
Measuring the Performance of Communication
Middleware on High-Speed Networks

Aniruddha Gokhale and Douglas C. Schmidt

gokhale@cs.wustl.edu and schmidt@cs.wustl.edu
Department of Computer Science, Washington University

St. Louis, MO 63130, USA

An earlier version of this paper appeared in the Proceedings
of the SIGCOMM Conference, 1996, Stanford University,
August, 1996.

Abstract

Conventional implementations of communication middle-
ware (such as CORBA and traditional RPC toolkits) incur
considerable overhead when used for performance-sensitive
applications over high-speed networks. As gigabit networks
become pervasive, inefficient middleware will force program-
mers to use lower-level mechanisms to achieve the necessary
transfer rates. This is a serious problem for mission/life-
critical applications (such as satellite surveillance and med-
ical imaging).

This paper compares the performance of several widely
used communication middleware mechanisms on a high-
speed ATM network. The middleware ranged from lower-
level mechanisms (such as socket-based C interfaces and
C++ wrappers for sockets) to higher-level mechanisms (such
as RPC, hand-optimized RPC and two implementations of
CORBA – Orbix 2.0.1 and ORBeline 2.0). These measure-
ments reveal that the lower-level C and C++ implementa-
tions outperform the CORBA implementations significantly
(the best CORBA throughput for remote transfer was roughly
75 to 80 percent of the best C/C++ throughput for send-
ing scalar data types and only around 33 percent for send-
ing structs containing binary fields), and the hand-optimized
RPC code performs slightly better than the CORBA imple-
mentations. Our goal in precisely pinpointing the sources of
overhead for communication middleware is to develop scal-
able and flexible CORBA implementations that can deliver
gigabit data rates to applications.

Keywords: Communication middleware, distributed ob-
ject computing, CORBA, high-speed networks.

1 Introduction and Motivation

Despite dramatic increases in the performance of networks
and computers, designing and implementing flexible and ef-
ficient communication software remains hard. Substantial
time and effort has traditionally been required to develop

this type of software; yet all too frequently communication
software fails to achieve its performance and functionality re-
quirements. Communication middleware based on the Com-
mon Object Request Broker Architecture (CORBA) [13] is
a promising approach for improving the flexibility, reliabil-
ity, and portability of communication software. CORBA is
designed to enhance distributed applications by automating
common networking tasks such as object registration, loca-
tion, and activation; request demultiplexing; framing and
error-handling; parameter marshalling and demarshalling;
and operation dispatching.

Experience over the past several years [19] indicates
CORBA is well-suited for request/response applications over
lower-speed networks (such as Ethernet and Token Ring).
However, earlier studies [18, 23], and our results shown
in Section 3, demonstrate that conventional implementa-
tions of CORBA incur considerable overhead when used
for performance-sensitive applications over high-speed net-
works. As users and organizations migrate to networks with
gigabit data rates, the inefficiencies of current communi-
cation middleware (like CORBA) will force developers to
choose lower-level mechanisms (like sockets) to achieve the
necessary transfer rates. The use of low-level mechanisms
increases development effort and reduces system reliabil-
ity, flexibility, and reuse. This is a serious problem for
mission/life-critical applications (such as satellite surveil-
lance and medical imaging [3, 7]). Therefore, it is imperative
that performance of high-level, but inefficient, communica-
tion middleware be improved to match that of low-level, but
efficient, tools.

The primary contribution of this paper is to pinpoint pre-
cisely where the key sources of overhead exist in higher-level
communication middleware such as CORBA and RPC toolk-
its. Our findings indicate that this overhead stems from a vari-
ety of sources including (1) non-optimized presentation layer
conversions, data copying, and memory management; (2)
generation of non-word boundary aligned data structures by
the RPC and CORBA stub compilers; (3) excessive control
information carried in request messages; (4) inefficient and
inflexible receiver-side demultiplexing and dispatching op-
erations. (5) long chains of intra-ORB function calls, and (6)
lack of integration with underlying operating system mech-
anisms. Our goal in precisely pinpointing the sources of

1

CLIENTCLIENT
OBJECTOBJECT

IMPLEMENTATIONIMPLEMENTATION

DIIDII ORBORB
INTERFACEINTERFACE

OBJECTOBJECT

REQUEST BROKERREQUEST BROKER

op(args)op(args)

IDLIDL
STUBSSTUBS

OBJECTOBJECT

ADAPTERADAPTER

IDLIDL
SKELETONSKELETON

DSIDSI

Figure 1: Components in the CORBA Distributed Object
Computing Model

overhead for communication middleware is to develop scal-
able and flexible CORBA implementations that can deliver
gigabit data rates to applications [9].

The paper is organized as follows: Section 2 outlines the
CORBA communication middleware architecture; Section 3
demonstrates the key sources of overhead in conventional
CORBA implementations over ATM; Section 4 describes
related work; and Section 5 presents concluding remarks.

2 Overview of CORBA

CORBA is an open standard for distributedobject comput-
ing [13]. The CORBA standard defines a set of components
that allow client applications to invoke operations (op) with
arguments (args) on object implementations. Flexibility
is enhanced by using CORBA since the object implementa-
tions can be configured to run locally and/or remotely with-
out affecting their implementation or use. Figure 1 illustrates
the primary components in the CORBA architecture. The
responsibility of each component in CORBA is described
below:

� Object Implementation: This defines operations that
implement a CORBA IDL interface. Object implementations
can be written in a variety of languages including C, C++,
Java, Smalltalk, and Ada.

� Client: This is the program entity that invokes an op-
eration on an object implementation. Accessing the services
of a remote object should be transparent to the caller. Ide-
ally, it should be as simple as calling a method on an object,
i.e., obj� >op(args). The remaining components in
Figure 1 help to support this level of transparency.

� Object Request Broker (ORB): When a client in-
vokes an operation, the ORB is responsible for finding the
object implementation, transparently activating it if neces-
sary, delivering the request to the object, and returning any
response to the caller.

�ORB Interface: An ORB is a logical entity that may be
implemented in various ways (such as one or more processes
or a set of libraries). To decouple applications from imple-
mentation details, the CORBA specification defines an abstract
interface for an ORB. This interface provides various helper
functions such as converting object references to strings and
vice versa, and creating argument lists for requests made
through the dynamic invocation interface described below.

� CORBA IDL stubs and skeletons: CORBA IDL stubs
and skeletons serve as the “glue” between the client and
server applications, respectively, and the ORB. The transfor-
mation between CORBA IDL definitions and the target pro-
gramming language is automated by a CORBA IDL compiler.
The use of a compiler reduces the potential for inconsisten-
cies between client stubs and server skeletons and increases
opportunities for automated compiler optimizations.

� Dynamic Invocation Interface (DII): This interface
allows a client to directly access the underlying request mech-
anisms provided by an ORB. Applications use the DII to
dynamically issue requests to objects without requiring IDL

interface-specific stubs to be linked in. Unlike IDL stubs
(which only allow RPC-style requests), the DII also allows
clients to make non-blocking deferred synchronous (separate
send and receive operations) and oneway (send-only) calls.

�Dynamic Skeleton Interface (DSI): This is the server
side’s analogue to the client side’s DII. The DSI allows an
ORB to deliver requests to an object implementation that does
not have compile-time knowledge of the type of the object
it is implementing. The client making the request has no
idea whether the implementation is using the type-specific
IDL skeletons or is using the dynamic skeletons.

� Object Adapter: This assists the ORB with delivering
requests to the object and with activating the object. More
importantly, an object adapter associates object implemen-
tations with the ORB. Object adapters can be specialized
to provide support for certain object implementation styles
(such as OODB object adapters for persistence and library
object adapters for non-remote objects).

�Higher-level Object Services (not shown): These ser-
vices include the CORBA Object Services [12] such as the
Name service, Event service, Object Lifecycle service, and
the Trader service. There is currently no explicit support
for real-time guarantees in the CORBA 2.0 specification, al-
though there is a domain-specific Task Force in the OMG that
is focusing on specifying real-time CORBA.

The use of CORBA as communication middleware en-
hances application flexibility and portability by automating
many common development tasks such as object location,
parameter marshalling, and object activation. CORBA is an
improvement over conventional procedural RPC middleware
(such as OSF DCE and ONC RPC) since it supports object-
oriented language features (such as encapsulation, interface
inheritance, parameterized types, and exception handling)

2

and more flexible communication mechanisms (such as ob-
ject references that support peer-to-peer communication and
dynamic invocation capabilities). These features enable com-
plex distributed and concurrent applications to be developed
more rapidly and correctly.

As shown below, the primary drawback to using higher-
level middleware like CORBA is its poor performance over
high-speed networks. In general, existing implementations
of CORBA have not been optimized since performance has
not been a problem on low-speed networks. It is beyond
the scope of this paper to discuss limitations with CORBA
features (see [2] for a synopsis).

3 Experimental Results of CORBA
over ATM

This section describes our CORBA/ATM testbed and
presents the results of our performance experiments.

3.1 CORBA/ATM Testbed Environment

3.1.1 Hardware and Software Platforms

The experiments in this section were collected using a Bay
Networks LattisCell 10114 ATM switch connected to two
dual-processor SPARCstation 20 Model 712s runningSunOS
5.4. The LattisCell 10114 is a 16 Port, OC3 155 Mbs/port
switch. Each SPARCstation 20 contains two 70 MHz Su-
per SPARC CPUs with a 1 Megabyte cache per-CPU. The
SunOS 5.4 TCP/IP protocol stack is implemented using the
STREAMS communication framework [21]. Each SPARC-
station has 128 Mbytes of RAM and an ENI-155s-MF ATM
adaptor card, which supports 155 Megabits per-sec (Mbps)
SONET multimode fiber. The Maximum Transmission Unit
(MTU) on the ENI ATM adaptor is 9,180 bytes. Each ENI
card has 512 Kbytes of on-board memory. A maximum of
32 Kbytes is allotted per ATM virtual circuit connection for
receiving and transmitting frames (for a total of 64 K). This
allows up to eight switched virtual connections per card.

To approximate the performance of communication mid-
dleware for channel speeds greater than our available ATM
network, we also duplicated our experiments in a loopback
mode using the I/O backplane of a dual-CPU SPARCstation
20s as a high-speed “network.” The user-level memory-to-
memory bandwidth of our SPARCstation 20 model 712s was
measured at 1.4 Gbps, which is roughly comparable to an
OC24 gigabit ATM network [16].

3.1.2 Traffic Generators

Earlier studies [23, 18] tested the performance of “flooding
models” that transferred untyped bytestream data between
hosts using several implementations of CORBA and other
lower-level mechanisms like sockets. Untyped bytestream
traffic is representative of applications like bulk file trans-
fer and videoconferencing. Note, however, that bytestream

traffic does not adequately test the overhead of presentation
layer conversions since untyped data need not be marshalled
or demarshalled. Ironically, the implementations of CORBA
used in our tests perform marshalling and demarshalling even
for untyped octet data [23], which is further evidence that
CORBA implementations have not been optimized for high-
speed networks.

The experiments conducted for this paper extend our ear-
lier studies [23] by measuring the performance of sockets,
ACE C++ wrappers for sockets [22], standard- and hand-
optimized version of Sun’s Transport Independent RPC (TI-
RPC) [25], and two widely used implementations of CORBA
(Orbix 2.0 and ORBeline 2.0) to transfer both bytestream and
typed data between remote hosts over a high-speed ATM net-
work. The use of typed data is representative of applications
like electronic medical imaging [7, 3] and high-speed dis-
tributed databases (such as global change repositories [17]).
In addition, measuring typed data transfer reveals the over-
head of presentation layer conversions and data copying
for the various communication middleware mechanisms we
measured.

Traffic for the experiments was generated and consumed
by an extended version of the widely available TTCP protocol
benchmarking tool. We extended TTCP for use with C sock-
ets, C++ socket wrappers, TI-RPC, Orbix, and ORBeline.
Our TTCP tool measures end-to-end data transfer through-
put in Mbps from a transmitter process to a remote receiver
process across an ATM network or host loopback. The flow
of user data for each version of TTCP is uni-directional, with
the transmitter flooding the receiver with a user-specified
number of data buffers. Various sender and receiver param-
eters may be selected at run-time. These parameters include
the size of the socket transmit and receive queues, the number
of data buffers transmitted, the size of data buffers, and the
type of data in the buffers.

The following data types were used for all the tests:
scalars (short, char, long, octet, double) and a
C++ struct composed of all the scalars (BinStruct).
The CORBA implementation transferred the data types us-
ing IDL sequences, which are dynamically-sized arrays.
To compare CORBA with C and C++, we defined structs
in the same manner that the CORBA IDL compiler generated
sequences. Likewise, to compare CORBA with TI-RPC,
we generated structs using unbounded arrays defined in
the RPC language (RPCL). These definitions are shown in
the Appendix.

The C and C++ versions of TTCP were written using the
standard Internet family of macros that convert values be-
tween host and network byte order. These macros are imple-
mented as “no-ops” because the sender and receiver processes
both ran on SPARCs, which use big-endian network byte or-
der. Therefore, the C/C++ versions do not actually perform
any presentation layer conversions on the data. The CORBA
and the RPC versions of TTCP also omit these conversions
since they use the byte order macros, as well. However, the
CORBA and RPC implementations do not omit the overhead
of the no-op function calls, which has a non-trivial overhead

3

(shown in Section 3.2.2).

3.1.3 TTCP Parameter Settings

Existing studies [7, 11, 6, 23, 18] of transport protocol perfor-
mance over ATM demonstrate the impact of parameters such
as socket queue sizes and data buffer on performance. There-
fore, our TTCP benchmarks varied these two parameters for
each type of data as follows:

� Socket queue size: The sender and receiver socket
queue sizes used were 8 K and 64 K bytes (on SunOS 5.4
these are the default and maximum, respectively). These
parameters influence the size of the TCP segment window,
which has been shown to significantly impact CORBA-level
and TCP-level performance on high-speed networks [11, 23].
Since the performance of the 8 K socket queues was con-
sistently one-half to two-thirds slower than using the 64 K
queues, we omitted the 8 K results from the figures below.

�Data buffer size: Sender buffers were incremented by
powers of two, ranging from 1 K bytes to 128 K bytes. The
experiment was carried out ten times for each buffer size to
account for variations in ATM network traffic (which was
insignificant since the network was otherwise unused). The
average of the throughput results is reported in the figures
below.

3.2 Performance Results

The performance results from our experiments are reported
below. The throughput measurements for each of the six
versions of TTCP are presented first. Detailed profiling mea-
surements of presentation layer, data copying, demultiplex-
ing, and memory management overhead are presented in
Sections 3.2.2 and 3.2.3. The profile data was obtained using
theQuantify performance measurement tool. Quantify
analyzes performance bottlenecks and identifies sections of
code that dominate execution time. An important feature of
Quantify is its ability to report results without including
its own overhead, unlike traditional sampling-based profilers
like the UNIX gprof tool.

3.2.1 Throughput Measurements

Remote Transfer Results: Figures 2, 3, 6, 7, 8 and 9 de-
pict the throughput obtained for sending 64 MB data of var-
ious data types for each TTCP implementation over ATM.
These figures present the observed user-level throughput at
the sender for buffer sizes of 1 K, 2 K, 4 K, 8 K, 16 K, 32 K,
64 K and 128 K bytes using 64 KB sender and receiver socket
queues (the maximum possible on SunOS 5.4).1 This section
analyzes the overall trends of the throughput for each com-
munication middleware mechanism. Sections 3.2.2 and 3.2.3
use profiling output from Quantify to explain why perfor-
mance differences occur.

1Our tests revealed that the receiver-side throughput was approximately
the same as the sender-side. Therefore, we only show sender-side throughput
results.

0

20

40

60

80

0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t i

n
M

bp
s

Sender Buffer size in KBytes

C version performance

short(64K)
long(64K)

double(64K)
char(64K)
octet(64K)
struct(64K)

Figure 2: Performance of the C Version of TTCP

0

20

40

60

80

0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t i

n
M

bp
s

Sender Buffer size in KBytes

C++ version performance

short(64K)
long(64K)

double(64K)
char(64K)
octet(64K)
struct(64K)

Figure 3: Performance of the C++ Wrappers Version of TTCP

0

20

40

60

80

0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t i

n
M

bp
s

Sender Buffer size in KBytes

C version performance

short
long

double
char
octet
struct

Figure 4: Performance of the Modified C Version of TTCP

4

0

20

40

60

80

0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t i

n
M

bp
s

Sender Buffer size in KBytes

C++ version performance

short
long

double
char
octet
struct

Figure 5: Performance of the Modified C++ Version of TTCP

� C and C++ versions of TTCP: Figures 2 and 3 indi-
cate that the C and C++ versions both achieved a maximum
of 80 Mbps throughput for sender buffer sizes of 8 K and 16
K bytes. The similarity between the results indicates that the
performance penalty for using the higher-level C++ wrap-
pers is insignificant, compared with using C socket library
function calls directly.

As shown in the figures, the throughput increases steadily
from 1 K to 8 K buffer sizes. The reason for this is that as
the sender buffer size increases, the sender requires fewer
writes to transmit 64 MB of data. The throughput peaks
between the 8 K and 16 K buffer sizes and then gradually
decreases – leveling off at around 60 Mbps. This drop off
between 8 K and 16 K arises from the 9,180 MTU of the
ATM network. When sender buffer sizes exceed this amount,
fragmentation at the IP and ATM driver layers degrades per-
formance. As sender buffer sizes increase, fragmentation
becomes a dominant factor, yielding the performance curves
shown in Figures 2 and 3.

Close scrutiny of Figures 2 and 3 illustrate unusual behav-
ior for BinStructs when the sender buffers are 16 K and
64 K. In these cases throughput drops sharply. Analysis of
Quantify’s profile information for 64 K sender buffers
revealed that the writev system call is called 1,025 times,
accounting for 28,031 msec of the total execution time. In
contrast, in the best case (sending longs) the 1,025 calls to
writev accounted for only 9,087 msec of the total execution
time.

This aberrant behavior occurs since 64 K is not an inte-
gral multiple of the size of the C and C++ BinStruct data
type (which is 24 bytes). Therefore, the sender buffers were
slightly less than 64 K when written with the writev func-
tion. This minor difference apparently triggered interactions
between the SunOS 5.4 internal STREAMS buffering strat-
egy and the TCP sliding window protocol, which yielded
extremely low throughput. To work around this problem, we
defined a C/C++ union that ensures the size of the trans-

0

20

40

60

80

0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t i

n
M

bp
s

Sender Buffer size in KBytes

RPC version performance

short
long

double
char
octet
struct

Figure 6: Performance of the Standard RPC Version of TTCP

0

20

40

60

80

0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t i

n
M

bp
s

Sender Buffer size in KBytes

OPTRPC version performance

short
long

double
char
octet
struct

Figure 7: Performance of the Optimized RPC Version of
TTCP

mitted data is rounded up to the next power of 2 (in this case
32 bytes). This enabled TTCP to send 64 K bytes in a single
writev call and obtain throughput comparable to the other
data types. These new results are shown in figure 4 and 5.

�RPC version of TTCP: Figures 6 and 7 show the per-
formance of the original and hand-optimized RPC versions
of TTCP. The original stubs generated automatically by RPC-
GEN attained extremely low throughout(peaking at 29 Mbps
for doubles, which is only 35% of the throughput attained
by the C and C++ versions). Quantify analysis reveals
that this poor performance was due to excessive data copy-
ing and presentation layer conversions performed by XDR
(explained in Section 3.2.2).

To make the implementation comparable to the C/C++
TTCP implementations, we hand-optimized the RPC gener-
ated code for TTCP. For all the data types, the xdr bytes
function generated by RPCGEN was used to send/receive

5

0

20

40

60

80

0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t i

n
M

bp
s

Sender Buffer size in KBytes

ORBIX version performance

short
long

double
char
octet
struct

Figure 8: Performance of the Orbix Version of TTCP

0

20

40

60

80

0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t i

n
M

bp
s

Sender Buffer size in KBytes

ORBELINE version performance

short
long

double
char
octet
struct

Figure 9: Performance of the ORBeline Version of TTCP

data. This avoided the overhead of converting between the
native and XDR formats. This optimization was valid be-
cause the data was transferred between big-endian SPARC-
stations with the same alignment and word length.

The hand-optimized code improved the performance sig-
nificantly. Figure 7 illustrates the results are 79% of the C
and C++ performance. These results indicate that for sender
buffer sizes from 8 K to 128 K, the measured throughput was
roughly 59-63 Mbps. The throughput steadily increases until
the sender buffer size reaches 8 K. Beyond this point there
was only a marginal improvement in the throughput.

The shape of the optimized RPC performance curves result
from the 9,000 bytes data buffer sizes sent by the generated
RPC stubs. Analysis from Quantify and the SunOS5.4
system-call tracing command (truss) reveals that the RPC
sender-side stubs use 9,000 byte internal buffers to make the
writes. As a result, the performance attained for sender
buffer sizes from 8 K to 128 K show only a marginal im-

provement, which is attributed to the use of 64 K socket
queue sizes at the sender and receiver.

�CORBA versions of TTCP: Figures 8 and 9 illustrate
the throughput obtained for both CORBA implementations.
These figures indicate that the throughput steadily increases
until the sender buffers reach 32 K, at which point it peaks
at 65 Mbps for Orbix and 60 Mbps for ORBeline for sending
scalars. Beyond this point, performance gradually decreases.
This behavior differs from the C and C++ versions, which
peak at 8 K and 16 K. ORBeline performance falls off much
more quickly than Orbix performance. This effect is notice-
able for sender buffer size of 128 K in Figure 9.

Analysis using truss for 128 K sender buffer size re-
vealed that both the Orbix and the ORBeline versions try to
write the entire 128 K bytes plus some control information
(56 bytes for Orbix and 64 bytes for ORBeline). The Orbix
version uses the write system call, whereas the ORBeline
version uses the writev system call.

Analysis using Quantify indicated that to send 64 MB
user data using 128 K user buffer size, the Orbix version
attempted a total of 538 writes, which required 9,638
msec. In contrast, the ORBeline version made a total of 512
writevs, which required 20,319 msec to complete. This ex-
plains the lower throughput for the ORBeline client. The re-
ceiver performance in both cases is comparable. The truss
output for the Orbix and the ORBeline receiver shows that
the time spent by ORBeline in reads is marginally smaller
than that of the Orbix version, but this is offset by the 4,252
poll system calls made by ORBeline compared to only 539
made by the Orbix receiver.

For the 32 K data buffers, the performance of Orbix and
ORBeline is comparable with the 65-70 Mbps attained by
the C/C++ versions. Likewise, the optimized RPC version
achieved roughly the same throughput as the CORBA im-
plementations. However, both CORBA implementations
achieved approximately half the throughput for structs.
As shown in Section 3.2.2, this performance reduction occurs
from the high amount of presentation layer conversions and
data copying in Orbix and ORBeline. In addition, truss
revealed that both the CORBA implementations write buffers
containingonly 8 K when sendingstructs. In contrast, for
32 K data buffers, they sent scalars in buffers containing all
32 K data plus additional control information, as described
above. This behavior adds to the overhead imposed by data
copying and presentation layer conversions and greatly re-
duces throughput.

Loopback Results: Figures 10, 11, 12, 13, 14 and 15 de-
pict the throughput obtained by replicating the TTCP tests
described above through the SPARCstation loopback device.
Measuring loopback behavior approximates the performance
of communication middleware for channel speeds greater
than our 155 Mbps ATM network.

� C/C++ Results: The results indicate that for C/C++
versions of TTCP, the throughput starts leveling off around
8 K sender buffer size at roughly 190-197 Mbps. Due to

6

0

50

100

150

200

0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t i

n
M

bp
s

Sender Buffer size in KBytes

C version performance

short
long

double
char
octet
struct

Figure 10: Performance of the C Loopback Version of TTCP

0

50

100

150

200

0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t i

n
M

bp
s

Sender Buffer size in KBytes

C++ version performance

short
long

double
char
octet
struct

Figure 11: Performance of the C++ Wrappers Loopback
Version of TTCP

0

50

100

150

200

0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t i

n
M

bp
s

Sender Buffer size in KBytes

RPC version performance

short
long

double
char
octet
struct

Figure 12: Performance of the Standard RPC Loopback Ver-
sion of TTCP

0

50

100

150

200

0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t i

n
M

bp
s

Sender Buffer size in KBytes

OPTRPC version performance

short
long

double
char
octet
struct

Figure 13: Performance of the Optimized RPC Loopback
Version of TTCP

0

50

100

150

200

0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t i

n
M

bp
s

Sender Buffer size in KBytes

ORBIX version performance

short
long

double
char
octet
struct

Figure 14: Performance of the Orbix Loopback Version of
TTCP

the implementation of the loopback device in SunOS 5.4,
throughputwas not affected as significantly by fragmentation
overhead compared with the ATM results shown in Figures 2
and 3.

� RPC Results: The original RPC version did not show
any significant change over the remote transfer results. The
optimized RPC version of TTCP exhibited behavior similar
to C/C++ over the loopback, leveling off at around 110-115
Mbps. This behavior is attributed to the smaller internal
buffer size 2 RPC uses to write data on the sender-side and
read on the receiver-side. This smaller size increases the
number of times these functions are invoked.

2As explained earlier, the RPC version used an internal buffer of roughly
9,000 bytes for writing and reading. In contrast, the C/C++ versions used a
64 KB read buffer and sends are done according to the size of buffers passed
by the client.

7

0

50

100

150

200

0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t i

n
M

bp
s

Sender Buffer size in KBytes

ORBELINE version performance

short
long

double
char
octet
struct

Figure 15: Performance of the ORBeline Loopback Version
of TTCP

�CORBA Results: The Orbix version of TTCP behaves
like the optimized RPC for all scalar data types. The ORBe-
line version shows a gradual increase in throughput, which
peaks at around 197 Mbps for a sender buffer size of 128
K which is close to the C/C++ version performance for the
loopback case. Analysis using Quantify for 128 K sender
buffers reveals that both Orbix and ORBeline senders and re-
ceivers spend approximately equal amount of time inwrites
and reads. However, the Orbix version spends around 896
msec in memcpy on both the sender and receiver side com-
pared to only 1.51 msec for ORBeline sender and 15.51 msec
for ORBeline receiver.

This explains why the ORBeline throughput for loopback
is higher than the Orbix throughput with increasing buffer
size. However, both the Orbix and ORBeline still perform
poorly forstructsbecause they spend a significant amount
of time performing presentation layer conversions and data
copying. Although ORBeline provides an option of using
shared memory, we did not use this option since our goal
was to measure throughput over the “network” and not the
memory speed.

In general, the highest throughput for Orbix is approxi-
mately 75-80% that of the C/C++ versions for remote trans-
fers and around 68% for the loopback test. The difference in
the throughputs is most apparent for structs. In this case,
the throughput for both the Orbix and ORBeline versions is
roughly 33% of the C/C++ version for remote transfers and
16% for the loopback tests.

These findings illustrate that as channel speeds increase,
the performance of the CORBA implementations become
worse relative to that achieved by low-level communication
middleware since the overhead of presentation layer conver-
sions and data copying become increasingly dominant. Thus,
it is imperative to eliminate this overhead so that CORBA can
be used effectively to build flexible and reliable middleware
capable of delivering very high data rates to applications.

TTCP Remote Transfer Loopback
version Scalars Struct Scalars Struct

Hi Lo Hi Lo Hi Lo Hi Lo
C/C++ 80 25 80 25 197 47 190 47
Orbix 65 15 27 11 123 14 32 10

ORBeline 61 12 23 9 197 11 27 7
RPC 30 4 25 14 33 5 27 18

optRPC 63 20 63 20 121 38 116 38

Table 1: Summary of Observed Throughput for Remote and
Loopback Tests in Mbps

TTCP Data Analysis
Version Type Method Name msec %
C/C++ struct writev 9,415 98
RPC char write 283,350 89

xdr char 17,000 5
short write 134,855 90
long write 71,600 92
double write 37,877 87

xdr double 2,348 5
struct write 80,517 92

optRPC struct write 4,262 80
memcpy 896 17

Orbix char write 9,638 89
memcpy 895 8

struct write 26,366 68
NullCoder::codeLongArray 1,162 3
BinStruct::encodeOp 952 2
CHECK 932 2
Request::encodeLongArray 812 2
Request::insertOctet 782 2
Request::op<<(double&) 838 2
Request::op<<(short&) 782 2
Request::op<<(long&) 782 2
Request::op<<(char&) 782 2

ORBeline char writev 20,319 99
struct writev 82,794 84

op<<(NCostream&,BinStruct&) 3,831 4
memcpy 3,594 4
PMCIIOPStream::put 951 1
PMCIIOPStream::op<<(double) 978 1
PMCIIOPStream::op<<(long) 950 1

Table 2: Sender-side Overhead

The results for the remote and loopback tests for all ver-
sions of TTCP are summarized in Table1. This table depicts
the highest and the lowest throughput attained by each ver-
sion of TTCP for all the scalars and structs. In addition,
we combine results for the C and C++ versions of TTCP
since their performance is similar. All entries are in Mbps
rounded up to the nearest integer.

3.2.2 Presentation Layer and Data Copying Overhead

Section 3.2.2 presented the “blackbox” performance re-
sults. This section presents the “whitebox” performance re-
sults. Table 2 and 3 depict the time spent by the senders and
receivers of various versions of TTCP when transferring 64
Mbytes of sequences using 128 K sender and receiver buffers
and 64 K socket queues. For each version, an analysis for
a specific data type is presented if it resulted in throughput
that differs from that of the rest of the data types. Otherwise,
an analysis for a representative data type is presented (e.g.,
BinStruct).

For Orbix and ORBeline, structs resulted in through-

8

put that differed significantly from the throughput for the
rest of the data types. Therefore, we present analysis for
struct and char, which are representative data types. In
the tables, the % column shows the percentage of the total
execution time attributed to the corresponding function under
the Method Name column. The time spent in milliseconds
by this method is indicated in the msec column. This fine-
grained profiling information reveals precisely why the C
and C++ implementations outperform the RPC and CORBA
implementations.

Sender-side Overhead: The overhead for the sender-side
presentation layer and data copying is presented below for
each version of the TTCP benchmarks.

� C/C++ Overhead: The C and C++ versions of TTCP
spent over 98% of their run-time making writev system
calls. In this case, there is no presentation layer conversion
overhead. As explained earlier, the standard Internet family
of macros that convert values between host and network byte
order are implemented as “no-ops.”

� RPC Overhead: The RPC version of TTCP spends
different amounts of time writing various data types. For in-
stance, to writechars, the RPC version takes 283,330 msec
compared to 71,600 msec for writing longs. The reason
for this behavior is due to the RPC XDR mapping, which
converts a single byte char into a four byte data representa-
tion before it is sent over the network. The hand-optimized
version of RPC considers all data types as opaque, which
avoids the XDR mapping for each data type. The hand-
optimized RPC version of TTCP is also largely write
bound, though it spends about 17% of its time perform-
ing data copies with memcpy. The significant amount of
memcpys is due to the XDR routine xdrrec putbytes
being called many times on the sender-side. The user buffer
is copied into an internal buffer, which is then sent over the
network.

� CORBA Overhead: The sender-side of the Orbix
version of TTCP that transmitted BinStructs spent a
significant amount of time marshalling the BinStruct
fields. For 64 MB of data and a sender buffer of 128
KB, the client invokes the sendBinStruct method 512
times. This method invokes the IDL compiler generated
IDL SEQUENCE BinStruct ::encodeOp method.

Since a BinStruct is 32 bytes, each sender buffer of
size 128 KB can accommodate 4,096 structs. For each
struct, the Orbix version marshalled each field using
CORBA::Requestmethods like ::encodeLongArray
and ::operator<< (const long&). Each of these
marshalling routines was invoked for the 4,096 structs in a
single buffer for 512 iterations, yielding a total of 2,097,152
invocations! Moreover, each of these calls are C++ virtual
function, which incur still more levels of indirection.

Analysis using Quantify revealed that
for BinStructs, the Orbix sender spent around 68% of

TTCP Data Analysis
Version Type Method Name msec %
C/C++ struct read 7,199 75

readv 2,374 24
RPC char xdr char 30,422 44

xdrrec getlong 16,998 24
xdr array 14,317 20
getmsg 5,977 8

short xdr short 11,184 36
xdrrec getlong 8,499 27
xdr array 7,158 23
getmsg 2,969 9

long xdr long 4,697 31
xdrrec getlong 4,250 28
xdr array 3,579 23
getmsg 1,639 10

double xdr double 3,467 29
xdrrec getlong 4,250 35
xdr array 1,790 15
getmsg 1,562 13

struct xdrrec getlong 4,250 26
xdr BinStruct 2,684 16
getmsg 1,518 9
xdr char 1,267 7
xdr uchar 1,267 7
xdr double 1,155 7

optRPC struct getmsg 2,229 67
memcpy 897 27

Orbix char read 7,915 85
memcpy 896 9

struct read 4,280 26
NullCoder::codeLongArray 1,314 8
CHECK 923 5
BinStruct::decodeOp 923 5
Request::extractOctet 699 4
Request::op>>(double&) 699 4
Request::op>>(short&) 699 4
Request::op>>(long&) 699 4
Request::op>>(char&) 699 4
memcpy 672 4

ORBeline char read 3,041 85
struct memcpy 3,581 19

read 3,533 18
op>>(NCistream&,BinStruct&) 3,495 18
PMCIIOPStream::get 1,121 5
PMCIIOPStream::op>>(double) 1,118 5
PMCIIOPStream::op>>(long) 1,118 5

Table 3: Receiver-side Overhead

its time (26,366 msec) in writes, 1.71% (671 msec) do-
ing memcpys and over 18% time marshalling the structure.
Likewise, the ORBeline sender spent around 84% of the
time (82,724 msec) in writevs, with approximately 4% in
memcpy and 10% marshalling the structure.

Receiver-side Overhead: Our benchmarks found the
receiver-side tests performed similar to the sender-side tests.

� C/C++ Overhead: The C and C++ versions spent the
bulk of their time in read and readv. The C and C++ ver-
sions on the receiver side used readv to read the length,
type and buffer fields of the structures, thereby avoiding
an intermediate copy. If the buffer is not completely received
by readv, subsequent reads fill in the rest of the buffer.

� RPC Overhead: The receiver side analysis for the
RPC version of TTCP shows that the RPC code spent a signif-
icant amount of time demarshalling various data types from
the XDR network representation to the native host format.
For instance, to demarshall the chars using xdr char
takes 30,422 msec. In contrast, to demarshall longs takes

9

only 4,697 msec. As explained earlier, the hand-optimized
RPC version eliminates this marshalling overhead by treating
the data types as opaque.

The hand-optimized RPC version spent a significant
amount of time doing getmsg, which stems from the use
of the System V STREAMS in Sun’s TI-RPC. Similar to the
sender-side results in Table 2, the receiver-side RPC imple-
mentation spends about one-third of its time performing data
copying. The time spent in memcpy is due to a large number
of calls to an internal function called get input bytes,
which in turn is invoked byxdrrec getbytes. The buffer
received through calls to t rcv is copied into another buffer,
which is subsequently passed to the user application. The
contribution of these functions to the total execution time is
insignificant, so their results are omitted from the table.

� CORBA Overhead: The results for Orbix indi-
cate that a considerable amount of time was spent de-
marshalling each field of the structs that were received.
This task was performed by a number of overloaded
operator>> methods of the CORBA::Request class
e.g., CORBA::Request::operator>>(double &)
to demarshall double types. The Quantify analysis
of ORBeline’s server-side to receive structs reveals that
around 19% of the time was spent in memcpy, 18% in
reads, and a large percent of its time in demarshalling
the BinStructs.

The analysis of the performance of the CORBA versions
suggests that presentation layer conversions and data copying
are the primary areas that must be optimized to achieve higher
throughputs.

3.2.3 Demultiplexing Overhead

CORBA Demultiplexing Overview: A CORBA request
message contains the identity of its remote object implemen-
tation and its intended remote operation. The remote object
implementation is identified by a marker name in the ob-
ject reference and the operation is typically represented as a
string or binary value. An ORB’s Object Adapter is responsi-
ble for demultiplexing the request message to the appropriate
method of the object implementation.

The type of demultiplexing scheme used by an ORB can
impact performance significantly. Most ORBs (including
ORBeline and Orbix) perform CORBA request demultiplex-
ing in the following two steps:

1. Object Adapter to IDL Skeleton – The ORB uses the
object reference in the request to locate the appropriate
object implementation and associated IDL skeleton;

2. IDL Skeleton to Implementation Method – The IDL
skeleton locates the appropriate method and performs
an upcall, passing along the parameters in the request.

Performing two demultiplexing steps can be expensive, par-
ticularly when a large number of operations appear in an IDL
interface.

Function Name Time in msec for Iterations
1 100 500 1,000

strcmp 3.89 376 1,882 3,764
large dispatch 1.34 134 670 1,341
ContextClassS::continueDispatch 0.52 52 259 519
ContextClassS::dispatch 0.55 54 270 540
FRRInterface::dispatch 0.44 44 219 439

Total 6.74 660 3,300 6,603

Table 4: Server-side Demultiplexing Overhead in Orbix

CORBA Demultiplexing Overhead: To determine the
cost of demultiplexing, we measured the server side request
demultiplexing overhead for both versions of CORBA. We
defined an interface with a large number of methods (100
were used in this experiment). The method names were all
unique. Four sets of results were obtained by running the
client for 1, 100, 500 and 1,000 iterations. In each iteration,
the client invoked the final method defined by the interface
one hundred times, which evokes the worst-case behavior for
Orbix because it uses linear search.

The results for Orbix are shown in Table 4.3 In Or-
bix, the server executes an impl is ready function
and waits for an event to occur. Whenever a request
arrives, the server processes the event and invokes the
MsgDispatcher::dispatchmethod. This method de-
multiplexes the request to the appropriate object implemen-
tation by calling the chain of dispatch methods shown in the
Table.

The Orbix method large dispatch inspects the oper-
ation name field of the arriving request. It makes a string
comparison with each entry in the table of implementation
methods stored in the IDL skeleton of the target object. The
demultiplexing is based on the outcome of these string com-
parisons. Since the client test always sends the final method
defined by the interface, the server side dispatching mech-
anism performs 100 string comparisons before it demulti-
plexes the incoming request. For a large interface, demulti-
plexing based on linear search is a significant bottleneck. In
addition, passing operation names as strings in every request
increases the control information, which effectively reduces
throughput.

Optimizing CORBA Demultiplexing: A better demulti-
plexing scheme would use hashing or direct indexing to re-
duce the overhead from demultiplexing. This reduces the
control information overhead and use more efficient numeric
comparisons, rather than string comparisons. To illustrate
the benefits of these optimizations, we modified the CORBA
stubs and skeletons by assigning unique values to each of
the methods defined by our IDL test interface. In the re-
quest message, this unique number was passed as a string
in place of the entire operation name. On the receiving
side, the dispatcher performs an atoi to retrieve the num-

3The function names appearing in the figure contribute to the incoming
request demultiplexing and dispatching processing.

10

Function Name Time in msec for Iterations
1 100 500 1,000

atoi 0.04 4 22 44
large dispatch 0.52 52 260 520
ContextClassS::continueDispatch 0.52 52 259 519
ContextClassS::dispatch 0.55 54 270 540
FRRInterface::dispatch 0.44 44 219 439

Total 2.07 206 1,030 2,062

Table 5: Optimized Server-side Demultiplexing in Orbix

Function Name Time in msec for Iterations
1 100 500 1,000

PMCSkelInfo::execute 0.08 6 32 64
PMCBOAClient::request 0.51 51 253 507
PMCBOAClient::processMessage 0.48 47 235 471
PMCBOAClient::inputReady 0.43 42 209 417
dpDispatcher::notify 0.70 65 325 651
dpDispatcher::dispatch 0.43 40 201 401

Total 2.63 251 1,255 2,511

Table 6: Server-side Demultiplexing Overhead in ORBeline

ber in numeric form. A direct indexing scheme based on
a switch statement then performs a numeric comparison,
which significantly improves demultiplexingperformance by
roughly 70%. The improvements obtained by this approach
are shown in Table 5.

The ORBeline IDL compiler generated code uses inline
hashing for server side demultiplexing of incoming requests.
Table 6 shows the time spent by various functions contribut-
ing to the demultiplexing process. The server executes an
impl is ready and waits for requests to arrive. As soon
as a request arrives, this method invokes the dispatch
method of the dpDispatcher class. This results in a
chain of function calls shown in the table. Finally, the
PMCSkelInfo::execute method invokes the appropri-
ate method in the skeleton, which invokes the actual method
in the object implementation.

Likewise, ORBeline passes method names in the requests
along with other control information. To reduce the control
information overhead, we used a similar optimization as in
the case of Orbix, where all method names were assigned
unique numeric values and these were passed as strings in
the outgoing request message.4

4The optimized version of ORBeline performed slightly better than the
original and hence results for the demultiplexing overhead are omitted for
the optimized case.

Version Iterations
1 100 500 1,000

Original Orbix 0.27 25.99 130.57 263.70
Optimized Orbix 0.25 25.47 127.46 255.65
Original ORBeline 0.22 21.10 105.94 212.89
Optimized ORBeline 0.20 20.81 104.32 210.07

Table 7: Client-side Latency (in Seconds) for Sending 100
Requests per Iteration

Version Iterations
1 100 500 1,000

Orbix 6.56 2.0 2.38 3.05
ORBeline 9.09 1.37 1.53 1.32

Table 8: Percentage Improvement in Client-Side Latency for
Sending 100 Requests per Iteration

Version Iterations
1 100 500 1,000

Original Orbix 0.054 6.8 42.03 85.92
Optimized Orbix 0.049 4.86 36.94 76.94

Table 9: Client-side Latency (in Seconds) for Sending 100
Requests per Iteration using Oneway Methods

Table 7 shows the time the client required to invoke the
final method defined by the interface for the Orbix IDL
compiler-generated code, the optimized Orbix code, the OR-
Beline IDL generated code and the optimized ORBeline code.
Table 8 shows the percentage improvement in latency due to
optimizations for both the versions of CORBA. The table
entries for the two versions of Orbix indicate that as the
number of method invocations increases, the original Orbix
code performs poorly, compared with the optimized code.
For instance, with 1,000 iterations the latency for the opti-
mized Orbix code was 255.65 seconds compared to 263.7
seconds for the original Orbix code. Because ORBeline uses
inline hashing for server side request demultiplexing, it out-
performs Orbix roughly 18-20%. The optimizations used
with ORBeline reduced the amount of control information
sent over the network, but it did not change the demulti-
plexing strategy used by the receiver. As a result, there was
marginal improvement in the optimized ORBeline receiver’s
performance.

We performed the same experiment with Orbix using
oneway methods in the interface definition. Table 9 shows
the time the client required to invoke the final method de-
fined by the interface for the Orbix IDL compiler generated
code and the optimized Orbix code. Table 10 shows the per-
centage improvement in client-side latency for the oneway
case. These tables indicate that improvement in latency for
the oneway case due to optimizations was roughly 10%
compared to only 3% for the two-way case. Since opti-
mizations in ORBeline showed only marginal improvements
in latency in the two-way case, we did not perform the
oneway experiment for ORBeline.

4 Related Work

Existing research in gigabit networking has focused exten-
sively on enhancements to TCP/IP. None of the systems de-
scribed below are explicitly targeted for the requirements
and constraints of communication middleware like CORBA.
In particular, less attention has been paid to integrating the

11

Version Iterations
1 100 500 1,000

Orbix 9.25 28.52 12.11 10.45

Table 10: Percentage Improvement in Client-Side Latency
for Sending 100 Requests per Iteration using Oneway Meth-
ods

following topics related to communication middleware:

4.1 Transport Protocol Performance over
ATM Networks

[7, 11, 6] present results on performance of TCP/IP (and
UDP/IP [6]) on ATM networks by varying a number of pa-
rameters (such as TCP window size, socket queue size, and
user data size). This work indicates that in addition to the
host architecture and host network interface, parameters con-
figurable in software (like TCP window size, socket queue
size and user data size) significantly affect TCP throughput.
[6] also shows that UDP performs better than TCP over ATM
networks, which is attributed to redundant TCP processing
overhead on highly-reliable ATM links.

A comparison of our current results for typed data with
other work using untyped data in a similar CORBA/ATM
testbed [23] reveal that the low-level C socket version and the
C++ socket wrapper versions of TTCP are roughly equivalent
for a given socket queue size. Likewise, the performance of
Orbix for sequences of scalar data types is almost the same
as that reported for untyped data sequences. However, the
performance of transferring sequences of CORBAstructs
for 64 K and 8 K was much worse than those for the scalars.
As discussed in Section 3.2.2, this overhead arises from the
amount of time the CORBA implementations spend perform-
ing presentation layer conversions and data copying.

4.2 Presentation Layer and Data Copying

The presentation layer is a major bottleneck in high-
performance communication subsystems [5]. This layer
transforms typed data objects from higher-level represen-
tations to lower-level representations (marshalling) and vice
versa (demarshalling). In both RPC toolkits and CORBA,
this transformation process is performed by client-side stubs
and server-side skeletons that are generated by interface def-
inition language (IDL) compilers. IDL compilers translate
interfaces written in an IDL (such as Sun RPC XDR [24],
DCE NDR, or CORBA CDR [13]) to other forms such as a
network wire format. A significant amount of research has
been devoted to developing efficient stub generators. We cite
a few of these and classify them as below.

�Annotating high level programming languages: The
Universal Stub Compiler (USC) [14] annotates the C pro-
gramming language with layouts of various data types. The

USC stub compiler supports the automatic generation of de-
vice and protocol header marshalling code. The USC tool
generates optimized C code that automatically aligns data
structures and performs network/host byte order conversions.

� Generating code based on Control Flow Analysis of
interface specification: [10] describes a technique of ex-
ploitingapplication-specific knowledge contained in the type
specifications of an application to generate optimized mar-
shalling code. This work tries to achieve an optimal trade-
off between interpreted code (which is slow but compact in
size) and compiled code (which is fast but larger in size).
A frequency-based ranking of application data types is used
to decide between interpreted and compiled code for each
data type. Our implementations of the stub compiler will be
designed to adapt according to the runtime access character-
istics of various data types and methods. The runtime usage
of a given data type or method can be used to dynamically
link in either the compiled or the interpreted version. Dy-
namic linking has been shown to be useful for mid-stream
adaptation of protocol implementations [20].

� Using high level programming languages for dis-
tributed applications: [15] describes a stub compiler for
the C++ language. This stub compiler does not need an
auxiliary interface definition language. Instead, it uses the
operator overloading feature of C++ to enable parameter mar-
shalling. This approach enables distributed applications to
be constructed in a straightforward manner. A drawback
of using a programming language like C++ is that it allows
programmers to use constructs (such as references or point-
ers) that do not have any meaning on the remote side. In-
stead, IDLs are more restrictive and disallow such constructs.
CORBA IDL has the added advantage that it resembles C++
in many respects and a well-defined mapping from the IDL
to C++ has been standardized.

4.3 ApplicationLevel Framing and Integrated
Layer Processing on Communication Sub-
systems

Conventional layered protocol stacks lack the flexibility and
efficiency required to meet the quality of service require-
ments of diverse applications running over high speed net-
works. A remedy for this problem is to use Application Level
Framing (ALF) [5, 4, 8] and Integrated Layer Processing
(ILP) [5, 1, 20]. ALF ensures that lower layer protocols deal
with data in units specified by the application. ILP provides
the implementor with the option of performing all data ma-
nipulations in one or two integrated processing loops, rather
than manipulating the data sequentially.

5 Concluding Remarks

An important class of applications require high-performance
communication. Performance-sensitive applications (such as

12

medical imaging or teleconferencing) are not supported ef-
ficiently by contemporary CORBA implementations due to
presentation layer conversions, data copying, demultiplex-
ing, and memory management overhead. On low-speed net-
works this overhead is often masked. On high-speed net-
works, this overhead becomes a significant factor limiting
communication performance and ultimately limiting adop-
tion by developers.

In general, the CORBA implementations measured in this
paper attain lower throughput than the C, C++ wrapper, and
hand-optimized RPC versions of TTCP over ATM. On av-
erage, the CORBA performance averaged 75-80% the level
of the C/C++ versions for remote transfers of scalars and
averaged 33% for structs containing binary data. For the
loopback tests, the ORBeline version performed as well as the
C/C++ versions for scalar data types at higher sender buffer
sizes (e.g., for 128 K sender buffer, the ORBeline throughput
for sending doubles was around 196 Mbps which is com-
parable to the throughput obtained for the C/C++ versions).
The Orbix version did not perform as well as the ORBe-
line version for transferring scalars (e.g., the Orbix version
performed roughly 65-68% as well as the C/C++ versions).
Both CORBA implementations performed poorly compared
to the C/C++ versions when transferring structs contain-
ing binary fields. For this type of data Orbix and ORBeline
performed roughly 16% as well as the C/C++ versions.

The CORBA implementations performed worst when
sending complex typed data (structs) because of exces-
sive copying and marshalling/demarshalling overhead and
excessive writes resulting from small size write-buffers. The
loopback tests provide a means for testing the performance
of CORBA and low-level implementations at higher network
speeds. From the loopback results, we conclude that with in-
creasing network speeds, the performance of the CORBA im-
plementations actually becomes worse compared with low-
level communication middleware like sockets when mar-
shalling of data is involved. The results in this paper indicate
that efficient optimizations need to be applied to the CORBA
client-side stubs and server-side skeletons to reduce the mar-
shalling, data copying and request demultiplexing overhead.

We contend that advances in communication middleware
like CORBA can be achieved only by simultaneously inte-
grating techniques and tools that simplify application devel-
opment, optimize application performance, and systemati-
cally measure application behavior in order to pinpoint and
alleviate performance bottlenecks. Our work is motivated by
an increasing demand for efficient and flexible communica-
tion software to support next-generation multimedia applica-
tions and to leverage emerging high-speed networking tech-
nology. We plan to enhance previously described ideas and
propose newer schemes for efficient object-to-object com-
munication.

The source code for the various tests performed in this
paper is available through the ACE [22] software distribution
at http://www.cs.wustl.edu/�schmidt.

Acknowledgments

We would like to thank the anonymous reviewers and also Bill
Janssen, Karl McCabe and Alan Ewald for their suggestions
in improving the paper. We would also like to thank IONA
and PostModern Computing for their help in supplying the
CORBA implementations used for these tests. Both com-
panies are currently working to eliminate the performance
overhead described in this paper. We expect their forthcom-
ing releases to perform much better over high-speed ATM
networks.

References

[1] M. Abbott and L. Peterson. Increasing Network Throughput
by Integrating Protocol Layers. ACM Transactions on Net-
working, 1(5), October 1993.

[2] Kenneth Birman and Robbert van Renesse. RPC Consid-
ered Inadequate. In Reliable Distributed Computing with the
Isis Toolkit, pages 68–78. IEEE Computer Society Press, Los
Alamitos, 1994.

[3] G.J Blaine, M.E. Boyd, and S.M. Crider. Project Spectrum:
Scalable Bandwidth for the BJC Health System. HIMSS,
Health Care Communications, pages 71–81, 1994.

[4] Isabelle Chrisment. Impact of ALF on Communication Sub-
systems Design and Performance. In First International
Workshop on High Performance Protocol Architectures, HIP-
PARCH ’94, Sophia Antipolis, France, December 1994. IN-
RIA France.

[5] David D. Clark and David L. Tennenhouse. Architectural
Considerations for a New Generation of Protocols. In Pro-
ceedings of the Symposium on Communications Architectures
and Protocols (SIGCOMM), pages 200–208,Philadelphia,PA,
September 1990. ACM.

[6] Sudheer Dharnikota, Kurt Maly, and C. M. Overstreet.
Performance Evaluation of TCP(UDP)/IP over ATM net-
works. Department of Computer Science, Technical Report
CSTR 94 23, Old Dominion University, September 1994.

[7] Minh DoVan, Louis Humphrey, Geri Cox, and Carl Ravin.
Initial Experience with Asynchronous Transfer Mode for Use
in a Medical Imaging Network. Journal of Digital Imaging,
8(1):43–48, February 1995.

[8] Atanu Ghosh, Jon Crowcroft, Michael Fry, and Mark Hand-
ley. Integrated Layer Video Decoding and Application Layer
Framed Secure Login: General Lessons from Two or Three
Very Different Applications. In First International Workshop
on High Performance Protocol Architectures,HIPPARCH ’94,
Sophia Antipolis, France, December 1994. INRIA France.

[9] Aniruddha Gokhale, Tim Harrison, Douglas C. Schmidt,
and Guru Parulkar. Operating System Support for High-
Performance, Real-time CORBA. In Proceedings of the 5th

International Workshop on Object-Orientation in Operating
Systems, October 1996.

[10] Phillip Hoschka and Christian Huitema. Automatic Genera-
tion of Optimized Code for Marshalling Routines. In IFIP
Conference of Upper Layer Protocols, Architectures and Ap-
plications ULPAA’94, Barcelona, Spain, 1994. IFIP.

13

[11] K. Modeklev, E. Klovning, and O. Kure. TCP/IP Behavior in
a High-Speed Local ATM Network Environment. In Proceed-
ings of the 19th Conference on Local Computer Networks,
pages 176–185, Minneapolis, MN, October 1994. IEEE.

[12] Object Management Group. CORBAServices: Common Ob-
ject Services Specification, Revised Edition, 95-3-31 edition,
March 1995.

[13] Object Management Group. The Common Object Request
Broker: Architectureand Specification, 2.0 edition, July 1995.

[14] Sean W. O’Malley, Todd A. Proebsting, and Allen B. Montz.
USC: A Universal Stub Compiler. In Proceedings of the Sym-
posium on CommunicationsArchitecturesand Protocols (SIG-
COMM), London, UK, August 1994.

[15] Graham Parrington. A Stub Generation System for C++. Com-
puting Systems, 8(2):135–170, Spring 1995.

[16] Guru Parulkar, Douglas C. Schmidt, and Jonathan S. Turner.
aItPm: a Strategy for Integrating IP with ATM. In Proceed-
ings of the Symposium on Communications Architectures and
Protocols (SIGCOMM). ACM, September 1995.

[17] Joseph C. Pasquale, Eric W. Anderson, Kevin R. Fall, and
Jonathan S. Kay. High-performance I/O and Networking Soft-
ware in Sequoia 2000. Digital Technical Journal, 7(3), 1995.

[18] Irfan Pyarali, Timothy H. Harrison, and Douglas C. Schmidt.
Design and Performance of an Object-Oriented Framework for
High-Performance Electronic Medical Imaging. In Proceed-
ings of the 2nd Conference on Object-Oriented Technologies
and Systems, Toronto, Canada, June 1996. USENIX.

[19] Sanjay Radia, Graham Hamilton, Peter Kessler, and Michael
Powell. The Spring Object Model. In Proceedings of the
Conference on Object-Oriented Technologies, Monterey, CA,
June 1995. USENIX.

[20] Antony Richards, Ranil De Silva, Anne Fladenmuller, Aruna
Seneviratne, and Michael Fry. The Application of ILP/ALF
to Configurable Protocols. In First International Workshop on
High Performance Protocol Architectures, HIPPARCH ’94,
Sophia Antipolis, France, December 1994. INRIA France.

[21] Dennis Ritchie. A Stream Input–Output System. AT&T Bell
Labs Technical Journal, 63(8):311–324, October 1984.

[22] Douglas C. Schmidt. ACE: an Object-Oriented Framework for
Developing Distributed Applications. In Proceedings of the
6th USENIX C++ Technical Conference, Cambridge, Mas-
sachusetts, April 1994. USENIX Association.

[23] Douglas C. Schmidt, Timothy H. Harrison, and Ehab Al-
Shaer. Object-Oriented Components for High-speed Net-
work Programming. In Proceedings of the 1st Conference
on Object-Oriented Technologiesand Systems, Monterey, CA,
June 1995. USENIX.

[24] Sun Microsystems. XDR: External Data Representation Stan-
dard. Network Information Center RFC 1014, June 1987.

[25] Sun Microsystems. Open Network Computing: Transport
Independent RPC, June 1995.

Appendix

The following struct declarations are representative of
those used for the C/C++ and hand-optimized RPC imple-
mentations of TTCP:

C/C++ Struct Declarations RPCL Definition

struct BinStruct f struct BinStruct f
short s; short s;
char c; char c;
long l; long l;
octet o; octet o;
double d; double d;

g; g;

typedef struct BinStruct BinStruct; typedef short ShortSeq<>;
typedef struct f typedef long LongSeq<>;

u long type; typedef char CharSeq<>;
u long len; typedef octet OctetSeq<>;
double *buffer; typedef double DoubleSeq<>;

gDoubleSeq; typedef BinStruct StructSeq<>;

typedef struct f program TTCP f
u long type; version TTCPVERS f
u long len; void SEND SHORT(ShortSeq) = 1;
BinStruct *buffer; void SEND LONG(LongSeq) = 2;

gStructSeq; void SEND CHAR(CharSeq) = 3;
void SEND OCTET(OctetSeq) = 4;
void SEND DOUBLE(DoubleSeq) = 5;
void SEND STRUCT(StructSeq) = 6;

g = 1;
g = 0x20000001;

The following CORBA IDL interface was used for the
Orbix and ORBeline CORBA implementations:

// sizeof BinStruct == 24 bytes
// due to compiler alignment
struct BinStruct{ short s; char c; long l;

octet o; double d; };

// Richly typed data
interface ttcp_sequence {
typedef sequence<short> ShortSeq;
typedef sequence<long> LongSeq;
typedef sequence<double> DoubleSeq;
typedef sequence<char> CharSeq;
typedef sequence<octet> OctetSeq;
typedef sequence<BinStruct> StructSeq;

// Routines to send sequences of various data types
oneway void sendShortSeq (in ShortSeq ttcp_seq);
oneway void sendLongSeq (in LongSeq ttcp_seq);
oneway void sendDoubleSeq (in DoubleSeq ttcp_seq);
oneway void sendCharSeq (in CharSeq ttcp_seq);
oneway void sendOctetSeq (in OctetSeq ttcp_seq);
oneway void sendStructSeq (in StructSeq ttcp_seq);

// to measure time taken for receipt of data
oneway void start_timer ();
oneway void stop_timer ();

};

14

