bytes in logging record
MAXLOGMSGLEN = 1024

};

// Type of logging record
Log_Priority type_;

// length of the logging record
long length_;

// Time logging record generated
long time_stamp_;

// Id of process that generated the record
long pid_;

// Logging record data
char rec_data_[MAXLOGMSGLEN];

};
Figure 8: Logging Record Format
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Figure 9: Class Components in the Server Logging Daemon

� Reactor framework components – The components in
the Reactor framework discussed in Section 3 encap-
sulate the lowest-level mechanisms for performing the
I/O demultiplexing and event handler dispatching.

� Connection-related mechanisms – The components dis-
cussed in Section 4.2.1 represent a set of generic tem-
plates that provide reusable connection-related mech-
anisms. In particular, the ACE Acceptor template
class is a general-purpose class designed to accept net-
work connections with remote clients. Likewise, the
ACE Svc Handler template class is another general-
purpose class designed to send and/or receive data
to/from connected clients.

� Application-specific services – The components dis-
cussed in Section 4.2.2 represent the application-specific
portion of the distributed logging facility. In particu-
lar, the Logging Acceptor class supplies specific
parameterized types to the ACE Acceptor, which
creates a connection handling instantiation that is
specific for the logging application. Likewise, the
Logging Handler class is instantiated to provide the
application-specific functionality necessary to receive
and process logging records from remote clients.

In general, by adopting this highly-decoupledobject-oriented
decomposition, the development and maintenance of the
server logging daemon was simplified significantly, com-
pared with the original approach.

4.2.1 Connection-related Mechanisms

�The ACE Acceptor Class: This parameterized type pro-
vides a generic template for a family of classes that standard-
ize and automate the steps necessary to accept network con-
nection requests from clients. Figure 10 illustrates the inter-

// A template class for handling connection requests from
// a remote client.

template <class SVC_HANDLER,
class PEER_ACCEPTOR,
class PEER_ADDR>

class ACE_Acceptor : public ACE_Event_Handler
{
public:
ACE_Acceptor (ACE_Reactor *r,

const PEER_ADDR &a);
˜ACE_Acceptor (void);

private:
virtual ACE_HANDLE get_handle (void) const;
virtual int handle_input (ACE_HANDLE);
virtual int handle_close (ACE_HANDLE,

Reactor_Mask);

// Accept connections.
PEER_ACCEPTOR acceptor_;

// Performs event demuxing.
ACE_Reactor *reactor_;

};
Figure 10: Class Interface for Accepting Connections

face for theACE Acceptor class.3 This class inherits from
ACE Event Handler, which enables it to interact with
the Reactor framework. In addition, this template class
is parameterized by a composite PEER HANDLER subclass
(which must understand how to perform I/O with clients),
a PEER ACCEPTOR class (which must understand how to
accept client connections), and PEER ADDR (which is a C++
wrapper for the appropriate address family).

Classes instantiated from the ACE Acceptor template
are capable of the following behavior:

1. Accepting connection requests sent from remote clients;

2. Dynamically allocating an object of the
PEER HANDLER subclass;

3. Registering this object with an instance of the
Reactor. In turn, the PEER HANDLER class must
know how to process data exchanged with the client.

Figure 11 depicts the ACE Acceptor class implemen-
tation. When one or more connection requests arrive, the
handle input method is automatically dispatched by the
Reactor. This method behaves as follows. First, it dy-
namically creates a separate PEER HANDLER object, which
is responsible for processing the logging records received
from each new client. Next, it accepts an incoming connec-
tion into that object. Finally, it calls the open hook. This
hook can register the newly created PEER HANDLER object
with an instance of theReactor or can spawn off a separate
thread of control, etc.

� The ACE Svc Handler Class: This parameterized type
provides a generic template for processing data sent from
clients. In the distributed logging facility, for example, the

3This is a simplified version of the ACE Acceptor. For a complete
implementation see [11].
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// Shorthand names
#define SH SVC_HANDLER
#define PL PEER_ACCEPTOR
#define PA PEER_ADDR

template <class SH, class PL, class PA>
ACE_Acceptor<SH, PL, PA>::ACE_Acceptor
(ACE_Reactor *r, const PA &addr)
: reactor_ (r),
acceptor_ (addr)

{
}

template <class SH, class PL, class PA> ACE_HANDLE
ACE_Acceptor<SH, PL, PA>::get_handle (void) const
{

return this->acceptor_.get_handle ();
}

template <class SH, class PL, class PA> int
ACE_Acceptor<SH, PL, PA>::handle_close
(ACE_HANDLE, Reactor_Mask)

{
return this->acceptor_.close ();

}

template <class SH, class PL, class PA>
ACE_Acceptor<SH, PL, PA>::˜ACE_Acceptor (void)
{
this->handle_close ();

}

// Generic factory for accepting connections from
// client hosts, creating and activating a
// service handler.

template <class SH, class PL, class PA> int
ACE_Acceptor<SH, PL, PA>::handle_input
(ACE_HANDLE)

{
// Create a new Svc_Handler.
SH *svc_handler = new SH (this->reactor_);

// Accept connection into the handler.
this->acceptor_.accept (*svc_handler);

// Activate the handler.
svc_handler->open (0);

}
Figure 11: Class Implementation for Accepting Connections

// Receive client message from the remote clients.

template <class PEER_STREAM, class PA>
class ACE_Svc_Handler : public ACE_Event_Handler
{
public:
ACE_Svc_Handler (ACE_Reactor *r)
: reactor_ (r) {}

// Must be filled in by subclass
virtual int open (void *) = 0;

operator PEER_STREAM &();

// Demultiplexing hooks.
virtual ACE_HANDLE get_handle (void) const;

protected:
// Connection open to the client.

PEER_STREAM peer_stream_;

// Performs event demuxing.
ACE_Reactor *reactor_;

};
Figure 12: Class Interface for Handling Services

#define PS PEER_STREAM

// Extract the underlying PS (e.g., for
// use by accept()).

template <class PS, class PA>
ACE_Svc_Handler<PS, PA>::operator PS &()
{
return this->peer_stream_;

}

template <class PS, class PA> ACE_HANDLE
ACE_Svc_Handler<PS, PA>::get_handle (void) const
{
return this->peer_stream_.get_handle ();

}
Figure 13: Class Implementation for Service Handling

I/O format involves logging records. However, different for-
mats are easily substituted for other applications. Typically,
objects of classes instantiated from ACE Svc Handler are
dynamically created and registered with the Reactor by
the handle input routine in the ACE Acceptor class.
The interface of the ACE Svc Handler class is depicted
in Figure 12. As with the ACE Acceptor class, this class
inherits functionality from the ACE Event Handler base
class.

Figure 13 illustrates the ACE Svc Handler class imple-
mentation. The class constructor caches the host address
of the associated client when an object of this class is dy-
namically allocated. As illustrated by the “console” window
in Figure 7, the name of this host is printed along with the
logging records received from a client logging daemon.

The ACE Svc Handler::handle input method
simply invokes the pure virtual method recv. This
recv function must be supplied by subclasses of
ACE Svc Handler; it is responsible for performing
application-specific I/O behavior. Note how the combination
of inheritance, dynamic binding, and parameterized types fur-
ther decouples the general-purpose portions of the framework
(such as connection establishment) from the application-
specific functionality (such as receiving logging records).

When theACE Reactor removes aACE Svc Handler
object from its internal tables, the object’s handle close
method is called automatically. By default, this method deal-
locates the object’s memory (which was originally allocated
by the handle input method in the ACE Acceptor
class). Objects are typically removed when a client logging
daemon shuts down or when a serious transmission error oc-
curs. To insure that ACE Svc Handler objects are only
allocated and deallocated dynamically, the destructor is de-
clared in the private section of the class (shown at the bottom
of Figure 12).

4.2.2 Application-Specific Services

� The Logging Acceptor Class: To implement the dis-
tributed logging application theLogging Acceptor class
is instantiated from the generic ACE Acceptor template as
follows:
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typedef ACE_Acceptor
<Logging_Handler,
ACE_SOCK_Acceptor,
ACE_INET_Addr> Logging_Acceptor;

The PEER HANDLER parameter is instantiated with the
Logging Handler class (described in the following
bullet below), PEER ACCEPTOR is replaced by the
ACE SOCK Acceptor class, and PEER ADDR is the
ACE INET Addr class.

The ACE SOCK * and ACE INET Addr instantiated
types are part of a C++ wrapper called SOCK SAP [8].
SOCK SAP encapsulates the BSD socket interface for trans-
ferring data reliably between two processes that may run on
different host machines. However, these classes could also
be any other network interface that conformed to the inter-
face used in the parameterized class (such as the TLI SAP
wrapper for the System V Transport Layer Interface (TLI)).
For example, depending on certain properties of the under-
lying OS platform (such as whether it is a BSD or System
V variant of UNIX), the logging application may instantiate
the ACE Svc Handler class to use either SOCK SAP or
TLI SAP as follows:

// Logging application.

#if defined (MT_SAFE_SOCKETS)
typedef ACE_SOCK_Stream PEER_STREAM;
#else
typedef ACE_TLI_Stream PEER_STREAM;
#endif // MT_SAFE_SOCKETS.

class Logging_Handler
: public ACE_Svc_Handler<PEER_STREAM,

ACE_INET_Addr>
{
// ...

};

The degree of flexibilityoffered by this template-based ap-
proach is extremely useful when developing applications that
must run portability across multiple OS platforms. In fact,
the ability to parameterize applications by transport interface
is useful across variants of OS platforms (e.g., SunOS 5.2
does not provide a thread-safe socket implementation).

� The Logging Handler Class: This class is created by
instantiating the ACE Svc Handler class as follows:

class Logging_Handler :
public ACE_Svc_Handler<ACE_SOCK_Stream,

ACE_INET_Addr>
{
public:

// Open hook.
virtual int open (void) {
// Register ourselves with the Reactor so
// we can be dispatched automatically when
// I/O arrives from clients.
reactor_.register_handler
(this, ACE_Event_Handler::READ_MASK);

}

// Demultiplexing hook.
virtual int handle_input (ACE_HANDLE);

};

The PEER STREAM parameter is replaced with the
ACE SOCK Stream class and the PEER ADDR parame-
ter is replaced with the ACE INET Addr class. The
handle input method is called automatically by the
ACE Reactor when input arrives on the underlying
ACE SOCK Stream. It is implemented as follows:4

// Callback routine for handling the reception of
// remote logging transmissions from clients.

int
Logging_Handler::handle_input (ACE_HANDLE)
{
size_t len;

ssize_t n = this->peer_stream_.recv
(&len, sizeof len);

if (n == sizeof len) {
Log_Record lr;

len = ntohl (len);
n = this->peer_stream_.recv_n (&lr, len));

if (n != len)
ACE_ERROR_RETURN ((LM_ERROR, "%p at host %s\n",

"client logger", this->host_name), -1);

lr.decode ();

if (lr.len == n)
lr.print (this->host_name, 0, stderr);

else
ACE_ERROR_RETURN ((LM_DEBUG,

"error, lr.len = %d, n = %d\n",
lr.len, n), -1);

return 0;
}
else

return n;
}

Note how this example perform two recvs to simulate a
message-oriented service via the underlying TCP connec-
tion (recall that TCP provides bytestream-oriented, rather
than record-oriented, service). The first recv reads the
length (stored as a fixed-size integer) of the following log-
ging record. The second recv then reads “length” bytes to
obtain the actual record. Naturally, the client sending this
message must also follow this message framing protocol.

4.2.3 The Main Driver Program

The following event-loop drives theReactor-based log-
ging server:

int
main (int argc, char *argv[])
{
// Event demultiplexer.
ACE_Reactor reactor;

const char *program_name = argv[0];
ACE_LOG_MSG->open (program_name);

if (argc != 2)
ACE_ERROR_RETURN ((LM_ERROR,

"usage: %n port-number"), -1);

u_short server_port = ACE_OS::atoi (argv[1]);

4Note that this implementation is not entirely robust in its handling of
“short reads.”
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Figure 14: Run-time Configuration of the Server Logging
Daemon

Logging_Acceptor acceptor
(&reactor, (ACE_INET_Addr) server_port);

reactor.register_handler (&acceptor);

// Loop forever, handling client requests.

for (;;)
reactor.handle_events ();

/* NOTREACHED */
return 0;

}

The main program starts by opening a logging channel
that directs any logging records generated by the server to its
own standard error stream. The example code in Figures 11
and 13 illustrates how the server uses the application logging
interface to log its own diagnostic messages locally. Note
that since this arrangement does not recursively use the server
logging daemon there is no danger causing of an “infinite-
logging-loop.”

The server then opens an instance of the Reactor, in-
stantiates a Logging Acceptor object, and registers this
object with the Reactor. Next, the server enters an end-
less loop that blocks in the handle events method un-
til events are received from client logging daemons. Fig-
ure 14 illustrates the state of the logging server daemon af-
ter two clients have contacted the Reactor and become
participants in the distributed logging service. As shown
in the figure, a Logging Handler object has been dy-
namically instantiated and registered for each client. As

incoming events arrive, the Reactor handles them by au-
tomatically dispatching (1) the handle input method of
the Logging Acceptor and Logging Handler class.
When connection requests arrive from client logging dae-
mons, the Logging Acceptor::handle input func-
tion is invoked. Likewise, when logging records or shutdown
messages arrive from previously connected client logging
daemons, the Logging Handler::handle input
function is invoked.

Figure 7 portrays the entire system during execution. Log-
ging records are generated from the application logging in-
terface, forwarded to client logging daemons, transmitted
across the network to the server logging daemon, and finally
displayed on the server logging console. The logging in-
formation that is displayed indicates (1) the time the logging
record was generated by the application interface, (2) the host
machine the application was running on, (3) the process iden-
tifier of the application, (4) the priority level of the logging
record, (5) the command-line name (i.e., “argv[0]”) of the
application, and (6) an arbitrary text string that contains the
text of the logging message.

4.3 Evaluating Alternative Logging Imple-
mentations

This section compares the object-oriented and non-object-
oriented versions of the distributed logging facility in terms
of several software quality factors such as modularity, exten-
sibility, reusability, and portability.

4.3.1 Non-Object-Oriented Version

TheReactor-based distributedlogging facility is an object-
oriented reimplementation of an earlier functionally equiva-
lent, non-object-oriented logging facility. The original ver-
sion was developed for a BSD UNIX-based commercial on-
line transaction processing product. It was initially written in
C and used BSD sockets and select directly. Later, it was
ported to a system that provided only the System V-based
TLI and poll interfaces.

The original C implementation is difficult to modify, ex-
tend, and port due to (1) tightly-coupled functionality and (2)
an excessive use of global variables. For example, the event
demultiplexing, service dispatching, and event processing
operations in the original version are tightly-coupled with
both the acceptance of client connection requests and the re-
ception of client logging records. In addition, several global
data structures are used to maintain the relationship between
(1) per-client context information (such as the client host-
name and current processing status) and (2) I/O handles that
identify the appropriate context record. Therefore, any en-
hancements or modifications to the program directly affects
the existing source code.
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4.3.2 Object-Oriented Version

The object-oriented Reactor-based version uses data ab-
straction, inheritance, dynamic binding, and templates to (1)
minimize the reliance on global variables and (2) decou-
ple the application policies that process incoming connec-
tions and data from the lower-level mechanisms that per-
form demultiplexing and dispatching. The Reactor-based
logging facility contains no global variables. Instead, each
Logging Handler object registered with the Reactor
encapsulates the client address and the underlying I/O handle
used to communicate with clients.

By decoupling the policies and mechanisms, a number
of software quality factors are enhanced. For example, the
reusability and extensibility of system components was im-
proved, which simplified both the initial development effort
and subsequent modifications. Since the Reactor frame-
work performs all the lower-level event demultiplexing and
service dispatching, only a small amount of additional code is
required to implement the server logging daemon described
in Section 4.1. Moreover, the additional code is primar-
ily concerned with application processing activities (such
as accepting new connections and receiving client logging
records). In addition, templates help to localize application-
specific code to within a few, well-defined modules.

The separation of policies and mechanisms in the
Reactor’s architecture facilitates extensibility and porta-
bility both “above” and “below” its public interface. For
example, extending the server logging daemon’s function-
ality (e.g., adding an “authenticated logging” features) is
straight-forward. Such extensions simply inherit from the
ACE Event Handler base class and selectively imple-
ment the necessary virtual method(s). Likewise, by in-
stantiating the ACE Acceptor and ACE Svc Handler
templates, subsequent applications may be produced with-
out redeveloping existing infrastructure. On the other hand,
modifying the original non-object-oriented C version in this
manner, however, would require direct changes to the exist-
ing code.

It is also possible to modify the Reactor’s underlying
I/O demultiplexingmechanism without affecting existing ap-
plication code. For example, porting the Reactor-based
distributed logging facility from a BSD platform to a Sys-
tem V platform requires no visible changes to application
code. On the other hand, porting the original C version
of the distributed logging facility from sockets/select to
TLI/poll was tedious and time consuming. It also intro-
duced several subtle errors into the source code that did not
manifest themselves until run-time. Furthermore, in certain
communication-intensive applications, data is always avail-
able immediately on one or more handles. Therefore, polling
these handles via non-blocking I/O may be more efficient than
usingselect orpoll. As before, extending theReactor
to support this alternative demultiplexing implementationnot
modify its public interface.

4.4 C++ Language Impact

Several C++ language features are instrumental to both the
design of the Reactor and the distributed logging facility
that utilizes its functionality. For example, the data hid-
ing capabilities provided by C++ classes improves portabil-
ity by encapsulating and isolating the differences between
select and poll. Likewise, the technique of register-
ing C++ class objects (rather that stand-alone subroutines)
with the Reactor helps integrate application-specific con-
text information together with multiple method that access
this information. Parameterized types are useful for increas-
ing the reusability of the ACE Acceptor class by allow-
ing it to be instantiated with PEER HANDLERs other than
Logging Handler and PEER ACCEPTORs other than
ACE SOCK Acceptor. In addition, inheritance and dy-
namic binding facilitate transparent extensibility by allowing
developers to enhance the functionality of theReactor and
its associated applications without modifying existing code.

Dynamic binding is used extensively in the Reactor.
A previous C++ Report article on the IPC SAP wrapper
[8] discusses why avoiding dynamic binding is often advis-
able when designing “thin” C++ wrappers. In particular,
the overhead resulting from indirect virtual table dispatching
may discourage developers from using the more modular and
type-secure OO interfaces. However, unlike IPC SAP, the
Reactor framework provides more than just a thin OO ve-
neer around the underlying OS system calls. Therefore, the
significant increase in clarify, extensibility, and modularity
compensates for the slight decrease in efficiency. Moreover,
the Reactor is typically used to develop distributed sys-
tems. A careful examination of the major sources of over-
head in distributed systems reveals that most performance
bottlenecks result from activities such as caching, latency,
network/host interface hardware, presentation-level format-
ting, memory-to-memory copying, and process management
[12]. Therefore, the additional memory reference overhead
caused by dynamic binding is insignificant in comparison
[13].

To justify these claims empirically, an upcoming article
in the C++ Report will present the results of a benchmark-
ing experiment that measures the performance of IPC SAP
and the Reactor. These performance results are based
upon a distributed system benchmarking tool that measures
client/server performance in a distributed environment. This
tool also indicates the overhead of using C++ wrappers for
IPC mechanisms. In particular, there are two functionally
equivalent versions of the benchmarking tool: (1) an object-
oriented version that uses the IPC SAP and Reactor C++
wrappers and (2) a non-object-oriented version written in
C that uses the sockets, select, and poll system calls
directly. The experiment measures the performance of the
object-oriented implementation and the non-object-oriented
implementation in a controlled manner.
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5 Concluding Remarks

The Reactor is a object-oriented framework that simplifies
the development of concurrent, event-driven distributed sys-
tems by making it easier to write correct, compact, portable,
and efficient applications. It accomplishes this by encapsu-
lating existing operating system demultiplexing mechanisms
within an object-oriented C++ interface. In general, by sepa-
rating policies and mechanisms, theReactor supports reuse
of existing system components, improves portability, and
provides transparent extensibility.

One disadvantage with the Reactor-based approach is
that it is somewhat difficult at first to conceptualize where
an application’s main thread of control occurs. This is a
typical problem with event-loop-driven dispatchers such as
the Reactor or the higher-level X-windows toolkits. How-
ever, the confusion surrounding this “indirect event-callback”
dispatching model typically disappears quickly after writing
several applications that use this approach.

The source code and documentation for the Reactor
and IPC SAP C++ wrappers is available online at
http://www.cs.wustl.edu/�schmidt/ACE.html.
Also included with this release are a suite of test programs and
examples, as well as many other C++ wrappers that encap-
sulate named pipes, STREAM pipes, mmap, and the System
V IPC mechanisms (i.e., message queues, shared memory,
and semaphores). Upcoming articles in the C++ Report will
describe the design and implementation of these wrappers.
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