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Motivation

� Bene�ts of distributed computing:

{ Collaboration ! connectivity and interworking

{ Performance ! multi-processing and locality

{ Reliability and availability ! replication

{ Scalability and portability ! modularity

{ Extensibility ! dynamic con�guration and recon-

�guration

{ Cost e�ectiveness ! open systems and resource

sharing
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Challenges and Solutions

� Developing e�cient, robust, and extensible
distributed applications is challenging

{ e.g., must address complex topics that are less

problematic or not relevant for non-distributed ap-

plications

� Object-oriented (OO) techniques and lan-
guage features enhance distributed software
quality factors

{ Key OO techniques ! design patterns and frame-

works

{ Key OO language features ! classes, inheritance,

dynamic binding, and parameterized types

{ Key software quality factors ! modularity, exten-

sibility, portability, reusability, and correctness
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Tutorial Outline

� Outline key challenges for developing dis-

tributed applications

� Present a concurrent distributed application

from the domain of enterprise medical imag-

ing

� Compare and contrast an algorithmic and

an Object-Oriented design and implemen-

tation of the application
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Software Development

Environment

� Note, the topics discussed here are largely
independent of OS, network, and program-
ming language

{ They are currently used successfully on UNIX and

Windows NT platforms, running on TCP/IP and

IPX/SPX networks, using C++

� Examples are illustrated using freely avail-
able ADAPTIVE Communication Environ-
ment (ACE) OO framework components

{ Although ACE is written in C++, the principles

covered in this tutorial apply to other OO lan-

guages
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Sources of Complexity

� Distributed application development exhibits

both inherent and accidental complexity

� Examples of Inherent complexity

{ Addressing the impact of latency

{ Detecting and recovering from partial failures of

networks and hosts

{ Load balancing and service partitioning

� Examples of Accidental complexity

{ Lack of type-secure, portable, re-entrant, and ex-

tensible system call interfaces and component li-

braries

{ Wide-spread use of algorithmic decomposition
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Concurrent Network Server

Example

� The following example illustrates a concur-

rent OO architecture for medical Image Servers

in an enterprise distributed health care de-

livery system

� Key system requirements are to support:

1. Seamless electronic access to radiology expertise

from any point in the system

2. Immediate on-line access to medical images via ad-

vanced diagnostic workstations attached to high-

speed ATM networks

3. Teleradiology and remote consultation capabilities

over wide-area networks
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Medical Imaging Topology
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Concurrent Image Server Example

: IMAGE

DISPLAY

: NAME

SERVER

: AUTHEN-

TICATOR

: IMAGE

PROCESSOR

SOFTWARE  BUS

: NETWORK

TIME

: IMAGE

LOCATOR

: IMAGE

SERVER
: PRINTER

� Image Servers have the following responsi-
bilities:

* Store/retrieve large medical images

* Respond to queries from Image Locater Servers

* Manage short-term and long-term image persistence
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Multi-threaded Image Server

Architecture

CPU1

: Message

Queue

MASTER

SERVER

1: select()

2: recv(msg)

3: enqueue(msg)

CPU2 CPU3 CPU4

worker

1: dequeue(msg)

2: process()

worker

1: dequeue(msg)

2: process()

worker

1: dequeue(msg)

2: process()

worker

1: dequeue(msg)

2: process()

� Worker threads execute within one process
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Pseudo-code for Concurrent

Image Server

� Pseudo-code for master server

void master server (void)

f
initialize listener endpoint and work queue

spawn pool of worker threads

foreach (pending work request) f
receive and queue request on work queue

g
exit process

g

� Pseudo-code for thread pool workers

void worker (void)

f
foreach (work request on queue)

dequeue and process request

exit thread

g
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Thread Entry Point

� Each thread executes a function that serves
as the \entry point" into a separate thread
of control

{ Note algorithmic design: : :

typedef u_long COUNTER;

// Track the number of requests

COUNTER request_count; // At file scope.

// Entry point into the image request service.

void *worker (Message_Queue *msg_queue)

{

Message_Block *mb; // Message buffer.

while (msg_queue->dequeue_head (mb)) > 0)

{

// Keep track of number of requests.

++request_count;

// Identify and perform Image Server

// request processing here...

}

return 0;

}
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Master Server Driver Function

� The master driver function in the Image

Server might be structured as follows:

// Thread function prototype.

typedef void *(*THR_FUNC)(void *);

static const int NUM_THREADS = /* ... */;

int main (int argc, char *argv[]) {

Message_Queue msg_queue; // Queue client requests.

// Spawn off NUM_THREADS to run in parallel.

for (int i = 0; i < NUM_THREADS; i++)

thr_create (0, 0, THR_FUNC (&worker),

(void *) &msg_queue, THR_BOUND | THR_SUSPENDED, 0);

// Initialize network device and recv work requests.

recv_requests (msg_queue);

// Resume all suspended threads (assumes contiguous id's)

for (i = 0; i < NUM_THREADS; i++)

thr_continue (t_id--);

// Wait for all threads to exit.

while (thr_join (0, &t_id, (void **) 0) == 0)

continue; // ...

}
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Pseudo-code for recv requests()

� e.g.,

void recv requests (Message Queue &msg queue)

f
initialize socket listener endpoint(s)

foreach (incoming request)

f
use select to wait for new connections or data

if (connection)

establish connections using accept
else if (data) f

use sockets calls to read data into msg

msg queue.enqueue tail (msg);

g
g

g
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Limitations with the Image Server

� The algorithmic decomposition tightly cou-
ples application-speci�c functionality with
various con�guration-related characteristics,
e.g.,

{ The image request handling service

{ The use of sockets and select

{ The number of services per process

{ The time when services are con�gured into a pro-

cess

� There are race conditions in the code

� The solution is not portable since it hard-

codes a dependency on SunOS 5.x thread-

ing mechanisms
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Eliminating Race Conditions in

the Image Server

� The original Image Server uses a Message Queue
to queue Message Blocks

{ The worker function running in each thread de-

queues and processes these messages concurrently

� A naive implementation of Message Queue will
lead to race conditions

{ e.g., when messages in di�erent threads are en-

queued and dequeued concurrently

� The solution described below requires the

thread-safe ACE Message Queue class
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An OO Concurrent Image Server

� The following example illustrates an OO so-
lution to the concurrent Image Server

{ The active objects are based on the ACE Task
class

� There are several ways to structure concur-
rency in an Image Server

1. Single-threaded, with all requests handled in one

thread

2. Multi-threaded, with all requests handled in sepa-

rate threads

3. Multi-threaded, with all requests handled by a thread

pool
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(1) Single-threaded Image Server

Architecture

: Reactor

3: handle_input()

4: recv()

5: process()

SINGLE

THREAD

: Image

Request

Handler

1: select()

2: dispatch()

: Image

Request

Handler

: Image

Request

Handler

: Image

Request

Handler

� Every handler processes one connection
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(2) Multi-threaded Image Server

Architecture

: Image

Request

Handler

1: recv()

2: process()

: Image

Request

Handler

1: recv()

2: process()

: Image

Request

Handler

1: recv()

2: process()

: Image

Request

Handler

1: recv()

2: process()

: Image

Request

Handler

1: recv()

2: process()

: Image

Request

Handler

1: recv()

2: process()

: Image

Request

Handler

1: recv()

2: process()

� Every handler processes one connection
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(3) Multi-threaded Image Server

Architecture

CPU1

: Message

Queue

MASTER

THREAD

: Reactor
1: select()

2: dispatch()

3: recv(msg)

4: enqueue(msg)

CPU2 CPU3 CPU4

: Image

Request

Handler

1: dequeue(msg)

2: process()

: Image

Request

Handler

1: dequeue(msg)

2: process()

: Image

Request

Handler

1: dequeue(msg)

2: process()

: Image

Request

Handler

1: dequeue(msg)

2: process()

� Every handler processes one request

20



Design Patterns in the Image

Server

Active Object

Half-Sync/

Half-Async

Factory
Method Adapter

Template
Method

TACTICAL

PATTERNS

STRATEGIC

PATTERNS

Service

Configurator

Reactor

Acceptor

� The Image Server is based upon a system

of design patterns
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Using the Reactor for the Image

Server
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Using the Active Object Pattern

for the Image Server
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Using the Half-Sync/Half-Async

Pattern for the Image Server
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Image Server Public Interface

� The Image Server class implements the ser-
vice that processes image requests synchronously

{ To enhance reuse, the Image Server is derived

from a Network Server

template <class PEER_ACCEPTOR> // Passive conn. factory

class Image_Server

: public Network_Server<PEER_ACCEPTOR>

{

public:

// Pass a message to the active object.

virtual put (Message_Block *, Time_Value *);

// Concurrent entry point into server thread.

virtual int svc (int);

};
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Network Server Public Interface

� Network Server implements the asynchronous

tasks in the Half-Sync/Half-Async pattern

// Reusable base class.

template <class PEER_ACCEPTOR> // Passive conn. factory

class Network_Server : public Task<MT_SYNCH>

{

public:

// Dynamic linking hooks.

virtual int init (int argc, char *argv);

virtual int fini (void);

// Pass a message to the active object.

virtual put (Message_Block *, Time_Value *);

// Accept connections and process from clients.

virtual int handle_input (HANDLE);
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Network Server Protected

Interface

protected:

// Parse the argc/argv arguments.

int parse_args (int argc, char *argv[]);

// Initialize network devices and connections.

int init_endpoint (void);

// Receive and frame an incoming message.

int recv_message (PEER_ACCEPTOR::PEER_STREAM &,

Message_Block &*);

// Acceptor factory for sockets.

PEER_ACCEPTOR acceptor_;

// Track # of requests.

Atomic_Op<> request_count_;

// # of threads.

int num_threads_;

// Listener port.

u_short server_port_;

};
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Network Server Implementation

// Short-hand definitions.

#define PEER_ACCEPTOR PA

// Initialize server when dynamically linked.

template <class PA> int

Network_Server<PA>::init (int argc, char *argv[])

{

parse_args (argc, argv);

thr_mgr_ = new Thread_Manager;

// Create all the threads (start them suspended).

thr_mgr_->spawn_n (num_threads_,

THR_FUNC (svc_run),

(void *) this,

THR_BOUND | THR_SUSPENDED);

// Initialize communication endpoint.

init_endpoint ();

// Resume all suspended threads.

thr_mgr_->resume_all ();

return 0;

}
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template <class PA> int

Network_Server<PA>::init_endpoint (void)

{

// Open up the passive-mode server.

acceptor_.open (server_port_);

// Register this object with the Reactor.

Service_Config::reactor()->register_handler

(this, Event_Handler::READ_MASK);

}

// Called when service is dynamically unlinked.

template <class PA> int

Network_Server<PA>::fini (void)

{

// Unblock threads.

msg_queue_->deactivate ();

// Wait for all threads to exit.

thr_msg_->wait ();

delete thr_msg_;

}
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// Called back by Reactor when events arrive from clients.

// This method implements the asynchronous portion of the

// Half-Sync/Half-Async pattern...

template <class PA> int

Network_Server<PA>::handle_input (HANDLE h)

{

PA::PEER_STREAM stream;

// Handle connection events.

if (h == acceptor_.get_handle ()) {

acceptor_.accept (stream);

Service_Config::reactor()->register_handler

(stream.get_handle (), this, Event_Handler::READ_MASK);

}

// Handle data events asynchronously

else {

Message_Block *mb = 0;

stream.set_handle (h);

// Receive and frame the message.

recv_message (stream, mb);

// Insert message into the Queue (this call forms

// the boundary between the Async and Sync layers).

putq (mb);

}

}
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// Pass a message to the active object.

template <class PA> int

Image_Server<PA>::put (Message_Block *msg,

Time_Value *tv)

{

putq (msg, tv);

}

// Concurrent entry point into the service. This

// method implements the synchronous part of the

// Half-Sync/Half-Async pattern.

template <class PA> int

Image_Server<PA>::svc (void) {

Message_Block *mb = 0; // Message buffer.

// Wait for messages to arrive.

while (getq (mb)) != -1) {

// Keep track of number of requests.

++request_count_;

// Identify and perform Image Server

// request processing here...

}

return 0;

}
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Eliminating Race Conditions (Part

1 of 2)

� There is a subtle and pernicious problem
with the concurrent server illustrated above:

{ The auto-increment of global variable request count
is not serialized properly

� Lack of serialization will lead to race condi-
tions on many shared memory multi-processor
platforms

{ Note that this problem is indicative of a large class

of errors in concurrent programs: : :

� The following slides compare and contrast a

series of techniques that address this prob-

lem
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Basic Synchronization

Mechanisms

� One approach to solve the serialization prob-

lem is to use OS mutual exclusion mecha-

nisms explicitly, e.g.,

// SunOS 5.x, implicitly "unlocked".

mutex_t lock;

typedef u_long COUNTER;

COUNTER request_count;

template <class PA> int

Image_Server<PA>::svc (void) {

// in function scope ...

mutex_lock (&lock);

++request_count;

mutex_unlock (&lock);

// ...

}

� However, adding these mutex * calls explic-

itly is inelegant, obtrusive, error-prone, and

non-portable
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C++ Wrappers for

Synchronization

� De�ne a C++ wrapper to address portabil-

ity and elegance problems:

class Thread_Mutex

{

public:

Thread_Mutex (void) {

mutex_init (&lock_, USYNCH_THREAD, 0);

}

~Thread_Mutex (void) { mutex_destroy (&lock_); }

int acquire (void) { return mutex_lock (&lock_); }

int release (void) { return mutex_unlock (&lock_); }

private:

mutex_t lock_; // SunOS 5.x serialization mechanism.

};

� Note, this mutual exclusion class interface

is portable to other OS platforms

34

Porting Thread Mutex to

Windows NT

� WIN32 version of Thread Mutex:

class Thread_Mutex

{

public:

Thread_Mutex (void) {

InitializeCriticalSection (&this->lock_);

}

~Thread_Mutex (void) {

DeleteCriticalSection (&this->lock_);

}

int acquire (void) {

EnterCriticalSection (&this->lock_);

return 0;

}

int release (void) {

LeaveCriticalSection (&this->lock_);

return 0;

}

private:

// Win32 serialization mechanism.

CRITICAL_SECTION lock_;

};
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Using the C++ Thread Mutex

Wrapper

� Using the C++ wrapper helps improve porta-

bility and elegance:

Thread_Mutex lock;

typedef u_long COUNTER;

COUNTER request_count;

template <class PA> int

Image_Server<PA>::svc (void) {

// ...

lock.acquire ();

++request_count;

lock.release (); // Don't forget to call!

// ...

}

� However, it does not solve the obtrusiveness

or error-proneness problems: : :
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Automated Mutex Acquisition and

Release

� To ensure mutexes are locked and unlocked,

we'll de�ne a template class that acquires

and releases a mutex automatically

template <class LOCK>

class Guard

{

public:

Guard (LOCK &m): lock_ (m) { this->lock_.acquire (); }

~Guard (void) { this->lock_.release (); }

// ...

private:

LOCK &lock_;

}

� Guard uses the C++ idiom whereby a con-

structor acquires a resource and the destruc-

tor releases the resource
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Using the Guard Class

� Using the Guard class helps reduce errors:

Thread_Mutex lock;

typedef u_long COUNTER;

COUNTER request_count;

template <class PA> int

Image_Server<PA>::svc (void) {

// ...

{

Guard<Thread_Mutex> monitor (lock);

++request_count;

}

}

� However, using the Thread Mutex and Guard
classes is still overly obtrusive and subtle
(e.g., beware of elided braces): : :

{ A more elegant solution incorporates C++ fea-

tures such as parameterized types and overloading
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OO Design Interlude

� Q: Why is Guard parameterized by the type

of LOCK?

� A: since there are many di�erent avors of
locking that bene�t from the Guard func-
tionality, e.g.,

* Non-recursive vs recursive mutexes

* Intra-process vs inter-process mutexes

* Readers/writer mutexes

* Solaris and System V semaphores

* File locks

* Null mutex

� In ACE, all synchronization wrappers use to

Adapter pattern to provide identical inter-

faces whenever possible to facilitate param-

eterization
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Transparently Parameterizing

Synchonization Using C++

� The following C++ template class uses the

\Decorator" pattern to de�ne a set of atomic

operations on a type parameter:

template <class LOCK = Thread_Mutex, class TYPE = u_long>

class Atomic_Op {

public:

Atomic_Op (TYPE c = 0) { this->count_ = c; }

TYPE operator++ (void) {

Guard<LOCK> m (this->lock_); return ++this->count_;

}

void operator= (const Atomic_Op &ao) {

if (this != &ao) {

Guard<LOCK> m (this->lock_); this->count_ = ao.count_;

}

}

operator TYPE () {

Guard<LOCK> m (this->lock_);

return this->count_;

}

// Other arithmetic operations omitted...

private:

LOCK lock_;

TYPE count_;

};
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Thread-safe Version of

Concurrent Server

� Using the Atomic Op class, only one change

is made to the code

#if defined (MT_SAFE)

typedef Atomic_Op<> COUNTER; // Note default parameters...

#else

typedef Atomic_Op<Null_Mutex> COUNTER;

#endif /* MT_SAFE */

COUNTER request_count;

� request count is now serialized automatically

template <class PA> int

Image_Server<PA>::svc (void) {

//...

// Calls Atomic_Op::operator++(void)

++request_count;

//...

}
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Using the Service Con�gurator

Pattern in the Image Server

: Service

Config

SERVICE

CONFIGURATOR

RUNTIME

: Service

Repository

: Reactor

: Service

Object

: HS_HA

Image Server

: Service

Object

: WP
Image Server

SHARED

OBJECTS

: Service

Object

: ST
Image Server

� Existing service is based on Half-Sync/Half-

Async pattern, other versions could be single-

threaded or use other concurrency strategies: : :
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Image Server Con�guration

� The concurrent Image Server is con�gured

and initialized via a con�guration script

% cat ./svc.conf

dynamic HS_HA_Image_Server Service_Object *

/svcs/networkd.so:alloc_server() "-p 2112 -t 4"

� Factory function that dynamically allocates

a Half-Sync/Half-Async Image Server object

extern "C" Service_Object *alloc_server (void);

Service_Object *alloc_server (void)

{

return new Image_Server<SOCK_Acceptor>;

// ASX dynamically unlinks and deallocates this object.

}
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Parameterizing IPC Mechanisms

with C++ Templates

� To switch between a socket-based service

and a TLI-based service, simply instantiate

with a di�erent C++ wrapper

// Determine the communication mechanisms.

#if defined (ACE_USE_SOCKETS)

typedef SOCK_Stream PEER_STREAM;

typedef SOCK_Acceptor PEER_ACCEPTOR;

#elif defined (ACE_USE_TLI)

typedef TLI_Stream PEER_STREAM;

typedef TLI_Acceptor PEER_ACCEPTOR;

#endif

Service_Object *alloc_server (void)

{

return new Image_Server<PEER_ACCEPTOR, PEER_STREAM>;

}
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Main Program

� Dynamically con�gure and execute the net-

work service

int main (int argc, char *argv[])

{

// Initialize the daemon and

// dynamically configure the service.

Service_Config daemon (argc, argv);

// Loop forever, running services and handling

// reconfigurations.

daemon.run_event_loop ();

/* NOTREACHED */

return 0;

}
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The ADAPTIVE Communication

Environment (ACE)

THREAD

LIBRARY

SYNCH

WRAPPERS

STREAMS

SUBSYSTEM

VIRTUAL  MEMORY

SUBSYSTEM

DLOPEN

FAMILY

MMAP

FAMILY

SELECT/

POLL

SYSTEM

V  IPC

STREAM

PIPES

NAMED

PIPES

SYSV

WRAPPERS

SPIPE

SAP

GENERAL

OS  SERVICES

C

APIS

C++

WRAPPERS

HIGHER-LEVEL

CLASS  CATEGORIES

AND  FRAMEWORKS

THR

MANAGER

PROCESS

SUBSYSTEM

SOCKETS/

TLI

SOCK_SAP/

TLI_SAP

FIFO

SAP

MEM

MAP

LOG

MSG

REACTOR

SERVICE

CONFIG-

URATOR

ADAPTIVE  SERVICE  EXECUTIVE  (ASX)

SHARED

MALLOC

ACCEPTOR CONNECTOR

� A set of C++ wrappers, class categories,

and frameworks based on design patterns

� C++ wrappers

{ e.g., IPC SAP, Synch, Mem Map

� OO class categories and frameworks

{ e.g., Reactor, Service Con�gurator, ADAPTIVE

Service eXecutive (ASX)
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Obtaining ACE

� The ADAPTIVE Communication Environ-

ment (ACE) is an OO toolkit designed ac-

cording to key network programming pat-

terns

� All source code for ACE is freely available

{ Anonymously ftp to wuarchive.wustl.edu

{ Transfer the �les /languages/c++/ACE/*.gz and
gnu/ACE-documentation/*.gz

� Mailing list

{ ace-users@cs.wustl.edu

{ ace-users-request@cs.wustl.edu

� WWW URL

{ http://www.cs.wustl.edu/~schmidt/
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