
Object Interconnections

Scalable and Efficient Architecture
for CORBA Asynchronous Messaging

(Column x)

Alexander B. Arulanthu, Carlos O’Ryan, and Douglas C. Schmidt
falex,coryan,schmidtg@cs.wustl.edu

Department of Computer Science
Washington University, St. Louis, MO 63130

This column will appear in the XXXX 1999 issue of the
SIGS C++ Report magazine.

1 Introduction

To make informed choices amoung middleware alternatives,
distributed object computing developers should understand
how CORBA ORBs implement key features. Our last column
explored the design and performance of alternative collocation
strategies [1]. In this column, we describe how the new OMG
Asynchronous Method Invocation (AMI) callback model can
be implemented scalably and efficiently by CORBA ORBs.

As we discussed in earlier columns [2, 3], the CORBA
AMI callback model is an important feature that has been in-
troduced into CORBA via the CORBA Messaging specifica-
tion [4]. AMI allows operations to be invoked asynchronously
using thestatic invocation interface(SII), thereby eliminat-
ing much of the complexity inherent in thedynamic invo-
cation interface(DII)’s deferred synchronous model. When
implemented properly, AMI helps improve the scalability of
CORBA applications because it minimizes the number of
client threads required to perform two-way invocations.

The CORBA Messaging specification defines two AMI pro-
gramming models, thePolling model and theCallbackmodel,
which are outlined below:

Polling model: In this model, each asynchronous two-way
invocation returns aPoller valuetype [5], which is very
much like a C++ or Java class in that it has both data mem-
bers and methods. Operations on aPoller are just local
C++ method calls and not distributed CORBA operation in-
vocations. This model is illustrated in Figure 1. The client can
use thePoller methods to check the status of the request
and to obtain the value of the reply from the server. If the
server hasn’t replied yet, the client can either (1) block await-
ing its arrival or (2) return to the calling thread immediately

POLLINGPOLLING

CLIENTCLIENT

PP
OO
LL
LL
EE
RR

operation(args)operation(args)

1: request

3: response

2: poller

4: get

TARGETTARGET

OBJECTOBJECT
44

Figure 1: Polling Model for CORBA Asynchronous Twoway
Operations

and check on the value of thePoller when it’s convenient.

Callback model: As illustrated in Figure 2, in this model

CALLBACKCALLBACK

CLIENTCLIENT

1: request

2: response

TARGETTARGET

OBJECTOBJECT
44

3: upcall

operation(callback, args)operation(callback, args)

Figure 2: Callback Model for CORBA Asynchronous Twoway
Operations

the client passes an object reference for aReplyHandler
object as a parameter when it invokes a two-way asynchronous
operation on an object reference to a server. When the server
replies, the client ORB receives the response and dispatches it
to the appropriate operation on theReplyHandler servant,
where the client then processes the reply. In other words, the
client ORB turns the response into a request on the client’s
ReplyHandler .

In general, the callback model can be more efficient than
the polling model because the client need not repeatedly in-
voke method calls on the ORB to poll for results. It does force

1

clients to behave as servers, however, which can increase the
complexity of certain applications, particularly “pure” clients.

The remainder of this column is organized as follows: Sec-
tion 2 presents an example that illustrates the CORBA AMI
callback programming model in more detail; Section 3 out-
lines the IDL compiler and ORB support necessary to imple-
ment the CORBA AMI callback model; Section 4 analyzes
the results of systematically benchmarking the performance of
the AMI callback implementation in TAO [6]; and Section 5
presents concluding remarks.

2 Programming the CORBA AMI
Callback Model

In this section, we outline how the AMI callback model works
from the perspective of a CORBA application developer. The
steps required to program CORBA AMI callbacks are similar
to developing any CORBA application,i.e., OMG IDL inter-
face(s) must be defined first and a client then must be written,
as we describe below.

Step 1: define the IDL interface and generate the stubs:
Throughout this column, we’ll use our familiarQuoter IDL
interface to illustrate how to use and implement the AMI Call-
back model:

module Stock
{

interface Quoter {
// Two-way operation to retrieve current
// stock value.
long get_quote (in string stock_name);

};

// ...
}

After IDL interfaces are defined, they are passed through
an OMG IDL compiler, which generates a standard set of C++
stubs and skeletons. For each two-way operation in the IDL in-
terface, the IDL compiler generates the synchronous and asyn-
chronous invocation stubs that applications use to invoke op-
erations. The skeletons generated by the IDL compiler are no
different for AMI than for synchronous method invocations
we’ve covered before [7], so we’ll ignore them in this column.
Stubs for asynchronous operations, however, are defined by
having the same name as the synchronous operations, with a
sendc prefix prepended.

For example, an IDL compiler would generate the follow-
ing synchronous and asynchronous stubs for ourQuoter in-
terface:

// Usual stub for synchronous invocations.
CORBA::Long Stock::Quoter::get_quote

(const char *stock_name)

{ /* IDL compiler-generated stub code... */ }

// New stub for asynchronous invocations.
// (described below).
void Stock::Quoter::sendc_get_quote

// ReplyHandler object reference
(Stock::AMI_QuoterHandler_ptr,

const char *stock_name)
{ /* IDL compiler-generated stub code... */ }

In addition to having a slightly different name, note
how the asynchronoussendc get quote method has
a different signature than the synchronousget quote
method. In particular,sendc get quote is passed an
AMI QuoterHandler , which is an object reference that
determines where the reply from the server will be dis-
patched. Moreover, it doesn’t have a return value, because
the value of the stock will be passed back directly to the
get quote callback method on the automatically generated
AMI QuoterHandler , which is shown below:

class AMI_QuoterHandler :
public Messaging::ReplyHandler {

// Callback stub invoked by Client ORB
// to dispatch the reply.
virtual void get_quote (CORBA::Long stock_value)
{ /* IDL compiler-generated stub code... */ }

};

After the reply arrives from the server, the client ORB invokes
theget quote stub on theAMI QuoterHandler callback
object. This stub marshals the arguments and invokes the vir-
tual get quote method on the servant that implements the
AMI QuoterHandler object. For more information on the
AMI callback mapping rules for OMG IDL to C++, please
see [3].

Step 2: programming the client application: After the
IDL compiler generates the synchronous and asynchronous
stubs, programmers can develop a client that works much like
other CORBA applications. First, the client must obtain an ob-
ject reference to a target object and invoke an operation. Un-
like a conventional synchronous two-way invocation, however,
the client passes an object reference for aReplyHandler
object as a parameter when it invokes a two-way asynchronous
operation. The client ORB keeps track ofReplyHandler
objects for pending asynchronous invocations so that it can
dispatch appropriate callback operations after servers reply.

The following code, excerpted from [3], illustrates how a
C++ programmer would invoke theget quote method us-
ing the AMI callback model. First, we’ll define some global
variables:

// NASDAQ abbreviations for ORB vendors.
static const char *stocks[] =
{

"IONAY" // IONA Orbix
"INPR" // Inprise VisiBroker
"IBM" // IBM Component Broker

2

}
// Set the max number of ORB stocks.
static const int MAX_STOCKS = 3;

// Global reply count.
int replies_received = 0;

Next, we’ll define ourReplyHandler servant implementa-
tion:

class My_Async_Stock_Handler
: public POA_Stock::AMI_QuoterHandler

{
public:

My_Async_Stock_Handler (const char *stockname)
: stockname_ (CORBA::string_dup (stockname))

{}

// Callback servant method.
virtual void get_quote (CORBA::Long value) {

cout << stockname_ << " = " << value << endl;
}

private:
CORBA::String_var stockname_;

};

We storestockname in eachQuoterHandler servant
because otherwise we can’t differentiate callbacks that return
from multiple invocations.

Finally, we define a function that issues asynchronous re-
quests:

// Issue asynchronous requests.
void get_stock_quote (void)
{

// ReplyHandler servants.
My_Async_Stock_Handler *handlers[MAX_STOCKS];

// ReplyHandler object references.
Stock::AMI_QuoterHandler_var

handler_refs[MAX_STOCKS];

for (i = 0; i < MAX_STOCKS; i++) {
// Initialize ReplyHandler servants
handlers[i] =

new My_Asynch_Stock_Handler (stocks[i]);

// Initialize ReplyHandler object refs.
handler_refs[i] = handlers[i]->_this ();

}

// Make asynchronous two-way calls using
// the callback model.
for (i = 0; i < MAX_STOCKS; i++)

quoter_ref->sendc_get_quote
(handler_refs[i],

stocks[i]);
}
// ...

After making the asynchronous invocation, a client typi-
cally performs other tasks, such as checking for GUI events
or invoking additional asynchronous methods. When the
client is ready to receive replies from server(s), it enters the
ORB event loop, using the standardwork pending and
perform work methods defined in the CORBAORBinter-
face, as follows:

// Event loop to receive all replies as callbacks.
while (reply_count > 0)

if (orb->work_pending ())
orb->perform_work ();

When a server responds, the client ORB receives the re-
sponse and dispatches it to the appropriate C++ method on the
ReplyHandler servant so the client can handle the reply.
In other words, the ORB turns the response into a request on
the client’s correspondingReplyHandler that was passed
during the original invocation. Figure 3 illustrates how our
client application uses the AMI Callback model. In the exam-

CALLBACK

QUOTE

CLIENT

2: value

STOCK

QUOTER 4sendc_get_quote(handler,
 "IBM")

handler
3:upcall 1: stock_name

Figure 3: AMI Callback Client

ple above, the client implements theReplyHandler object
locally. A ReplyHandler also can be a remote object, in
which case its servant will receive “third-party” replies for the
requests invoked by our client.

3 Implementing the CORBA AMI
Callback Model

Section 2 outlined how to program the AMI callback model
from a CORBA application developer’s perspective. This sec-
tion describes how key AMI callback components can be im-
plemented from an ORB developer’s perspective. Generaliz-
ing from the example in Section 2, an ORB must implement
the following functionality to support AMI callbacks:

1. Asynchronous stubs: For each two-way operation in the
IDL interface, the ORB’s IDL compiler should generate an
asynchronous invocation stub that applications can use to issue
asynchronous operations. High-quality IDL compilers should
provide an option to suppress the generation of asynchronous
stubs to reduce the footprint of applications that do not use
them.

2. Manage pending invocations: The client ORB must
keep track ofReplyHandler objects for all asynchronous
invocations. If theReplyHandler object reference points
to an object that’s collocated with the client, the client ORB
stores theReplyHandler associated with that invocation.
Thus, when a reply arrives the ORB will dispatch the reply to
the appropriate servant. If, however, theReplyHandler ob-
ject is remote, the client ORB’s Object Adapter will not store
any information about theReplyHandler .

3

3. Explicit event loop methods: Implement the standard
CORBA work pending and perform work operations
that can be used to explicitly invoke the CORBA event loop
in a client.

In Section 3.1, we explain the features required in an IDL
compiler to generate the stubs necessary to support the AMI
Callback model. Then, in Section 3.2, we discuss the various
components an ORB should support to implement the AMI
functionality outlined above.

3.1 IDL Compiler Support for CORBA AMI
Callbacks

When AMI Callback model is enabled, an IDL file maps
to an “implied-IDL” file. This “implied-IDL” will consist
of the tt sendc method for each two-way method and the
ReplyHandler interface for each interface found in the
original IDL file.

The “implied-IDL” for the Quoter IDL will look as de-
scribed below:

module Stock
{

interface Quoter {
// Original two-way operation.
long get_quote (in string stock_name);

// Implied asynch operation.
void sendc_get_quote (in AMI_QuoterHandler hanler,

in string stock_name);
};

// ...

// Implied type specific ReplyHandler.
interface AMI_QuoterHandler :

Messaging::ReplyHandler {
// Callback for reply.

void get_quote (in long result);
};

}

An OMG IDL compiler that supports the AMI callback
model should provide the functionality described below1. The
IDL compiler may choose to generated the mapping code for
the “implied-IDL” directly from the original IDL file instead
of generating the “implied-IDL” file, thus avoiding the addi-
tional pass during the code generation.

3.1.1 Generate Stubs for Asynchronous Invocations

For each two-way operation found in the IDL interface, an
IDL compiler generates asendc method, which client
applications use to invoke methods asynchronously. The
first argument of asendc method is a reference to the

1In view of simplicity, we will avoid the discussion about theException
Delivery [4] in this column.

ReplyHandler object, followed by thein and inout ar-
guments found in the signature of the original two-way IDL
operation. The return type for thesendc method isvoid ,
because the stub returns immediately without waiting for the
server to reply.

In ourQuoter application, for example, the IDL compiler
generates thesendc get quote stub method in the client
source file, as outlined below:

// Stub for asynchronous invocations.
void Stock::Quoter::sendc_get_quote

// ReplyHandler object reference
(Stock::AMI_QuoterHandler_ptr,

const char *stock_name)
{

// Setup connection.

// Store ReplyHandler and
// stub to handle reply (smart-stub)
// in the ORB.

// Marshal arguments.
request_buffer << stock_name;

// Send request buffer to server and return.
}

Figure 4 examines each of these steps in more detail.

3.1.2 Generate ReplyHandler Classes

For each interface in the IDL file, an IDL compiler gener-
ates an interface-specific class that derives from the standard
Messaging::ReplyHandler base class. The client ORB
uses this class to dispatch the reply to the servant that imple-
ments theReplyHandler object. For example, the client
stub header file generated by TAO’s IDL compiler for the
Quoter interface contains the following class and methods:

namespace Stock
{

class AMI_QuoterHandler
: public Messaging::ReplyHandler

{
public:

// Reply handler smart-stub.
static void get_quote_smart_stub

(Input_CDR reply_buffer,
AMI_QuoterHandler_ptr);

// Callback stub invoked by Client ORB
// to dispatch the reply.
virtual void get_quote (CORBA::Long l);

};
};

The get quote smart stub and get quote methods
are stubs generated automatically by TAO’s IDL compiler. We
examine both of these methods below.

Smart-stubs: When the reply for an asynchronous invoca-
tion arrives, the client ORB must demarshal the arguments and
demultiplex to the correctReplyHandler callback, which

4

then dispatches the reply to the servant method defined by
the client application developer. For synchronous invocations,
this dispatching is straightforward because demarshaling is
performed by the stub that invoked the operation, which is
blocked in the activation record waiting for the reply. For
asynchronous invocations, however, the stub that invoked the
operation goes out of scope after the request is sent when con-
trol returns to the client application. Thus, is does not block
waiting for the server’s reply.

To simplify the demultiplexing and dispatching of
asynchronous replies, TAO’s IDL compiler generates a
ReplyHandler smart-stubstatic method for each two-way
operation. These stubs are “smart” because they know how to
demarshal the arguements and invoke the callback method on
the reply handler object using the demarshaled arguments. In
contrast, synchronous invocation stubs simply return control
to the client when the demarshaling is complete.

When sending a request, thesendc stub for asynchronous
invocation passes a pointer to theReplyHandler smart-
stub method and a pointer to theReplyHandler object
to the client ORB. When the reply is available, the ORB
invokes this smart-stub, passing in the reply buffer and
the ReplyHandler object. For theget quote method
of the Quoter interface, TAO’s IDL compiler generates
get quote smart stub method in the client stub source
file, as shown below:

// Reply handler smart-stub.
void
Stock::AMI_QuoterHandler::get_quote_smart_stub

(Input_CDR reply_buffer,
AMI_QuoterHandler_ptr handler)

{
// Result arguments.
CORBA::Long l;

// Demarshal results from reply_buffer using
// CDR extraction operators.
reply_buffer >> l;

// Call reply handler callback method via its
// stub.
handler->get_quote (l);

}

Stubs for ReplyHandler callback methods: The stubs
for the ReplyHandler callback methods dispatch asyn-
chronous replies to servants that implementReplyHandler
objects. These stubs are invoked by the smart-stubs on behalf
of the client ORB; they makesynchronousinvocations on the
ReplyHandler object to dispatch the reply. The first argu-
ment in the callback method is the result of the asynchronous
operation, followed by all theout and inout arguments of
the original two-way operation defined in the IDL interface.

For the Quoter interface, TAO IDL generates the
get quote callback method shown near the beginning of
Section 3.1.2.

3.1.3 Generate ReplyHandler Servant Skeletons

An OMG IDL compiler that supports CORBA’s AMI callback
model also generates servant skeletons forReplyHandler
classes. TheReplyHandler servant skeletons contain
methods whose signatures define the result arguments,i.e., the
return value, followed by theout and inout arguments of
the original two-way operation.

For each two-way operation in the IDL interface, a static
ReplyHandler servant skeleton method is generated. This
method demarshals the return value and anyinout andout
arguments. It then calls theReplyHandler callback opera-
tion in the servant, which must be implemented by the client
application developer. To ensure developers implement this
callback operation, it is defined as a C++ pure virtual method.

For the Quoter interface, the TAO IDL generated
ReplyHandler servant code in the client-side header file
is defined as follows:

namespace POA_Stock
{

class AMI_QuoterHandler
: public POA_Messaging::ReplyHandler

{
public:

// Pure virtual callback method (must be
// overridden by client developer).
virtual void get_quote

(CORBA::Long l) = 0;

// Servant skeleton.
static void get_quote_skel

(Input_CDR input_buffer);
};

}

The implementation of the generatedget quote skel ser-
vant skeleton extracts the AMI return value andout /inout
parameters from theInput CDRbuffer and dispatches the
upcall on the appropriate servant callback method. For exam-
ple, the following code is generated by TAO’s IDL compiler
for theQuoter interface:

void
POA_Stock::AMI_QuoterHandler::get_quote_skel

(Input_CDR cdr)
{

// Demarshal the AMI ‘‘return value.’’
CORBA::Long l;
cdr >> l;

// Invoke callback method on this servant.
this->get_quote (l);

}

TAO’s IDL compiler has been designed to be scalable
and can be configured to support various optimization tech-
niques [8]. The back end of TAO’s IDL compiler uses several
design patterns, such as Visitor, Abstract Factory, and Strat-
egy [9], which makes it easier to enhance the compiler to gen-
erate AMI stubs.

5

3.2 ORB Architecture Support for AMI Call-
backs

Below, we describe how an CORBA implementations can sup-
port the AMI callback model, focusing on the general collab-
oration between ORB components. Then, to focus the dis-
cussion, we examine specifically how TAO implements this
feature.

3.2.1 Collaborations Between ORB Components for
Asynchronous Invocation

After an OMG IDL compiler generates the AMI callback
stubs, the generated code must collaborate with internal ORB
components to send and receive asynchronous invocations.
To demonstrate how this works, Figure 4 depicts the general
sequence of steps involved when an asynchronous two-way
get quote operation is executed.2 As shown in this fig-

Figure 4: Interactions Between Client ORB Components for
Asynchronous Invocation

ure, the interactions between client ORB components for asyn-
chronous invocation consist of the following steps:

� The client application invokes thesendc get quote
method on theStub to issue the asynchronous operation
(1). The client passes theAMI QuoterHandler object
reference, along with the name of the stock we’re inter-
ested in,i.e., IBM.

� TheStub marshals its string argument into a buffer and
instantiates anInvocation (2), which is a facade that
delegates to internal ORB components to ensure that con-
nections are established with the remote server(3) & (4),
store theAMI QuoterHandler object in the ORB(5),
and send requests(6) & (7).

2The names of certain objects in this discussion are specific to TAO,
though the general flow of control and behavior is generic to other ORB that
implements AMI callbacks.

� Once the request is sent,Invocation returns control
to theStub (8), which itself returns control to the client
(9).

� When it is prepared to handle callbacks, the client
application calls the ORB’swork pending and
perform work (10) methods to receive and dispatch
replies associated with asynchronous invocations.

� When the reply arrives, the ORB demarshals the re-
ply and demultiplexes it to the callback method on the
ReplyHandler object that was passed in by the ap-
plication when the AMI method was invoked originally
(11).

Section 3.2.3 revisits these steps in more detail after we’ve
explained the components in TAO’s ORB architecture.

3.2.2 The Design of TAO’s AMI Callback Architecture

To make our discussion concrete, we now describe how the
ORB architecture of TAO supports the AMI callback model.
Below, we outline our resolutions to various problems encoun-
tered when migrating to TAO new AMI-enabled architecture.

Determining how to process asynchronous replies:

� Context: Early TAO implementations only supported
the Synchronous Method Invocation (SMI) model. In SMI, the
calling thread that makes a two-way invocation blocks waiting
for the server’s reply. Thus, the client ORB can use the calling
thread to process the response.

For example, consider theLeader/Followersconcurrency
model [10] illustrated in Figure 5.

I/O SUBSYSTEM

ORB CORE

SEMAPHORES

LEADER FOLLOWERS

3: select() 6: read()

5: signal()B
O

R
R

O
W

E
D

 T
H

R
E

A
D

B
O

R
R

O
W

E
D

 T
H

R
E

A
D

S

2: write()

 APPLICATION

7: return()

1: invoke_twoway()

4: wait ()

Figure 5: Synchronous Two-way Invocations using the
Leader/Followers Concurrency Model

6

TAO uses this concurrency model to support multi-threaded
client applications efficiently. In this concurrency model,
the ORB borrows the application threads that are waiting for
replies, to receive and process the replies, instead of having ad-
ditional threads in the ORB to achieve that. One of the threads
is chosen as theleader which blocks on theselect oper-
ation. All the other threads block on semaphores. When the
reply is available on any of the connections, the leader thread
signals the semaphore and wakes up the correct thread that is
waiting for the reply on that connection.

The following sequence of steps takes place in the
Leader/Followers concurrency model: each calling thread that
invokes a two-way synchronous method(1) uses a connection
to send the request(2). The client ORB designates one of
the waiting threads theleader and the others as thefollow-
ers. The leader thread blocks on theselect operation(3),
whereas the follower threads block on semaphores(4). When
a reply arrives on a connection, the leader thread returns from
select . If the reply belongs to the leader, it promotes the
next follower to become the new leader and returns to process
the reply. If the reply belongs to one of the followers, however,
the leader signals the corresponding semaphore to wake up the
follower thread(5). The awakened follower thread reads the
reply(6), completes the two-way invocation(7), and returns to
its caller.

� Problem: Although the Leader/Followers model de-
scribed above works well for SMI, it does not work for AMI.
The problem stems from the fact that the calling stub goes out
of scope as soon as the request is sent and the control returns
to client application code. Thus, the ORB must be prepared
to process an asynchronous reply in another context, possibly
within another client thread. Moreover, the ORB must main-
tain certain state information, such asReplyHandler object
andReplyHandler smart-stub, to complete the processing
of server replies to asynchronous invocations.

� Forces: The mechanisms provided to support asyn-
chronous replies should add no significant run-time overhead
to existing SMI mechanisms.

� Solution! Strategizing the reply dispatching mecha-
nisms: The problem of processing asynchronous replies can
be solved bystrategizingthe reply processing and dispatching
mechanisms used for synchronous and asynchronous invoca-
tions. Figure 6 illustrates the components in TAO’sReply
Dispatcher hierarchy. An Synchronous Reply
Dispatcher is created during a synchronous invocation
on the local stack activation record by anInvocation
object. When the reply is received, the reply buffer (i.e.,
TAO’s Reply CDR objecT) is placed in the dispatcher and
control returns first to the invocation object and then to the
stub. At this point, the stub obtains the reply buffer from the
Invocation object, demarshals the reply, and completes the

Figure 6: Reply Dispatching Strategy

invocation. EachReply Dispatcher object maintains a
reply received flag that indicates if the reply has been
received. This flag is set when the reply is dispatched to this
object and the thread waiting for the reply returns to the stub.

During an asynchronous invocation, anAsynchronous
Reply Dispatcher is create on the heap by an
Invocation object. This object is created on the
heap because the scope of the activation record where the
Invocation object is created is exited before the reply is re-
ceived. The asynchronous invocation stub,i.e., thesendc *
operation, stores theReplyHandler object given by the
application in theAsynchronous Reply Dispatcher
object. It also stores the pointer to the appropriate smart-stub
method in this object, as well.

A Leader/Followers implementation using TAO’sReply
Dispatcher architecture is illustrated in Figure 7. In this

I/O SUBSYSTEM

ORB CORE

SEMAPHORES

LEADER FOLLOWERS

4: select()

6: read()

B
O

R
R

O
W

E
D

 T
H

R
E

A
D

B
O

R
R

O
W

E
D

 T
H

R
E

A
D

S

3: write()

 APPLICATION

8a: callback ()

1: invoke_twoway()

0

REPLY DISPATCHERS

7: dispatch ()

8s: signal

9: return

2: create ()

5: wait ()

Figure 7: TAO’s AMI-enabled Leader/Followers Implementa-
tion

architecture, when the application threads make the two-way
invocations(1), aReply Dispatcher object is created for
each invocation(2) and the request is sent(3). The leader then
blocks on theselect call (4) and the followers block on the
semaphores(5). When a reply arrives on a connection, the

7

leader thread itself reads the complete reply(6) and calls the
Reply Dispatcher object that was created for that invo-
cation to dispatch the reply(7). In the case of synchronous
invocation, theSynchronous Reply Dispatcher sig-
nals(8s)the thread waiting for that reply and completes the in-
vocation(9). In the case of asynchronous invocation, however,
theAsynchronous Reply Dispatcher object invokes
the callback method in theReplyHandler object(8a).

Minimizing connection utilization:

� Context: Early implementations of TAO just supported
a non-multiplexedconnection model. Thus, a connection
could not be used for another two-way request until the reply
for the previous request was received. This non-multiplexed
connection model is illustrated in Figure 8, where five threads

I/O SUBSYSTEM

ORB CORE

CLIENT

TRANSPORT OBJECTS

TT

T

T T T T

Figure 8: One Outstanding Request Per-Connection

make two-way invocations to the same server, which creates
five connections. A newTransport object3 is created for
each connection.

� Problem: Non-multiplexed connection architectures
are well-suited for hard real-time applications that pos-
sess highly deterministic QoS requirements [10]. A non-
multiplexed connection model is inefficient for CORBA AMI,
however, because applications can issue thousands of asyn-
chronous requests before waiting for the replies. Thus, a non-
multiplexed connection architecture would use a correspond-
ing number of connections.

� Forces:

3TAO’s Transport object provides a uniform interface to the TAO’s
pluggable protocols framework [11], which abstracts various un-
derlying transport mechanisms, such as TCP, UNIX-domain sockets, and
VME, implemented by TAO. TAO’s pluggable protocols framework uses
key patterns and components, such as theReactor , Acceptor , and
Connector , provided by ACE [12].

1. An ORB should implement connection multiplexing so
that multiple outstanding requests required to support the
AMI model can be processed efficiently.

2. When multiple threads are accessing a connection, the
access should be synchronized so that requests are sent
one-by-one and not intermingled.

3. Applications should be able to configure multiplexed and
non-multiplexed connection behavior statically and dy-
namically to accommodate various use-cases.

� Solution ! Strategize the transport multiplexing
mechanisms: To overcome the scalability limitations of a
non-multiplexed connection architecture, we extended TAO to
optionally support multiplexed connections for SMI and AMI.
In this design, many requests can be sent simultaneously over
the same connection, even when replies are pending for earlier
requests. In general, connection multiplexing yields better use
of connections and other limited OS resources [10].

To implement this design in TAO, we applied the
Strategy pattern [9] and defined a new strategy called
Transport Mux Strategy that supports both multi-
plexed and the non-multiplexed connections. The components
in this design are illustrated in Figure 9.

Figure 9: Transport Mux Strategy

The Exclusive Transport Strategy implements
the non-multiplexed connection strategy by holding a ref-
erence to a singleReply Dispatcher object. This
strategy is “exclusive” because more than one request is
not possible at the same time. In contrast, theMuxed
Transport Strategy uses aHash Table that stores
multiple Reply Dispatchers , each representing a re-
quest sent on the connection. As shown in Figure 9, the
Transport Mux Strategy base class provides a com-
mon interface for these two different implementations. TAO

8

uses theService Configurator pattern [13] so that ap-
plications can select between these two strategies and config-
ure TAO’sTransport Mux Strategy either statically or
dynamically.

To synchronize access to a multiplexed connection among
multiple threads, theTransport object for that connection
is marked as “busy” while one thread is sending a request.
During that time, if a thread tries to send another request, it ei-
ther recycles a cached connection or creates a new connection.
After the request is sent, theTransport object is marked as
“idle” and cached so that it can be reused for sending subse-
quent requests.

Scalability of reply wait mechanisms:

� Context: Quality ORB implementations should support
“nested upcalls,” which is the ability to process incoming re-
quests while waiting for replies. This support can be imple-
mented usingselect to wait for both the reply and any in-
coming requests. However, this approach adds unnecessary
overhead to “pure” clients that do not receive any requests at
all. Therefore, TAO provides the following three strategies
to wait for replies to allow developers to select a mechanism
that’s most appropriate for their applications:

1. Wait-on-Read– In this strategy, the calling thread blocks
onread to receive the reply. This is a very efficient strat-
egy for the “pure” clients that do not have to receive up-
calls while waiting for replies.

2. Wait-on-Reactor: Reactor [14] is a framework im-
plemented in ACE [12] to provide event demultiplexing
and event handler dispatching. In this strategy, single-
threadedReactor is used to dispatch the events such as
reply arrivals and upcalls.

This strategy efficiently supports single-threaded client
applications. In this approach, the waiting thread runs
the event loop of the Reactor to check for server replies.
When there is input on a connection, theTransport
object is notified and it reads the input message and
dispatches the reply. The Wait-on-Reactor strategy
also works with multi-threaded applications that use a
Reactor-per-thread to minimize contention and locking
overhead [10].

3. Wait-on-Leader/Followers– If the application is multi-
threaded and several threads are sharing the same Reac-
tor, only one of them can run the Reactor loop at the same
time. This strategy synchronizes access to the Reactor us-
ing the Leader/Followers pattern [10]. In this pattern, the
leader thread runs the event loop of the Reactor. All other
threads wait on a semaphore. When a reply is available,
the leader thread reads the complete reply and dispatches

the reply. If the reply is for an asynchronous request,
the reply gets dispatched to the callback method in the
reply handler object. For synchronous replies, the reply
buffer is transferred to the synchronous reply dispatcher
from theTransport object. If a reply belongs to the
leader thread, it selects another thread as the leader and
returns from the event loop. If the reply belongs to some
other thread, however, it signals this thread so that it can
wakeup from the semaphore and return to its stub to pro-
cess the reply.

� Problem: Pre-AMI-enabled versions of TAO imple-
mented the three reply wait strategies described above
within Connection Handlers in TAO’s pluggable pro-
tocols framework, as shown in Figure 10. However, every

Figure 10: Earlier Implementation of Wait Mechanisms

Transport mechanism, such as IIOP and UNIX-domain
sockets (UIOP), in TAO’s pluggable protocols framework [11]
reimplemented threeConnection Handler implementa-
tions to support all the reply wait strategies in itsTransport
implementation. Not surprisingly, this approach did not scale
up when TAO incorporated additional transport mechanisms,
such as VME, Fibrechannel, or TP4. The original design also
complicated the integration of AMI callback model, because
changes to the reply wait mechanisms had to be done foreach
Transport implementation.

� Forces: The semantics of the existing wait mechanisms,
as well as the existing optimizations, must be maintained while
integrating the AMI callback model. Moreover, applications
should be able to configure TAO’s reply wait mechanism ac-
cording to their particular needs.

� Solution! Refactor reply wait strategies: As part of
our enhancement to the ORB, therefore, we moved the re-
ply wait mechanisms from theConnection Handlers
to the newWait Strategy and decoupled it from the

9

Transport and the underlyingConnection Handler
objects. The new Wait Strategy architecture is illustrated in
the UML diagram in Figure 11.

Figure 11: TAO’s Enhanced Wait Strategy Implementation

In TAO’s enhanced architecture, eachTransport im-
plements only oneConnection Handler . Due to the
patterns-based OO design used in TAO, this modification just
required changes in theTransport implementation and the
Connection Handler implementation and did not affect
other ORB components.

In addition to the refactoring of the wait strategies, a vari-
ation on the Leader/Followers implementation has been inte-
grated onto theWait-on-Leader/Followers strategy.
This is because the Leader/Followers implementation men-
tioned earlier was based on the assumption that the connec-
tion is exclusive for one request at a time. Therefore the
state variables such as theSemaphores etc were kept in
the Transport and theConnection Handler objects,
which are per-connection objects. This implementation works
fine in theExclusive Transport case. It is not suit-
able for theMuxed Transport mechanism, however, be-
cause there will be multiple threads waiting simultaneously
for replies on a single connection.

To address this problem, therefore, we enhanced the
Leader/Followers model described above to create a vari-
ation called Muxed-Wait-on-Leader/Followers
strategy class. As shown in Figure 11, the
Muxed-Wait-on-Leader/Followers model uses
TAO’s thread specific storage implementation to keep the
per-ORB-per-thread condition variable, which is created only
once and also on demand by a factory method in theORB
Core . The ORB Core class provides a common place to
keep the global ORB resources.

The wait strategies have been implemented using the
Strategy pattern and theService Configurator pat-
tern is used to configure TAO’s wait strategy dynamically.
Interaction between the stub and the various ORB compo-
nents:

bulletContext: Now that we have discussed the various
components in the ORB which the client stub can make use to
achieve tasks such as setting up the connection, creating the
Reply Dispatcher s, sending the request, keeping track
of the Reply Dispatcher s andsmart-stub s, waiting
for replies, processing replies and delivering replies. The stub
can either directly invoke methods on the various ORB compo-
nents to achieve the above or it can go through helper classes
which can be implemented as part of the ORB. The helper
classes can interact with the various components in the ORB
on behalf of the stub and execute all the above functionalities.

bulletProbelm: If the stubs are implemented to directly
interact with the internal ORB components, the code size of
the stub increases. This will lead to increase in the footprint
of the stub files, since stubs are generated by IDL compiler for
each method in the IDL interface.

bulletForces: Therefore, stubs should make use of helper
classes which will factor out as much code as possible from the
stubs into the ORB core. The helper classes should efficiently
support both synchronous and the asynchronous invocations.

bulletOptimized invocation helper facades: The
helper classes Synchronous Invocation and
Asynchronous Invocation provide the stubs with
facades that encapsulate the details of the various features
implemented internally to the ORB.

When called by a stub on behalf of a client, the
Synchronous Invocation class establishes a connec-
tion4 to the remote host, sends the request, waits for a reply,
receives the reply, and returns control to the stub once the re-
ply is received. TheAsynchronous Invocation class
is similar, but it returns control to the stub as soon as it sends
the request.

As we discussed earlier in theReply Dispatching
Strategy , theSynchronous Invocation object cre-
ates theSynchronous Reply Dispatcher on the lo-
cal stack activation record whereas theAsynchronous
Invocation object creates theAsynchronous Reply
Dispatcher on the heap.

As illustrated in Figure 12, TAO’s synchronous and asyn-
chronous variants inherit from a common Invocation class,
which provides a uniform interface to other components in the
ORB. Both classes delegate the tasks described above to the
other components in the ORB that we discussed earlier.

3.2.3 Collaborations Between Components in TAO’s
AMI-enabled Architecture

Now that we’ve described (1) the code generated by TAO’s
IDL compiler and (2) the components in its ORB architecture

4TAO uses connection caching to avoid establishing new connections if
one is already open to a particular ORB endpoint.

10

Figure 12: Invocation Interface

that process synchronous and asynchronous requests, we can
present the overall AMI-enabled ORB architecture of TAO, as
shown in the UML diagram in Figure 13. Moreover, we can re-

Figure 13: AMI-enabled TAO ORB Architecture

examine the sequence of steps that occur when an application
issues a synchronous or asynchronous invocation. Figure 14
illustrates an interaction diagram that shows the sequence of
steps in TAO, each of which is described below.

� The Client object calls theStub to make an invoca-

Figure 14: Sequence of Steps in TAO’s SMI & AMI Invoca-
tions

tion. In the case of asynchronous request, it passes the
reference to theReplyHandler object(1).

� The stubs generated by TAO’s IDL compiler are different
for the synchronous and the asynchronous invocations.
The synchronous and the asynchronous stubs instantiate
the correspondingInvocation objects(2).

� TheInvocation object creates synchronous or asyn-
chronousReply Dispatcher depending on the type
of the request(3). TheInvocation object then binds
theReply Dispatcher object with theTransport
Mux Strategy object (4 & 5).

� The Invocation object calls Transport object
which in turn uses TAO’s pluggable protocols framework
and ACE [12] to send the request (6 & 7).

� In the AMI model, the stub returns control to the ap-
plication at this point. Later, theClient object can
wait for the replies. In the SMI model, conversely,
the Invocation object calls theTransport to wait
for the reply, which delegates this task to theWait
Strategy (8).

� When the reply arrives, theTransport object is noti-
fied to read the reply(9). It reads the complete reply and
calls theTransport Mux Strategy to dispatch the
reply(10). TheTransport Mux Strategy uses the
correctReply Dispatcher object created for that in-
vocation and calls the dispatch method on it(11).

� If a Synchronous Reply Dispatcher is being

11

Figure 15: Blackbox Throughput for Synchronous vs. Asyn-
chronous Method Invocations

This supports our contention that AMI can be used to build
more scalable clients than traditional methods such as multi-
threading; as we will show next this is achieved without con-
siderable overhead over SMI for simple clients.

Figure 16 shows the latency for the synchronous and the
asynchronous invocations. It shows that the ORB introduces
very little overhead for the asynchronous invocations. Part of
the latency overhead is due to memory allocations for the Re-
plyDispatcher objects, in the future we plan to use specialized
memory pools to minimize this source of overhead. We also
expect that further white box analysis will allow us to identify
and eliminate other sources of overhead.

Figure 17 shows the throughput for the synchronous and

12

Figure 17: Blackbox Throughput for Synchronous vs. Asyn-
chronous Method Invocations

the asynchronous invocations. As shown in the figure, there
is a only a small decrease in the throughput for the sim-
ple AMI client. However, the high-performance AMI client,
which has dedicated threads to issue the requests and to han-
dle the replies, achieves higher throughput compared to the
other clients, since the calling thread does not spend time on
waiting for replies.

5 Concluding Remarks

The CORBA AMI model is an important feature that has been
integrated into CORBA via the CORBA Messaging specifi-
cation. A key aspect of AMI is that operations can be in-
voked asynchronously using thestatic invocation interface
(SII), thereby eliminating much of the complexity inherent in
thedynamic invocation interface(DII)’s deferred synchronous
model.

This column explains how IDL compilers and ORBs can
be structured to support the CORBA AMI callback model ef-
ficiently and scalably. The ORB should implement the syn-
chronous and asynchronous reply handling as transparent as
possible to the other components in the ORB. This makes the
ORB components to be more flexible and scalable. Optimiza-
tions such as connection multiplexing should be supported in
the ORB to efficiently support AMI clients. To avoid the foot-
print in the IDL generated stubs, ORB core implementation
should factor out as much code as possible out of the stubs.
The IDL compiler and ORB enhancements to support AMI
should be very carefully made so that they do not add over-
head to synchronous method invocations. The implementation
should be guided by benchmarks and profiling on the newer
enhancements. The existing optimizations in the ORB should
be preserved, while allowing flexibility to configure the ORB
based on the application needs.

We also showed how familiar design patterns can be ap-
plied to configure ORBs with policies and mechanisms ap-
propriate for particular application use-cases, while still pre-
serving key optimizations necessary to support stringent QoS
requirements. In particular, we repeatedly applied the Strat-
egy Pattern [9] to support both scalable connection multi-
plexing strategies, while still allowing configurations that en-
sure the determinism required for hard real-time applications.
Likewise, applications can configure these method invocation
strategies using the Service Configurator pattern [9], which
makes the TAO framework highly configurable and flexible.

As always, if you have any questions about the material we
covered in this column or in previous ones, please email us at
object_connect@cs.wustl.edu .

References
[1] N. Wang, D. C. Schmidt, and S. Vinoski, “Collocation Opti-

mizations for CORBA,”C++ Report, vol. 11, October 1999.

[2] D. C. Schmidt and S. Vinoski, “Introduction to CORBA Mes-
saging,”C++ Report, vol. 10, November/December 1998.

[3] D. C. Schmidt and S. Vinoski, “Programming Asynchronous
Method Invocations with CORBA Messaging,”C++ Report,
vol. 11, February 1999.

[4] Object Management Group,CORBA Messaging Specification,
OMG Document orbos/98-05-05 ed., May 1998.

13

[5] Object Management Group,Objects-by-Value, OMG Docu-
ment orbos/98-01-18 ed., January 1998.

[6] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[7] D. C. Schmidt and S. Vinoski, “Object Adapters: Concepts and
Terminology,”C++ Report, vol. 9, November/December 1997.

[8] A. Gokhale, D. C. Schmidt, C. O’Ryan, and A. Arulanthu, “The
Design and Performance of a CORBA IDL Compiler Optimized
for Embedded Systems,” inSubmitted to the LCTES workshop
at PLDI ’99, (Atlanta, GA), IEEE, May 1999.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[10] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokers,”Jour-
nal of Real-time Systems, To appear 1999.

[11] F. Kuhns, C. O’Ryan, D. C. Schmidt, and J. Parsons, “The De-
sign and Performance of a Pluggable Protocols Framework for
Object Request Broker Middleware,” inProceedings of the IFIP
6
th International Workshop on Protocols For High-Speed Net-

works (PfHSN ’99), (Salem, MA), IFIP, August 1999.

[12] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” inProceedings of the
6
th USENIX C++ Technical Conference, (Cambridge, Mas-

sachusetts), USENIX Association, April 1994.

[13] P. Jain and D. C. Schmidt, “Dynamically Configuring Commu-
nication Services with the Service Configurator Pattern,”C++
Report, vol. 9, June 1997.

[14] D. C. Schmidt, “The Object-Oriented Design and Implementa-
tion of the Reactor: A C++ Wrapper for UNIX I/O Multiplexing
(Part 2 of 2),”C++ Report, vol. 5, September 1993.

14

