
14.2 Explicit Runge-Kutta Method for
Ordinary Differential Equations

A. Purpose

These routines solve

dyi
dt

= fi(t, y1, y2, ..., yNEQ)

yi(t0) = ηi

, i = 1, 2, ..., NEQ. (1)

using an 8th order explicit Runge-Kutta method. Other
than lacking a built in facility for saving the solution,
it has much the same functionality as the variable order
Adams codes in Chapter 14.1. Except for crude toler-
ances, it requires significantly more function evaluations
to get a given accuracy. It has the advantages of being
slightly easier to use (?), requiring less internal overhead
(and thus is faster for derivative functions that are very
cheap to evaluate), and being able to generate slightly
more accurate results.

B. Usage

Described below under B.1 through B.6 are:

B.1 Setting up for single precision usage.1
B.1.a The calling routine .1
B.1.b The user supplied subroutine for

computing derivatives . 1
B.1.c The user supplied subroutine for doing

output . 1
B.1.d Argument Definitions . 1

B.2 Setting options using the array OPT() 3
B.3 Additional details for the array IDAT() 4
B.4 Finding zeros of arbitrary functions, G-stops 5
B.5 Setting up the program to use reverse

communication . 7
B.6 Modifications for single precision usage 7

B.1 Program Prototype, Double Precision

B.1.a The calling routine

The dimensioning parameters must satisfy the following
constraints. We use ik as an abbreviation for IDAT(k),
which is defined further below. OPT has a dimension
that depends on the options specified. The subroutine
arguments should be declared as follows:

INTEGER IDAT(i5)

DOUBLE PRECISION TS(≥ 3), Y(≥ i4),
OPT(??), DAT(i6), WORK(i7)

To obtain results integrating from TS(1) to TS(3) with
the default error control (see XRKRE1=3 in Section
B.2), assign values to TS, Y, OPT(1) (=0.), IDAT(1)
(=0), IDAT(4) (=NEQ), IDAT(5:7) (= i5, i6, i7), and

100 CALL DXRK8(TS, Y, OPT, IDAT,
DAT, WORK)

if (IDAT(1) .ne. 3) go to 100

(Here the computation is complete.)

B.1.b Program Prototype, DXRK8F, Double
Precision

The user supplied subroutine, DXRK8F, provides val-
ues of the derivative, given values of the independent
and dependent variables.

SUBROUTINE DXRK8F(TS, Y, F, IDAT)

DOUBLE PRECISION TS(∗), Y(∗), F(∗)
INTEGER IDAT(∗)
Compute F(i) = fi(TS(1), Y), i = 1, 2, ..., NEQ.

RETURN

END

The use of options 25 or 26 described in Section B.4.
requires additional actions in DXRK8F.

B.1.c Program Prototype, DXRK8O, Double
Precision

The user supplied subroutine, DXRK8O, provides out-
put of results, and may set flags to inform the integrator
of special situations.

SUBROUTINE DXRK8O(TS, Y, IDAT, DAT)

DOUBLE PRECISION TS(∗), Y(∗), DAT(∗)
INTEGER IDAT(∗)
Output results depending on the value of

IDAT(1:3), see Section B.3 for details.

RETURN

END

B.1.d Argument Definitions

TS() [inout] Three locations in this array are used as
follows. All of these must be initialized before the
first call.

TS(1) = current value of t, the independent variable.

TS(2) = current value of h, the integration stepsize.
If the initial value is 0, a starting stepsize is selected
automatically. A new value for TS(2) is selected by
the integrator at the conclusion of each step.

TS(3) = the value of tf , the final output point. No
derivatives are computed past tf . The user output
routine DXRK8O is called with IDAT(1) = 30 at
t = tf . If TS(3) is not changed at this time a return

c©1997 Calif. Inst. of Technology, 2015 Math à la Carte

July 11, 2015 Explicit Runge-Kutta Method for Ordinary Differential Equations 14.2–1

is made with IDAT(1)=3, and IDAT(2) = 0. Other-
wise the integration continues with a new value for tf .
Using options that give output at interpolated values
is a better way to get output at multiple points since
the code may be forced to take a small stepsize in
order to integrate exactly up to TS(3).

Y() [inout] Vector of dependent variables, y, with ini-
tial values provided by the user, and updated by the
integrator.

OPT() [inout] A vector providing access to optional
features of the integrator. Defaults are such that
you need not read about any options except those
which you may have an interest in. Option 0 must
be the last option specified and is the only one re-
quired. Many of the options take arguments which
follow immediately after the option. The next op-
tion follows after the last argument for the previous
option. See Section B.2 for details and the following
table for a quick overview.

Options Brief description
0 No more options.
1 Specify equation groups for options 2–10.

2–7 Various types of error control.
8 Control of diagnostic output.
9 Specify the y’s interpolated to.
10 Allows for very slightly better accuracy (?).
11 Not used.

12–14 Reverse communication options.
15–16 Set maximum and minimum stepsize.

17 Specify floating point precision.
18–19 Not used.

20 Max. steps between output points.
21 Give output at end of every step.
22 Specify interpolation point(s).
23 Specify end of step output past given point.
24 Specify t+ k ×∆t output points.

25–26 G-Stops (zeros of arbitrary functions).
27 Change criteria used for stepsize control.
28 Specify range allowed when interpolating.

IDAT() [inout] IDAT(1:3) are used to communicate in-
formation about the state of the integration to and
from the integrator. The brief summary given here
is adequate if you are not concerned with details of
what is going on and are not doing anything fancy.
See Section B.3 for more details. IDAT(1) gives a
high level indication of what is going on as follows.

0 Starting an integration, must be set when start-
ing a new integration.

1 Computing derivatives. Set on calls to
DXRK8F.

2 Computing G’s for G-Stops. Set on calls to
DXRK8F.

3 Some kind of termination condition. If you
aren’t doing anything fancy the integration has
reached the endpoint with no problems.

4 Some kind of error, see ”Error Procedures and
Restrictions” for details.

≥20 Some kind of output point has been reached.
Set on calls to DXRK8O.

IDAT(4) must be set to NEQ, the number of dif-
ferential equations in the system.

IDAT(5) the dimension of IDAT. If you have used
no options then 49 is a big enough number. Else,
let I8 = number of times option 8 (XRKDIG)
has been turned ”on”, and I10 be defined sim-
ilarly for option 10 (XRKXP). Let IE be the
number of times options 2–7 (error control) have
been specified (including the implied specifica-
tion for the first group of equations if an explicit
specification is not given) and IO the number of
options for I/O (21 to 24) that have been spec-
ified. Then one should have IDAT(5) ≥ 54 +
2 × (I8+I10+IO) + 3 × IE. The actual space
needed may be a bit smaller. If you choose a
number too small you will get a diagnostic giv-
ing the size needed. If you use a negative value
for IDAT, it will behave as if you had provided
the negative of that value, except it will replace
IDAT(5) with the smallest value that you could
use.

IDAT(6) As for IDAT(5) (including negative val-
ues), except gives the dimension of DAT.
IDAT(6) ≥ 30+2×IDAT(4)+ space for all error
tolerances + space for defining t output values
and delta t for option 24 (XRKTDT) + if using
extra precision, 1 for t and for each y that is
kept in extended precision.

IDAT(7) As for IDAT(5), except for WORK. De-
fine LWI = 0 if there is no interpolation be-
ing done to arbitrary points, and otherwise
LWI = 6 + 7 × IDAT(4). Make IDAT(7)
≥ 10× IDAT(4) + LWI.

The rest of IDAT is used by the integrator for in-
ternal working space. Comments in the source code
describe how this space is used.

DAT() [inout] Used by the integrator for internal work-
ing space. If there is nothing special, this must have
a dimension of at least 30 + 2*NEQ. Some options
require additional space in DAT. These options must
start at a location > 30 + 2*NEQ, and any such
space must start at a location > than the last space
used by a previous option.

WORK() [inout] Data that need not be saved from one
step to the next if the integration is interrupted for

14.2–2 Explicit Runge-Kutta Method for Ordinary Differential Equations July 11, 2015

another task. This data must be preserved if the in-
tegration is interrupted by some other means than
by setting IDAT(1) = −2 when IDAT(1) ≥ 20.

F() [out] (Returned by users subprogram DXRK8F to
DXRK8.) The user should compute fi(t,y) and store
it in F(i), i = 1, 2,..., NEQ, whenever DXRK8F is
called with IDAT(1) = 1. (F is part of the array
WORK passed into DXRK8.)

B.2 Setting options using the array OPT()

All options are specified using the array OPT. Options
are indicated with a parameter name, an ”=”, and a
floating point integer followed by 0 or more arguments.
The arguments are indicated in parentheses in the order
in which they must be given. If an argument is followed
by “=. . . ”, the “. . . ” gives the default value for this op-
tion. Following the arguments for one option, one speci-
fies the next option. Options are indicated with integers
below, even though they must of course be supplied as
floating point numbers. If an option is supposed to have
an integer value, the nearest integer to the floating point
value supplied is used. For clarity in specifying these
options one may want to use the names for these pa-
rameters. The code gives declarations for defining these
parameters. Other parameters used for accessing IDAT
and DAT are defined there also. If one is accessing these
arrays we recommend that it be done using these param-
eters.

XRKEND=0 End of options.

Begin Options For Groups of Equations
You need not use any groups, and options will just be
treated as if there were one group that contains all the
equations. Options discussed in this paragraph apply
to a group of equations. If an option does not appear
in the first group a default action is taken until that
option is specified. One can imagine that there is an
implicit group starting with equation index 0 prior
to the first group, and an implicit group ending with
equation index NEQ + 1, which effectively says that
the previous group ends with equation index NEQ.
A silly example can illustrate how this works. Sup-
pose we have 6 equations and when we interpolate we
only want to interplate for equations 1,2, and 5. The
option index for setting a group is 1, that for inter-
polation is 9, and in this case a 0 says you don’t want
the action and a 1 that you do. the options vector
would then look like (. . . 1 3 . . . 9 0 . . . 1 5 . . . 9 1 . . . 1
6 . . . 9 0 . . .). We could have started this with a (9
1), but that is not necessary as the default is to in-
terpolate for everything. Of course other “1” options
and other options may be specified interlaced with
what is given. Error tolerances are always on (unless
one says there is no error tolerance), and if one is not

given prior to the first group a default error tolerance
is used.

XRKEQG=1 (N1=1) Index of first equation in a
group of equations. This option is only necessary
if one wants to treat groups of equations differently
in some way. If this option is specified more than
once, the values of N1 must be strictly increasing.

Begin Options for Error Control
See Section D for a discussion of how the error control
works. In brief, for the ith equation, an error toler-
ance, τi is defined by the options below, and third
and fifth order error estimates, e3,i and e5,i are avail-
able from formulas use by the code. This data is used
to generate an order 8 estimate of the current error.

XRKAE=2 (A2) For the group in which this error tol-
erance applies, τi (see just above) is A2.

XRKRE1=3 (A3=ε.75, B3=e.75) τ2i is A32 + B32 ×
(sum in group of y2i). Note that this is the default
error test with A3 = B3 = ε.75, where ε is the small-
est number > 0 such that the floating point addition
1 + ε gives a result different from 1.

XRKRE2=4 (A4, B4) τ2i is A42 + (B42 × y2i).

XRKAEV=5 (A5) Similar to option 2, except “A2”
is now a vector, with values stored starting in
DAT(A5), where A5 > DAT(LOCTY) + 2 × NEQ.
(The parameter LOCTY has the value 30.) This has
the same effect as option 2 followed by option 1 with
N1 increased by 1 each time, for the number of times
there are equations in this set. Space used in DAT for
storing this kind of error control information should
be contiguous and specified with increasing values of
A5.

XRKREV=6 (A6) As for option 5, except applied
similarly to option 4. Thus there are values (”a−1”,
”r1”, ”a2”, ...) stored starting at DAT(A6). If both
options 5 and 6 are used, the space used by the vec-
tors for option 6 must not overlap with the space used
by vectors for 5.

XRKNOE=7 Don’t accumulate anything into the
measure of the error for equations in this set.

End of Options for Error Control

XRKDIG=8 (N8=0.D0) N8 = 0.D0, turns off diag-
nostic output for an equation group, =1.D0 turns on
output giving information used in computing the er-
ror measure for the groups.

XRK???=9 Reserved

XRKXP=10 (N10=0.D0) N10 = 1.D0 causes extra
precision to be used in accumulating Y, =0.D0 uses
standard floating point precision. This option implies
that extra precision will also be used in accumulat-
ing TS(1). If one only wants the extra precision in

July 11, 2015 Explicit Runge-Kutta Method for Ordinary Differential Equations 14.2–3

TS(1), follow this option with option 1, N1 = 1.D0,
and then option 10 with N10=0.D0. (This option
doesn’t seem to help much.)

XRK???=11 Reserved

End of Options For Groups of Equations

Other Options

XRKFR1=12 Use reverse communication for comput-
ing f(t,y), rather than calling DXRK8F. When a re-
turn is made to the calling program requesting an
evaluation of f(t,y), the user should store f(t,y) in
F, and call DXRK8A. See Section B.5.

XRKFR2=13 Use reverse communication for com-
puting f(t,y), rather than calling DXRK8F. Store
f(t,y) in WORK(IDAT(2)). This saves copying F to
WORK(IDAT(2)) inside DXRK8A. See Section B.5.

XRKOR=14 Use reverse communication for output
rather than calling DXRK8O.

XRKMAX=15 (A15 = |TS(3) − current value in
TS(1)|) A15 gives absolute value of the maximum
stepsize allowed.

XRKMIN=16 (A16=0.D0) A16 gives the minimum
absolute stepsize allowed.

XRKEPS=17 (A17=mach eps) A17 gives the preci-
sion of the floating point arithmetic. If one knows
that there is a loss of precision in computing the
derivatives, one may want to set this to a value larger
than the default value.

XRK???=18 Reserved

XRK???=19 Reserved

XRKMXS=20 (N20) N20 = maximum number of
steps between output points. If this option is not set,
100,000 steps are taken before output with IDAT(1)
= 20.

Begin Options for Getting Output

XRKEOS=21 Give output at end of all steps.

XRKTI=22 (A22) Interpolate the solution at t = A22.
A new value may be set for the output point when
output at this point is indicated. This and the fol-
lowing two options can be given multiple times.

XRKTS=23 (A23) As for option 22, except return
value at the end of the first step at or past A23 point.
(Avoids the expense of interpolation.)

XRKTDT=24 (A24, B24) As for option 22, except
after giving the output, if one does not change the
output point, the value of B24 is added to the cur-
rent output point to get a new one.

XRKXG=25 (N25). N25 gives the number of extrap-
olatory G-Stops.

XRKIG=26 (N26). N26 gives the number of interpo-
latory G-Stops.

End of Options for Getting Output

XRKEC=27 (A27=100.D0, B27=6.D0) Logic in the
code attempts to select the stepsize so that
A27×||Error Estimate||2 is 1, and will reject a step if
the square root of this is > B27. ||Error Estimate||2
is computed by dividing error estimates by requested
tolerances. These numbers will be adjusted upwards
if the requested error can not be obtained.

XRKIFS=28 (A28=.1D0) Fraction of a step by which
an interpolation point can be outside the current in-
tegration interval.

B.3 Additional detail for the argument IDAT

IDAT(1:3) are used for communication between the
user’s code and the integration package. The user should
change values in these locations only in the rare cases in-
dicated here. IDAT(1) is used as follows.

= k < 0 Such values must be set by the user when
DXRK8O is called (would have been called if reverse
communication is used). For k < −1 these return to
the routine that called DXRK8 with IDAT(1) = 3,
and IDAT(2) = −k.

−1 Restart the integration after any updates neces-
sary for the last interpolation point and after
giving returns for any G-stops that occur at ex-
actly this value of TS(1).

−2 A return is requested for the purpose of saving
the solution with the idea of possibly continuing
this integration later. One can save the contents
of TS, Y, IDAT, and DAT. Then later restore
them and simply call DXRK8A to continue an
integration. One need not save the contents of
OPT or WORK.

< −2 The integration is terminated and can not be
continued. The value returned in IDAT(2) pre-
sumably has some meaning to the user. Such
values also be set in DXRK8F.

= 0 Set by the user to indicate the integration is being
started.

= 1 Compute derivatives. IDAT(2) gives the location
in WORK where derivatives are stored. This is of
interest to the user only if he has selected option 13.

= 2 Used for actions associated with G-Stops. See Sec-
tion B.4.b for details.

= 3 Set when the integration is finished or being inter-
rupted. IDAT(2) provides more detail (if needed) as
follows.

14.2–4 Explicit Runge-Kutta Method for Ordinary Differential Equations July 11, 2015

= 0 TS(1) = TS(3), presumably the integration is
finished. If the integrator is called with a new
value for TS(3), the integration continues; if
called with TS(3) unchanged, a diagnostic re-
sults. Continuing the integration by changing
the value of TS(3) only makes sense if one does
not require interpolation for any other purpose
and is interested in saving space in WORK by
avoiding one of the options that require inter-
polation.

= k > 1 Results from the user setting IDAT(1) <
−1, see description of that case above.

= 4 An error has occurred. See Section E below for
details.

= 20 Output from option 20.

> 20 Values of TS(1) and Y have been set for an out-
put point, and IDAT(1) gives the integer index of
the option that resulted in this output point. If 21
< IDAT(1) < 24, then IDAT(2) gives the order in
which this option was declared among the options in
this range of options, and DAT(IDAT(3)) contains
the value of t associated with the output. Thus if one
has a large number of different output points defined,
one has a way to tell specifically which is responsi-
ble for the current output, and one can change the
value in DAT(IDAT(3)) (and/or DAT(IDAT(3)+1)
when IDAT(1) = 24), to set values for future out-
put. Thus e.g. if one has an array of values ti, where
output is desired, one can start with A22 = t1, and
when getting output associated with this option, set
DAT(IDAT(3)) = the next ti in the list. In the case
of G-Stops IDAT(2) gives the index in TS() of the
g function which has a zero, and IDAT(3) gives the
lowest index of the g which has a 0 at exactly the
same value of TS(1). When these two indexes are
not equal, successive calls will be made to dxrk8f, and
dxrk8o until the user has been informed of all such
stops. If the lowest indexed G-Stop is an extrapola-
tory stop, the integration will be restarted automat-
ically after processing the last G-Stop reported for
a given value of TS(1). If IDAT(1) is set to −1 or
−2, all G-Stops at the current value of TS(1) will be
processed prior to taking the action requested.

B.4 Usage of G-Stops

The “G-stop” feature provides a means for the integra-
tion package to monitor user defined functions, gi(t,y),
and return control to the user’s code for special actions
whenever one of these functions changes sign. This fea-
ture is activated by Options 25 and 26, and is supported
by the subroutine DXRK8G.

A distinction is made between interpolating and extrap-
olating G-stop functions. If the differential equations

remain well behaved beyond a zero of a function g(t,y)
then g should be an interpolating G-stop function. Its
zero can be detected by noting a sign change after com-
pleting a step of the solution algorithm and then us-
ing iteration and interpolation to locate the zero pre-
cisely. When f(t,y) has a discontinuity it is usually
the case that there is a natural extension of f which
is smooth and thus will allow the use of interpolatory G-
stops. One can distinguish how f is to be computed
in DXRK8F via a flag that is set to one value be-
fore the G-stop, and to another value after the stop.
Thus if y′ = −|y| + sin t, y0 = 1, one could integrate
y′ = Ymul y+ sin t starting with Ymul = −1. The G-stop
y detects a change in sign of y at the end of a step, it-
erates to find the 0, and informs the user of this, and
provides the values of t and y at this point. The user
then changes the sign of Ymul and restarts the integra-
tion at the point of the sign change by setting IDAT(1)
= −1. Note that unlike the first form for y′, the second
form has a discontinuity only upon having the G-stop
flagged at which point the integration is restarted.

If there is no convenient way to compute f (or a smooth
extension of f) beyond the G-stop, the function g(t,y)
must be tested more frequently and its zero must be
found by searching from one side using iteration and
extrapolation. An example of such a problem is y′ =
−
√
|y| + sin t, y0 = 1. Since interpolating G-Stops are

easier to use, require less computation, are more accu-
rate and more reliable, they should be preferred when
the problem allows their use.

Since the user is to store the values of the g’s starting
in TS(4), we index them in this way. Using Option 25
the user may specify that there are N25 extrapolating G-
stop functions, say gi(t,y), i = 4, ..., N25+3, and using
Option 26 the user may specify that there are N26 interp-
polating G-stop functions, say gi(t,y), i = N25 + 4, ...,
N25+N26+3, where N25 is 0 if there are no extrapolating
G-Stops. If one has a total of k gi, then the dimension of
TS must be at least (3 + 2k+ 1). Following the location
where the computed g’s are stored is the value of TS(1)
for previously computed g’s, and then the values of the
g’s that were computed at that previous time.

Whenever a sign change occurs in a gi the code iterates
to find the location of a zero of gi and provides all output
in increasing values of TS(1) (if integrating in the posi-
tive direction), whatever the order of the zeros of the gi
or that of other output points.

If there are multiple zeros of a gi very close together, the
code may (or may not) find one of them, but will never
find both. (This is to insure that computational noise
does not result in multiple stops.) It will purposely skip
a sign change that occurs within a quarter of an integra-
tion step from one previously found. If it is necessary to

July 11, 2015 Explicit Runge-Kutta Method for Ordinary Differential Equations 14.2–5

locate all sign changes the following procedure should be
followed. Let d denote the lowest order total derivative
of g with respect to t for which one knows that (dd/dtd)g
does not change sign more than once in a given integra-
tion step. For some k, let gk−j = (dj/dtj)g, j = 0,
1,..., d. For values of j between 0 and d − 1 if you are
told that gk−j has a 0, then set TS(k-i+N25+N26+1)
= TS(k-i) for i = d, d − 1, . . . , j − 1. This saves the
current value of these g’s in the history so that a future
sign change is not missed even if it is quite close to the
previous one. And the fact that we see the sign change
in a higher derivative insures that we don’t miss sign
changes in lower derivatives that precede it.

B.4.a Code for G-stops in subroutine DXRK8F

DXRK8F should be changed to look like the following.

SUBROUTINE DXRK8F(TS, Y, F, IDAT)

DOUBLE PRECISION TS(∗), Y(∗), F(∗)
INTEGER IDAT(∗)
IF (IDAT(1) .EQ. 1) THEN

IF (N25 .NE. 0) THEN

Compute TS(I)=G(I), I = 4, ..., N25+3

CALL DXRK8G(TS, Y, F, IDAT)

IF (IDAT(3) .NE. 0) RETURN

END IF

END IF

Compute F(i) = fi(T(1), Y), i = 1, 2, ..., NEQ.

RETURN

END IF

100 Compute TS(I)=G(I), I = 4, ..., N25+N26+3

CALL DXRK8G(TS, Y, F, IDAT)

IF (IDAT(2) .EQ. −1) GO TO 100

IF (IDAT(2) .GT. 0) THEN

You may want to adjust flags for

a sign change in TS(IDAT(2))

END IF

RETURN

END

Although “F” is used in the call to DXRK8G, when using
forward communication this “F” is the same as WORK.
If using reverse communication one must use WORK
for this argument.

In most cases N25 is 0, and the block headed by the
check for this is not necessary. It may happen that you
would like a given g to sometimes be extrapolating and
sometimes interpolating1. If you make such a g the last
of the extrapolating g’s (starting in extrapolating mode),

or the first of the interpolating g’s (starting in interpolat-
ing mode), you can change how it is treated by changing
the index of the last extrapolating g. This index is held
in IDAT(NXGS), where NXGS=16. Thus if it was ex-
trapolating and is now interpolating decrease IDAT(16),
and if going the other way increase it. If IDAT(NXGS)
is ≤ 3 there are no extrapolating G-Stops.

If one is adjusting flags so that f will be computed
with a different definition, then when IDAT(1) is 26 in
DXRK8O (see Section B.3), one must set IDAT(2) = −1
to restart the integration. In the case of IDAT(1) = 25,
DXRK8 restarts the integration with TS(2) unchanged
if the user has made no changes in IDAT.

B.4.b Argument Definitions, G-stops

TS(), Y(), F() [inout] Same as in B.1 above, except
that when IDAT(1) = 2, F() really corresponds to
WORK in the call to DXRK8, and contains the in-
formation necessary to do interpolations.

IDAT() [inout] When there are no G-Stops, one need
not examine IDAT. But otherwise one must distin-
guish between IDAT(1) = 1, which means it is time
to compute the derivatives, and IDAT(1) = 2, which
means something connected with G-Stops is happen-
ing. When IDAT(1) is 1, one need only know that if
there are extrapolating G-Stops then the g’s must be
computed and DXRK8G called. Following the call
one returns if IDAT(3) is not 0. Otherwise f is com-
puted as if there were no extrapolating G-Stops.

After a call to DXRK8G, with IDAT(1) = 2, IDAT(2)
and IDAT(3) define additional state as follows.

IDAT(2) = −2 Return to DXRK8, a sign change
has occurred, but the code needs more deriva-
tive values in order to interpolate.

IDAT(2) = −1 We are iterating to find a 0, com-
pute all of the g’s and call DXRK8G.

IDAT(2) = 0 No sign change was seen.

IDAT(2) =k > 0 We have found a zero for the g
stored in TS(k). The index in IDAT(3) gives
the index of the lowest indexed g which has a 0
at exactly this time. (When there are multiple
G-Stops at the same time, those with higher in-
dexes are given first.) You will be told in both
DXRK8F and DXRK8O of all G-Stops that oc-
cur at a given time even if you request a restart
of the integration.

1An example is where a satellite may be in full sunlight, in the full earth shadow or only partially shadowed. The transition from
full sunlight or full shadow can be interpolating G-Stops while those leaving partial shadow would use extrapolating stops. Most of the
time one would be using the interpolating stops in this example. Of course in both cases one would be restarting the integration after a
G-Stop.

14.2–6 Explicit Runge-Kutta Method for Ordinary Differential Equations July 11, 2015

B.5 Program Prototype, Reverse Communica-
tion, Double Precision

Start as described in Section B.1.a except:

(a) To use reverse communication for derivative compu-
tation set Option 12 or 13. With 12, derivative values
are stored in an array F. The latter option requires
saving the derivative values in WORK(IDAT(2))
which saves doing a copy inside of DXRK8A. In this
latter case, F need not be declared, and F in the call
to DXRK8A can be replaced by OPT (it won’t be
referenced).

(b) To use reverse communication for output set Op-
tion 14.

(c) The array OPT() must be dimensioned sufficiently
large to handle the selected options.

(e) Where code given earlier had a “RETURN”, use
“GO TO 100”.

CALL DXRK8(TS, Y, OPT, IDAT,
DAT, WORK)

100 CONTINUE
CALL DXRK8A(TS, Y, F, IDAT,

DAT, WORK)

IF(IDAT(1) .LE. 2) THEN
{This point can only be reached if Option 12
or 13 has been selected. Do what was specified
in Section B.1.b for subroutine DXRK8F (or in
Section B.4.a if G-Stops are being computed).}
GO TO 100

ELSE IF(IDAT(1) .GE. 20) THEN
{This point can only be reached if Option 14
has been selected. Do what was specified in
Section B.1.c for subroutine DXRKK8O.}
GO TO 100

ELSE IF (IDAT(1) .NE. 3) THEN
GO TO 100

END IF
(Here the computation is complete.)

B.6 Modifications for Single Precision Usage

Change names starting with DXRK8 to start with
SXRK8. Change all DOUBLE PRECISION type state-
ments to REAL.

C. Examples and Remarks

The program DRDXRK8 with output ODDXRK8, illus-
trates integrating the equations of motion for a simple
two body problem.

We wish to emphasize that if you have equations with
different characteristics, magnitudes, etc., you should

group the equations using option 1. Without such group-
ing, the error control is liable to give unsatisfactory re-
sults.

D. Functional Description

The Initial Value problem stated in Section A is solved
using an order 8 explicit Runge-Kutta method with built
in error estimators due to Dormand and Prince. The
code was derived from DOP853 of [1]. The code here dif-
fers in providing many more options, by allowing inter-
polation to be done in such a way that there is no cost on
steps which don’t require interpolation, and in different
algorithms for starting, selecting the stepsize, detecting
stiffness, etc. More details, including comparisons with
other Runge-Kutta methods and with DIVA of Chap-
ter 14.1 can be found in [2]. Results in [2] indicate that
high order Runge-Kutta methods perform better at high
accuracies, while doing as well at low precision. Changes
in the code for stepsize selection is documented in [3].

Since this code uses the highest order formulas that are
likely practical is probably about as efficient as one can
do with existing Runge-Kutta formulas, while providing
a range of functionality not usually a part of a Runge-
Kutta code.

Following the practice in [1] when referring to orders,
order refers to global order. The local order is 1 greater
than the global order. For the ith equation there are
third and fifth order error estimates, e3,i, and e5,i, and
a desired absolute tolerance τi. The code forms

E2
3 =

NEQ∑
i=1

(e3,i/τi)
2, (2)

and E2
5 defined similarly using e5,i. Since the code gen-

erates a result of order 8, we would like an error estimate
of order 8. (Such an estimate if obtained directly would
require doing extra function evaluations.)

An error estimate of order 8 is obtained from h × E5 ×
(E5/E3), where h is the stepsize. (Actually we use the
squares of (these estimates / accuracy requested), and
E2
3 is (.01 × the average of recent values obtained from

Eq. (2).) It is this order 8 estimator that is used in con-
trolling the stepsize. When E5 / E3 is > 1 the code
uses h × E5 as the error estimate, and if this occurs
too frequently it may give a diagnostic that the system
appears stiff. Except for extremely long integrations,
this diagnostic will only be given once. The code at-
tempts to keep the square of the order 8 error estimate <
DAT(LERTRY+1) (nominal value is .16), and attempts
to keep the log of this estimate close to−DAT(LERTRY)
(nominal value 4.6, which is close to − ln(.01)). If using
an absolute error tolerance or a relative error tolerance
when the solution may get very close to zero, one should

July 11, 2015 Explicit Runge-Kutta Method for Ordinary Differential Equations 14.2–7

insure that the absolute error part of the tolerance does
not underflow or overflow, when it is squared. No checks
are made to insure that this is the case.

References

1. E. Hairer, S. P. Nørsett, and G. Wanner, Solving
Ordinary Differential Equations I, Springer Ver-
lag, Berlin, second revised edition (1993).

2. Fred T. Krogh, An Adams Guy Does the
Runge-Kutta. Technical Report 554, Jet Propul-
sion Laboratory (March 1997). Available from http:

//mathalacarte.com/fkrogh.

3. Fred T. Krogh, Stepsize selection for ordinary dif-
ferential equations, ACM Transactions on Math-
ematical Software 37, 2 (April 2010) 15:1–15:11.

E. Error Procedures and Restrictions

The following values for IDAT(2) are possible on a re-
turn with IDAT(1) = 4. For values of IDAT(1) < 10,
the integration can be continued, for larger values it will
be stopped. All of these errors print an error message.

2 Error estimate too large, and at min. stepsize. In-
tegration will continue at the minimum stepsize if
nothing is done.

3 User did not call DXRK8G when it was requested.

4 Looks like problem is getting stiff. This diagnostic
will occur at most one time, and if it is ignored, the
stepsize is restricted.

5 Looks like too much precision has been requested.
On this return IDAT(3) is 0. If it is not changed, the
code will change the accuracy requested to what it
regards as a more reasonable value. (It does this by
changing the locations in DAT that are set by option
27.)

6 Not used.

7 DXRK8G called and IDAT(1) is not 1 or 2.

8 An Extrapolating G-Stop discovered at end of step
is ignored.

9 Calling DXRK8G when IDAT(2) < 0.

10 Trying to continue an integration that finished.

11 Equation indexes in options are badly ordered.

12 Equation index for group is too large (> IDAT(4))

13 A repeated spec. for the same group of equations.

14 An undefined option.

15 Entered with an invalid value for IDAT(1).

16 Trying to continue after a fatal error reported.

17 Absolute/Relative error tolerance vectors overlap.

18 Need to set aside more space in IDAT.

19 Need to set aside more space in DAT.

20 Need to set aside more space in WORK.

21 Option required inside equation group follows the end
of the last group.

22 Bad value for IDAT(1) on entry to DXRK8A.

23 Initial TS(2) has the wrong sign.

24 DXRK8G was not called when requested.

25 There was a sign change in an extrapolated g while
computing the derivatives necessary to do interpola-
tion. This should only happen if there is significant
rounding errors (or bugs) in the computation of the
g.

26 Only 0 and 1 can be used to turn options off and on.

27 The parameters specified in option 27 are too close
together.

All error diagnostics and messages are handled by calls to
the library subroutines MESS and DMESS or SMESS of
Chapter 19.3. The user can change the printing and/or
stopping actions taken by the error message program or
change the file to which such messages are sent by calling
MESS.

F. Supporting Information

The source language is ANSI Fortran 77.

Subroutine designed and written by: Fred T. Krogh,
JPL, February 1997. Extensively modified by Krogh,
February 2008.

Entry Required Files

DXRK8 AMACH, DMESS, DXRK8, MESS

DXRK8A AMACH, DMESS, DXRK8, MESS

DXRK8G AMACH, DMESS, DXRK8, DXRK8G,
DZERO, MESS

SXRK8 AMACH, MESS, SMESS, SXRK8

SXRK8A AMACH, MESS, SMESS, SXRK8

SXRK8G AMACH, DMESS, MESS, SXRK8,
SXRK8G, SZERO

14.2–8 Explicit Runge-Kutta Method for Ordinary Differential Equations July 11, 2015

http://mathalacarte.com/fkrogh
http://mathalacarte.com/fkrogh

DRDXRK8

c program DRDXRK8
c>> 2008−02−24 DRDXRK8 Krogh −− Change dimenst ions f o r new usage .
c>> 2001−05−25 DRDXRK8 Krogh −− Added comma to format .
c>> 1997−12−18 DRDXRK8 Krogh I n i t i a l code
c−−D rep l a c e s ”?”: DR?XRK8, ?XRK8, ?XRK8F, ?XRK8O
c Sample d r i v e r f o r DXRK8 −− Set up to s o l v e s imple two body problem
c with c i r c u l a r motion .
c

integer NEQ, LIDAT, LDAT, LWORK
parameter (NEQ=4, LIDAT=49+2, LDAT=32+2∗NEQ+2+2, LWORK=9∗4+6+8∗4)
integer IDAT(LIDAT)
double precision DAT(LDAT) , TS(3) , TOL, Y(NEQ) , WORK(LWORK)
double precision OPT(6)

c++S Defau l t SETTOL = ’TOL = 1.E−4’
c++ Defau l t SETTOL = ’TOL = 1.D−10’
c++ Replace ’TOL = 1.D−10’ = SETTOL

parameter (TOL = 1 .D−10)
double precision XRKEND, XRKAE, XRKTDT
parameter (XRKEND=0.D0 , XRKAE=2.D0 , XRKTDT=24.D0)

c Abs . Err . t o l . Output a t i n t e r v a l s o f 2 Pi End opt .
data OPT /XRKAE,TOL, XRKTDT, 0 . D0,6 .283185307179586477D0 , XRKEND/
data IDAT(4) , IDAT(5) , IDAT(6) , IDAT(7) /

1 NEQ, LIDAT, LDAT, LWORK /
c S t a r t i n g : T H; Fina l T.

data TS / 0 .D0 , 0 .D0 , 20 .D0 /
c I n i t i a l Y

data Y / 1 .D0 , 0 .D0 , 0 .D0 , 1 .D0 /
c
c Do the i n t e g r a t i o n

IDAT(1) = 0
100 continue

ca l l DXRK8(TS, Y, OPT, IDAT, DAT, WORK)
i f (IDAT(1) .NE. 3) go to 100

stop
end

subroutine DXRK8F(T, Y, F , IDAT)
c Sample d e r i v a t i v e sub rou t ine f o r use wi th DXRK8
c This e v a l u a t e s d e r i v a t i v e s f o r a s imple two body problem .
c

integer IDAT(∗)
double precision T, Y(∗) , F(∗) , RQBI

c
c Eva luate the d e r i v a t i v e s

RQBI = 1 .D0 / ((sqrt (Y(1)∗∗2+Y(3)∗∗2))∗∗3)
F(1) = Y(2)
F(2) = −Y(1)∗RQBI
F(3) = Y(4)
F(4) = −Y(3)∗RQBI
return
end

subroutine DXRK8O(TS, Y, IDAT, DAT)
c Sample output sub rou t ine f o r use wi th DXRK8.
c This sub rou t ine g i v e s output f o r a s imple two body problem .
c

integer IDAT(∗)

July 11, 2015 Explicit Runge-Kutta Method for Ordinary Differential Equations 14.2–9

double precision TS(∗) , Y(∗) , DAT(∗)
1000 format (6X, ’RESULTS FOR A SIMPLE 2−BODY PROBLEM’ //

1 8X, ’T ’ , 13X, ’U/V ’ , 11X, ’UP/VP’ / ’ ’)
1001 format (1P, 3 E15 . 6 / 15X, 2E15 .6/ ’ ’)

c
c Do the output

i f (TS(1) . eq . 0 .D0) then
write (∗ , 1000)

end i f
write (∗ , 1001) TS(1) , Y(1) , Y(2) , Y(3) , Y(4)
return
end

ODDXRK8

RESULTS FOR A SIMPLE 2−BODY PROBLEM

T U/V UP/VP

0.000000E+00 1.000000E+00 0.000000E+00
0.000000E+00 1.000000E+00

6.283185E+00 1.000000E+00 5.645950E−11
−5.873593E−11 1.000000E+00

1.256637E+01 1.000000E+00 1.088883E−10
−1.094066E−10 1.000000E+00

1.884956E+01 1.000000E+00 1.514382E−10
−1.523538E−10 1.000000E+00

2.000000E+01 4.080821E−01 −9.129453E−01
9.129453E−01 4.080821E−01

14.2–10 Explicit Runge-Kutta Method for Ordinary Differential Equations July 11, 2015

	Explicit Runge-Kutta Method for Ordinary Differential Equations
	Purpose
	Usage
	Program Prototype, Double Precision
	Setting options using the array OPT()
	Additional detail for the argument IDAT
	Usage of G-Stops
	Program Prototype, Reverse Communication, Double Precision
	Modifications for Single Precision Usage

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Supporting Information

