
An Overview of the Real-time CORBA Specification

Douglas C. Schmidt Fred Kuhns
schmidt@uci.edu fredk@cs.wustl.edu

Electrical and Computer Engineering Dept. Computer Science Dept.
University of California, Irvine, 92697 Washington University, St. Louis, MO 63130�

This article appeared in the June 2000 IEEE Computer spe-
cial issue on Object-Oriented Real-time Distributed Comput-
ing, edited by Philip Sheu and Eltefaat Shokri.

Abstract

To be an effective platform for performance-sensitive real-time
systems, distributed object computing middleware must sup-
port application quality of service (QoS) requirements end-to-
end. This article describes how the OMG’s Real-time CORBA
specification defines standard policies and mechanisms that
permit the specification and enforcement of end-to-end QoS.

1 Introduction

A growing class of real-time systems require end-to-end sup-
port for various quality of service (QoS) aspects, such as band-
width, latency, jitter, and dependability. These systems include
command and control systems [1], manufacturing process con-
trol systems, video-conferencing, large-scale distributed inter-
active simulations, and testbeam data acquisition systems. In
addition to requiring support for stringent QoS requirements,
these systems have becomeenabling technologiesfor compa-
nies in markets where deregulation, global competition, and
budget restrictions necessitate increased software productivity
and quality.

Requirements for increased software productivity and qual-
ity motivate the use ofdistributed object computing (DOC)
middleware, such as CORBA [2], which is an industry stan-
dard being defined by the Object Management Group (OMG).
DOC middleware resides between applications and the un-
derlying operating systems, protocol stacks, and hardware in
complex real-time systems. CORBA helps to decrease the
cycle-time and effort required to develop high-quality systems
by composing applications out of reusable software compo-
nent services, rather than building them entirely from scratch.

�This work was supported in part by AFOSR grant F49620-00-1-0330,
Boeing, BBN, Cisco, DARPA contract 9701516, NSF grant NCR-9628218,
Motorola, Siemens, and Sprint.

Over the past two years, the use of CORBA middleware
has increased significantly in domains, such as aerospace,
telecommunications, medical systems, and distributed inter-
active simulations, that are characterized by stringent QoS
requirements. The acceptance of CORBA in these domains
stems from the following two factors:

1. Maturation of patterns and frameworks: Over the
past decade, a substantial amount of R&D effort has focused
on patterns and frameworks for high-performance and real-
time applications and middleware. For instance, research con-
ducted as part of the DARPA Quorum project the QuO project
at BBN [3], and the TAO [4] and TMO [5] projects at Wash-
ington University and UC Irvine, have identified key design
patterns, optimization principles, and frameworks that instan-
tiate these patterns into high-quality, QoS-enabled DOC mid-
dleware components.

2. Maturation of standards: Over the past decade, the
OMG’s suite of standards has matured considerably, partic-
ularly with respect to high-performance and real-time sys-
tems. For instance, the OMG has recently adopted the Min-
imum CORBA [6], CORBA Messaging [7], and Real-time
CORBA [8] specifications. Minimum CORBA removes fea-
tures from the complete OMG CORBA specification that are
not required by real-time and embedded systems. The Mes-
saging specification defines several asynchronous method in-
vocation models and exports QoS policies to applications. The
Real-time CORBA specification includes features to manage
CPU, network, and memory resources. This article describes
the key features of the Real-time CORBA specification that
are most relevant to researchers and developers of distributed
real-time and embedded systems.

2 Overview of Real-time CORBA

The Real-time CORBA (RT-CORBA) 1.0 specification defines
standard features that support end-to-end predictability for op-
erations infixed-priorityCORBA applications. This specifica-
tion extends the existing CORBA standard [2] and the recently

1

adopted OMG Messaging specification [7]. In particular, RT-
CORBA 1.0 leverages features from GIOP/IIOP version 1.1
and the Messaging specification’s QoS policy framework. All
these features and specifications are being integrated into the
forthcoming CORBA 3.0 standard.

As shown in Figure 1 an ORB endsystem [4] consists of net-

OS KERNEL

OS I/O SUBSYSTEM

NETWORK ADAPTERS

STANDARD

SYNCHRONIZERS

END-TO-END PRIORITY

PROPAGATION

ORB CORE

OBJECT ADAPTER

CLIENT

GIOP

PROTOCOL

PROPERTIES

THREAD

POOLS
EXPLICIT

BINDING

NETWORK

OS KERNEL

OS I/O SUBSYSTEM

NETWORK ADAPTERS

operation()

out args + return value

in args

OBJECT

REF

OBJECT

(SERVANT)

STUBS
SKELETON

Figure 1: ORB Endsystem Features for Real-Time CORBA

work interfaces, operating system I/O subsystems and commu-
nication protocols, and CORBA-compliant middleware com-
ponents and services. The RT-CORBA specification identi-
fies capabilities that must bevertically (i.e., network interface
$ application layer) andhorizontally(i.e., peer-to-peer) inte-
grated and managed by ORB endsystems to ensure end-to-end
predictable behavior foractivities1 that flow between CORBA
clients and servers. Below, we outline these capabilities, start-
ing from the lowest level of abstraction and building up to
higher-level services and applications.

1. Communication infrastructure resource management:
An RT-CORBA endsystem must leverage policies and mech-
anisms in the underlying communication infrastructure that
support resource guarantees. This support can range from (1)
managing the choice of the connection used for a particular
invocation to (2) exploiting advanced QoS features, such as
controlling the ATM virtual circuit cell pacing rate.

2. OS scheduling mechanisms: ORBs exploit OS mech-
anisms to schedule application-level activities end-to-end.
Since the RT-CORBA 1.0 specification targets fixed-priority
real-time systems, these mechanisms correspond to managing

1An activity represents the end-to-end flow of information between a client
and its server that includes the request when it is in memory, within the trans-
port, as well as one or more threads.

OS thread scheduling priorities. The RT-CORBA specifica-
tion focuses on operating systems that allow applications to
specify scheduling priorities and policies. For example, the
real-time extensions in IEEE POSIX 1003.1c define a static
priority FIFO scheduling policy that meets this requirement.

3. Real-Time ORB endsystem: ORBs are responsible for
communicating requests between clients and servers transpar-
ently. A real-time ORB endsystem must provide standard in-
terfaces that allow applications to specify their resource re-
quirements to the ORB. The policy framework defined by the
OMG Messaging specification [7] allows applications to con-
figure ORB endsystem resources, such as thread priorities,
buffers for message queueing, transport-level connections, and
network signaling, in order to control ORB behavior.

4. Real-time services and applications: Having a real-time
ORB manage endsystem and communication resources only
provides a partial solution. Real-time CORBA ORBs must
also preserve efficient, scalable, and predictable behavior end-
to-end for higher-level services and application components.
For example, a global scheduling service [4, 9] can be used to
manage and schedule distributed resources. Such a schedul-
ing service can interact with an ORB to provide mechanisms
that support the specification and enforcement of end-to-end
operation timing behavior. Application developers can then
structure their programs to exploit the features exported by the
real-time ORB and its associated higher-level services.

To manage these capabilities, RT-CORBA defines standard
interfaces and QoS policies that allow applications to con-
figure and control (1)processor resourcesvia thread pools,
priority mechanisms, intra-process mutexes, and a global
scheduling service, (2)communication resourcesvia pro-
tocol properties and explicit bindings, and (3)memory re-
sourcesvia buffering requests in queues and bounding the
size of thread pools. Applications typically specify these
real-time QoS policies along with other policies when they
call standard ORB operations, such ascreate POA or
validate connection . For instance, when an object ref-
erence is created using a QoS-enabled POA, the POA ensures
that any server-side policies that affect client-side requests are
embedded within atagged component2 in the object reference.
This enables clients who invoke operations on such object ref-
erences to honor the policies required by the target object.

Figure 1 illustrates how the various RT-CORBA features re-
late to the existing CORBA standard. Below, we describe how
RT-CORBA features can be used to manage (1) processor re-
sources and (2) inter-ORB communication. We also outline
RT-CORBA features for managing memory resources, though

2Tagged components are name/value pairs that can be used to export at-
tributes, such as security or QoS values, from a server to its clients within
object references [2].

2

ORB ENDSYSTEM A

32767

0

R
T

C
O

R
B

A
::P

rio
rity

0

255

ORB ENDSYSTEM B

0

31

Figure 2: Mapping CORBA Priorities to Native Priorities

the specification is less explicit on this topic, so we merge our
memory management discussion with the two main topics.

2.1 Managing Processor Resources

Strict control over the scheduling and execution of processor
resources is essential for many fixed-priority real-time applica-
tions. Therefore, the RT-CORBA specification enables client
and server applications to (1) determine the priority at which
CORBA invocations will be processed, (2) allow servers to
pre-define pools of threads, (3) bound the priority of ORB
threads, and (4) ensure that intra-process thread synchronizers
have consistent semantics in order to minimize priority inver-
sion [10].

It is important to recognize that RT-CORBA’s priority
mechanisms cannot work miracles. In particular, ORB mid-
dleware cannot magically imbue a non-real-time OS or com-
munication infrastructure with completely deterministic be-
havior. When used in the appropriate environment, however,
certain RT-CORBA features help application developers and
integrators configure heterogeneous systems to preserve prior-
ities end-to-end, as described below.

2.1.1 Priority Mechanisms

Conventional [2] CORBA ORBs provide no standard way for
clients to indicate the relative priorities of their requests to
ORB endsystems. This feature is necessary, however, to mini-
mize end-to-end priority inversion, as well as to bound latency
and jitter for applications with deterministic real-time QoS re-
quirements. Therefore, the RT-CORBA specification defines
the following platform-independent mechanisms to control the
priority of operation invocations.

Priority type system: The RT-CORBA specification defines
two types of priorities –CORBAandnative– to handle OS
heterogeneity. Each one-way or two-way CORBA operation

can be assigned a CORBA priority, which ranges in value be-
tween 0 and 32767. Each ORB endsystem along an activity
path can be customized to map CORBA priorities to native
priorities, which may be unique on different endsystems. Fig-
ure 2 illustrates how CORBA priorities can be mapped onto
two different native ORB endsystem priorities.

Priority models: The RT-CORBA specification defines a
PriorityModel policy with two values,SERVER DECLARED

and CLIENT PROPAGATED, as shown in Figure 3 and de-

GLOBAL CORBA PRIORITY = 100

LYNXOS

PRIORITY

= 100

WINNT

PRIORITY

= 5

SOLARIS

PRIORITY

= 135

Current::priority(100)

to_native(100) => 100

Current::priority(100)

to_native(100) => 5

Current::priority(100)

to_native(100) => 135

SERVICE

CONTEXT

= 100ORB
ENDSYSTEM

A

ORB
ENDSYSTEM

B

ORB
ENDSYSTEM

C

(B) CLIENT

 PROPAGATED

 MODEL

SERVICE

CONTEXT

= 100

(A) SERVER

 DECLARED

 MODEL

ORB
ENDSYSTEM

A
(3) CLIENT'S PRIORITY

 IS NOT PROPAGATED

 BY INVOCATION

(1) SERVER

 PRIORITY

 IS PRE-SET

ORB
ENDSYSTEM

B

(2) PRIORITY IS

 EXPORTED IN IOR

Figure 3: Real-time CORBA Priority Models

scribed below.

� Server declared priorities: This model allows a server
to dictate the priority at which an invocation made on a par-
ticular object will execute. In the server declared model, the
priority is designateda priori by a server based on the value of
thePriorityModelpolicy in the POA where the object was ac-
tivated. A single priority is encoded into the object reference,
which is then published to the client as a tagged component in
an object reference, as shown in Figure 3 (A).

Although the server declares the priority, the client ORB is
aware of the selected priority model policy and can use this
information internally. For example, priority-banded connec-
tions can be implemented on the client by matching invoca-
tion priorities and priority-bands with priorities advertised by
a server. Thus, the ORB can guarantee that client invocations
on a particular object are performed at the designated priority
on the server.

� Client propagated priorities: Although the server de-
clared model is useful for certain real-time applications, it is

3

not suited for all application use-cases. For instance, one way
for a server to avoid priority inversions is to process incom-
ing requests at a priority equivalent to the client thread that
invoked the operation originally [10]. The RT-CORBA client
propagated model allows clients to declare invocation priori-
ties that must be honored by servers. In this model, each invo-
cation carries the CORBA priority of the operation in the ser-
vice context list that is tunneled with its GIOP request. Each
ORB endsystem along the activity path between the client and
server maps this end-to-end CORBA priority to a native OS
priority and processes the request at this priority. Moreover,
if the client invokes a two-way operation, its CORBA priority
will determine the priority of the reply.

Figure 3 (B) depicts the case where an invocation from a
client on ORB endsystemA to a server on ORB endsystem
C results in an invocation on an intervening ORB endsys-
temB, each running operating systems with different native
thread priority ranges. The CORBA priority of the client is
propagated with the request. Each intervening server along
the activity path maps the client’s CORBA priority to a native
priority that is appropriate for its host platform and end-to-
end global priority. For example, on Windows NT the global
CORBA priority can be mapped to a native OS priority of 26.
Likewise, on Solaris, the same global CORBA priority can be
mapped to a real-time thread with a priority of 135.

Priority transforms: The client propagated and server de-
clared priority models described above are not sufficient for
all applications. For instance, the server declared model only
maps priorities to objects, which may be too coarse-grained for
more dynamic use-cases. Likewise, although the client propa-
gated model is more dynamic, there are use-cases where appli-
cations require additional control over the ultimate priority at
which a given invocation is processed. For example, different
priority ceiling protocols may be required in a server to handle
inbound invocations, i.e., before the upcall is performed, and
outbound invocations, i.e., before a client or servant performs
a remote method invocation.

To support these uses-cases, therefore, the RT-CORBA
specification permits a server application to definepriority
transformsthat set the priority at which particular invocations
are performed,e.g., based on external factors, such as current
server load, operation criticality [4], or the state of a global
scheduling service [9]. Transforms are implemented ashooks
that are applied as requests are received or sent. A transform
hook is passed the current CORBA priority and target object id
and can change the invocation priority, potentially by calling
out to application-supplied code. The following two priority
transform models are defined in RT-CORBA:

� Inbound transforms: These transforms are applied
during the invocation upcall,i.e., after reception by the ORB
Core, but before the servant operation is dispatched in a server.

� Outbound transforms: These transforms are per-
formed when anonwardoperation is invoked from a servant.
An onward operation occurs whenever a servant invokes an
operation on an object.

2.1.2 Thread Pools

Many embedded systems use multi-threading to (1) distin-
guish between different types of service, such as high-priority
vs. low-priority tasks [1] and (2) support thread preemption to
prevent unbounded priority inversion. Prior to the RT-CORBA
specification, however, there was no standard API for pro-
gramming multi-threaded CORBA servers. Thus, it was not
possible to use CORBA to program multi-threaded real-time
systems without using proprietary ORB features.3

One way to implement a server ORB without threads is to
use areactiveconcurrency model [11]. In this approach, a
server ORB reads each request from the underlying commu-
nication mechanism, processes it to completion, and then re-
trieves the next request and so forth. If all requests require
a fixed, relatively short amount of processing, a reactive con-
currency model may be feasible. However, many distributed
applications have complex object implementations that run for
variable and/or long durations. Moreover, to avoid unbounded
priority inversion and deadlock, real-time applications often
require some form of pre-emptive multi-threading.

To address these concurrency issues, therefore, the
RT-CORBA specification defines a standardthread pool
model [11]. This model allows server developers to pre-
allocate pools of threads and to set certain thread attributes,
such as default priority levels. Thread pools are useful for real-
time ORB endsystems and applications that want to leverage
the benefits of multi-threading, while bounding the amount of
memory resources, such as stack space, they consume. More-
over, thread pools can be optionally configured to buffer or not
buffer requests, which provides further control over memory
usage.

Thread pools can be defined and associated with POAs in
an RT-CORBA server. Each POA must be associated with
one thread pool, although a thread pool can be associated with
multiple POAs. Figure 4 illustrates the creation and associa-
tion of thread pools in a server.

The RT-CORBA specification defines two different thread
pool styles,with andwithout lanes, as described below.

Thread pools: The simplest RT-CORBA thread pool model
allows developers to control the overall concurrency level
within server ORBs and applications. A thread pool is cre-
ated with a fixed number of statically allocated threads that

3Strictly speaking, the RT-CORBA specification is an optional part of the
CORBA standard, though ORBs that implement it are obliged to adhere to its
interfaces and policies.

4

SERVER ORB COREI/O
THREADS

Root POA

Thread Pool A

PRIORITY

10
PRIORITY

35
PRIORITY

50
PRIORITY

20

Thread Pool B

DEFAULT

PRIORITY

Default
Thread Pool

S3
DEFAULT

S1
DEFAULT

S2
DEFAULT

POA A

S4
10

S5
50

S6
50

S7
35 POA B

S8 S9 S10

POA C

S11
20

S12
25

S13
15

Figure 4: POA Thread Pools in Real-time CORBA

an ORB uses to process client messages. These pre-allocated
threads will consume system resources even if they are not
used, however. Therefore, RT-CORBA provides an interface
that allows server developers to pre-allocate an initial number
of so-calledstatic threads, while allowing this pool to grow
dynamically to handle bursts of client requests.

Server applications can use thecreate threadpool
API to specify (1) the default number of static threads that
are created initially, (2) the maximum number of threads that
can be created dynamically, and (3) the default4 priority of all
these threads. If a request arrives and all existing threads are
busy, a new thread may be created to handle the request. No
additional thread will be created, however, if the maximum
number of threads in the pool have been spawned.

A pool can be optionally pre-configured for a maximum
buffer size or number of requests, as shown in Figure 5. If
buffering is enabled for the pool, the request will be queued
until a thread is available to process it. If no queue space
is available or request buffering was not specified the ORB
should raise aTRANSIENT exception, which indicates a tem-
porary resource shortage. When the client receives this excep-
tion it can reissue the request at a later point.

Thread pools with lanes: Many real-time and embedded
systems applications statically associate global CORBA pri-
orities to pools of threads. For example, a telecommunica-
tions application may select three distinct priorities to rep-
resent low-latency, high-throughput, and best-effort request
classes. Alternatively, a fixed set of rate-groups with cor-
responding global CORBA priorities are a convenient model

4Threads within a pool may have their priorities changed dynamically in
accordance with the priority models or priority transforms described in Sec-
tion 2.1.1.

SERVER ORB COREI/O
THREADS

Thead Pool A

PRIORITY 10 PRIORITY 35 PRIORITY 20

Thead Pool B

Figure 5: Buffering Requests in RT-CORBA Thread Pools

for applications, such as avionics mission computing [1], with
real-time periodic processing requirements. In these scenar-
ios, it is desirable to partition the threads in a thread pool into
different subsets, each with different priorities. Therefore, RT-
CORBA defines athread pool with lanesmodel, which en-
ables developers to bound both the overall concurrency of a
server and the amount of work performed at a given priority
level.

For each lane in this thread pool model, the server specifies
the CORBA priority, static thread count, and dynamic thread
count. Dynamic threads are assigned the lane priority. Thread
pools with lanes can be configured to allow lanes with higher
priorities to borrow threads from lanes with lower priorities. If
a thread is borrowed, its priority is temporarily raised to that
of the lane that borrows it. When the invocation processing
is complete, its priority reverts to its previous value and the
thread returns to its original lane. Thread pools with lanes also
can be configured to support request buffering if no threads are
available to process incoming requests.

2.1.3 Standard Synchronizers

As mentioned in Section 2.1.2, the CORBA specification [2]
does not define a threading model. Thus, there is no stan-
dard, portable API that CORBA applications can use to ensure
semantic consistency between their synchronization mecha-
nisms and the internal synchronization mechanisms used by
an ORB. Real-time applications, however, require this consis-
tency to enforce priority inheritance and priority ceiling proto-
cols [10].

To ensure semantic consistency, therefore, the RT-CORBA
specification defines a standard set oflocality constrainedmu-
tex operations. Figure 6 illustrates the mutex interface defined
by RT-CORBA.

5

CLIENT

Mutex
lock()

unlock()

try_lock()

ORB CORE

OBJECT

ADAPTER

OBJECT
(SERVANT)

mutex3

mutex2

mutex4

mutex1

Figure 6: Standard Synchronizers

2.1.4 Global Scheduling Service

The scheduling abstractions defined by real-time operating
systems such as VxWorks, LynxOS, and POSIX 1003.1c im-
plementations are relatively low-level. For instance, they re-
quire developers to map their high-level application QoS re-
quirements into lower-level OS mechanisms, such as thread
priorities and virtual circuit bandwidth/latency parameters.
This manual mapping step is non-intuitive for many applica-
tion developers, who prefer to design in terms of object inter-
faces and object operations.

To allow applications to specify their scheduling require-
ments in a higher-level, more intuitive manner, the RT-
CORBA specification defines a global scheduling service [8].
This service is a CORBA object that is responsible for allo-
cating system resources to meet the QoS needs of the applica-
tions that share the ORB endsystem. Applications can use the
real-time scheduling service to specify the processing require-
ments of their operations in terms of various parameters, such
as worst-case execution time or period, as shown in Figure 7.

RT_INFO

REPOSITORY

OFF-LINE

SCHEDULER

DEPENDS UPON =
EXECUTES AFTER

4: ASSESS

 SCHEDULABILITY

5: ASSIGN OS THREAD

 PRIORITIES AND

 DISPATCH QUEUE

 ORDERING

 SUBPRIORITIES

6: SUPPLY

 PRIORITIES

 TO ORB

3: POPULATE

 RT_INFO

 REPOSITORY

RUN-TIME

SCHEDULER

Priority/
Subpriority
Table Per

Mode

MODE 0

MODE 1

MODE 2

MODE 3

CURRENT

MODE

SELECTOR

struct RT_Info {
 Time worstcase_exec_time_;
 Period period_;
 Criticality criticality_;
 Importance importance_;
};

1: CONSTRUCT CALL

 CHAINS OF RT_OPERATIONS

2: IDENTIFY THREADS

RT

Operation

RT

Operation

RT

Operation

I/O SUBSYSTEM

ORB CORE

OBJECT ADAPTER

Figure 7: Real-Time CORBA Global Scheduling Service

2.2 Managing Inter-ORB Communication

Historically, the CORBA specification and conventional ORBs
have supportedlocation transparency, i.e., applications cannot
detect whether components are distributed or collocated in the
same process. Moreover, the features of the underlying OS,
network, and/or bus are considered a black box. Although this
encapsulation is useful for applications with best-effort QoS
requirements, it is inadequate for applications with more strin-
gent QoS requirements.

To allow applications to control the underlying communi-
cation protocols and endsystem resources, therefore, the RT-
CORBA specification defines standard interfaces that can be
used to select and configure certainprotocol properties. In ad-
dition, client applications canexplicitly bindto server objects
using priority-bands and private connections, as described be-
low.

2.2.1 Selecting and Configuring Protocol Properties

CORBA uses inter-ORB communication mechanisms to ex-
change requests between clients and servers. These mecha-
nisms are built upon lower level protocols that provide various
types of QoS. Inter-ORB protocol (IOP) instances are com-
posed of both an ORB protocol and a mapping to a specific
underlying transport protocol. For example, the Internet Inter-
ORB Protocol (IIOP) is a mapping of the General Inter-ORB
Protocol (GIOP) onto TCP/IP. Thus, an IOP contains two pro-
tocol layers –ORBandtransport– each having its own set of
protocol properties.

RT-CORBA defines an interface that permits applications
to specify ORB- and transport-specific protocol properties
that control various communication protocol features, such as
ATM virtual circuits or Internet RSVP traffic specification.
Each ORB/transport protocol properties tuple is defined by
a Protocol struct that ultimately resides in a sequence
structs called aProtocolList , as defined by the following
CORBA IDL:

interface ProtocolProperties {};

typedef struct {
IOP::ProfileId protocol_type;
ProtocolProperties

orb_protocol_properties;
ProtocolProperties

transport_protocol_properties;
} Protocol;
typedef sequence <Protocol> ProtocolList;

The order in which protocol properties appear in the
ProtocolList is significant – it allows applications to in-
dicate the order of their protocol preferences. For example,
a client may specify that IIOP is more preferable than other
protocol combinations.

6

To allow applications to select and configure their desired
ORB/transport protocol properties, RT-CORBA defines the
following pair of QoS policies,ClientProtocolandServerPro-
tocol.

Server-side protocol properties: CORBA servers can use
the ServerProtocolpolicy to select which protocols to con-
figure into an object reference. This policy can be passed
with other POA policies when thecreate POAoperation
is invoked on thePortableServer::POA interface. The
ServerProtocolpolicy has two purposes: it (1) publishes a list
of available protocols to clients and (2) defines protocol con-
figuration attributes for server connections.

The POA ensures that the ordering of profiles in object ref-
erences conforms to the ordering of protocols specified in the
ServerProtocolpolicy. Thus, a server can export its proto-
col preferences to clients by passing them in object references
whose profiles are arranged in a particular order. When a client
receives the object reference, it can either accept the server’s
preference or use different selection criteria.

Client-side protocol properties: Client applications can
use theClientProtocolpolicy to select which protocols to use
when they connect to objects. This policy is applied when a
client obtains a binding to an object. TheClientProtocolpol-
icy indicates the protocol properties a client is interested in, as
well as the ordering of its preferences.

The ClientProtocolpolicy can be set either by a client or
server, but not both for the same object reference. Servers
can publish particular protocol requirements and preferences
on a per-object basis. In contrast, clients can use this policy
to change protocol policies on a per-invocation basis. If set on
the server, theClientProtocol policy is propagated to the
client in the object reference, as shown in Figure 8. This figure

NETWORKOS KERNEL

ATMVME RTP

OS KERNEL

ORB
CORE

CLIENT
OBJECT
(SERVANT)

2: PASS

 OBJECT

 REFERENCE

OBJECT ADAPTER

ATMVME TCP

4: INVOKE OPERATION 1: CREATE OBJECT

 REFERENCE3: SELECT

 PROTOCOL

Figure 8: Configuring and Selecting Protocol Properties

illustrates how a server can designate the protocols available
to the client. The server publishes the VME, ATM, and RTP
protocols, in that order, in a tagged component in the object
reference. The client then must abide by theClientProtocol
policy propagated by the server and select from one of these

three protocols, ignoring any protocols that it does not support.
This feature allows a server to enforce specific inter-ORB pro-
tocol requirements on clients.

The particular properties for specific protocols can be de-
fined via interface inheritance. For example, the standard TCP
protocol properties are shown below:

interface TCPProtocolProperties
: ProtocolProperties

{
attribute long send_buffer_size;
attribute long recv_buffer_size;
attribute boolean keep_alive;
attribute boolean dont_route;
attribute boolean no_delay;

};

This protocol property interface permits applications to set
common attributes of TCP endpoints. For example, the send
and receive buffer size attributes can set the size of endpoint
socket queues. Many TCP implementations use these values
to determine the TCP window size, which in turn affects end-
to-end throughput. If thekeep alive attribute is enabled
TCP will send a probe on inactive connections to verify that
they are still valid. Finally, theno delay attribute disables
TCP’s Nagle algorithm so that small requests can be sent even
if earlier requests have not yet been acknowledged.

2.2.2 Explicit Binding

The original CORBA specification only supportedimplicit
binding[2]. In this model, resources along the activity path be-
tween a client and its server object are establishedon-demand,
e.g., after a client’s first invocation on the server. Implicit bind-
ing helps preserve location transparency by allowing clients to
access remote objects or collocated objects using a common
programming model. In addition, it helps conserve OS and
networking resources, such as socket handles and ATM vir-
tual circuits, by (1) deferring network connections until they
are actually used and (2) allowing multiple client threads in a
process to be multiplexed through shared network connections
to their corresponding servers.

Unfortunately, implicit binding is inadequate for real-time
applications with deterministic QoS requirements. In partic-
ular, deferring object/server activation and resource alloca-
tion until run-time can increase latency and jitter significantly.
Moreover, the use of connection multiplexing can yield sub-
stantial priority inversion [11] due to head-of-line blocking as-
sociated with connection queues that are processed in FIFO
order.

To avoid these problems, the RT-CORBA specifica-
tion defines an explicit binding mechanism that uses
the validate connection operation defined on the

7

CORBA::Object interface in the CORBA Messaging spec-
ification. This mechanism enables clients to (1) pre-establish
connections to servers and (2) control how client requests are
sent over these connections. The following two policies –
priority-bandedandprivate connections– are defined to sup-
port explicit binding in RT-CORBA.

Priority-banded connections: Priority-banded connections
allow clients to (1) specify explicit priorities for each network
connection and (2) select the appropriate connection at run-
time based on the CORBA priority of the thread that invoked
an operation. Clients are responsible for specifying policies
that define one or more priority-bands when they establish
connections explicitly.

Priority-band information is exported to the server within
the service context of the first invocation sent across the
connection. For instance, explicit binding information is
passed in a request forbind priority band , which
is an implicit operation.5 When a server receives a
bind priority band request, which includes the re-

quested priority in the service context, it allocates resources
to the connection. Subsequent requests on this connection are
then processed at the requested priority.

In the absence of anbind priority band operation,
an implicit bind is performed when the first invocation is sent
over the connection. The service context of this request must
contain the CORBA priority range,i.e., minimum and maxi-
mum values, for the banded connection. The server then al-
locates any necessary resources to ensure subsequent requests
arriving on this connection will be processed at the desired
priority.

Private connections: Many ORBs supportmultiplexedcon-
nections, which yield better utilization of connections and
other limited OS resources [11]. However, real-time applica-
tions often require private,i.e., non-multiplexed, connections,
which are well-suited for applications that possess determin-
istic QoS requirements. In this case, a connection cannot be
reused for another two-way request until the reply for the pre-
vious request is received. To support this feature, RT-CORBA
provides a policy,PrivateConnection, that allows clients to
select private connections that minimize the duration of any
end-to-end priority inversions. Oddly, there is no API in RT-
CORBA to explicitly request a multiplexed connection,i.e.,
this is considered an ORB implementation detail.

Figure 9 illustrates the use of priority-banded, private con-
nections between a client and server. In Figure 9 private con-
nections are combined with priority banding. Thus, each client
operation is sent to the server over a pre-allocated connection
that is assigned to a fixed priority range. The server ORB then

5Implicit operations are implemented by an ORB, not by an application
object, and are typically used for internal inter-ORB communication and con-
figuration.

_validate_connection (out CORBA::PolicyList
inconsistent_policies);

CLIENT
ORB CORE

P1-5 P10-20 P21-100

SERVER
ORB CORE

 PRIORITY-BANDED
PRIVATE CONNECTIONS

P1-5 P10-20 P21-100

Figure 9: Explicit Binding

processes the servant upcall at the specified priority and sends
the reply across the same non-multiplexed connection. This
combination of features ensures that end-to-end priorities are
maintained and that key sources of priority inversion are elim-
inated.

3 Concluding Remarks

Due to constraints on weight/power consumption, memory
footprint, and performance, real-time, embedded system soft-
ware development has historically lagged behind mainstream
software development methodologies. As a result, real-time,
embedded software systems are costly to evolve and maintain.
Moreover, they are often so specialized that they cannot adapt
readily to meet new market opportunities or technology inno-
vations.

Meeting the QoS requirements of next-generation dis-
tributed applications requires an integrated architecture that
can deliver end-to-end QoS support at multiple levels in real-
time and embedded systems. Distributed object computing
(DOC) middleware based on the Real-time CORBA (RT-
CORBA) 1.0 specification [8] offers solutions to some re-
source management challenges facing researchers and devel-
opers of real-time systems, particularly those systems that can
be designed using fixed priority scheduling.

However, an important class of mission-critical applica-
tions cannot meet their QoS requirements under dynamic load
conditions [9] just using the features standardized in the RT-
CORBA 1.0 specification. Moreover, it is very hard for com-
plex mission-critical application developers to determine the
priorities of various operationsa priori without significantly
underutilizing various resources, such as the CPU. To address
these issues, therefore, the OMG is standardizing dynamic
scheduling techniques, such as deadline-based [12] or value-
based scheduling.

A freely-available, open-source implementation of the
Real-time CORBA specification called TAO is available at
www.cs.wustl.edu/ �schmidt/TAO.html . TAO has
been used on a wide range of distributed real-time and em-

8

bedded systems, including an avionics mission computing ar-
chitecture for Boeing [1], the SAIC next-generation Run Time
Infrastructure (RTI) implementation for the Defense Model-
ing and Simulation Organization’s (DMSO) High Level Archi-
tecture (HLA), and high-energy physics experiments at SLAC
and CERN

References
[1] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and

Performance of a Real-time CORBA Event Service,” inProceedings of
OOPSLA ’97, (Atlanta, GA), pp. 184–199, ACM, October 1997.

[2] Object Management Group,The Common Object Request Broker:
Architecture and Specification, 2.4 ed., Oct. 2000.

[3] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for
Quality of Service for CORBA Objects,”Theory and Practice of Object
Systems, vol. 3, no. 1, pp. 1–20, 1997.

[4] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[5] K. Kim and E. Shokri, “Two CORBA Services Enabling TMO
Network Programming,” inFourth International Workshop on
Object-Oriented, Real-Time Dependable Systems, IEEE, January 1999.

[6] Object Management Group,Minimum CORBA - Joint Revised
Submission, OMG Document orbos/98-08-04 ed., August 1998.

[7] Object Management Group,CORBA Messaging Specification. Object
Management Group, OMG Document orbos/98-05-05 ed., May 1998.

[8] Object Management Group,Real-time CORBA Joint Revised
Submission, OMG Document orbos/99-02-12 ed., March 1999.

[9] C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling Service,”Real-Time
Systems, The International Journal of Time-Critical Computing
Systems, special issue on Real-Time Middleware, vol. 20, March 2001.

[10] R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-Time Synchronization
Protocols for Multiprocessors,” inProceedings of the Real-Time
Systems Symposium, (Huntsville, Alabama), pp. 259–269, December
1988.

[11] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokers,”Journal of
Real-time Systems, special issue on Real-time Computing in the Age of
the Web and the Internet, vol. 21, no. 2, 2001.

[12] Y.-C. Wang and K.-J. Lin, “Implementing A General Real-Time
Scheduling Framework in the RED-Linux Real-Time Kernel,” inIEEE
Real-Time Systems Symposium, pp. 246–255, IEEE, December 1999.

Biographical Sketches

Dr. Douglas C. Schmidt is an Associate Professor in the
Electrical and Computer Engineering Department at the Uni-
versity of California, Irvine. His research focuses on de-
sign patterns, implementation, and experimental analysis of
object-oriented techniques that facilitate the development of
high-performance, real-time distributed object computing sys-
tems on parallel processing platforms running over high-speed
ATM networks and embedded system interconnects. Dr.

Schmidt received B.S. and M.A. degrees in Sociology from
the College of William and Mary in Williamsburg, Virginia,
and an M.S. and a Ph.D. in Information and Computer Sci-
ence from the University of California, Irvine (UCI) in 1984,
1986, 1990, and 1994, respectively. Dr. Schmidt is a member
of the IEEE, ACM, and USENIX.

Fred Kuhns is a Senior Research Associate in Department
of Computer Science at Washington University, St. Louis. He
received the M.S.E.E. from Washington University, St. Louis,
and the B.S.E.E. from the University of Memphis, Memphis
TN. His research interests focus on operating system and net-
work support for high-performance, real-time distributed ob-
ject computing systems. His recent research projects have
focused on the design and implementation of real-time I/O
subsystems, software support for high-performance interfaces,
and QoS support in integrated service routers.

9

