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1 Middleware is Part of a Broad Set of Information Technology Trends
Improvements in hardware and networking technologies over the past decades have yielded dramatic increases in computer 
and communication capabilities. Despite these advances, the effort and cost required to develop, validate, port, and enhance 
software for distributed systems remained remarkably high. Much of the complexity and cost of building these systems can 
be alleviated by the use of highly flexible, efficient, dependable, and secure , which is infrastructure software that 
resides between the applications and the underlying operating systems, networks, and hardware, specifically intended to pro-
vide a more appropriate platform for building and operating distributed systems.  Middleware’s primary roles are to (1) func-
tionally bridge the gap between application programs and the lower-level hardware and software infrastructure to coordinate 
how parts of applications are connected and how they interoperate and (2) provide reusable services that can be composed, 
configured, and deployed to create distributed systems rapidly and robustly by integrating components that may be developed 
by multiple technology suppliers.    

middleware

Middleware represents the confluence of two key areas of information technology (IT): distributed systems and advanced 
software engineering. Techniques for developing distributed systems focus on integrating many computing devices to act as a 
coordinated computational resource. Likewise, software engineering techniques for developing component-based systems 
focus on reducing software complexity by capturing successful patterns of interactions, and creating reusable frameworks for 
integrating these components. Middleware is the area of specialization dealing with providing environments for developing 
systems that can be distributed effectively over a myriad of topologies, computing devices and communication networks. It 
aims to provide developers of networked applications with the necessary platforms and tools to (1) formalize and coordinate 
how parts of applications are composed and how they interoperate and (2) monitor, enable, and validate the (re)configuration 
of resources to ensure appropriate application end-to-end quality of service (QoS), even in the face of failures or attacks.  

During the past few decades we have benefited from the commoditization of hardware (such as CPUs and storage devices), 
operating systems (such as Unix and Windows) and networking elements (such as IP routers). More recently, the maturation 
of software engineering focused programming languages (such as Java and C++), operating environments (such as POSIX 
and Java Virtual Machines), and enabling fundamental middleware based on previous middleware R&D (such as CORBA, 
Enterprise Java Beans, and SOAP/Web services) are helping to commoditize many COTS software components and architec-
tural layers.  The quality of COTS software has generally lagged behind hardware, and more facets of middleware are being 
conceived as the complexity of application requirements increases, which has yielded variations in maturity and capability 
across the layers needed to build working systems.  Nonetheless, improvements in software frameworks [John97], patterns 
[Gam95, Sch00], component models [Syz98], and development processes [RUP99] have encapsulated the knowledge that 
enables common off-the-shelf (COTS) software to be developed, combined, and used in an increasing number of real-world 
applications, such as e-commerce web sites, avionics mission computing, command and control systems, financial services, 
and integrated distributed sensing, to name but a few.   
Some notable successes in middleware for distributed systems include: 

• Distributed Object Computing middleware [OMG02a, Sch86, Gur86, Sch98A, Wol96] (such as CORBA, Java RMI, 
SOAP) which provides a support base for objects that can be dispersed throughout a network, with clients invoking opera-
tions on remote target objects to achieve application goals. Much of the network-oriented code is tool generated using a 
form of interface definition language and compiler. 

• Component middleware [HC01] (such as Enterprise Java Beans, the CORBA Component Model, and .NET), which is a 
successor to DOC approaches, focused on composing relatively autonomous, mixed functionality software elements that 
can be distributed or collocated throughout a wide range of networks and interconnects, while extending the focus and tool 
support toward life cycle activities such as assembling, configuring and deploying distributed applications.   

• World Wide Web middleware standards (such as web servers, HTTP protocols, and web services frameworks), which en-
able easily connecting web browsers with web pages that can be designed as portals to powerful information systems. 



• Grid computing [FK99] (such as Globus), which enables scientists and high performance computing researchers to col-
laborate on grand challenge problems, such as global climate change modeling. 

Within these middleware frameworks, a wide variety of services are made available off-the-shelf to simplify application de-
velopment. Aggregations of simple, middleware-mediated interactions form the basis of large-scale distributed systems.  

2 Middleware Addresses Key Challenges of Developing Distributed Systems  
Middleware is an important class of technology that is helping to decrease the cycle-time, level of effort, and complexity as-
sociated with developing high-quality, flexible, and interoperable distributed systems.  Increasingly, these types of systems 
are developed using reusable software (middleware) component services, rather than being implemented entirely from scratch 
for each use. When implemented properly, middleware can help to:  

• Shield developers of distributed systems from low-level, tedious, and error-prone platform details, such as socket-level 
network programming.  

• Amortize software lifecycle costs by leveraging previous development expertise and capturing implementations of key 
patterns in reusable frameworks, rather than rebuilding them manually for each use.  

• Provide a consistent set of higher-level network-oriented abstractions that are much closer to application and system re-
quirements to simplify the development of distributed systems.  

• Provide a wide array of developer-oriented services, such as logging and security that have proven necessary to operate 
effectively in a networked environment. 

Middleware was invented in an attempt to help simplify the software development of distributed computing systems, and 
bring those capabilities within the reach of many more developers than the few experts at the time who could master the 
complexities of these environments [Sch86].  Complex system integration requirements were not being met from either the 
application perspective, where it was too hard and not reusable, or the network or host operating system perspectives, which 
were necessarily concerned with providing the communication and endsystem resource management layers, respectively.   

Over the past decade, middleware has emerged as a set of software service layers that help to solve the problems specifically 
associated with heterogeneity and interoperability. It has also contributed considerably to better environments for building 
distributed systems and managing their decentralized resources securely and dependably.  Consequently, one of the major 
trends driving industry involves moving toward a multi-layered architecture (applications, middleware, network and operat-
ing system infrastructure) that is oriented around application composition from reusable components, and away from the 
more traditional architecture, where applications were developed directly atop the network and operating system abstractions. 
This middleware-centric, multi-layered architecture descends directly from the adoption of a network-centric viewpoint 
brought about by the emergence of the Internet and the componentization and commoditization of hardware and software. 

Successes with early, primitive middleware, such as message passing and remote procedure calls, led to more ambitious ef-
forts and expansion of the scope of these middleware-oriented activities, so we now see a number of distinct layers taking 
shape within the middleware itself, as discussed in the following section.  

3 Middleware has a Layered Structure, just like Networking Protocols  
Just as networking protocol stacks are decomposed into multiple layers, such as the physical, data-link, network, transport, so 
too are  middleware abstractions being decomposed into multiple layers, such as those shown in Figure 1.  
 
Below, we describe each of these middleware layers and outline some of the technologies in each layer that have matured and 
found widespread use in COTS platforms and products in recent years.  

Host infrastructure middleware leverages common patterns [Sch00] and best practices to encapsulate and enhance native OS 
communication and concurrency mechanisms to create reusable network programming components, such as reactors, accep-
tor-connectors, monitor objects, active objects, and component configurators [Sch02, Sch03]. These components abstract 
away the peculiarities of individual operating systems, and help eliminate many tedious, error-prone, and non-portable as-
pects of developing and maintaining networked applications via low-level OS programming APIs, such as Sockets or POSIX 
pthreads. Widely used examples of host infrastructure middleware include: 

• The Sun Java Virtual Machine (JVM) [JVM97], which provides a platform-independent way of executing code by ab-
stracting the differences between operating systems and CPU architectures. A JVM is responsible for interpreting Java 
bytecode, and for translating the bytecode into an action or operating system call. It is the JVM’s responsibility to encap-
sulate platform details within the portable bytecode interface, so that applications are shielded from disparate operating 
systems and CPU architectures on which Java software runs. 
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Figure 1. Layers of Middleware and Surrounding Context 
rosoft's platform for XML Web services, which are designed to connect information, devices, and 
yet customizable way.  The common language runtime (CLR) is the host infrastructure middleware 
oft’s .NET services. The CLR is similar to Sun’s JVM, i.e., it provides an execution environment 
code and simplifies software development via automatic memory management mechanisms, cross-
nteroperability with existing code and systems, simplified deployment, and a security system. 

nication Environment (ACE) [Sch02, Sch03] is a highly portable toolkit written in C++ that encap-
g system (OS) network programming capabilities, such as connection establishment, event demul-
 communication, (de)marshaling, concurrency, and synchronization. The primary difference be-
d the .NET CLR is that ACE is always a compiled interface, rather than an interpreted bytecode 

ves another level of indirection and helps to optimize runtime performance. 

efines higher-level distributed programming models whose reusable APIs and components auto-
e OS network programming capabilities encapsulated by host infrastructure middleware. Distribu-
lients to program distributed systems much like stand-alone applications, i.e., by invoking opera-
hout hard-coding dependencies on their location, programming language, OS platform, communi-
onnects, and hardware. At the heart of distribution middleware are request brokers, such as:  

 Object Request Broker Architecture (CORBA) [OMG02a] and the CORBA Component Model 
which are open standards for distribution middleware that allows objects and components, 
perate across networks regardless of the language in which they were written or the platform on 
ed. The OMG Real-time CORBA (RT-CORBA) specification [OMG02d] extends CORBA with 

l-time applications to reserve and manage CPU, memory, and networking resources. 

ethod Invocation (RMI) [Wol96], which is distribution middleware that enables developers to cre-
-Java applications, in which the methods of remote Java objects can be invoked from other JVMs, 
osts. RMI supports more sophisticated object interactions by using object serialization to marshal 

eters, as well as whole objects.  This flexibility is made possible by Java’s virtual machine archi-
implified by using a single language. 

d Component Object Model (DCOM) [Box97], which is distribution middleware that enables 
 to communicate over a network via remote component instantiation and method invocations.  
ava RMI, which run on many operating systems, DCOM is implemented primarily on Windows.  
ich is an emerging distribution middleware technology based on a lightweight and simple XML-
lows applications to exchange structured and typed information on the Web. SOAP is designed to 
b services based on a shared and open Web infrastructure. SOAP applications can be written in a 
mming languages, used in combination with a variety of Internet protocols and formats (such as 
ME), and can support a wide range of applications from messaging systems to RPC. 

ices augment distribution middleware by defining higher-level domain-independent services that 
rs to concentrate on programming business logic, without the need to write the “plumbing” code 



required to develop distributed systems by using lower-level middleware directly. For example, application developers no 
longer need to write code that handles naming, transactional behavior, security, database connection, because common mid-
dleware service providers bundle these tasks into reusable components. Whereas distribution middleware focuses largely on 
connecting the parts in support of an object-oriented distributed programming model, common middleware services focus on 
allocating, scheduling, coordinating and managing various resources end-to-end throughout a distributed system using a 
component programming and scripting model. Developers can reuse these component services to manage global resources 
and perform common distribution tasks that would otherwise be implemented in an ad hoc manner within each application. 
The form and content of these services will continue to evolve as the requirements on the applications being constructed ex-
pand.  Examples of common middleware services include: 

• The OMG’s CORBA Common Object Services (CORBAservices) [OMG98b], which provide domain-independent inter-
faces and capabilities that can be used by many distributed systems.  The OMG CORBAservices specifications define a 
wide variety of these services, including event notification, logging, multimedia streaming, persistence, security, global 
time, real-time scheduling, fault tolerance, concurrency control, and transactions.  

• Sun’s Enterprise Java Beans (EJB) technology [Tho98], which allows developers to create n-tier distributed systems by 
linking a number of pre-built software services—called “beans”—without having to write much code from scratch. 
Since EJB is built on top of Java technology, EJB service components can only be implemented using the Java language.  
The CORBA Component Model (CCM) [OMG02b] defines a superset of EJB capabilities that can be implemented using 
all the programming languages supported by CORBA. 

• Microsoft’s .NET Web services [NET01], which complements the lower-level middleware .NET capabilities and allows 
developers to package application logic into components that are accessed using standard higher-level Internet protocols 
above the transport layer, such as HTTP. The .NET Web services combine aspects of component-based development and 
Web technologies. Like components, .NET Web services provide black-box functionality that can be described and re-
used without concern for how a service is implemented.  Unlike traditional component technologies, however, .NET 
Web services are not accessed using the object model–specific protocols defined by DCOM, Java RMI, or CORBA. In-
stead, XML Web services are accessed using Web protocols and data formats, such as HTTP and XML, respectively. 

Domain-specific middleware services are tailored to the requirements of particular domains, such as telecom, e-commerce, 
health care, process automation, or aerospace. Unlike the other three middleware layers – which provide broadly reusable 
“horizontal” mechanisms and services – domain-specific middleware services are targeted at vertical markets. From a COTS 
perspective, domain-specific services are the least mature of the middleware layers today. This immaturity is due partly to the 
historical lack of distribution middleware and common middleware service standards, which are needed to provide a stable 
base upon which to create domain-specific services. Since they embody knowledge of a domain, however, domain-specific 
middleware services have the most potential to increase system quality and decrease the cycle-time and effort required to 
develop particular types of networked applications. Examples of domain-specific middleware services include the following: 

• The OMG has convened a number of Domain Task Forces that concentrate on standardizing domain-specific 
middleware services. These task forces vary from the Electronic Commerce Domain Task Force, whose charter is to 
define and promote the specification of OMG distributed object technologies for the development and use of Electronic 
Commerce and Electronic Market systems, to the Life Science Research Domain Task Force, who do similar work in the 
area of Life Science, maturing the OMG specifications to improve the quality and utility of software and information 
systems used in Life Sciences Research. There are also OMG Domain Task Forces for the healthcare, telecom, command 
and control, and process automation domains. 

• The Siemens Medical Solutions Group has developed syngo® (www.syngo.com), which is both an integrated collection 
of domain-specific middleware services, as well as an open and dynamically extensible application server platform for 
medical imaging tasks and applications, including ultrasound, mammography, radiography, magnetic resonance, patient 
monitoring systems, and life support systems. The syngo® middleware services allow healthcare facilities to integrate 
diagnostic imaging and other radiological, cardiological and hospital services via a blackbox application template 
framework based on advanced patterns for communication, concurrency, and configuration for both business and presen-
tation logic supporting a common look and feel throughout the medical domain. 

 

4 Overarching Benefits of Middleware 
The various layers of middleware described in Section 3 provide essential capabilities for developing and deploying distrib-
uted systems.  This section summarizes the benefits of middleware over traditional non-middleware approaches. 

Growing focus on integration rather than on programming. This visible shift in focus is perhaps the major accomplishment 
of currently deployed middleware.  Middleware originated because the problems relating to integration and construction by 
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composing parts were not being met by applications, which at best were customized for a single use, networks, which were 
necessarily concerned with providing the communication layer, or host operating systems, which were focused primarily on a 
single, self-contained unit of resources.  In contrast, middleware has a fundamental integration focus, which stems from in-
corporating the perspectives of both operating systems and programming model concepts into organizing and controlling the 
composition of separately developed components across host boundaries.  Every middleware technology has within it some 
type of request broker functionality that initiates and manages inter-component interactions.    

Distribution middleware, such as CORBA, Java RMI, or SOAP, makes it easy and straightforward to connect separate pieces 
of software together, largely independent of their location, connectivity mechanism, and technology used to develop them.   
These capabilities allow middleware to amortize software life-cycle efforts by leveraging previous development expertise and 
reifying implementations of key patterns into more encompassing reusable frameworks and components.  As middleware 
continues to mature and incorporate additional needed services, next-generation applications will increasingly be assembled 
by modeling, integrating, and scripting domain-specific and common service components, rather than by being programmed 
from scratch or requiring significant customization or augmentation to off-the-shelf component implementations.   

Focus on end-to-end support and integration, not just individual components. There is now widespread recognition that 
effective development of large-scale distributed systems requires the use of COTS infrastructure and service components.  
Moreover, the usability of the resulting products depends heavily on the weaving of the properties of the whole as derived 
from its parts.  In its most useful forms, middleware provides the end-to-end perspective extending across elements applicable 
to the network substrate, the platform operating systems and system services, the programming system in which they are de-
veloped, the applications themselves, and the middleware that integrates all these elements together. 

The increased viability of open systems architectures and open-source availability. By their very nature, distributed systems 
developed by composing separate components are more open than systems conceived and developed as monolithic entities.  
The focus on interfaces for integrating and controlling the component parts leads naturally to standard interfaces.  In turn, this 
yields the potential for multiple choices for component implementations, and open engineering concepts.  Standards organi-
zations such as the OMG, The Open Group, Grid Forum, and the W3C have fostered the cooperative efforts needed to bring 
together groups of users and vendors to define domain-specific functionality that overlays open integrating architectures, 
forming a basis for industry-wide use of some software components.  Once a common, open structure exists, it becomes fea-
sible for a wide variety of participants to contribute to the off-the-shelf availability of additional parts needed to construct 
complete systems.  Since few companies today can afford significant investments in internally funded R&D, it is increasingly 
important for the information technology industry to leverage externally funded R&D sources, such as government invest-
ment.  In this context, standards-based middleware serves as a common platform to help concentrate the results of R&D ef-
forts and ensure smooth transition conduits from research groups into production systems.   

For example, research conducted under the DARPA Quorum, PCES, and ARMS programs focused heavily on CORBA open 
systems middleware.  These programs yielded many results that transitioned into standardized service definitions and imple-
mentations for CORBA’s real-time [OMG02d, Sch98A], fault-tolerant [OMG98a, Cuk98], and components [OMG02b] 
specifications and productization efforts.  In this case, focused government R&D efforts leveraged their results by exporting 
them into, and combining them with, other on going public and private activities that also used a standards-based open mid-
dleware substrate.  Prior to the viability of common middleware platforms, these same results would have been buried within 
a custom or proprietary system, serving only as the existence proof, not as the basis for incorporating into a larger whole.   

Advanced common infrastructure sustaining continuous innovation. Middleware supporting component integration and 
reuse is a key technology to help amortize software life-cycle costs by leveraging previous development expertise, e.g., com-
ponent middleware helps to abstract commonly reused low-level OS concurrency and networking details away into higher-
level, more easily used artifacts. Likewise, middleware also focus efforts to improve software quality and performance by 
combining aspects of a larger solution together, e.g., component middleware combines fault tolerance for domain-specific 
elements with real-time QoS properties.   

When developers needn’t worry as much about low-level details, they are freed to focus on more strategic, larger scope, ap-
plication-centric specializations concerns. Ultimately, this higher level focus will result in software-intensive distributed sys-
tem components that apply reusable middleware to get smaller, faster, cheaper, and better at a predictable pace, just as com-
puting and networking hardware do today.  And that, in turn, will enable the next-generation of better and cheaper ap-
proaches to what are now carefully crafted custom solutions, which are often inflexible and proprietary.  The result will be a 
new technological paradigm where developers can leverage frequently-used common components, which come with steady 
innovation cycles resulting from a multi-user basis, in conjunction with custom domain-specific components, which allow 
appropriate mixing of multi-user low cost and custom development for competitive advantage. 

5 Key Challenges and Opportunities for Next-generation Middleware 
This section presents some of the challenges and opportunities for next-generation middleware. One such challenge is in sup-
porting new trends towards distributed “systems of systems.” which include many interdependent levels, such as network/bus 



interconnects, embedded local and geographically distant remote endsystems, and multiple layers of common and domain-
specific middleware. The desirable properties of these systems of systems, both individually and as a whole, include predict-
ability, controllability, and adaptability of operating characteristics with respect to such features as time, quantity of informa-
tion, accuracy, confidence, and synchronization.  All these issues become highly volatile in systems of systems, due to the 
dynamic interplay of the many interconnected parts. These parts are often constructed in a similar way from smaller parts.  

Many COTS middleware platforms have traditionally expected static connectivity, reliable communication channels, and 
relatively high bandwidth. Significant challenges remain, however, to design, optimize, and apply middleware for more 
flexible network environments, such as self-organizing peer-to-peer (P2P) networks, mobile settings, and highly resource-
constrained sensor networks. For example, hiding network topologies and other deployment details from networked applica-
tions becomes harder (and often undesirable) in wireless sensor networks since applications and middleware often need to 
adapt according to changes in location, connectivity, bandwidth, and battery power. Concerted R&D efforts are therefore 
essential to devise new middleware solutions and capabilities that can fulfill the requirements of these emerging network 
technologies and next-generation applications.  

There are significant limitations today with regards to building the types of large-scale complex distributed systems outlined 
above that have increasingly more stringent requirements and more volatile environments.  We are also discovering that more 
things need to be integrated over conditions that more closely resemble a dynamically changing Internet, than they do a stable 
backplane.  One problem is that the playing field is changing constantly, in terms of both resources and expectations.  We no 
longer have the luxury of being able to design systems to perform highly specific functions and then expect them to have life 
cycles of 20 years with minimal change.  In fact, we more routinely expect systems to behave differently under different con-
ditions, and complain when they just as routinely do not.   These changes have raised a number of issues, such as end-to-end 
oriented adaptive QoS, and construction of systems by composing off-the-shelf parts, many of which have promising solu-
tions involving significant new middleware-based capabilities and services. 

 To address the many competing design forces and runtime QoS demands, a comprehensive methodology and environment is 
required to dependably compose large, complex, interoperable distributed systems from reusable components. Moreover, the 
components themselves must be sensitive to the environments in which they are packaged.   Ultimately, what is desired is to 
take components that are built independently by different organizations at different times and assemble them to create a com-
plete system.   In the longer run, this complete system becomes a component embedded in still larger systems of systems.  
Given the complexity of this undertaking, various tools and techniques are needed to configure and reconfigure these systems 
so they can adapt to a wider variety of situations.  

An essential part of what is needed to build the type of systems outlined above is the integration and extension of ideas that 
have been found traditionally in network management, data management, distributed operating systems, and object-oriented 
programming languages. But the goal for next-generation middleware is not simply to build a better network or better secu-
rity in isolation, but rather to pull these capabilities together and deliver them to applications in ways that enable them to re-
alize this model of adaptive behavior with tradeoffs between the various QoS attributes. The payoff will be reusable middle-
ware that significantly simplifies the building of applications for systems of systems environments.  The remainder of this 
section describes points of emphasis that are embedded within that challenge to achieve the desired payoff:  

Reducing the cost and increasing the interoperability of using heterogeneous environments. Today, it is still  the case that 
it costs quite a bit more in complexity and effort to operate in a truly heterogeneous environment, although nowhere near 
what it used to cost. Although it is now relatively easy to pull together distributed systems in heterogeneous environments, 
there remain substantial recurring downstream costs, particularly for complex and long-lived distributed systems of systems.  
While homogeneous environments are simpler to develop and operate, they often do not reflect the long run market reality, 
and tend to leave open more avenues for catastrophic failure. We must therefore remove the remaining impediments associ-
ated with integrating and interoperating among systems composed from heterogeneous components. Much progress has been 
made in this area, although at the host infrastructure middleware level more needs to be done to shield developers and end-
users from the accidental complexities of heterogeneous platforms and environments. In addition, interoperability concerns 
have largely focused on data interoperability and invocation interoperability.  Little work has focused on mechanisms for 
controlling the overall behavior of integrated systems, which is needed to provide “control interoperability.”  There are re-
quirements for interoperable distributed control capabilities, perhaps initially as increased flexibility in externally controlling 
individual resources, after which approaches can be developed to aggregate these into acceptable global behavior. 

Dynamic and adaptive QoS management. It is important to avoid “all or nothing” point solutions.  Systems today often work 
well as long as they receive all the resources for which they were designed in a timely fashion, but fail completely under the 
slightest anomaly.  There is little flexibility in their behavior, i.e., most of the adaptation is pushed to end-users or adminis-
trators.  Instead of hard failure or indefinite waiting, what is required is either reconfiguration to reacquire the needed re-
sources automatically or graceful degradation if they are not available.   Reconfiguration and operating under less than opti-
mal conditions both have two points of focus: individual and aggregate behavior. To manage the increasingly stringent QoS 
demands of next-generation applications operating under changing conditions, middleware is becoming more adaptive and 



reflective. Adaptive middleware [Loy01] is software whose functional and QoS-related properties can be modified either (1) 
statically, e.g., to reduce footprint, leverage capabilities that exist in specific platforms, enable functional subsetting, and 
minimize hardware/software infrastructure dependencies or (2) dynamically, e.g., to optimize system responses to changing 
environments or requirements, such as changing component interconnections, power levels, CPU/network bandwidth, la-
tency/jitter; and dependability needs. 

In mission-critical distributed systems, adaptive middleware must make such modifications dependably, i.e., while meeting 
stringent end-to-end QoS requirements. Reflective middleware [Bla99] techniques make the internal organization of sys-
tems–as well as the mechanisms used in their construction–both visible and manipulable for middleware and application pro-
grams to inspect and modify at runtime.  Thus, reflective middleware supports more advanced adaptive behavior and more 
dynamic strategies keyed to current circumstances, i.e., necessary adaptations can be performed autonomously based on con-
ditions within the system, in the system's environment, or in system QoS policies defined by end-users. 

Advanced system engineering tools. Advanced middleware by itself will not deliver the capabilities envisioned for next-
generation distributed systems.   We must also advance the state of the system engineering tools that come with these ad-
vanced environments used to build and evaluate large-scale mission-critical distributed systems.  This area of research spe-
cifically addresses the immediate need for system engineering tools to augment advanced middleware solutions.  A sample of 
such tools might include:  

• Design time tools, to assist system developers in understanding their designs, in an effort to avoid costly changes after 
systems are already in place (this is partially obviated by the late binding for some QoS decisions referenced earlier). 

• Interactive tuning tools, to overcome the challenges associated with the need for individual pieces of the system to work 
together in a seamless manner 

• Composability tools, to analyze resulting QoS from combining two or more individual components 

• Modeling tools for developing system models as adjunct means (both online and offline) to monitor and understand re-
source management, in order to reduce the costs associated with trial and error 

• Debugging tools, to address inevitable problems that arise at run-time. 

Reliability, trust, validation, and assurance. The dynamically changing behaviors we envision for next-generation mid-
dleware-mediated systems of systems are quite different from what we currently build, use, and have gained some degrees of 
confidence in.  Considerable effort must therefore be focused on validating the correct functioning of the adaptive behavior, 
and on understanding the properties of large-scale systems that try to change their behavior according to their own assess-
ment of current conditions, before they can be deployed.  But even before that, longstanding issues of adequate reliability and 
trust factored into our methodologies and designs using off-the-shelf components have not reached full maturity and common 
usage, and must therefore continue to improve.  The current strategies organized around anticipation of long life cycles with 
minimal change and exhaustive test case analysis are clearly inadequate for next-generation dynamic distributed systems of 
systems with stringent QoS requirements. 

6 Taking Stock of Technical Progress on Middleware for Distributed Systems 
The increased maturation of, and reliance on, middleware for distributed systems stems from two fundamental trends that 
influence the way we conceive and construct new computing and information systems. The first is that information technol-
ogy of all forms is becoming highly commoditized i.e., hardware and software artifacts are getting faster, cheaper, and better 
at a relatively predictable rate.  The second is the growing acceptance of a network-centric paradigm, where distributed sys-
tems with a range of QoS needs are constructed by integrating separate components connected by various forms of reusable 
communication services.  The nature of the interconnection ranges from the very small and tightly coupled, such as embed-
ded avionics mission computing systems, to the very large and loosely coupled, such as global telecommunications systems.    

The interplay of these two trends has yielded new software architectural concepts and services embodied by middleware. The 
success of middleware has added new layers of infrastructure software to the familiar operating system, programming lan-
guage, networking, and database offerings of the previous generation.  These layers are interposed between applications and 
commonly available hardware and software infrastructure to make it feasible, easier, and more cost effective to develop and 
evolve systems via reusable software. The past decade has yielded significant progress in middleware, which has stemmed in 
large part from the following: 

• Years of iteration, refinement, and successful use – The use of middleware is not new [Sch98, Ber96].  Middleware 
concepts emerged alongside experimentation with the early Internet (and even its predecessor the ARPAnet), and Mid-
dleware systems have been continuously operational since the mid 1980’s.  Over that period of time, the ideas, designs, 
and (most importantly) the software that incarnates those ideas have had a chance to be tried and refined (for those that 
worked), and discarded or redirected (for those that didn’t).  This iterative technology development process takes a good 



deal of time to get right and be accepted by user communities, and a good deal of patience to stay the course. When this 
process is successful, it often results in standards that codify the boundaries, and patterns and frameworks that reify the 
knowledge of how to apply these technologies, as described in the following bullets. 

• The maturation of open standards and open source – Over the past decade, middleware standards have been estab-
lished and have matured considerably, particularly with respect to mission-critical distributed systems that possess strin-
gent QoS requirements. For instance, the OMG has adopted the following specifications in recent years: (a) Minimum 
CORBA [OMG02c], which removes non-essential features from the full OMG CORBA specification to reduce footprint 
so that CORBA can be used in memory-constrained embedded systems; (b) Real-time CORBA [OMG02d], which in-
cludes features that enable applications to reserve and manage network, CPU, and memory resources more predictably 
end-to-end;  (c) CORBA Messaging [OMG98c], which exports additional QoS policies, such as timeouts, request priori-
ties, and queuing disciplines, to applications; and (d) Fault-tolerant CORBA [OMG98a], which uses entity redundancy 
of objects to support replication, fault detection, and failure recovery. Robust implementations of these CORBA capabili-
ties and services are now available from multiple suppliers, many of whom have adopted open-source business models. 
Moreover, the scope of open systems is extending to an even wider range of applications with the advent of emerging 
standards, such as the Real-Time Specification for Java [Bol00], and the Distributed Real-Time Specification for Java 
[Jen00]. 

• The dissemination of patterns and frameworks – Also during the past decade, a substantial amount of R&D effort has 
focused on developing patterns and frameworks as a means to promote the transition and reuse of successful middleware 
technology.  Patterns capture successful solutions to commonly occurring software problems that arise in a particular 
context [Gam95, Sch00].  Patterns can simplify the design, construction, and performance tuning of middleware and ap-
plications by codifying the accumulated expertise of developers who have confronted similar problems before.  Patterns 
also raise the level of discourse in describing software design and programming activities. Frameworks are concrete re-
alizations of groups of related patterns [John97].  Well-designed frameworks reify patterns in terms of functionality pro-
vided by the middleware itself, as well as functionality provided by an application.  A framework also integrates various 
approaches to problems where there are no a priori, context-independent, optimal solutions.  Middleware frameworks 
[Sch03] can include strategized selection and optimization patterns so that multiple independently developed capabilities 
can be integrated and configured automatically to meet the functional and QoS requirements of particular applications. 

In the brief space of this article, we can only summarize and lend perspective to the many activities, past and present, that 
contribute to making middleware technology an area of exciting current development, along with considerable opportunity 
and unsolved challenging R&D problems.  We have provided references to other sources to obtain additional information 
about ongoing activities in this area. We have also provided a more detailed discussion and organization for a collection of 
activities that we believe represent the most promising future directions for middleware.  The ultimate goals of these activi-
ties are to:  

1. Reliably and repeatably construct and compose distributed systems that can meet and adapt to more diverse, changing 
requirements/environments and 

2. Enable the affordable construction and composition of the large numbers of these systems that society will demand, 
each precisely tailored to specific domains.   

To accomplish these goals, we must overcome not only the technical challenges, but also the educational and transitional 
challenges, and eventually master and simplify the immense complexity associated with these environments, as we integrate 
an ever-growing number of hardware and software components together via advanced middleware. 
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