
Chapter 1

Model-Driven Development of
Distributed Real-time and Embedded Systems

ABSTRACT
Despite advances in standards-based commercial-off-the-shelf (COTS) technologies,
key challenges must be addressed before mission-critical distributed real-time and
embedded (DRE) systems can be developed effectively and productively using
COTS component-based software. For example, developers of DRE systems con-
tinue to use ad hoc means to select and compose their applications and middleware
due to the lack of formally analyzable and verifiable building block components.
This chapter shows how Model-Driven Development (MDD) techniques and tools
can be used to specify, analyze, optimize, synthesize, validate, and deploy standards-
compliant component middleware platforms that can be customized for the needs of
next-generation DRE systems. Our results show how MDD techniques and tools
have been integrated successfully with standards-based QoS-enabled component
middleware to significantly improve the quality and productivity associated with
developing mission-critical DRE systems.

Keywords: Model-Driven Development, component middleware, quality of service,
distributed systems.

Chapter written by Douglas C. SCHMIDT, Krishnakumar BALASUBRAMANIAN, Arvind
S.KRISHNA, Emre TURKAY, and Aniruddha GOKHALE, Department of Electrical
Engineering and Computer Science, Vanderbilt University, Nashville, USA
{schmidt,kitty,arvindk,turkaye,gokhale}@dre.vanderbilt.edu

2 Book Title

1.1. INTRODUCTION

1.1.1. EMERGING TRENDS AND CHALLENGES
Over 90 percent of all microprocessors are now used for embedded systems, in

which computer processors control physical, chemical, or biological processes and
devices in real-time. Examples of real-time and embedded systems include mobile
phones, pacemakers, and electronic games. Creating high quality software for real-
time embedded systems has historically been hard due to memory constraints and
processors with limited capacity, which precluded the use of modern software lan-
guages, tools, and techniques.

Due to advances in hardware technology, however, real-time and embedded sys-
tems now often have more memory and computational power. Moreover, individual
computing nodes are increasingly combined to form distributed real-time and em-
bedded (DRE) systems containing many processors that interoperate via networks
and interconnects. Examples of DRE systems include hot rolling mill control sys-
tems, particle accelerators, electrical power grids, chemical plants, and air- traffic
control systems, as shown in Figure 1.

Figure 1. Example DRE Systems

It is hard to design DRE systems that implement their required quality of service
(QoS) capabilities, are dependable and predictable, and are parsimonious in their use
of computing resources. It is even harder to build them on time and within budget.
Moreover, due to global competition for market share and engineering talent, devel-
opers now also face the problem of delivering new products in compressed time-
frames. It is therefore essential that the production of DRE systems take advantage
of languages, tools, platforms, and methods that enable higher levels of software

MDD of Component Based DRE Systems 3

productivity by moving from a third-generation language programming-centric
paradigm to a component-based assembly-centric paradigm.

DRE systems have historically been developed in a hard-coded manner, e.g.,
with dedicated software written for specific types of hardware, using unstructured
“spaghetti” designs and code. This approach has yielded stove-piped and proprie-
tary solutions, such as legacy avionics and radio systems shown in Figure 2, that are
tedious, error-prone, and costly to develop, validate, and evolve. In particular, small
changes to software structure or functionality in these tightly coupled systems often
led to large (negative) impacts on DRE system QoS and maintainability.

Air
Frame

AP

Nav HUD

GPS IFF

FLIR

Cyclic
Exec

CLI

SS7

SM CM

RX TX

IP

RTOS

Air
Frame

AP

Nav HUD

GPS IFF

FLIR

Cyclic
Exec

CLI

SS7

SM CM

RX TX

IP

RTOS

CLI

SS7

SM CM

RX TX

IP

RTOS

Figure 2. Unstructured DRE Systems Based on Stove-piped and Proprietary Software

1.1.2. A PARTIAL SOLUTION: QOS-ENABLED COMPONENT MIDDLE-
WARE

Over the past decade, standards-based QoS-enabled distributed computing mid-
dleware, such as Real-time CORBA [CORBA:02b] and Real-time Java [RTSJ:00],
has emerged to reduce the complexity of DRE systems. This type of middleware
simplifies the development of DRE systems by factoring out reusable mechanisms
and services from application code, thereby off-loading many tedious and error-
prone aspects of the software process from developers of vertical applications to de-
velopers of horizontal middleware platforms. Figure 3 illustrates examples of mid-
dleware-based DRE systems, such as modern avionics mission computing
[Sharp:03] and software-defined radio [SCA:01] systems, where application devel-
opers are shielded from low-level, tedious, and error-prone computing and commu-
nication details. Moreover, middleware amortizes software lifecycle costs by lev-
eraging previous development expertise and capturing implementations of key pat-
terns in reusable frameworks, rather than rebuilding them manually for each use.

4 Book Title

Middleware

Middleware
Services

DRE
Applications

Operating Sys
& Protocols

Hardware &
Networks

Middleware

Middleware
Services

DRE
Applications

Operating Sys
& Protocols

Hardware &
Networks

Middleware

Middleware
Services

DRE
Applications

Operating Sys
& Protocols

Hardware &
Networks

Middleware

Middleware
Services

DRE
Applications

Operating Sys
& Protocols

Hardware &
Networks

Figure 3. Structured DRE Systems Based on Reusable and Standard Middleware

During the past decade, a substantial amount of R&D effort has focused on de-
veloping component middleware [Szyperski:02, Heineman:01], which enables reus-
able services to be composed, configured, and installed to create applications rapidly
and robustly. The CORBA Component Model (CCM) [CorbaComponents:02] is
standard component middleware that extends earlier versions of CORBA
[CORBA:02a] to support the concept of components and establishes standards for
specifying, implementing, packaging, assembling, and deploying components.

Attributes

Event
Si nk s

Fa cets
Re

ce
p t

a c
le

s
Ev

en
t

So
ur

ce
s

Component
Reference

Component
Home

O
ffered

P
orts

R
eq

ui
re

d
P

or
ts

Attributes

Event
Si nk s

Fa cets
Re

ce
p t

a c
le

s
Ev

en
t

So
ur

ce
s

Component
Reference

Component
Home

O
ffered

P
orts

R
eq

ui
re

d
P

or
ts

Figure 4. Ports in the CORBA Component Model

A component in CCM is the primary unit of implementation, reuse, and compo-
sition that exposes a set of ports, named interfaces and connection points that com-
ponents use to collaborate with each other. Ports include the interfaces and connec-
tion points shown in Figure 4 and described below:

MDD of Component Based DRE Systems 5

- Facets, which define a named interface and an implementation that synchro-
nously services operation invocations called from other components.

- Receptacles, which provide named connection points to facets provided by
other components.

- Event sources and event sinks, which indicate a willingness to exchange
event messages with other components asynchronously.

A unique component home, which is a factory, creates and manages each com-
ponent instance.

Figure 5 illustrates the layered architecture of CCM. A container provides the
run-time environment for one or more components that manages various pre-defined
hooks and strategies, such as persistence, event notification, transaction, and secu-
rity, used by the component(s). Developer-specified metadata expressed in XML
instruct CCM deployment mechanisms on how to control the lifetime of these con-
tainers and the components they manage. A component assembly is a virtual com-
ponent consisting of metadata that describes how components are grouped together
to form higher-level units. Each component’s metadata describes the features it
provides (e.g., its interfaces and properties) or the features that it requires (e.g., its
dependencies). A component server is an abstraction that is responsible for aggre-
gating physical entities (i.e., implementations of component instances) into logical
entities (i.e., distributed application services and subsystems).

Figure 5. The Layered CCM Architecture

In addition to the run-time building blocks outlined above, CCM also standard-
izes component implementation, packaging, and deployment mechanisms. Packag-

6 Book Title

ing involves grouping the implementation of component functionality – typically
stored in dynamic link libraries (DLL) – together with other metadata that describes
salient properties of this particular implementation. The CCM Component Imple-
mentation Framework (CIF) helps generate the component implementation skele-
tons and persistent state management automatically using the Component Im-
plementation Definition Language (CIDL), which associates component inter-
faces with their executor implementations.

In conjunction with colleagues at Washington University [Schmidt:04d], we
have developed the Component-Integrated ACE ORB (CIAO) [Schmidt:03b], which
is a real-time implementation of CCM. CIAO extends our previous work on The
ACE ORB (TAO) [Schmidt:97] by providing more powerful component-based ab-
stractions using the specification, validation, packaging, configuration, and deploy-
ment techniques defined by the OMG CCM and Deployment and Configuration
(D&C) [DandC:03] specifications. Moreover, CIAO integrates the CCM capabili-
ties outlined above with TAO’s Real-time CORBA [RTCorba:02] features, such as
thread-pools and client-propagated and server-declared policies.

1.1.3. RESOLVING KEY CHALLENGES OF COMPONENT-BASED DRE
SYSTEMS WITH MODEL-DRIVEN DEVELOPMENT
Despite advances in standards-based QoS-enabled component middleware, however,
significant challenges remain that make it hard to support large-scale DRE systems
in domains (such as shipboard combat systems and supervisory control and data
acquisition (SCADA) systems) requiring stringent support for multiple QoS proper-
ties. Key unresolved challenges include:

- Lack of tools for effectively composing DRE systems from components.
DRE component middleware enables application developers to develop indi-
vidual QoS-enabled components and package them into assemblies that form
complete DRE systems. Although this approach supports the use of “plug and
play” components, DRE system integrators still face the challenge of compos-
ing the right set of compatible components that will deliver the desired se-
mantics and QoS to applications.

- Lack of tools for configuring component middleware. In QoS-enabled
component middleware frameworks, many attributes and parameters of appli-
cation and middleware components are configured at various stages of the de-
velopment lifecycle. Manual techniques for ensuring that these parameters are
semantically consistent throughout a large-scale DRE system are tedious and
error-prone, however. Moreover, manual techniques often have no formal ba-
sis for validating and verifying that the configured middleware will deliver the
end-to-end QoS requirements of applications throughout a DRE system.

- Lack of tools for automating the deployment of DRE system components
onto heterogeneous target platforms. The component assemblies described
above need to be deployed in a distributed target environment before applica-

MDD of Component Based DRE Systems 7

tions can run. DRE system integrators must therefore perform the complex
task of mapping individual component assemblies onto specific nodes of the
target environment. This mapping must ensure that a particular deployment
meets the end-to-end QoS requirements given the capabilities of the nodes in
the target environment.

This chapter describes how we are addressing the challenges described above us-
ing Model-Driven Development (MDD) techniques and tools. MDD is an emerging
paradigm [Greenfield:04] that helps resolve software development and validation
challenges encountered in development of component middleware and DRE systems
by combining (1) domain-specific modeling languages (DSMLs), which provide
programming notations that formalize the process of specifying application logic
and QoS-related requirements, (2) metamodeling, which helps to automate the defi-
nition of type systems that precisely express key characteristics and constraints asso-
ciated with DSMLs for particular application domains, such as software-defined
radios, avionics mission computing, and total ship computing environments, and (3)
model transformations and code generation that automate and ensure the consis-
tency of software implementations via analysis information associated with func-
tional and QoS requirements captured by models of domain-specific structure and
behavior.

We have developed an MDD tool-suite called Component Synthesis using Model
Integrated Computing (CoSMIC) [Schmidt:04a], which is an integrated collection of
open-source1 DSMLs that support the development, configuration, deployment, and
evaluation of component-based DRE systems. The CoSMIC MDD tools can be
used to specify requirements, compose DRE applications and their supporting infra-
structure from the appropriate set of middleware components, synthesize the meta-
data, collect data from application runs, and analyze the collected data to re-synthe-
size the required metadata. These activities can be performed via an iterative proc-
ess until the QoS constraints are satisfied end-to-end.

1.1.4. CHAPTER ORGANIZATION
The remainder of this chapter is organized as follows: Section 1.2 describes the
structure and functionality of a component-based video distribution system we de-
veloped as a case study; Section 1.3 presents an overview of CoSMIC and describes
how we have applied its MDD tools to address key challenges of applying compo-
nent-based middleware to our case study; Section 1.4 compares our work on CoS-
MIC with related work; and Section 1.5 presents concluding remarks.

1 CoSMIC's MDD tools are open-source and available for download at
www.dre.vanderbilt.edu/cosmic.

8 Book Title

1.2. OVERVIEW OF VIDEO DISTRIBUTION CASE STUDY
To motivate and explain the features of CoSMIC we use a running example of a
representative DRE system shown in Figure 6. This system is designed for emer-
gency response situations (such as disaster recovery efforts stemming from floods,
earthquakes, hurricanes) and consists of interacting subsystems with a variety of
DRE QoS requirements. Our focus in this chapter is on the unmanned aerial vehicle
(UAV) video distribution portion of this system, which is used to monitor terrain for
flood damage, spot survivors that need to be rescued, and assess the extent of dam-
age. The UAVs transmit this imagery to various other emergency response units, in-
cluding the National Guard, law enforcement agencies, health care systems, fire-
fighting units, and utility companies.

Figure 6. UAV Emergency Response System

Developing and deploying emergency response systems is hard. For example,
there are multiple modes of operations for the UAVs, including aerial imaging, sur-
vivor tracking, and damage assessment. Each mode is associated with a different set
of QoS requirements. For example, a key QoS criterion is the latency requirements
in sending images from the UAVs to ground stations under varying bandwidth avail-
ability. Similar QoS requirements occur in the traffic management, rescue missions,
and fire-fighting operations.

MDD of Component Based DRE Systems 9

In conjunction with colleagues at BBN Technologies [Schantz:04], we have de-
veloped a prototype of the video distribution system described above using the CCM
and Real-time CORBA capabilities provided by CIAO and TAO, respectively. The
components in the video distribution application are shown in Figure 7. Each UAV
is associated with a stream of images. Each image stream is composed of Sender,
Qosket, and Receiver components. Sender components are responsible for
collecting the images from each image sensor on the UAV. Each Sender compo-
nent passes the images it receives to a chain of Qosket [Schmidt:03b] components
that perform operations on the images to ensure that the QoS requirements are satis-
fied.

Figure 7. Emergency Response System Components

Qosket components in our video distribution application include:

- CompressQosket, which compresses images passed along each stream to
reduce the bandwidth required to transmit the images.

- ScaleQosket, which is scales images to reduce the bandwidth required to
send images.

10 Book Title

- CropQosket, which crops images so that only interesting portions of a large
image is transmitted to receivers.

- PaceQosket, which paces the transmission of images in an ordered fashion
to avoid bursty network traffic.

- DiffServQosket, which sets DiffServ codepoints on routers in the path
between each Sender-Receiver pair.

The final Qosket component in the chain then passes the images to a Receiver
component, which collects the images and renders them on a display in the control
room of the emergency response team.

Each Sender, Receiver, and the various Qosket components pass images
via CCM event source and sink ports. There are also manager components that de-
fine policies, such as the relative importance of the different mission modes of each
UAV. These policies in turn modify existing resource allocations by the Qosket
components. For example, the global SystemResourceManager component
monitors resource allocation across all the UAVs that are operational at any mo-
ment. It is responsible for communicating policy decisions from the control center
to each UAV by triggering mode changes. The per-stream LocalResourceMan-
ager component uses the facets exposed by the Qosket components to instruct
the Qosket components to adapt their internal QoS requirements according to the
mode in which a UAV is currently operating.

The component-based implementation of the video distribution application has
~18 component types, which results in ~18 C++ classes. Each Qosket component
has ~4 ports that must be implemented by application developers. A typical de-
ployment of the video distribution application employs ~6 UAVs contributing to 6
image streams with ~5 different components per stream. Since each component in a
stream receives images and pushes them along the pipeline, each component partici-
pates in at least two connections2 to send/receive the images and in one connection
for controlling QoS properties. As a result, there are ~15 connections per stream,
resulting in ~90 such connections related to the image distribution. Each Local-
ResourceManager also receives policy and resource allocation events from the
SystemResourceManager component, resulting in about ~100 connections in a
typical deployment scenario. Using CIAO and standard CCM and D&C capabili-
ties, each connection must be hand-written in the XML deployment descriptor files,
while also being careful to ensure that the ~30 component instances are each as-
signed unique identifiers.

2 These connections are not network connections, but rather represent logical interconnec-
tions between component ports.

MDD of Component Based DRE Systems 11

1.3. APPLYING COSMIC TO ADDRESS VIDEO DISTRIBUTION
NEEDS

As discussed in [Schmidt:04d], the use of CIAO-based QoS-enabled component
middleware to develop the video distribution system described in Section 1.2 signifi-
cantly improved the software quality and flexibility of an earlier prototype
[Schmidt:03a] of this application that was developed using the previous generation
of distributed object computing (DOC) middleware based on TAO. In the absence
of support from MDD tools, however, the following challenges remain unresolved
when using component middleware [Schmidt:04f]:

- The need to define consistent component interfaces,
- The need to specify valid interactions and connections between components,
- The need to generate valid component deployment descriptors,
- The need to configure the component and the underlying middleware and plat-

form,
- The need to evaluate the chosen configuration to ensure QoS satisfaction,
- The need to ensure that requirements of components are met by target nodes

where components are deployed, and
- The need to validate that changing system structure and/or behavior does not

leave it in an inconsistent state.
The lack of simplification and automation in resolving the challenges outlined

above can significantly hinder the effective transition to – and adoption of – compo-
nent middleware technology to develop DRE systems.

This section presents an overview of CoSMIC and describes how we have ap-
plied its MDD tools to address the challenges of applying component-based mid-
dleware to our case study described in Section 1.2.

1.3.1. OVERVIEW OF COSMIC AND GME
CoSMIC is an integrated set of MDD tools that support the development, con-

figuration, and deployment of component-based DRE systems. The MDD tools pro-
vided by CoSMIC address key lifecycle phases involved in developing component-
based DRE systems, as shown in Figure 8 and described below:

- Specification and implementation, which involves defining, partitioning, and
implementation of application functionality as standalone components.

- Packaging, which involves, bundling a suite of software binary modules and
metadata representing application components.

- Installation, which involves populating a repository with the packages re-
quired by the application.

12 Book Title

- Configuration, which involves configuring the middleware with the appropri-
ate parameters to satisfy the functional and systemic requirements of ap-
plication.

- Planning, which involves making appropriate deployment decisions, including
identifying the entities (such as CPUs) of the target environment where the
packages will be deployed.

- Preparation, which involves moving the implementation artifacts to the iden-
tified entities of the target environment.

- Launching, which involves triggering the installed binaries and the application
to a ready state.

- QoS assurance and adaptation, which involves runtime reconfiguration and
resource management to maintain end-to-end QoS.

A comprehensive discussion of CoSMIC appears in [Schmidt:04a]. Below we
discuss the portions of CoSMIC necessary to understand how we applied it to the
component-based video distribution system described in Section 1.2.

as
se

m
bl

y

pl
an

ni
ng

(1
) d

ev
elo

ps

(3) packages

(7) feedback to

configuration &

planning

Figure 8. MDD Capabilities Supported by CoSMIC

All MDD tools in CoSMIC are developed using the Generic Modeling Environ-
ment [GME:01], which is an open-source3 MDD environment that provides a visual

3 GME is available in binary and open-source from www.isis.vanderbilt.edu/Projects/gme/.

http://www.isis.vanderbilt.edu/Projects/gme/

MDD of Component Based DRE Systems 13

interface to simplify the development of DSMLs. GME contains a metamodeling
environment that supports the definition of paradigms, which are type systems that
describe the roles and relationships between elements in a particular domain. GME
has a flexible object-oriented type system that supports inheritance and instantiation
of elements of DSMLs. It also provides an integrated constraint definition and en-
forcement module based on OMG’s Object Constraint Language (OCL) [OCL:03],
which enables the definition of rules that must be adhered to by elements of models
built using a particular DSML.

Figure 9 illustrates the GME metamodel for CCM used in CoSMIC. This meta-
model uses UML structure diagrams and OCL constraints to define the abstract syn-
tax, static semantics, and visualization of CCM elements such as components, ports,
homes, and containers. The dynamic semantics of CCM are implemented via GME
interpreters, which traverse the graphical hierarchy of elements programmed by
application modelers to generate various types of output from model elements, in-
cluding C++ code, XML package and assembly descriptors, and component property
configurations.

Figure 9. A GME-based Metamodel for CCM

The elements in a GME-based DSML represent the elements of the domain in a
more intuitive manner than is possible via third-generation programming languages.
Application developers use GME to create models that are instances of these mod-

14 Book Title

eling language paradigms within the same environment. GME supports facilities to
plug-in analysis and synthesis tools that operate on the models.

Figure 10 illustrates how CoSMIC’s modeling environment created by GME can
be used to model the connections between components in a CCM assembly. Appli-
cation modelers use the CoSMIC environment to address key lifecycle phases in-
volved in developing component-based DRE systems, as shown in Figure 8. CoS-
MIC’s interpreters then generate various types of output associated with the pack-
aging, configuration, and planning MDD tools described in the remainder of this
section.

Figure 10. A CoSMIC Model of a CCM Assembly

1.3.2. APPLYING COSMIC TO THE PACKAGING PHASE
In component-based systems, application components and their associated meta-

data, which specify the connections between component ports, are packaged to-
gether into assemblies. Different assemblies in a package can be tailored to deliver
different end-to-end QoS behaviors and/or algorithms. Large-scale DRE systems
may require creation of assemblies containing hundreds or thousands of compo-
nents, which leads to the following complexities:

- Inherent complexities, which involve ensuring syntactic and semantic com-
patibility. For example, it is essential to ensure that ports of the components
connected in an assembly have matching types.

MDD of Component Based DRE Systems 15

- Accidental complexities, which stem from handcrafting XML files that de-
scribe the component metadata such as the hundreds of connections between
components in the assemblies. For example, XML files that describe as-
semblies are often very large, even for relatively simple groups of connected
components.

To address these challenges we developed the Platform-Independent Component
Modeling Language (PICML) [Schmidt:04f]. PICML is a GME-based DSML that
provides capabilities to handle complex component engineering tasks, such as multi-
aspect visualization and manipulation of components and the interactions of their
subsystems, component deployment planning, and hierarchical modeling and gen-
eration of component assemblies. Figure 11 illustrates how PICML assists compo-
nent developers with the packaging phase in the context of our video distribution
application.

Figure 11. Activities in the Packaging phase

During component development, application developers use CORBA IDL 3.x to
specify the interfaces of the different components, such as Sender and Re-
ceiver. The information stored in these IDL interfaces is imported into PICML in

16 Book Title

one of two ways, i.e., IDL files can be directly imported into PICML using the IDL
importer interpreter of PICML or PICML graphical input interface can be used to
model the elements that are present in the IDL files manually.

 After the information about component interfaces is captured in a PICML
model, application modelers can connection various components visually. In our
video distribution application, for example, PICML is used to model the connection
between the event source and event sink ports of Sender and Receiver compo-
nents to form a component assembly. The semantic rules that determine the valid
connections between components are enforced during component assembly by con-
straints defined in PICML’s metamodel. In our video distribution application, as-
semblies that represent a single stream of image data between every Sender-Re-
ceiver pair are obtained at the end of this composition process.

PICML supports hierarchical composition of component assemblies into higher-
level assemblies and grouping of multiple these assemblies into component pack-
ages. In our video distribution application, for example, multiple instances of image
stream assemblies can be composed to form a complete video distribution applica-
tion assembly. Hierarchical assemblies allow multiple instantiation of the same as-
sembly type, which reduces the complexity of changes that would occur if each as-
sembly were defined separately. A hierarchical assembly is a logical assembly, i.e.,
the ports of a component present in one assembly are connected directly to the ports
of the component at the other end of each connection in a hierarchical component
assembly. The logical hierarchy feature in PICML therefore does not impose any
extra run-time overhead on component applications.

MDD of Component Based DRE Systems 17

ima
inc
cur

out

CropQosket
[CropQosket]

qos

CroppingQosPredictor
[CroppingQosPredictor]

pol
res
inc
com
sca
cro

ima
out
cro
sca
com

dif
cpu

LocalResourceManagerComponent
[LocalResourceManagerComponent]

ima
inc
cur

out

CompressQosket
[CompressQosket]

ima
sen out

Sender
[Sender]

qos

CompressionQosPredictor
[CompressionQosPredictor]

qos

ScaleQosPredictor
[ScaleQosPredictor]

ima
inc
cur

out

ScaleQosket
[ScaleQosket]

cpu

CPUBrokerComponent
[CPUBrokerComponent]

inc out

LocalReceiver
[LocalReceiver]

PolicyChangeEvt

ResourceAllocationEvt

ImageGenerationEvt

ima
inc
cur

out

DiffServQosket
[Dif fServQosket]

delegatesTo

delegatesTo

emit

invoke

invoke

invoke
invoke

invoke

emit emit emit
invoke

invoke
invoke

emit

delegatesTo

Figure 12. XML Descriptors generated by PICML

After PICML has created component assemblies for our video distribution appli-
cation, its packaging interpreter is executed to generate the metadata needed to de-
ploy CCM applications, such as our video distribution application. As shown in
Figure 12, this metadata includes the list of implementation artifacts associated with
each component instance, the list of connections between the different component
instances, the organization of the application into different levels of hierarchy, and
the default properties with which each component instance is initialized. PICML’s
packaging interpreter generates the different types of metadata in the form of XML
descriptors that are tedious and error-prone to write manually. This metadata is used
by the CIAO component middleware uses to drive the deployment of the complete
applications.

By automatically generating the artifacts needed to deploy applications, there-
fore, PICML enforces the correct-by-construction paradigm in component-based ap-
plication development.

1.3.3. APPLYING COSMIC TO THE CONFIGURATION PHASE
Component middleware is often characterized by a large configuration space

[Schmidt:04c], which includes various alternatives for (de)marshaling, event/request

18 Book Title

de-multiplexing, connection management, concurrency, synchronization, and trans-
port protocols, as shown in Figure 13.

These alternatives can be selected at one or more configuration points. Common
configuration points include during (1) component development, where default val-
ues for these mechanisms can be specified, (2) application integration, where com-
ponent defaults can be overridden with domain-specific defaults, and (3) application
deployment, where domain-specific defaults can be overridden based on the actual
capabilities of the target system. The configuration process is thus the phase during
component-based software development that maps known variations in the applica-
tion requirements space to known variations in the middleware solution space.

Hook for the
concurrency
strategy

Hook for
the request
demuxing
strategy

Hook for
marshaling
strategy

Hook for the
connection
management
strategy

Hook for the
underlying
transport
strategy

Hook for the event
demuxing strategy

Hook for the
concurrency
strategy

Hook for
the request
demuxing
strategy

Hook for
marshaling
strategy

Hook for the
connection
management
strategy

Hook for the
underlying
transport
strategy

Hook for the event
demuxing strategy

Figure 13. Middleware Configuration Space

To address the configuration-related challenges described above, we developed
the Options Configuration Modeling Language (OCML) [Schmidt:04e]. OCML is a
GME-based DSML that simplifies the specification and validation of complex DRE
middleware and application configurations. Figure 14 illustrates the process of con-
figuring middleware and applications using OCML and PICML. This three-layered
process of configuring middleware and applications is explained below.

The metamodeling layer is where the middleware configuration space is defined
with the options, values for the options, and interdependencies of the options Mid-
dleware developers use OCML to design the CIAO options model. The constraints
defined in CIAO’s options model can have a dependency hierarchy, such as a spe-
cific value for an option that may depend on other options having specific values.
OCML then uses the CIAO option model to generate a CIAO-specific configurator,
which embodies the rules and dependencies among the various CIAO options.

MDD of Component Based DRE Systems 19

Figure 14. OCML Process View

The CIAO options model is related with PICML and OCML metamodels as
shown in Figure 14 and described below:

- The CIAO Options Model is built using the OCML metamodel, which is inten-
tionally designed to be general-purpose, i.e., the data types used to define the
options are the fundamental data types (such as string and integer) so that they
can define configurations for most applications. Although OCML is a generic
modeling tool for configuring many types of applications and infrastructure, it
is particular useful for highly configurable middleware frameworks, such as
CIAO [Schmidt:04c].

- We have integrated the CIAO Options Model with the PICML metamodel.
Users can therefore configure the underlying CIAO middleware by executing
OCML on model instances with specific PICML elements.

20 Book Title

Figure 15. OCML-generated Configurator for CIAO

The modeling layer is where application developers use the CIAO-specific con-
figurator generated by OCML to customize the middleware according to specific
application needs. As shown in Figure 15, the CIAO-specific configurator provides
a wizard-like user interface that enables application developers to specify a set of
values for different option configurations. These configurations are validated against
the constraints defined in CIAO’s options model using OCML’s constraint engine.
Application developers therefore cannot define inconsistent configurations that
would be semantically meaningless or would yield indeterminate behavior for the
CIAO middleware.

Whenever application developers modify an option parameter, the OCML con-
straint engine manipulates related options so that the constraint validation will suc-
ceed. If a value change request is invalidated by a previous value assignment by the
user, the constraint validation will fail and the value change request will not suc-
ceed. This capability allows middleware developers to define higher-level options
that control the values of many other options and broaden the middleware’s con-
figuration space, while also enabling application developers to fine-tune option to
meet their needs.

MDD of Component Based DRE Systems 21

The application layer illustrates how the OCML configuration process affects
the CIAO middleware at run-time. For our video distribution example, application
developers can use the generated CIAO-specific configurator to tailor the middle-
ware for each group of components that will be collocated on a particular node. This
configurator generates a CIAO-specific service configuration file, which is read by
CIAO at the initialization time to configure its behavior, such as strategies for con-
currency, communication protocols, debugging, and logging.

1.3.4. APPLYING COSMIC TO THE PLANNING PHASE

The planning phase is where component integrators must make appropriate de-
ployment decisions, including identifying the nodes (e.g., computing devices) of the
target environment where assembly packages will be deployed. Figure 16 illustrates
the key activities and decisions during the planning stage, including selection of the
appropriate (1) package to deploy on selected target, (2) target platform to deploy
the packages, and (3) allocation of resources on target platforms. These decisions
are encoded within a deployment plan, which is an XML-based descriptor file that
describes a mapping of a configured application into a domain, including mapping
monolithic implementations to nodes, connections to interconnects and bridges, and
requirements to resources.

Figure 16. Planning Phase Activities

A key challenge of the planning phase is to ensure that the chosen configuration
– together with the packages configured using OCML – deliver the appropriate QoS,

22 Book Title

e.g., end-to-end latency, minimal throughput and bounded jitter, required by the ap-
plication. This challenge involves validating the deployment plan against the re-
quired QoS. To address the planning-related challenges described above, we have
developed the Benchmark Generation Modeling Language (BGML) [Schmidt:04b].

BGML is a GME-based DSML that synthesizes benchmarking test suites to ana-
lyze the QoS performance of OCML-configured DRE systems. Figure 17 shows
how BGML can be used in the planning phase to evaluate deployment plans (which
map components to nodes) to provide feedback to developers as to whether a par-
ticular plan meets end-to-end QoS requirements or not. The following four steps
shown in the figure characterize the BGML planning process:

1. In the first step, an experimenter uses PICML to represent the application sce-
nario visually. This step also involves a visual representation of the deployment
plan.

2. An experimenter uses BGML to associate QoS properties, such as latency, jitter,
or throughput, with the application scenario.

3. BGML model interpreters then synthesize the appropriate test code to run the
experiment and measure the resulting QoS.

4. Metrics are then fed back into models to verify whether the evaluated
scenario meets the specified QoS.

Figure 17. BGML Process View

MDD of Component Based DRE Systems 23

BGML captures key QoS validation concerns of QoS-enabled middleware, such
as modeling how distributed system components interact with each other and repre-
senting metrics that can be applied to specific configuration options and platforms.
In particular, BGML provides test elements (such as operations, return-types, la-
tency, throughput and timer elements) that can be used to represent a generic opera-
tion or a sequence or operation steps and associate non-functional QoS properties
with them. BGML also provides workload elements, such as tasks and task-sets,
that can be used to model and simulate background load present during the experi-
mentation process. These workload elements are mapped to individual platform-
specific code in the interpretation process. Finally, BGML synthesizes project build
files (such as makefiles) needed to generate the executable code.

In our video distribution application, for example, an experimenter may want to
conduct several performance studies. First, he/she may want to determine the best
configuration for the individual LocalResourceManagement and the Qosket
components that minimizes end-to-end latency. Figure 18 depicts how BGML can
be used to associate the latency metric with the generate_image() operation
provided by the Qosket components. For each stream, the LocalResource-
Management component first uses the CropQosket to crop the image, then uses the
ScaleQosket for image scaling based on the DiffServe priorities set at the
DiffServQosket, and finally uses the CompressQosket to compress the im-
age. The overall latency along the critical path thus equals the individual latencies at
each component.

Figure 18. Applying BGML to the Video Distribution Application

24 Book Title

An experimenter may also want to conduct a different experiment, such as meas-
uring the end-to-end latency between LocalResourceManagement component
and LocalReceiver component. Figure 18 thus also shows a timer element as-
sociated with the ImageGenerationEvt event. For this experiment, the end-
to-end latency between LocalResourceManagement component and Local-
Receiver component is measured by observing the time interval between the
push_ImageGenerationEvt() at the LocalResourceManagement com-
ponent and the corresponding event at the LocalReceiver Component.

For the first latency experiment, BGML model interpreters synthesize the code
by generating files, such as header and source benchmark files, header and source
files to generate background load and a build file to create a benchmark library. The
experimenter builds the benchmark as a library, specializes the benchmark with the
type of the remote reference, operation signature and the parameter values. The
CIAO run-time deployment infrastructure deploys the video distribution system
along with the benchmark to generate results.

For the second end-to-end latency experiment, BGML interpreters can synthe-
size files, including a ImageGeneration_Event.h, header file that provides
two operations, start_time_probe() and stop_ time_probe(), that
measure the time at the local machines. If the components are at the same node, the
different between the start and stop operations provide a good estimation of latency.
The scenario also shows a restriction with the benchmark process, i.e., the bench-
marks should run on a single host. When run on different hosts, an external entity
needs to compute the difference between the time values to calculate latency. More-
over, the values may suffer from clock skew at individual nodes. These limitations
are inherent to any benchmark process and are not specific to BGML.

1.4. RELATED WORK
This section summarizes related efforts associated with developing DRE systems

using an MDD approach and compares these efforts with our work on CoSMIC.

Cadena [Hatcliff:03] is an integrated environment developed at Kansas State
University (KSU) for building and modeling component-based DRE systems, with
the goal of applying static analysis, model-checking, and lightweight formal meth-
ods to enhance these systems. Cadena also provides a component assembly frame-
work for visualizing and developing components and their connections. Unlike
PICML, however, Cadena does not support activities such as component packaging,
generating deployment descriptors, component deployment planning, and hierarchi-
cal modeling of component assemblies. To develop a complete MDD environment
that seamlessly integrates component development and model checking capabilities,
we are collaborating [Schmidt:04g] with KSU to integrate PICML with Cadena’s
model checking tools, so we can accelerate the development and verification of DRE
systems.

MDD of Component Based DRE Systems 25

The Virginia Embedded Systems Toolkit (VEST) [VEST:03] and the Automatic
Integration of Reusable Embedded Systems (ARES) [AIRES:03] are MDD analysis
tools that evaluate whether certain timing, memory, power, and cost constraints of
real-time and embedded applications are satisfied. Components are selected from
pre-defined libraries, annotations for desired real-time properties are added, the re-
sulting code is mapped to a hardware platform, and real-time and schedulability
analysis is done. In contrast, PICML allows component modelers to model the
complete functionality of components and intra-component interactions, and does
not rely on predefined libraries. PICML also allows DRE system developers the
flexibility in defining the target platform, and is not restricted to just processors.

The Embedded Systems Modeling Language (ESML) [Karsai:02] was developed
by ISIS at Vanderbilt University to provide a visual metamodeling language based
on GME that captures multiple views of embedded systems, allowing a diagram-
matic specification of complex models. The modeling building blocks include soft-
ware components, component interactions, hardware configurations, and scheduling
policies. The user-created models can be fed to analysis tools (such as AIRES,
VEST, and Cadena) to perform schedulability and event analysis. These analyses
are used to perform design decisions (such as component allocations to the target
execution platform). Unlike PICML, ESML is platform-specific since it is custom-
ized for the Boeing Boldstroke PRiSm QoS-enabled component model [Sharp:03,
Roll:03]. ESML also does not support nested assemblies and the allocation of com-
ponents are tied to processor boards, which is a proprietary feature of the Boldstroke
component model. We are working with the ESML team at ISIS to integrate the
ESML and PICML metamodels to produce a unified DSML suitable for modeling a
broad range of QoS-enabled component models.

Corona [Greenfield:04] is a framework for developing MDD tools that can sig-
nificantly increase the level of automation in application development by applying
domain-specific visual languages to enable rapid assembly and configuration of
framework-based components. The Corona MDD framework is similar to GME,
i.e., it provides visual metamodeling tools, as well as interpreters that translate mod-
eling elements to platform-specific code. We are collaborating with Microsoft to
integrate our CoSMIC DSMLs for DRE systems to Corona.

1.5. CONCLUDING REMARKS
Although QoS-enabled component middleware represents an advance over pre-

vious generations of software infrastructure technologies, its additional complexities
can also negate its key benefits when applied to complex distributed real-time and
embedded (DRE) systems. A promising technology for resolving these complexities
is Model-Driven Development (MDD) [Greenfield:04]. MDD tools provide correct-
by-construction support for designing and validating DRE systems by integrating (1)
analysis techniques that reason about DRE systems and (2) platform-independent

26 Book Title

generation capabilities that can target multiple component middleware technologies,
such as CCM, J2EE, .NET, and ICE.

This chapter describes how the CoSMIC MDD toolsuite developed at Vanderbilt
University help resolve key complexities of QoS-enabled component middleware.
We applied several of CoSMIC’s domain-specific modeling languages (DSMLs) to
a video distribution application. Using this application as a representative example
of common DRE systems, we showed how CoSMIC can support:

- Design-time activities, such as specification of the functionality of compo-
nents, their interactions with other components, the assembly and packaging of
components, and the configuration of the QoS-enabled component middleware
on which the components run.

- Deployment-time activities, such as specification of target environment, and
automatic deployment plan generation.

- Quality Assurance (QA)-time activities, such as validation of the configura-
tion and deployment platform and their impact on QoS.

The CoSMIC MDD tools help bridge the gap between design-time verification
and model-checking tools (such as Cadena [Hatcliff:03], VEST [VEST:03], and
AIRES [AIRES:03]) and the actual deployed and validated component implementa-
tions [Schmidt:04g].

The lessons learned by applying our integrated CoSMIC MDD tools to the video
distribution application case study described in Sections 1.2 and 1.3 illustrate that:

- Component and platform modeling improves DRE systems reasoning, and en-
ables the comprehension of the system at a higher level of abstraction relative
to conventional distributed object computing and component middleware ap-
proaches.

- Early detection of errors improves productivity significantly, which in turn
helps increase the effectiveness of applying QoS-enabled component middle-
ware technologies to the DRE systems domain.

- End-to-end tool-chains for DRE systems need to bridge analysis and empirical
results.

- An MDD approach provides a lighter-weight technique for quickly evaluating
QoS on different configurations and platforms. The generative capabilities of
OCML and BGML ensure that most changes needed to conduct the evaluations
are generated from higher-level models.

- MDD tools and process alleviate key complexities involved in understanding
the impact of middleware configurations on application QoS and bring rigor to
otherwise ad hoc processes used by developers to configure and deploy mid-
dleware for DRE systems.

MDD of Component Based DRE Systems 27

- Current MDD approach of QoS evaluation requires human effort, for example
to change the node component association in the models and re-running the in-
terpreter to generate the XML metadata. Process automation is necessary to
run the benchmarks independently without any intervention.

Our future work will focus on extending CoSMIC with support for dynamic
component allocation, automated performance analysis of component systems by
empirically evaluating component interactions with respect to various performance
metrics, and flexible performance modeling of components to satisfy real-time QoS
properties. We are developing MDD solutions for these problems and integrating
the resulting tools as part of the broader CoSMIC end-to-end modeling tool-suite.

REFERENCES
[AIRES:03] Sharath Kodase, Shige Wang, Zonghua Gu, and Kang G. Shin, “Im-

proving Scalability of Task Allocation and Scheduling in Large Distributed
Real-time Systems using Shared Buffers,” Proceedings of the 9th IEEE Real-
time/Embedded Technology and Applications Symposium (RTAS), Washington,
DC, May, 2003.

[CORBA:02a] Object Management Group, The Common Object Request Broker:
Architecture and Specification, Object Management Group, May, 2002, 2.6.1.

[CORBA:02b] Object Management Group, “The Common Object Request Broker:
Architecture and Specification,” Object Management Group, Dec, 2002, 3.0.2.

[CorbaComponents:02] “CORBA Components,” Object Management Group, OMG
Document formal/2002-06-65, Jun, 2002.

[DandC:03] “Deployment and Configuration Adopted Submission,” Object Man-
agement Group, OMG Document ptc/03-07-08, July, 2003.

[GME:01] Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter Volgysei, Greg Nord-
strom, Jonathan Sprinkle, and Gabor Karsai, “Composing Domain-Specific De-
sign Environments,” IEEE Computer, November, 2001.

[Greenfield:04] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent, Software
Factories: Assembling Applications with Patterns, Models, Frameworks, and
Tools, John Wiley & Sons, New York, 2004.

[Hatcliff:03] John Hatcliff, William Deng, Matthew Dwyer, Georg Jung, and
Venkatesh Prasad, “Cadena: An Integrated Development, Analysis, and Verifi-
cation Environment for Component-based Systems,” Proceedings of the 25th In-
ternational Conference on Software Engineering, Portland, OR, May, 2003.

[Heineman:01] George T. Heineman and Bill T. Councill, Component-Based Soft-
ware Engineering: Putting the Pieces Together, Addison-Wesley, Reading, MA,
2001.

28 Book Title

[Karsai:02] Gabor Karsai, Sandeep Neema, Ben Abbott, and David Sharp, “A Mod-
eling Language and Its Supporting Tools for Avionics Systems,” Proceedings of
21st Digital Avionics Systems Conference, August, 2002.

[OCL:03] “Unified Modeling Language: OCL version 2.0 Final Adopted Specifica-
tion,” Object Management Group, OMG Document ptc/03-10-14, October,
2003.

[Roll:03] Wendy Roll, “Towards Model-Based and CCM-Based Applications for
Real-Time Systems,” Proceedings of the International Symposium on Object-
Oriented Real-time Distributed Computing (ISORC), IEEE/IFIP, Hakodate,
Hokkaido, Japan, May, 2003.

[RTCorba:02] “Real-time CORBA Specification,” Object Management Group,
OMG Document formal/02-08-02, August, 2002.

[RTSJ:00] Greg Bollella, James Gosling, Ben Brosgol, Peter Dibble, Steve Furr,
David Hardin, and Mark Turnbull, The Real-Time Specification for Java, Addi-
son-Wesley, 2000.

[SCA:01] “Software Communications Architecture (SCA) Specification,” Modular
Software-programmable Radio Consortium, Joint Tactical Radio Systems Joint
Program Office, MSRC-5000 SCA Version2.2, Nov, 2001.

[Schmidt:97] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee, “The
Design and Performance of Real-Time Object Request Brokers,” Computer
Communications, Elsevier, Volume 21, Number 4, April, 1998.

[Schmidt:03a] R. Schantz, J. Loyall, D. Schmidt, C. Rodrigues, Y. Krishnamurthy,
and I. Pyarali, “Flexible and Adaptive QoS Control for Distributed Real-time
and Embedded Middleware,” Proceedings of Middleware 2003, 4th International
Conference on Distributed Systems Platforms, IFIP/ACM/USENIX, Rio de Ja-
neiro, Brazil, June 2003.

[Schmidt:03b] Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale, Craig Rod-
rigues, Balachandran Natarajan, Joseph P. Loyall, Richard E. Schantz, and
Christopher D. Gill, “QoS-enabled Middleware,” Middleware for Communica-
tions, 2003, Qusay Mahmoud, Wiley and Sons, New York.

[Schmidt:04a] Aniruddha Gokhale, Krishnakumar Balasubramanian, Arvind S.
Krishna, Jaiganesh Balasubramanian, George T. Edwards, Gan Deng, Emre Tur-
kay, Jeff Parsons, Douglas C. Schmidt, “Model-driven Middleware: A New
Paradigm for Deploying and Provisioning Distributed Real-time and Embedded
Applications,” The Journal of Science of Computer Programming: Special Issue
on Model-driven Architecture, Elsevier, Mehmet Aksit, 2005 (to appear).

[Schmidt:04b] Arvind S. Krishna, Douglas C. Schmidt, Adam Porter, Atif Memon,
and Diego Sevilla-Ruiz, “Improving the Quality of Performance-intensive Soft-
ware via Model-integrated Distributed Continuous Quality Assurance,” Proceed-
ings of the 8th International Conference on Software Reuse, ACM/IEEE, Ma-
drid, Spain, July, 2004.

MDD of Component Based DRE Systems 29

[Schmidt:04c] Arvind S. Krishna, Cemal Yilmaz, Atif Memon, Adam Porter, Doug-
las C. Schmidt, Aniruddha Gokhale, and Balachandran Natarajan, “Preserving
Distributed Systems Critical Properties: a Model-Driven Approach,” IEEE Soft-
ware special issue on Persistent Software Attributes, November/December. 2004.

[Schmidt:04d] Nanbor Wang, Chris Gill, Douglas C. Schmidt, and Venkita
Subramonian, “Configuring Real-time Aspects in Component Middleware,” Pro-
ceedings of the International Symposium on Distributed Objects and Applica-
tions (DOA’04), Agia Napa, Cyprus, October, 2004.

[Schmidt:04e] Arvind S. Krishna, Emre Turkay, Aniruddha Gokhale, and Douglas
C. Schmidt, “Model-Driven Techniques for Evaluating the QoS of Middleware
Configurations for DRE Systems,” Proceedings of the 11th IEEE Real-Time and
Embedded Technology and Applications Symposium, San Francisco, CA,
March, 2005.

[Schmidt:04f] Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Jeff
Parsons, Aniruddha Gokhale, and Douglas C. Schmidt, “A Platform-Independent
Component Modeling Language for Distributed Real-time and Embedded Sys-
tems,” Proceedings of the 11th IEEE Real-Time and Embedded Technology and
Applications Symposium, San Francisco, CA, Mar, 2005.

[Schmidt:04g] Gabriele Trombetti, Aniruddha Gokhale, Douglas C. Schmidt, John
Hatcliff, Gurdip Singh, and Jesse Greenwald, “An Integrated Model-driven De-
velopment Environment for Composing and Validating Distributed Real-time
and Embedded Systems,” Model-driven Software Development, Volume II of
Research and Practice in Software Engineering, Sami Beydeda, Matthias Book,
and Volker Gruhn, Springer-Verlag, New York, 2005.

[Sharp:03] David C. Sharp and Wendy C. Roll, “Model-Based Integration of Reus-
able Component-Based Avionics System,” Proceedings of the Workshop on
Model-Driven Embedded Systems in RTAS 2003, Washington DC, May, 2003.

[Szyperski:02] Clemens Szyperski, Dominik Gruntz, and Stephan Murer, Compo-
nent Software – Beyond Object-Oriented Programming – Second Edition, Addi-
son-Wesley, Reading, Massachusetts, 2002.

[VEST:03] John A. Stankovic, Ruiqing Zhu, Ramasubramaniam Poornalingam,
Chenyang Lu, Zhendong Yu, Marty Humphrey, and Brian Ellis, “VEST: An As-
pect-based Composition Tool for Real-time Systems,” Proceedings of the IEEE
Real-time Applications Symposium, Washington, DC May, 2003.

	1.1. INTRODUCTION
	1.1.1. EMERGING TRENDS AND CHALLENGES
	1.1.2. A PARTIAL SOLUTION: QOS-ENABLED COMPONENT MIDDLEWARE
	1.1.3. RESOLVING KEY CHALLENGES OF COMPONENT-BASED DRE SYSTE
	1.1.4. CHAPTER ORGANIZATION

	1.2. OVERVIEW OF VIDEO DISTRIBUTION CASE STUDY
	1.3. APPLYING COSMIC TO ADDRESS VIDEO DISTRIBUTION NEEDS
	1.3.1. OVERVIEW OF COSMIC AND GME
	1.3.2. APPLYING COSMIC TO THE PACKAGING PHASE
	1.3.3. APPLYING COSMIC TO THE CONFIGURATION PHASE
	1.3.4. APPLYING COSMIC TO THE PLANNING PHASE

	1.4. RELATED WORK
	1.5. CONCLUDING REMARKS
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

