The Python Library Reference
Release 3.2.1

Guido van Rossum
Fred L. Drake, Jr., editor

July 09, 2011

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
Built-in Functions 5
Built-in Constants 25
3.1 Constants added by the sitemodule e 25
Built-in Types 27
4.1 Truth Value Testing o i it e e e e e e e 27
4.2 Boolean Operations — and, Or, NOT . . v v v v v v v v v i e e e e e e e e e e e e e 27
43 CompariSONS . . v v v v v v e 28
4.4 Numeric Types — int, float,complex« oottt v ittt 28
4.5 Tterator Types L e e 34
4.6 Sequence Types — str, bytes, bytearray, list, tuple, range 35
477 SetTypes — set, frozenset v v i v v i i e e e e e e e e e e e e e e 46
4.8 Mapping Types — dicCt o v i i e e e e e e e e e e e e 48
4.9 mMemOTYVIEW tYPE . .« ¢ v v i i i e 51
4.10 Context Manager Types L 54
4.11 Other Built-in Types L o o e e 54
4,12 Special Atributes e 56
Built-in Exceptions 59
5.1 Exception hierarchy e 63
String Services 65
6.1 string-— Common string Operationso 65
6.2 re — Regular expression Operations e e e e e e e e e 74
6.3 struct — Interpret bytes as packed binarydata 91
6.4 difflib — Helpers for computingdeltas 96
6.5 textwrap —Textwrappingandfilling oo, 105
6.6 codecs—Codecregistry andbaseclasses oL o oL, 108
6.7 unicodedata—Unicode Database 122
6.8 stringprep — Internet String Preparation oL oo 123
Data Types 127
7.1 datetime — Basicdate and time types Lo e 127
7.2 calendar — General calendar-related functions 152
7.3 collections —Container datatypes v v v v v i e e e e e e e e e e e e e e e e 155
74 heapg—Heap queue algorithm L o 171
7.5 bisect — Array bisection algorithm oL oo 174

7.6 array — Efficient arrays of numeric values oL oo 176

7.7 sched—Eventscheduler 179
7.8 queue — A synchronized queue classo e e 181
7.9 weakref — Weakreferences L 183
7.10 types —Names forbuilt-intypes e 187
7.11 copy — Shallow and deep copy operationso e 188
7.12 pprint —Datapretty printer e e e e e e e e e e e e e e e e e e 189
7.13 reprlib — Alternate repr () implementation e 193
8 Numeric and Mathematical Modules 197
8.1 numbers— Numeric abstractbaseclasses 197
8.2 math — Mathematical functions L 200
8.3 cmath — Mathematical functions for complex numbers 204
8.4 decimal — Decimal fixed point and floating point arithmetic 207
8.5 fractions—Rationalnumbers L 231
8.6 random — Generate pseudo-random numberso oLl e e 233
9 Functional Programming Modules 239
9.1 itertools — Functions creating iterators for efficient looping 239
9.2 functools — Higher order functions and operations on callable objects 251
9.3 operator — Standard operators as functions oL Lo 255
9.4 Inplace Operators o v v i i e e e e e e e e e e e 260
10 File and Directory Access 263
10.1 os.path — Common pathname manipulations 263
10.2 fileinput — Iterate over lines from multiple input streams 266
10.3 stat —Interpreting stat () results L 269
10.4 filecmp — File and Directory CompariSons v v v v v v v v v it e e e 273
10.5 tempfile — Generate temporary files and directories, 274
10.6 glob — Unix style pathname pattern eXpansion v v v v v v v v v v v e i 277
10.7 fnmatch — Unix filename pattern matching 0oL ... 278
10.8 linecache —Randomaccesstotextlines 279
10.9 shutil — High-level file operations e 280
10.10 macpath — Mac OS 9 path manipulation functions 284
11 Data Persistence 287
11.1 pickle — Pythonobject serialization 287
11.2 copyreg— Register pickle supportfunctions 298
11.3 shelve —Pythonobject persistence v v v v i v v vt e e e e 298
11.4 marshal — Internal Python object serialization 301
11.5 dbm — Interfaces to Unix “databases” 302
11.6 sglite3 — DB-API 2.0 interface for SQLite databases 305
12 Data Compression and Archiving 325
12.1 zlib — Compression compatible withgzip 325
12.2 gzip—Supportforgzipfiles 327
12.3 Dbz2 — Compression compatible withbzip2 329
124 zipfile— Work withZIParchives e 331
12.5 tarfile — Read and write tar archive files L. o Lo 336
13 File Formats 345
13.1 csv—CSV File Reading and Writing ittt 345
13.2 configparser — Configuration file parser 351
13.3 netrc—netrc file processingo o i e e e e e e e e e 367

13.4 xdrlib—Encode anddecode XDRdata 368

13.5 plistlib — Generate and parse Mac OS X .plistfiles. 371

14 Cryptographic Services 373
14.1 hashlib — Secure hashes and message digests 373
14.2 hmac — Keyed-Hashing for Message Authentication 375

15 Generic Operating System Services 377
15.1 os — Miscellaneous operating system interfaces oo 377
15.2 io— Core tools for working with streams e 403
15.3 time — Time access and CONVETSIONS v v v v v v vt bttt e e e e et e e e 413
15.4 argparse — Parser for command-line options, arguments and sub-commands 419
15.5 optparse — Parser for command line options L. oL oo 446
15.6 getopt — C-style parser for command line options 472
15.7 logging — Logging facility for Python L 474
15.8 logging.config—Logging configuration e 487
159 logging.handlers—Logginghandlers 496
15.10 getpass — Portable passwordinput 0oL 505
15.11 curses — Terminal handling for character-cell displays 506
15.12 curses. textpad — Text input widget for curses programs 522
15.13 curses.ascii — Utilities for ASCII characters 523
15.14 curses.panel — A panel stack extension forcurses 525
15.15 plat form — Access to underlying platform’s identifyingdata 526
15.16 errno — Standard errno system symbols o L 529
15.17 ctypes — A foreign function library for Python o oL 536

16 Optional Operating System Services 569
16.1 select — Waiting for /O completion e 569
16.2 threading — Thread-based parallelism, 574
16.3 multiprocessing— Process-based parallelism 585
16.4 concurrent.futures — Launching parallel tasks 635
16.5 mmap — Memory-mapped file support oL o 640
16.6 readline —GNUreadlineinterface 643
16.7 rlcompleter — Completion function for GNU readline 645
16.8 dummy_threading — Drop-in replacement for the threadingmodule 646
169 _thread — Low-level threading API 647
16.10 _dummy_thread — Drop-in replacement for the _threadmodule 649

17 Interprocess Communication and Networking 651
17.1 subprocess — Subprocess management i et e e e e 651
17.2 socket — Low-level networking interface 661
17.3 ss1 — TLS/SSL wrapper for socket objects e 673
17.4 signal — Set handlers for asynchronous events L. 686
17.5 asyncore — Asynchronous sockethandler 689
17.6 asynchat — Asynchronous socket command/response handler 693

18 Internet Data Handling 697
18.1 email — Anemail and MIME handling package 697
182 json—IJSONencoderanddecoder 729
183 mailcap —Mailcapfilehandling o 734
18.4 mailbox — Manipulate mailboxes in various formats 735
18.5 mimetypes — Map filenames to MIME types L o 752
18.6 base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings 755
18.7 binhex — Encode and decode binhex4 files Lo . 756
18.8 binascii — Convert between binary and ASCIT, 757

18.9 quopri — Encode and decode MIME quoted-printabledata 759

19

20

21

22

18.10 uu — Encode and decode uuencode files e

Structured Markup Processing Tools

19.1 html — HyperText Markup Language support vt
19.2 html.parser — Simple HTML and XHTML parser
19.3 html.entities — Definitions of HTML general entities
19.4 xml.parsers.expat — Fast XML parsingusing Expat
19.5 =xml.dom — The Document Object Model API
19.6 xml.dom.minidom — Lightweight DOM implementation
19.7 xml.dom.pulldom — Support for building partial DOM trees
19.8 xml.sax — Support for SAX2 parsers v v vt e e e e e e e
19.9 xml.sax.handler — Baseclasses for SAX handlers
19.10 xml.sax.saxutils — SAX Utilities o o e
19.11 xml.sax.xmlreader — Interface for XML parsers
19.12 xml.etree.ElementTree — The ElementTree XML APT

Internet Protocols and Support

20.1 webbrowser — Convenient Web-browser controller
20.2 cgi — Common Gateway Interface support e
20.3 cgitb — Traceback manager for CGLscripts o i i i i i it
20.4 wsgiref — WSGI Utilities and Reference Implementation
20.5 urllib.request — Extensible library foropening URLs
20.6 urllib.response — Responseclassesusedbyurllib
20.7 urllib.parse —Parse URLsintocomponents,
20.8 urllib.error — Exception classes raised by urllib.request
209 urllib.robotparser — Parserforrobots.txt
20.10 http.client — HTTPprotocolclient
20.11 ftplib —FTPprotocolclient e
20.12 poplib —POP3 protocol client e
20.13 imaplib —IMAP4 protocolclient e
20.14 nntplib — NNTPprotocolclient it e e
20.15 smtplib — SMTP protocolclient e e
20.16 smtpd — SMTP Server o o o e e e e
20.17 telnetlib —Telnetclient e
20.18 uuid — UUID objects according to RFC 4122
20.19 socketserver — A framework for network servers oL oL
20.20 http.server — HTTPservers e e e e e
20.21 http.cookies — HTTP state managementt v i v v i v v,
20.22 http.cookiejar — Cookie handling for HTTPclients
20.23 xmlrpc.client — XML-RPCclientaccess v i v i v i i it it e e
20.24 xmlrpc.server — Basic XML-RPCservers,

Multimedia Services

21.1 audioop — Manipulateraw audiodata oL o
21.2 aifc—Read and write AIFFand AIFCfiles
21.3 sunau—Readand write Sun AUfiles L L
214 wave —Read and write WAV files L
21.5 chunk —Read IFFchunkeddata
21.6 colorsys — Conversions between colorsystems Lo
21.7 imghdr — Determine the type of animage
21.8 sndhdr — Determine type of sound file L L e
21.9 ossaudiodev — Access to OSS-compatible audio devices,

Internationalization
22.1 gettext — Multilingual internationalization services

761
761
761
764
764
773
783
787
788
789
794
795
799

807
807
809
815
816
825
839
840
846
846
847
853
857
859
865
871
876
878
880
883
890
895
898
906
913

919
919
922
924
927
929
930
931
931
932

937

23

24

25

26

27

28

29

22.2 locale — Internationalization SEIVICES v v v v v v v v e e e e e e e e e e e e

Program Frameworks

23.1 turtle—Turtle graphics L e
23.2 cmd — Support for line-oriented command interpreterso oL
23.3 shlex —Simple lexical analysis o o L e e e e e e

Graphical User Interfaces with Tk

24.1 tkinter —Pythoninterfaceto Tcl/Tk
242 tkinter.ttk —Tkthemed widgets e
243 tkinter.tix —Extensionwidgetsfor Tko oo,
244 tkinter.scrolledtext — Scrolled Text Widget
245 IDLE e
24.6 Other Graphical User Interface Packages

Development Tools

25.1 pydoc — Documentation generator and online help system
25.2 doctest — Testinteractive Pythonexamples oL,
25.3 unittest — Unittesting framework e
25.4 2to3 - Automated Python 2 to 3 code translation oL L.
25.5 test — Regression tests package forPython.o o000
25.6 test.support — Utility functions fortests L o

Debugging and Profiling

26.1 bdb — Debugger framework
26.2 pdb — The Python Debugger e
26.3 The Python Profilers e e e e e e
26.4 timeit — Measure execution time of small code snippets
26.5 trace — Trace or track Python statementexecution

Python Runtime Services

27.1 sys — System-specific parameters and functions L.
27.2 sysconfig— Provide access to Python’s configuration information.
273 builtins —Built-inobjects L o
274 __main___ —Top-level script environmento
27.5 warnings—Warningcontrol e e
27.6 contextlib — Utilities for with-statementcontexts
2777 abc—Abstract Base Classes e e
278 atexit —Exithandlers
279 traceback — Print or retrieve a stack traceback oL
27.10 __ future_ — Future statement definitions e e e e
27.11 gc — Garbage Collectorinterface i e e e e
27.12 inspect — Inspectlive objects L e e e e e e
27.13 site — Site-specific configurationhook oL oo
27.14 fpectl — Floating point exceptioncontrol L
27.15 distutils — Building and installing Python modules

Custom Python Interpreters
28.1 code —Interpreter base classes L. e
28.2 codeop — Compile Pythoncode e

Importing Modules

29.1 imp — Accessthe importinternals
29.2 zipimport — Import modules from Ziparchives 0oL,
29.3 pkgutil — Package extension utility Lo e e e

953
953
988
993

29.4 modulefinder —Find modulesused by ascript oL,
29.5 runpy — Locating and executing Pythonmodules,
29.6 importlib - Animplementation of import L L.

30 Python Language Services

30.1 parser — Access Pythonparsetrees o i e e e e
30.2 ast — Abstract Syntax Treeso e e
30.3 symtable — Access to the compiler’s symbol tables 0oL,
30.4 symbol — Constants used with Python parse trees,
30.5 token — Constants used with Python parsetrees
30.6 keyword— Testing for Pythonkeywords
30.7 tokenize — Tokenizer for Pythonsource
30.8 tabnanny — Detection of ambiguous indentation oL,
30.9 pyclbr — Pythonclass browsersupport Lo oL
30.10 py_compile — Compile Python sourcefiles
30.11 compileall — Byte-compile Python libraries
30.12 dis — Disassembler for Python bytecode o oo
30.13 pickletools — Tools for pickle developers

31 Miscellaneous Services

31.1 formatter — Generic output formatting e e

32 MS Windows Specific Services

32.1 msilib — Read and write Microsoft Installer files
32.2 msvcrt — Useful routines from the MS VC++runtime
323 winreg— Windows registry aCCess v v v v v i bt e e e e e e e
32.4 winsound — Sound-playing interface for Windows,

33 Unix Specific Services

33.1 posix — The most common POSIX systemcalls
33.2 pwd—The password database L.
33.3 spwd — The shadow password database
334 grp—Thegroupdatabase e e e e e e e e
33.5 crypt — Function to check Unix passwords e
33.6 termios —POSIXstylettycontrol L
33.7 tty —Terminal control functions e e e
33.8 pty —Pseudo-terminal utilities L
339 fcntl —The fentl () and ioctl () systemecalls o
33.10 pipes — Interface to shell pipelines e
33.11 resource — Resource usage information o oL oL
33.12 nis — Interface to Sun’s NIS (Yellow Pages)
33.13 syslog — Unix syslog library routines o

34 Undocumented Modules

A

34.1 Platform specific modules e

Glossary

Bibliography

B

About these documents
B.1 Contributors to the Python Documentation

History and License
C.1 Historyofthe software e e

vi

C.2 Terms and conditions for accessing or otherwise using Python
C.3 Licenses and Acknowledgements for Incorporated Software

D Copyright
Python Module Index

Index

vii

viii

The Python Library Reference, Release 3.2.1

Release 3.2
Date July 09, 2011

While reference-index describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that
are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file I/O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for the Windows platform usually includes the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages, so
it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the optional
components.

In addition to the standard library, there is a growing collection of several thousand components (from individual pro-
grams and modules to packages and entire application development frameworks), available from the Python Package
Index.

CONTENTS 1

http://pypi.python.org/pypi
http://pypi.python.org/pypi

The Python Library Reference, Release 3.2.1

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual), or
look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about random
subjects, you choose a random page number (see module random) and read a section or two. Regardless of the order
in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the remainder of the
manual assumes familiarity with this material.

Let the show begin!

The Python Library Reference, Release 3.2.1

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed here

in alphabetical order.

Built-in Functions

abs () dict () help () min () setattr ()
all() dir () hex () next () slice ()

any () divmod () id() object () sorted ()
ascii() enumerate () | input () oct () staticmethod ()
bin () eval () int () open () str()

bool () exec () isinstance () ord () sum ()
bytearray () filter () issubclass () pow () super ()
bytes () float () iter () print () tuple ()
callable () format () len () property () | type ()

chr () frozenset () list () range () vars ()
classmethod () getattr () locals () repr () zip ()
compile () globals () map () reversed() | __import__ ()
complex () hasattr () max () round ()

delattr () hash () memoryview () set ()
abs (x)

Return the absolute value of a number. The argument may be an integer or a floating point number. If the

argument is a complex number, its magnitude is returned.

all (iterable)

Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:

if not element:
return False
return True

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable) :
for element in iterable:
if element:
return True
return False

The Python Library Reference, Release 3.2.1

ascii (object)
As repr (), return a string containing a printable representation of an object, but escape the non-ASCII char-
acters in the string returned by repr () using \x, \u or \U escapes. This generates a string similar to that
returned by repr () in Python 2.

bin (x)
Convert an integer number to a binary string. The result is a valid Python expression. If x is not a Python int
object, it has to define an __index___ () method that returns an integer.

bool ([x])
Convert a value to a Boolean, using the standard truth testing procedure. If x is false or omitted, this returns
False; otherwise it returns True. bool is also a class, which is a subclass of int. Class bool cannot be
subclassed further. Its only instances are False and True.

bytearray ([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray type is a mutable sequence of integers in the range 0 <= x < 256.
It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well as most
methods that the bytes type has, see Byfes and Byte Array Methods.

The optional source parameter can be used to initialize the array in a few different ways:

oIf it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray () then
converts the string to bytes using str.encode ().

oIf it is an integer, the array will have that size and will be initialized with null bytes.

oIf it is an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

oIf it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as the
initial contents of the array.

Without an argument, an array of size 0 is created.

bytes ([source[, encoding[, errors]]])
Return a new “bytes” object, which is an immutable sequence of integers in therange 0 <= x < 256. bytes
is an immutable version of bytearray — it has the same non-mutating methods and the same indexing and
slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().
Bytes objects can also be created with literals, see strings.

callable (object)
Return True if the object argument appears callable, False if not. If this returns true, it is still possible that
a call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling a class
returns a new instance); instances are callable if their class hasa _ call__ () method. New in version 3.2:
This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr (i)
Return the string representing a character whose Unicode codepoint is the integer i. For example, chr (97)
returns the string " a’. This is the inverse of ord (). The valid range for the argument is from O through

1,114,111 (Ox10FFFF in base 16). ValueError will be raised if i is outside that range.

Note that on narrow Unicode builds, the result is a string of length two for i greater than 65,535 (OxFFFF in
hexadecimal).

classmethod (function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.1

class C:
@classmethod
def f(cls, argl, arg2, ...):

The @classmethod form is a function decorator — see the description of function definitions in function for
details.

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed as
the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod () in this
section.

For more information on class methods, consult the documentation on the standard type hierarchy in fypes.

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=-1)

Compile the source into a code or AST object. Code objects can be executed by exec () or eval (). source
can either be a string or an AST object. Refer to the ast module documentation for information on how to
work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it
wasn’t read from a file (* <string>’ is commonly used).

The mode argument specifies what kind of code must be compiled; it can be ' exec’ if source consists of a
sequence of statements, ' eval’ if it consists of a single expression, or ’ single’ if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will
be printed).

The optional arguments flags and dont_inherit control which future statements (see PEP 236) affect the compi-
lation of source. If neither is present (or both are zero) the code is compiled with those future statements that are
in effect in the code that is calling compile. If the flags argument is given and dont_inherit is not (or is zero) then
the future statements specified by the flags argument are used in addition to those that would be used anyway.
If dont_inherit is a non-zero integer then the flags argument is it — the future statements in effect around the call
to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements. The
bitfield required to specify a given feature can be found as the compiler_flag attribute on the _Feature
instance in the __ future__ module.

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects the
optimization level of the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___
is true), 1 (asserts are removed, ___debug___is false) or 2 (docstrings are removed too).

This function raises SyntaxError if the compiled source is invalid, and TypeError if the source contains
null bytes.

Note: When compiling a string with multi-line code in * single’ or ' eval’ mode, input must be terminated
by at least one newline character. This is to facilitate detection of incomplete and complete statements in the
code module.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also input in ' exec’ mode does not
have to end in a newline anymore. Added the optimize parameter.

complex ([real[, imag]])
Create a complex number with the value real + imag*j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type

http://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 3.2.1

(including complex). If imag is omitted, it defaults to zero and the function serves as a numeric conversion
function like int () and float (). If both arguments are omitted, returns 0 j.

The complex type is described in Numeric Types — int, float, complex.

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr (x, ’'foobar’) isequivalenttodel x.foobar.

dict ([arg])
Create a new data dictionary, optionally with items taken from arg. The dictionary type is described in Mapping
Types — dict.

For other containers see the built in 1ist, set, and tuple classes, and the col lect ions module.

dir ([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a list
of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of attributes.
This allows objects that implement a custom __getattr__ () or__getattribute__ () function to cus-
tomize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
__dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce the
most relevant, rather than complete, information:

oIf the object is a module object, the list contains the names of the module’s attributes.

oIf the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

*Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct
>>> dir () # show the names in the module namespace
["__builtins_ ', ’'__doc__ ', '"__name_ ', ’"struct’]
>>> dir(struct) # show the names 1in the struct module

["Struct’, ’'__builtins_ ', ’__doc_ ', '__file ', '"__ _name__ ',

' _package__'’, ’'_clearcache’, ’'calcsize’, ’'error’, ’'pack’, ’pack_into’,
"unpack’, "unpack_from’]
>>> class Shape (object):

def _ dir_ (self):
return [’area’, ’'perimeter’, ’location’]

>>> s = Shape()
>>> dir(s)

["area’, '"perimeter’, ’location’]

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to supply
an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases. For example, metaclass attributes are not in the result list when
the argument is a class.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.1

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the resultis the same as (a // b, a % b). For floating point numbers the resultis (q,

a % b),where gisusuallymath.floor (a / b) butmay be 1 less than that. Inanycaseq * b + a %
bis very close to a,if a % b is non-zero it has the same sign as b,and 0 <= abs(a % b) < abs(b).

enumerate (iterable, start=0)
Return an enumerate object. iferable must be a sequence, an iferator, or some other object which supports
iteration. The __next__ () method of the iterator returned by enumerate () returns a tuple containing a
count (from start which defaults to 0) and the values obtained from iterating over iterable.

>>> seasons = [’/Spring’, ’Summer’, ’'Fall’, ’'Winter’]

>>> list (enumerate (seasons))

[(O, "Spring’), (1, ’Summer’), (2, ’'Fall’), (3, ’"Winter’)]
>>> list (enumerate (seasons, start=1))

[(1, "Spring’), (2, 'Summer’), (3, ’'Fall’), (4, "Winter’)]

Equivalent to:

def enumerate (sequence, start=0):
n = start
for elem in sequence:
yield n, elem
n += 1

eval (expression, globals=None, locals=None)
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If provided,
locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present
and lacks ‘__builtins__’, the current globals are copied into globals before expression is parsed. This means
that expression normally has full access to the standard builtins module and restricted environments are
propagated. If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are
omitted, the expression is executed in the environment where eval () is called. The return value is the result
of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> eval (/
2

x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case pass a code object instead of a string. If the code object has been compiled with exec’ as the mode
argument, eval () ‘s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and
locals () functions returns the current global and local dictionary, respectively, which may be useful to pass
around for use by eval () or exec ().

See ast.literal eval () for a function that can safely evaluate strings with expressions containing only
literals.

exec (object[, globals[, locals]])
This function supports dynamic execution of Python code. object must be either a string or a code object. If it is

The Python Library Reference, Release 3.2.1

a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error occurs).
! If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to be valid as file
input (see the section “File input” in the Reference Manual). Be aware that the ret urn and yield statements
may not be used outside of function definitions even within the context of code passed to the exec () function.
The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary, which will be used for both the global and the local variables. If globals and
locals are given, they are used for the global and local variables, respectively. If provided, locals can be any
mapping object.

If the globals dictionary does not contain a value for the key __builtins__, areference to the dictionary of
the built-in module bui 1t ins is inserted under that key. That way you can control what builtins are available to
the executed code by inserting your own __builtins___ dictionary into globals before passing it to exec ().

Note: The built-in functions globals () and locals () return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to exec ().

Note: The default locals act as described for function 1ocals () below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code on
locals after function exec () returns.

filter (function, iterable)

Construct an iterator from those elements of iterable for which function returns true. iterable may be either
a sequence, a container which supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iterable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for
item in iterable if function(item)) if function is not None and (item for item in
iterable if item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for
which function returns false.

float ([x])

Convert a string or a number to floating point.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally
embedded in whitespace. The optional signmay be * +” or ’ =’ ;a ' +’ sign has no effect on the value produced.
The argument may also be a string representing a NaN (not-a-number), or a positive or negative infinity. More
precisely, the input must conform to the following grammar after leading and trailing whitespace characters are
removed:

Sign - Wy ‘ w_w
infinity = “Infinity” | “inf”

nan = “nan”

numeric_value = floatnumber | infinity | nan
numeric_string = [sign] numeric_value

Here f1oatnumber is the form of a Python floating-point literal, described in floating. Case is not significant,
so, for example, “inf”, “Inf”, “INFINITY” and “iNfINity” are all acceptable spellings for positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same value
(within Python’s floating point precision) is returned. If the argument is outside the range of a Python float, an

! Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline

conversion mode to convert Windows or Mac-style newlines.

10

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.1

OverflowError will be raised.
For a general Python object x, f1loat (x) delegatesto x.___float__ ().
If no argument is given, 0. O is returned.

Examples:

>>> float ("+1.23")

1.23

>>> float (’ -12345\n")
-12345.0

>>> float ("1e-003")
0.001

>>> float (" +1E6")
1000000.0

>>> float (! —-Infinity’)
—-inf

The float type is described in Numeric Types — int, float, complex.

format (value[, format_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of format_spec
will depend on the type of the value argument, however there is a standard formatting syntax that is used by
most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling str (value).

Acallto format (value, format_spec) istranslatedto type (value) ._ format__ (format_spec)
which bypasses the instance dictionary when searching for the value’s _ format__ () method. A
TypeError exception is raised if the method is not found or if either the format_spec or the return value are
not strings.

frozenset ([iterable])
Return a frozenset object, optionally with elements taken from iterable. The frozenset type is described in Ser
Types — set, frozenset.

For other containers see the built in dict, 1ist, and tuple classes, and the collect ions module.

getattr (object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr (x, ’foobar’)
is equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether it
raises an AttributeError or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

11

The Python Library Reference, Release 3.2.1

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

This function is added to the built-in namespace by the site module.

hex (x)
Convert an integer number to a hexadecimal string. The result is a valid Python expression. If x is not a Python
int object, it has to define an ___index__ () method that returns an integer.

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.

CPython implementation detail: This is the address of the object in memory.

input ([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is read,
EOFError is raised. Example:

>>> s = input ('-——> ')
—-—> Monty Python’s Flying Circus
>>> 3

"Monty Python’s Flying Circus"

If the readline module was loaded, then input () will use it to provide elaborate line editing and history
features.

int ([number I string[, base]])

Convert a number or string to an integer. If no arguments are given, return 0. If a number is given, return
number.__int__ (). Conversion of floating point numbers to integers truncates towards zero. A string
must be a base-radix integer literal optionally preceded by ‘+’ or ‘-* (with no space in between) and optionally
surrounded by whitespace. A base-n literal consists of the digits 0 to n-1, with ‘a’ to ‘z’ (or ‘A’ to ‘Z’) having
values 10 to 35. The default base is 10. The allowed values are 0 and 2-36. Base-2, -8, and -16 literals can be
optionally prefixed with 0b/0B, 00/00, or 0x/0X, as with integer literals in code. Base O means to interpret
exactly as a code literal, so that the actual base is 2, 8, 10, or 16, and so that int (' 010’ , 0) is not legal,
while int (010’) is,as wellas int (010", 8).

The integer type is described in Numeric Types — int, float, complex.

isinstance (object, classinfo)
Return true if the object argument is an instance of the classinfo argument, or of a (direct or indirect) subclass
thereof. If object is not an object of the given type, the function always returns false. If classinfo is not a class
(type object), it may be a tuple of type objects, or may recursively contain other such tuples (other sequence
types are not accepted). If classinfo is not a type or tuple of types and such tuples, a TypeError exception is
raised.

issubclass (class, classinfo)
Return true if class is a subclass (direct or indirect) of classinfo. A class is considered a subclass of itself.
classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any other
case, a TypeError exception is raised.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.1

iter (object[, sentinel])

Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the iteration
protocol (the __iter__ () method), or it must support the sequence protocol (the __getitem__ () method
with integer arguments starting at 0). If it does not support either of those protocols, TypeError is raised. If
the second argument, sentinel, is given, then object must be a callable object. The iterator created in this case
will call object with no arguments for each call to its __next___ () method; if the value returned is equal to
sentinel, St opIteration will be raised, otherwise the value will be returned.

One useful application of the second form of itexr () istoread lines of a file until a certain line is reached. The
following example reads a file until the readl ine () method returns an empty string:

with open ('mydata.txt’) as fp:
for line in iter (fp.readline, ’7):
process_line(line)

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list ([iterable])
Return a list whose items are the same and in the same order as iterable‘s items. iterable may be either a
sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is made and
returned, similar to iterable[:]. Forinstance, 1ist (' abc’) returns ["a’, 'b’, ’'c’] and 1ist (
(1, 2, 3))returns [1, 2, 3].Ifnoargument is given, returns a new empty list, [].

1ist is a mutable sequence type, as documented in Sequence Types — str, bytes, bytearray, list, tuple, range.

locals ()
Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals () when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local and
free variables used by the interpreter.

map (function, iterable, ...)
Return an iterator that applies function to every item of iferable, yielding the results. If additional iterable
arguments are passed, function must take that many arguments and is applied to the items from all iterables in
parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where the
function inputs are already arranged into argument tuples, see itertools.starmap ().

max (ilerable[, args...], *[, key])
With a single argument iterable, return the largest item of a non-empty iterable (such as a string, tuple or list).
With more than one argument, return the largest of the arguments.

The optional keyword-only key argument specifies a one-argument ordering function like that used for
list.sort ().

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0] and
heapg.nlargest (1, iterable, key=keyfunc).

memoryview (obj)
Return a “memory view” object created from the given argument. See memoryview type for more information.

min (iterable[, args...], *[, key])
With a single argument iterable, return the smallest item of a non-empty iterable (such as a string, tuple or list).
With more than one argument, return the smallest of the arguments.

13

The Python Library Reference, Release 3.2.1

The optional keyword-only key argument specifies a one-argument ordering function like that used for
list.sort ().

If multiple items are minimal, the function returns the first one encountered. This is consis-
tent with other sort-stability preserving tools such as sorted(iterable, key=keyfunc) [0] and
heapg.nsmallest (1, iterable, key=keyfunc).

next (iterator[, default])
Retrieve the next item from the iterator by calling its __next___ () method. If default is given, it is returned if
the iterator is exhausted, otherwise St opIteration is raised.

object ()
Return a new featureless object. object is a base for all classes. It has the methods that are common to all
instances of Python classes. This function does not accept any arguments.

Note: object does not have a __dict__, so you can’t assign arbitrary attributes to an instance of the
object class.

oct (x)
Convert an integer number to an octal string. The result is a valid Python expression. If x is not a Python int
object, it has to define an ___index___ () method that returns an integer.

open (file, mode="r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True)
Open file and return a corresponding stream. If the file cannot be opened, an TOError is raised.

file is either a string or bytes object giving the pathname (absolute or relative to the current working directory)
of the file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is
closed when the returned I/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ’ r’ which means
open for reading in text mode. Other common values are ' w’ for writing (truncating the file if it already
exists), and * a’ for appending (which on some Unix systems, means that all writes append to the end of the file
regardless of the current seek position). In text mode, if encoding is not specified the encoding used is platform
dependent. (For reading and writing raw bytes use binary mode and leave encoding unspecified.) The available

modes are:
Character | Meaning
s open for reading (default)
"w! open for writing, truncating the file first
ra’ open for writing, appending to the end of the file if it exists
"o’ binary mode
e text mode (default)
T4 open a disk file for updating (reading and writing)
"y’ universal newline mode (for backwards compatibility; should not be used in new code)

The default mode is ’ r’ (open for reading text, synonym of ’ rt’). For binary read-write access, the mode
"w+b’ opens and truncates the file to O bytes. ’ r+b’ opens the file without truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary mode
(including ' b’ in the mode argument) return contents as bytes objects without any decoding. In text mode
(the default, or when ’ t’ is included in the mode argument), the contents of the file are returned as st r, the
bytes having been first decoded using a platform-dependent encoding or using the specified encoding if given.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the the processing is
done by Python itself, and is therefore platform-independent.

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.1

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed in
binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size of a
fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as follows:

*Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on io.DEFAULT_BUFFER_SIZE. On
many systems, the buffer will typically be 4096 or 8192 bytes long.

*“Interactive” text files (files for which isatty () returns True) use line buffering. Other text files use the
policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode.
The default encoding is platform dependent (whatever 1ocale.getpreferredencoding () returns), but
any encoding supported by Python can be used. See the codecs module for the list of supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be
used in binary mode. Pass ' strict’ to raise a ValueError exception if there is an encoding error (the
default of None has the same effect), or pass ’ ignore’ to ignore errors. (Note that ignoring encoding errors
can lead to data loss.) ' replace’ causes a replacement marker (such as ’ ?’) to be inserted where there
is malformed data. When writing, ' xmlcharrefreplace’ (replace with the appropriate XML character
reference) or ' backslashreplace’ (replace with backslashed escape sequences) can be used. Any other
error handling name that has been registered with codecs.register_error () is also valid.

newline controls how universal newlines works (it only applies to text mode). It can be None, ”, " \n’, " \r’,
and " \r\n’. It works as follows:

*On input, if newline is None, universal newlines mode is enabled. Lines in the input can end in ' \n’,
"\r’,or "\r\n’, and these are translated into ' \n’ before being returned to the caller. If it is ",
universal newline mode is enabled, but line endings are returned to the caller untranslated. If it has any of
the other legal values, input lines are only terminated by the given string, and the line ending is returned to
the caller untranslated.

*On output, if newline is None, any ’ \n’ characters written are translated to the system default line
separator, os . Linesep. If newline is ", no translation takes place. If newline is any of the other legal
values, any ’ \n’ characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will be
kept open when the file is closed. If a filename is given closefd has no effect and must be True (the default).

The type of file object returned by the open () function depends on the mode. When open () is used
to open a file in a text mode (‘w’, "r’, "wt’, 'rt’, etc.), it returns a subclass of io.TextIOBase
(specifically io.TextIOWrapper). When used to open a file in a binary mode with buffering, the re-
turned class is a subclass of io.BufferedIOBase. The exact class varies: in read binary mode, it returns
a io.BufferedReader; in write binary and append binary modes, it returns a io.Bufferediiriter,
and in read/write mode, it returns a io.BufferedRandom. When buffering is disabled, the raw stream, a
subclass of io.RawIOBase, io.FileIO0, isreturned.

See also the file handling modules, such as, fileinput, io (where open () is declared), os, os.path,
tempfile,and shutil.

ord (c)
Given a string representing one Uncicode character, return an integer representing the Unicode code point of
that character. For example, ord (’ a’) returns the integer 97 and ord (/ \u2020’) returns 8224. This is
the inverse of chr ().

On wide Unicode builds, if the argument length is not one, a TypeError will be raised. On narrow Unicode
builds, strings of length two are accepted when they form a UTF-16 surrogate pair.

pow (x,y[. z])
Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently than

15

The Python Library Reference, Release 3.2.1

pow (x, y) % z). The two-argument form pow (x, vy) isequivalent to using the power operator: x* xy.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the
second argument is negative; in that case, all arguments are converted to float and a float result is delivered.
For example, 10+ +2 returns 100, but 10 x-2 returns 0.01. If the second argument is negative, the third
argument must be omitted. If z is present, x and y must be of integer types, and y must be non-negative.

print ([object,], * sep="", end="\n’, file=sys.stdout)

Print object(s) to the stream file, separated by sep and followed by end. sep, end and file, if present, must be
given as keyword arguments.

All non-keyword arguments are converted to strings like st r () does and written to the stream, separated by
sep and followed by end. Both sep and end must be strings; they can also be None, which means to use the
default values. If no object is given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None,
sys.stdout will be used.

property (fget=None, fset=None, fdel=None, doc=None)

Return a property attribute.

fget is a function for getting an attribute value, likewise fset is a function for setting, and fdel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C:
def = init__ (self):
self._x = None

def getx(self):
return self._x
def setx(self, wvalue):
self._x = value
def delx(self):
del self._x
X = property(getx, setx, delx, "I'm the ’'x’ property.")

If then c is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del c.x
the deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget‘s docstring
(if it exists). This makes it possible to create read-only properties easily using property () as a decorator:

class Parrot:
def _ init_ (self):
self._voltage = 100000

@property

def voltage (self):
"""Get the current voltage."""
return self._voltage

turns the voltage () method into a “getter” for a read-only attribute with the same name.

A property object has getter, setter, and deleter methods usable as decorators that create a copy of the
property with the corresponding accessor function set to the decorated function. This is best explained with an
example:

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.1

class C:
def @ init__ (self):
self._x = None

@property

def x(self):
"""I’m the ’x’ property."""
return self._x

@x.setter
def x(self, value):
self._x = value

@x.deleter
def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as
the original property (x in this case.)

The returned property also has the attributes fget, fset, and £del corresponding to the constructor argu-
ments.

range ([start], stop[, step])
This is a versatile function to create iterables yielding arithmetic progressions. It is most often used in for
loops. The arguments must be integers. If the step argument is omitted, it defaults to 1. If the start argument
is omitted, it defaults to 0. The full form returns an iterable of integers [start, start + step, start
+ 2 % step, ...].Ifstepis positive, the last element is the largest start + i1 * step less than stop;
if step is negative, the last element is the smallest start + i x step greater than sfop. step must not be
zero (or else ValueError is raised). Example:

>>> list (range (10))

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range (1, 11))

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list (range (0, 30, 5))

[0, 5, 10, 15, 20, 25]

>>> list (range (0, 10, 3))

[0, 3, 6, 9]

>>> list (range (0, -10, -1))

(¢, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> list (range(0))

>>> list (range (1, 0))

Range objects implement the collections.Sequence ABC, and provide features such as containment
tests, element index lookup, slicing and support for negative indices:

>>> r = range (0, 20, 2)
>>> r

range (0, 20, 2)

>>> 11 in r

False

>>> 10 in r

17

The Python Library Reference, Release 3.2.1

True

>>> r.index (10)
5

>>> r[5]

10

>>> r[:5]

range (0, 10, 2)
>>> r[-1]

18

Ranges containing absolute values larger than sy s . maxsize are permitted but some features (such as len ())
will raise OverflowError. Changed in version 3.2: Implement the Sequence ABC. Support slicing and
negative indices. Test integers for membership in constant time instead of iterating through all items.

repr (object)

Return a string containing a printable representation of an object. For many types, this function makes an
attempt to return a string that would yield an object with the same value when passed to eval (), otherwise
the representation is a string enclosed in angle brackets that contains the name of the type of the object together
with additional information often including the name and address of the object. A class can control what this
function returns for its instances by defininga ___repr__ () method.

reversed (seq)

Return a reverse iferator. seq must be an object which has a ___reversed__ () method or supports the
sequence protocol (the __len__ () method andthe __getitem__ () method with integer arguments starting
at 0).

round (x[, n])

Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it defaults to zero.
Delegates to x.__round__ (n).

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power
minus n; if two multiples are equally close, rounding is done toward the even choice (so, for example, both
round (0.5) and round (-0.5) are 0, and round (1.5) is 2). The return value is an integer if called with
one argument, otherwise of the same type as x.

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives2.67
instead of the expected 2. 68. This is not a bug: it’s a result of the fact that most decimal fractions can’t be
represented exactly as a float. See fut-fp-issues for more information.

set ([iterable])

Return a new set, optionally with elements taken from iterable. The set type is described in Ser Types — set,
frozenset.

setattr (object, name, value)

This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For example, setattr (x, ’foobar’, 123) isequivalentto x.foobar = 123.

slice ([start], stop[, step])

Return a slice object representing the set of indices specified by range (start, stop, step). The start
and step arguments default to None. Slice objects have read-only data attributes start, stop and step
which merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop, i]. See
itertools.islice () for an alternate version that returns an iterator.

18

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.2.1

sorted (iterable[, key][, reverse])
Return a new sorted list from the items in iterable.

Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.
Use functools.cmp_to_key () to convert an old-style cmp function to a key function.
For sorting examples and a brief sorting tutorial, see Sorting HowTo.

staticmethod (function)
Return a static method for function.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator — see the description of function definitions in function for
details.

It can be called either on the class (such as C.f ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. Also see classmethod () for a variant
that is useful for creating alternate class constructors.

For more information on static methods, consult the documentation on the standard type hierarchy in types.

str ([object[, encoding[, errors]]])
Return a string version of an object, using one of the following modes:

If encoding and/or errors are given, st r () will decode the object which can either be a byte string or a character
buffer using the codec for encoding. The encoding parameter is a string giving the name of an encoding; if the
encoding is not known, LookupError is raised. Error handling is done according to errors; this specifies
the treatment of characters which are invalid in the input encoding. If errors is " strict’ (the default), a
ValueError is raised on errors, while a value of " ignore’ causes errors to be silently ignored, and a
value of ' replace’ causes the official Unicode replacement character, U+FFFD, to be used to replace input
characters which cannot be decoded. See also the codecs module.

When only object is given, this returns its nicely printable representation. For strings, this is the string itself.
The difference with repr (object) isthat str (object) does not always attempt to return a string that is
acceptable to eval ();its goal is to return a printable string. With no arguments, this returns the empty string.

Objects can specify what st r (object) returns by defininga ___str__ () special method.

For more information on strings see Sequence Types — str, bytes, bytearray, list, tuple, range which describes
sequence functionality (strings are sequences), and also the string-specific methods described in the String
Methods section. To output formatted strings, see the String Formatting section. In addition see the String
Services section.

sum (iterable[, start])
Sums start and the items of an iterable from left to right and returns the total. start defaults to 0. The iterable‘s
items are normally numbers, and the start value is not allowed to be a string.

19

http://wiki.python.org/moin/HowTo/Sorting/

The Python Library Reference, Release 3.2.1

For some use cases, there are good alternatives to sum (). The preferred, fast way to concatenate a sequence
of strings is by calling ” . join (sequence). To add floating point values with extended precision, see
math. fsum (). To concatenate a series of iterables, consider using itertools.chain ().

super ([type[, Object-or-type]])
Return a proxy object that delegates method calls to a parent or sibling class of fype. This is useful for accessing
inherited methods that have been overridden in a class. The search order is same as that used by getattr ()
except that the type itself is skipped.

The __mro___ attribute of the type lists the method resolution search order used by both getattr () and
super (). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an ob-
ject, isinstance (obj, type) must be true. If the second argument is a type, issubclass (type2,
type) must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer
to parent classes without naming them explicitly, thus making the code more maintainable. This use closely
parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This use
case is unique to Python and is not found in statically compiled languages or languages that only support single
inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes implement
the same method. Good design dictates that this method have the same calling signature in every case (because
the order of calls is determined at runtime, because that order adapts to changes in the class hierarchy, and
because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arqg):
super () .method (arg) # This does the same thing as:

super (C, self).method(arqg)

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such as
super () .__getitem__ (name). It does so by implementing its own __getattribute__ () method
for searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly,
super () is undefined for implicit lookups using statements or operators such as super () [name].

Also note that super () is not limited to use inside methods. The two argument form specifies the arguments
exactly and makes the appropriate references. The zero argument form automatically searches the stack frame
for the class (__class__) and the first argument.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

tuple ([iterable])
Return a tuple whose items are the same and in the same order as iferable‘s items. iterable may be a sequence, a
container that supports iteration, or an iterator object. If iterable is already a tuple, it is returned unchanged. For
instance, tuple (’ abc’) returns (‘a’, ’'b’, ’'c’) andtuple([1, 2, 3]) returns (1, 2, 3).If
no argument is given, returns a new empty tuple, ().

tuple is an immutable sequence type, as documented in Sequence Types — str, bytes, bytearray, list, tuple,
range.

type (object)
Return the type of an object. The return value is a type object and generally the same object as returned by
object.__class__.

The isinstance () built-in function is recommended for testing the type of an object, because it takes sub-
classes into account.

20 Chapter 2. Built-in Functions

http://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.2.1

With three arguments, type () functions as a constructor as detailed below.

type (name, bases, dict)
Return a new type object. This is essentially a dynamic form of the class statement. The name string is
the class name and becomes the __name___ attribute; the bases tuple itemizes the base classes and becomes
the _ bases___ attribute; and the dict dictionary is the namespace containing definitions for class body and
becomes the ___dict___ attribute. For example, the following two statements create identical t ype objects:

>>> class X:
a =1

>>> X = type('X’, (object,), dict(a=1))

vars ([object])
Without an argument, act like 1ocals ().

With a module, class or class instance object as argument (or anything else that has a ___dict___ attribute),
return that attribute.

Note: The returned dictionary should not be modified: the effects on the corresponding symbol table are
undefined. *

zip (*iterables)
Make an iterator that aggregates elements from each of the iterables.

Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences
or iterables. The iterator stops when the shortest input iterable is exhausted. With a single iterable argument, it
returns an iterator of 1-tuples. With no arguments, it returns an empty iterator. Equivalent to:

def zip(xiterables):
zip (’ABCD’, ’xy’) —-—-> Ax By
sentinel = object ()
iterables = [iter(it) for it in iterables]
while iterables:
result = []
for it in iterables:
elem next (it, sentinel)
if elem is sentinel:
return
result.append(elem)
yield tuple(result)

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a
data series into n-length groups using zip (x [iter (s)]1*n).

zip () should only be used with unequal length inputs when you don’t care about trailing, unmatched values
from the longer iterables. If those values are important, use itertools.zip_longest () instead.

z1ip () in conjunction with the x operator can be used to unzip a list:
>>> x = [1, 2, 3]

>>>y = [4, 5, 6]
>>> zipped = zip(x, V)

2 In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (such as
modules) can be. This may change.

21

The Python Library Reference, Release 3.2.1

>>> list (zipped)
[(1, 4), (2, 5), (3, 6)]

>>> x2, y2 = zip(xzip(x, Vy))
>>> x == list(x2) and y == list (y2)
True

__import___ (name, globals={}, localsz{},fromlistz[], level=0)

Note: This is an advanced function that is not needed in everyday Python programming.

This function is invoked by the import statement. It can be replaced (by importing the builtins module and
assigningtobuiltins.__import__)in order to change semantics of the import statement, but nowadays
it is usually simpler to use import hooks (see PEP 302). Direct use of __import__ () is rare, except in cases
where you want to import a module whose name is only known at runtime.

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should be
imported from the module given by name. The standard implementation does not use its locals argument at all,
and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. O (the default) means only perform absolute imports.
Positive values for level indicate the number of parent directories to search relative to the directory of the module
calling___import__ ().

When the name variable is of the form package .module, normally, the top-level package (the name up till
the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is
given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:
spam = ___import__ (’spam’, globals (), locals(), [1, 0)

The statement import spam.ham results in this call:

spam = __import__ (’spam.ham’, globals (), locals(), [], 0)

Note how ___import__ () returns the toplevel module here because this is the object that is bound to a name
by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __import__ (’spam.ham’, globals (), locals(), [’'eggs’, ’"sausage’], 0)
eggs = _temp.eggs

saus = _temp.sausage

Here, the spam.ham module is returned from ___import__ (). From this object, the names to import are

retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, you can call ___import__ ()
and then look it up in sys .modules:

>>> import sys

>>> name = ’'foo.bar.baz’
>>> import (name)
<module ’foo’ from ...>

22

Chapter 2. Built-in Functions

http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.2.1

>>> baz
>>> baz
<module

sys.modules [name]

"foo.bar.baz’ from

23

The Python Library Reference, Release 3.2.1

24 Chapter 2. Built-in Functions

CHAPTER
THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. Assignments to False are illegal and raise a SyntaxError.

True
The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None
The sole value of types.NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function. Assignments to None are illegal and raise a SyntaxError.

NotImplemented
Special value which can be returned by the “rich comparison” special methods (__eq__ (), __1t__ (), and
friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
The same as Special value used mostly in conjunction with extended slicing syntax for user-defined
container data types.

__debug___
This constant is true if Python was not started with an —O option. See also the assert statement.

Note: The names None, False, True and ___debug___ cannot be reassigned (assignments to them, even as an
attribute name, raise SyntaxError), so they can be considered “true” constants.

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is given)
adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not be
used in programs.

quit (code=None)

exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called, raise
SystemExit with the specified exit code.

copyright
license

25

The Python Library Reference, Release 3.2.1

credits
Objects that when printed, print a message like “Type license() to see the full license text”, and when called,
display the corresponding text in a pager-like fashion (one screen at a time).

26 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some operations are supported by several object types; in particular, practically all objects can be compared, tested for
truth value, and converted to a string (with the repr () function or the slightly different st r () function). The latter
function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an i f or while condition or as operand of the Boolean operations
below. The following values are considered false:

* None

e False

* zero of any numeric type, for example, 0, 0.0, 07.
* any empty sequence, for example, ”, (), [].

¢ any empty mapping, for example, { }.

¢ instances of user-defined classes, if the class defines a __ _bool__ () or __len__ () method, when that
method returns the integer zero or bool value False.

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for
true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their
operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

! Additional information on these special methods may be found in the Python Reference Manual (customization).

27

The Python Library Reference, Release 3.2.1

Operation Result Notes

X Or y if x is false, then y, else x (1)

x and y if x is false, then x, else y 2)

not x if x is false, then True, else False | (3)
Notes:

1. This is a short-circuit operator, so it only evaluates the second argument if the first one is False.
2. This is a short-circuit operator, so it only evaluates the second argument if the first one is True.

3. not has alower priority than non-Boolean operators, so not a == b isinterpreted as not (a == b),and
a == not b isasyntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent to x < y
and y <= gz, except that y is evaluated only once (but in both cases z is not evaluated at all when x < vy is found
to be false).

This table summarizes the comparison operations:

Operation | Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. Furthermore, some types (for example,
function objects) support only a degenerate notion of comparison where any two objects of that type are unequal. The
<, <=, > and >= operators will raise a TypeError exception when comparing a complex number with another built-
in numeric type, when the objects are of different types that cannot be compared, or in other cases where there is no
defined ordering.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eqg___ () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object,
unless the class defines enough of the methods __1t__ (), __le_ (), __gt__ (),and __ge__ () (in general,
__1t__ () and__eqg__ () are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects and
never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported only by sequence types (below).

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating point numbers, and complex numbers. In addition, Booleans
are a subtype of integers. Integers have unlimited precision. Floating point numbers are usually implemented using
double in C; information about the precision and internal representation of floating point numbers for the machine
on which your program is running is available in sys.float_info. Complex numbers have a real and imaginary

28 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.1

part, which are each a floating point number. To extract these parts from a complex number z, use z.real and
z .imag. (The standard library includes additional numeric types, fractions that hold rationals, and decimal
that hold floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appending ’ 5’ or / J’ to a numeric literal yields an imaginary number (a complex
number with a zero real part) which you can add to an integer or float to get a complex number with real and imaginary
parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “narrower” type is widened to that of the other, where integer is narrower than floating point,
which is narrower than complex. Comparisons between numbers of mixed type use the same rule. > The constructors
int (), float (), and complex () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in the
same box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes | Full
documentation
X +y sum of x and y
X -y difference of x and y
X *x Y product of x and y
x /vy quotient of x and y
x //y floored quotient of x and y @))
X %y remainder of x / y 2)
-X X negated
+x x unchanged
abs (x) absolute value or magnitude of x abs ()
int (x) x converted to integer 3)(6) | int ()
float (x) x converted to floating point @)(6) | float ()
complex (re, a complex number with real part re, imaginary part im. im (6) complex ()
im) defaults to zero.
c.conjugate () | conjugate of the complex number ¢
divmod (x, V) the pair (x // y, x % V) 2) divmod ()
pow (x, V) x to the power y (5 pow ()
X *%x Y X to the power y 5
Notes:

1. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int. The result is always rounded towards minus infinity: 1//2is 0, (-1) //2is-1,1//(=2) is
-1,and (-1)//(-2) is 0.

2. Not for complex numbers. Instead convert to floats using abs () if appropriate.

3. Conversion from floating point to integer may round or truncate as in C; see functions f1oor () and ceil ()
in the math module for well-defined conversions.

4. float also accepts the strings “nan” and “inf”” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity.

5. Python defines pow (0, 0) and 0 =% O to be 1, as is common for programming languages.

6. The numeric literals accepted include the digits 0 to 9 or any Unicode equivalent (code points with the Nd
property).

2 Asa consequence, the list [1, 2] is considered equalto [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex 29

The Python Library Reference, Release 3.2.1

See http://www.unicode.org/Public/6.0.0/ucd/extracted/DerivedNumericType.txt for a complete list of code
points with the Nd property.

All numbers.Real types (int and £1loat) also include the following operations:

Operation Result Notes
math.trunc(x) | xtruncated to Integral

round (x[, n]) | xrounded to n digits, rounding half to even. If n is omitted, it defaults to O.
math.floor (x) | the greatest integral float <= x

math.ceil (x) the least integral float >= x

For additional numeric operations see the math and cmath modules.

4.4.1 Bit-string Operations on Integer Types
Integers support additional operations that make sense only for bit-strings. Negative numbers are treated as their 2’s
complement value (this assumes a sufficiently large number of bits that no overflow occurs during the operation).

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ~ has the same priority as the other unary numeric operations (+ and —).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation Result Notes
x |y bitwise or of x and y
x Ny bitwise exclusive or of x and y
X &y bitwise and of x and y
x << n x shifted left by n bits (H©2)
X >> n x shifted right by n bits (HA3)
~X the bits of x inverted

Notes:

1. Negative shift counts are illegal and cause a ValueError to be raised.
2. A left shift by #n bits is equivalent to multiplication by pow (2, n) without overflow check.

3. A right shift by n bits is equivalent to division by pow (2, n) without overflow check.

4.4.2 Additional Methods on Integer Types

The int type implements the numbers . Integral abstract base class. In addition, it provides one more method:

int.bit_length ()
Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = —-37

>>> bin(n)
’-0b100101"

>>> n.bit_length ()
6

More precisely, if x is nonzero, then x . bit_length () is the unique positive integer k such that 2+ (k-1)
<= abs (x) < 2xxk. Equivalently, when abs (x) is small enough to have a correctly rounded logarithm,
thenk = 1 + int (log(abs(x), 2)).If xiszero,thenx.bit_length () returns 0.

Equivalent to:

30 Chapter 4. Built-in Types

http://www.unicode.org/Public/6.0.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.2.1

def bit_length(self):

s = bin(self) # binary representation: bin(-37) --> ’-0b100101’
s = s.lstrip(’'-0b’) # remove leading zeros and minus sign
return len(s) # len(’71001017) ——> 6

New in version 3.1.

int.to_bytes (length, byteorder, *, signed=False)
Return an array of bytes representing an integer.

>>> (1024) .to_bytes (2, byteorder='big’)

b’ \x04\x00"

>>> (1024) .to_bytes (10, byteorder='big’)

b’ \x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"

>>> (-1024) .to_bytes (10, byteorder='"big’, signed=True)

b/ \xfA\XFA\XEA\XEF\XEL\XEF\XEL\XEF\xfc\x00’

>>> x = 1000

>>> x.to_bytes ((x.bit_length() // 8) + 1, byteorder=’little’)
b’ \xe8\x03"

The integer is represented using length bytes. An OverflowError is raised if the integer is not representable
with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big", the most
significant byte is at the beginning of the byte array. If byteorder is "1ittle", the most significant byte is at
the end of the byte array. To request the native byte order of the host system, use sy s .byteorder as the byte
order value.

The signed argument determines whether two’s complement is used to represent the integer. If signed is False
and a negative integer is given, an OverflowError is raised. The default value for signed is False. New in
version 3.2.

classmethod int . from_bytes (bytes, byteorder, *, signed=False)
Return the integer represented by the given array of bytes.

>>> int.from_bytes (b’ \x00\x10’, byteorder="big’)

16

>>> int.from_bytes (b’ \x00\x10’, byteorder=’'1little’)

4096

>>> int.from_bytes (b’ \xfc\x00’, byteorder="big’, signed=True)
-1024

>>> int.from_bytes (b’ \xfc\x00’, byteorder='big’, signed=False)
64512

>>> int.from _bytes ([255, 0, 0], byteorder="big’)

16711680

The argument bytes must either support the buffer protocol or be an iterable producing bytes. bytes and
bytearray are examples of built-in objects that support the buffer protocol.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big", the most
significant byte is at the beginning of the byte array. If byteorder is "1itt1le", the most significant byte is at
the end of the byte array. To request the native byte order of the host system, use sys.byteorder as the byte
order value.

The signed argument indicates whether two’s complement is used to represent the integer. New in version 3.2.

4.4. Numeric Types — int, float, complex 31

The Python Library Reference, Release 3.2.1

4.4.3 Additional Methods on Float

The float type implements the numbers.Real abstract base class. float also has the following additional methods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator. Raises
OverflowError on infinities and a ValueError on NaNs.

float.is_integer ()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0).1is_integer ()
True
>>> (3.2).1is_integer ()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when
debugging, and in numerical work.

float .hex ()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading Ox and a trailing p and exponent.

classmethod f1oat . fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and trailing
whitespace.

Note that f1oat .hex () is an instance method, while f1oat . fromhex () is a class method.
A hexadecimal string takes the form:
[sign] [’'0x’] integer [’ .’ fraction] [’p’ exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2
of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of £1oat .hex () is
usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s $a format
character or Java’s Double.toHexString are accepted by float . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point number (3
+ 10./16 + 7./16%%x2) % 2.0xx10,0r 3740.0:

>>> float.fromhex (' 0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex (3740.0)
"0x1.d380000000000p+11"

4.4.4 Hashing of numeric types

For numbers x and vy, possibly of different types, it’s a requirement that hash (x) == hash (y) whenever x
== vy (see the __hash__ () method documentation for more details). For ease of implementation and efficiency
across a variety of numeric types (including int, float, decimal.Decimal and fractions.Fraction)

32 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.1

Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational num-
ber, and hence applies to all instances of int and fraction.Fraction, and all finite instances of f1oat and
decimal.Decimal. Essentially, this function is given by reduction modulo P for a fixed prime P. The value of P
is made available to Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime usedis P = 2xx31 - 1 on machines with 32-bit C longs
andP = 2x+61 - 1 onmachines with 64-bit C longs.

Here are the rules in detail:

e If x = m / n is a nonnegative rational number and n is not divisible by P, define hash (x) as m =*
invmod (n, P) % P,where invmod (n, P) gives the inverse of n modulo P.

e If x = m / n is a nonnegative rational number and n is divisible by P (but m is not) then n has no in-
verse modulo P and the rule above doesn’t apply; in this case define hash (x) to be the constant value
sys.hash_info.inf.

e If x = m / nis a negative rational number define hash (x) as ~hash (-x). If the resulting hash is -1,
replace it with —2.

e The particular values sys.hash_info.inf, —sys.hash_info.inf and sys.hash_info.nan are
used as hash values for positive infinity, negative infinity, or nans (respectively). (All hashable nans have the
same hash value.)

e For a complex number z, the hash values of the real and imaginary parts are combined by
computing hash(z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo
2+«xsys.hash_info.width so that it lies in range (-2*+* (sys.hash_info.width - 1),
2x% (sys.hash_info.width - 1)). Again, if the result is —1, it’s replaced with —2.

To clarify the above rules, here’s some example Python code, equivalent to the builtin hash, for computing the hash of
a rational number, f1oat, or complex:

import sys, math

def hash_fraction(m, n):
""r"Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

mmn

P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary if m and n already coprime.)
while m $ P == n % == 0:
m, n=m// P, n// P
ifn %P == 0:
hash_ = s
else:
Fermat’s Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.

ys.hash_info.inf

hash_ = (abs(m) % P) % pow(n, P - 2, P) % P
if m < O:

hash_ = -hash_
if hash_ == -1:

hash_ = -2

return hash_

4.4. Numeric Types — int, float, complex 33

The Python Library Reference, Release 3.2.1

def hash_float (x):
"""Compute the hash of a float x."""

if math.isnan (x) :

return sys.hash_info.nan
elif math.isinf (x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:

return hash_fraction(*xx.as_integer_ratio())

def hash_complex(z) :
"""Compute the hash of a complex number z."""

hash_ = hash_float(z.real) + sys.hash_info.imag * hash_float (z.imag)
do a signed reduction modulo 2+*+*sys.hash_info.width
M = 2x%(sys.hash_info.width - 1)
hash. = (hash_ & (M - 1)) — (hash & M)
if hash_ == -1:
hash_ == -2
return hash_

4.5 Iterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the
iteration methods.

One method needs to be defined for container objects to provide iteration support:

container._ _iter_ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of the type
structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter_ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in
the Python/C APL

iterator._ _next_ ()
Return the next item from the container. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

Once an iterator’s __next__ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

34 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.1

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s __iter__ ()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the __iter_ () and __next__ () methods. More information about generators can be found in the
documentation for the yield expression.

4.6 Sequence Types — str, bytes, bytearray, list, tuple, range

There are six sequence types: strings, byte sequences (bytes objects), byte arrays (bytearray objects), lists,
tuples, and range objects. For other containers see the built in dict and set classes, and the collections
module.

Strings contain Unicode characters. Their literals are written in single or double quotes: ’ xyzzy’, "frobozz".
See strings for more about string literals. In addition to the functionality described here, there are also string-specific
methods described in the String Methods section.

Bytes and bytearray objects contain single bytes — the former is immutable while the latter is a mutable sequence.
Bytes objects can be constructed the constructor, bytes (), and from literals; use a b prefix with normal string
syntax: b’ xyzzy’ . To construct byte arrays, use the bytearray () function.

While string objects are sequences of characters (represented by strings of length 1), bytes and bytearray objects
are sequences of integers (between 0 and 255), representing the ASCII value of single bytes. That means that for
a bytes or bytearray object b, b [0] will be an integer, while b [0:1] will be a bytes or bytearray object of length
1. The representation of bytes objects uses the literal format (b’ . ..’) since it is generally more useful than e.g.
bytes ([50, 19, 1001]). You can always convert a bytes object into a list of integers using 1ist (b).

Also, while in previous Python versions, byte strings and Unicode strings could be exchanged for each other rather
freely (barring encoding issues), strings and bytes are now completely separate concepts. There’s no implicit en-
/decoding if you pass an object of the wrong type. A string always compares unequal to a bytes or bytearray object.

Lists are constructed with square brackets, separating items with commas: [a, b, c]. Tuples are constructed by
the comma operator (not within square brackets), with or without enclosing parentheses, but an empty tuple must have
the enclosing parentheses, suchas a, b, cor (). A single item tuple must have a trailing comma, such as (d,).

Objects of type range are created using the range () function. They don’t support concatenation or repetition, and
using min () ormax () on them is inefficient.

Most sequence types support the following operations. The in and not in operations have the same priorities as
the comparison operations. The + and * operations have the same priority as the corresponding numeric operations.
Additional methods are provided for Mutable Sequence Types.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the table, s and ¢ are sequences of the same type; i, i, j and k are integers.

3 They must have since the parser can’t tell the type of the operands.

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 35

The Python Library Reference, Release 3.2.1

Operation Result Notes
X in s True if an item of s is equal to x, else False | (1)

x not in s False if an item of s is equal to x, else True | (1)

s + t the concatenation of s and ¢ (6)

s = n, n * s | nshallow copies of s concatenated 2)
s[i] i‘th item of s, origin 0 3)
s[i:3] slice of s from i to j 3)4)
s[i:j:k] slice of s from i to j with step k 3)(5)
len (s) length of s

min(s) smallest item of s

max (s) largest item of s

s.index (1) index of the first occurence of i in s

s.count (1) total number of occurences of i in s

Sequence types also support comparisons. In particular, tuples and lists are compared lexicographically by comparing
corresponding elements. This means that to compare equal, every element must compare equal and the two sequences
must be of the same type and have the same length. (For full details see comparisons in the language reference.)

Notes:
1. When s is a string object, the in and not in operations act like a substring test.

2. Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note also that
the copies are shallow; nested structures are not copied. This often haunts new Python programmers; consider:

>>> lists = [[]] = 3
>>> lists

(er, 1, 11

>>> 1lists[0].append(3)
>>> lists

(31, [31, [3]]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]]
x 3 are (pointers to) this single empty list. Modifying any of the elements of 1ists modifies this single list.
You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)

>>> lists[1l].append(5)

>>> lists([2].append(7)

>>> lists

(31, 51, (711

3. If i orj is negative, the index is relative to the end of the string: len (s) + 1orlen(s) + jissubstituted.
But note that —0 is still O.

4. The slice of s from i to j is defined as the sequence of items with index k such that i <= k < Jj. Ifiorjis
greater than len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s). If i
is greater than or equal to j, the slice is empty.

5. The slice of s from i to j with step & is defined as the sequence of items with index x = i + nxk such that
0 <= n < (j-1i) /k. In other words, the indices are i, i +k, 1+2+xk, 1+3+k and so on, stopping when j is
reached (but never including j). If i or j is greater than len (s), use len (s). If i or j are omitted or None,
they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is
treated like 1.

6. CPython implementation detail: If s and ¢ are both strings, some Python implementations such as CPython
can usually perform an in-place optimization for assignments of the foom s = s + t or s += t. When
applicable, this optimization makes quadratic run-time much less likely. This optimization is both version and

36 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.1

implementation dependent. For performance sensitive code, it is preferable to use the str. join () method
which assures consistent linear concatenation performance across versions and implementations.

4.6.1 String Methods

String objects support the methods listed below.

In addition, Python’s strings support the sequence type methods described in the Sequence Types — str, bytes, bytear-
ray, list, tuple, range section. To output formatted strings, see the String Formatting section. Also, see the re module
for string functions based on regular expressions.

str.capitalize()
Return a copy of the string with its first character capitalized and the rest lowercased.

str.center (width[,ﬁllchar])
Return centered in a string of length widrh. Padding is done using the specified fillchar (default is a space).

str.count (sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional arguments
start and end are interpreted as in slice notation.

str.encode (encoding="utf-8”, errors="strict”)
Return an encoded version of the string as a bytes object. Default encoding is ' ut £-8". errors may be given
to set a different error handling scheme. The default for errors is ’ strict’, meaning that encoding errors
raise a UnicodeError. Other possible values are * ignore’, ' replace’, ' xmlcharrefreplace’,
"backslashreplace’ and any other name registered via codecs.register_error (), see section
Codec Base Classes. For a list of possible encodings, see section Standard Encodings. Changed in version 3.1:
Support for keyword arguments added.

str.endswith (suﬁ‘ix[, smrt[, end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

str.expandtabs ([tabsize])
Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current
column and the given tab size. The column number is reset to zero after each newline occurring in the string. If
tabsize is not given, a tab size of 8 characters is assumed. This doesn’t understand other non-printing characters
Or escape sequences.

str.find (sub[, start[, end]])
Return the lowest index in the string where substring sub is found, such that sub is contained in the slice
s[start :end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is not
found.

Note: The find () method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:

>>> Py’ in ’Python’
True

str.format (*args, **kwargs)
Perform a string formatting operation. The string on which this method is called can contain literal text or
replacement fields delimited by braces { }. Each replacement field contains either the numeric index of a posi-
tional argument, or the name of a keyword argument. Returns a copy of the string where each replacement field
is replaced with the string value of the corresponding argument.

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 37

The Python Library Reference, Release 3.2.1

str.

str.

str.

str

str.

str

str.

str.

str.

str.

>>> "The sum of 1 + 2 1is {0}".format (1+2)
"The sum of 1 + 2 1is 3’

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

format_map (mapping)
Similar to str.format (x*mapping), except that mapping is used directly and not copied to a dict .
This is useful if for example mapping is a dict subclass:

>>> class Default (dict) :
def _ missing__ (self, key):
return key

>>> / {name} was born in {country}’.format_map (Default (name=’'Guido’))
"Guido was born in country’

New in version 3.2.

index (sub[, start[, end]])
Like find (), but raise ValueError when the substring is not found.

isalnum()

Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.
A character ¢ is alphanumeric if one of the following returns True: c.isalpha(), c.isdecimal (),
c.isdigit (),orc.isnumeric().

.isalpha()

Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those with
general category property being one of “Lm”, “Lt”, “Lu”, “LI”, or “Lo”. Note that this is different from the
“Alphabetic” property defined in the Unicode Standard.

isdecimal ()

Return true if all characters in the string are decimal characters and there is at least one character, false otherwise.
Decimal characters are those from general category “Nd”. This category includes digit characters, and all
characters that that can be used to form decimal-radix numbers, e.g. U+0660, ARABIC-INDIC DIGIT ZERO.

.isdigit ()

Return true if all characters in the string are digits and there is at least one character, false otherwise. Digits
include decimal characters and digits that need special handling, such as the compatibility superscript digits.
Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.

isidentifier ()
Return true if the string is a valid identifier according to the language definition, section identifiers.

islower ()

Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise. Cased characters are those with general category property being one of “Lu”, “LI1”, or “Lt” and
lowercase characters are those with general category property “LI1”.

isnumeric()

Return true if all characters in the string are numeric characters, and there is at least one character, false oth-
erwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value
property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the
property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

isprintable ()
Return true if all characters in the string are printable or the string is empty, false otherwise. Nonprintable

38

Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.1

str

str

str

str

str

str

str

characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting
the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are those
which should not be escaped when repr () is invoked on a string. It has no bearing on the handling of strings
written to sys.stdout or sys.stderr.)

.isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false otherwise.
Whitespace characters are those characters defined in the Unicode character database as “Other” or “Separator”
and those with bidirectional property being one of “WS”, “B”, or “S”.

.istitle()
Return true if the string is a titlecased string and there is at least one character, for example uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.
.isupper ()

Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise. Cased characters are those with general category property being one of “Lu”, “LI”, or “Lt” and
uppercase characters are those with general category property “Lu”.

. join (iterable)
Return a string which is the concatenation of the strings in the iterable iterable. A TypeError will be raised
if there are any non-string values in seq, including bytes objects. The separator between elements is the string
providing this method.

.1ljust (width[,ﬁllchar])
Return the string left justified in a string of length width. Padding is done using the specified fillchar (default is
a space). The original string is returned if width is less than 1len (s) .

.lower ()
Return a copy of the string converted to lowercase.

.1strip([chars])
Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> 7 spacious " .lstrip()

" spacious !

>>> 'www.example.com’ .1lstrip (/ cmowz.’)
"example.com’

static st r .maketrans (x[, y[, Z]])

str

str

This static method returns a translation table usable for str.translate ().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings
of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be converted to
ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character
in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string,
whose characters will be mapped to None in the result.

.partition (sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the
string itself, followed by two empty strings.

.replace (old, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count

4.6.

Sequence Types — str, bytes, bytearray, list, tuple, range 39

The Python Library Reference, Release 3.2.1

str

str

str

str.

str.

str.

str

str.

str

is given, only the first count occurrences are replaced.

.rfind (sub[, start[, end]])

Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on fail-
ure.

.rindex (sub[, start[, end]])

Like rfind () butraises ValueError when the substring sub is not found.

.rjust (width, fillchar |)

Return the string right justified in a string of length width. Padding is done using the specified fillchar (default
is a space). The original string is returned if width is less than len (s).

rpartition (sep)

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

rsplit ([sep[, maxsplit]])

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except
for splitting from the right, rsplit () behaves like split () which is described in detail below.

rstrip ([chars])

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> spacious ".rstrip()

! spacious’

>>> 'mississippi’ .rstrip(’ipz’)
‘mississ’

.split ([sep[, maxsplit]])

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified, then there
is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, ' 1,2’ .split (’,’) returns [*1’, ", ' 2'1]). The sep argument may consist of multiple char-
acters (for example, ' 1<>2<>3’ .split (' <>') returns ["1’, ’'2’, ’3’1). Splitting an empty string
with a specified separator returns [”].

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace
with a None separator returns [].

Forexample,” 1 2 3 ’.split () returns ["1’, '2’, '3’],and’ 1 2 3 ’.split (None, 1)
returns [717, "2 3 '].

splitlines ([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unless keepends is given and true.

.startswith (preﬁx[, start[, end]])

Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to

40

Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.1

look for. With optional start, test string beginning at that position. With optional end, stop comparing string at
that position.

str.strip([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> spacious " .strip ()

" spacious’

>>> 'www.example.com’ .strip (/' cmowz.’)
"example’

str.swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

str.title()
Return a titlecased version of the string where words start with an uppercase character and the remaining char-
acters are lowercase.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> "they’re bill’s friends from the UK".title()
"They’Re Bill’S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(r"[A-Za-z]+ (' [A-Za-z]+
lambda mo: mo.group (0) [
mo.group (0) [

)?"I
0] .upper () +
1:].1lower (),
s)

>>> titlecase("they’re bill’s friends.")
"They’re Bill’s Friends."

str.translate (map)
Return a copy of the s where all characters have been mapped through the map which must be a dictionary
of Unicode ordinals (integers) to Unicode ordinals, strings or None. Unmapped characters are left untouched.
Characters mapped to None are deleted.

Youcanuse str.maketrans () to create a translation map from character-to-character mappings in different
formats.

Note: An even more flexible approach is to create a custom character mapping codec using the codecs
module (see encodings.cpl251 for an example).

str.upper ()
Return a copy of the string converted to uppercase.

str.z£ill (width)
Return the numeric string left filled with zeros in a string of length width. A sign prefix is handled correctly.
The original string is returned if width is less than len (s).

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 41

The Python Library Reference, Release 3.2.1

4.6.2 Old String Formatting Operations

Note: The formatting operations described here are obsolete and may go away in future versions of Python. Use the
new String Formatting in new code.

String objects have one unique built-in operation: the $ operator (modulo). This is also known as the string formatting

[[

or interpolation operator. Given format % values (where format is a string), $ conversion specifications in
format are replaced with zero or more elements of values. The effect is similar to the using sprintf () in the C
language.

If format requires a single argument, values may be a single non-tuple object. * Otherwise, values must be a tuple
with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The ’ %’ character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an * =’ (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), givenasa ’ .’ (dot) followed by the precision. If specified as ’ =’ (an asterisk), the actual
width is read from the next element of the tuple in values, and the value to convert comes after the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a paren-
thesised mapping key into that dictionary inserted immediately after the * $’ character. The mapping key selects the
value to be formatted from the mapping. For example:

>>> print (' $ (language)s has % (number)(03d quote types.’ %
{’ language’ : "Python", "number": 21})

Python has 002 quote types.
In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag Meaning

r#7 The value conversion will use the “alternate form” (where defined below).

"o’ The conversion will be zero padded for numeric values.

r—r The converted value is left adjusted (overrides the / 0’ conversion if both are given).

ro (a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
r4r A sign character (“ +’ or ’ -) will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is identical
to %d.

The conversion types are:

4 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

42 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.1

Conver- | Meaning Notes

sion

rd’ Signed integer decimal.

rir Signed integer decimal.

"o’ Signed octal value. (1)

ru’ Obsolete type — it is identical to " d’ . @)

rx! Signed hexadecimal (lowercase). 2)

rxX’ Signed hexadecimal (uppercase). 2)

re’ Floating point exponential format (lowercase). 3)

"E’ Floating point exponential format (uppercase). 3)

i Floating point decimal format. 3)

"E’ Floating point decimal format. 3)

rg’ Floating point format. Uses lowercase exponential format if exponent is less than -4 or not (@)
less than precision, decimal format otherwise.

"G’ Floating point format. Uses uppercase exponential format if exponent is less than -4 or not “)
less than precision, decimal format otherwise.

el Single character (accepts integer or single character string).

"¢’ String (converts any Python object using repr ()).)

"s’ String (converts any Python object using st r ()).

I No argument is converted, results in a * $’ character in the result.

Notes:

1. The alternate form causes a leading zero (* 0) to be inserted between left-hand padding and the formatting of
the number if the leading character of the result is not already a zero.

2. The alternate form causes a leading ’ 0x’ or ’ 0X’ (depending on whether the ’ x’ or ’ X’ format was used)
to be inserted between left-hand padding and the formatting of the number if the leading character of the result
is not already a zero.

3. The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

5. The precision determines the maximal number of characters used.

7. See PEP 237.

Since Python strings have an explicit length, $s conversions do not assume that * \ 0’ is the end of the string. Changed
in version 3.1: %f conversions for numbers whose absolute value is over 1e50 are no longer replaced by $g conver-
sions. Additional string operations are defined in standard modules st ring and re.

4.6.3 Range Type

The range type is an immutable sequence which is commonly used for looping. The advantage of the range type
is that an range object will always take the same amount of memory, no matter the size of the range it represents.

Range objects have relatively little behavior: they support indexing, contains, iteration, the 1en () function, and the
following methods:

range.count (x)
Return the number of i‘s for which s [1] == x.

New in version 3.2.

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range

43

http://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.2.1

range.index (x)

4.6

List

Return the smallest i such that s [1] == x. Raises ValueError when x is not in the range.

New in version 3.2.

.4 Mutable Sequence Types

and bytearray objects support additional operations that allow in-place modification of the object. Other mutable

sequence types (when added to the language) should also support these operations. Strings and tuples are immutable
sequence types: such objects cannot be modified once created. The following operations are defined on mutable
sequence types (where x is an arbitrary object).

Note that while lists allow their items to be of any type, bytearray object “items” are all integers in the range 0 <=x <

256.
Operation Result Notes
s[i] = x item i of s is replaced by x
s[i:3] = ¢t slice of s from i to j is replaced by the contents of the iterable ¢
del s[i:7j] sameass[i:3] = []
s[i:j:k] =t the elements of s [i: j:k] are replaced by those of ¢ €))
del s[i:7j:k] removes the elements of s [1:j:k] from the list
s.append (x) sameas s[len(s) :len(s)] = [x]
s.extend (x) same as s[len(s) :len(s)] = x 2)
s.count (x) return number of i‘s for which s [1] == x
s.index (x[, 1[, 3J11) return smallest k such that s [k] == xandi <= k < j 3)
s.insert (1, Xx) sameas s[1:1] = [x] (@)
s.pop([il) sameasx = s[i]; del s[i]; return x (@)
S.remove (x) same as del s[s.index (x)] 3)
s.reverse () reverses the items of s in place (6)
s.sort ([key[, reverse]]) | sortthe items of s in place 6), (7), (8)
Notes:
1. ¢ must have the same length as the slice it is replacing.

2.
3.

x can be any iterable object.

Raises ValueError when x is not found in s. When a negative index is passed as the second or third parameter
to the index () method, the sequence length is added, as for slice indices. If it is still negative, it is truncated
to zero, as for slice indices.

When a negative index is passed as the first parameter to the insert () method, the sequence length is added,
as for slice indices. If it is still negative, it is truncated to zero, as for slice indices.

The optional argument i defaults to —1, so that by default the last item is removed and returned.

The sort () and reverse () methods modify the sequence in place for economy of space when sorting
or reversing a large sequence. To remind you that they operate by side effect, they don’t return the sorted or
reversed sequence.

The sort () method takes optional arguments for controlling the comparisons. Each must be specified as a
keyword argument.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None. Use functools.cmp_to_key () to convert an old-style
cmp function to a key function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.

44

Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.1

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative order
of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by department,
then by salary grade).

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or even inspect,
the list is undefined. The C implementation of Python makes the list appear empty for the duration, and raises
ValueError if it can detect that the list has been mutated during a sort.

8. sort () is not supported by bytearray objects.

4.6.5 Bytes and Byte Array Methods

Bytes and bytearray objects, being “strings of bytes”, have all methods found on strings, with the exception of
encode (), format () and isidentifier (), which do not make sense with these types. For converting the
objects to strings, they have a decode () method.

Wherever one of these methods needs to interpret the bytes as characters (e.g. the is. .. () methods), the ASCII
character set is assumed.

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on
strings don’t accept bytes as their arguments. For example, you have to write

a = "abc"
b = a.replace("a", "f")

a = b"abc"
b = a.replace(b"a", b"f")

bytes.decode (encoding="utf-8”, errors="strict”)

bytearray.decode (encoding="utf-8”, errors="strict”)
Return a string decoded from the given bytes. Default encoding is " ut£—-8’. errors may be given to set
a different error handling scheme. The default for errors is ’ strict’, meaning that encoding errors raise
a UnicodeError. Other possible values are ' ignore’, ' replace’ and any other name registered via
codecs.register_error (), see section Codec Base Classes. For alist of possible encodings, see section
Standard Encodings. Changed in version 3.1: Added support for keyword arguments.

The bytes and bytearray types have an additional class method:

classmethod bytes . fromhex (string)

classmethod bytearray . fromhex (string)
This bytes class method returns a bytes or bytearray object, decoding the given string object. The string must
contain two hexadecimal digits per byte, spaces are ignored.

>>> bytes.fromhex (' £f0 f1£f2)
b’ \xfO\xfl\xf2’

The maketrans and translate methods differ in semantics from the versions available on strings:

bytes.translate (table[, delete])

bytearray.translate (table[, delete])
Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are
removed, and the remaining bytes have been mapped through the given translation table, which must be a bytes
object of length 256.

You can use the bytes.maketrans () method to create a translation table.

4.6. Sequence Types — str, bytes, bytearray, list, tuple, range 45

The Python Library Reference, Release 3.2.1

Set the table argument to None for translations that only delete characters:

>>> b’read this short text’.translate (None, b’aeiou’)
b’rd ths shrt txt’

static bytes .maketrans (from, to)

static bytearray.maketrans (from, to)
This static method returns a translation table usable for bytes.translate () that will map each character
in from into the character at the same position in fo; from and fo must be bytes objects and have the same length.
New in version 3.1.

4.7 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing, remov-
ing duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and
symmetric difference. (For other containers see the builtin dict, 1ist, and tuple classes, and the collections
module.)

Like other collections, sets support x in set, len(set), and for x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be used
as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its
contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another
set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for
example: {’ jack’, ’sJjoerd’},in addition to the set constructor.

The constructors for both classes work the same:

class set ([iterable])

class frozenset ([iterable])
Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a
new empty set is returned.

Instances of set and frozenset provide the following operations:

len(s)
Return the cardinality of set s.

x in s
Test x for membership in s.

x not in s
Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their intersec-
tion is the empty set.

issubset (other)
set <= other
Test whether every element in the set is in other.

46 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.1

set < other
Test whether the set is a true subset of other, that is, set <= other and set != other.

issuperset (other)
set >= other
Test whether every element in other is in the set.

set > other
Test whether the set is a true superset of other, thatis, set >= other and set != other.

union (other, ...)
set | other |
Return a new set with elements from the set and all others.

intersection (other, ...)
set & other &
Return a new set with elements common to the set and all others.

difference (other,...)
set - other -
Return a new set with elements in the set that are not in the others.

symmetric_difference (other)
set * other
Return a new set with elements in either the set or other but not both.

copy ()

Return a new set with a shallow copy of s.
Note, the non-operator versions of union(), intersection(), difference(), and
symmetric_difference (), issubset (), and issuperset () methods will accept any iter-

able as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions like set (“abc’) & ’‘cbs’ in favor of the more readable
set ("abc’) .intersection (’cbs’).

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element of
each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the
first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and
only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For
example, set ('abc’) == frozenset ('abc’) returns True and so does set (’abc’) in
set ([frozenset ("abc’)]).

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two
disjoint sets are not equal and are not subsets of each other, so all of the following return False: a<b, a==b,
or a>b.

Since sets only define partial ordering (subset relationships), the output of the 1ist . sort () method is unde-
fined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For example:
frozenset ("ab’) | set ("bc’) returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of frozenset:

update (other, ...)
set |= other |
Update the set, adding elements from all others.

4.7. Set Types — set, frozenset 47

The Python Library Reference, Release 3.2.1

intersection_update (other, ...)
set &= other &
Update the set, keeping only elements found in it and all others.

difference_update (other,...)
set —= other |
Update the set, removing elements found in others.

symmetric_difference_update (other)
set “= other
Update the set, keeping only elements found in either set, but not in both.

add (elem)
Add element elem to the set.

remove (elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)
Remove element elem from the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear ()
Remove all elements from the set.

Note, the non-operator versions of the update (), intersection_update (),
difference_update (), and symmetric_difference_update () methods will accept any
iterable as an argument.

Note, the elem argument to the ___contains__ (), remove (), and discard () methods may be a set. To
support searching for an equivalent frozenset, the elem set is temporarily mutated during the search and then
restored. During the search, the elem set should not be read or mutated since it does not have a meaningful
value.

4.8 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, the dictionary. (For other containers see the builtin 1ist, set, and tuple classes, and
the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists, dictionaries
or other mutable types (that are compared by value rather than by object identity) may not be used as keys. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (such as 1 and 1. 0)
then they can be used interchangeably to index the same dictionary entry. (Note however, that since computers store
floating-point numbers as approximations it is usually unwise to use them as dictionary keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for example:
{"jack’: 4098, ’'sjoerd’: 4127} or {4098: 'Jjack’, 4127: ’sjoerd’}, orby the dict
constructor.

class dict ([arg])
Return a new dictionary initialized from an optional positional argument or from a set of keyword arguments. If
no arguments are given, return a new empty dictionary. If the positional argument arg is a mapping object, return
a dictionary mapping the same keys to the same values as does the mapping object. Otherwise the positional
argument must be a sequence, a container that supports iteration, or an iterator object. The elements of the
argument must each also be of one of those kinds, and each must in turn contain exactly two objects. The first

48 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.1

is used as a key in the new dictionary, and the second as the key’s value. If a given key is seen more than once,
the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items to the
dictionary. If a key is specified both in the positional argument and as a keyword argument, the value associated
with the keyword is retained in the dictionary. For example, these all return a dictionary equal to { "one":
1, "two": 2}:

edict (one=1, two=2)

edict ({’one’: 1, ’'two’: 2})

edict (zip(('one’, ’"two’), (1, 2)))

edict ([["two’, 2], ['one’, 111])
The first example only works for keys that are valid Python identifiers; the others work with any valid keys.
These are the operations that dictionaries support (and therefore, custom mapping types should support too):

len(d)
Return the number of items in the dictionary d.

d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.

If a subclass of dict defines a method __missing__ (), if the key key is not present, the d[key]
operation calls that method with the key key as argument. The d [key] operation then returns or raises
whatever is returned or raised by the __missing__ (key) call if the key is not present. No other
operations or methods invoke __missing__ (). If _ _missing__ () is not defined, KeyError is
raised. _ _missing__ () must be a method; it cannot be an instance variable:

>>> class Counter (dict):
def _ missing__ (self, key):
.. return 0
>>> ¢ = Counter ()

>>> c [’ red’]
0

>>> c[’red’"] += 1
>>> c[’'red’]

See collections.Counter for a complete implementation including other methods helpful for accu-
mulating and managing tallies.

d[key] = value
Set d[key] to value.

del dlkey]
Remove d [key] from d. Raises a KeyError if key is not in the map.
key in d
Return True if d has a key key, else False.
key not in d
Equivalent to not key in d.
iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut for iter (d.keys ()).

clear ()
Remove all items from the dictionary.

4.8. Mapping Types — dict 49

The Python Library Reference, Release 3.2.1

copy ()
Return a shallow copy of the dictionary.

classmethod fromkeys (seq [value])
Create a new dictionary with keys from seq and values set to value.

fromkeys () is a class method that returns a new dictionary. value defaults to None.

get (key[, default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None,
so that this method never raises a KeyError.

items ()

Return a new view of the dictionary’s items ((key, value) pairs). See below for documentation of
view objects.

keys ()
Return a new view of the dictionary’s keys. See below for documentation of view objects.

pop (key[, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and key
is not in the dictionary, a KeyError is raised.

popitem /()
Remove and return an arbitrary (key, wvalue) pair from the dictionary.

popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, calling popitem () raises a KeyError.

setdefault (key[, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default.
default defaults to None.

update ([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update () accepts either another dictionary object or an iterable of key/value pairs (as tuples or other
iterables of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairs: d.update (red=1, blue=2).

values ()
Return a new view of the dictionary’s values. See below for documentation of view objects.

4.8.1 Dictionary view objects

The objects returned by dict .keys (), dict.values () and dict.items () are view objects. They provide
a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these
changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len (dictview)

Return the number of entries in the dictionary.

iter (dictview)

Return an iterator over the keys, values or items (represented as tuples of (key, wvalue)) in the dictionary.

Keys and values are iterated over in an arbitrary order which is non-random, varies across Python implementa-
tions, and depends on the dictionary’s history of insertions and deletions. If keys, values and items views are
iterated over with no intervening modifications to the dictionary, the order of items will directly correspond. This

50

Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.1

allows the creation of (value, key) pairsusing zip (): pairs = zip(d.values (), d.keys()).
Another way to create the same listis pairs = [(v, k) for (k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a Runt imeError or fail to iterate
over all entries.

X in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a (key,
value) tuple).

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key, value)
pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as set-like since
the entries are generally not unique.) For set-like views, all of the operations defined for the abstract base class
collections. Set are available (for example, ==, <, or *).

An example of dictionary view usage:

>>> dishes = {’eggs’: 2, ’'sausage’: 1, ’'bacon’: 1, ’'spam’: 500}
>>> keys = dishes.keys|()
>>> values = dishes.values/()

>>> # iteration

>>> n = 0

>>> for val in values:
e n += val

>>> print (n)

504

>>> # keys and values are iterated over in the same order
>>> list (keys)

["eggs’, ’'bacon’, ’'sausage’, ’'spam’]

>>> list (values)

(2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes|[’eggs’]

>>> del dishes[’sausage’]

>>> list (keys)

[/ spam’, ’"bacon’]

>>> # set operations

>>> keys & {’eggs’, ’"bacon’, ’salad’}
{’bacon’ }

>>> keys ~ {’sausage’, ’juice’}
{"juice’, ’"eggs’, ’'bacon’, ’spam’}

4.9 memoryview type

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol
without copying. Memory is generally interpreted as simple bytes.

class memoryview (0bj)
Create a memoryview that references obj. obj must support the buffer protocol. Built-in objects that support
the buffer protocol include bytes and bytearray.

4.9. memoryview type 51

The Python Library Reference, Release 3.2.1

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating
object obj. For many simple types such as bytes and bytearray, an element is a single byte, but other types
such as array.array may have bigger elements.

len (view) returns the total number of elements in the memoryview, view. The itemsize attribute will give
you the number of bytes in a single element.

A memoryview supports slicing to expose its data. Taking a single index will return a single element as a
bytes object. Full slicing will result in a subview:

>>> v = memoryview (b’ abcefg’)
>>> v[1]

b’ b’

>>> v[-1]

blgl

>>> v[l:4]

<memory at 0x77ab28>

>>> bytes(v[1:4])

b’ bce’

If the object the memoryview is over supports changing its data, the memoryview supports slice assignment:
>>> data = bytearray (b’abcefg’)

>>> v = memoryview (data)
>>> v.readonly

False

>>> v[0] = b’'z’

>>> data
bytearray (b’ zbcefg’)
>>> v([1l:4] = b’123’
>>> data

bytearray (b’al23fg’)
>>> v[2] = b’spam’

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot modify size of memoryview object

Notice how the size of the memoryview object cannot be changed.

memoryview has several methods:

tobytes ()
Return the data in the buffer as a bytestring. This is equivalent to calling the bytes constructor on the
memoryview.
>>> m = memoryview (b"abc")
>>> m.tobytes ()
b"abc’
>>> bytes (m)
b’ abc’
tolist ()

Return the data in the buffer as a list of integers.

>>> memoryview (b’ abc’) .tolist ()
[97, 98, 99]

52

Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.1

release ()
Release the underlying buffer exposed by the memoryview object. Many objects take special actions when
a view is held on them (for example, a byt earray would temporarily forbid resizing); therefore, calling
release() is handy to remove these restrictions (and free any dangling resources) as soon as possible.

After this method has been called, any further operation on the view raises a ValueError (except
release () itself which can be called multiple times):

>>> m = memoryview(b’abc’)
>>> m.release()
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

The context management protocol can be used for a similar effect, using the with statement:

>>> with memoryview (b’abc’) as m:
m[0]

b 4t

>>> m[0]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

New in version 3.2.
There are also several readonly attributes available:

format
A string containing the format (in st ruct module style) for each element in the view. This defaults to
"B’ , a simple bytestring.

itemsize
The size in bytes of each element of the memoryview:

>>> m = memoryview(array.array ('H", [1,2,3]1))
>>> m.itemsize

2

>>> m[0]

b’ \x01\x00"

>>> len(m[0]) == m.itemsize

True

shape
A tuple of integers the length of ndim giving the shape of the memory as a N-dimensional array.

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.
strides

A tuple of integers the length of ndim giving the size in bytes to access each element for each dimension
of the array.

readonly
A bool indicating whether the memory is read only.

4.9.

memoryview type 53

The Python Library Reference, Release 3.2.1

4.10 Context Manager Types

Python’s with statement supports the concept of a runtime context defined by a context manager. This is implemented
using a pair of methods that allow user-defined classes to define a runtime context that is entered before the statement
body is executed and exited when the statement ends:

contextmanager.__enter__ ()
Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier in the as clause of with statements using this context
manager.

An example of a context manager that returns itself is a file object. File objects return themselves from __en-
ter__() to allow open () to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by
decimal.localcontext (). These managers set the active decimal context to a copy of the origi-
nal decimal context and then return the copy. This allows changes to be made to the current decimal context in
the body of the with statement without affecting code outside the with statement.

contextmanager.__exit__ (exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be suppressed.
If an exception occurred while executing the body of the with statement, the arguments contain the exception
type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and continue
execution with the statement immediately following the with statement. Otherwise the exception continues
propagating after this method has finished executing. Exceptions that occur during execution of this method
will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value to
indicate that the method completed successfully and does not want to suppress the raised exception. This allows
context management code (such as contextlib.nested) to easily detect whether ornotan __exit__ ()
method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially
beyond their implementation of the context management protocol. See the context 11b module for some examples.

Python’s generators and the context1ib.contextmanager decorator provide a convenient way to implement
these protocols. If a generator function is decorated with the contextlib.contextmanager decorator, it will
return a context manager implementing the necessary __enter__ () and __exit__ () methods, rather than the
iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C APIL.
Extension types wanting to define these methods must provide them as a normal Python accessible method. Compared
to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is negligible.

4.11 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

4.11.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses a name
defined in m‘s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly

54 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.1

speaking, an operation on a module object; import foo does not require a module object named foo to exist, rather
it requires an (external) definition for a module named foo somewhere.)

A special member of every module is __dict__. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the _ dict_
attribute is not possible (you can write m.___dict___[’a’] = 1, which defines m.a to be 1, but you can’t write
m.__dict__ = {}). Modifying __dict___ directly is not recommended.

Modules built into the interpreter are written like this: <module ’sys’ (built-in)>. If loaded from a file,
they are written as <module ’os’ from ’/usr/local/lib/pythonX.Y/os.pyc’>.

4.11.2 Classes and Class Instances

See objects and class for these.

4.11.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-1list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See function for more information.

4.11.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance methods. Built-in methods are described with the types that support them.

If you access a method (a function defined in a class namespace) through an instance, you get a special object: a
bound method (also called instance method) object. When called, it will add the self argument to the argument
list. Bound methods have two special read-only attributes: m.___self__ is the object on which the method oper-
ates,and m.__ func___is the function implementing the method. Callingm (arg-1, arg-2, ..., arg-n) is
completely equivalent to callingm.__func__ (m.__self_, arg-1l, arg-2, ..., arg-n).

Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth.__ func__), setting method attributes on bound methods
is disallowed. Attempting to set a method attribute results in a TypeError being raised. In order to set a method
attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self) :
pass
c = C()
c.method.__ func__ .whoami = ’'my name is c’

See types for more information.

4.11.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-

4.11. Other Built-in Types 55

The Python Library Reference, Release 3.2.1

ronment. Code objects are returned by the built-in compile () function and can be extracted from function objects
through their ___code___ attribute. See also the code module.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec () or eval ()
built-in functions.

See types for more information.

4.11.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function type (). There
are no special operations on types. The standard module t ypes defines names for all standard built-in types.

Types are written like this: <class ’int’>.

4.11.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name).

It is written as None.

4.11.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly one ellipsis
object, named E11ipsis (a built-in name).

Itis writtenas Ellipsisor....

4.11.9 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although
other values can also be considered false or true). In numeric contexts (for example when used as the argument to an
arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in function bool () can be used to
cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing above).

They are written as False and True, respectively.

4.11.10 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.12 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by the dir () built-in function.

object.__dict_
A dictionary or other mapping object used to store an object’s (writable) attributes.

instance.__class_
The class to which a class instance belongs.

56 Chapter 4. Built-in Types

The Python Library Reference, Release 3.2.1

class.__bases_
The tuple of base classes of a class object.

class._ name

The name of the class or type.
The following attributes are only supported by new-style classes.

class.__mro

This attribute is a tuple of classes that are considered when looking for base classes during method resolution.

class.mro ()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It is
called at class instantiation, and its result is stored in ___mro___

class._ _subclasses_ ()
Each new-style class keeps a list of weak references to its immediate subclasses. This method returns a list of
all those references still alive. Example:

>>> int._ subclasses__ ()
[<type 'bool’>]

4.12. Special Attributes 57

The Python Library Reference, Release 3.2.1

58 Chapter 4. Built-in Types

CHAPTER
FIVE

BUILT-IN EXCEPTIONS

In Python, all exceptions must be instances of a class that derives from BaseException. In a try statement with
an except clause that mentions a particular class, that clause also handles any exception classes derived from that
class (but not exception classes from which it is derived). Two exception classes that are not related via subclassing
are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple of several
items of information (e.g., an error code and a string explaining the code). The associated value is usually passed as
arguments to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from the Except ion class and not BaseExcept ion. More information on defining excep-
tions is available in the Python Tutorial under tut-userexceptions.

The following exceptions are used mostly as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for
that, use Exception). If bytes () or str () is called on an instance of this class, the representation of the
argument(s) to the instance are returned, or the empty string when there were no arguments.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like TOError)
expect a certain number of arguments and assign a special meaning to the elements of this tuple, while
others are usually called only with a single string giving an error message.

with_ traceback (1)
This method sets tb as the new traceback for the exception and returns the exception object. It is usually
used in exception handling code like this:

try:

except SomeException:
tb = sys.exc_info () [2]
raise OtherException(...).with_traceback (tb)

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should also
be derived from this class.

59

The Python Library Reference, Release 3.2.1

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError,FloatingPointError.

exception BufferError
Raised when a buffer related operation cannot be performed.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError, KeyError. This can be raised directly by codecs. lookup ().

exception EnvironmentError
The base class for exceptions that can occur outside the Python system: TOError, OSError. When exceptions
of this type are created with a 2-tuple, the first item is available on the instance’s e rrno attribute (it is assumed
to be an error number), and the second item is available on the st rerror attribute (it is usually the associated
error message). The tuple itself is also available on the args attribute.

When an EnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on the £ilename attribute. However, for backwards compatibility, the
args attribute contains only a 2-tuple of the first two constructor arguments.

The filename attribute is None when this exception is created with other than 3 arguments. The errno and
strerror attributes are also None when the instance was created with other than 2 or 3 arguments. In this
last case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are usually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object does not
support attribute references or attribute assignments at all, TypeError is raised.)

exception EOFError
Raised when one of the built-in functions (input () or raw_input ()) hits an end-of-file condition (EOF)
without reading any data. (N.B.: the file.read () and file.readline () methods return an empty string
when they hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with the ——with-fpectl option, or the WANT_SIGFPE_HANDLER symbol is defined
in the pyconfig.h file.

exception GeneratorExit
Raise when a generator‘s close () method is called. It directly inherits from BaseException instead of
Exception since it is technically not an error.

exception IOError
Raised when an I/O operation (such as the built-in print () or open () functions or a method of a file object)
fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above for more information on exception
instance attributes.

exception ImportError
Raised when an import statement fails to find the module definition or when a from ... import fails
to find a name that is to be imported.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed

60 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.2.1

range; if an index is not an integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control—-C or Delete). During execution, a check for
interrupts is made regularly. The exception inherits from BaseException so as to not be accidentally caught
by code that catches Except ion and thus prevent the interpreter from exiting.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (C’s malloc () function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

exception Not ImplementedError
This exception is derived from Runt imeError. In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method.

exception OSError
This exception is derived from EnvironmentError. Itis raised when a function returns a system-related
error (not for illegal argument types or other incidental errors). The errno attribute is a numeric error code
from errno, and the strerror attribute is the corresponding string, as would be printed by the C function
perror (). See the module errno, which contains names for the error codes defined by the underlying
operating system.

For exceptions that involve a file system path (such as chdir () or unlink ()), the exception instance will
contain a third attribute, £i lename, which is the file name passed to the function.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for integers
(which would rather raise MemoryError than give up). Because of the lack of standardization of floating point
exception handling in C, most floating point operations also aren’t checked.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref .proxy () function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see the weakref module.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

exception StopIteration
Raised by built-in function next () and an iferator‘s __next__ () method to signal that there are no further
values.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in a call to the
built-in functions exec () or eval (), or when reading the initial script or standard input (also interactively).

Instances of this class have attributes filename, 1ineno, of fset and text for easier access to the details.
str () of the exception instance returns only the message.

61

The Python Library Reference, Release 3.2.1

exception IndentationError

Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError

Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of
IndentationError.

exception SystemError

Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version of
the Python interpreter (sys.version; itis also printed at the start of an interactive Python session), the exact
error message (the exception’s associated value) and if possible the source of the program that triggered the
error.

exception SystemExit

This exception is raised by the sys.exit () function. When it is not handled, the Python interpreter exits;
no stack traceback is printed. If the associated value is an integer, it specifies the system exit status (passed to
C’s exit () function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attribute code which is set to the proposed exit status or error message (defaulting to None).
Also, this exception derives directly from BaseException and not Exception, since it is not technically
an error.

A call to sys.exit () is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit () function can be used if it is absolutely positively necessary to exit immediately (for
example, in the child process after a call to fork ()).

The exception inherits from BaseException instead of Exception so that it is not accidentally caught by
code that catches Except ion. This allows the exception to properly propagate up and cause the interpreter to
exit.

exception TypeError

Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

exception UnboundLocalError

Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass of NameError.

exception UnicodeError

Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.

exception UnicodeEncodeError

Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.

exception UnicodeDecodeError

Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.

exception UnicodeTranslateError

Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.

exception ValueError

Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception such as IndexError.

exception VMSError

Only available on VMS. Raised when a VMS-specific error occurs.

62

Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.2.1

exception WindowsError
Raised when a Windows-specific error occurs or when the error number does not correspond to an errno
value. The winerror and strerror values are created from the return values of the GetLastError ()
and FormatMessage () functions from the Windows Platform API. The e rrno value maps the winerror
value to corresponding errno . h values. This is a subclass of OSError.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features.

exception PendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exception SyntaxWarning
Base class for warnings about dubious syntax

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about constructs that will change semantically in the future.

exception ImportWarning
Base class for warnings about probable mistakes in module imports.

exception UnicodeWarning
Base class for warnings related to Unicode.

exception BytesWarning
Base class for warnings related to bytes and buffer.

exception ResourceWarning
Base class for warnings related to resource usage. New in version 3.2.

5.1 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException

+-— SystemExit

+—— KeyboardInterrupt

+-— GeneratorExit

+-— Exception
+-— StopIteration
+—— ArithmeticError
| +-— FloatingPointError
| +—— OverflowError
| +—— ZeroDivisionError

5.1. Exception hierarchy 63

The Python Library Reference, Release 3.2.1

AssertionError
AttributeError
BufferError
EnvironmentError
+-—— IOError
+-— OSError
+—— WindowsError (Windows)
+—— VMSError (VMS)
EOFError
ImportError
LookupError
+-— IndexError
+-— KeyError
MemoryError
NameError
+—— UnboundLocalError
ReferenceError
RuntimeError
+-— NotImplementedError
SyntaxError
+-— IndentationError
+-— TabError
SystemError
TypeError
ValueError
+—-— UnicodeError
+—— UnicodeDecodeError
+—— UnicodeEncodeError
+-— UnicodeTranslateError
Warning
+—— DeprecationWarning
+—-— PendingDeprecationWarning
+-— RuntimeWarning
+-— SyntaxWarning
+-— UserWarning

+-— FutureWarning
+—— ImportWarning
+—— UnicodeWarning
+-— BytesWarning
+-— ResourceWarning

64

Chapter 5. Built-in Exceptions

CHAPTER
SIX

STRING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations.

In addition, Python’s built-in string classes support the sequence type methods described in the Sequence Types —
str; bytes, bytearray, list, tuple, range section, and also the string-specific methods described in the String Methods
section. To output formatted strings, see the String Formatting section. Also, see the re module for string functions
based on regular expressions.

6.1 string — Common string operations

See Also:
Sequence Types — str, bytes, bytearray, list, tuple, range
String Methods

Source code: Lib/string.py

6.1.1 String constants

The constants defined in this module are:

string.ascii_letters
The concatenation of the ascii_lowercase and ascii_uppercase constants described below. This
value is not locale-dependent.

string.ascii_lowercase
The lowercase letters ' abcdefghi jklmnopgrstuvwxyz’ . This value is not locale-dependent and will not
change.

string.ascii_uppercase
The uppercase letters * ABCDEFGHI JKLMNOPQRSTUVWXYZ” . This value is not locale-dependent and will not
change.

string.digits
The string 0123456789 .

string.hexdigits
The string 0123456789%abcde fABCDEF’ .

string.octdigits
The string ' 01234567

65

http://hg.python.org/cpython/file/default/Lib/string.py

The Python Library Reference, Release 3.2.1

string.punctuation

String of ASCII characters which are considered punctuation characters in the C locale.

string.printable

String of ASCII characters which are considered printable. This is a combination of digits,
ascii_letters, punctuation, and whitespace.

string.whitespace

A string containing all ASCII characters that are considered whitespace. This includes the characters space, tab,
linefeed, return, formfeed, and vertical tab.

6.1.2 String Formatting

The built-in string class provides the ability to do complex variable substitutions and value formatting via the
format () method described in

PEP 3101. The Formatter class in the st ring module allows you to create and customize your own string
formatting behaviors using the same implementation as the built-in format () method.

class string.Formatter

The Formatter class has the following public methods:

format (format_string, *args, **kwargs)

format () is the primary API method. It takes a format template string, and an arbitrary set of positional
and keyword argument. format () is just a wrapper that calls vformat ().

vformat (format_string, args, kwargs)

This function does the actual work of formatting. It is exposed as a separate function for cases where you
want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the dictionary as
individual arguments using the xargs and *xkwds syntax. vformat () does the work of breaking up
the format template string into character data and replacement fields. It calls the various methods described
below.

In addition, the Formatter defines a number of methods that are intended to be replaced by subclasses:

pacrse (format_string)

Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec, conver-
sion). This is used by vformat () to break the string into either literal text, or replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement field.
If there is no literal text (which can happen if two replacement fields occur consecutively), then literal_text
will be a zero-length string. If there is no replacement field, then the values of field_name, format_spec
and conversion will be None.

get_field (field_name, args, kwargs)

Given field_name as returned by parse () (see above), convert it to an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such as
“O[name]” or “label.title”. args and kwargs are as passed in to vformat (). The return value used_key
has the same meaning as the key parameter to get_value ().

get_value (key, args, kwargs)

Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer, it
represents the index of the positional argument in args; if it is a string, then it represents a named argument
in kwargs.

The args parameter is set to the list of positional arguments to vformat (), and the kwargs parameter is
set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
Subsequent components are handled through normal attribute and indexing operations.

66

Chapter 6. String Services

http://www.python.org/dev/peps/pep-3101
http://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 3.2.1

So for example, the field expression ‘O.name’ would cause get_value () to be called with a key ar-
gument of 0. The name attribute will be looked up after get_value () returns by calling the built-in
getattr () function.

If the index or keyword refers to an item that does not exist, then an IndexError or KeyError should
be raised.

check_unused_args (used_args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and
strings for named arguments), and a reference to the args and kwargs that was passed to vformat. The set
of unused args can be calculated from these parameters. check_unused_args () is assumed to raise
an exception if the check fails.

format_field (value, format_spec)
format_field () simply calls the global format () built-in. The method is provided so that sub-
classes can override it.

convert_field (value, conversion)
Converts the value (returned by get__field ()) given a conversion type (as in the tuple returned by the
parse () method). The default version understands ‘r’ (repr) and ‘s’ (str) conversion types.

6.1.3 Format String Syntax
The str.format () method and the Formatter class share the same syntax for format strings (although in the
case of Formatter, subclasses can define their own format string syntax).

Format strings contain “replacement fields” surrounded by curly braces { }. Anything that is not contained in braces is
considered literal text, which is copied unchanged to the output. If you need to include a brace character in the literal
text, it can be escaped by doubling: { { and } }.

The grammar for a replacement field is as follows:

replacement_field

\\{II

[field_name] [”!” conversion] [":”

field_name = arg_name (”.” attribute_name | “[” element_index
arg_name = [identifier | integer]

attribute_name = identifier

element_index = integer | index_string

index_string <any source character except “]”> +
conversion Wy owWgm | owgn
format_spec n= <described in the next section>

In less formal terms, the replacement field can start with a field_name that specifies the object whose value is to be
formatted and inserted into the output instead of the replacement field. The field_name is optionally followed by a
conversion field, which is preceded by an exclamation point ’ !/, and a format_spec, which is preceded by a colon
’ : 7. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either either a number or a keyword. If it’s a number, it refers
to a positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical arg_names in
a format string are 0, 1, 2, ... in sequence, they can all be omitted (not just some) and the numbers 0, 1, 2, ... will be
automatically inserted in that order. The arg_name can be followed by any number of index or attribute expressions.
An expression of the form ’ .name’ selects the named attribute using getattr (), while an expression of the
form ’ [index]’ does an index lookup using __getitem__ (). Changed in version 3.1: The positional argument
specifiers can be omitted, so * {} {}’ isequivalentto’ {0} {1}’. Some simple format string examples:

6.1. string — Common string operations 67

format_spec]

\\}II

\\]")*

The Python Library Reference, Release 3.2.1

"First, thou shalt count to {0}" # References first positional argument

"Bring me a {}" # Implicitly references the first positional argument
"From {} to {}" # Same as "From {0} to {1}"

"My quest is {name}" # References keyword argument ’name’

"Weight in tons {0.weight}" # ’'weight’ attribute of first positional arg

"Units destroyed: {players[0]}" # First element of keyword argument ’‘players’.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done by the
__format__ () method of the value itself. However, in some cases it is desirable to force a type to be formatted as a
string, overriding its own definition of formatting. By converting the value to a string before calling _ format__ (),
the normal formatting logic is bypassed.

Three conversion flags are currently supported: ’ !'s’ which calls st r () on the value, ’ ! v’ which calls repr ()
and ’ !'a’ whichcalls ascii ().

Some examples:

"Harold’s a clever {0O!s}™" # Calls str() on the argument first
"Bring out the holy {name!r}" # Calls repr() on the argument first
"More {'a}" # Calls ascii() on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as field
width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting mini-
language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields can contain
only a field name; conversion flags and format specifications are not allowed. The replacement fields within the
format_spec are substituted before the format_spec string is interpreted. This allows the formatting of a value to be
dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individual
values are presented (see Format String Syntax). They can also be passed directly to the built-in format () function.
Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting options
are only supported by the numeric types.

A general convention is that an empty format string (" ") produces the same result as if you had called st r () on the
value. A non-empty format string typically modifies the result.

The general form of a standard format specifier is:

[[filllalign] [sign] [#][0] [width][,][.precision] [type]

format_spec

fill = <a character other than ‘}’>

align — \\<II | \\>II ‘ \\:II | A\RAw/4

Sign — \\+I’ | N __ 7 ‘ ” w

width = integer

precision = integer

type ::: \\bll | \\cll ‘ \\dII I \\ell | \\EII I \\fll | \\FII I \\gll | \\GII ‘ \\nll | \\OII

The fill character can be any character other than ‘{‘ or ‘}’. The presence of a fill character is signaled by the character
following it, which must be one of the alignment options. If the second character of format_spec is not a valid

68 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

alignment option, then it is assumed that both the fill character and the alignment option are absent.

The meaning of the various alignment options is as follows:

Op- | Meaning
tion
"<’ | Forces the field to be left-aligned within the available space (this is the default for most
objects).

">’ | Forces the field to be right-aligned within the available space (this is the default for numbers).
"=’ | Forces the padding to be placed after the sign (if any) but before the digits. This is used for
printing fields in the form ‘+000000120’. This alignment option is only valid for numeric

types.
r~7 | Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so
that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op- Meaning

tion

"4 indicates that a sign should be used for both positive as well as negative numbers.

r—r indicates that a sign should be used only for negative numbers (this is the default behavior).

space indicates that a leading space should be used on positive numbers, and a minus sign on
negative numbers.

The ’ #’ option causes the “alternate form” to be used for the conversion. The alternate form is defined differently for
different types. This option is only valid for integer, float, complex and Decimal types. For integers, when binary, octal,
or hexadecimal output is used, this option adds the prefix respective ’ Ob’, ' 0o’, or ' 0x’ to the output value. For
floats, complex and Decimal the alternate form causes the result of the conversion to always contain a decimal-point
character, even if no digits follow it. Normally, a decimal-point character appears in the result of these conversions
only if a digit follows it. In addition, for g’ and ’ G’ conversions, trailing zeros are not removed from the result.

The ’ ,’ option signals the use of a comma for a thousands separator. For a locale aware separator, use the ' n’
integer presentation type instead. Changed in version 3.1: Added the ’ ,’ option (see also PEP 378). width is a
decimal integer defining the minimum field width. If not specified, then the field width will be determined by the
content.

If the width field is preceded by a zero (* 0’) character, this enables zero-padding. This is equivalent to an alignment
type of / =’ and a fill character of / 0’ .

The precision is a decimal number indicating how many digits should be displayed after the decimal point for a floating
point value formatted with ” £ and ’ F’, or before and after the decimal point for a floating point value formatted with
"g’ or ' G’ . For non-number types the field indicates the maximum field size - in other words, how many characters
will be used from the field content. The precision is not allowed for integer values.

Finally, the rype determines how the data should be presented.

The available string presentation types are:

Type | Meaning
"s’ String format. This is the default type for strings and may be omitted.
None | Thesameas’s’.

The available integer presentation types are:

6.1. string — Common string operations 69

http://www.python.org/dev/peps/pep-0378

The Python Library Reference, Release 3.2.1

Type| Meaning

"b’ | Binary format. Outputs the number in base 2.

"¢’ | Character. Converts the integer to the corresponding unicode character before printing.

"d’ | Decimal Integer. Outputs the number in base 10.

o’ | Octal format. Outputs the number in base 8.

x’ | Hex format. Outputs the number in base 16, using lower- case letters for the digits above 9.
"X’ | Hex format. Outputs the number in base 16, using upper- case letters for the digits above 9.
"n’ | Number. This is the same as ’ d’, except that it uses the current locale setting to insert the
appropriate number separator characters.

None | The same as ' d’.

In addition to the above presentation types, integers can be formatted with the floating point presentation types listed
below (except “ n’ and None). When doing so, f1oat () is used to convert the integer to a floating point number
before formatting.

The available presentation types for floating point and decimal values are:

Type Meaning

"e’ | Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate the
exponent.

"E’ | Exponent notation. Same as ’ e’ except it uses an upper case ‘E’ as the separator character.

" £/ | Fixed point. Displays the number as a fixed-point number.

"F’ | Fixed point. Same as ’ £/, but converts nan to NAN and inf to INF.

" g’ | General format. For a given precision p >= 1, this rounds the number to p significant digits
and then formats the result in either fixed-point format or in scientific notation, depending on
its magnitude.

The precise rules are as follows: suppose that the result formatted with presentation type ' e’
and precision p—1 would have exponent exp. Then if -4 <= exp < p, the number is
formatted with presentation type ’ £’ and precision p—1-exp. Otherwise, the number is
formatted with presentation type ’ e’ and precision p—1. In both cases insignificant trailing
zeros are removed from the significand, and the decimal point is also removed if there are no
remaining digits following it.

Positive and negative infinity, positive and negative zero, and nans, are formatted as inf,
—-inf, 0, -0 and nan respectively, regardless of the precision.

A precision of 0 is treated as equivalent to a precision of 1.

"G’ | General format. Same as ' g’ except switches to ' E/ if the number gets too large. The
representations of infinity and NaN are uppercased, too.

"n’ | Number. This is the same as ’ g’ , except that it uses the current locale setting to insert the
appropriate number separator characters.

"%’ | Percentage. Multiplies the number by 100 and displays in fixed (’ £) format, followed by a
percent sign.

Nong Similar to ’ g, except with at least one digit past the decimal point and a default precision of
12. This is intended to match st r (), except you can add the other format modifiers.

Format examples

This section contains examples of the new format syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old $-formatting, with the addition of the { } and with : used instead
of %. For example, ' $03.2£’ can be translated to ’ { : 03.2£}".

The new format syntax also supports new and different options, shown in the follow examples.
Accessing arguments by position:

>>> {0}, {1}, {2}’ .format("a’, '"b’", ’'c’)
"a, b, c’

70 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

>>> " {}, {}, {}' .format('a’, ’'b’, ’'c’) # 3.1+ only

"a, b, c’

>>> {2}, {1}, {0}’ .format('a’, ’'b’", 'c’)

"c, b, a’

>>> {2}, {1}, {0}’ .format (+x"abc’) # unpacking argument sequence

"c, b, a’

>>> {0} {1} {0}’ .format (' abra’, ’'cad’) # arguments’ indices can be repeated

"abracadabra’
Accessing arguments by name:

>>> /Coordinates: {latitude}, {longitude}’.format (latitude=’"37.24N’, longitude='-115.81W")
"Coordinates: 37.24N, -115.81W’

>>> coord = {’latitude’: "37.24N’, ’longitude’: ’'-115.81W’}

>>> ’Coordinates: {latitude}, {longitude}’.format (x+xcoord)

"Coordinates: 37.24N, —-115.81W’

Accessing arguments’ attributes:

>>> ¢ = 3-5j
>>> (/The complex number {0} is formed from the real part {0.real}
"and the imaginary part {0.imag}.’).format (c)
"The complex number (3-57j) is formed from the real part 3.0 and the imaginary part -5.0.7
>>> class Point:
def _ _init_ (self, x, y):
self.x, self.y = x, vy
def _ _str__ (self):
return 'Point ({self.x}, {self.y})’.format (self=self)

’

>>> str (Point (4, 2))
"Point (4, 2)’

Accessing arguments’ items:

>>> coord = (3, 5)
>> 'X: {0[0]1}; Y: {O[1]}".format (coord)
"X: 3; Y: 57

Replacing %s and %$r:

>>> "repr () shows quotes: {!r}; str() doesn’t: {!s}".format ('testl’, ’"test2’)
"repr () shows quotes: ’"testl’; str() doesn’t: test2"

Aligning the text and specifying a width:

>>> / {:<30}" .format (' left aligned’)
"left aligned !

>>> / {:>30}’ .format (' right aligned’)
! right aligned’

>>> / {:730}’ .format (' centered’)
! centered

>>> " {:%x730}’ .format (' centered’) # use '+’ as a fill char

I xxkxkxkkrxxkkCenteredrrx*kxxkxx*'

14

Replacing $+£, $—f,and $ f and specifying a sign:

>>> ' {:+f}; {:+f}’ .format (3.14, -3.14) # show it always

"+3.140000; -3.140000"

>>> " {: f}; {: £}’ .format(3.14, -3.14) # show a space for positive numbers
7 3.140000; -3.140000"

6.1. string — Common string operations 71

The Python Library Reference, Release 3.2.1

>>> " {:—-f}; {:-f}" . format (3.14, -3.14) # show only the minus ——- same as

73.140000; -3.140000"
Replacing $x and %o and converting the value to different bases:

>>> # format also supports binary numbers

>>> "int: {0:d}; hex: {0:x}; oct: {0:0}; bin: {0:b}".format (42)
"int: 42; hex: 2a; oct: 52; bin: 101010

>>> # with 0x, 0o, or 0b as prefix:

>>> "int: {0:d}; hex: {0O:#x}; oct: {0:#0}; bin: {O:#b}".format (42)
"int: 42; hex: 0x2a; oct: 0052; bin: 00101010’

Using the comma as a thousands separator:

>>> ' {:,}’ . format (1234567890)
"1,234,567,890"

Expressing a percentage:

>>> points = 19

>>> total = 22

>>> ’'Correct answers: {:.2%}.’.format (points/total)
"Correct answers: 86.36%’

Using type-specific formatting:

>>> import datetime

>>> d = datetime.datetime (2010, 7, 4, 12, 15, 58)
>>> 7 {:%5Y-%m-%d $H:%M:%S}’ .format (d)

72010-07-04 12:15:587

Nesting arguments and more complex examples:

>>> for align, text in zip('<*>’, [’'left’, ’'center’, ’'right’]):
"{0:{fill}{align}l1l6}’ .format (text, fill=align, align=align)

left<<<<<<<<<<<!
I anarifcentert ANt
">>>>>>>>>>>right’
>>>
>>> octets = [192, 168, 0, 1]
>>> 7 {:02X}{:02X}{:02X}{:02X}’ .format (xoctets)
"COAB0001"
>>> int(_, 16)
3232235521
>>>
>>> width = 5
>>> for num in range(5,12):
for base in ’'dXob’:

RErPy;

print (! {0:{width} {base}}’.format (num, base=base, width=width), end=’

print ()
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011

72 Chapter 6. String Services

{:£}7

")

The Python Library Reference, Release 3.2.1

6.1.4 Template strings

Templates provide simpler string substitutions as described in PEP 292. Instead of the normal %-based substitutions,
Templates support $-based substitutions, using the following rules:

* $$ is an escape; it is replaced with a single $.

e Sidentifier names a substitution placeholder matching a mapping key of "identifier". By default,
"identifier" must spell a Python identifier. The first non-identifier character after the $ character termi-
nates this placeholder specification.

e ${identifier} is equivalent to Sidentifier. Itis required when valid identifier characters follow the
placeholder but are not part of the placeholder, such as "$ {noun}ification".

Any other appearance of $ in the string will result in a ValueError being raised.
The st ring module provides a Template class that implements these rules. The methods of Template are:

class string.Template (template)
The constructor takes a single argument which is the template string.

substitute (mapping, **kwds)
Performs the template substitution, returning a new string. mapping is any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where
the keywords are the placeholders. When both mapping and kwds are given and there are duplicates, the
placeholders from kwds take precedence.

safe_substitute (mapping, **kwds)
Like substitute (), except thatif placeholders are missing from mapping and kwds, instead of raising a
KeyError exception, the original placeholder will appear in the resulting string intact. Also, unlike with
substitute (), any other appearances of the $ will simply return $ instead of raising ValueError.

While other exceptions may still occur, this method is called “safe” because substitutions always tries to
return a usable string instead of raising an exception. In another sense, safe_substitute () may be
anything other than safe, since it will silently ignore malformed templates containing dangling delimiters,
unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template
This is the object passed to the constructor’s template argument. In general, you shouldn’t change it, but
read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template ('’ $who likes S$what’)

>>> s.substitute (who='"tim’, what=’kung pao’)

"tim likes kung pao’

>>> d = dict (who='tim’)

>>> Template (' Give $who $100’) .substitute (d)
Traceback (most recent call last):

[...]

ValueError: Invalid placeholder in string: line 1, col 10
>>> Template (' $who likes S$what’) .substitute (d)
Traceback (most recent call last):

[...]

KeyError: ’what’

>>> Template (' $who likes S$what’) .safe_substitute (d)
"tim likes S$what’

6.1. string — Common string operations 73

http://www.python.org/dev/peps/pep-0292

The Python Library Reference, Release 3.2.1

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter character,
or the entire regular expression used to parse template strings. To do this, you can override these class attributes:

* delimiter — This is the literal string describing a placeholder introducing delimiter. The default value $. Note
that this should not be a regular expression, as the implementation will call re.escape () on this string as
needed.

* idpattern — This is the regular expression describing the pattern for non-braced placeholders (the braces will be
added automatically as appropriate). The default value is the regular expression [_a-z] [_a-z0-9] *.

* flags — The regular expression flags that will be applied when compiling the regular expression used for recog-
nizing substitutions. The default value is re . IGNORECASE. Note that re . VERBOSE will always be added to
the flags, so custom idpatterns must follow conventions for verbose regular expressions. New in version 3.2.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you do
this, the value must be a regular expression object with four named capturing groups. The capturing groups correspond
to the rules given above, along with the invalid placeholder rule:

* escaped — This group matches the escape sequence, e.g. $$, in the default pattern.

* named — This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

* braced — This group matches the brace enclosed placeholder name; it should not include either the delimiter or
braces in the capturing group.

* invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear last in
the regular expression.

6.1.5 Helper functions

string.capwords (s, sep=None)
Split the argument into words using str.split (), capitalize each word using str.capitalize (), and
join the capitalized words using st r. join (). If the optional second argument sep is absent or None, runs of
whitespace characters are replaced by a single space and leading and trailing whitespace are removed, otherwise
sep is used to split and join the words.

6.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl.

Both patterns and strings to be searched can be Unicode strings as well as 8-bit strings. However, Unicode strings and
8-bit strings cannot be mixed: that is, you cannot match an Unicode string with a byte pattern or vice-versa; similarly,
when asking for a substitution, the replacement string must be of the same type as both the pattern and the search
string.

Regular expressions use the backslash character (* \’) to indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have to write * \\\\’ as the pattern
string, because the regular expression must be \ \, and each backslash must be expressed as \ \ inside a regular Python
string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with /. So r"\n" is a two-character string containing ’ \’ and ’ n’, while
"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

74 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

It is important to note that most regular expression operations are available as module-level functions and methods on
compiled regular expressions. The functions are shortcuts that don’t require you to compile a regex object first, but
miss some fine-tuning parameters.

See Also:

Mastering Regular Expressions Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The second
edition of the book no longer covers Python at all, but the first edition covered writing good regular expression
patterns in great detail.

6.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also a regular expression. In general, if a string p matches A and another string ¢ matches B, the string
pg will match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and
B; or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions, consult
the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the regex-howto.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like A’, "a’, or
" 0’ , are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters, so
last matches the string * Last’. (In the rest of this section, we’ll write RE’sinthis special style, usually
without quotes, and strings to be matched / in single quotes’.)

Some characters, like ’ | 7 or ’ (', are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted. Regular expression pattern strings may not contain
null bytes, but can specify the null byte using the \number notation, e.g., ' \x00".

The special characters are:

" .7 (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been specified,
this matches any character including a newline.

" A7 (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after each newline.

”$’ Matches the end of the string or just before the newline at the end of the string, and in MULT ILINE mode also
matches before a newline. foo matches both ‘foo’ and ‘foobar’, while the regular expression foo$ matches
only ‘foo’. More interestingly, searching for foo.$ in ' fool\nfoo2\n’ matches ‘foo2’ normally, but
‘fool’ in MULTILINE mode; searching for a single $ in * foo\n’ will find two (empty) matches: one just
before the newline, and one at the end of the string.

"%’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible.
ab+ will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

"+’ Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘a’ followed by any
non-zero number of ‘b’s; it will not match just ‘a’.

"2’ Causes the resulting RE to match O or 1 repetitions of the preceding RE. ab? will match either ‘a’ or ‘ab’.

*?,+?,?2? The " «’, "+’ ,and ’ 2’ qualifiers are all greedy; they match as much text as possible. Sometimes this
behaviour isn’t desired; if the RE <. «> is matched against * <H1>title</H1>’, it will match the entire
string, and not just <H1>’. Adding ’ ?’ after the qualifier makes it perform the match in non-greedy or

6.2. re — Regular expression operations 75

The Python Library Reference, Release 3.2.1

minimal fashion; as few characters as possible will be matched. Using . ? in the previous expression will
match only ’ <H1>"'.

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE not to
match. For example, a { 6} will match exactly six ’ a’ characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many
repetitions as possible. For example, a{3, 5} will match from 3 to 5 ’ a’ characters. Omitting m specifies
a lower bound of zero, and omitting » specifies an infinite upper bound. As an example, a {4, }b will match
aaaab or a thousand " a’ characters followed by a b, but not aaab. The comma may not be omitted or the
modifier would be confused with the previously described form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as few
repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the 6-character
string ' aaaaaa’, a{3, 5} willmatch 5 " a’ characters, while a {3, 5} ? will only match 3 characters.

"\’ Either escapes special characters (permitting you to match characters like * =’ , 7 2’ , and so forth), or signals a
special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and
subsequent character are included in the resulting string. However, if Python would recognize the resulting
sequence, the backslash should be repeated twice. This is complicated and hard to understand, so it’s highly
recommended that you use raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. Characters can be listed individually, or a range of characters can be indicated
by giving two characters and separating them by a ’ —’. Special characters are not active inside sets. For
example, [akm$] will match any of the characters “a’, k', 'm’,or ' $’; [a-z] will match any lowercase
letter, and [a—zA-Z0-9] matches any letter or digit. Character classes such as \w or \S (defined below)
are also acceptable inside a range, although the characters they match depends on whether ASCIT or LOCALE
mode is in force. If you want to include a ’]’ ora ’ -’ inside a set, precede it with a backslash, or place it as
the first character. The pattern []] will match *], for example.

You can match the characters not within a range by complementing the set. This is indicated by including a * ~*
as the first character of the set; ’ ~’ elsewhere will simply match the ’ ~ character. For example, [*5] will
match any character except ’ 5/, and [~"] will match any character except ’ ~’ .

Note that inside [] the special forms and special characters lose their meanings and only the syntaxes described
here are valid. For example, +, %, (,), and so on are treated as literals inside [], and backreferences cannot be
used inside [].

"|” A|B,where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An arbitrary
number of REs can be separated by the ’ |/ in this way. This can be used inside groups (see below) as well.
As the target string is scanned, REs separated by ’ |/ are tried from left to right. When one pattern completely
matches, that branch is accepted. This means that once A matches, B will not be tested further, even if it would
produce a longer overall match. In other words, the * |’ operator is never greedy. To match a literal * | 7, use
\ |, or enclose it inside a character class, asin [|].

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group; the
contents of a group can be retrieved after a match has been performed, and can be matched later in the string
with the \number special sequence, described below. To match the literals ” (* or) ’, use \ (or \), or
enclose them inside a character class: [(] [)].

(?...) This is an extension notation (a ’ ?’ following a ’ (’ is not meaningful otherwise). The first character
g g
after the 2/ determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group; (?P<name>. ..) isthe only exception to this rule. Following are the currently supported
extensions.

(?ailmsux) (One or more letters from the set "a’, "1/, "L’, 'm’, ' s’, 'u’, ' x’.) The group matches the
empty string; the letters set the corresponding flags: re . A (ASCII-only matching), re . I (ignore case), re . L

76 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

(locale dependent), re .M (multi-line), re.S (dot matches all), and re.X (verbose), for the entire regular
expression. (The flags are described in Module Contents.) This is useful if you wish to include the flags as part
of the regular expression, instead of passing a flag argument to the re . compile () function.

Note that the (?x) flag changes how the expression is parsed. It should be used first in the expression string, or
after one or more whitespace characters. If there are non-whitespace characters before the flag, the results are
undefined.

(?:...) A non-capturing version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the group cannot be retrieved after performing a match or referenced later
in the pattern.

(?P<name>. . .) Similar to regular parentheses, but the substring matched by the group is accessible within the rest
of the regular expression via the symbolic group name name. Group names must be valid Python identifiers, and
each group name must be defined only once within a regular expression. A symbolic group is also a numbered
group, just as if the group were not named. So the group named id in the example below can also be referenced
as the numbered group 1.

For example, if the pattern is (?P<id>[a-zA-Z_] \wx), the group can be referenced by its name in argu-
ments to methods of match objects, such as m.group (’ id’) orm.end (’ 1d’), and also by name in the
regular expression itself (using (?P=1id)) and replacement text given to . sub () (using \g<id>).

(?P=name) Matches whatever text was matched by the earlier group named name.
(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matchesif ... matches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For example, Isaac (?=Asimov) will match Isaac ’ only ifit’s followed by ' Asimov”’.

(?!...) Matches if ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac
(?!'Asimov) will match ' Isaac ’ only if it’s not followed by ’ Asimov’ .

(?<=...) Matches if the current position in the string is preceded by a match for ... that ends at the current
position. This is called a positive lookbehind assertion. (?<=abc) def will find a match in abcde £, since the
lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern must
only match strings of some fixed length, meaning that abc or a | b are allowed, but ax and a{3, 4} are not.
Note that patterns which start with positive lookbehind assertions will never match at the beginning of the string
being searched; you will most likely want to use the search () function rather than the match () function:

>>> import re

>>> m = re.search(’ (?<=abc)def’, ’"abcdef’)
>>> m.group (0)
"def’

This example looks for a word following a hyphen:

>>> m = re.search(’ (?<=-)\w+’, ’spam-egg’)
>>> m.group (0)
4 eggl
(?<!...) Matches if the current position in the string is not preceded by a match for This is called a negative

lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match strings
of some fixed length. Patterns which start with negative lookbehind assertions may match at the beginning of
the string being searched.

(? (id/name) yes—pattern|no—-pattern) Will try to match with yes—-pattern if the group with given
id or name exists, and with no-pattern if it doesn’t. no-pattern is optional and can be omitted.
For example, (<)? (\w+@\w+ (?2:\.\w+)+) (?(1)>]$) is a poor email matching pattern, which will
match with ’ <user@host.com>’ as well as ' user@host.com’, but not with * <user@host .com’
nor ' user@host.com>"’ .

6.2. re — Regular expression operations 77

The Python Library Reference, Release 3.2.1

The special sequences consist of / \’ and a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For example, \ $ matches the character ’ $” .

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For example,
(.+) \1 matches 'the the’ or 55 55’, but not ' the end’ (note the space after the group). This
special sequence can only be used to match one of the first 99 groups. If the first digit of number is 0, or number
is 3 octal digits long, it will not be interpreted as a group match, but as the character with octal value number.
Inside the / [* and ’]’ of a character class, all numeric escapes are treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of Unicode
alphanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-alphanumeric,
non-underscore Unicode character. Note that formally, \b is defined as the boundary between a \w and a \W
character (or vice versa). By default Unicode alphanumerics are the ones used, but this can be changed by using
the ASCIT flag. Inside a character range, \b represents the backspace character, for compatibility with Python’s
string literals.

\B Matches the empty string, but only when it is not at the beginning or end of a word. This is just the opposite of
\Db, so word characters are Unicode alphanumerics or the underscore, although this can be changed by using the
ASCIT flag.

\d

For Unicode (str) patterns: Matches any Unicode decimal digit (that is, any character in Unicode character
category [Nd]). This includes [0—-9], and also many other digit characters. If the ASCTT flag is used
only [0-9] is matched (but the flag affects the entire regular expression, so in such cases using an explicit
[0-9] may be a better choice).

For 8-bit (bytes) patterns: Matches any decimal digit; this is equivalent to [0-9].

\D Matches any character which is not a Unicode decimal digit. This is the opposite of \d. If the ASCTIT flag is used
this becomes the equivalent of [~0-9] (but the flag affects the entire regular expression, so in such cases using
an explicit [~0-9] may be a better choice).

\s

For Unicode (str) patterns: Matches Unicode whitespace characters (which includes [\t\n\r\f\v], and
also many other characters, for example the non-breaking spaces mandated by typography rules in many
languages). If the ASCTIT flag is used, only [\t\n\r\£f\v] is matched (but the flag affects the entire
regular expression, so in such cases using an explicit [\t\n\r\£f£\v] may be a better choice).

For 8-bit (bytes) patterns: Matches characters considered whitespace in the ASCII character set; this is equiv-
alentto [\t\n\r\f\v].

\S Matches any character which is not a Unicode whitespace character. This is the opposite of \ s. If the ASCTIT flag
is used this becomes the equivalent of [~ \t\n\r\£f\v] (but the flag affects the entire regular expression, so
in such cases using an explicit [\t\n\r\f\v] may be a better choice).

\w

For Unicode (str) patterns: Matches Unicode word characters; this includes most characters that can be part
of a word in any language, as well as numbers and the underscore. If the ASCIT flag is used, only
[a-zA-Z0-9_] is matched (but the flag affects the entire regular expression, so in such cases using an
explicit [a—zA-Z0-9_] may be a better choice).

For 8-bit (bytes) patterns: Matches characters considered alphanumeric in the ASCII character set; this is
equivalentto [a—zA-Z0-9_].

\W Matches any character which is not a Unicode word character. This is the opposite of \w. If the ASCIT flag is
used this becomes the equivalent of [~a-zA-Z0-9_] (but the flag affects the entire regular expression, so in
such cases using an explicit [*a-zA-Z0-9_] may be a better choice).

78 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \v \x
AN\

Octal escapes are included in a limited form: If the first digit is a 0, or if there are three octal digits, it is considered an
octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits in
length.

6.2.2 Matching vs Searching

Python offers two different primitive operations based on regular expressions: match checks for a match only at the
beginning of the string, while search checks for a match anywhere in the string (this is what Perl does by default).

Note that match may differ from search even when using a regular expression beginning with * ~’: 7 ~’ matches
only at the start of the string, or in MULTILINE mode also immediately following a newline. The “match” operation
succeeds only if the pattern matches at the start of the string regardless of mode, or at the starting position given by
the optional pos argument regardless of whether a newline precedes it.

>>> re.match ("c", "abcdef™) # No match
>>> re.search("c", "abcdef") # Match
<_sre.SRE_Match object at ...>

6.2.3 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

re.compile (pattern, flags=0)
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match () and search () methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the following
variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile (pattern)
result = prog.match(string)

is equivalent to
result = re.match(pattern, string)

but using re.compile () and saving the resulting regular expression object for reuse is more efficient when
the expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed to re.match (), re.search() or
re.compile () are cached, so programs that use only a few regular expressions at a time needn’t worry
about compiling regular expressions.

re.A

6.2. re — Regular expression operations 79

The Python Library Reference, Release 3.2.1

re

re.
re.

re.
re.

re.

re

re

re.

re
re

re.

re.

.ASCII
Make \w, \W, \b, \B, \d, \D, \s and \ S perform ASCII-only matching instead of full Unicode matching.
This is only meaningful for Unicode patterns, and is ignored for byte patterns.
Note that for backward compatibility, the re . U flag still exists (as well as its synonym re . UNICODE and its
embedded counterpart (?u)), but these are redundant in Python 3 since matches are Unicode by default for
strings (and Unicode matching isn’t allowed for bytes).
I
IGNORECASE
Perform case-insensitive matching; expressions like [A-2] will match lowercase letters, too. This is not af-
fected by the current locale and works for Unicode characters as expected.
L
LOCALE
Make \w, \W, \b, \B, \'s and \S dependent on the current locale. The use of this flag is discouraged as the
locale mechanism is very unreliable, and it only handles one “culture” at a time anyway; you should use Unicode
matching instead, which is the default in Python 3 for Unicode (str) patterns.
M
.MULTILINE
When specified, the pattern character * ~’ matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character * $’ matches at the end of the string and
at the end of each line (immediately preceding each newline). By default, / ~’ matches only at the beginning
of the string, and ’ $’ only at the end of the string and immediately before the newline (if any) at the end of the
string.
.S
DOTALL
Make the ’ .’ special character match any character at all, including a newline; without this flag, * . " will
match anything except a newline.
X
.VERBOSE
This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored, except
when in a character class or preceded by an unescaped backslash, and, when a line contains a ’ #’ neither in a
character class or preceded by an unescaped backslash, all characters from the leftmost such ’ #’ through the
end of the line are ignored.
That means that the two following regular expression objects that match a decimal number are functionally
equal:
a = re.compile(r"""\d + # the integral part
\. # the decimal point
\d * # some fractional digits""", re.X)
b = re.compile (r"\d+\.\d+")
search (pattern, string, flags=0)

Scan through string looking for a location where the regular expression pattern produces a match, and return
a corresponding match object. Return None if no position in the string matches the pattern; note that this is
different from finding a zero-length match at some point in the string.

match (pattern, string, flags=0)
If zero or more characters at the beginning of string match the regular expression pattern, return a corresponding
match object. Return None if the string does not match the pattern; note that this is different from a zero-length
match.

Note: If you want to locate a match anywhere in string, use search () instead.

80

Chapter 6. String Services

The Python Library Reference, Release 3.2.1

re.split (pattern, string, maxsplit=0, flags=0)
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all groups

in the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit splits occur,
and the remainder of the string is returned as the final element of the list.

>>> re.split (/' \W+’, ’Words, words, words.’)
["Words’, ’"words’, ’"words’, ']

>>> re.split (’ (\W+)’, ’'Words, words, words.’)
["Words", ', ', "words’, ', ', "words’, ".', '"]

>>> re.split (/' \W+’, ’'Words, words, words.’, 1)
["Words’, ’"words, words.’]

>>> re.split (/' [a-f]+’, '0a3B9’, flags=re.IGNORECASE)
[ror, 37, 9]

If there are capturing groups in the separator and it matches at the start of the string, the result will start with an
empty string. The same holds for the end of the string:

>>> re.split (/ (\W+)’, ’...words, words...’)
trr, ..., "words’, ', ', '"words’, ...’ T

That way, separator components are always found at the same relative indices within the result list (e.g., if there’s
one capturing group in the separator, the Oth, the 2nd and so forth).

Note that split will never split a string on an empty pattern match. For example:

>>> re.split ('xx’, "foo’)

["foo']

>>> re.split (" (?m)"$", "foo\n\nbar\n")
[foo\n\nbar\n’]

Changed in version 3.1: Added the optional flags argument.

re.findall (pattern, string, flags=0)
Return all non-overlapping matches of pattern in string, as a list of strings. The string is scanned left-to-right,
and matches are returned in the order found. If one or more groups are present in the pattern, return a list of

groups; this will be a list of tuples if the pattern has more than one group. Empty matches are included in the
result unless they touch the beginning of another match.

re.finditer (pattern, string, flags=0)
Return an iferator yielding match objects over all non-overlapping matches for the RE pattern in string. The

string is scanned left-to-right, and matches are returned in the order found. Empty matches are included in the
result unless they touch the beginning of another match.

re . sub (pattern, repl, string, count=0, flags=0)
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the
replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a function; if
it is a string, any backslash escapes in it are processed. That is, \n is converted to a single newline character,
\r is converted to a linefeed, and so forth. Unknown escapes such as \ j are left alone. Backreferences, such as
\ 6, are replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub(r’def\s+([a-zA-7Z_][a—-2zA-7Z_0-9])\sx\ (\s*\):’,
r’static PyObject*\npy_\1 (void)\n{’,

"def myfunc() :")

"static PyObjectx\npy_myfunc (void)\n{’

6.2. re — Regular expression operations 81

The Python Library Reference, Release 3.2.1

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobj):

if matchobj.group(0) == ’'-': return ' '/
. else: return '’
>>> re.sub(’'-{1,2}’", dashrepl, 'pro-————-gram-files’)

"pro-—-gram files’
>>> re.sub(r’\sAND\s’, ' & ’, ’'Baked Beans And Spam’, flags=re.IGNORECASE)
"Baked Beans & Spam’

The pattern may be a string or an RE object.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must be a
non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern are
replaced only when not adjacent to a previous match, so sub (" x*’, ’-', ’abc’) returns ' —a-b-c-'.

In addition to character escapes and backreferences as described above, \g<name> will use the substring
matched by the group named name, as defined by the (?P<name>...) syntax. \g<number> uses the
corresponding group number; \g<2> is therefore equivalent to \ 2, but isn’t ambiguous in a replacement such
as \g<2>0. \20 would be interpreted as a reference to group 20, not a reference to group 2 followed by the
literal character * 0’ . The backreference \ g<0> substitutes in the entire substring matched by the RE. Changed
in version 3.1: Added the optional flags argument.

re . subn (pattern, repl, string, count=0, flags=0)
Perform the same operation as sub (), but return a tuple (new_string, number_of_subs_made).
Changed in version 3.1: Added the optional flags argument.

re.escape (string)
Return string with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

re.purge ()
Clear the regular expression cache.

exception re .error
Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. It is
never an error if a string contains no match for a pattern.

6.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes.

regex.search (string[, pos[, endpos]])
Scan through string looking for a location where this regular expression produces a match, and return a corre-
sponding match object. Return None if no position in the string matches the pattern; note that this is different
from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to 0. This
is not completely equivalent to slicing the string; the * ~” pattern character matches at the real beginning of the
string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is endpos char-
acters long, so only the characters from pos to endpos — 1 will be searched for a match. If endpos is less than
pos, no match will be found, otherwise, if 7x is a compiled regular expression object, rx . search (string,
0, 50) isequivalentto rx.search(string[:50], 0).

82 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

>>> pattern = re.compile ("d")

>>> pattern.search ("dog") # Match at index 0

<_sre.SRE_Match object at ...>

>>> pattern.search("dog", 1) # No match; search doesn’t include the "d"

regex.match (string[, pos[, endpos]])
If zero or more characters at the beginning of string match this regular expression, return a corresponding match
object. Return None if the string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

Note: If you want to locate a match anywhere in string, use search () instead.

>>> pattern = re.compile("o")

>>> pattern.match ("dog") # No match as "o" is not at the start of "dog".
>>> pattern.match ("dog", 1) # Match as "o" is the 2nd character of "dog".
<_sre.SRE_Match object at ...>

regex.split (string, maxsplit=0)
Identical to the split () function, using the compiled pattern.

regex.findall (string[, pos[, endpos]])
Similar to the findall () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for match ().

regex.finditer (string[,pos[, endpos]])
Similar to the finditer () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for match ().

regex . sub (repl, string, count=0)
Identical to the sub () function, using the compiled pattern.

regex.subn (repl, string, count=0)
Identical to the subn () function, using the compiled pattern.

regex.flags
The flags argument used when the RE object was compiled, or O if no flags were provided.

regex.groups
The number of capturing groups in the pattern.

regex.groupindex
A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

regex.pattern
The pattern string from which the RE object was compiled.

6.2.5 Match Objects

Match objects always have a boolean value of True, so that you can test whether e.g. match () resulted in a match
with a simple if statement. They support the following methods and attributes:

match.expand (femplate)
Return the string obtained by doing backslash substitution on the template string template, as done by the sub ()
method. Escapes such as \n are converted to the appropriate characters, and numeric backreferences (\1, \2)
and named backreferences (\g<1>, \g<name>) are replaced by the contents of the corresponding group.

6.2. re — Regular expression operations 83

The Python Library Reference, Release 3.2.1

match.group ([group],])

Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arguments, groupl
defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
an IndexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result is None. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

>>> m = re.match(r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m.group (0) # The entire match

"Isaac Newton’

>>> m.group (1) # The first parenthesized subgroup.
"Isaac’

>>> m.group (2) # The second parenthesized subgroup.
"Newton’

>>> m.group (1, 2) # Multiple arguments give us a tuple.

(" Isaac’, ’'Newton’)

If the regular expression uses the (?P<name>. . .) syntax, the groupN arguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the pattern, an IndexError
exception is raised.

A moderately complicated example:

>>> m = re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group (' first_name’)

"Malcolm’

>>> m.group (' last_name’)

"Reynolds’

Named groups can also be referred to by their index:
>>> m.group (1)

"Malcolm’

>>> m.group (2)

"Reynolds’

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(r" (..)+", "alb2c3") # Matches 3 times.
>>> m.group (1) # Returns only the last match.
IC3I

match.groups (default=None)
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The default argument is used for groups that did not participate in the match; it defaults to None.

For example:
>>> m = re.match(r" (\d+)\. (\d+)", "24.1632")

>>> m.groups ()
(r247, "1632")

84 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

If we make the decimal place and everything after it optional, not all groups might participate in the match.
These groups will default to None unless the default argument is given:

>>> m = re.match (r" (\d+)\.?2 (\d+)2", "24")

>>> m.groups () # Second group defaults to None.
(24’ , None)
>>> m.groups (' 0") # Now, the second group defaults to 70’.

(/241, 07)

match.groupdict (default=None)
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The default
argument is used for groups that did not participate in the match; it defaults to None. For example:

>>> m = re.match(r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict ()
{’first_name’: ’'Malcolm’, ’'last_name’: ’'Reynolds’}

match.start ([group])

match.end([group])
Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning the
whole matched substring). Return -1 if group exists but did not contribute to the match. For a match object m,
and a group g that did contribute to the match, the substring matched by group g (equivalent to m.group (g))
is

m.string[m.start (g) :m.end (g)]

Note thatm. start (group) willequal m. end (group) if group matched a null string. For example, after m
= re.search('b(c?)’, ’'cba’),m.start(0)isl,m.end(0) is2, m.start (1) andm.end (1)
are both 2, and m. start (2) raises an IndexError exception.

An example that will remove remove_this from email addresses:

>>> email = "tony@tiremove_thisger.net"
>>> m = re.search ("remove_this", email)
>>> email[:m.start ()] + email[m.end() :]

"tony@tiger.net’

match.span ([group])
For a match m, return the 2-tuple (m.start (group), m.end(group)). Note that if group did not
contribute to the match, thisis (-1, -1). group defaults to zero, the entire match.

match.pos
The value of pos which was passed to the search () ormatch () method of a match object. This is the index
into the string at which the RE engine started looking for a match.

match.endpos
The value of endpos which was passed to the search () or match () method of a match object. This is the
index into the string beyond which the RE engine will not go.

match.lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For example,
the expressions (a)b, ((a) (b)), and ((ab)) will have lastindex == 1 if applied to the string ' ab’,
while the expression (a) (b) will have lastindex == 2, if applied to the same string.

6.2. re — Regular expression operations 85

The Python Library Reference, Release 3.2.1

match.lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no group was
matched at all.

match.re
The regular expression object whose match () or search () method produced this match instance.

match.string
The string passed to match () or search ().

6.2.6 Regular Expression Examples
Checking For a Pair

In this example, we’ll use the following helper function to display match objects a little more gracefully:

def displaymatch (match) :
if match is None:
return None
return '<Match: %r, groups=%r>’ % (match.group (), match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with each

[P

character representing a card, “a” for ace, “k” for king, “q” for queen, j for jack, “0” for 10, and “1” through “9”
representing the card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r"[0-9akgjl{5}s")

>>> displaymatch(valid.match ("ak05g")) # Valid.
"<Match: ’"ak05qg’, groups=()>"

>>> displaymatch(valid.match ("ak05e")) # Invalid.
>>> displaymatch(valid.match ("ak0")) # Invalid.
>>> displaymatch(valid.match ("727ak")) # Valid.

"<Match: ’727ak’, groups=()>"

That last hand, "727ak", contained a pair, or two of the same valued cards. To match this with a regular expression,
one could use backreferences as such:

>>> pair = re.compile(r".*(.).*x\1")
>>> displaymatch (pair.match("717ak"))
"<Match: "717", groups=("7",)>"

>>> displaymatch (pair.match ("718ak"))
>>> displaymatch (pair.match ("354aa"))
"<Match: ’354aa’, groups=('a’,)>"

Pair of 7s.

No pairs.
Pair of aces.

To find out what card the pair consists of, one could use the group () method of the match object in the following

manner:

>>> pair.match("717ak") .group (1)
I7I

Error because re.match() returns None,

>>> pair.match("718ak") .group (1)
Traceback (most recent call last):

File "<pyshell#23>", line 1, in <module>

which doesn’t have a group() method:

re.match(r" .~ (.).»\1", "718ak").group (1)
AttributeError: ’'NoneType’ object has no attribute ’'group’

86

Chapter 6. String Services

The Python Library Reference, Release 3.2.1

>>> pair.match("354aa") .group (1)

14 14

a

Simulating scanf()

Python does not currently have an equivalent to scanf (). Regular expressions are generally more powerful, though
also more verbose, than scanf () format strings. The table below offers some more-or-less equivalent mappings
between scanf () format tokens and regular expressions.

scanf () Token Regular Expression

%c .

$5c {5}

%d [-+]2\d+

%e, 3E, 3£, %g [—=+]12 (\d+ (\.\dx) 2|\ .\d+) ([eE] [-+]?\d+) ?
%1 [-+]12(0[xX] [\dA-Fa-f]1+]0[0-7]«|\d+)

50 0[0-7]~

$s \S+

$u \d+

$x, $X 0[xX] [\dA-Fa-f]+

To extract the filename and numbers from a string like
/usr/sbin/sendmail - 0 errors, 4 warnings
you would use a scanf () format like

%$s — %d errors, %d warnings

The equivalent regular expression would be

(\S+) - (\d+) errors, (\d+) warnings

Avoiding recursion

If you create regular expressions that require the engine to perform a lot of recursion, you may encounter a
RuntimeError exception with the message maximum recursion limit exceeded. For example,

>>> s = 'Begin ’ + 1000%«’a very long string ’ + ’end’
>>> re.match (’Begin (\w|)=*? end’, s).end()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "/usr/local/lib/python3.2/re.py", line 132, in match
return _compile (pattern, flags) .match(string)
RuntimeError: maximum recursion limit exceeded

You can often restructure your regular expression to avoid recursion.

Simple uses of the =? pattern are special-cased to avoid recursion. Thus, the above regular expression can avoid
recursion by being recast as Begin [a-zA-Z0-9_]*?end. As a further benefit, such regular expressions will
run faster than their recursive equivalents.

search() vs. match()

In a nutshell, match () only attempts to match a pattern at the beginning of a string where search () will match a
pattern anywhere in a string. For example:

6.2. re — Regular expression operations 87

The Python Library Reference, Release 3.2.1

>>> re.match("o", "dog") # No match as "o" is not the first letter of "dog".
>>> re.search("o", "dog") # Match as search() looks everywhere in the string.
<_sre.SRE_Match object at ...>

Note: The following applies only to regular expression objects like those created
with re.compile ("pattern"), not the primitives re.match (pattern, string) or

re.search(pattern, string).

match () has an optional second parameter that gives an index in the string where the search is to start:

>>> pattern = re.compile("o")
>>> pattern.match ("dog") # No match as "o" is not at the start of "dog."

Equivalent to the above expression as 0 is the default starting index:
>>> pattern.match ("dog", 0)

Match as "o" is the 2nd character of "dog" (index 0 is the first):

>>> pattern.match ("dog", 1)

<_sre.SRE_Match object at ...>

>>> pattern.match ("dog", 2) # No match as "o" is not the 3rd character of "dog."

Making a Phonebook

split () splits a string into a list delimited by the passed pattern. The method is invaluable for converting textual
data into data structures that can be easily read and modified by Python as demonstrated in the following example that
creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax:

>>> input = """Ross McFluff: 834.345.1254 155 Elm Street

Ronald Heathmore: 892.345.3428 436 Finley Avenue
Frank Burger: 925.541.7625 662 South Dogwood Way

Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line
having its own entry:

>>> entries = re.split ("\n+", input)

>>> entries

["Ross McFluff: 834.345.1254 155 Elm Street’,
"Ronald Heathmore: 892.345.3428 436 Finley Avenue’,
"Frank Burger: 925.541.7625 662 South Dogwood Way’,
"Heather Albrecht: 548.326.4584 919 Park Place’]

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the maxsplit
parameter of split () because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, 3) for entry in entries]
[["Ross’, '"McFluff’, 7834.345.1254", ’155 Elm Street’],
["Ronald’, ’'Heathmore’, 7892.345.3428’, ’'436 Finley Avenue’],
["Frank’, ’'Burger’, "7925.541.7625', ’'662 South Dogwood Way’],
["Heather’, ’'Albrecht’, ’548.326.4584’, "919 Park Place’]]

88 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

The : ? pattern matches the colon after the last name, so that it does not occur in the result list. With amaxsplit of
4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, 4) for entry in entries]

[['Ross’, ’"McFluff’, ’834.345.1254", ’'155’, "Elm Street’],
["Ronald’, ’"Heathmore’, ’7892.345.3428’, ’'436', ’'Finley Avenue’],
["Frank’, ’"Burger’, ’925.541.7625", ’'662’, ’'South Dogwood Way’],
["Heather’, ’'Albrecht’, 7548.326.4584’, '919’, ’'Park Place’]]

Text Munging

sub () replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates
using sub () with a function to “munge” text, or randomize the order of all the characters in each word of a sentence
except for the first and last characters:

>>> def repl (m):

inner_word = list (m.group(2))
random.shuffle (inner_word)
return m.group(l) + "".join (inner_word) + m.group (3)
>>> text = "Professor Abdolmalek, please report your absences promptly."

>>> re.sub(r" (\w) (\w+) (\w)", repl, text)
"Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.’
>>> re.sub(r" (\w) (\w+) (\w)", repl, text)
"Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.’

Finding all Adverbs

findall () matches all occurrences of a pattern, not just the first one as search () does. For example, if one was
a writer and wanted to find all of the adverbs in some text, he or she might use findall () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall (r"\w+ly", text)
["carefully’, ’'quickly’]

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer () is useful as it
provides match objects instead of strings. Continuing with the previous example, if one was a writer who wanted to
find all of the adverbs and their positions in some text, he or she would use finditer () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer (r"\w+ly", text):

c print (/' $02d-%02d: %s’ % (m.start (), m.end(), m.group(0)))
07-16: carefully

40-47: quickly

Raw String Notation

Raw string notation (r"text") keeps regular expressions sane. Without it, every backslash (' \’) in a regular
expression would have to be prefixed with another one to escape it. For example, the two following lines of code are
functionally identical:

6.2. re — Regular expression operations 89

The Python Library Reference, Release 3.2.1

>>> re.match (r"\W(.)\1\w", " ££ ")

<_sre.SRE_Match object at ...>
>>> re.match ("\\W (.)\\1\\w", " ££ ™)
<_sre.SRE_Match object at ...>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string notation, this
means r"\\". Without raw string notation, one must use "\\\\ ", making the following lines of code functionally

identical:

>>> re.match (r"\\", r"\\")

<_sre.SRE_Match object at ...>
>>> re.match("\\\\", I"\\")
<_sre.SRE_Match object at ...>

Writing a Tokenizer
A tokenizer or scanner analyzes a string to categorize groups of characters. This is a useful first step in writing a
compiler or interpreter.

The text categories are specified with regular expressions. The technique is to combine those into a single master
regular expression and to loop over successive matches:

import collections
import re

Token = collections.namedtuple (' Token’, ['typ’, ’'value’, ’'line’, ’column’])

def tokenize(s):
keywords = {’IF’, ’THEN’, ’ENDIF’, 'FOR’, ’'NEXT’, ’'GOSUB’, ’RETURN’}
token_specification = [

(" NUMBER’, r’\d+(\.\dx)?"), # Integer or decimal number
("ASSIGN’, r’':="), # Assignment operator
("END’, r’;"), # Statement terminator
("ID", r’' [A-Za-z]+"), # Identifiers
('op’, r’ [+x\/\=-1"), # Arithmetic operators
(' NEWLINE’, r’\n’), # Line endings
(" SKIP’, v’ [\t]l"), # Skip over spaces and tabs
1
tok_regex = ' |’ .join(’ (?P<%s>%s)’ % palr for pair in token_specification)
get_token = re.compile (tok_regex) .match
line = 1
pos = line_start = 0

mo = get_token(s)
while mo is not None:
typ = mo.lastgroup
if typ == 'NEWLINE' :
line_start = pos
line += 1

elif typ != 7SKIP':
val = mo.group (typ)
if typ == 'ID’ and val in keywords:
typ = val
yield Token(typ, val, line, mo.start()-line_start)

pos = mo.end()
mo = get_token(s, pos)

920 Chapter 6. String Services

http://en.wikipedia.org/wiki/Lexical_analysis

The Python Library Reference, Release 3.2.1

if pos != len(s):
raise RuntimeError (' Unexpected character %r on line %d’ % (s[pos], line))

statements = "7’
IF quantity THEN
total := total + price » quantity;
tax := price x 0.05;
ENDIF;

for token in tokenize (statements):
print (token)

The tokenizer produces the following output:

Token (typ='"IF’, value=’IF’, line=2, column=b5)

Token (typ=’'1ID’, value='"quantity’, line=2, column=8)
Token (typ='THEN’, value=’'THEN’, line=2, column=17)
Token (typ='1ID’, value=’"total’, line=3, column=9)
Token (typ="ASSIGN’, value=’:=’", line=3, column=15)
Token (typ="1ID’, value=’'total’, line=3, column=18)
Token (typ="0P’, value=’'+’, line=3, column=24)

Token (typ='1ID’, value='price’, line=3, column=26)
Token (typ="0P’, value=’+’, line=3, column=32)

Token (typ='1ID’, value=’'quantity’, line=3, column=34)
Token (typ='END’, value=’;’, line=3, column=42)

Token (typ="1ID’, value=’"tax’, line=4, column=9)

Token (typ="ASSIGN’, value=’:=’, line=4, column=13)
Token (typ='1ID’, value='price’, line=4, column=16)
Token (typ="0P’, value=’+’, line=4, column=22)

Token (typ='NUMBER’, value='0.05", line=4, column=24)
Token (typ="END’, value=’;’, line=4, column=28)

Token (typ="ENDIEF’, value='ENDIEF’, line=5, column=5)
Token (typ='END’, value=’;’, line=5, column=10)

6.3 struct — Interpret bytes as packed binary data

This module performs conversions between Python values and C structs represented as Python bytes objects. This
can be used in handling binary data stored in files or from network connections, among other sources. It uses Format
Strings as compact descriptions of the layout of the C structs and the intended conversion to/from Python values.

Note: By default, the result of packing a given C struct includes pad bytes in order to maintain proper alignment
for the C types involved; similarly, alignment is taken into account when unpacking. This behavior is chosen so that
the bytes of a packed struct correspond exactly to the layout in memory of the corresponding C struct. To handle
platform-independent data formats or omit implicit pad bytes, use standard size and alignment instead of native
size and alignment: see Byte Order; Size, and Alignment for details.

6.3.1 Functions and Exceptions

The module defines the following exception and functions:

6.3. struct — Interpret bytes as packed binary data 91

The Python Library Reference, Release 3.2.1

exception struct .error
Exception raised on various occasions; argument is a string describing what is wrong.

struct.pack (fmt, vi, v2,...)
Return a bytes object containing the values v/, v2, ... packed according to the format string fint. The arguments
must match the values required by the format exactly.

struct .pack_into (fint, buffer, offset, vi, v2, ...)
Pack the values vi, v2, ... according to the format string fint and write the packed bytes into the writable buffer
buffer starting at position offset. Note that offset is a required argument.

struct .unpack (fint, buffer)
Unpack from the buffer buffer (presumably packed by pack (fmt, ...)) according to the format string fint.
The result is a tuple even if it contains exactly one item. The buffer must contain exactly the amount of data
required by the format (1en (bytes) mustequal calcsize (fmt)).

struct .unpack_from (fint, buffer, offset=0)
Unpack from buffer starting at position offset, according to the format string fimt. The result is a tuple
even if it contains exactly one item. buffer must contain at least the amount of data required by the format
(len (buffer[offset:]) mustbe atleast calcsize (fmt)).

struct.calecsize (fint)
Return the size of the struct (and hence of the bytes object produced by pack (fmt, ...)) corresponding to
the format string fmt.

6.3.2 Format Strings

Format strings are the mechanism used to specify the expected layout when packing and unpacking data. They are
built up from Format Characters, which specify the type of data being packed/unpacked. In addition, there are special
characters for controlling the Byte Order; Size, and Alignment.

Byte Order, Size, and Alignment
By default, C types are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character | Byte order Size Alignment
@ native native native

= native standard | none

< little-endian standard | none

> big-endian standard | none

! network (= big-endian) | standard | none

If the first character is not one of these, * @ is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Intel x86 and AMDG64
(x86-64) are little-endian; Motorola 68000 and PowerPC G5 are big-endian; ARM and Intel Itanium feature switchable
endianness (bi-endian). Use sys.byteorder to check the endianness of your system.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined with
native byte order.

Standard size depends only on the format character; see the table in the Format Characters section.

92 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

Note the difference between ' @’ and ' =’: both use native byte order, but the size and alignment of the latter is
standardized.

The form ’ !’ is available for those poor souls who claim they can’t remember whether network byte order is big-
endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of / <’ or ’ >’ .
Notes:

1. Padding is only automatically added between successive structure members. No padding is added at the begin-
ning or the end of the encoded struct.

s o

2. No padding is added when using non-native size and alignment, e.g. with ‘<’, *>’, ‘=", and ‘!’.

3. To align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero. See Examples.

Format Characters

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types. The ‘Standard size’ column refers to the size of the packed value in bytes when using standard size; that
is, when the format string starts with one of ' </, 7>’ 7 ! or ' =’. When using native size, the size of the packed
value is platform-dependent.

Format C Type Python type Standard size | Notes

X pad byte no value

c char bytes of length 1 | 1

b signed char integer 1 (1),(3)

B unsigned char integer 1 3)

? _Bool bool 1 @))]

h short integer 2 3)

H unsigned short integer 2 3)

i int integer 4 3)

I unsigned int integer 4 3)

1 long integer 4 3)

L unsigned long integer 4 3)

q long long integer 8 2), (3

0 unsigned long long | integer 8 2), (3)

f float float 4 (@)

d double float 8 4)

s char[] bytes

P char[] bytes

P void integer)
Notes:

1. The * 2" conversion code corresponds to the _Bool type defined by C99. If this type is not available, it is
simulated using a char. In standard mode, it is always represented by one byte.

2. The " g’ and " Q' conversion codes are available in native mode only if the platform C compiler supports C
long long, or, on Windows, ___int 64. They are always available in standard modes.

3. When attempting to pack a non-integer using any of the integer conversion codes, if the non-integer has a
__index__ () method then that method is called to convert the argument to an integer before packing.
Changed in version 3.2: Use of the ___index___ () method for non-integers is new in 3.2.

4. For the ' £/ and ’ d’ conversion codes, the packed representation uses the IEEE 754 binary32 (for ’ £) or
binary64 (for d’) format, regardless of the floating-point format used by the platform.

6.3. struct — Interpret bytes as packed binary data 93

The Python Library Reference, Release 3.2.1

5. The " P’ format character is only available for the native byte ordering (selected as the default or with the * @
byte order character). The byte order character / =’ chooses to use little- or big-endian ordering based on the
host system. The struct module does not interpret this as native ordering, so the ' P’ format is not available.

A format character may be preceded by an integral repeat count. For example, the format string ’ 4h’ means exactly
the same as hhhh’.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the ’ s’ format character, the count is interpreted as the length of the bytes, not a repeat count like for the other
format characters; for example, * 10s’ means a single 10-byte string, while 10c’ means 10 characters. For packing,
the string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting bytes object
always has exactly the specified number of bytes. As a special case, ' 0s’ means a single, empty string (while ’ Oc’
means O characters).

When packing a value x using one of the integer formats (b’,"B’, "h’,’H’, 1", /I, "1",'L","q","Q"),if
x is outside the valid range for that format then st ruct .error is raised. Changed in version 3.1: In 3.0, some of
the integer formats wrapped out-of-range values and raised DeprecationWarning instead of struct.error.
The " p’ format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed number
of bytes, given by the count. The first byte stored is the length of the string, or 255, whichever is smaller. The bytes
of the string follow. If the string passed in to pack () is too long (longer than the count minus 1), only the leading
count—1 bytes of the string are stored. If the string is shorter than count -1, it is padded with null bytes so that
exactly count bytes in all are used. Note that for unpack (), the ’ p’ format character consumes count bytes, but
that the string returned can never contain more than 255 bytes.

For the ’ 2’ format character, the return value is either True or False. When packing, the truth value of the
argument object is used. Either O or 1 in the native or standard bool representation will be packed, and any non-zero
value will be True when unpacking.

Examples

Note: All examples assume a native byte order, size, and alignment with a big-endian machine.

A basic example of packing/unpacking three integers:

>>> from struct import =«

>>> pack (’hhl”, 1, 2, 3)

b’ \x00\x01\x00\x02\x00\x00\x00\x03"

>>> unpack ('hhl’, b’\x00\x01\x00\x02\x00\x00\x00\x03")

(1, 2, 3)
>>> calcsize ("hhl’")
38

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

>>> record = b’ raymond \x32\x12\x08\x01\x08’
>>> name, serialnum, school, gradelevel = unpack(’<10sHHb’, record)

>>> from collections import namedtuple

>>> Student = namedtuple ('’ Student’, ’'name serialnum school gradelevel’)
>>> Student._make (unpack (' <10sHHb’, record))
Student (name=b’ raymond ", serialnum=4658, school=264, gradelevel=8)

The ordering of format characters may have an impact on size since the padding needed to satisfy alignment require-
ments is different:

94 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

>>> pack (’‘ci’, b’*x", 0x12131415)
b’ *\x00\x00\x00\x12\x13\x14\x15"
>>> pack ("ic’, 0x12131415, b’ =x")
b’ \x12\x13\x14\x15%*"

>>> calcsize ('ci’)

8

>>> calcsize(’ic’)

5

The following format * 11h01’ specifies two pad bytes at the end, assuming longs are aligned on 4-byte boundaries:

>>> pack(’11h01", 1, 2, 3)
b’ \x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00"

This only works when native size and alignment are in effect; standard size and alignment does not enforce any
alignment.

See Also:
Module array Packed binary storage of homogeneous data.

Module xdrlib Packing and unpacking of XDR data.

6.3.3 Classes

The st ruct module also defines the following type:

class struct .Struct (format)
Return a new Struct object which writes and reads binary data according to the format string format. Creating
a Struct object once and calling its methods is more efficient than calling the st ruct functions with the same
format since the format string only needs to be compiled once.

Compiled Struct objects support the following methods and attributes:

pack (vi,v2,...)
Identical to the pack () function, using the compiled format. (1en (result) will equal self.size.)

pack_into (buffer, offset, vi, v2,...)
Identical to the pack_into () function, using the compiled format.

unpack (buffer)
Identical to the unpack () function, using the compiled format. (len (buffer) must equal
self.size).

unpack_ from (buffer, offset=0)
Identical to the unpack_from () function, using the compiled format. (len (buffer[offset:])
must be at least self.size).

format
The format string used to construct this Struct object.

size
The calculated size of the struct (and hence of the bytes object produced by the pack () method) corre-
sponding to format.

6.3. struct — Interpret bytes as packed binary data 95

The Python Library Reference, Release 3.2.1

6.4 difflib — Helpers for computing deltas

This module provides classes and functions for comparing sequences. It can be used for example, for comparing
files, and can produce difference information in various formats, including HTML and context and unified diffs. For
comparing directories and files, see also, the £i1ecmp module.

class difflib.SequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s by
Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest con-
tiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp algorithm doesn’t
address junk). The same idea is then applied recursively to the pieces of the sequences to the left and to the right
of the matching subsequence. This does not yield minimal edit sequences, but does tend to yield matches that
“look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior de-
pendent in a complicated way on how many elements the sequences have in common; best case time is linear.

Automatic junk heuristic: SequenceMat cher supports a heuristic that automatically treats certain sequence
items as junk. The heuristic counts how many times each individual item appears in the sequence. If an item’s
duplicates (after the first one) account for more than 1% of the sequence and the sequence is at least 200 items
long, this item is marked as “popular” and is treated as junk for the purpose of sequence matching. This heuristic
can be turned off by setting the aut o junk argument to False when creating the SequenceMatcher. New
in version 3.2: The autojunk parameter.

class difflib.Differ

This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas.
Differ uses SequenceMatcher both to compare sequences of lines, and to compare sequences of characters
within similar (near-matching) lines.

Each line of a Di f fer delta begins with a two-letter code:

Code Meaning

r— line unique to sequence 1
4+ line unique to sequence 2
r line common to both sequences

72 7 | line not present in either input sequence

Lines beginning with ‘2 attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain tab characters.

class difflib.HtmlDiff

This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can be
generated in either full or contextual difference mode.

The constructor for this class is:

__init_ (tabsize=8, wrapcolumn=None, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Initializes instance of Htm1Diff.

tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped, de-
faults to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndiff () (used by Html1Diff to
generate the side by side HTML differences). See ndiff () documentation for argument default values
and descriptions.

96

Chapter 6. String Services

The Python Library Reference, Release 3.2.1

The following methods are public:

make_file (fromlines, tolines, fromdesc="", todesc=""*, context=False, numlines=5)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings (both
default to an empty string).

context and numlines are both optional keyword arguments. Set confext to True when contextual differ-
ences are to be shown, else the default is False to show the full files. numlines defaults to 5. When
context is True numlines controls the number of context lines which surround the difference highlights.
When context is False numlines controls the number of lines which are shown before a difference high-
light when using the “next” hyperlinks (setting to zero would cause the “next” hyperlinks to place the next
difference highlight at the top of the browser without any leading context).

make_table (fromlines, tolines, fromdesc="", todesc="", context=False, numlines=5)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file () method.

Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of its
use.

difflib.context_diff (a, b, fromfile="", tofile="", fromfiledate="", tofiledate="", n=3, lineterm="\n")
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines is set by n which defaults to three.

By default, the diff control lines (those with «x+ or ———) are created with a trailing newline. This is
helpful so that inputs created from file.readlines () result in diffs that are suitable for use with
file.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> sl ["bacon\n’, "eggs\n’, "ham\n’, ’guido\n’]
>>> 52 = [’'python\n’, ’"eggy\n’, ’"hamster\n’, ’guido\n’]
>>> for line in context_diff(sl, s2, fromfile='before.py’, tofile="after.py’):
sys.stdout.write (line)
**x* before.py
-—— after.py
* ok ok ok ok ok k ok k ok k ok ok k ok
kxk 1,4 *kxk
! bacon
! eggs
! ham
guido
-— 1,4 ———
! python
! eggy
! hamster
guido

6.4. difflib — Helpers for computing deltas 97

The Python Library Reference, Release 3.2.1

See A command-line interface to difflib for a more detailed example.

difflib.get_close_matches (word, possibilities, n=3, cutoff=0.6)
Return a list of the best “good enough” matches. word is a sequence for which close matches are desired
(typically a string), and possibilities is a list of sequences against which to match word (typically a list of
strings).

Optional argument n (default 3) is the maximum number of close matches to return; n must be greater than 0.

Optional argument cutoff (default 0. 6) is a float in the range [0, 1]. Possibilities that don’t score at least that
similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score, most
similar first.

>>> get_close_matches (’'appel’, ["ape’, ’"apple’, 'peach’, ’"puppy’])
["apple’, "ape’]

>>> import keyword

>>> get_close_matches ('wheel’, keyword.kwlist)

["while’]

>>> get_close_matches (’apple’, keyword.kwlist)

[]

>>> get_close_matches (’accept’, keyword.kwlist)

["except’]

difflib.ndiff (a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Compare a and b (lists of strings); return a Di f fe r-style delta (a generator generating the delta lines).

Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false if not. The
default is None. There is also a module-level function IS_LINE_JUNK (), which filters out lines without vis-
ible characters, except for at most one pound character (’ #’) — however the underlying SequenceMatcher
class does a dynamic analysis of which lines are so frequent as to constitute noise, and this usually works better
than using this function.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or false if
not. The default is module-level function IS_CHARACTER_JUNK (), which filters out whitespace characters
(a blank or tab; note: bad idea to include newline in this!).

Tools/scripts/ndiff.py is a command-line front-end to this function.

>>> diff ndiff (' one\ntwo\nthree\n’ .splitlines (1),
C. "ore\ntree\nemu\n’ .splitlines (1))
>>> print ('’ .join(diff), end="")

— one

0+ 0
o
n}
D

- three

?
+ tree
+

difflib.restore (sequence, which)
Return one of the two sequences that generated a delta.

98 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

Given a sequence produced by Differ.compare () or ndiff (), extract lines originating from file 1 or 2
(parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff (' one\ntwo\nthree\n’ .splitlines (1),
S "ore\ntree\nemu\n’ .splitlines (1))
>>> diff = list(diff) # materialize the generated delta into a 1list
>>> print ('’ .join(restore(diff, 1)), end="")

one

two

three

>>> print ('’ .join(restore(diff, 2)), end="")

ore

tree

emu

difflib.unified_diff (a, b, fromfile="", tofile="", fromfiledate="", tofiledate="", n=3, lineterm="\n")
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is set
by n which defaults to three.

By default, the diff control lines (those with ———, +++, or @@) are created with a trailing newline. This
is helpful so that inputs created from file.readlines () result in diffs that are suitable for use with
file.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> sl = [’'bacon\n’, ’'eggs\n’, ’"ham\n’, ’‘guido\n’]

>>> s2 = [’python\n’, "eggy\n’, ’"hamster\n’, ’‘guido\n’]

>>> for line in unified_diff(sl, s2, fromfile="before.py’, tofile="after.py’):
. sys.stdout.write (line)

—-—— before.py

+++ after.py

@@ -1,4 +1,4 Q@@

—-bacon

—-eggs

—ham

+python

teggy

+hamster

guido

See A command-line interface to difflib for a more detailed example.

difflib.IS_LINE_JUNK (l/ine)
Return true for ignorable lines. The line line is ignorable if /ine is blank or contains a single ” #’, otherwise it
is not ignorable. Used as a default for parameter linejunk in ndi £ £ () in older versions.

6.4. difflib — Helpers for computing deltas 99

The Python Library Reference, Release 3.2.1

difflib.IS_CHARACTER_JUNK (ch)

Return true for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff ().

See Also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E. Met-

zener. This was published in Dr. Dobb’s Journal in July, 1988.

6.4.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

class difflib.SequenceMatcher (isjunk=None, a="‘, b="", autojunk=True)

Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk’ and should be ignored. Passing None for isjunk is equivalent
to passing lambda x: 0;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The elements of
both sequences must be hashable.

The optional argument aufojunk can be used to disable the automatic junk heuristic. New in version 3.2: The
autojunk parameter. SequenceMatcher objects get three data attributes: bjunk is the set of elements of b for
which isjunk is True; bpopular is the set of non-junk elements considered popular by the heuristic (if it is not
disabled); b2j is a dict mapping the remaining elements of b to a list of positions where they occur. All three are
reset whenever b is reset with set_seqs () or set_seq2 (). New in version 3.2: The bjunk and bpopular
attributes. SequenceMatcher objects have the following methods:

set_seqgs (a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequences, use set_seg2 () to set the commonly used sequence once
and call set_seqgl () repeatedly, once for each of the other sequences.

set_seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match (alo, ahi, blo, bhi)
Find longest matching block in a [alo:ahi] andb [blo:bhi].

If isjunk was omitted or None, find_longest_match () returns (i, Jj, k) suchthata[i:i+k]
isequaltob[j: j+k],wherealo <= i <= i+k <= ahiandblo <= j <= j+k <= bhi. For
all (i, 3j’, k') meeting those conditions, the additional conditions k >= k’, i <= i’,andif i
== 1’, j <= 7J’ are also met. In other words, of all maximal matching blocks, return one that starts
earliest in a, and of all those maximal matching blocks that start earliest in a, return the one that starts
earliest in b.

>>> s = SequenceMatcher (None, " abcd", "abcd abcd")
>>> s.find_longest_match (0, 5, 0, 9)
Match (a=0, b=4, size=5)

100

Chapter 6. String Services

http://www.ddj.com/184407970?pgno=5
http://www.ddj.com/

The Python Library Reference, Release 3.2.1

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as

identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents / abcd’ from
matching the / abcd’ at the tail end of the second sequence directly. Instead only the ' abcd’ can

match, and matches the leftmost * abcd’ in the second sequence:

n n

>>> s = SequenceMatcher (lambda x: x==" ", abcd",
>>> s.find_longest_match (0, 5, 0, 9)

Match (a=1, b=0, size=4)

If no blocks match, this returns (alo, blo, 0).

This method returns a named tuple Match (a, b, size).

get_matching_blocks ()

"abcd abcd")

Return list of triples describing matching subsequences. Each triple is of the form (i, j, n), and

means thata[i:1i+n] ==

[j:Jj+n]. The triples are monotonically increasing in i and j.

The last triple is a dummy, and has the value (len(a), len(b), 0). Itis the only triple with n
== 0. If (i, 3, n) and (i’, 3j’, n’) are adjacent triples in the list, and the second is not the

last triple in the list, then i+n != i’ or j+n != j’; in other words, adjacent triples always describe
non-adjacent equal blocks.
>>> s = SequenceMatcher (None, "abxcd", "abcd")

>>> s.get_matching blocks ()
[Match (a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get_opcodes ()

Return list of S5-tuples describing how to turn a into b. Each tuple is of the form (tag, 11, i2,

31, Jj2). The first tuple has
preceding tuple, and, likewise,

il == jl1 == 0, and remaining tuples have i/ equal to the i2 from the
Jj1 equal to the previous j2.

The tag values are strings, with these meanings:

Value Meaning

"replace’ | a[il:12] should be replacedby b[j1l:32].

"delete’ al[il:12] should be deleted. Note that j1 == 72 in this case.

"insert’ b[jl:j2] should beinsertedata[i1:11]. Notethat i1 == 1i2 in this case.
"equal’ alil:12] == b[jl:3j2] (the sub-sequences are equal).

For example:

>>> a = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher (None, a, b)

>>> for tag, il,
print (" {:7}
tag, i1,

delete a[0:1] —> b[0:0] ‘q’

i2, Jjl, j2 in s.get_opcodes{():
al{}t:{}] ——> b[{}:{}] {'r:>8} ——> {!r}’ .format (
i2, 31, 3j2, alil:i2], b[jl:321))

—> “ equal a[1:3] —> b[0:2] ‘ab’ —> ‘ab’ replace a[3:4] —> b[2:3] ‘X’

—> ‘y’ equal a[4:6] —> b[3:5] ‘cd’ —> ‘cd’ insert a[6:6] —> b[5:6] © —> ‘f°

get_grouped_opcodes (n=3)

Return a generator of groups with up to n lines of context.

6.4. difflib — Helpers for compu

ting deltas 101

The Python Library Reference, Release 3.2.1

Starting with the groups returned by get_opcodes (), this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same format as get_opcodes ().

ratio()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M
/'T. Note that this is 1. 0 if the sequences are identical, and 0. 0 if they have nothing in common.

This is expensive to compute if get_matching_blocks () orget_opcodes () hasn’t already been
called, in which case you may want to try quick_ratio () or real_quick_ratio () firstto getan
upper bound.

quick_ratio()
Return an upper bound on ratio () relatively quickly.

real_quick_ratio()
Return an upper bound on ratio () very quickly.

The three methods that return the ratio of matching to total characters can give different results due to differing levels of
approximation, although quick_ratio () and real_quick_ratio () are always at least as large as ratio ():

>>> s = SequenceMatcher (None, "abcd", "bcde")
>>> s.ratio ()

0.75

>>> s.quick_ratio ()

0.75

>>> s.real_quick_ratio()

1.0

6.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk”:

>>> s = SequenceMatcher (lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio () returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio () value
over 0.6 means the sequences are close matches:

>>> print (round(s.ratio (), 3))
0.866

If you’re only interested in where the sequences match, get_matching_blocks () is handy:

>>> for block in s.get_matching_blocks():
.. print ("a[%d] and b[%d] match for %d elements" % block)
al[0] and b[0] match for 8 elements
al[8] and b[l7] match for 21 elements
al29] and b[38] match for 0 elements

Note that the last tuple returned by get_matching_blocks () is always a dummy, (len(a), len(b), 0),
and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes () :

>>> for opcode in s.get_opcodes() :
print ("$6s a[%d:%d] b[%d:%d]" % opcode)

102 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

equal a[0:8] b[0:8]
insert a[8:8] b[8:17]
equal a[8:29] b[17:38]

See Also:

e The get_close_matches () function in this module which shows how simple code building on
SequenceMatcher can be used to do useful work.

» Simple version control recipe for a small application built with SequenceMatcher.

6.4.3 Differ Objects

Note that Di f fer-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restrict-
ing synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer
diff.

The Di f fer class has this constructor:

class difflib.Differ (linejunk=None, charjunk=None)
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default is None, meaning that no character is considered junk.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can
be obtained from the readlines () method of file-like objects. The delta generated also consists of
newline-terminated strings, ready to be printed as-is via the writelines () method of a file-like object.

6.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained from the readlines () method of file-like objects):

>>> textl = 77 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex 1s better than complicated.

. 777 .splitlines (1)

>>> len (textl)

4

>>> textl[0][-1]

I3 \nl

>>> text2 =’’’ 1. Beautiful is better than ugly.

3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.

777 splitlines (1)

6.4. difflib — Helpers for computing deltas 103

http://code.activestate.com/recipes/576729/

The Python Library Reference, Release 3.2.1

Next we instantiate a Differ object:
>>> d = Differ ()

Note that when instantiating a Dif fer object we may pass functions to filter out line and character “junk.” See the
Differ () constructor for details.

Finally, we compare the two:
>>> result = list(d.compare (textl, text2))
result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint
>>> pprint (result)

[’ 1. Beautiful is better than ugly.\n’,

r— 2. Explicit is better than implicit.\n’,
- 3. Simple is better than complex.\n’,

"+ 3 Simple is better than complex.\n’,

"2 ++\n’,

" — 4. Complex is better than complicated.\n’,
r? ~ -———= ™\n’,
"+ 4. Complicated is better than complex.\n’,
r? ++++ ~“\n’,

"+ 5. Flat 1is better than nested.\n’]
As a single multi-line string it looks like this:

>>> import sys
>>> sys.stdout.writelines (result)
1. Beautiful is better than ugly.
2. Explicit is better than implicit.
- 3. Simple is better than complex.
3

+ Simple is better than complex.

? ++

- 4. Complex is better than complicated.
? A ____ A
+ 4. Complicated is better than complex.
? ++++ 7 A
+ 5. Flat is better than nested.

6.4.5 A command-line interface to difflib

This example shows how to use difflib to create a di f £-like utility. It is also contained in the Python source distribu-
tion, as Tools/scripts/diff.py.

"mm Command line interface to difflib.py providing diffs in four formats:

ndiff: lists every line and highlights interline changes.
context: highlights clusters of changes in a before/after format.
unified: highlights clusters of changes in an inline format.
html: generates side by side comparison with change highlights.

* % % %

mmn

import sys, os, time, difflib, optparse

def main () :

104 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

Configure the option parser
usage = "usage: %Sprog [options] fromfile tofile"
parser = optparse.OptionParser (usage)
parser.add_option("-c", action="store_true", default=False,
help=’'Produce a context format diff (default)’)

parser.add_option("-u", action="store_true", default=False,
help=’'Produce a unified format diff’)
hlp = ’'Produce HTML side by side diff (can use -c and -1 in conjunction)’

parser.add_option("-m", action="store_ true", default=False, help=hlp)
parser.add_option("-n", action="store_true", default=False,
help=’'Produce a ndiff format diff’)

parser.add_option("-1", "--lines", type="int", default=3,
help=’'Set number of context lines (default 3)’)

(options, args) = parser.parse_args()

if len(args) == 0:

parser.print_help ()
sys.exit (1)
if len(args) != 2:
parser.error ("need to specify both a fromfile and tofile")

n = options.lines
fromfile, tofile = args # as specified in the usage string

we’re passing these as arguments to the diff function
fromdate = time.ctime (os.stat (fromfile) .st_mtime)

todate = time.ctime (os.stat (tofile) .st_mtime)
fromlines = open(fromfile, ’'U’).readlines|()
tolines = open(tofile, 'U’).readlines()

if options.u:
diff = difflib.unified diff(fromlines, tolines, fromfile, tofile,
fromdate, todate, n=n)
elif options.n:
diff = difflib.ndiff (fromlines, tolines)
elif options.m:
diff = difflib.HtmlDiff () .make_file(fromlines, tolines, fromfile,
tofile, context=options.c,
numlines=n)
else:
diff = difflib.context_diff (fromlines, tolines, fromfile, tofile,
fromdate, todate, n=n)

we’re using writelines because diff is a generator
sys.stdout.writelines (diff)

if name == '_ main_ ':

main ()

6.5 textwrap — Text wrapping and filling

Source code: Lib/textwrap.py

6.5. textwrap — Text wrapping and filling 105

http://hg.python.org/cpython/file/default/Lib/textwrap.py

The Python Library Reference, Release 3.2.1

The textwrap module provides two convenience functions, wrap () and £i11 (), as well as TextWrapper,
the class that does all the work, and a utility function dedent (). If you’re just wrapping or filling one or two text
strings, the convenience functions should be good enough; otherwise, you should use an instance of TextWrapper
for efficiency.

textwrap.wrap (fext, width=70, **kwargs)
Wraps the single paragraph in text (a string) so every line is at most width characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below. width
defaults to 70.

textwrap.£ill (fext, width=70, **kwargs)
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph. £i11 () is
shorthand for

"\n".join (wrap (text, ...))

In particular, 111 () accepts exactly the same keyword arguments as wrap () .

Both wrap () and £111 () work by creating a TextWrapper instance and calling a single method on it. That
instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you to create
your own TextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long words
be broken if necessary, unless TextWrapper.break_long_words is set to false.

An additional utility function, dedent (), is provided to remove indentation from strings that have unwanted whites-
pace to the left of the text.

textwrap.dedent (fext)
Remove any common leading whitespace from every line in fext.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and
"\thello™" are considered to have no common leading whitespace.

For example:

def test():
end first line with \ to avoid the empty line!
s = III\
hello
world
print (repr(s)) # prints 7 hello\n world\n /
print (repr (dedent (s))) # prints “hello\n world\n’

class textwrap.TextWrapper (**kwargs)
The TextWrapper constructor accepts a number of optional keyword arguments. Each keyword argument
corresponds to an instance attribute, so for example

wrapper = TextWrapper (initial_indent="x ")

is the same as

106 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

wrapper = TextWrapper ()
wrapper.initial_indent = "x "

You can re-use the same TextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the
input text longer than width, TextWrapper guarantees that no output line will be longer than width
characters.

expand_tabs
(default: True) If true, then all tab characters in text will be expanded to spaces using the
expandtabs () method of text.

replace_whitespace
(default: True) If true, each whitespace character (as defined by string.whitespace) remaining
after tab expansion will be replaced by a single space.

Note: If expand_tabs is false and replace_whitespace is true, each tab character will be re-
placed by a single space, which is not the same as tab expansion.

Note: If replace_whitespace is false, newlines may appear in the middle of a line and cause
strange output. For this reason, text should be split into paragraphs (using str.splitlines () or
similar) which are wrapped separately.

drop_whitespace
(default: True) If true, whitespace that, after wrapping, happens to end up at the beginning or end of a
line is dropped (leading whitespace in the first line is always preserved, though).

initial_indent
(default: ") String that will be prepended to the first line of wrapped output. Counts towards the length of
the first line.

subsequent_indent
(default:) String that will be prepended to all lines of wrapped output except the first. Counts towards
the length of each line except the first.

fix sentence_endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences
are always separated by exactly two spaces. This is generally desired for text in a monospaced font.
However, the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a
lowercase letter followed by oneof 7 .7, ! " or ’ ?’, possibly followed by one of * "’ or "’ ", followed
by a space. One problem with this is algorithm is that it is unable to detect the difference between “Dr.” in

[...] Dr. Frankenstein’s monster [...]
and “Spot.” in
[...] See Spot. See Spot run [...]

fix_sentence_endings is false by default.

6.5. textwrap — Text wrapping and filling 107

The Python Library Reference, Release 3.2.1

Since the sentence detection algorithm relies on string.lowercase for the definition of “lowercase
letter,” and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break_long words
(default: True) If true, then words longer than width will be broken in order to ensure that no lines
are longer than width. If it is false, long words will not be broken, and some lines may be longer than
width. (Long words will be put on a line by themselves, in order to minimize the amount by which
width is exceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in com-
pound words, as it is customary in English. If false, only whitespaces will be considered as potentially
good places for line breaks, but you need to set break_long_words to false if you want truly insecable
words. Default behaviour in previous versions was to always allow breaking hyphenated words.

TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap (fext)
Wraps the single paragraph in fext (a string) so every line is at most width characters long. All wrapping
options are taken from instance attributes of the TextWrapper instance. Returns a list of output lines,
without final newlines.

£ill (text)
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph.

6.6 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

codecs.register (search_function)

Register a codec search function. Search functions are expected to take one argument, the encoding name in all
lower case letters, and return a CodecInfo object having the following attributes:

ename The name of the encoding;
eencode The stateless encoding function;
*decode The stateless decoding function;
eincrementalencoder An incremental encoder class or factory function;
eincrementaldecoder An incremental decoder class or factory function;
estreamwriter A stream writer class or factory function;
estreamreader A stream reader class or factory function.

The various functions or classes take the following arguments:

encode and decode: These must be functions or methods which have the same interface as the
encode ()/decode () methods of Codec instances (see Codec Interface). The functions/methods are ex-
pected to work in a stateless mode.

incrementalencoder and incrementaldecoder: These have to be factory functions providing the following inter-
face:

factory (errors=’'strict’)

108

Chapter 6. String Services

The Python Library Reference, Release 3.2.1

The factory functions must return objects providing the interfaces defined by the base classes
IncrementalEncoder and IncrementalDecoder, respectively. Incremental codecs can maintain state.

streamreader and streamwriter: These have to be factory functions providing the following interface:
factory(stream, errors=’'strict’)

The factory functions must return objects providing the interfaces defined by the base classes St reamiWriter
and St reamReader, respectively. Stream codecs can maintain state.

Possible values for errors are
e’ strict’: raise an exception in case of an encoding error
*’ replace’: replace malformed data with a suitable replacement marker, such as * 2/ or " \ufffd’
*’ ignore’ : ignore malformed data and continue without further notice
e’ xmlcharrefreplace’: replace with the appropriate XML character reference (for encoding only)
*’backslashreplace’: replace with backslashed escape sequences (for encoding only)
*’ surrogateescape’ : replace with surrogate U+DCxx, see PEP 383

as well as any other error handling name defined via register_error ().

In case a search function cannot find a given encoding, it should return None.

codecs.lookup (encoding)
Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no CodecInfo objectis found, a LookupError is raised. Otherwise, the CodecInfo objectis
stored in the cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions which use 1ookup () for
the codec lookup:

codecs.getencoder (encoding)
Look up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

codecs .getdecoder (encoding)
Look up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

codecs.getincrementalencoder (encoding)
Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
encoder.

codecs.getincrementaldecoder (encoding)
Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
decoder.

codecs .getreader (encoding)
Look up the codec for the given encoding and return its StreamReader class or factory function.

Raises a LookupError in case the encoding cannot be found.

6.6. codecs — Codec registry and base classes 109

http://www.python.org/dev/peps/pep-0383

The Python Library Reference, Release 3.2.1

codecs.getwriter (encoding)
Look up the codec for the given encoding and return its StreamWriter class or factory function.

Raises a LookupError in case the encoding cannot be found.

codecs.register_ error (name, error_handler)
Register the error handling function error_handler under the name name. error_handler will be called during
encoding and decoding in case of an error, when name is specified as the errors parameter.

For encoding error_handler will be called with a UnicodeEncodeError instance, which contains informa-
tion about the location of the error. The error handler must either raise this or a different exception or return a
tuple with a replacement for the unencodable part of the input and a position where encoding should continue.
The encoder will encode the replacement and continue encoding the original input at the specified position.
Negative position values will be treated as being relative to the end of the input string. If the resulting position
is out of bound an IndexError will be raised.

Decoding and translating works similar, except UnicodeDecodeError or UnicodeTranslateError
will be passed to the handler and that the replacement from the error handler will be put into the output directly.

codecs.lookup_error (name)
Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.

codecs.strict_errors (exception)
Implements the st rict error handling: each encoding or decoding error raises a UnicodeError.

codecs.replace_errors (exception)
Implements the replace error handling: malformed data is replaced with a suitable replacement character
such as 2’ in bytestrings and " \uff££d’ in Unicode strings.

codecs.ignore_errors (exception)
Implements the ignore error handling: malformed data is ignored and encoding or decoding is continued
without further notice.

codecs.xmlcharrefreplace_errors (exception)
Implements the xmlcharrefreplace error handling (for encoding only): the unencodable character is re-
placed by an appropriate XML character reference.

codecs .backslashreplace_errors (exception)
Implements the backslashreplace error handling (for encoding only): the unencodable character is re-
placed by a backslashed escape sequence.

To simplify working with encoded files or stream, the module also defines these utility functions:

codecs . open (filename, mode[, encoding[, errors[, buﬁ‘ering]]])
Open an encoded file using the given mode and return a wrapped version providing transparent encod-
ing/decoding. The default file mode is / r’ meaning to open the file in read mode.

Note: The wrapped version’s methods will accept and return strings only. Bytes arguments will be rejected.

Note: Files are always opened in binary mode, even if no binary mode was specified. This is done to avoid
data loss due to encodings using 8-bit values. This means that no automatic conversion of b’ \n’ is done on
reading and writing.

encoding specifies the encoding which is to be used for the file.

errors may be given to define the error handling. It defaults to * strict’ which causes a ValueError to be
raised in case an encoding error occurs.

110 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

buffering has the same meaning as for the built-in open () function. It defaults to line buffered.

codecs .EncodedFile (file, data_encoding, file_encoding=None, errors=’strict’)
Return a wrapped version of file which provides transparent encoding translation.

Bytes written to the wrapped file are interpreted according to the given data_encoding and then written to the
original file as bytes using the file_encoding.

If file_encoding is not given, it defaults to data_encoding.

errors may be given to define the error handling. It defaults to * strict’, which causes ValueError to be
raised in case an encoding error occurs.

codecs.iterencode (iterator, encoding, errors=’strict’, **kwargs)
Uses an incremental encoder to iteratively encode the input provided by iterator. This function is a generator.
errors (as well as any other keyword argument) is passed through to the incremental encoder.

codecs.iterdecode (iterator, encoding, errors="strict’, **kwargs)
Uses an incremental decoder to iteratively decode the input provided by iterator. This function is a generator.
errors (as well as any other keyword argument) is passed through to the incremental decoder.

The module also provides the following constants which are useful for reading and writing to platform dependent files:

codecs .BOM

codecs .BOM_BE

codecs.BOM_LE

codecs .BOM_UTFS8

codecs.BOM_UTF16

codecs.BOM _UTF16_BE

codecs.BOM_UTF16_LE

codecs .BOM_UTF32

codecs.BOM_UTF32_ BE

codecs.BOM_UTF32_LE
These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16 and UTF-
32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a Unicode signature.
BOM_UTF16 is either BOM_UTF16_BE or BOM_UTF16_LE depending on the platform’s native byte order,
BOM is an alias for BOM_UTF16, BOM_LE for BOM_UTF16_LE and BOM_BE for BOM_UTF16_BE. The
others represent the BOM in UTF-8 and UTF-32 encodings.

6.6.1 Codec Base Classes

The codecs module defines a set of base classes which define the interface and can also be used to easily write your
own codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to imple-
ment the file protocols.

The Codec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, the encode () and decode () methods may implement different error
handling schemes by providing the errors string argument. The following string values are defined and implemented
by all standard Python codecs:

6.6. codecs — Codec registry and base classes 111

The Python Library Reference, Release 3.2.1

Value Meaning

"strict’ Raise UnicodeError (or a subclass); this is the default.

"ignore’ Ignore the character and continue with the next.

"replace’ Replace with a suitable replacement character; Python will use the official U+FFFD
REPLACEMENT CHARACTER for the built-in Unicode codecs on decoding and ‘?’ on
encoding.

" xmlcharref yeRdplace’with the appropriate XML character reference (only for encoding).

"backslashregpReptace with backslashed escape sequences (only for encoding).

" surrogateesgcRegmdce byte with surrogate U+DCxx, as defined in PEP 383.

In addition, the following error handlers are specific to a single codec:

Value Codec | Meaning
"surrogatepass’ | utf-8 Allow encoding and decoding of surrogate codes in UTF-8.

New in version 3.1: The ’ surrogateescape’ and ’ surrogatepass’ error handlers. The set of allowed
values can be extended via register_error ().

Codec Objects

The Codec class defines these methods which also define the function interfaces of the stateless encoder and decoder:

Codec.encode (input[, errors])
Encodes the object input and returns a tuple (output object, length consumed). Encoding converts a string object
to a bytes object using a particular character set encoding (e.g., cp1252 or iso-8859-1).

errors defines the error handling to apply. It defaults to * st rict’ handling.

The method may not store state in the Codec instance. Use St reamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

Codec.decode (input[, errors])
Decodes the object input and returns a tuple (output object, length consumed). Decoding converts a bytes object
encoded using a particular character set encoding to a string object.

input must be a bytes object or one which provides the read-only character buffer interface — for example, buffer
objects and memory mapped files.

errors defines the error handling to apply. It defaults to ’ strict’ handling.

The method may not store state in the Codec instance. Use St reamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremental
encoding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder function,
but with multiple calls to the encode () /decode () method of the incremental encoder/decoder. The incremental
encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode () /decode () method is the same as if all the single inputs were joined
into one, and this input was encoded/decoded with the stateless encoder/decoder.

112 Chapter 6. String Services

http://www.python.org/dev/peps/pep-0383

The Python Library Reference, Release 3.2.1

IncrementalEncoder Objects
The IncrementalEncoder class is used for encoding an input in multiple steps. It defines the following methods
which every incremental encoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalEncoder ([errors])
Constructor for an IncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncoder may implement different error handling schemes by providing the errors key-
word argument. These parameters are predefined:

¢’ strict’ Raise ValueError (or a subclass); this is the default.

e’ ignore’ Ignore the character and continue with the next.

*’ replace’ Replace with a suitable replacement character
*’xmlcharrefreplace’ Replace with the appropriate XML character reference
*’backslashreplace’ Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it pos-
sible to switch between different error handling strategies during the lifetime of the TncrementalEncoder
object.

The set of allowed values for the errors argument can be extended with register_error ().

encode (object[, final])
Encodes object (taking the current state of the encoder into account) and returns the resulting encoded
object. If this is the last call to encode () final must be true (the default is false).

reset ()
Reset the encoder to the initial state.

IncrementalkEncoder.getstate ()
Return the current state of the encoder which must be an integer. The implementation should make sure that 0
is the most common state. (States that are more complicated than integers can be converted into an integer by
marshaling/pickling the state and encoding the bytes of the resulting string into an integer).

IncrementalEncoder.setstate (state)
Set the state of the encoder to state. state must be an encoder state returned by getstate ().

IncrementalDecoder Objects
The IncrementalDecoder class is used for decoding an input in multiple steps. It defines the following methods
which every incremental decoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalDecoder ([errors])
Constructor for an IncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalDecoder may implement different error handling schemes by providing the errors key-
word argument. These parameters are predefined:

¢’ strict’ Raise ValueError (or a subclass); this is the default.

e’ ignore’ Ignore the character and continue with the next.

6.6. codecs — Codec registry and base classes 113

The Python Library Reference, Release 3.2.1

*’ replace’ Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it pos-
sible to switch between different error handling strategies during the lifetime of the ITncrementalDecoder
object.

The set of allowed values for the errors argument can be extended with register_error ().

decode (object[,ﬁnal])
Decodes object (taking the current state of the decoder into account) and returns the resulting decoded
object. If this is the last call to decode () final must be true (the default is false). If final is true the
decoder must decode the input completely and must flush all buffers. If this isn’t possible (e.g. because of
incomplete byte sequences at the end of the input) it must initiate error handling just like in the stateless
case (which might raise an exception).

reset ()
Reset the decoder to the initial state.

getstate ()

Return the current state of the decoder. This must be a tuple with two items, the first must be the buffer
containing the still undecoded input. The second must be an integer and can be additional state info.
(The implementation should make sure that 0 is the most common additional state info.) If this additional
state info is O it must be possible to set the decoder to the state which has no input buffered and 0 as the
additional state info, so that feeding the previously buffered input to the decoder returns it to the previous
state without producing any output. (Additional state info that is more complicated than integers can be
converted into an integer by marshaling/pickling the info and encoding the bytes of the resulting string into
an integer.)

setstate (state)
Set the state of the encoder to state. state must be a decoder state returned by getstate ().

The StreamWriter and St reamReader classes provide generic working interfaces which can be used to imple-
ment new encoding submodules very easily. See encodings.utf_8 for an example of how this is done.

StreamWriter Objects
The St reamWriter class is a subclass of Codec and defines the following methods which every stream writer must
define in order to be compatible with the Python codec registry.

class codecs.StreamWriter (stream[, errors])
Constructor for a St reamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for writing binary data.

The St reamiWWriter may implement different error handling schemes by providing the errors keyword argu-
ment. These parameters are predefined:

e’ strict’ Raise ValueError (or a subclass); this is the default.

*’ ignore’ Ignore the character and continue with the next.

e’ replace’ Replace with a suitable replacement character
*’xmlcharrefreplace’ Replace with the appropriate XML character reference

*’backslashreplace’ Replace with backslashed escape sequences.

114 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the St reamWriter object.

The set of allowed values for the errors argument can be extended with register_error ().

write (object)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusing the write () method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state that allows appending
of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the St reamWriter must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects
The St reamReader class is a subclass of Codec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

class codecs.StreamReader (stream[, errors])
Constructor for a St reamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for reading (binary) data.

The St reamReader may implement different error handling schemes by providing the errors keyword argu-
ment. These parameters are defined:

e’ strict’ Raise ValueError (or a subclass); this is the default.
e’ ignore’ Ignore the character and continue with the next.
*’ replace’ Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the St reamReader object.

The set of allowed values for the errors argument can be extended with register_error ().

read ([size[, chars[,ﬁrstline]]])
Decodes data from the stream and returns the resulting object.

chars indicates the number of characters to read from the stream. read () will never return more than
chars characters, but it might return less, if there are not enough characters available.

size indicates the approximate maximum number of bytes to read from the stream for decoding purposes.
The decoder can modify this setting as appropriate. The default value -1 indicates to read and decode as
much as possible. size is intended to prevent having to decode huge files in one step.

firstline indicates that it would be sufficient to only return the first line, if there are decoding errors on later
lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed
within the definition of the encoding and the given size, e.g. if optional encoding endings or state markers
are available on the stream, these should be read too.

6.6. codecs — Codec registry and base classes 115

The Python Library Reference, Release 3.2.1

readline ([size[, keepends]])
Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s readline () method.
If keepends is false line-endings will be stripped from the lines returned.

readlines ([sizehint[, keepends]])
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decoder method and are included in the list entries if
keepends is true.

sizehint, if given, is passed as the size argument to the stream’s read () method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover
from decoding errors.

In addition to the above methods, the St reamReader must also inherit all other methods and attributes from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may provide
useful in practice.

StreamReaderWriter Objects

The St reamReaderWriter allows wrapping streams which work in both read and write modes.
The design is such that one can use the factory functions returned by the 1ookup () function to construct the instance.

class codecs.StreamReaderWriter (stream, Reader, Writer, errors)
Creates a St reamReaderWriter instance. stream must be a file-like object. Reader and Writer must be fac-
tory functions or classes providing the St reamReader and St reamWriter interface resp. Error handling
is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces of StreamReader and StreamWriter
classes. They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects

The St reamRecoder provide a frontend - backend view of encoding data which is sometimes useful when dealing
with different encoding environments.

The design is such that one can use the factory functions returned by the 1ookup () function to construct the instance.

class codecs.StreamRecoder (stream, encode, decode, Reader, Writer, errors)
Creates a St reamRecoder instance which implements a two-way conversion: encode and decode work on
the frontend (the input to read () and output of write ()) while Reader and Writer work on the backend
(reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
stream must be a file-like object.

encode, decode must adhere to the Codec interface. Reader, Writer must be factory functions or classes
providing objects of the St reamReader and St reamiriter interface respectively.

encode and decode are needed for the frontend translation, Reader and Writer for the backend translation.

116 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

Error handling is done in the same way as defined for the stream readers and writers.

St reamRecoder instances define the combined interfaces of St reamReader and St reamWriter classes. They
inherit all other methods and attributes from the underlying stream.

6.6.2 Encodings and Unicode

Strings are stored internally as sequences of codepoints (to be precise as Py_UNICODE arrays). Depending on
the way Python is compiled (either via ——without-wide-unicode or ——with-wide-unicode, with the
former being the default) Py_ UNICODE is either a 16-bit or 32-bit data type. Once a string object is used out-
side of CPU and memory, CPU endianness and how these arrays are stored as bytes become an issue. Trans-
forming a string object into a sequence of bytes is called encoding and recreating the string object from the se-
quence of bytes is known as decoding. There are many different methods for how this transformation can be done
(these methods are also called encodings). The simplest method is to map the codepoints 0-255 to the bytes 0x0-
Oxff. This means that a string object that contains codepoints above U+00FF can’t be encoded with this method
(which is called " 1atin-1’ or ' iso—-8859-1"). str.encode () will raise a UnicodeEncodeError that
looks like this: UnicodeEncodeError: ’latin-1’ codec can’t encode character ’\ul234’
in position 3: ordinal not in range (256).

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all Unicode
code points and how these codepoints are mapped to the bytes 0x0-0xff. To see how this is done simply open e.g.
encodings/cpl252.py (which is an encoding that is used primarily on Windows). There’s a string constant with
256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 65536 (or 1114111) codepoints defined in Unicode. A simple
and straightforward way that can store each Unicode code point, is to store each codepoint as two consecutive bytes.
There are two possibilities: Store the bytes in big endian or in little endian order. These two encodings are called
UTF-16-BE and UTF-16-LE respectively. Their disadvantage is that if e.g. you use UTF-16-BE on a little endian
machine you will always have to swap bytes on encoding and decoding. UTF-16 avoids this problem: Bytes will
always be in natural endianness. When these bytes are read by a CPU with a different endianness, then bytes have
to be swapped though. To be able to detect the endianness of a UTF-16 byte sequence, there’s the so called BOM
(the “Byte Order Mark™). This is the Unicode character U+FEFF. This character will be prepended to every UTF-16
byte sequence. The byte swapped version of this character (OxFFFE) is an illegal character that may not appear in
a Unicode text. So when the first character in an UTF-16 byte sequence appears to be a U+FFFE the bytes have to
be swapped on decoding. Unfortunately upto Unicode 4.0 the character U+FEFF had a second purpose as a ZERO
WIDTH NO-BREAK SPACE: A character that has no width and doesn’t allow a word to be split. It can e.g. be used
to give hints to a ligature algorithm. With Unicode 4.0 using U+FEFF as a ZERO WIDTH NO-BREAK SPACE has
been deprecated (with U+2060 (WORD JOINER) assuming this role). Nevertheless Unicode software still must be
able to handle U+FEFF in both roles: As a BOM it’s a device to determine the storage layout of the encoded bytes,
and vanishes once the byte sequence has been decoded into a string; as a ZERO WIDTH NO-BREAK SPACEit’sa
normal character that will be decoded like any other.

There’s another encoding that is able to encoding the full range of Unicode characters: UTF-8. UTF-8 is an 8-bit
encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists of
two parts: Marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to six 1 bits
followed by a 0 bit. Unicode characters are encoded like this (with x being payload bits, which when concatenated
give the Unicode character):

Range Encoding

U-00000000...U-0000007F | OXXXXXXX

U-00000080 ... U=000007FF | 110xxxxx 10XXXXXX

U-00000800 ... U-0000FFFF | 1110xxxx 10xxxxxX 10XXXXXX

U-00010000 ... U-001FFFFF | 11110xxx 10xxxxxx 10xxxxxx 10XXXXXX

U-00200000 ... U-03FFFFFF | 111110xx 10xxxxxx 10xxxxxxX 10XxxxXXX 10XXXXXX
U-04000000 ... U-7FFFFFFF | 1111110x 10xxxxxx 10xxxxxx 10xxxxxX 10xxxxxX 10XXXXXX

6.6. codecs — Codec registry and base classes

117

The Python Library Reference, Release 3.2.1

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded string (even if it’s the
first character) is treated as a ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which encoding was used for encoding a string.
Each charmap encoding can decode any random byte sequence. However that’s not possible with UTF-8, as UTF-8
byte sequences have a structure that doesn’t allow arbitrary byte sequences. To increase the reliability with which a
UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that Python 2.5 calls "ut £-8-sig") for
its Notepad program: Before any of the Unicode characters is written to the file, a UTF-8 encoded BOM (which looks
like this as a byte sequence: Oxef, 0xbb, 0xbf) is written. As it’s rather improbable that any charmap encoded file
starts with these byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in is0-8859-1), this increases the probability that a utf-8-sig encoding can be correctly guessed from the byte sequence.
So here the BOM is not used to be able to determine the byte order used for generating the byte sequence, but as a
signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write Oxef, 0xbb, Oxbf as the
first three bytes to the file. On decoding utf-8-sig will skip those three bytes if they appear as the first three bytes in
the file.

6.6.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for which
the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive. Notice that
spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid aliases; therefore,
e.g. "utf£-8’ isavalid alias for the " ut £_8" codec.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

¢ an ISO 8859 codeset

* a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control characters
with additional graphic characters

* an IBM EBCDIC code page
e an IBM PC code page, which is ASCII compatible

Codec Aliases Languages
ascii 646, us-ascii English

big5 big5-tw, csbig5 Traditional Chir
big5hkscs big5-hkscs, hkscs Traditional Chir
cp037 IBMO037, IBM039 English

cp424 EBCDIC-CP-HE, IBM424 Hebrew

cp437 437, 1BM437 English

cp500 EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500 Western Europe
cp720 Arabic

cp737 Greek

cp775 IBMT775 Baltic language:
cp850 850, IBM850 Western Europe

118 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

Table 6.1 — continued from previous page

cp852

cp855

cp856

cp857

cp858

cp860

cp861

cp862

cp863

cp864

cp865

cp866

cp869

cp874

cp875

cp932

cp949

cp950
cpl006
cpl026
cpl140
cpl1250
cpl251
cpl252
cpl253
cpl254
cpl255
cpl256
cpl257
cpl258
euc_jp
euc_jis_2004
euc_jisx0213
euc_kr
gb2312

gbk
gb18030

hz
1502022_jp
1502022 _jp_1
1502022 _jp_2
1502022 _jp_2004
1502022_jp_3
1502022 _jp_ext
1802022 _kr
latin_1
1508859 _2
is08859_3
is08859_4
1s08859_5
1s08859_6
1508859 7

852, IBMS852
855, IBM855

857, IBM857

858, IBM858

860, IBM860

861, CP-IS, IBMS861
862, IBM862

863, IBM863
IBM864

865, IBM865

866, IBM866

869, CP-GR, IBM869

932, ms932, mskanji, ms-kanji
949, ms949, uhc
950, ms950

ibm1026

ibm1140

windows-1250

windows-1251

windows-1252

windows-1253

windows-1254

windows-1255

windows-1256

windows-1257

windows-1258

eucjp, ujis, u-jis

jisx0213, eucjis2004

eucjisx0213

euckr, korean, ksc5601, ks_c-5601, ks_c-5601-1987, ksx1001, ks_x-1001
chinese, csis058gb231280, euc- cn, euccn, eucgb2312-cn, gb2312-1980, gb2312-80, iso- ir-58
936, cp936, ms936

gb18030-2000

hzgb, hz-gb, hz-gb-2312
¢sis02022jp, 1s02022jp, is0-2022-jp
1802022jp-1, is0-2022-jp-1
1502022jp-2, is0-2022-jp-2
1802022jp-2004, is0-2022-jp-2004
1502022jp-3, is0-2022-jp-3
1502022jp-ext, is0-2022-jp-ext
¢sis02022kr, 1502022k, is0-2022-kr
180-8859-1, 1s08859-1, 8859, cp819, latin, latinl, L.1
1s0-8859-2, latin2, L2

180-8859-3, latin3, L3

180-8859-4, latin4, L4

150-8859-5, cyrillic

180-8859-6, arabic

180-8859-7, greek, greek§

Central and Eas
Bulgarian, Byel
Hebrew
Turkish
Western Europe
Portuguese
Icelandic
Hebrew
Canadian
Arabic

Danish, Norweg
Russian

Greek

Thai

Greek

Japanese
Korean
Traditional Chir
Urdu

Turkish
Western Europe
Central and Eas
Bulgarian, Byel
Western Europe
Greek

Turkish
Hebrew

Arabic

Baltic language:
Vietnamese
Japanese
Japanese
Japanese
Korean
Simplified Chin
Unified Chinese
Unified Chinese
Simplified Chin
Japanese
Japanese
Japanese, Korez
Japanese
Japanese
Japanese
Korean

West Europe
Central and Eas
Esperanto, Malt
Baltic language:
Bulgarian, Byel
Arabic

Greek

6.6. codecs — Codec registry and base classes

119

The Python Library Reference, Release 3.2.1

Table 6.1 — continued from previous page

1508859 8 180-8859-8, hebrew Hebrew
1s08859_9 150-8859-9, latin5, LS Turkish
1808859_10 180-8859-10, latin6, L6 Nordic languag
1s08859_13 1s0-8859-13, latin7, L7 Baltic language:
1508859 14 180-8859-14, lating, L8 Celtic language:
1508859 _15 150-8859-15, latin9, L9 Western Europe
1508859 _16 180-8859-16, latin10, L10 South-Eastern E
johab cpl361, ms1361 Korean

koi8 r Russian

koi8_u Ukrainian
mac_cyrillic maccyrillic Bulgarian, Byel
mac_greek macgreek Greek
mac_iceland maciceland Icelandic
mac_latin2 maclatin2, maccentraleurope Central and Eas
mac_roman macroman, macintosh Western Europe
mac_turkish macturkish Turkish
ptcpl54 csptepl54, pt154, cpl54, cyrillic-asian Kazakh

shift_jis csshiftjis, shiftjis, sjis, s_jis Japanese

shift jis_2004 shiftjis2004, sjis_2004, sjis2004 Japanese
shift_jisx0213 shiftjisx0213, sjisx0213, s_jisx0213 Japanese

utf 32 U32, utf32 all languages
utf_32_be UTF-32BE all languages
utf_32_le UTF-32LE all languages
utf_16 Ul16, utfl6 all languages
utf _16_be UTF-16BE all languages
utf_16_le UTF-16LE all languages
utf 7 U7, unicode-1-1-utf-7 all languages
utf_8 U8, UTF, utf8 all languages
utf_8_sig all languages
Codec Aliasés Purpose

idna Implements RFC 3490, see also encodings.idna

mbcs dbcs | Windows only: Encode operand according to the ANSI codepage (CP_ACP)

palmos Encoding of PalmOS 3.5

punycode Implements RFC 3492

raw_unicode_escape | Produce a string that is suitable as raw Unicode literal in Python source code

undefined Raise an exception for all conversions. Can be used as the system encoding if no

automatic coercion between byte and Unicode strings is desired.

uni- Produce a string that is suitable as Unicode literal in Python source code

code_escape

uni- Return the internal representation of the operand

code_internal

The following codecs provide bytes-to-bytes mappings.

Codec Aliases Purpose
base64_code¢ base64, base-64 Convert operand to MIME base64
bz2_codec | bz2 Compress the operand using bz2
hex_codec hex Convert operand to hexadecimal representation, with two
digits per byte
quo- quopri, quoted-printable, Convert operand to MIME quoted printable
pri_codec quotedprintable
uu_codec uu Convert the operand using uuencode
zlib_codec | zip, zlib Compress the operand using gzip
120 Chapter 6. String Services

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html

The Python Library Reference, Release 3.2.1

The following codecs provide string-to-string mappings.

Codec | Aliases | Purpose
rot_13 rotl3 Returns the Caesar-cypher encryption of the operand

New in version 3.2: bytes-to-bytes and string-to-string codecs.

6.6.4 encodings.idna — Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492 (Nameprep:
A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the punycode encoding and
stringprep.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name containing
non-ASCII characters (such as www.Alliancefrancaise.nu) is converted into an ASCII-compatible encoding
(ACE, such as www.xn--alliancefranaise-npb.nu). The ACE form of the domain name is then used in all
places where arbitrary characters are not allowed by the protocol, such as DNS queries, HTTP Host fields, and so on.
This conversion is carried out in the application; if possible invisible to the user: The application should transparently
convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode before presenting them
to the user.

Python supports this conversion in several ways: the idna codec performs conversion between Unicode and ACE,
separating an input string into labels based on the separator characters defined in section 3.1 (1) of RFC 3490 and
converting each label to ACE as required, and conversely separating an input byte string into labels based on the .
separator and converting any ACE labels found into unicode. Furthermore, the socket module transparently converts
Unicode host names to ACE, so that applications need not be concerned about converting host names themselves when
they pass them to the socket module. On top of that, modules that have host names as function parameters, such as
http.client and ftplib, accept Unicode host names (http.client then also transparently sends an IDNA
hostname in the Host field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode is
performed: Applications wishing to present such host names to the user should decode them to Unicode.

The module encodings . idna also implements the nameprep procedure, which performs certain normalizations on
host names, to achieve case-insensitivity of international domain names, and to unify similar characters. The nameprep
functions can be used directly if desired.

encodings.idna.nameprep (label)
Return the nameprepped version of label. The implementation currently assumes query strings, So
AllowUnassigned is true.

encodings.idna.ToASCII (label)
Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

encodings.idna.ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

6.6.5 encodings.mbcs — Windows ANSI codepage
Encode operand according to the ANSI codepage (CP_ACP). This codec only supports / strict’ and ' replace’
error handlers to encode, and ’ strict’ and ' ignore’ error handlers to decode.

Availability: Windows only. Changed in version 3.2: Before 3.2, the errors argument was ignored; ' replace’ was
always used to encode, and ’ ignore’ to decode.

6.6. codecs — Codec registry and base classes 121

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html
http://tools.ietf.org/html/rfc3490#section-3.1
http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3490.html

The Python Library Reference, Release 3.2.1

6.6.6 encodings.utf 8_sig— UTF-8 codec with BOM signature

This module implements a variant of the UTF-8 codec: On encoding a UTF-8 encoded BOM will be prepended to
the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to the byte stream). For
decoding an optional UTF-8 encoded BOM at the start of the data will be skipped.

6.7 unicodedata — Unicode Database

This module provides access to the Unicode Character Database (UCD) which defines character properties for all
Unicode characters. The data contained in this database is compiled from the UCD version 6.0.0.

The module uses the same names and symbols as defined by Unicode Standard Annex #44, “Unicode Character
Database”. It defines the following functions:

unicodedata.lookup (name)
Look up character by name. If a character with the given name is found, return the corresponding character. If
not found, KeyError is raised.

unicodedata.name (chr[, default])
Returns the name assigned to the character chr as a string. If no name is defined, default is returned, or, if not
given, ValueError is raised.

unicodedata.decimal (chr[, default])
Returns the decimal value assigned to the character chr as integer. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.digit (chr[, default])
Returns the digit value assigned to the character chr as integer. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.numeric (clzr[, default])
Returns the numeric value assigned to the character chr as float. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.category (chr)
Returns the general category assigned to the character chr as string.

unicodedata.bidirectional (chr)
Returns the bidirectional category assigned to the character chr as string. If no such value is defined, an empty
string is returned.

unicodedata.combining (chr)
Returns the canonical combining class assigned to the character chr as integer. Returns 0 if no combining class
is defined.

unicodedata.east_asian_width (chr)
Returns the east asian width assigned to the character chr as string.

unicodedata.mirrored (chr)
Returns the mirrored property assigned to the character chr as integer. Returns 1 if the character has been
identified as a “mirrored” character in bidirectional text, 0 otherwise.

unicodedata.decomposition (chr)
Returns the character decomposition mapping assigned to the character chr as string. An empty string is returned
in case no such mapping is defined.

unicodedata.normalize (form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’, ‘NFD’,
and ‘NFKD’.

122 Chapter 6. String Services

http://www.unicode.org/Public/6.0.0/ucd
http://www.unicode.org/reports/tr44/tr44-6.html
http://www.unicode.org/reports/tr44/tr44-6.html

The Python Library Reference, Release 3.2.1

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of canon-
ical equivalence and compatibility equivalence. In Unicode, several characters can be expressed in various way.
For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be expressed as
the sequence U+0327 (COMBINING CEDILLA) U+0043 (LATIN CAPITAL LETTER C).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form
C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I).
However, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility charac-
ters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition, followed
by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining characters
and the other doesn’t, they may not compare equal.

In addition, the module exposes the following constant:

unicodedata.unidata_version
The version of the Unicode database used in this module.

unicodedata.ued_3_2_0
This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2
instead, for applications that require this specific version of the Unicode database (such as IDNA).

Examples:

>>> import unicodedata
>>> unicodedata.lookup (' LEFT CURLY BRACKET’)
I{V
>>> unicodedata.name ('’ /')
"SOLIDUS’
>>> unicodedata.decimal (' 9")
9
>>> unicodedata.decimal ("a’)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: not a decimal
>>> unicodedata.category ('A’") # 'L’etter, ’‘u’ppercase
ILuI
>>> unicodedata.bidirectional (\u0660’) # ’'A’rabic, ’'N’umber
VANI

6.8 stringprep — Internet String Preparation

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications for
“equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it should
be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only identifications
consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the
wire, they are processed with the preparation procedure, after which they have a certain normalized form. The RFC

6.8. stringprep — Internet String Preparation 123

http://tools.ietf.org/html/rfc3454.html

The Python Library Reference, Release 3.2.1

defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what
other optional parts of the st ringprep procedure are part of the profile. One example of a st ringprep profile is
nameprep, which is used for internationalized domain names.

The module st ringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
them as dictionaries or lists, the module uses the Unicode character database internally. The module source code itself
was generated using the mkstringprep. py utility.

As aresult, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC: sets
and mappings. For a set, st ringprep provides the “characteristic function”, i.e. a function that returns true if the
parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the associated
value. Below is a list of all functions available in the module.

stringprep.in_table_al (code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

stringprep.in_table_bl (code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

stringprep.map_table_ b2 (code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

stringprep.map_table_ b3 (code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no normalization).

stringprep.in_table_cl1 (code)
Determine whether code is in tableC.1.1 (ASCII space characters).

stringprep.in_table_cl2 (code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

stringprep.in_table_cll_cl2 (code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

stringprep.in_table_c21 (code)
Determine whether code is in tableC.2.1 (ASCII control characters).

stringprep.in_table_c22 (code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

stringprep.in_table_c21_c22 (code)
Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

stringprep.in_table_c3 (code)
Determine whether code is in tableC.3 (Private use).

stringprep.in_table_c4 (code)
Determine whether code is in tableC.4 (Non-character code points).

stringprep.in_table_c5 (code)
Determine whether code is in tableC.5 (Surrogate codes).

stringprep.in_table_c6 (code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

stringprep.in_table_c7 (code)
Determine whether code is in tableC.7 (Inappropriate for canonical representation).

stringprep.in_table_c8 (code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

stringprep.in_table_c9 (code)
Determine whether code is in tableC.9 (Tagging characters).

124 Chapter 6. String Services

The Python Library Reference, Release 3.2.1

stringprep.in_table_d1l (code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

stringprep.in_table_d2 (code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

6.8. stringprep — Internet String Preparation 125

The Python Library Reference, Release 3.2.1

126 Chapter 6. String Services

CHAPTER
SEVEN

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-type
arrays, heap queues, synchronized queues, and sets.

Python also provides some built-in data types, in particular, dict, 1ist, set and frozenset, and tuple. The
str class is used to hold Unicode strings, and the bytes class is used to hold binary data.

The following modules are documented in this chapter:

7.1 datetime — Basic date and time types

The datet ime module supplies classes for manipulating dates and times in both simple and complex ways. While
date and time arithmetic is supported, the focus of the implementation is on efficient member extraction for output
formatting and manipulation. For related functionality, see also the t ime and calendar modules.

There are two kinds of date and time objects: “naive” and “aware”. This distinction refers to whether the object has
any notion of time zone, daylight saving time, or other kind of algorithmic or political time adjustment. Whether a
naive datetime object represents Coordinated Universal Time (UTC), local time, or time in some other timezone
is purely up to the program, just like it’s up to the program whether a particular number represents metres, miles, or
mass. Naive datetime objects are easy to understand and to work with, at the cost of ignoring some aspects of
reality.

For applications requiring more, datetime and time objects have an optional time zone information member,
tzinfo, that can contain an instance of a subclass of the abstract t zinfo class. These tzinfo objects capture
information about the offset from UTC time, the time zone name, and whether Daylight Saving Time is in effect. Note
that only one concrete t zinfo class, the t imezone class, is supplied by the datet ime module. The timezone
class can reprsent simple timezones with fixed offset from UTC such as UTC itself or North American EST and EDT
timezones. Supporting timezones at whatever level of detail is required is up to the application. The rules for time
adjustment across the world are more political than rational, change frequently, and there is no standard suitable for
every application aside from UTC.

The datet ime module exports the following constants:

datetime .MINYEAR
The smallest year number allowed in a date or datet ime object. MINYEAR is 1.

datetime .MAXYEAR
The largest year number allowed in a date or datet ime object. MAXYEAR is 9999.

See Also:
Module calendar General calendar related functions.

Module time Time access and conversions.

127

The Python Library Reference, Release 3.2.1

7.1.1 Available Types

class datetime.date

An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes: year, month, and day.

class datetime.time

An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60 sec-
onds (there is no notion of “leap seconds” here). Attributes: hour, minute, second, microsecond,
and tzinfo.

class datetime.datetime

A combination of a date and a time. Attributes: year, month, day, hour, minute, second,
microsecond,and tzinfo.

class datetime.timedelta

A duration expressing the difference between two date, t ime, or datet ime instances to microsecond reso-
lution.

class datetime.tzinfo

An abstract base class for time zone information objects. These are used by the datet ime and t ime classes to
provide a customizable notion of time adjustment (for example, to account for time zone and/or daylight saving
time).

class datetime.timezone

A class that implements the t zinfo abstract base class as a fixed offset from the UTC. New in version 3.2.

Objects of these types are immutable.

Objects of the date type are always naive.

An object d of type time or datetime may be naive or aware. d is aware if d.tzinfo is not None and
d.tzinfo.utcoffset (d) does not return None. If d.tzinfo is None, or if d.tzinfo is not None but
d.tzinfo.utcoffset (d) returns None, d is naive.

The distinction between naive and aware doesn’t apply to t imede1ta objects.

Subclass relationships:

object
timedelta
tzinfo
timezone
time
date
datetime

7.1.2 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

class datetime.timedelta (days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0,
weeks=0)

All arguments are optional and default to 0. Arguments may be integers or floats, and may be positive or

negative.
Only days, seconds and microseconds are stored internally. Arguments are converted to those units:
*A millisecond is converted to 1000 microseconds.

*A minute is converted to 60 seconds.

128 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

*An hour is converted to 3600 seconds.
*A week is converted to 7 days.
and days, seconds and microseconds are then normalized so that the representation is unique, with
*0 <= microseconds < 1000000
°0 <= seconds < 3600x24 (the number of seconds in one day)
*-999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from all
arguments are combined and their sum is rounded to the nearest microsecond. If no argument is a float, the
conversion and normalization processes are exact (no information is lost).

If the normalized value of days lies outside the indicated range, OverflowError is raised.
Note that normalization of negative values may be surprising at first. For example,
>>> from datetime import timedelta
>>> d = timedelta (microseconds=-1)
>>> (d.days, d.seconds, d.microseconds)
(-1, 86399, 999999)
Class attributes are:

timedelta.min
The most negative t imedelta object, timedelta (-999999999).

timedelta.max
The most positive t imedelta object, timedelta (days=999999999, hours=23, minutes=59,
seconds=59, microseconds=999999).

timedelta.resolution
The smallest possible difference between non-equal timedelta objects,
timedelta (microseconds=1).

Note that, because of normalization, t imedelta.max > —~timedelta.min. -timedelta.max is not repre-
sentable as a t imede 1ta object.

Instance attributes (read-only):

Attribute Value

days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive
microseconds | Between 0 and 999999 inclusive

Supported operations:

7.1. datetime — Basic date and time types 129

The Python Library Reference, Release 3.2.1

Operation Result
tl = t2 + t3 Sum of 2 and 3. Afterwards #/-t2 == t3 and tI-t3 == 2 are true. (1)
tl = t2 - t3 Difference of 2 and ¢3. Afterwards t/ == 2 - t3 and 12 ==] + 3 are true. (1)

tl = t2 « i or tl
=1 % t2

tl = t2 » £ or tl
= f % t2

f =t2 / t3

tl = t2 / £ or tl
=t2 / 1

tl =t2 // iortl
=t2 // t3

Delta multiplied by an integer. Afterwards ¢/ //1 == 12 is true, provided 1 != 0.

In general, t1 * i==1¢I * (i-1) + tI is true. (1)

Delta multiplied by a float. The result is rounded to the nearest multiple of
timedelta.resolution using round-half-to-even.

Division (3) of 2 by #3. Returns a £ 1oat object.

Delta divided by a float or an int. The result is rounded to the nearest multiple of
timedelta.resolution using round-half-to-even.

The floor is computed and the remainder (if any) is thrown away. In the second case,
an integer is returned. (3)

tl = t2 % t3
g, r = divmod(tl,

The remainder is computed as a t imede1ta object. (3)
Computes the quotient and the remainder: g = t1 // t2(3)andr = t1l

o

t2) t2. qisaninteger and ris a t imedelta object.

+t1 Returns a t imedelta object with the same value. (2)

-tl equivalent to t imedelta(-tl.days, -tl.seconds, -t1.microseconds), and to ¢t1* -1.
(D)

abs (t) equivalent to +f when t .days >= 0, and to-f when t .days < 0. (2)

str(t) Returns a string in the form [D day[s],][H]H:MM:SS[.UUUUUU], where D
is negative for negative t. (5)
repr (t) Returns a string in the form datetime.timedelta (D[, S[, Ul]), where D
is negative for negative t. (5)
Notes:

1. This is exact, but may overflow.
This is exact, and cannot overflow.
Division by 0 raises ZeroDivisionError.

-timedelta.max is not representable as a t imede 1t a object.

A

String representations of t imedelta objects are normalized similarly to their internal representation. This
leads to somewhat unusual results for negative timedeltas. For example:

>>> timedelta (hours=-5)
datetime.timedelta (-1,
>>> print (_)

-1 day, 19:00:00

68400)

In addition to the operations listed above t imedelta objects support certain additions and subtractions with date
and datetime objects (see below). Changed in version 3.2: Floor division and true division of a timedelta
object by another t imedelta object are now supported, as are remainder operations and the divmod () function.
True division and multiplication of a t imedelta object by a f1oat object are now supported. Comparisons of
timedelta objects are supported with the t imedelta object representing the smaller duration considered to be
the smaller timedelta. In order to stop mixed-type comparisons from falling back to the default comparison by object
address, when a t imedelta object is compared to an object of a different type, TypeError is raised unless the
comparison is == or ! =. The latter cases return False or True, respectively.

timedelta objects are hashable (usable as dictionary keys), support efficient pickling, and in Boolean contexts, a
timedelta objectis considered to be true if and only if it isn’t equal to timedelta (0).

Instance methods:

timedelta.total_seconds ()

Return the total number of seconds contained in the duration. Equivalent to td /

130 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

timedelta (seconds=1).

Note that for very large time intervals (greater than 270 years on most platforms) this method will lose microsec-
ond accuracy. New in version 3.2.

Example usage:

>>> from datetime import timedelta
>>> year = timedelta (days=365)
>>> another_year = timedelta (weeks=40, days=84, hours=23,
minutes=50, seconds=600) # adds up to 365 days
>>> year.total_seconds ()

31536000.0

>>> year == another_year
True

>>> ten_years = 10 % year

>>> ten_years, ten_years.days // 365
(datetime.timedelta (3650), 10)

>>> nine_years = ten_years - year

>>> nine_years, nine_years.days // 365
(datetime.timedelta (3285), 9)

>>> three_years = nine_years // 3;

>>> three_years, three_years.days // 365
(datetime.timedelta (1095), 3)

>>> abs (three_years - ten_years) == 2 x three_years + year
True

7.1.3 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of year 1 is called day
number 2, and so on. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and Reingold’s
book Calendrical Calculations, where it’s the base calendar for all computations. See the book for algorithms for
converting between proleptic Gregorian ordinals and many other calendar systems.

class datet ime.date (year, month, day)
All arguments are required. Arguments may be integers, in the following ranges:

*MINYEAR <= year <= MAXYEAR
el <= month <= 12
¢l <= day <= number of days in the given month and year
If an argument outside those ranges is given, ValueError is raised.
Other constructors, all class methods:

classmethod date.today ()
Return the current local date. This is equivalent to date. fromtimestamp (time.time ()).

classmethod date . fromtimestamp (timestamp)
Return the local date corresponding to the POSIX timestamp, such as is returned by t ime . t ime (). This may
raise ValueError, if the timestamp is out of the range of values supported by the platform C localtime ()
function. It’s common for this to be restricted to years from 1970 through 2038. Note that on non-POSIX sys-
tems that include leap seconds in their notion of a timestamp, leap seconds are ignored by f romt imestamp ().

classmethod date . fromordinal (ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal

7.1. datetime — Basic date and time types 131

The Python Library Reference, Release 3.2.1

1. ValueError is raised unless 1 <= ordinal <= date.max.toordinal (). For any date d,
date.fromordinal (d.toordinal ()) == d.

Class attributes:

date.min
The earliest representable date, date (MINYEAR, 1, 1).

date.max
The latest representable date, date (MAXYEAR, 12, 31).

date.resolution
The smallest possible difference between non-equal date objects, t imedelta (days=1).

Instance attributes (read-only):

date.year
Between MINYEAR and MAXYEAR inclusive.

date.month
Between 1 and 12 inclusive.

date.day
Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result

date2 = datel + timedelta | date?istimedelta.days daysremoved from datel. (1)

date2 = datel - timedelta | Computes date? such that date2 + timedelta == datel. (2)

timedelta = datel - date2 | (3)

datel < date2 datel is considered less than date2 when datel precedes date2 in time. (4)
Notes:

1. date2 is moved forward in time if timedelta.days > 0, or backward if timedelta.days
< 0. Afterward date2 - datel == timedelta.days. timedelta.seconds and
timedelta.microseconds are ignored. OverflowError is raised if date2.year would be
smaller than MINYEAR or larger than MAXYEAR.

2. This isn’t quite equivalent to datel + (-timedelta), because -timedelta in isolation can overflow in cases where
datel - timedelta does not. timedelta.seconds and timedelta.microseconds are ignored.

3. This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 + timedelta
== datel after.

4. In other words, datel < date? if and only if datel.toordinal () < date2.toordinal (). In
order to stop comparison from falling back to the default scheme of comparing object addresses, date comparison
normally raises TypeError if the other comparand isn’t also a date object. However, Not Implemented
is returned instead if the other comparand has a t imetuple () attribute. This hook gives other kinds of date
objects a chance at implementing mixed-type comparison. If not, when a date object is compared to an object
of a different type, TypeError is raised unless the comparison is == or ! =. The latter cases return False or
True, respectively.

Dates can be used as dictionary keys. In Boolean contexts, all date objects are considered to be true.
Instance methods:

date.replace (year, month, day)
Return a date with the same value, except for those members given new values by whichever keyword ar-
guments are specified. For example, if d == date (2002, 12, 31),thend.replace (day=26) ==
date (2002, 12, 26).

132 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

date.timetuple ()
Return a time.struct_time such as returned by time.localtime (). The hours, minutes and sec-
onds are 0, and the DST flag is -1. d.timetuple () is equivalent to time.struct_time ((d.year,
d.month, d.day, 0, 0, 0, d.weekday(), yday, -1)), where yday = d.toordinal ()
- date(d.year, 1, 1).toordinal() + 1 is the day number within the current year starting with
1 for January Ist.

date.toordinal ()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any date object
d,date.fromordinal (d.toordinal()) ==

date.weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date (2002,
12, 4) .weekday () == 2,a Wednesday. See also i soweekday ().

date.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date (2002,
12, 4).isoweekday () == 3, a Wednesday. See also weekday (), isocalendar ().

date.isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely wused variant of the Gregorian calendar. See
http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday. The
first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This is called
week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003
and ends on Sunday, 4 Jan 2004, so that date (2003, 12, 29).isocalendar () == (2004, 1,
1) and date (2004, 1, 4) .isocalendar () == (2004, 1, 7).

date.isoformat ()
Return a string representing the date in ISO 8601 format, ‘YYYY-MM-DD’. For example, date (2002, 12,
4) .isoformat () == ’2002-12-04".

date.__str ()
For adate d, str (d) isequivalentto d.isoformat ().

date.ctime ()

Return a string representing the date, for example date (2002, 12, 4).ctime() == ’'Wed Dec 4
00:00:00 2002'. d.ctime () is equivalent to time.ctime (time.mktime (d.timetuple()))
on platforms where the native C ctime () function (which time.ctime () invokes, but which

date.ctime () does not invoke) conforms to the C standard.

date.strftime (format)
Return a string representing the date, controlled by an explicit format string. Format codes referring to hours,
minutes or seconds will see 0 values. See section strftime() and strptime() Behavior.

Example of counting days to an event:

>>> import time

>>> from datetime import date

>>> today = date.today ()

>>> today

datetime.date (2007, 12, 5)

>>> today == date.fromtimestamp (time.time ())
True

>>> my_birthday = date(today.year, 6, 24)

7.1. datetime — Basic date and time types 133

http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm

The Python Library Reference, Release 3.2.1

>>> if my_birthday < today:

ce my_birthday = my_birthday.replace (year=today.year + 1)
>>> my_birthday

datetime.date (2008, 6, 24)

>>> time_to_birthday = abs(my_birthday - today)

>>> time_to_birthday.days

202

Example of working with date:

>>> from datetime import date

>>> d = date.fromordinal (730920) # 730920th day after 1. 1. 0001
>>> d

datetime.date (2002, 3, 11)

>>> t = d.timetuple()

>>> for i in t:

e print (i)

2002 # year

3 # month

11 # day

0

0

0

0 # weekday (0 = Monday)
70 # 70th day in the year
-1

>>> ic = d.isocalendar ()

>>> for i in ic:

R print (i)

2002 # ISO year

11 # ISO week number

1 # ISO day number (1 = Monday)

>>> d.isoformat ()

72002-03-11"

>>> d.strftime ("$d/sm/%y")
r11/03/02"

>>> d.strftime ("%A %d. %B %Y")
"Monday 11. March 2002’

7.1.4 datetime Objects

A datetime object is a single object containing all the information from a date object and a t ime object. Like
a date object, datetime assumes the current Gregorian calendar extended in both directions; like a time object,
datetime assumes there are exactly 3600%24 seconds in every day.

Constructor:

class datetime.datetime (year, month, day, hour=0, minute=0, second=0, microsecond=0, tz-
info=None)
The year, month and day arguments are required. fzinfo may be None, or an instance of a t zinfo subclass.
The remaining arguments may be integers, in the following ranges:

*MINYEAR <= year <= MAXYEAR
*] <= month <= 12

¢l <= day <= number of days in the given month and year

134 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

*0 <= hour < 24
*0 <= minute < 60
*0 <= second < 60
*0 <= microsecond < 1000000
If an argument outside those ranges is given, ValueError is raised.
Other constructors, all class methods:

classmethod datetime.today ()
Return the current local datetime, with tzinfo None. This is equivalent to
datetime.fromtimestamp (time.time ()). See also now (), fromtimestamp ().

classmethod datetime .now (fz=None)
Return the current local date and time. If optional argument fz is None or not specified, this is like today (),
but, if possible, supplies more precision than can be gotten from going through a t ime . time () timestamp
(for example, this may be possible on platforms supplying the C gettimeofday () function).

Else ¢z must be an instance of a «class tzinfo subclass, and the current date
and time are converted to fz‘'s time zone. In this case the result is equivalent to
tz.fromutc (datetime.utcnow () .replace (tzinfo=tz)). See also today (), utcnow ().

classmethod datet ime.utcnow ()
Return the current UTC date and time, with t zinfo None. This is like now (), but returns the current UTC
date and time, as a naive datetime object. An aware current UTC datetime can be obtained by calling
datetime.now (timezone.utc). See also now ().

classmethod datet ime . fromtimestamp (timestamp, tz=None)
Return the local date and time corresponding to the POSIX timestamp, such as is returned by t ime . time ().
If optional argument #z is None or not specified, the timestamp is converted to the platform’s local date and
time, and the returned datet ime object is naive.

Else 1z must be an instance of a «class tzinfo subclass, and the times-
tamp is converted to fz's time zone. In this case the result is equivalent to
tz.fromutc (datetime.utcfromtimestamp (timestamp) .replace (tzinfo=tz)).

fromtimestamp () may raise ValueError, if the timestamp is out of the range of values supported by
the platform C localtime () or gmtime () functions. It’s common for this to be restricted to years in 1970
through 2038. Note that on non-POSIX systems that include leap seconds in their notion of a timestamp, leap
seconds are ignored by fromtimestamp (), and then it’s possible to have two timestamps differing by a
second that yield identical datet ime objects. See also utcfromtimestamp ().

classmethod datetime.utcfromtimestamp (timestamp)
Return the UTC datetime corresponding to the POSIX timestamp, with tzinfo None. This may raise
ValueError, if the timestamp is out of the range of values supported by the platform C gmt ime () function.
It’s common for this to be restricted to years in 1970 through 2038. See also fromtimestamp ().

classmethod datetime. fromordinal (ordinal)
Return the dat et ime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1.
ValueError israised unless 1 <= ordinal <= datetime.max.toordinal (). The hour, minute,
second and microsecond of the result are all 0, and t zinfo is None.

classmethod datetime.combine (date, time)
Return a new datetime object whose date members are equal to the given date object’s, and whose
time and tzinfo members are equal to the given time object’s. For any datetime object d, d ==
datetime.combine (d.date (), d.timetz ()). Ifdateisa datetime object,itstime and tzinfo
members are ignored.

7.1. datetime — Basic date and time types 135

The Python Library Reference, Release 3.2.1

classmethod datetime . strptime (date_string, format)
Return a datetime corresponding to date_string, parsed according to format. This is equivalent to
datetime (x (time.strptime (date_string, format) [0:6])). ValueError is raised if the
date_string and format can’t be parsed by t ime . st rptime () or if it returns a value which isn’t a time tuple.
See section strftime() and strptime() Behavior.

Class attributes:

datetime.min
The earliest representable datetime, datetime (MINYEAR, 1, 1, tzinfo=None).

datetime.max
The latest representable datetime, datetime (MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None).

datetime.resolution
The smallest possible difference between non-equal dat et ime objects, timedelta (microseconds=1).

Instance attributes (read-only):

datetime.year
Between MINYEAR and MAXYEAR inclusive.

datetime.month
Between 1 and 12 inclusive.

datetime.day
Between 1 and the number of days in the given month of the given year.

datetime.hour
In range (24).

datetime.minute
In range (60).

datetime.second
In range (60).

datetime.microsecond
In range (1000000).

datetime.tzinfo
The object passed as the #zinfo argument to the dat et ime constructor, or None if none was passed.

Supported operations:

Operation Result

datetime2 = datetimel + timedelta | (1)

datetime?2 datetimel - timedelta | (2)

timedelta = datetimel - datetime2 | (3)

datetimel < datetime?2 Compares datetime to datetime. (4)

1. datetime? is a duration of timedelta removed from datetimel, moving forward in time if t imedelta.days >
0, or backward if t imedelta.days <0. The result has the same t z info member as the input datetime, and
datetime?2 - datetimel == timedelta after. OverflowError is raised if datetime2.year would be smaller than
MINYEAR or larger than MAXYEAR. Note that no time zone adjustments are done even if the input is an aware
object.

2. Computes the datetime2 such that datetime?2 + timedelta == datetimel. As for addition, the result has the same
tzinfo member as the input datetime, and no time zone adjustments are done even if the input is aware. This
isn’t quite equivalent to datetimel + (-timedelta), because -timedelta in isolation can overflow in cases where
datetimel - timedelta does not.

136 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

3. Subtraction of a datet ime from a datet ime is defined only if both operands are naive, or if both are aware.
If one is aware and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same t z info member, the t z1info members are ignored, and
the resultis a t imedelta objecttsuchthat datetime2 + t == datetimel. No time zone adjustments
are done in this case.

If both are aware and have different tzinfo members, a-b acts as if a and b were first converted
to naive UTC datetimes first. The result is (a.replace (tzinfo=None) - a.utcoffset()) -
(b.replace (tzinfo=None) - b.utcoffset ()) except that the implementation never overflows.

4. datetimel is considered less than datetime2 when datetimel precedes datetime?2 in time.

If one comparand is naive and the other is aware, TypeError is raised. If both comparands are aware, and
have the same tzinfo member, the common tzinfo member is ignored and the base datetimes are com-
pared. If both comparands are aware and have different t z i nfo members, the comparands are first adjusted by
subtracting their UTC offsets (obtained from self.utcoffset ()).

Note: In order to stop comparison from falling back to the default scheme of comparing object addresses, date-
time comparison normally raises TypeError if the other comparand isn’t also a datet ime object. However,
Not Implemented is returned instead if the other comparand has a t imetuple () attribute. This hook gives
other kinds of date objects a chance at implementing mixed-type comparison. If not, when a datet ime object
is compared to an object of a different type, TypeError is raised unless the comparison is == or !=. The
latter cases return False or True, respectively.

datetime objects can be used as dictionary keys. In Boolean contexts, all datet ime objects are considered to be
true.

Instance methods:

datetime.date ()
Return date object with same year, month and day.

datetime.time ()
Return time object with same hour, minute, second and microsecond. tzinfo is None. See also method
timetz ().

datetime.timetz ()
Return time object with same hour, minute, second, microsecond, and tzinfo members. See also method
time ().

datetime.replace ([year[, month[, day[, hour[, minute[, second[, micmsecond[, tzinfo]]]]]]]])
Return a datetime with the same members, except for those members given new values by whichever keyword
arguments are specified. Note that t zinfo=None can be specified to create a naive datetime from an aware
datetime with no conversion of date and time members.

datetime.astimezone (iz)
Return a datet ime object with new t z1info member #z, adjusting the date and time members so the result is
the same UTC time as self, but in z‘s local time.

tz must be an instance of a tzinfo subclass, and its utcoffset () and dst () methods must not return
None. self must be aware (self.tzinfo must not be None, and self.utcoffset () must not return
None).

If self.tzinfoistz, self.astimezone (tz) is equal to self: no adjustment of date or time members is
performed. Else the result is local time in time zone fz, representing the same UTC time as self: after astz =
dt.astimezone (tz),astz — astz.utcoffset () will usually have the same date and time members
as dt - dt.utcoffset (). The discussion of class t zinfo explains the cases at Daylight Saving Time
transition boundaries where this cannot be achieved (an issue only if 7z models both standard and daylight time).

7.1. datetime — Basic date and time types 137

The Python Library Reference, Release 3.2.1

If you merely want to attach a time zone object ¢z to a datetime df without adjustment of date and time members,
use dt . replace (tzinfo=tz). If you merely want to remove the time zone object from an aware datetime
dt without conversion of date and time members, use dt . replace (tzinfo=None).

Note that the default tzinfo.fromutc () method can be overridden in a t zinfo subclass to affect the
result returned by astimezone (). Ignoring error cases, astimezone () acts like:

def astimezone(self, tz):
if self.tzinfo is tz:
return self
Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()).replace(tzinfo=tz)
Convert from UTC to tz’s local time.
return tz.fromutc (utc)

datetime.utcoffset ()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset (self), and raises an excep-
tion if the latter doesn’t return None, or a t imedelta object representing a whole number of minutes with
magnitude less than one day.

datetime.dst ()
If tzinfo is None, returns None, else returns self.tzinfo.dst (self), and raises an exception if the
latter doesn’t return None, or a t imedelta object representing a whole number of minutes with magnitude
less than one day.

datetime.tzname ()
If tzinfo is None, returns None, else returns self.tzinfo.tzname (self), raises an exception if the
latter doesn’t return None or a string object,

datetime.timetuple ()
Returna time.struct_time such asreturned by time.localtime (). d.timetuple () isequivalent

to time.struct_time((d.year, d.month, d.day, d.hour, d.minute, d.second,
d.weekday (), yday, dst)), where yday = d.toordinal () - date(d.year, 1,
1) .toordinal () + 1 is the day number within the current year starting with 1 for January lst.

The tm_isdst flag of the result is set according to the dst () method: tzinfo is None or dst ()
returns None, tm_1isdst is set to —1; else if dst () returns a non-zero value, tm_isdst is set to 1; else
tm_isdst issetto 0.

datetime.utctimetuple ()
If datet ime instance d is naive, this is the same as d.timetuple () except that tm_isdst is forced to 0
regardless of what d.dst () returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset (), and a time.struct_time
for the normalized time is returned. tm_1isdst is forced to 0. Note that an OverflowError may be raised
if d.year was MINYEAR or MAXYEAR and UTC adjustment spills over a year boundary.

datetime.toordinal ()
Return the proleptic Gregorian ordinal of the date. The same as self.date () .toordinal ().

datetime.weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as
self.date () .weekday (). See also i soweekday ().

datetime.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as
self.date () .isoweekday (). See also weekday (), isocalendar ().

datetime.isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The same as

138 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

self.date () .isocalendar ().

datetime.isoformat (sep="T")
Return a string representing the date and time in ISO 8601 format, YYYY-MM-DDTHH:MM:SS.mmmmmm
or,ifmicrosecondis 0, YYYY-MM-DDTHH:MM:SS

If utcoffset () does not return None, a 6-character string is appended, giving the UTC offset in (signed)
hours and minutes: YYYY-MM-DDTHH:MM:SS. mmmmmm+HH:MM or, if microsecond is 0 YYYY-
MM-DDTHH:MM:SS+HH:MM

The optional argument sep (default ” T') is a one-character separator, placed between the date and time portions
of the result. For example,

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ (tzinfo):
def utcoffset (self, dt): return timedelta (minutes=-399)

>>> datetime (2002, 12, 25, tzinfo=TZ()).isoformat (’ ')
72002-12-25 00:00:00-06:39"

datetime.__str ()
For a datetime instance d, str (d) is equivalentto d.isoformat (/' ’).

datetime.ctime ()
Return a string representing the date and time, for example datetime (2002, 12, 4, 20,

30, 40).ctime() == ’'Wed Dec 4 20:30:40 2002". d.ctime () is equivalent to
time.ctime (time.mktime (d.timetuple ())) on platforms where the native C ctime () function
(which time.ctime () invokes, but which datetime.ctime () does not invoke) conforms to the C
standard.

datetime.strftime (format)
Return a string representing the date and time, controlled by an explicit format string. See section strftime() and
strptime() Behavior.

Examples of working with datetime objects:

>>> from datetime import datetime, date, time
>>> # Using datetime.combine ()
>>> d = date (2005, 7, 14)
>>> t = time (12, 30)
>>> datetime.combine (d, t)
datetime.datetime (2005, 7, 14, 12, 30)
>>> # Using datetime.now() or datetime.utcnow ()
>>> datetime.now ()
datetime.datetime (2007, 12, 6, 16, 29, 43, 79043) # GMT +1
>>> datetime.utcnow ()
datetime.datetime (2007, 12, 6, 15, 29, 43, 79060)
>>> # Using datetime.strptime ()
>>> dt = datetime.strptime("21/11/06 16:30", "%d/%m/%y $H:%M")
>>> dt
datetime.datetime (2006, 11, 21, 16, 30)
>>> # Using datetime.timetuple() to get tuple of all attributes
>>> tt = dt.timetuple ()
>>> for it in tt:
print (it)

2006 # year

7.1. datetime — Basic date and time types 139

The Python Library Reference, Release 3.2.1

11 # month
21 # day
16 # hour
30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since 1lst January
-1 # dst - method tzinfo.dst () returned None
>>> # Date in ISO format
>>> ic = dt.isocalendar ()
>>> for it in ic:
print (it)
2006 # ISO year
47 # ISO week
2 # ISO weekday

>>> # Formatting datetime
>>> dt.strftime ("%A, %d. %B S$Y $I:%MSp")
"Tuesday, 21. November 2006 04:30PM’

Using datetime with tzinfo:

>>> from datetime import timedelta, datetime, tzinfo
>>> class GMT1 (tzinfo) :
def _ init_ (self): # DST starts last Sunday in March
d = datetime (dt.year, 4, 1) # ends last Sunday in October
self.dston = d - timedelta (days=d.weekday () + 1)
d = datetime(dt.year, 11, 1)
self.dstoff = d - timedelta(days=d.weekday () + 1)
def utcoffset (self, dt):
return timedelta (hours=1) + self.dst (dt)
def dst (self, dt):
if self.dston <= dt.replace(tzinfo=None) < self.dstoff:
return timedelta (hours=1)
else:
return timedelta (0)
def tzname (self,dt):
return "GMT +1"

>>> class GMT2 (tzinfo) :
def _ init__ (self):
d = datetime (dt.year, 4, 1)
self.dston = d - timedelta (days=d.weekday () + 1)
d = datetime(dt.year, 11, 1)
self.dstoff = d - timedelta (days=d.weekday () + 1)
def utcoffset (self, dt):
return timedelta (hours=1) + self.dst (dt)
def dst (self, dt):
if self.dston <= dt.replace(tzinfo=None) < self.dstoff:
return timedelta (hours=2)
else:
return timedelta (0)
def tzname (self,dt):
return "GMT +2"

140 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

>>> gmtl = GMT1 ()

>>> # Daylight Saving Time

>>> dtl = datetime (2006, 11, 21, 16, 30, tzinfo=gmtl)

>>> dtl.dst ()

datetime.timedelta (0)

>>> dtl.utcoffset ()

datetime.timedelta (0, 3600)

>>> dt2 = datetime (2006, 6, 14, 13, 0, tzinfo=gmtl)

>>> dt2.dst ()

datetime.timedelta (0, 3600)

>>> dt2.utcoffset ()

datetime.timedelta (0, 7200)

>>> # Convert datetime to another time zone

>>> dt3 = dt2.astimezone (GMT2 ())

>>> dt3

datetime.datetime (2006, 6, 14, 14, 0, tzinfo=<GMT2 object at 0x...>)
>>> dt2

datetime.datetime (2006, 6, 14, 13, 0, tzinfo=<GMT1l object at 0x...>)
>>> dt2.utctimetuple () == dt3.utctimetuple ()

True

7.1.5 time Objects
A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
tzinfo object.

class datetime.time (hour=0, minute=0, second=0, microsecond=0, tzinfo=None)
All arguments are optional. zinfo may be None, or an instance of a t zinfo subclass. The remaining arguments
may be integers, in the following ranges:

*0 <= hour < 24

*0 <= minute < 60

*0 <= second < 60

*0 <= microsecond < 1000000.

If an argument outside those ranges is given, ValueError is raised. All default to 0 except tzinfo, which
defaults to None.

Class attributes:

time.min
The earliest representable t ime, time (0, 0, 0, 0).

time.max
The latest representable t ime, time (23, 59, 59, 999999).

time.resolution
The smallest possible difference between non-equal t ime objects, timedelta (microseconds=1), al-
though note that arithmetic on t ime objects is not supported.

Instance attributes (read-only):

time.hour
In range (24).

time.minute
In range (60).

7.1. datetime — Basic date and time types 141

The Python Library Reference, Release 3.2.1

time.second
In range (60).

time.microsecond
In range (1000000).

time.tzinfo
The object passed as the tzinfo argument to the t ime constructor, or None if none was passed.

Supported operations:

e comparison of t ime to t ime, where a is considered less than b when a precedes b in time. If one comparand is
naive and the other is aware, TypeError is raised. If both comparands are aware, and have the same t zinfo
member, the common tzinfo member is ignored and the base times are compared. If both comparands
are aware and have different t zinfo members, the comparands are first adjusted by subtracting their UTC
offsets (obtained from self.utcoffset ()). In order to stop mixed-type comparisons from falling back to
the default comparison by object address, when a t ime object is compared to an object of a different type,
TypeError is raised unless the comparison is == or ! =. The latter cases return False or True, respectively.

* hash, use as dict key
* efficient pickling

 in Boolean contexts, a t ime object is considered to be true if and only if, after converting it to minutes and
subtracting ut coffset () (or 0 if that’s None), the result is non-zero.

Instance methods:

time.replace ([hour[, minute[, second[, microsecond[, tzinf()]]]]])
Return a t ime with the same value, except for those members given new values by whichever keyword argu-
ments are specified. Note that t zinfo=None can be specified to create a naive t ime from an aware t ime,
without conversion of the time members.

time.isoformat ()
Return a string representing the time in ISO 8601 format, HH:MM:SS.mmmmmm or, if self.microsecond
is 0, HH:MM:SS If utcoffset () does not return None, a 6-character string is appended, giving the
UTC offset in (signed) hours and minutes: HH:MM:SS.mmmmmm+HH:MM or, if self.microsecond is 0,
HH:MM:SS+HH:MM

time.__str_ ()
Foratimet str (t) isequivalenttot.isoformat ().

time.strftime (format)
Return a string representing the time, controlled by an explicit format string. See section strftime() and strptime()
Behavior.

time.utcoffset ()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset (None), and raises an excep-
tion if the latter doesn’t return None or a t imedelta object representing a whole number of minutes with
magnitude less than one day.

time.dst ()
If tzinfo is None, returns None, else returns self.tzinfo.dst (None), and raises an exception if the
latter doesn’t return None, or a t imedelta object representing a whole number of minutes with magnitude
less than one day.

time.tzname ()
If tzinfo is None, returns None, else returns self.tzinfo.tzname (None), or raises an exception if
the latter doesn’t return None or a string object.

Example:

142 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

>>> from datetime import time, tzinfo
>>> class GMT1 (tzinfo) :
def utcoffset (self, dt):
return timedelta (hours=1)
def dst (self, dt):
return timedelta (0)
def tzname (self,dt):
return "Europe/Prague"

>>> t = time (12, 10, 30, tzinfo=GMT1())
>>> t

datetime.time (12, 10, 30, tzinfo=<GMT1l object at Ox...>)
>>> gmt = GMT1 ()

>>> t.isoformat ()

712:10:30+01:00"

>>> t.dst ()

datetime.timedelta (0)

>>> t.tzname ()

"Europe/Prague’

>>> t.strftime ("$SH:%$M:%S %2")

712:10:30 Europe/Prague’

7.1.6 tzinfo Objects

tzinfo is an abstract base class, meaning that this class should not be instantiated directly. You need to derive a
concrete subclass, and (at least) supply implementations of the standard t z i nfo methods needed by the datet ime
methods you use. The datetime module supplies a simple concrete subclass of tzinfo timezone which can
reprsent timezones with fixed offset from UTC such as UTC itself or North American EST and EDT.

An instance of (a concrete subclass of) t zinfo can be passed to the constructors for datet ime and t ime objects.
The latter objects view their members as being in local time, and the t zinf o object supports methods revealing offset
of local time from UTC, the name of the time zone, and DST offset, all relative to a date or time object passed to them.

Special requirement for pickling: A tzinfo subclass musthave an ___init__ () method that can be called with no
arguments, else it can be pickled but possibly not unpickled again. This is a technical requirement that may be relaxed
in the future.

A concrete subclass of t zinfo may need to implement the following methods. Exactly which methods are needed
depends on the uses made of aware datet ime objects. If in doubt, simply implement all of them.

tzinfo.utcoffset (dt)
Return offset of local time from UTC, in minutes east of UTC. If local time is west of UTC, this should be
negative. Note that this is intended to be the total offset from UTC; for example, if a t zinfo object represents
both time zone and DST adjustments, ut cof fset () should return their sum. If the UTC offset isn’t known,
return None. Else the value returned must be a t imedelta object specifying a whole number of minutes in
the range -1439 to 1439 inclusive (1440 = 24*60; the magnitude of the offset must be less than one day). Most
implementations of ut cof fset () will probably look like one of these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst (dt) # daylight-aware class

If utcoffset () does notreturn None, dst () should not return None either.

The default implementation of utcoffset () raises Not ImplementedError.

7.1. datetime — Basic date and time types 143

The Python Library Reference, Release 3.2.1

tzinfo.dst (dt)

Return the daylight saving time (DST) adjustment, in minutes east of UTC, or None if DST information isn’t
known. Return t imedelta (0) if DST is not in effect. If DST is in effect, return the offset as a t imedelta
object (see utcoffset () for details). Note that DST offset, if applicable, has already been added to the UTC
offset returned by utcoffset (), so there’s no need to consult dst () unless you’re interested in obtaining
DST info separately. For example, datetime.timetuple () callsits tzinfo member’s dst () method
to determine how the tm_isdst flag should be set, and tzinfo.fromutc () calls dst () to account for
DST changes when crossing time zones.

An instance #z of a t zinfo subclass that models both standard and daylight times must be consistent in this

sense:
tz.utcoffset (dt) - tz.dst (dt)
must return the same result for every datetime df with dt .tzinfo == tz For sane t zinfo subclasses,

this expression yields the time zone’s “standard offset”, which should not depend on the date or the time, but
only on geographic location. The implementation of datetime.astimezone () relies on this, but cannot
detect violations; it’s the programmer’s responsibility to ensure it. If a tzinfo subclass cannot guarantee
this, it may be able to override the default implementation of tzinfo.fromutc () to work correctly with
astimezone () regardless.

Most implementations of dst () will probably look like one of these two:

def dst (self):
a fixed-offset class: doesn’t account for DST
return timedelta (0)

or

def dst (self):
Code to set dston and dstoff to the time zone’s DST
transition times based on the input dt.year, and expressed
1n standard local time. Then

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta (hours=1)

else:
return timedelta (0)

The default implementation of dst () raises Not ImplementedError.

tzinfo.tzname (dt)
Return the time zone name corresponding to the datet ime object dt, as a string. Nothing about string names is
defined by the dat et ime module, and there’s no requirement that it mean anything in particular. For example,
“GMT”, “UTC”, “-500”, “-5:00”, “EDT”, “US/Eastern”, “America/New York™ are all valid replies. Return
None if a string name isn’t known. Note that this is a method rather than a fixed string primarily because some
tzinfo subclasses will wish to return different names depending on the specific value of dt passed, especially
if the tzinfo class is accounting for daylight time.

The default implementation of t zname () raises Not ImplementedError.

These methods are called by a datetime or time object, in response to their methods of the same names. A
datetime object passes itself as the argument, and a t ime object passes None as the argument. A tzinfo
subclass’s methods should therefore be prepared to accept a df argument of None, or of class datetime.

When None is passed, it’s up to the class designer to decide the best response. For example, returning None is
appropriate if the class wishes to say that time objects don’t participate in the t zinfo protocols. It may be more

144 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

useful for utcoffset (None) to return the standard UTC offset, as there is no other convention for discovering the
standard offset.

When a datetime object is passed in response to a datetime method, dt.tzinfo is the same object as self.
tzinfo methods can rely on this, unless user code calls t zinfo methods directly. The intent is that the tzinfo
methods interpret dt as being in local time, and not need worry about objects in other timezones.

There is one more t z info method that a subclass may wish to override:

tzinfo.fromutc (df)
This is called from the default datetime.astimezone () implementation. When called from that,
dt.tzinfo is self, and dt‘s date and time members are to be viewed as expressing a UTC time. The pur-
pose of fromutc () is to adjust the date and time members, returning an equivalent datetime in self s local
time.

Most tzinfo subclasses should be able to inherit the default fromutc () implementation without problems.
It’s strong enough to handle fixed-offset time zones, and time zones accounting for both standard and daylight
time, and the latter even if the DST transition times differ in different years. An example of a time zone the
default fromutc () implementation may not handle correctly in all cases is one where the standard offset
(from UTC) depends on the specific date and time passed, which can happen for political reasons. The default
implementations of ast imezone () and fromutc () may not produce the result you want if the result is one
of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the default f romutc () implementation acts like:

def fromutc(self, dt):
raise ValueError error 1if dt.tzinfo is not self
dtoff = dt.utcoffset ()
dtdst = dt.dst ()
raise ValueError 1f dtoff is None or dtdst is None
delta = dtoff - dtdst # this is self’s standard offset
if delta:
dt += delta # convert to standard local time
dtdst = dt.dst ()
raise ValueError 1f dtdst 1s None
if dtdst:
return dt + dtdst
else:
return dt

Example t zinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO timedelta (0)
HOUR = timedelta (hours=1)

A UTC class.

class UTC(tzinfo):
mmn "UTC mmn

def utcoffset (self, dt):
return ZERO

def tzname (self, dt):
return "UTC"

7.1. datetime — Basic date and time types 145

The Python Library Reference, Release 3.2.1

def dst (self, dt):
return ZERO

utc = UTC()

A class building tzinfo objects for fixed-offset time zones.
Note that FixedOffset (0, "UTC") is a different way to build a
UTC tzinfo object.

class FixedOffset (tzinfo):

""rnpixed offset in minutes east from UTC."""

def _ init_ (self, offset, name):
self._ offset = timedelta (minutes=offset)
self._ _name = name

def utcoffset (self, dt):
return self._ offset

def tzname (self, dt):
return self.__ name

def dst (self, dt):
return ZERO

A class capturing the platform’s idea of local time.

import time as _time

STDOFFSET = timedelta(seconds = —_time.timezone)
if _time.daylight:

DSTOFFSET = timedelta (seconds = —_time.altzone)
else:

DSTOFFSET = STDOFFSET

DSTDIFF = DSTOFFSET - STDOFFSET

class LocalTimezone (tzinfo) :

def utcoffset(self, dt):
if self._isdst(dt):
return DSTOFFSET
else:
return STDOFFSET

def dst (self, dt):
if self._isdst (dt):
return DSTDIFF
else:
return ZERO

def tzname (self, dt):
return _time.tzname[self._isdst (dt)]

146 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

def _isdst (self, dt):
tt = (dt.year, dt.month, dt.day,
dt .hour, dt.minute, dt.second,
dt .weekday (), 0, 0)
stamp = _time.mktime (tt)
tt = _time.localtime (stamp)
return tt.tm_isdst > 0

Local = LocalTimezone ()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after(dt):
days_to_go = 6 - dt.weekday ()
if days_to_go:
dt += timedelta (days_to_go)
return dt

US DST Rules

This is a simplified (i.e., wrong for a few cases) set of rules for US
DST start and end times. For a complete and up-to-date set of DST rules
and timezone definitions, visit the Olson Database (or try pytz):
http://www.twinsun.com/tz/tz—1ink.htm
http://sourceforge.net/projects/pytz/ (might not be up-to-date)

S Hh R R R R R R

In the US, since 2007, DST starts at Z2am (standard time) on the second
Sunday in March, which is the first Sunday on or after Mar 8.

DSTSTART_2007 = datetime(l, 3, 8, 2)

and ends at 2am (DST time; lam standard time) on the first Sunday of Nov.
DSTEND_2007 = datetime(1, 11, 1, 1)

From 1987 to 2006, DST used to start at 2am (standard time) on the first

Sunday in April and to end at 2am (DST time; lam standard time) on the last
Sunday of October, which is the first Sunday on or after Oct 25.
DSTSTART_1987_2006 = datetime(1l, 4, 1, 2)

DSTEND_1987_2006 = datetime (1, 10, 25, 1)

From 1967 to 1986, DST used to start at 2am (standard time) on the last

Sunday in April (the one on or after April 24) and to end at 2am (DST time;
lam standard time) on the last Sunday of October, which is the first Sunday
on or after Oct 25.

DSTSTART_1967_1986 = datetime (1, 4, 24, 2)

DSTEND_1967_1986 = DSTEND_1987_2006

S

class USTimeZone (tzinfo) :

def _ init_ (self, hours, reprname, stdname, dstname):
self.stdoffset = timedelta (hours=hours)
self.reprname = reprname

self.stdname stdname
self.dstname = dstname

7.1. datetime — Basic date and time types 147

The Python Library Reference, Release 3.2.1

def _ repr_ (self):
return self.reprname

def tzname (self, dt):
if self.dst (dt):
return self.dstname
else:
return self.stdname

def utcoffset (self, dt):
return self.stdoffset + self.dst (dt)

def dst (self, dt):

if dt is None or dt.tzinfo is None:
An exception may be sensible here, in one or both cases.
It depends on how you want to treat them. The default
fromutc () implementation (called by the default astimezone ()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO

assert dt.tzinfo is self

Find start and end times for US DST. For years before 1967, return
ZERO for no DST.
if 2006 < dt.year:
dststart, dstend DSTSTART_2007, DSTEND_2007
elif 1986 < dt.year < 2007:
dststart, dstend = DSTSTART_1987_2006, DSTEND_1987_2006
elif 1966 < dt.year < 1987:
dststart, dstend DSTSTART_1967_1986, DSTEND_1967_1986
else:
return ZERO

start = first_sunday_on_or_after (dststart.replace(year=dt.year))
end = first_sunday_on_or_after (dstend.replace (year=dt.year))

Can’t compare naive to aware objects, so strip the timezone from
dt first.
if start <= dt.replace(tzinfo=None) < end:
return HOUR
else:
return ZERO

Eastern = USTimeZone (-5, "Eastern", "EST", "EDT")
Central = USTimeZone (-6, "Central", "csT", "CDT")
Mountain = USTimeZone (-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone (-8, "Pacific", "pST", "PDT")

Note that there are unavoidable subtleties twice per year in a t zinfo subclass accounting for both standard and
daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT begins
the minute after 1:59 (EST) on the second Sunday in March, and ends the minute after 1:59 (EDT) on the first Sunday
in November:

UTC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM (O0:MM 1:MM 2:MM 3:MM
EDT 23:MM O:MM 1:MM 2:MM 3:MM 4:MM

148 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

start 22:MM 23:MM O:MM 1:MM 3:MM 4:MM

end 23:MM O:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM doesn’t
really make sense on that day, so astimezone (Eastern) won’t deliver a result with hour == 2 on the day
DST begins. In order for ast imezone () to make this guarantee, the rzinfo.dst () method must consider times
in the “missing hour” (2:MM for Eastern) to be in daylight time.

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled unambigu-
ously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM UTC on the day
daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again. Local
times of the form 1:MM are ambiguous. ast imezone () mimics the local clock’s behavior by mapping two adjacent
UTC hours into the same local hour then. In the Eastern example, UTC times of the form 5:MM and 6:MM both map
to 1:MM when converted to Eastern. In order for astimezone () to make this guarantee, the tzinfo.dst ()
method must consider times in the “repeated hour” to be in standard time. This is easily arranged, as in the example,
by expressing DST switch times in the time zone’s standard local time.

Applications that can’t bear such ambiguities should avoid using hybrid t z1info subclasses; there are no ambiguities
when using t imezone, or any other fixed-offset t zinfo subclass (such as a class representing only EST (fixed
offset -5 hours), or only EDT (fixed offset -4 hours)).

7.1.7 timezone Objects

A timezone object represents a timezone that is defined by a fixed offset from UTC. Note that objects of this class
cannot be used to represent timezone information in the locations where different offsets are used in different days of
the year or where historical changes have been made to civil time.

class datetime.timezone (Oﬁ”set[, name])
The offset argument must be specified as a t imedelta object representing the difference between the local
time and UTC. It must be strictly between -t imedelta (hours=24) and timedelta (hours=24) and
represent a whole number of minutes, otherwise ValueError is raised.

The name argument is optional. If specified it must be a string that is used as the value returned by the
tzname (dt) method. Otherwise, t zname (dt) returns a string ‘UTCsHH:MM’, where s is the sign of
offset, HH and MM are two digits of of fset .hours and offset .minutes respectively.

timezone.utcoffset (dr)
Return the fixed value specified when the t imezone instance is constructed. The df argument is ignored. The
return value is a t imedelta instance equal to the difference between the local time and UTC.

timezone.tzname (dt)
Return the fixed value specified when the t imezone instance is constructed or a string ‘UTCsHH:MM’, where
s is the sign of offset, HH and MM are two digits of of fset .hours and of fset .minutes respectively.

timezone.dst (dt)
Always returns None.

timezone.fromute (dt)
Return dt + offset. The df argument must be an aware datet ime instance, with tzinfo setto self.

Class attributes:

timezone.utec
The UTC timezone, t imezone (timedelta (0)).

7.1. datetime — Basic date and time types 149

The Python Library Reference, Release 3.2.1

7.1.8 strftime () and strptime () Behavior

date, datetime, and t ime objects all supporta strftime (format) method, to create a string representing the
time under the control of an explicit format string. Broadly speaking, d.strftime (fmt) acts like the t ime mod-
ule’s time.strftime (fmt, d.timetuple ()) although not all objects supporta t imetuple () method.

Conversely, the datetime.strptime () class method creates a datet ime object from a string representing a
date and time and a corresponding format string. datetime.strptime (date_string, format) isequiva-
lent to datetime (* (time.strptime (date_string, format) [0:6])).

For t ime objects, the format codes for year, month, and day should not be used, as time objects have no such values.
If they’re used anyway, 1900 is substituted for the year, and 1 for the month and day.

For date objects, the format codes for hours, minutes, seconds, and microseconds should not be used, as date
objects have no such values. If they’re used anyway, 0 is substituted for them.

For a naive object, the $z and %Z format codes are replaced by empty strings.
For an aware object:

%z utcoffset () is transformed into a 5-character string of the form +HHMM or -HHMM, where HH is a 2-
digit string giving the number of UTC offset hours, and MM is a 2-digit string giving the number of UTC
offset minutes. For example, if utcoffset () returns timedelta (hours=-3, minutes=-30), %z is
replaced with the string ' -0330".

%Z If tzname () returns None, %7 is replaced by an empty string. Otherwise %7 is replaced by the returned value,
which must be a string.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s
strftime () function, and platform variations are common.

The following is a list of all the format codes that the C standard (1989 version) requires, and these work on all
platforms with a standard C implementation. Note that the 1999 version of the C standard added additional format
codes.

150 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

Di- Meaning Notes

rec-

tive

%a Locale’s abbreviated weekday name.

$A Locale’s full weekday name.

$b Locale’s abbreviated month name.

%B Locale’s full month name.

$C Locale’s appropriate date and time representation.

%d Day of the month as a decimal number [01,31].

$f Microsecond as a decimal number [0,999999], zero-padded on the left €))]

%H Hour (24-hour clock) as a decimal number [00,23].

$T Hour (12-hour clock) as a decimal number [01,12].

%7 Day of the year as a decimal number [001,366].

$m Month as a decimal number [01,12].

M Minute as a decimal number [00,59].

$p Locale’s equivalent of either AM or PM. 2)

%S Second as a decimal number [00,59]. 3)

%U Week number of the year (Sunday as the first day of the week) as a decimal number [00,53]. All “4)
days in a new year preceding the first Sunday are considered to be in week 0.

Sw Weekday as a decimal number [0(Sunday),6].

SW Week number of the year (Monday as the first day of the week) as a decimal number [00,53]. All | (4)
days in a new year preceding the first Monday are considered to be in week 0.

$xX Locale’s appropriate date representation.

$X Locale’s appropriate time representation.

Sy Year without century as a decimal number [00,99].

%Y Year with century as a decimal number [0001,9999] (strptime), [1000,9999] (strftime). (®)]

%z UTC offset in the form +HHMM or -HHMM (empty string if the the object is naive). ©6)

%7 Time zone name (empty string if the object is naive).

%% A literal * %’ character.

Notes:

1.

When used with the strptime () method, the $f directive accepts from one to six digits and zero pads on
the right. $f is an extension to the set of format characters in the C standard (but implemented separately in
datetime objects, and therefore always available).

When used with the st rpt ime () method, the $p directive only affects the output hour field if the $ I directive
is used to parse the hour.

Unlike t ime module, datet ime module does not support leap seconds.

When used with the st rpt ime () method, $U and $W are only used in calculations when the day of the week
and the year are specified.

For technical reasons, strftime() method does not support dates before year 1000:
t.strftime (format) will raise a ValueError when t.year < 1000 even if format does
not contain %Y directive. The strptime () method can parse years in the full [1, 9999] range, but years <
1000 must be zero-filled to 4-digit width. Changed in version 3.2: In previous versions, st rftime () method
was restricted to years >= 1900.

For example, if utcoffset () returns timedelta (hours=-3, minutes=-30), $z is replaced with
the string /' —0330".

Changed in version 3.2: When the %z directive is provided to the st rpt ime () method, an aware datet ime object
will be produced. The t zinfo of the result will be set to a t imezone instance.

7.1. datetime — Basic date and time types 151

The Python Library Reference, Release 3.2.1

7.2 calendar — General calendar-related functions

Source code: Lib/calendar.py

This module allows you to output calendars like the Unix cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the last
(the European convention). Use set firstweekday () to set the first day of the week to Sunday (6) or to any other
weekday. Parameters that specify dates are given as integers. For related functionality, see also the datet ime and
t ime modules.

Most of these functions and classes rely on the datetime module which uses an idealized calendar, the current
Gregorian calendar extended in both directions. This matches the definition of the “proleptic Gregorian” calendar in
Dershowitz and Reingold’s book “Calendrical Calculations”, where it’s the base calendar for all computations.

class calendar.Calendar (firstweekday=0)
Creates a Calendar object. firstweekday is an integer specifying the first day of the week. 0 is Monday (the
default), 6 is Sunday.

A Calendar object provides several methods that can be used for preparing the calendar data for formatting.
This class doesn’t do any formatting itself. This is the job of subclasses.

Calendar instances have the following methods:

iterweekdays ()
Return an iterator for the week day numbers that will be used for one week. The first value from the iterator
will be the same as the value of the firstweekday property.

itermonthdates (year, month)
Return an iterator for the month month (1-12) in the year year. This iterator will return all days (as
datetime.date objects) for the month and all days before the start of the month or after the end of the
month that are required to get a complete week.

itermonthdays2 (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (). Days returned
will be tuples consisting of a day number and a week day number.

itermonthdays (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (). Days returned
will simply be day numbers.

monthdatescalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
datetime.date objects.

monthdays2calendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven tuples of
day numbers and weekday numbers.

monthdayscalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven day
numbers.

yeardatescalendar (year, width=3)
Return the data for the specified year ready for formatting. The return value is a list of month rows. Each
month row contains up to width months (defaulting to 3). Each month contains between 4 and 6 weeks
and each week contains 1-7 days. Days are datet ime . date objects.

152 Chapter 7. Data Types

http://hg.python.org/cpython/file/default/Lib/calendar.py

The Python Library Reference, Release 3.2.1

yeardays2calendar (year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar ()). Entries
in the week lists are tuples of day numbers and weekday numbers. Day numbers outside this month are
Zero.

yeardayscalendar (year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar ()). Entries
in the week lists are day numbers. Day numbers outside this month are zero.

class calendar.TextCalendar (firstweekday=0)
This class can be used to generate plain text calendars.

TextCalendar instances have the following methods:

formatmonth (theyear, themonth, w=0, [=0)
Return a month’s calendar in a multi-line string. If w is provided, it specifies the width of the date columns,
which are centered. If / is given, it specifies the number of lines that each week will use. Depends on the
first weekday as specified in the constructor or set by the set firstweekday () method.

prmonth (theyear, themonth, w=0, [=0)
Print a month’s calendar as returned by formatmonth ().

formatyear (theyear, w=2, =1, c=6, m=3)
Return a m-column calendar for an entire year as a multi-line string. Optional parameters w, [, and c are for
date column width, lines per week, and number of spaces between month columns, respectively. Depends
on the first weekday as specified in the constructor or set by the set firstweekday () method. The
earliest year for which a calendar can be generated is platform-dependent.

pryear (theyear, w=2, =1, c=6, m=3)
Print the calendar for an entire year as returned by formatyear ().

class calendar .HTMLCalendar (firstweekday=0)
This class can be used to generate HTML calendars.

HTMLCalendar instances have the following methods:

formatmonth (theyear, themonth, withyear=True)
Return a month’s calendar as an HTML table. If withyear is true the year will be included in the header,
otherwise just the month name will be used.

formatyear (theyear, width=3)
Return a year’s calendar as an HTML table. width (defaulting to 3) specifies the number of months per
TOoW.

formatyearpage (theyear, width=3, css="calendar.css’, encoding=None)
Return a year’s calendar as a complete HTML page. width (defaulting to 3) specifies the number of months
per row. css is the name for the cascading style sheet to be used. None can be passed if no style sheet
should be used. encoding specifies the encoding to be used for the output (defaulting to the system default
encoding).

class calendar.LocaleTextCalendar (firstweekday=0, locale=None)
This subclass of TextCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode.

class calendar.LocaleHTMLCalendar (firstweekday=0, locale=None)
This subclass of HTMLCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode.

7.2. calendar — General calendar-related functions 153

The Python Library Reference, Release 3.2.1

Note: The formatweekday () and formatmonthname () methods of these two classes temporarily change the
current locale to the given locale. Because the current locale is a process-wide setting, they are not thread-safe.

For simple text calendars this module provides the following functions.

calendar.setfirstweekday (weekday)
Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience. For example, to set the first
weekday to Sunday:

import calendar
calendar.setfirstweekday (calendar.SUNDAY)

calendar. firstweekday ()
Returns the current setting for the weekday to start each week.

calendar.isleap (year)
Returns True if year is a leap year, otherwise False.

calendar.leapdays (yl, y2)
Returns the number of leap years in the range from y/ to y2 (exclusive), where y/ and y2 are years.

This function works for ranges spanning a century change.

calendar .weekday (year, month, day)
Returns the day of the week (0 is Monday) for year (1970-...), month (1-12), day (1-31).

calendar .weekheader (n)
Return a header containing abbreviated weekday names. n specifies the width in characters for one weekday.

calendar .monthrange (year, month)
Returns weekday of first day of the month and number of days in month, for the specified year and month.

calendar .monthcalendar (year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless set by set firstweekday ().

calendar .prmonth (theyear, themonth, w=0, [=0)
Prints a month’s calendar as returned by month ().

calendar .month (theyear, themonth, w=0, [=0)
Returns a month’s calendar in a multi-line string using the formatmonth () of the TextCalendar class.

calendar.precal (year, w=0, [=0, c=6, m=3)
Prints the calendar for an entire year as returned by calendar ().

calendar.calendar (year, w=2, =1, c=6, m=3)
Returns a 3-column calendar for an entire year as a multi-line string using the formatyear () of the
TextCalendar class.

calendar.timegm (fuple)
An unrelated but handy function that takes a time tuple such as returned by the gmt ime () function in the
t ime module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the POSIX
encoding. In fact, t ime . gmtime () and t imegm () are each others’ inverse.

The calendar module exports the following data attributes:

calendar.day_name
An array that represents the days of the week in the current locale.

calendar.day_abbr
An array that represents the abbreviated days of the week in the current locale.

154 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

calendar.month name
An array that represents the months of the year in the current locale. This follows normal convention of January
being month number 1, so it has a length of 13 and month_name [0] is the empty string.

calendar .month_abbr
An array that represents the abbreviated months of the year in the current locale. This follows normal convention
of January being month number 1, so it has a length of 13 and month_abbr [0] is the empty string.

See Also:
Module datetime Object-oriented interface to dates and times with similar functionality to the t ime module.

Module time Low-level time related functions.

7.3 collections — Container datatypes

Source code: Lib/collections.py and Lib/_abcoll.py

This module implements specialized container datatypes providing alternatives to Python’s general purpose built-in
containers, dict, 1ist, set,and tuple.

namedtuple () | factory function for creating tuple subclasses with named fields
deque list-like container with fast appends and pops on either end
Counter dict subclass for counting hashable objects

OrderedDict dict subclass that remembers the order entries were added
defaultdict dict subclass that calls a factory function to supply missing values

UserDict wrapper around dictionary objects for easier dict subclassing
UserList wrapper around list objects for easier list subclassing
UserString wrapper around string objects for easier string subclassing

In addition to the concrete container classes, the collections module provides abstract base classes that can be used to
test whether a class provides a particular interface, for example, whether it is hashable or a mapping.

7.3.1 Counter objects

A counter tool is provided to support convenient and rapid tallies. For example:

>>> # Tally occurrences of words in a list

>>> cnt = Counter ()

>>> for word in ['red’, ’'blue’, '"red’, ’"green’, ’'blue’, ’'blue’]:

.. cnt [word] += 1

>>> cnt

Counter ({’blue’: 3, ’'red’: 2, ’'green’: 1})

>>> # Find the ten most common words in Hamlet

>>> import re

>>> words = re.findall (' \w+’, open(’hamlet.txt’).read().lower())

>>> Counter (words) .most_common (10)

[("the’, 1143), ("and’, 966), ('to’, 762), ('of’, 669), ('i’", 631),
("you’, 554), ("a’”, 546), ('my’, 514), ("hamlet’, 471), ("in’, 451)]

class collections.Counter ([iterable—or—mapping])
A Counter is a dict subclass for counting hashable objects. It is an unordered collection where elements are

7.3. collections — Container datatypes 155

http://hg.python.org/cpython/file/default/Lib/collections.py
http://hg.python.org/cpython/file/default/Lib/_abcoll.py

The Python Library Reference, Release 3.2.1

stored as dictionary keys and their counts are stored as dictionary values. Counts are allowed to be any integer
value including zero or negative counts. The Counter class is similar to bags or multisets in other languages.

Elements are counted from an iterable or initialized from another mapping (or counter):

>>> ¢ = Counter () # a new, empty counter

>>> c = Counter (’gallahad’) # a new counter from an iterable
>>> ¢ = Counter ({'red’: 4, ’'blue’: 2}) # a new counter from a mapping
>>> ¢ = Counter (cats=4, dogs=8) # a new counter from keyword args

Counter objects have a dictionary interface except that they return a zero count for missing items instead of
raising a KeyError:

>>> ¢ = Counter(["eggs’, ’"ham’])
>>> c[’bacon’] # count of a missing element is zero
0

Setting a count to zero does not remove an element from a counter. Use de 1 to remove it entirely:

>>> c[’sausage’] = 0 # counter entry with a zero count
>>> del c[’sausage’] # del actually removes the entry

New in version 3.1. Counter objects support three methods beyond those available for all dictionaries:

elements ()
Return an iterator over elements repeating each as many times as its count. Elements are returned in
arbitrary order. If an element’s count is less than one, e lements () will ignore it.

>>> ¢ = Counter (a=4, b=2, c=0, d=-2)
>>> list (c.elements())
[IaI, IaI, Ial, IaI, Ibl, Ibl]

most__common ([n])
Return a list of the » most common elements and their counts from the most common to the least. If n
is not specified, most__common () returns all elements in the counter. Elements with equal counts are
ordered arbitrarily:

>>> Counter (' abracadabra’) .most_common (3)
[("a", 5), ("', 2), ("b", 2)]

subtract ([iterable—or—mapping])
Elements are subtracted from an iterable or from another mapping (or counter). Like dict .update ()
but subtracts counts instead of replacing them. Both inputs and outputs may be zero or negative.

>>> ¢ = Counter (a=4, b=2,
>>> d = Counter (a=1, b=2,
>>> c.subtract (d)

Counter ({’a’": 3, '"b": 0, 'c’': =3, 'd": -06})

c=
c=

New in version 3.2.

The usual dictionary methods are available for Counter objects except for two which work differently for
counters.

fromkeys (iterable)
This class method is not implemented for Counter objects.

156 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

update ([iterable-or-mapping])
Elements are counted from an iferable or added-in from another mapping (or counter). Like
dict.update () but adds counts instead of replacing them. Also, the iterable is expected to be a
sequence of elements, not a sequence of (key, value) pairs.

Common patterns for working with Counter objects:

sum(c.values()) # total of all counts

c.clear () # reset all counts

list (c) # list unique elements

set (c) # convert to a set

dict (c) # convert to a regular dictionary

c.items () # convert to a list of (elem, cnt) pairs
Counter (dict (list_of_pairs)) # convert from a list of (elem, cnt) pairs
c.most_common () [:—n:—1] # n least common elements

c += Counter () # remove zero and negative counts

Several mathematical operations are provided for combining Counter objects to produce multisets (counters that
have counts greater than zero). Addition and subtraction combine counters by adding or subtracting the counts of
corresponding elements. Intersection and union return the minimum and maximum of corresponding counts. Each
operation can accept inputs with signed counts, but the output will exclude results with counts of zero or less.

>>>
>>>
>>>

c = Counter (a=3, b=1)
d = Counter (a=1, b=2)
c + d # add two counters together: c[x] + d[x]

Counter ({’a’": 4, 'b’": 3})

>>>

c - d # subtract (keeping only positive counts)

Counter ({"a’: 2})

>>>

c & d # Iintersection: min(c[x], d[x])

Counter({"a’: 1, "b’: 1})

>>>

c | d # union: max(c[x], d[x])

Counter ({"a’: 3, "b’: 2})

Note:

Counters were primarily designed to work with positive integers to represent running counts; however, care

was taken to not unnecessarily preclude use cases needing other types or negative values. To help with those use cases,
this section documents the minimum range and type restrictions.

The Counter class itself is a dictionary subclass with no restrictions on its keys and values. The values are
intended to be numbers representing counts, but you could store anything in the value field.

The most__common () method requires only that the values be orderable.

For in-place operations such as c [key] += 1, the value type need only support addition and subtraction.
So fractions, floats, and decimals would work and negative values are supported. The same is also true for
update () and subtract () which allow negative and zero values for both inputs and outputs.

The multiset methods are designed only for use cases with positive values. The inputs may be negative or zero,
but only outputs with positive values are created. There are no type restrictions, but the value type needs to
support support addition, subtraction, and comparison.

The elements () method requires integer counts. It ignores zero and negative counts.

See Also:

Counter class adapted for Python 2.5 and an early Bag recipe for Python 2.4.
Bag class in Smalltalk.

Wikipedia entry for Multisets.

7.3. collections — Container datatypes 157

http://code.activestate.com/recipes/576611/
http://code.activestate.com/recipes/259174/
http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
http://en.wikipedia.org/wiki/Multiset

The Python Library Reference, Release 3.2.1

7.3

e C++ multisets tutorial with examples.

» For mathematical operations on multisets and their use cases, see Knuth, Donald. The Art of Computer Pro-
gramming Volume II, Section 4.6.3, Exercise 19.

e To enumerate all distinct multisets of a given size over a given set of elements, see
itertools.combinations_with_replacement ().

map(Counter, combinations_with_replacement(‘ABC’, 2)) > AA AB AC BB BC CC

.2 deque objects

class collections.deque ([iterable[, maxlen]])

Returns a new deque object initialized left-to-right (using append ()) with data from iterable. If iterable is not
specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-
ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the deque
with approximately the same O(1) performance in either direction.

Though 11ist objects support similar operations, they are optimized for fast fixed-length operations and incur
O(n) memory movement costs for pop (0) and insert (0, v) operations which change both the size and
position of the underlying data representation.

If maxlen is not specified or is None, deques may grow to an arbitrary length. Otherwise, the deque is bounded to
the specified maximum length. Once a bounded length deque is full, when new items are added, a corresponding
number of items are discarded from the opposite end. Bounded length deques provide functionality similar to
the tail filter in Unix. They are also useful for tracking transactions and other pools of data where only the
most recent activity is of interest.

Deque objects support the following methods:

append (x)
Add x to the right side of the deque.

appendleft (x)
Add x to the left side of the deque.

clear ()
Remove all elements from the deque leaving it with length 0.

count (x)
Count the number of deque elements equal to x. New in version 3.2.

extend (iterable)
Extend the right side of the deque by appending elements from the iterable argument.

extendleft (iterable)
Extend the left side of the deque by appending elements from iferable. Note, the series of left appends
results in reversing the order of elements in the iterable argument.

pop ()
Remove and return an element from the right side of the deque. If no elements are present, raises an
IndexError.

popleft ()
Remove and return an element from the left side of the deque. If no elements are present, raises an
IndexError.

remove (value)
Removed the first occurrence of value. If not found, raises a ValueError.

158

Chapter 7. Data Types

http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm

The Python Library Reference, Release 3.2.1

reverse ()

Reverse the elements of the deque in-place and then return None. New in version 3.2.

rotate (n)

Rotate the deque n steps to the right. If n is negative, rotate to the left. Rotating one step to the right is

equivalent to: d.appendleft (d.pop()).

Deque objects also provide one read-only attribute:

maxlen

Maximum size of a deque or None if unbounded. New in version 3.1.

In addition to the above, deques support iteration, pickling, len (d), reversed(d), copy.copy (d),
copy .deepcopy (d), membership testing with the in operator, and subscript references such as d [-1]. Indexed
access is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists instead.

Example:

>>> from collections import deque
>>> d = deque (’ghi’)

>>> for elem in d:

.. print (elem.upper ())

G
H
I

>>> d.append (’ ")

>>> d.appendleft (" £")

>>> d

deque (["£", 'g’, "h’, 7"i", "J"1])

>>> d.pop ()

r =

J
>>> d.popleft ()
Vfl

>>> Jlist (d)
[("g”, "h", "1i"]
>>> d[0]

lgl

>>> d[—-1]

Ii/

>>> list (reversed(d))

[("i’, 'h’, "g’]

>>> 'h’ in d

True

>>> d.extend (’ jk1’)

>>> d

deque([’'g’, 'h’, "i’, 3", 'k’, "1"1])
>>> d.rotate (1)

>>> d

deque (["1", 'g’", 'h", "i’, 3", "k’'])
>>> d.rotate (-1)

>>> d

deque([’'g’, 'h’, "i’, 3", 'k’, "1'1])

>>> deque (reversed(d))

H=

make a new deque with three items
iterate over the deque’s elements

add a new entry to the right side
add a new entry to the left side
show the representation of the deque
return and remove the rightmost item
return and remove the leftmost item
list the contents of the deque

peek at leftmost item

peek at rightmost item

list the contents of a deque in reverse
search the deque

add multiple elements at once

right rotation

left rotation

make a new deque in reverse order

7.3. collections — Container datatypes

159

The Python Library Reference, Release 3.2.1

deque (["1", 'k’, '3", "i’, 'h', "g’'])
>>> d.clear () # empty the deque
>>> d.pop () # cannot pop from an empty deque
Traceback (most recent call last):
File "<pyshell#6>", line 1, in -toplevel-
d.pop ()
IndexError: pop from an empty deque

>>> d.extendleft (' abc’) # extendleft () reverses the input order
>>> d
deque([’c’, "b’", "a’'l)

deque Recipes

This section shows various approaches to working with deques.
Bounded length deques provide functionality similar to the tail filter in Unix:

def tail (filename, n=10):
"Return the last n lines of a file’
return deque (open(filename), n)

Another approach to using deques is to maintain a sequence of recently added elements by appending to the right and
popping to the left:

def moving_average (iterable, n=3):
moving_average ([40, 30, 50, 46, 39, 44]) —--> 40.0 42.0 45.0 43.0
http://en.wikipedia.org/wiki/Moving_average

it = iter (iterable)

d = deque (itertools.islice(it, n-1))
d.appendleft (0)

s = sum(d)

for elem in it:
s += elem - d.popleft ()
d.append (elem)
yield s / n

The rotate () method provides a way to implement deque slicing and deletion. For example, a pure Python
implementation of del d[n] relies on the rotate () method to position elements to be popped:

def delete_nth(d, n):
d.rotate (—n)
d.popleft ()
d.rotate (n)

To implement deque slicing, use a similar approach applying rotate () to bring a target element to the left side
of the deque. Remove old entries with popleft (), add new entries with extend (), and then reverse the rotation.
With minor variations on that approach, it is easy to implement Forth style stack manipulations such as dup, drop,
swap, over, pick, rot,and roll.

7.3.3 defaultdict objects

ckmscollections.defaultdict([dqbuhjbaon{”“]])
Returns a new dictionary-like object. defaultdict is a subclass of the built-in dict class. It overrides one
method and adds one writable instance variable. The remaining functionality is the same as for the dict class
and is not documented here.

160 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

The first argument provides the initial value for the default_factory attribute; it defaults to None. All
remaining arguments are treated the same as if they were passed to the dict constructor, including keyword
arguments.

defaultdict objects support the following method in addition to the standard dict operations:

__missing__ (key)
If the default_factory attribute is None, this raises a KeyError exception with the key as argu-
ment.

If default_factory is not None, it is called without arguments to provide a default value for the
given key, this value is inserted in the dictionary for the key, and returned.

If calling default_factory raises an exception this exception is propagated unchanged.

This method is called by the __getitem__ () method of the dict class when the requested key is not
found; whatever it returns or raises is then returned or raised by __getitem__ ().

defaultdict objects support the following instance variable:

default_factory
This attribute is used by the __missing__ () method; it is initialized from the first argument to the
constructor, if present, or to None, if absent.

defaultdict Examples

Using 1ist asthe default_factory, itis easy to group a sequence of key-value pairs into a dictionary of lists:

>>> s = [('yellow’, 1), ('blue’, 2), ('yellow’, 3), ("blue’, 4), ('red’, 1)]
>>> d = defaultdict (list)
>>> for k, v in s:

d[k] .append(v)

>>> list (d.items())
[("blue’, [2, 4]), (‘red’, [1]), (‘yellow’, [1, 31])]

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically created
using the default_factory function which returns an empty 1ist. The list.append () operation then
attaches the value to the new list. When keys are encountered again, the look-up proceeds normally (returning the list
for that key) and the 1ist . append () operation adds another value to the list. This technique is simpler and faster
than an equivalent technique using dict .setdefault ():

>>> d = {}
>>> for k, v in s:
d.setdefault (k, []) .append(v)

>>> list (d.items())
[("blue’, [2, 4]), (‘red’, [1]), (’yellow’, [1, 3])]

Setting the default_factory to int makes the defaultdict useful for counting (like a bag or multiset in
other languages):

>>> s = 'mississippi’
>>> d defaultdict (int)
>>> for k in s:

dik] += 1

>>> list (d.items ())
(¢rir, 4y, ('p’, 2y, ('s’, 4), ('m", 1)]

7.3. collections — Container datatypes 161

The Python Library Reference, Release 3.2.1

When a letter is first encountered, it is missing from the mapping, so the default_factory function calls int ()
to supply a default count of zero. The increment operation then builds up the count for each letter.

The function int () which always returns zero is just a special case of constant functions. A faster and more flexible
way to create constant functions is to use a lambda function which can supply any constant value (not just zero):

>>> def constant_factory(value) :

.. return lambda: value

>>> d = defaultdict (constant_factory (' <missing>"))
>>> d.update (name=’John’, action=’'ran’)

>>> "% (name)s % (action)s to %$(object)s’ % d

"John ran to <missing>’

Setting the default_factory to set makes the defaultdict useful for building a dictionary of sets:

>>> s = [('red’, 1), ("blue’, 2), ("red’, 3), ("blue’, 4), ('red’, 1), ('blue’,
>>> d = defaultdict (set)
>>> for k, v in s:

d[k] .add(v)

>>> list(d.items())
[("blue’, set([2, 41)), (‘red’, set([1l, 31))]

7.3.4 namedtuple () Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code. They
can be used wherever regular tuples are used, and they add the ability to access fields by name instead of position
index.

collections.namedtuple (fypename, field_names, verbose=False, rename="False)
Returns a new tuple subclass named rypename. The new subclass is used to create tuple-like objects that have
fields accessible by attribute lookup as well as being indexable and iterable. Instances of the subclass also have
a helpful docstring (with typename and field_names) and a helpful __repr__ () method which lists the tuple
contents in a name=value format.

The field_names are a single string with each fieldname separated by whitespace and/or commas, for example
"x y’ or’x, y’.Alternatively, field_names can be a sequence of strings suchas [’ x’, "vy’].

Any valid Python identifier may be used for a fieldname except for names starting with an underscore. Valid
identifiers consist of letters, digits, and underscores but do not start with a digit or underscore and cannot be a
keyword such as class, for, return, global, pass, or raise.

If rename is true, invalid fieldnames are automatically replaced with positional names. For example, [’ abc’,
"def’, ’'ghi’, ’abc’] isconvertedto [’abc’, ’_1', ’“ghi’, ’_3’], eliminating the keyword
def and the duplicate fieldname abc.

If verbose is true, the class definition is printed just before being built.

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no more mem-
ory than regular tuples. Changed in version 3.1: Added support for rename.

>>> # Basic example
>>> Point = namedtuple (’'Point’, ['x', "y’'])
>>> p = Point (x=10, y=11)

>>> # Example using the verbose option to print the class definition
>>> Point = namedtuple ('Point’, ’'x y’, verbose=True)
class Point (tuple) :

"Point (x, y)’

162 Chapter 7. Data Types

4)1]

The Python Library Reference, Release 3.2.1

__slots___ = ()

_fields = ('x', 'y")

def _ new__ (_cls, x, Vy):
"Create a new instance of Point(x, y)’
return _tuple._ new__ (_cls, (x, y))

@classmethod

def _make(cls, iterable, new=tuple._ new_ , len=len):
"Make a new Point object from a sequence or iterable’
result = new(cls, iterable)
if len(result) != 2:

Q

raise TypeError ('Expected 2 arguments, got %d’ % len(result))
return result

def __ _repr__ (self):
"Return a nicely formatted representation string’
return self._ class__.__name__ + '

)

(x=%r, y=%r)’ % self

def _asdict (self):
"Return a new OrderedDict which maps field names to their values’
return OrderedDict (zip(self._fields, self))

__dict___ = property(_asdict)

def _replace(_self, xxkwds):
"Return a new Point object replacing specified fields with new values’
result = _self._make (map(kwds.pop, ('x', 'y’'), _self))
if kwds:
raise ValueError (' Got unexpected field names: %r’ % list (kwds.keys()))
return result

def __getnewargs__ (self):
"Return self as a plain tuple. Used by copy and pickle.’
return tuple(self)

x = _property(_itemgetter (0), doc="Alias for field number 0')

y = _property(_itemgetter(l), doc='"Alias for field number 1')
>>> p = Point (11, y=22) # instantiate with positional or keyword arguments
>>> p[0] + pl[l] # indexable like the plain tuple (11, 22)
33
>>> x, y = p # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessible by name
33
>>> p # readable __repr. with a name=value style

Point (x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returned by the csv or sglite3 mod-
ules:

7.3. collections — Container datatypes 163

The Python Library Reference, Release 3.2.1

EmployeeRecord =

import csv

namedtuple (' EmployeeRecord’, ’name, age,

for emp in map (EmployeeRecord._make,

title, department, paygrade’)

csv.reader (open ("employees.csv", "rb"))):

print (emp.name, emp.title)
import sqglite3
conn = sglite3.connect ('’ /companydata’)
cursor = conn.cursor ()

cursor.execute (' SELECT name, age, title, department, paygrade FROM employees’)
for emp in map (EmployeeRecord._make,

print (emp.name,

emp.title)

cursor.fetchall()) :

In addition to the methods inherited from tuples, named tuples support three additional methods and one attribute. To
prevent conflicts with field names, the method and attribute names start with an underscore.

classmethod somenamedtuple._make (iterable)
Class method that makes a new instance from an existing sequence or iterable.

>>> t = [11,

221

>>> Point._make (t)

Point (x=11

14

y=22

)

somenamedtuple._asdict ()
Return a new OrderedDict which maps field names to their corresponding values:

>>> p._asdict ()
OrderedDict ([("x’, 11),

Changed in version 3.1: Returns an OrderedDict instead of a regular dict.

("y", 22)1])

somenamedtuple._replace (kwargs)
Return a new instance of the named tuple replacing specified fields with new values:

>>> p = Point (x=11, y=22)
>>> p._replace (x=33)

Point (x=33

14

y=22

>>> for partnum,
inventory[partnum]

)

record in inventory.items():
= record._replace (price=newprices[partnum], timestamp=time.now (

somenamedtuple._fields
Tuple of strings listing the field names. Useful for introspection and for creating new named tuple types from
existing named tuples.

>>> p._fields

("%, "y

>>> Color
>>> Pixel

view the field names

namedtuple (' Color’, ’'red

namedtuple (' Pixel’,

>>> Pixel (11, 22

Pixel (x=11

4

y=22

, 128, 255,
, red=128,

0)
green=255,

green blue’)

blue=0)

To retrieve a field whose name is stored in a string, use the getattr () function:

>>> getattr(p, '

11

x")

Point._fields + Color._fields)

To convert a dictionary to a named tuple, use the double-star-operator (as described in fut-unpacking-arguments):

164

Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

>> d = {'x": 11, 'y': 22}
>>> Point (**d)
Point (x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here is how to
add a calculated field and a fixed-width print format:

>>> class Point (namedtuple (' Point’, ’"x vy’)):
__slots__ = ()
@property
def hypot (self):
return (self.x *%x 2 + self.y »x 2) %% 0.5
def _ str_ (self):
return ’'Point: x=%6.3f y=%6.3f hypot=%6.3f’" % (self.x, self.y, self.hypot)

>>> for p in Point (3, 4), Point (14, 5/7):
print (p)

Point: x= 3.000 vy= 4.000 hypot= 5.000

Point: x=14.000 vy= 0.714 hypot=14.018

The subclass shown above sets ___slots__ to an empty tuple. This helps keep memory requirements low by pre-
venting the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply create a new named tuple type from the
__fields attribute:

>>> Point3D = namedtuple ('Point3D’, Point._fields + ("z’,))
Default values can be implemented by using _replace () to customize a prototype instance:

>>> Account = namedtuple (' Account’, ’owner balance transaction_count’)
>>> default_account = Account (' <owner name>’, 0.0, 0)
>>> johns_account = default_account._replace (owner="John’)

Enumerated constants can be implemented with named tuples, but it is simpler and more efficient to use a simple class
declaration:

>>> Status = namedtuple ('’ Status’, ’'open pending closed’) ._make (range (3))
>>> Status.open, Status.pending, Status.closed
(0, 1, 2)
>>> class Status:
open, pending, closed = range (3)

See Also:
» Named tuple recipe adapted for Python 2.4.

* Recipe for named tuple abstract base class with a metaclass mix-in by Jan Kaliszewski. Besides providing an
abstract base class for named tuples, it also supports an alternate metaclass-based constructor that is convenient
for use cases where named tuples are being subclassed.

7.3.5 OrderedDict objects

Ordered dictionaries are just like regular dictionaries but they remember the order that items were inserted. When
iterating over an ordered dictionary, the items are returned in the order their keys were first added.

class collections.OrderedDict ([items])
Return an instance of a dict subclass, supporting the usual dict methods. An OrderedDict is a dict that
remembers the order that keys were first inserted. If a new entry overwrites an existing entry, the original

7.3. collections — Container datatypes 165

http://code.activestate.com/recipes/500261/
http://code.activestate.com/recipes/577629-namedtupleabc-abstract-base-class-mix-in-for-named/

The Python Library Reference, Release 3.2.1

insertion position is left unchanged. Deleting an entry and reinserting it will move it to the end. New in version
3.1.

popitem (last=True)
The popitem () method for ordered dictionaries returns and removes a (key, value) pair. The pairs are
returned in LIFO order if last is true or FIFO order if false.

move_to_end (key, last=True)
Move an existing key to either end of an ordered dictionary. The item is moved to the right end if last is
true (the default) or to the beginning if last is false. Raises KeyError if the key does not exist:

>>> d = OrderedDict.fromkeys (’abcde’)
>>> d.move_to_end('b’")

>>> ’’ join (d.keys ())

"acdeb’

>>> d.move_to_end(’'b’, last=False)
>>> /7 Join(d.keys ())
"bacde’

New in version 3.2.

In addition to the usual mapping methods, ordered dictionaries also support reverse iteration using reversed ().

Equality tests between OrderedDict objects are order-sensitive and are implemented as
list (odl.items ())==1ist (od2.items ()). Equality tests between OrderedDict objects and other
Mapping objects are order-insensitive like regular dictionaries. This allows OrderedDict objects to be substituted
anywhere a regular dictionary is used.

The OrderedDict constructor and update () method both accept keyword arguments, but their order is lost
because Python’s function call semantics pass-in keyword arguments using a regular unordered dictionary.

See Also:

Equivalent OrderedDict recipe that runs on Python 2.4 or later.

orderedDict Examples and Recipes

Since an ordered dictionary remembers its insertion order, it can be used in conjuction with sorting to make a sorted
dictionary:

>>> # regular unsorted dictionary
>>> d = {’banana’: 3, ’"apple’:4, ’'pear’: 1, ’'orange’: 2}

>>> # dictionary sorted by key
>>> OrderedDict (sorted(d.items (), key=lambda t: t[0]))
OrderedDict ([(" apple’, 4), (’banana’, 3), ('orange’, 2), ('pear’, 1)1)

>>> # dictionary sorted by value
>>> OrderedDict (sorted(d.items (), key=lambda t: t[1]))
OrderedDict ([('pear’, 1), ('orange’, 2), ('"banana’, 3), ("apple’, 4)1)

>>> # dictionary sorted by length of the key string
>>> OrderedDict (sorted(d.items (), key=lambda t: len(t[0])))
OrderedDict ([("pear’, 1), ("apple’, 4), ('orange’, 2), ('’banana’, 3)])

The new sorted dictionaries maintain their sort order when entries are deleted. But when new keys are added, the keys
are appended to the end and the sort is not maintained.

166 Chapter 7. Data Types

http://code.activestate.com/recipes/576693/

The Python Library Reference, Release 3.2.1

It is also straight-forward to create an ordered dictionary variant that the remembers the order the keys were last
inserted. If a new entry overwrites an existing entry, the original insertion position is changed and moved to the end:

class LastUpdatedOrderedDict (OrderedDict) :
"Store items in the order the keys were last added’

def _ setitem__ (self, key, value):
if key in self:
del self[key]
OrderedDict._ _setitem_ (self, key, value)

An ordered dictionary can combined with the Counter class so that the counter remembers the order elements are
first encountered:

class OrderedCounter (Counter, OrderedDict) :
"Counter that remembers the order elements are first encountered’

def _ repr_ (self):
return '%$s(%r)’ % (self.__class__ . __name_ , OrderedDict (self))
def _ reduce_ (self):
return self._ class_ , (OrderedDict (self),)

7.3.6 UserDict objects

The class, UserDict acts as a wrapper around dictionary objects. The need for this class has been partially sup-
planted by the ability to subclass directly from dict; however, this class can be easier to work with because the
underlying dictionary is accessible as an attribute.

class collections.UserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via the data attribute of UserDict instances. If initialdata is provided, dat a is initialized with its contents;
note that a reference to initialdata will not be kept, allowing it be used for other purposes.

In addition to supporting the methods and operations of mappings, UserDict instances provide the following
attribute:

data
A real dictionary used to store the contents of the UserDict class.

7.3.7 UserList objects

This class acts as a wrapper around list objects. It is a useful base class for your own list-like classes which can inherit
from them and override existing methods or add new ones. In this way, one can add new behaviors to lists.

The need for this class has been partially supplanted by the ability to subclass directly from 11 st; however, this class
can be easier to work with because the underlying list is accessible as an attribute.

class collections.UserList ([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via the data
attribute of UserList instances. The instance’s contents are initially set to a copy of list, defaulting to the
empty list []. list can be any iterable, for example a real Python list or a UserList object.

In addition to supporting the methods and operations of mutable sequences, UserList instances provide the
following attribute:

7.3. collections — Container datatypes 167

The Python Library Reference, Release 3.2.1

data
A real 11ist object used to store the contents of the UserList class.

Subclassing requirements: Subclasses of UserList are expect to offer a constructor which can be called with
either no arguments or one argument. List operations which return a new sequence attempt to create an instance of the
actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which is
a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class will
need to be overridden; please consult the sources for information about the methods which need to be provided in that
case.

7.3.8 Userstring objects

The class, UserString acts as a wrapper around string objects. The need for this class has been partially supplanted
by the ability to subclass directly from st r; however, this class can be easier to work with because the underlying
string is accessible as an attribute.

class collections.UserString([sequence])
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string object,
which is accessible via the data attribute of User St ring instances. The instance’s contents are initially set
to a copy of sequence. The sequence can be an instance of bytes, str, UserString (or a subclass) or an
arbitrary sequence which can be converted into a string using the built-in st r () function.

7.3.9 ABCs - abstract base classes

The collections module offers the following ABCs:

168 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

ABC Inherits from Abstract Methods Mixin Methods
Containegr __contains___
Hashable __hash___
Iterable __iter_
Iterator] Iterable __next_ _ _iter_
Sized __len_
Callable _call__
Sequencel Sized, __getitem_ __contains_ ,__iter_ ,_ reversed__,
Iterable, index, and count
Container
MutableSef§agneace ___setitem__, Inherited Sequence methods and append, reverse,
__delitem__, extend, pop, remove, and __iadd_
insert
Set Sized, _le_ ., 1t eq__, ne__, gt__,
Iterable, _ge_ ,_and_ ,__or_ ,_ sub__ ,_ xor__,
Container and isdisjoint
MutableSle8et add, discard Inherited Set methods and clear, pop, remove,
_dor ,_dand_, dixor__,and__isub___
Mapping | Sized, __getitem __contains__, keys, items, values, get,
Iterable, _eq_,and__ne_
Container
MutableMaMpppgng _ _setitem__, Inherited Mapping methods and pop, popitem,
__delitem_ clear, update, and setdefault
MappingVi8wzed __len___
ItemsViegwMappingView, __contains_ , iter
Set
KeysView MappingView, _ _contains__ ,__iter
Set
ValuesVieMappingView __contains__ ,__iter_
class collections.Container
class collections.Hashable
class collections.Sized
class collections.Callable
ABC:s for classes that provide respectively the methods __contains__ (), __hash__ (), __len__ (),
and __call__ ().
class collections.Iterable
ABC for classes that provide the __iter__ () method. See also the definition of iterable.
class collections.Iterator
ABC for classes that provide the __iter__ () and next () methods. See also the definition of iteraror.

class collections.Sequence
class collections.MutableSequence
ABC:s for read-only and mutable sequences.

class collections.Set
class collections.MutableSet
ABC:s for read-only and mutable sets.

class collections.Mapping
class collections.MutableMapping
ABC:s for read-only and mutable mappings.

class collections.MappingView
class collections.ItemsView

7.3. collections — Container datatypes 169

The Python Library Reference, Release 3.2.1

class collections.KeysView
class collections.ValuesView
ABC:s for mapping, items, keys, and values views.

These ABCs allow us to ask classes or instances if they provide particular functionality, for example:

size = None
if isinstance (myvar, collections.Sized):
size = len (myvar)

Several of the ABCs are also useful as mixins that make it easier to develop classes supporting container APIs. For
example, to write a class supporting the full Set API, it only necessary to supply the three underlying abstract meth-
ods: _ _contains__ (), __iter_ (), and __len__ (). The ABC supplies the remaining methods such as
__and__ () and isdisjoint ()

class ListBasedSet (collections.Set):
777 Alternate set implementation favoring space over speed
and not requiring the set elements to be hashable. 77’
def _ init_ (self, iterable):
self.elements = 1lst = []
for value in iterable:
if value not in 1lst:
lst.append(value)
def @ iter_ (self):
return iter (self.elements)
def _ contains__ (self, wvalue):
return value in self.elements
def _ len_ (self):
return len(self.elements)

sl ListBasedSet (' abcdef’)
s2 = ListBasedSet ('defghi’)
overlap = sl & s2 # The __and__ () method is supported automatically

Notes on using Set and MutableSet as a mixin:

1. Since some set operations create new sets, the default mixin methods need a way to create new instances from
an iterable. The class constructor is assumed to have a signature in the form ClassName (iterable).
That assumption is factored-out to an internal classmethod called _from_iterable () which calls
cls (iterable) to produce a new set. If the Set mixin is being used in a class with a different constructor
signature, you will need to override _from_iterable () with aclassmethod that can construct new instances
from an iterable argument.

2. To override the comparisons (presumably for speed, as the semantics are fixed), redefine __1e__ () and then
the other operations will automatically follow suit.

3. The Set mixin provides a _hash () method to compute a hash value for the set; however, __hash__ () is
not defined because not all sets are hashable or immutable. To add set hashabilty using mixins, inherit from both
Set () and Hashable (), thendefine _ _hash = Set._hash.

See Also:

¢ OrderedSet recipe for an example built on MutableSet.

¢ For more about ABCs, see the abc module and PEP 3119.

170 Chapter 7. Data Types

http://code.activestate.com/recipes/576694/
http://www.python.org/dev/peps/pep-3119

The Python Library Reference, Release 3.2.1

7.4 heapq — Heap queue algorithm

Source code: Lib/heapq.py

This module provides an implementation of the heap queue algorithm, also known as the priority queue algorithm.

Heaps are binary trees for which every parent node has a value less than or equal to any of its children. This implemen-
tation uses arrays for which heap [k] <= heap[2*k+1] and heap[k] <= heap[2*k+2] for all k, counting
elements from zero. For the sake of comparison, non-existing elements are considered to be infinite. The interesting
property of a heap is that its smallest element is always the root, heap [0].

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes the
relationship between the index for a node and the indexes for its children slightly less obvious, but is more suitable
since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest (called a “min
heap” in textbooks; a “max heap” is more common in texts because of its suitability for in-place sorting).

These two make it possible to view the heap as a regular Python list without surprises: heap [0] is the smallest item,
and heap.sort () maintains the heap invariant!

To create a heap, use a list initialized to [], or you can transform a populated list into a heap via function heapify ().
The following functions are provided:

heapq.heappush (heap, item)
Push the value ifem onto the heap, maintaining the heap invariant.

heapqg.heappop (heap)
Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty,
IndexError is raised.

heapqg.heappushpop (heap, item)
Push itfem on the heap, then pop and return the smallest item from the heap. The combined action runs more
efficiently than heappush () followed by a separate call to heappop ().

heapg.heapify (x)
Transform list x into a heap, in-place, in linear time.

heapg.heapreplace (heap, item)
Pop and return the smallest item from the heap, and also push the new item. The heap size doesn’t change. If
the heap is empty, IndexError is raised.

This one step operation is more efficient than a heappop () followed by heappush () and can be more
appropriate when using a fixed-size heap. The pop/push combination always returns an element from the heap
and replaces it with item.

The value returned may be larger than the item added. If that isn’t desired, consider using heappushpop ()
instead. Its push/pop combination returns the smaller of the two values, leaving the larger value on the heap.

The module also offers three general purpose functions based on heaps.

heapg.merge (*iterables)
Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from multiple
log files). Returns an iferator over the sorted values.

Similar to sorted (itertools.chain(xiterables)) but returns an iterable, does not pull the data
into memory all at once, and assumes that each of the input streams is already sorted (smallest to largest).

heapg.nlargest (n, iterable, key=None)
Return a list with the n largest elements from the dataset defined by iterable. key, if provided, specifies a function

7.4. heapqg — Heap queue algorithm 171

http://hg.python.org/cpython/file/default/Lib/heapq.py

The Python Library Reference, Release 3.2.1

of one argument that is used to extract a comparison key from each element in the iterable: key=str.lower
Equivalent to: sorted (iterable, key=key, reverse=True) [:n]

heapg.nsmallest (n, iterable, key=None)
Return a list with the n smallest elements from the dataset defined by iterable. key, if provided, speci-
fies a function of one argument that is used to extract a comparison key from each element in the iterable:
key=str.lower Equivalent to: sorted (iterable, key=key) [:n]

The latter two functions perform best for smaller values of n. For larger values, it is more efficient to use the
sorted () function. Also, when n==1, it is more efficient to use the built-in min () and max () functions.

7.4.1 Basic Examples

A heapsort can be implemented by pushing all values onto a heap and then popping off the smallest values one at a
time:

>>> def heapsort (iterable):
"Equivalent to sorted(iterable)’
h = []
for value in iterable:
heappush (h, wvalue)
return [heappop(h) for i in range(len(h))]

>>> heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 01])
[OI ll 2/ 37 4/ 5/ 6/ 7! 8/ 9]

Heap elements can be tuples. This is useful for assigning comparison values (such as task priorities) alongside the
main record being tracked:

>>> h = []

>>> heappush (h, (5, "write code’))

>>> heappush (h, (7, ’'release product’))
>>> heappush (h, (
>>> heappush (h, (
>>> heappop (h)

(1, "write spec’)

5

7

1, '"write spec’))
3, ’'create tests’))

7.4.2 Priority Queue Implementation Notes

A priority queue is common use for a heap, and it presents several implementation challenges:

* Sort stability: how do you get two tasks with equal priorities to be returned in the order they were originally
added?

 Tuple comparison breaks for (priority, task) pairs if the priorities are equal and the tasks do not have a default
comparison order.

* If the priority of a task changes, how do you move it to a new position in the heap?
* Or if a pending task needs to be deleted, how do you find it and remove it from the queue?

A solution to the first two challenges is to store entries as 3-element list including the priority, an entry count, and the
task. The entry count serves as a tie-breaker so that two tasks with the same priority are returned in the order they were
added. And since no two entry counts are the same, the tuple comparison will never attempt to directly compare two
tasks.

The remaining challenges revolve around finding a pending task and making changes to its priority or removing it
entirely. Finding a task can be done with a dictionary pointing to an entry in the queue.

172 Chapter 7. Data Types

http://en.wikipedia.org/wiki/Heapsort
http://en.wikipedia.org/wiki/Priority_queue

The Python Library Reference, Release 3.2.1

Removing the entry or changing its priority is more difficult because it would break the heap structure invariants. So,
a possible solution is to mark an entry as invalid and optionally add a new entry with the revised priority:

pa = [1 # the priority queue list
counter = itertools.count (1) # unique sequence count
task_finder = {} # mapping of tasks to entries
INVALID = O # mark an entry as deleted

def add_task(priority, task, count=None) :
if count is None:
count = next (counter)
entry = [priority, count, task]
task_finder[task] = entry
heappush (pg, entry)

def get_top_priority():
while True:
priority, count, task = heappop (pg)
del task_finder[task]
if count is not INVALID:
return task

def delete_task (task):
entry = task_finder[task]
entry[1l] = INVALID

def reprioritize(priority, task):
entry = task_finder[task]
add_task (priority, task, entry[1l])
entry[1l] = INVALID

7.4.3 Theory

Heaps are arrays for which a [k] <= a[2+k+1] and a[k] <= a[2xk+2] for all k, counting elements from O.
For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a heap is
that a [0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers below
are k,nota [k]:

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cell k is topping 2+k+1 and 2+k+2. In an usual binary tournament we see in sports, each
cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To be
more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and the rule

7.4. heapq — Heap queue algorithm 173

The Python Library Reference, Release 3.2.1

becomes that a cell and the two cells it tops contain three different items, but the top cell “wins” over the two topped
cells.

If this heap invariant is protected at all time, index O is clearly the overall winner. The simplest algorithmic way to
remove it and find the “next” winner is to move some loser (let’s say cell 30 in the diagram above) into the O position,
and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This is clearly
logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n) sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that the
inserted items are not “better” than the last 0’th element you extracted. This is especially useful in simulation contexts,
where the tree holds all incoming events, and the “win” condition means the smallest scheduled time. When an event
schedule other events for execution, they are scheduled into the future, so they can easily go into the heap. So, a heap
is a good structure for implementing schedulers (this is what I used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they
are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing “runs”
(which are pre-sorted sequences, which size is usually related to the amount of CPU memory), followed by a merging
passes for these runs, which merging is often very cleverly organised '. It is very important that the initial sort produces
the longest runs possible. Tournaments are a good way to that. If, using all the memory available to hold a tournament,
you replace and percolate items that happen to fit the current run, you’ll produce runs which are twice the size of the
memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the 0’th item on disk and get an input which may not fit in the current tournament (because the
value “wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed memory
could be cleverly reused immediately for progressively building a second heap, which grows at exactly the same rate
the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new run. Clever and
quite effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is good to keep
a ‘heap’ module around. :-)

7.5 bisect — Array bisection algorithm

Source code: Lib/bisect.py

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion.
For long lists of items with expensive comparison operations, this can be an improvement over the more common
approach. The module is called bisect because it uses a basic bisection algorithm to do its work. The source code
may be most useful as a working example of the algorithm (the boundary conditions are already right!).

The following functions are provided:

bisect.bisect_left (a, x, lo=0, hi=len(a))
Locate the insertion point for x in a to maintain sorted order. The parameters /o and hi may be used to specify a
subset of the list which should be considered; by default the entire list is used. If x is already present in a, the
insertion point will be before (to the left of) any existing entries. The return value is suitable for use as the first
parameter to 1ist.insert () assuming that a is already sorted.

! The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking capabilities
of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to ensure (far in advance)
that each tape movement will be the most effective possible (that is, will best participate at “progressing” the merge). Some tapes were even able
to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite spectacular to watch! From all
times, sorting has always been a Great Art! :-)

174 Chapter 7. Data Types

http://hg.python.org/cpython/file/default/Lib/bisect.py

The Python Library Reference, Release 3.2.1

The returned insertion point i partitions the array a into two halves so that all (val < x for val in
allo:1]) fortheleftside and all (val >= x for val in a[i:hi]) for the right side.

bisect.bisect_right (a, x, lo=0, hi=len(a))

bisect .bisect (a, x, lo=0, hi=len(a))
Similar to bisect_left (), but returns an insertion point which comes after (to the right of) any existing
entries of x in a.

The returned insertion point i partitions the array a into two halves so that all (val <= x for val in
allo:1]) fortheleftside and all (val > x for val in al[i:hi]) for the right side.

bisect.insort_left (a, x, lo=0, hi=len(a))
Insert x in a in sorted order. This is equivalentto a.insert (bisect.bisect_left (a, x, lo, hi),
x) assuming that a is already sorted. Keep in mind that the O(log n) search is dominated by the slow O(n)
insertion step.

bisect.insort_right (a, x, lo=0, hi=len(a))
bisect.insort (a, x, lo=0, hi=len(a))
Similar to insort_left (), butinserting x in a after any existing entries of x.

See Also:

SortedCollection recipe that uses bisect to build a full-featured collection class with straight-forward search methods
and support for a key-function. The keys are precomputed to save unnecessary calls to the key function during searches.

7.5.1 Searching Sorted Lists

The above bisect () functions are useful for finding insertion points but can be tricky or awkward to use for common
searching tasks. The following five functions show how to transform them into the standard lookups for sorted lists:

def index(a, x):
"Locate the leftmost value exactly equal to x’
i = bisect_left (a, x)
if 1 != len(a) and al[i] == x:
return i
raise ValueError

def find_ 1t (a, x):
"Find rightmost value less than x’
i = bisect_left (a, x)
if i:
return a[i-1]
raise ValueError

def find le(a, x):
"Find rightmost value less than or equal to x’
i = bisect_right(a, x)
if i:
return af[i-1]
raise ValueError

def find gt (a, x):
"Find leftmost value greater than x’
i = bisect_right (a, x)
if i != len(a):
return afi]
raise ValueError

7.5. bisect — Array bisection algorithm 175

http://code.activestate.com/recipes/577197-sortedcollection/

The Python Library Reference, Release 3.2.1

def find _ge(a, x):
"Find leftmost item greater than or equal to x’
i = bisect_left(a, x)
if i != len(a):
return ali]
raise ValueError

7.5.2 Other Examples

The bisect () function can be useful for numeric table lookups. This example uses bisect () to look up a letter
grade for an exam score (say) based on a set of ordered numeric breakpoints: 90 and up is an ‘A’, 80 to 89 is a ‘B’,
and so on:

>>> def grade (score, breakpoints=[60, 70, 80, 90], grades=’'FDCBA’):
i = bisect (breakpoints, score)
return grades[i]

>>> [grade (score) for score in [33, 99, 77, 70, 89, 90, 100]]
[IFI’ IAI, ICII ICI, IBII IAI, IAI]

Unlike the sorted () function, it does not make sense for the bisect () functions to have key or reversed arguments
because that would lead to an inefficient design (successive calls to bisect functions would not “remember” all of the
previous key lookups).

Instead, it is better to search a list of precomputed keys to find the index of the record in question:

>>> data = [('red’, 5), ('blue’, 1), ('yellow’, 8), ("black’, 0)]
>>> data.sort (key=lambda r: r[1])

>>> keys = [r[l] for r in data] # precomputed 1ist of keys
>>> data[bisect_left (keys, 0)]

("black’”, 0)

>>> datal[bisect_left (keys, 1)]

("blue’, 1)

>>> datalbisect_left (keys, 5)]

("red’, 5)

>>> data[bisect_left (keys, 8)]
("yvellow’, 8)

7.6 array — Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using a fype code, which is a single
character. The following type codes are defined:

176 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

Type code C Type Python Type Minimum size in bytes
"o’ signed char int 1

"B’ unsigned char | int 1

ru’ Py_UNICODE | Unicode character | 2 (see note)
"h' signed short int 2

"H’ unsigned short | int 2

rir signed int int 2

"1’ unsigned int int 2

r1r signed long int 4

g unsigned long | int 4

i float float 4

rd’ double float 8

Note: The ' u’ typecode corresponds to Python’s unicode character. On narrow Unicode builds this is 2-bytes, on
wide builds this is 4-bytes.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed through the i temsize attribute.

The module defines the following type:

class array.array (typecode[, initializer])
A new array whose items are restricted by typecode, and initialized from the optional initializer value, which
must be a list, object supporting the buffer interface, or iterable over elements of the appropriate type.

If given a list or string, the initializer is passed to the new array’s fromlist (), frombytes (), or
fromunicode () method (see below) to add initial items to the array. Otherwise, the iterable initializer is
passed to the extend () method.

array.typecodes
A string with all available type codes.

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication. When
using slice assignment, the assigned value must be an array object with the same type code; in all other cases,
TypeError is raised. Array objects also implement the buffer interface, and may be used wherever buffer objects
are supported.

The following data items and methods are also supported:

array.typecode
The typecode character used to create the array.

array.itemsize
The length in bytes of one array item in the internal representation.

array.append (x)
Append a new item with value x to the end of the array.

array.buffer info()
Return a tuple (address, length) giving the current memory address and the length in elements of
the buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as
array.buffer_info() [1] » array.itemsize. Thisis occasionally useful when working with low-
level (and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioct1 () operations.
The returned numbers are valid as long as the array exists and no length-changing operations are applied to it.

Note: When using array objects from code written in C or C++ (the only way to effectively make use of
this information), it makes more sense to use the buffer interface supported by array objects. This method is
maintained for backward compatibility and should be avoided in new code. The buffer interface is documented
in bufferobjects.

7.6. array — Efficient arrays of numeric values 177

The Python Library Reference, Release 3.2.1

array.byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size; for other
types of values, Runt imeError is raised. It is useful when reading data from a file written on a machine with
a different byte order.

array.count (x)
Return the number of occurrences of x in the array.

array .extend (iterable)
Append items from iterable to the end of the array. If iterable is another array, it must have exactly the same
type code; if not, TypeError will be raised. If itferable is not an array, it must be iterable and its elements
must be the right type to be appended to the array.

array.frombytes (s)
Appends items from the string, interpreting the string as an array of machine values (as if it had been read from
a file using the fromfile () method). New in version 3.2: fromstring () is renamed to frombytes ()
for clarity.

array.fromfile (f, n)
Read n items (as machine values) from the file object f and append them to the end of the array. If less than
n items are available, EOFError is raised, but the items that were available are still inserted into the array. f
must be a real built-in file object; something else with a read () method won’t do.

array.fromlist (list)
Append items from the list. This is equivalentto for x in list: a.append (x) except that if there is
a type error, the array is unchanged.

array.fromstring ()
Deprecated alias for frombytes ().

array.fromunicode (s)
Extends this array with data from the given unicode string. The array must be a type ' u’ array; otherwise
aValueError israised. Use array.frombytes (unicodestring.encode (enc)) to append Uni-
code data to an array of some other type.

array.index (x)
Return the smallest i such that i is the index of the first occurrence of x in the array.

array.insert (i, x)
Insert a new item with value x in the array before position i. Negative values are treated as being relative to the
end of the array.

array.pop ([i])
Removes the item with the index i from the array and returns it. The optional argument defaults to —1, so that
by default the last item is removed and returned.

array.remove (x)
Remove the first occurrence of x from the array.

array.reverse ()
Reverse the order of the items in the array.

array.tobytes ()
Convert the array to an array of machine values and return the bytes representation (the same sequence of bytes
that would be written to a file by the tofile () method.) New in version 3.2: tostring () is renamed to
tobytes () for clarity.

array.tofile (f)
Write all items (as machine values) to the file object f.

178 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

array.tolist ()
Convert the array to an ordinary list with the same items.

array.tostring()
Deprecated alias for tobytes ().

array.tounicode ()
Convert the array to a unicode string. The array must be a type ' u’ array; otherwise a ValueError is raised.
Use array.tobytes () .decode (enc) to obtain a unicode string from an array of some other type.

When an array object is printed or converted to a string, it is represented as array (typecode, initializer).
The initializer is omitted if the array is empty, otherwise it is a string if the typecode is ' u’ , otherwise it is a list of
numbers. The string is guaranteed to be able to be converted back to an array with the same type and value using
eval (), solong asthe array () function has been imported using from array import array. Examples:

array (1)

array (‘u’, "hello \u2641’)

array (1", [1, 2, 3, 4, 5])
array('d’, [1.0, 2.0, 3.1417)
See Also:

Module struct Packing and unpacking of heterogeneous binary data.

Module xdr1ib Packing and unpacking of External Data Representation (XDR) data as used in some remote pro-
cedure call systems.

The Numerical Python Manual The Numeric Python extension (NumPy) defines another array type; see
http://numpy.sourceforge.net/ for further information about Numerical Python. (A PDF version of the NumPy
manual is available at http://numpy.sourceforge.net/numdoc/numdoc.pdf).

7.7 sched — Event scheduler

Source code: Lib/sched.py

The sched module defines a class which implements a general purpose event scheduler:

class sched. scheduler (timefunc, delayfunc)
The scheduler class defines a generic interface to scheduling events. It needs two functions to actually deal
with the “outside world” — timefunc should be callable without arguments, and return a number (the “time”,
in any units whatsoever). The delayfunc function should be callable with one argument, compatible with the
output of timefunc, and should delay that many time units. delayfunc will also be called with the argument 0
after each event is run to allow other threads an opportunity to run in multi-threaded applications.

Example:

>>> import sched, time
>>> s = sched.scheduler (time.time, time.sleep)
>>> def print_time(): print ("From print_time", time.time ())

>>> def print_some_times():
print (time.time())
s.enter (5, 1, print_time, ())
s.enter (10, 1, print_time, ())
s.run ()
print (time.time())

7.7. sched — Event scheduler 179

http://numpy.sourceforge.net/numdoc/HTML/numdoc.htm
http://numpy.sourceforge.net/
http://numpy.sourceforge.net/numdoc/numdoc.pdf
http://hg.python.org/cpython/file/default/Lib/sched.py

The Python Library Reference, Release 3.2.1

>>> print_some_times ()
930343690.257

From print_time 930343695.274
From print_time 930343700.273
930343700.276

In multi-threaded environments, the scheduler class has limitations with respect to thread-safety, inability to insert
a new task before the one currently pending in a running scheduler, and holding up the main thread until the event
queue is empty. Instead, the preferred approach is to use the threading. Timer class instead.

Example:

>>> import time
>>> from threading import Timer
>>> def print_time():
print ("From print_time", time.time())

>>> def print_some_times|() :
print (time.time ())
(

Timer (5, print_time, ()).start /()
Timer (10, print_time, ()).start()
time.sleep(11) # sleep while time-delay events execute

print (time.time ())

>>> print_some_times ()
930343690.257

From print_time 930343695.274
From print_time 930343700.273
930343701.301

7.7.1 Scheduler Objects

scheduler instances have the following methods and attributes:

scheduler.enterabs (time, priority, action, argument)
Schedule a new event. The time argument should be a numeric type compatible with the return value of the
timefunc function passed to the constructor. Events scheduled for the same fime will be executed in the order of
their priority.

Executing the event means executing action (xargument). argument must be a sequence holding the
parameters for action.

Return value is an event which may be used for later cancellation of the event (see cancel ()).

scheduler.enter (delay, priority, action, argument)
Schedule an event for delay more time units. Other then the relative time, the other arguments, the effect and
the return value are the same as those for enterabs ().

scheduler.cancel (event)
Remove the event from the queue. If event is not an event currently in the queue, this method will raise a
ValueError.

scheduler.empty ()
Return true if the event queue is empty.

scheduler.run ()
Run all scheduled events. This function will wait (using the delayfunc () function passed to the constructor)
for the next event, then execute it and so on until there are no more scheduled events.

180 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

Either action or delayfunc can raise an exception. In either case, the scheduler will maintain a consistent state
and propagate the exception. If an exception is raised by action, the event will not be attempted in future calls
torun ().

If a sequence of events takes longer to run than the time available before the next event, the scheduler will simply
fall behind. No events will be dropped; the calling code is responsible for canceling events which are no longer
pertinent.

scheduler.queue
Read-only attribute returning a list of upcoming events in the order they will be run. Each event is shown as a
named tuple with the following fields: time, priority, action, argument.

7.8 queue — A synchronized queue class

Source code: Lib/queue.py

The queue module implements multi-producer, multi-consumer queues. It is especially useful in threaded pro-
gramming when information must be exchanged safely between multiple threads. The Queue class in this module
implements all the required locking semantics. It depends on the availability of thread support in Python; see the
threading module.

Implements three types of queue whose only difference is the order that the entries are retrieved. In a FIFO queue, the
first tasks added are the first retrieved. In a LIFO queue, the most recently added entry is the first retrieved (operating
like a stack). With a priority queue, the entries are kept sorted (using the heapg module) and the lowest valued entry
is retrieved first.

The queue module defines the following classes and exceptions:

class queue . Queue (maxsize=0)
Constructor for a FIFO queue. maxsize is an integer that sets the upperbound limit on the number of items that
can be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed.
If maxsize is less than or equal to zero, the queue size is infinite.

class queue . LifoQueue (maxsize=0)
Constructor for a LIFO queue. maxsize is an integer that sets the upperbound limit on the number of items that
can be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed.
If maxsize is less than or equal to zero, the queue size is infinite.

class queue .PriorityQueue (maxsize=0)
Constructor for a priority queue. maxsize is an integer that sets the upperbound limit on the number of items that
can be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed.
If maxsize is less than or equal to zero, the queue size is infinite.

The lowest valued entries are retrieved first (the lowest valued entry is the one returned by
sorted(list (entries)) [0]). A typical pattern for entries is a tuple in the form:
(priority_number, data).

exception queue . Empty
Exception raised when non-blocking get () (or get_nowait ())iscalled on a Queue object which is empty.

exception queue .Full
Exception raised when non-blocking put () (or put_nowait ())is called on a Queue object which is full.

7.8. queue — A synchronized queue class 181

http://hg.python.org/cpython/file/default/Lib/queue.py

The Python Library Reference, Release 3.2.1

7.8.1 Queue Objects

Queue objects (Queue, LifoQueue, or PriorityQueue) provide the public methods described below.

Queue.qgsize ()
Return the approximate size of the queue. Note, gsize() > 0 doesn’t guarantee that a subsequent get() will not
block, nor will gsize() < maxsize guarantee that put() will not block.

Queue.empty ()
Return True if the queue is empty, False otherwise. If empty() returns True it doesn’t guarantee that a sub-
sequent call to put() will not block. Similarly, if empty() returns False it doesn’t guarantee that a subsequent
call to get() will not block.

Queue. full ()
Return True if the queue is full, False otherwise. If full() returns True it doesn’t guarantee that a subsequent
call to get() will not block. Similarly, if full() returns False it doesn’t guarantee that a subsequent call to put()
will not block.

Queue . put (item, block=True, timeout=None)
Put item into the queue. If optional args block is true and timeout is None (the default), block if necessary until
a free slot is available. If timeout is a positive number, it blocks at most timeout seconds and raises the Full
exception if no free slot was available within that time. Otherwise (block is false), put an item on the queue if a
free slot is immediately available, else raise the Full exception (timeout is ignored in that case).

Queue.put_nowait (item)
Equivalent to put (item, False).

Queue.get (block=True, timeout=None)
Remove and return an item from the queue. If optional args block is true and timeout is None (the default),
block if necessary until an item is available. If timeout is a positive number, it blocks at most timeout seconds
and raises the Empty exception if no item was available within that time. Otherwise (block is false), return an
item if one is immediately available, else raise the Empty exception (timeout is ignored in that case).

Queue.get_nowait ()
Equivalent to get (False).

Two methods are offered to support tracking whether enqueued tasks have been fully processed by daemon consumer
threads.

Queue.task_done ()
Indicate that a formerly enqueued task is complete. Used by queue consumer threads. For each get () used to
fetch a task, a subsequent call to task_done () tells the queue that the processing on the task is complete.

If a join () is currently blocking, it will resume when all items have been processed (meaning that a
task_done () call was received for every item that had been put () into the queue).

Raises a ValueError if called more times than there were items placed in the queue.

Queue. join ()
Blocks until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down whenever
a consumer thread calls task_done () to indicate that the item was retrieved and all work on it is complete.
When the count of unfinished tasks drops to zero, join () unblocks.

Example of how to wait for enqueued tasks to be completed:

def worker () :
while True:
item = g.get ()
do_work (item)

182 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

g.task_done ()

g = Queue ()

for i in range (num_worker_threads) :
t = Thread(target=worker)
t .daemon = True
t.start ()

for item in source():

g.put (item)
g.join () # block until all tasks are done
See Also:

Classmultiprocessing.Queue A queue class for use in a multi-processing (rather than multi-threading) con-
text.

collections.deque is an alternative implementation of unbounded queues with fast atomic append () and
popleft () operations that do not require locking.

7.9 weakref — Weak references

Source code: Lib/weakref.py

The weakref module allows the Python programmer to create weak references to objects.
In the following, the term referent means the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a referent
are weak references, garbage collection is free to destroy the referent and reuse its memory for something else. A
primary use for weak references is to implement caches or mappings holding large objects, where it’s desired that a
large object not be kept alive solely because it appears in a cache or mapping.

For example, if you have a number of large binary image objects, you may wish to associate a name with each.
If you used a Python dictionary to map names to images, or images to names, the image objects would re-
main alive just because they appeared as values or keys in the dictionaries. The WeakKeyDictionary and
WeakValueDictionary classes supplied by the weakref module are an alternative, using weak references to
construct mappings that don’t keep objects alive solely because they appear in the mapping objects. If, for example,
an image object is a value in a WeakValueDictionary, then when the last remaining references to that image ob-
ject are the weak references held by weak mappings, garbage collection can reclaim the object, and its corresponding
entries in weak mappings are simply deleted.

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting up
callback functions on the weak references that notify the weak dictionaries when a key or value has been reclaimed
by garbage collection. Weak Set implements the set interface, but keeps weak references to its elements, just like a
WeakKeyDictionary does.

Most programs should find that using one of these weak container types is all they need — it’s not usually necessary to
create your own weak references directly. The low-level machinery used by the weak dictionary implementations is
exposed by the weakref module for the benefit of advanced uses.

Note: Weak references to an object are cleared before the object’s __del__ () is called, to ensure that the weak
reference callback (if any) finds the object still alive.

7.9. weakref — Weak references 183

http://hg.python.org/cpython/file/default/Lib/weakref.py

The Python Library Reference, Release 3.2.1

Not all objects can be weakly referenced; those objects which can include class instances, functions written in Python
(but not in C), instance methods, sets, frozensets, some file objects, generators, type objects, sockets, arrays, deques,
regular expression pattern objects, and code objects. Changed in version 3.2: Added support for thread.lock, thread-
ing.Lock, and code objects. Several built-in types such as 1ist and dict do not directly support weak references
but can add support through subclassing:

class Dict (dict):
pass

obj = Dict (red=1l, green=2, blue=3) # this object is weak referenceable

Other built-in types such as tuple and int do not support weak references even when subclassed (This is an imple-
mentation detail and may be different across various Python implementations.).

Extension types can easily be made to support weak references; see weakref-support.

class weakref.ref (object[, callback])
Return a weak reference to object. The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will cause None to be
returned. If callback is provided and not None, and the returned weakref object is still alive, the callback will
be called when the object is about to be finalized; the weak reference object will be passed as the only parameter
to the callback; the referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they are
handled in exactly the same way as exceptions raised from an object’s __del__ () method.

Weak references are hashable if the object is hashable. They will maintain their hash value even after the object
was deleted. If hash () is called the first time only after the object was deleted, the call will raise TypeError.

Weak references support tests for equality, but not ordering. If the referents are still alive, two references have
the same equality relationship as their referents (regardless of the callback). If either referent has been deleted,
the references are equal only if the reference objects are the same object.

This is a subclassable type rather than a factory function.

weakref .proxy (object[, callback])
Return a proxy to object which uses a weak reference. This supports use of the proxy in most contexts instead
of requiring the explicit dereferencing used with weak reference objects. The returned object will have a type
of either ProxyType or CallableProxyType, depending on whether object is callable. Proxy objects are
not hashable regardless of the referent; this avoids a number of problems related to their fundamentally mutable
nature, and prevent their use as dictionary keys. callback is the same as the parameter of the same name to the
ref () function.

weakref .getweakrefcount (object)
Return the number of weak references and proxies which refer to object.

weakref .getweakrefs (object)
Return a list of all weak reference and proxy objects which refer to object.

class weakref .WeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no longer a
strong reference to the key. This can be used to associate additional data with an object owned by other parts of
an application without adding attributes to those objects. This can be especially useful with objects that override
attribute accesses.

Note: Caution: Because a WeakKeyDictionary is built on top of a Python dictionary, it must not change
size when iterating over it. This can be difficult to ensure for a WeakKeyDictionary because actions per-

184 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

formed by the program during iteration may cause items in the dictionary to vanish “by magic” (as a side effect
of garbage collection).

WeakKeyDictionary objects have the following additional methods. These expose the internal references directly.
The references are not guaranteed to be “live” at the time they are used, so the result of calling the references needs
to be checked before being used. This can be used to avoid creating references that will cause the garbage collector to
keep the keys around longer than needed.

WeakKeyDictionary.keyrefs ()
Return an iterable of the weak references to the keys.

class weakref .WeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong refer-
ence to the value exists any more.

Note: Caution: Because a WeakValueDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for a WeakValueDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish “by magic” (as a
side effect of garbage collection).

WeakValueDictionary objects have the following additional methods. These method have the same issues as the
and keyrefs () method of WeakKeyDictionary objects.

WeakValueDictionary.valuerefs ()
Return an iterable of the weak references to the values.

class weakref .WeakSet ([elements])
Set class that keeps weak references to its elements. An element will be discarded when no strong reference to
it exists any more.

weakref .ReferenceType
The type object for weak references objects.

weakref.ProxyType
The type object for proxies of objects which are not callable.

weakref.CallableProxyType
The type object for proxies of callable objects.

weakref .ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exception weakref .ReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same as
the standard ReferenceError exception.

See Also:

PEP 0205 - Weak References The proposal and rationale for this feature, including links to earlier implementations
and information about similar features in other languages.

7.9.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

7.9. weakref — Weak references 185

http://www.python.org/dev/peps/pep-0205

The Python Library Reference, Release 3.2.1

>>> import weakref
>>> class Object:

pass
>>> o = Obiject ()
>>> r = weakref.ref (0)
>>> 02 = r()
>>> o is 02
True

If the referent no longer exists, calling the reference object returns None:

>>> del o, o2
>>> print(r())
None

Testing that a weak reference object is still live should be done using the expression ref () is not None. Nor-
mally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o = r()
if o is None:
referent has been garbage collected
print ("Object has been deallocated; can’t frobnicate.")
else:
print ("Object is still live!")
o.do_something_useful ()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause a weak
reference to become invalidated before the weak reference is called; the idiom shown above is safe in threaded appli-
cations as well as single-threaded applications.

Specialized versions of ref objects can be created through subclassing. This is used in the implementation of the
WeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be most useful
to associate additional information with a reference, but could also be used to insert additional processing on calls to
retrieve the referent.

This example shows how a subclass of ref can be used to store additional information about an object and affect the
value that’s returned when the referent is accessed:

import weakref

class ExtendedRef (weakref.ref):

def _ init__ (self, ob, callback=None, **annotations):
super (ExtendedRef, self).__init__ (ob, callback)
self._ counter = 0

for k, v in annotations.items{() :
setattr(self, k, v)

def _ _call__ (self):
"""Return a pair containing the referent and the number of
times the reference has been called.

mmn

ob = super (ExtendedRef, self).__call__ ()
if ob is not None:

self.___counter += 1

ob = (ob, self._ counter)

return ob

186 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

7.9.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The IDs
of the objects can then be used in other data structures without forcing the objects to remain alive, but the objects can
still be retrieved by ID if they do.

import weakref
_id20bj_dict = weakref.WeakValueDictionary ()
def remember (obj) :

oid = id(obj)

_id2obj_dict[oid] = obj

return oid

def id2obj(oid):
return _id2obj_dict[oid]

7.10 types — Names for built-in types

Source code: Lib/types.py

This module defines names for some object types that are used by the standard Python interpreter, but not exposed as
builtins like int or str are. Also, it does not include some of the types that arise transparently during processing
such as the 1istiterator type.

Typical use is for isinstance () or issubclass () checks.
The module defines the following names:

types.FunctionType
types.LambdaType
The type of user-defined functions and functions created by 1ambda expressions.

types.GeneratorType
The type of generator-iterator objects, produced by calling a generator function.

types.CodeType
The type for code objects such as returned by compile ().

types.MethodType
The type of methods of user-defined class instances.

types.BuiltinFunctionType

types.BuiltinMethodType
The type of built-in functions like 1en () or sys.exit (), and methods of built-in classes. (Here, the term
“built-in” means “written in C”.)

types.ModuleType
The type of modules.

types.TracebackType
The type of traceback objects such as found in sys.exc_info () [2].

types.FrameType
The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

7.10. types — Names for built-in types 187

http://hg.python.org/cpython/file/default/Lib/types.py

The Python Library Reference, Release 3.2.1

types.GetSetDescriptorType
The type of objects defined in extension modules with PyGet SetDef, such as FrameType.f_locals or
array.array.typecode. This type is used as descriptor for object attributes; it has the same purpose as
the property type, but for classes defined in extension modules.

types.MemberDescriptorType
The type of objects defined in extension modules with PyMemberDef, such as
datetime.timedelta.days. This type is used as descriptor for simple C data members which use
standard conversion functions; it has the same purpose as the property type, but for classes defined in
extension modules.

CPython implementation detail: In other implementations of Python, this type may be identical to
GetSetDescriptorType.

7.11 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.
Interface summary:

copy . copy (x)
Return a shallow copy of x.

copy .deepcopy (x)
Return a deep copy of x.

exception copy .error
Raised for module specific errors.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

* A shallow copy constructs a new compound object and then (to the extent possible) inserts references into it to
the objects found in the original.

* A deep copy constructs a new compound object and then, recursively, inserts copies into it of the objects found
in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

* Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.

* Because deep copy copies everything it may copy too much, e.g., administrative data structures that should be
shared even between copies.

The deepcopy () function avoids these problems by:
* keeping a “memo” dictionary of objects already copied during the current copying pass; and
* letting user-defined classes override the copying operation or the set of components copied.

This module does not copy types like module, method, stack trace, stack frame, file, socket, window, array, or any
similar types. It does “copy” functions and classes (shallow and deeply), by returning the original object unchanged;
this is compatible with the way these are treated by the pick 1e module.

Shallow copies of dictionaries can be made using dict .copy (), and of lists by assigning a slice of the entire list,
for example, copied_list = original_list[:].

Classes can use the same interfaces to control copying that they use to control pickling. See the description of module
pickle for information on these methods. The copy module does not use the copyreg registration module.

188 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

In order for a class to define its own copy implementation, it can define special methods ___copy__ () and
__deepcopy___ (). The former is called to implement the shallow copy operation; no additional arguments are
passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If
the deepcopy__ () implementation needs to make a deep copy of a component, it should call the deepcopy ()
function with the component as first argument and the memo dictionary as second argument.

See Also:

Module pickle Discussion of the special methods used to support object state retrieval and restoration.

7.12 pprint — Data pretty printer

Source code: Lib/pprint.py

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be
used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other built-in objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don’t
fit within the allowed width. Construct Prett yPrinter objects explicitly if you need to adjust the width constraint.

Dictionaries are sorted by key before the display is computed.
The pprint module defines one class:

class pprint .PrettyPrinter (indent=1, width=80, depth=None, stream=None)

Construct a PrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using the stream keyword; the only method used on the stream object is the file protocol’s
write () method. If not specified, the PrettyPrinter adopts sys. stdout. Three additional parameters
may be used to control the formatted representation. The keywords are indent, depth, and width. The amount
of indentation added for each recursive level is specified by indent; the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled by depth; if the data structure being printed is too deep, the next contained level is replaced by
. . .. By default, there is no constraint on the depth of the objects being formatted. The desired output width is
constrained using the width parameter; the default is 80 characters. If a structure cannot be formatted within the
constrained width, a best effort will be made.

>>> import pprint
>>> stuff = [’'spam’, ’"eggs’, ’lumberjack’, ’'knights’, ’'ni’]
>>> stuff.insert (0, stuff[:])
>>> pp = pprint.PrettyPrinter (indent=4)
>>> pp.pprint (stuff)
[[/spam’, ’'eggs’, ’lumberjack’, ’"knights’, ’'ni’],
" spam’,
"eggs’,
" lumberjack’,
"knights’,
"ni’]
>>> tup = ('spam’, (‘eggs’, (’'lumberjack’, (’knights’, ('ni’, (’dead’,
... ('parrot’, ('fresh fruit’,))))))))
>>> pp = pprint.PrettyPrinter (depth=6)
>>> pp.pprint (tup)
("spam’, ('eggs’, (’lumberjack’, ("knights’, ('ni’, ("dead’, (...)))))))

7.12. pprint — Data pretty printer 189

http://hg.python.org/cpython/file/default/Lib/pprint.py

The Python Library Reference, Release 3.2.1

The PrettyPrinter class supports several derivative functions:

pprint .pformat (object, indent=1, width=80, depth=None)
Return the formatted representation of object as a string. indent, width and depth will be passed to the
PrettyPrinter constructor as formatting parameters.

pprint.pprint (object, stream=None, indent=1, width=80, depth=None)
Prints the formatted representation of object on stream, followed by a newline. If stream is None,
sys.stdout is used. This may be used in the interactive interpreter instead of the print () function for
inspecting values (you can even reassign print = pprint.pprint for use within a scope). indent, width
and depth will be passed to the PrettyPrinter constructor as formatting parameters.

>>> import pprint
>>> stuff = [’'spam’, "eggs’, ’lumberjack’, ’"knights’, ’'ni’]
>>> stuff.insert (0, stuff)
>>> pprint.pprint (stuff)
[<Recursion on list with id=...>,
"spam’,
"eggs’,
" lumberjack’,
"knights’,
"ni’]

pprint.isreadable (object)
Determine if the formatted representation of object is “readable,” or can be used to reconstruct the value using
eval (). This always returns False for recursive objects.

>>> pprint.isreadable (stuff)
False

pprint.isrecursive (object)
Determine if object requires a recursive representation.
One more support function is also defined:

pprint.saferepr (object)
Return a string representation of object, protected against recursive data structures. If the representation of
object exposes a recursive entry, the recursive reference will be represented as <Recursion on typename
with id=number>. The representation is not otherwise formatted.

>>> pprint.saferepr (stuff)
"[<Recursion on list with id=...>, ’'spam’, ’'eggs’, ’'lumberjack’, ’knights’,

7.12.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

PrettyPrinter.pformat (object)
Return the formatted representation of object. This takes into account the options passed to the
PrettyPrinter constructor.

PrettyPrinter.pprint (object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since new PrettyPrinter objects don’t need to be created.

190 Chapter 7. Data Types

Inil]"

The Python Library Reference, Release 3.2.1

PrettyPrinter.isreadable (object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the
value using eval (). Note that this returns False for recursive objects. If the depth parameter of the
PrettyPrinter is set and the object is deeper than allowed, this returns False.

PrettyPrinter.isrecursive (object)
Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The default
implementation uses the internals of the saferepr () implementation.

PrettyPrinter.format (object, context, maxlevels, level)

Returns three values: the formatted version of object as a string, a flag indicating whether the result is readable,
and a flag indicating whether recursion was detected. The first argument is the object to be presented. The
second is a dictionary which contains the id () of objects that are part of the current presentation context
(direct and indirect containers for object that are affecting the presentation) as the keys; if an object needs to
be presented which is already represented in context, the third return value should be True. Recursive calls
to the format () method should add additional entries for containers to this dictionary. The third argument,
maxlevels, gives the requested limit to recursion; this will be 0 if there is no requested limit. This argument
should be passed unmodified to recursive calls. The fourth argument, level, gives the current level; recursive
calls should be passed a value less than that of the current call.

7.12.2 Example

To demonstrate several uses of the pprint () function and its parameters, let’s fetch information about a project
from PyPI:

>>> import Jjson
>>> import pprint
>>> from urllib.request import urlopen
>>> with urlopen(’http://pypi.python.org/pypi/configparser/json’) as url:
http_info = url.info ()
. raw_data = url.read() .decode (http_info.get_content_charset ())
>>> project_info = json.loads (raw_data)
>>> result = {’headers’: http_info.items (), ’'body’: project_info}

In its basic form, pprint () shows the whole object:

>>> pprint.pprint (result)
{"body’: {’info’: {’/_pypi_hidden’: False,
" _pypi_ordering’: 12,

"classifiers’: [’Development Status :: 4 - Beta’,
"Intended Audience :: Developers’,
"License :: OSI Approved :: MIT License’,
"Natural Language :: English’,
"Operating System :: OS Independent’,
"Programming Language :: Python’,
"Programming Language :: Python :: 2',
"Programming Language :: Python :: 2.67,
'Programming Language :: Python :: 2.7/,
"Topic :: Software Development :: Libraries’,
"Topic :: Software Development :: Libraries :: Python M

"download_url’: "UNKNOWN’,

"home_page’: "http://docs.python.org/py3k/library/configparser.html’,
"keywords’: ’'configparser ini parsing conf cfg configuration file’,
"license’: "MIT’,

7.12. pprint — Data pretty printer 191

The Python Library Reference, Release 3.2.1

"urls’ :

"headers’ :

4

4

14

4

4

4

4

4

4

[’

"name’ : ’'configparser’,

"package_url’: "http://pypil.python.org/pypi/configparser’,

"platform’: ’"any’,

"release_url’: "http://pypi.python.org/pypi/configparser/3.2.0r3",

"requires_python’: None,

"stable_version’: None,

"summary’ : 'This library brings the updated configparser from Python 3.:

"version’: 73.2.0r3"},

comment_text’: ’7’,

downloads’: 47,

filename’: ’'configparser-3.2.0r3.tar.gz’,

has_sig’: False,

md5_digest’: ’8500fd87c6lac0de328fc996fceb69b96’,

packagetype’: ’sdist’,

python_version’: ’source’,

size’: 32281,

upload_time’: 72011-05-10T16:28:50",

url’: 'http://pypi.python.org/packages/source/c/configparser/configpars:
"Sat, 14 May 2011 12:48:52 GMT’),

"Server’, ’Apache/2.2.16 (Debian)’),
"Content-Disposition’, ’'inline’),

"Connection’, ’'close’),
"Transfer-Encoding’, ’chunked’),
"Content-Type’, ’application/json; charset="UTF-8"')]}

The result can be limited to a certain depth (ellipsis is used for deeper contents):

>>> pprint.pprint (result, depth=3)
{"info’ : {

{"body’ :

"urls’: [{.

"headers’ :

[

~ e~~~ o~~~

"Date’

4

' _pypi_hidden’: False,

' _pypi_ordering’: 12,

"classifiers’: [...],

"download_url’: ’UNKNOWN’,

"home_page’ : "http://docs.python.org/py3k/library/configparser.html’,
"keywords’ : ’'configparser ini parsing conf cfg configuration file’,
"license’: "MIT’,

"name’ : ’'configparser’,

"package_url’: 'http://pypi.python.org/pypi/configparser’,
"platform’: ’"any’,

"release_url’: "http://pypi.python.org/pypi/configparser/3.2.0r3",
"requires_python’: None,

"stable_version’: None,

"summary’ : ’'This library brings the updated configparser from Python 3..
"version’: ’3.2.0xr3'},

- H1)y

, "Sat, 14 May 2011 12:48:52 GMT’),

Server’, ’Apache/2.2.16 (Debian)’),

"Content-Disposition’, ’inline’),

"Connection’, ’'close’),

"Transfer-Encoding’, ’chunked’),

"Content-Type’, ’application/json; charset="UTF-8"')]}

Additionally, maximum width can be suggested. If a long object cannot be split, the specified width will be exceeded:

>>> pprint.pprint (result[’headers’], width=30)

[("Date’,

"Sat, 14 May 2011 12:48:52 GMT'),

192

Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

(" Server’,

"Apache/2.2.16 (Debian)’),

(" Content-Disposition’,

"inline’),

(" Connection’, ’close’),

(" Transfer-Encoding’,

"chunked’),

("Content-Type’,

"application/Jjson; charset="UTF-8"')]

7.13 reprlib — Alternate repr () implementation

Source code: Lib/reprlib.py

The reprlib module provides a means for producing object representations with limits on the size of the resulting
strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

class reprlib.Repr
Class which provides formatting services useful in implementing functions similar to the built-in repr () ; size
limits for different object types are added to avoid the generation of representations which are excessively long.

reprlib.aRepr
This is an instance of Repr which is used to provide the repr () function described below. Changing the
attributes of this object will affect the size limits used by repr () and the Python debugger.

reprlib.repr (obj)
This is the repr () method of aRepr. It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

In addition to size-limiting tools, the module also provides a decorator for detecting recursive calls to __repr__ ()
and substituting a placeholder string instead.

@reprlib.recursive_repr (fillvalue="...")
Decorator for __repr__ () methods to detect recursive calls within the same thread. If a recursive call is
made, the fillvalue is returned, otherwise, the usual __repr__ () call is made. For example:

>>> class MyList (list):
@recursive_repr ()
def _ repr__ (self):
return '<’ + /|’ .Jjoin(map(repr, self)) + >’/

>>> m = MyList (’abc’)
>>> m.append (m)

>>> m.append (' x’
>>> print (m)
<Ial|lbl‘lcll...llxl>

)

New in version 3.2.

7.13. reprlib — Alternate repr () implementation 193

http://hg.python.org/cpython/file/default/Lib/reprlib.py

The Python Library Reference, Release 3.2.1

7.13.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

Repr.maxlevel
Depth limit on the creation of recursive representations. The default is 6.

Repr.maxdict

Repr.maxlist

Repr.maxtuple

Repr .maxset

Repr .maxfrozenset

Repr .maxdeque

Repr.maxarray
Limits on the number of entries represented for the named object type. The default is 4 for maxdict, 5 for
maxarray, and 6 for the others.

Repr.maxlong
Maximum number of characters in the representation for an integer. Digits are dropped from the middle. The
default is 40.

Repr.maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The default is 30.

Repr.maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. It is applied in a similar manner as maxstring. The default is 20.

Repr.repr (obj)
The equivalent to the built-in repzr () that uses the formatting imposed by the instance.

Repr.reprl (obj, level)
Recursive implementation used by repr (). This uses the type of 0bj to determine which formatting method to
call, passing it obj and level. The type-specific methods should call reprl () to perform recursive formatting,
with level - 1 for the value of /evel in the recursive call.

Repr.repr_ TYPE (0bj, level)
Formatting methods for specific types are implemented as methods with a name based on the type name.
In the method name, TYPE is replaced by string. join (string.split (type (obj) .__name__,
r _7)). Dispatch to these methods is handled by repr1 (). Type-specific methods which need to recursively
format a value should call self.reprl (subobj, level - 1).

7.13.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr . reprl () allows subclasses of Repr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

import reprlib
import sys

class MyRepr (reprlib.Repr) :
def repr_file(self, obj, level):
if obj.name in [’<stdin>’, ’<stdout>’, ’<stderr>’']:

194 Chapter 7. Data Types

The Python Library Reference, Release 3.2.1

return ob7j.name
else:
return repr (obj)

aRepr = MyRepr ()
print (aRepr.repr (sys.stdin)) # prints ’‘<stdin>’

7.13. reprlib — Alternate repr () implementation 195

The Python Library Reference, Release 3.2.1

196 Chapter 7. Data Types

CHAPTER
EIGHT

NUMERIC AND MATHEMATICAL
MODULES

The modules described in this chapter provide numeric and math-related functions and data types. The numbers
module defines an abstract hierarchy of numeric types. The math and cmath modules contain various mathematical
functions for floating-point and complex numbers. For users more interested in decimal accuracy than in speed, the
decimal module supports exact representations of decimal numbers.

The following modules are documented in this chapter:

8.1 numbers — Numeric abstract base classes

The numbers module (PEP 3141) defines a hierarchy of numeric abstract base classes which progressively define
more operations. None of the types defined in this module can be instantiated.

class numbers .Number
The root of the numeric hierarchy. If you just want to check if an argument x is a number, without caring what
kind, use isinstance (x, Number).

8.1.1 The numeric tower

class numbers.Complex
Subclasses of this type describe complex numbers and include the operations that work on the built-in complex
type. These are: conversions to complex and bool, real, imag, +, -, *, /, abs (), conjugate (), ==,
and !=. All except — and ! = are abstract.

real
Abstract. Retrieves the real component of this number.

imag
Abstract. Retrieves the imaginary component of this number.

conjugate ()
Abstract. Returns the complex conjugate. For example, (1+37) .conjugate () == (1-37).

class numbers.Real
To Complex, Real adds the operations that work on real numbers.

In short, those are: a conversion to float, math.trunc (), round (), math.floor (),math.ceil (),
divmod (), //, %, <, <=,>,and >=.

Real also provides defaults for complex (), real, imag, and conjugate ().

197

http://www.python.org/dev/peps/pep-3141

The Python Library Reference, Release 3.2.1

class numbers.Rational
Subtypes Real and adds numerator and denominator properties, which should be in lowest terms. With
these, it provides a default for f1oat ().

numerator
Abstract.

denominator
Abstract.

class numbers.Integral
Subtypes Rational and adds a conversion to int. Provides defaults for float (), numerator, and
denominator, and bit-string operations: <<, >>, &, *, |, ~.

8.1.2 Notes for type implementors

Implementors should be careful to make equal numbers equal and hash them to the same values. This may be subtle if
there are two different extensions of the real numbers. For example, fractions.Fraction implements hash ()
as follows:

def _ hash__ (self):

if self.denominator ==
Get integers right.
return hash (self.numerator)

Expensive check, but definitely correct.

if self == float (self):
return hash (float (self))

else:
Use tuple’s hash to avoid a high collision rate on
simple fractions.
return hash ((self.numerator, self.denominator))

Adding More Numeric ABCs

There are, of course, more possible ABCs for numbers, and this would be a poor hierarchy if it precluded the possibility
of adding those. You can add MyFoo between Complex and Real with:

class MyFoo (Complex) :
MyFoo.register (Real)

Implementing the arithmetic operations

We want to implement the arithmetic operations so that mixed-mode operations either call an implementation whose
author knew about the types of both arguments, or convert both to the nearest built in type and do the operation there.
For subtypes of Integral, this means that __add__ () and __radd__ () should be defined as:

class MyIntegral (Integral):

def _ add_ (self, other):
if isinstance (other, MyIntegral):
return do_my_adding_stuff(self, other)
elif isinstance (other, OtherTypeIKnowAbout) :
return do_my_other_ adding_stuff(self, other)
else:
return NotImplemented

198 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2.1

def = radd_ (self, other):
if isinstance (other, MyIntegral):
return do_my_adding_ stuff (other, self)
elif isinstance (other, OtherTypeIKnowAbout) :
return do_my_other adding stuff (other, self)
elif isinstance (other, Integral):
return int (other) + int(self)
elif isinstance (other, Real):
return float (other) + float (self)
elif isinstance (other, Complex):
return complex (other) + complex(self)
else:
return NotImplemented

There are 5 different cases for a mixed-type operation on subclasses of Complex. I'll refer to all of the above code
that doesn’t refer to MyIntegral and OtherType IKnowAbout as “boilerplate”. a will be an instance of A, which

isasubtype of Complex(a : A <: Complex),andb : B <: Complex.I'llconsidera + b:

1. If A defines an __add___ () which accepts b, all is well.

2. If A falls back to the boilerplate code, and it were to return a value from __add___ (), we’d miss the possibility
that B defines a more intelligent __radd__ (), so the boilerplate should return Not Implemented from
__add__ (). (Or A may not implement __add__ () atall.)

3. Then B‘s __radd__ () gets a chance. If it accepts a, all is well.

4. If it falls back to the boilerplate, there are no more possible methods to try, so this is where the default imple-
mentation should live.

5.If B <: A, Python tries B.___radd__ before A.___add__. This is ok, because it was implemented with
knowledge of A, so it can handle those instances before delegating to Complex.

IfA <: ComplexandB <: Real without sharing any other knowledge, then the appropriate shared operation
is the one involving the built in complex, and both __radd__ () sland there, so a+b == b+a

Because most of the operations on any given type will be very similar, it can be useful to define a helper function which
generates the forward and reverse instances of any given operator. For example, fractions.Fraction uses:

def _operator_fallbacks (monomorphic_operator, fallback_operator):
def forward(a, b):

if isinstance (b, (int, Fraction)):
return monomorphic_operator(a, b)

elif isinstance (b, float):
return fallback_operator (float(a), b)

elif isinstance (b, complex):
return fallback_operator (complex(a), b)

else:
return NotImplemented
forward.__name__ = '__ " + fallback_operator.__name___ + '__ '
forward.__doc__ = monomorphic_operator.__doc___

def reverse(b, a):
if isinstance(a, Rational):
Includes ints.
return monomorphic_operator (a, b)
elif isinstance(a, numbers.Real):
return fallback_operator(float(a), float (b))

8.1. numbers — Numeric abstract base classes 199

The Python Library Reference, Release 3.2.1

elif isinstance(a, numbers.Complex) :
return fallback_operator (complex(a), complex (b))

else:
return NotImplemented
reverse.__name__ = '"__r’ + fallback_operator._ _name__ + "__ '
reverse.__doc__ = monomorphic_operator._ _doc_

return forward, reverse

def _add(a, b):
" o+ pnrrre
return Fraction (a.numerator * b.denominator +
b.numerator » a.denominator,
a.denominator * b.denominator)

_add__, _ _radd__ = _operator_fallbacks(_add, operator.add)

8.2 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from the cmath module
if you require support for complex numbers. The distinction between functions which support complex numbers and
those which don’t is made since most users do not want to learn quite as much mathematics as required to understand
complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected
complex number used as a parameter, so that the programmer can determine how and why it was generated in the first
place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values are
floats.

8.2.1 Number-theoretic and representation functions

math.ceil (x)
Return the ceiling of x, the smallest integer greater than or equal to x. If x is not a float, delegates to
x.__ceil__ (), which should return an Integral value.

math.copysign (x,y)
Return x with the sign of y. On a platform that supports signed zeros, copysign (1.0, —-0.0) returns-/.0.

math.fabs (x)
Return the absolute value of x.

math.factorial (x)
Return x factorial. Raises ValueError if x is not integral or is negative.

math.floor (x)
Return the floor of x, the largest integer less than or equal to x. If x is not a float, delegatestox.___ floor__ (),
which should return an Integral value.

math.fmod (x, y)
Return fmod (x, vy), as defined by the platform C library. Note that the Python expression x % y may not
return the same result. The intent of the C standard is that fmod (x, y) be exactly (mathematically; to infinite

200 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2.1

precision) equal to x — n=y for some integer n such that the result has the same sign as x and magnitude less
than abs (y) . Python’s x % vy returns a result with the sign of y instead, and may not be exactly computable for
float arguments. For example, fmod (-1e-100, 1e100) is —1e-100, but the result of Python’s ~1e-100
% 1el001is 1e100-1e-100, which cannot be represented exactly as a float, and rounds to the surprising
1e100. For this reason, function fmod () is generally preferred when working with floats, while Python’s x

% vy is preferred when working with integers.

math. frexp (x)
Return the mantissa and exponent of x as the pair (m, e). mis a float and e is an integer such that x == m
x 2x+*e exactly. If x is zero, returns (0.0, O0), otherwise 0.5 <= abs (m) < 1. This is used to “pick
apart” the internal representation of a float in a portable way.

math. £sum (iterable)
Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple
intermediate partial sums:

>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .11)
0.9999999999999999

>>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .11)
1.0

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the rounding
mode is half-even. On some non-Windows builds, the underlying C library uses extended precision addition and
may occasionally double-round an intermediate sum causing it to be off in its least significant bit.

For further discussion and two alternative approaches, see the ASPN cookbook recipes for accurate floating
point summation.

math.isfinite (x)
Return True if x is neither an infinity nor a NaN, and False otherwise. (Note that 0. 0 is considered finite.)
New in version 3.2.

math.isinf (x)
Return True if x is a positive or negative infinity, and False otherwise.

math.isnan (x)
Return True if x is a NaN (not a number), and False otherwise.

math.ldexp (x, i)
Return x * (2xx1). This is essentially the inverse of function frexp ().

math.modf (x)
Return the fractional and integer parts of x. Both results carry the sign of x and are floats.

math.trunc (x)
Return the Real value x truncated to an Integral (usually an integer). Delegates to x.___trunc__ ().

Note that frexp () and modf () have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

For the ceil (), floor (), and modf () functions, note that all floating-point numbers of sufficiently large mag-
nitude are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the platform C
double type), in which case any float x with abs (x) >= 2%x52 necessarily has no fractional bits.

8.2.2 Power and logarithmic functions

math.exp (x)
Return e x x x.

8.2. math — Mathematical functions 201

http://code.activestate.com/recipes/393090/
http://code.activestate.com/recipes/393090/

The Python Library Reference, Release 3.2.1

math.expml (x)
Return exxx — 1. For small floats x, the subtraction in exp (x) — 1 can result in a significant loss of
precision; the expml () function provides a way to compute this quantity to full precision:

>>> from math import exp, expml

>>> exp(le-5) - 1 # gives result accurate to 11 places
1.0000050000069649e-05
>>> expml (le—5) # result accurate to full precision

1.0000050000166668e-05

New in version 3.2.

math.log (x[, base])
With one argument, return the natural logarithm of x (to base e).

With two arguments, return the logarithm of x to the given base, calculated as 1og (x) /log (base).

math.loglp (x)
Return the natural logarithm of 7+x (base e). The result is calculated in a way which is accurate for x near zero.

math.loglO (x)
Return the base-10 logarithm of x. This is usually more accurate than 1og (x, 10).

math.pow (x,y)
Return x raised to the power y. Exceptional cases follow Annex ‘F’ of the C99 standard as far as possible. In
particular, pow (1.0, x) and pow (x, 0.0) always return 1.0, even when x is a zero or a NaN. If both x
and y are finite, x is negative, and y is not an integer then pow (x, vy) is undefined, and raises ValueError.

math.sqgrt (x)
Return the square root of x.

8.2.3 Trigonometric functions

math.acos (x)
Return the arc cosine of x, in radians.

math.asin (x)
Return the arc sine of x, in radians.

math.atan (x)
Return the arc tangent of x, in radians.

math.atan2 (y, x)
Return atan (y / x),inradians. The result is between —pi and pi. The vector in the plane from the origin to
point (x, y) makes this angle with the positive X axis. The point of atan?2 () is that the signs of both inputs
are known to it, so it can compute the correct quadrant for the angle. For example, atan (1) and atan2 (1,
1) are both pi/4,but atan2 (-1, -1) is -3xpi/4.

math.cos (x)
Return the cosine of x radians.

math.hypot (x, y)
Return the Euclidean norm, sgrt (x+x + y=*y). This is the length of the vector from the origin to point (x,
V).

math.sin (x)
Return the sine of x radians.

math.tan (x)
Return the tangent of x radians.

202 Chapter 8. Numeric and Mathematical Modules

http://en.wikipedia.org/wiki/Loss_of_significance
http://en.wikipedia.org/wiki/Loss_of_significance

The Python Library Reference, Release 3.2.1

8.2.4 Angular conversion
math.degrees (x)
Converts angle x from radians to degrees.

math.radians (x)
Converts angle x from degrees to radians.

8.2.5 Hyperbolic functions

Hyperbolic functions are analogs of trigonometric functions that are based on hyperbolas instead of circles.

math.acosh (x)
Return the inverse hyperbolic cosine of x.

math.asinh (x)
Return the inverse hyperbolic sine of x.

math.atanh (x)
Return the inverse hyperbolic tangent of x.

math.cosh (x)
Return the hyperbolic cosine of x.

math.sinh (x)
Return the hyperbolic sine of x.

math.tanh (x)
Return the hyperbolic tangent of x.

8.2.6 Special functions

math.erf (x)
Return the error function at x.

The erf () function can be used to compute traditional statistical functions such as the cumulative standard
normal distribution:

def phi (x):
"Cumulative distribution function for the standard normal distribution’
return (1.0 + erf(x / sqrt(2.0))) / 2.0

New in version 3.2.

math.erfec (x)
Return the complementary error function at x. The complementary error function is defined as 1.0 -
erf (x). It is used for large values of x where a subtraction from one would cause a loss of significance.
New in version 3.2.

math.gamma (x)
Return the Gamma function at x. New in version 3.2.

math.lgamma (x)
Return the natural logarithm of the absolute value of the Gamma function at x. New in version 3.2.

8.2. math — Mathematical functions 203

http://en.wikipedia.org/wiki/Hyperbolic_function
http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
http://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Loss_of_significance
http://en.wikipedia.org/wiki/Gamma_function

The Python Library Reference, Release 3.2.1

8.2.7 Constants

math.pi
The mathematical constant 7w = 3.141592..., to available precision.

math.e
The mathematical constant e = 2.71828]1..., to available precision.

CPython implementation detail: The math module consists mostly of thin wrappers around the platform C math
library functions. Behavior in exceptional cases follows Annex F of the C99 standard where appropriate. The current
implementation will raise ValueError for invalid operations like sqrt (=1.0) or 1og (0.0) (where C99 Annex
F recommends signaling invalid operation or divide-by-zero), and OverflowError for results that overflow (for
example, exp (1000.0)). A NaN will not be returned from any of the functions above unless one or more of
the input arguments was a NaN; in that case, most functions will return a NaN, but (again following C99 Annex F)
there are some exceptions to this rule, for example pow (float (‘nan’), 0.0) or hypot (float ('nan’),
float ("inf’)).

Note that Python makes no effort to distinguish signaling NaNs from quiet NaNs, and behavior for signaling NaNs
remains unspecified. Typical behavior is to treat all NaNs as though they were quiet.

See Also:

Module cmath Complex number versions of many of these functions.

8.3 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
in this module accept integers, floating-point numbers or complex numbers as arguments. They will also accept any
Python object that has either a __complex__ () ora__float__ () method: these methods are used to convert
the object to a complex or floating-point number, respectively, and the function is then applied to the result of the
conversion.

Note: On platforms with hardware and system-level support for signed zeros, functions involving branch cuts are
continuous on both sides of the branch cut: the sign of the zero distinguishes one side of the branch cut from the other.
On platforms that do not support signed zeros the continuity is as specified below.

8.3.1 Conversions to and from polar coordinates

A Python complex number z is stored internally using rectangular or Cartesian coordinates. It is completely deter-
mined by its real part z . real and its imaginary part z . imag. In other words:

z == z.real + z.imag*1]

Polar coordinates give an alternative way to represent a complex number. In polar coordinates, a complex number z
is defined by the modulus r and the phase angle phi. The modulus r is the distance from z to the origin, while the
phase phi is the counterclockwise angle, measured in radians, from the positive x-axis to the line segment that joins
the origin to z.

The following functions can be used to convert from the native rectangular coordinates to polar coordinates and back.

cmath.phase (x)
Return the phase of x (also known as the argument of x), as a float. phase (x) is equivalent to
math.atan2 (x.imag, x.real). The result lies in the range [-m, 7], and the branch cut for this oper-
ation lies along the negative real axis, continuous from above. On systems with support for signed zeros (which

204 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2.1

includes most systems in current use), this means that the sign of the result is the same as the sign of x . imag,
even when x . imag is zero:

>>> phase (complex(-1.0, 0.0))
3.141592653589793
>>> phase (complex (-1.0, -0.0))
-3.141592653589793

Note: The modulus (absolute value) of a complex number x can be computed using the built-in abs () function.
There is no separate cmath module function for this operation.

cmath.polar (x)
Return the representation of x in polar coordinates. Returns a pair (r, phi) where r is the modulus of x and
phi is the phase of x. polar (x) is equivalentto (abs (x), phase (x)).

cmath.rect (r, phi)
Return the complex number x with polar coordinates r and phi. Equivalent to r * (math.cos (phi) +
math.sin(phi)«*17).

8.3.2 Power and logarithmic functions

cmath.exp (x)
Return the exponential value e * » x.

cmath.log (x[, base])
Returns the logarithm of x to the given base. If the base is not specified, returns the natural logarithm of x. There
is one branch cut, from 0 along the negative real axis to -oo, continuous from above.

cmath.loglO (x)
Return the base-10 logarithm of x. This has the same branch cut as 1og ().

cmath.sqgrt (x)
Return the square root of x. This has the same branch cut as 1og ().

8.3.3 Trigonometric functions

cmath.acos (x)
Return the arc cosine of x. There are two branch cuts: One extends right from 1 along the real axis to oo,
continuous from below. The other extends left from -1 along the real axis to -co, continuous from above.

cmath.asin (x)
Return the arc sine of x. This has the same branch cuts as acos ().

cmath.atan (x)
Return the arc tangent of x. There are two branch cuts: One extends from 1 j along the imaginary axis to 0o j,
continuous from the right. The other extends from -1 j along the imaginary axis to —ooJj, continuous from the
left.

cmath.cos (x)
Return the cosine of x.

cmath.sin (x)
Return the sine of x.

cmath.tan (x)
Return the tangent of x.

8.3. cmath — Mathematical functions for complex numbers 205

The Python Library Reference, Release 3.2.1

8.3.4 Hyperbolic functions

cmath.acosh (x)
Return the hyperbolic arc cosine of x. There is one branch cut, extending left from 1 along the real axis to -co,
continuous from above.

cmath.asinh (x)
Return the hyperbolic arc sine of x. There are two branch cuts: One extends from 1 j along the imaginary axis
to oo 7, continuous from the right. The other extends from —1 j along the imaginary axis to —ocoj, continuous
from the left.

cmath.atanh (x)
Return the hyperbolic arc tangent of x. There are two branch cuts: One extends from 1 along the real axis to oo,
continuous from below. The other extends from —1 along the real axis to —oo, continuous from above.

cmath.cosh (x)
Return the hyperbolic cosine of x.

cmath.sinh (x)
Return the hyperbolic sine of x.

cmath.tanh (x)
Return the hyperbolic tangent of x.

8.3.5 Classification functions

cmath.isfinite (x)
Return True if both the real and imaginary parts of x are finite, and False otherwise. New in version 3.2.

cmath.isinf (x)
Return True if either the real or the imaginary part of x is an infinity, and False otherwise.

cmath.isnan (x)
Return True if either the real or the imaginary part of x is a NaN, and False otherwise.

8.3.6 Constants

cmath.pi
The mathematical constant 7, as a float.

cmath.e
The mathematical constant e, as a float.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having two
modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They
would rather have math.sqrt (1) raise an exception than return a complex number. Also note that the functions
defined in cmath always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlightenment.
For information of the proper choice of branch cuts for numerical purposes, a good reference should be the following:

See Also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles, A., and
Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) pp165-211.

206 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2.1

8.4 decimal — Decimal fixed point and floating point arithmetic

The decimal module provides support for decimal floating point arithmetic. It offers several advantages over the
float datatype:

* Decimal “is based on a floating-point model which was designed with people in mind, and necessarily has
a paramount guiding principle — computers must provide an arithmetic that works in the same way as the
arithmetic that people learn at school.” — excerpt from the decimal arithmetic specification.

* Decimal numbers can be represented exactly. In contrast, numbers like 1.1 and 2.2 do not have an ex-
act representations in binary floating point. End users typically would not expect 1.1 + 2.2 to display as
3.3000000000000003 as it does with binary floating point.

» The exactness carries over into arithmetic. In decimal floating point, 0.1 + 0.1 + 0.1 - 0.3 isexactly
equal to zero. In binary floating point, the resultis 5.5511151231257827e~-017. While near to zero, the
differences prevent reliable equality testing and differences can accumulate. For this reason, decimal is preferred
in accounting applications which have strict equality invariants.

* The decimal module incorporates a notion of significant places so that 1.30 + 1.20 is 2.50. The trailing
zero is kept to indicate significance. This is the customary presentation for monetary applications. For multi-
plication, the “schoolbook™ approach uses all the figures in the multiplicands. For instance, 1.3 * 1.2 gives
1.56while1.30 « 1.20 gives 1.5600.

 Unlike hardware based binary floating point, the decimal module has a user alterable precision (defaulting to 28
places) which can be as large as needed for a given problem:

>>> from decimal import =*

>>> getcontext () .prec = 6

>>> Decimal (1) / Decimal (7)

Decimal ("0.142857")

>>> getcontext () .prec = 28

>>> Decimal (1) / Decimal (7)

Decimal (7 0.1428571428571428571428571429")

* Both binary and decimal floating point are implemented in terms of published standards. While the built-in
float type exposes only a modest portion of its capabilities, the decimal module exposes all required parts of the
standard. When needed, the programmer has full control over rounding and signal handling. This includes an
option to enforce exact arithmetic by using exceptions to block any inexact operations.

¢ The decimal module was designed to support “without prejudice, both exact unrounded decimal arithmetic
(sometimes called fixed-point arithmetic) and rounded floating-point arithmetic.” — excerpt from the decimal
arithmetic specification.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance, the coef-
ficient digits do not truncate trailing zeros. Decimals also include special values such as Infinity, -Infinity,
and NaN. The standard also differentiates —0 from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags indicating
the results of operations, and trap enablers which determine whether signals are treated as exceptions. Rounding
options include ROUND_CEILING, ROUND_DOWN, ROUND_FLOOR, ROUND_HALF_DOWN, ROUND_HALF_EVEN,
ROUND_HALF_UP, ROUND_UP, and ROUND_05UP.

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs
of the application, signals may be ignored, considered as informational, or treated as exceptions. The signals in the
decimal module are: Clamped, InvalidOperation,DivisionByZero, Inexact,Rounded, Subnormal,
Overflow, and Underflow.

8.4. decimal — Decimal fixed point and floating point arithmetic 207

The Python Library Reference, Release 3.2.1

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag is set to one, then, if the trap
enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before monitoring a
calculation.

See Also:
* IBM’s General Decimal Arithmetic Specification, The General Decimal Arithmetic Specification.

¢ IEEE standard 854-1987, Unofficial IEEE 854 Text.

8.4.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current context with get context () and, if
necessary, setting new values for precision, rounding, or enabled traps:

>>> from decimal import =

>>> getcontext ()

Context (prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1l, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
InvalidOperation])

>>> getcontext () .prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings, floats, or tuples. Construction from an integer or a float
performs an exact conversion of the value of that integer or float. Decimal numbers include special values such as NaN
which stands for “Not a number”, positive and negative Infinity, and 0.

>>> getcontext () .prec = 28

>>> Decimal (10)

Decimal (710")

>>> Decimal (" 3.14")

Decimal ("3.14")

>>> Decimal (3.14)

Decimal (¥3.140000000000000124344978758017532527446746826171875")
>>> Decimal ((0, (3, 1, 4), -2))

Decimal ('3.14")

>>> Decimal (str (2.0 *+ 0.5))

Decimal ("1.4142135623730951")

>>> Decimal (2) =+ Decimal(’0.5")

Decimal (71.414213562373095048801688724")
>>> Decimal (' NaN’)

Decimal (' NaN’)

>>> Decimal (' -Infinity’)
Decimal (' -Infinity’)

The significance of a new Decimal is determined solely by the number of digits input. Context precision and rounding
only come into play during arithmetic operations.

>>> getcontext () .prec = 6

>>> Decimal ("3.0")

Decimal ("3.0")

>>> Decimal (73.1415926535")

Decimal ("3.1415926535")

>>> Decimal (3.1415926535") + Decimal(’2.7182818285")
Decimal ("5.85987")

>>> getcontext () .rounding = ROUND_UP

208 Chapter 8. Numeric and Mathematical Modules

http://speleotrove.com/decimal/decarith.html
http://754r.ucbtest.org/standards/854.pdf

The Python Library Reference, Release 3.2.1

>>> Decimal ("3.1415926535") + Decimal(’2.7182818285")
Decimal (5.85988")

Decimals interact well with much of the rest of Python. Here is a small decimal floating point flying circus:

>>> data = list (map(Decimal, "1.34 1.87 3.45 2.35 1.00 0.03 9.25" .split()))
>>> max (data)

Decimal (" 9.25")

>>> min (data)

Decimal ("0.03")

>>> sorted(data)

[Decimal ("0.03"), Decimal ("1.00"), Decimal(’1.34"),
Decimal ("2.35"), Decimal(’3.45"), Decimal(’9.257)]
>>> sum(data)

Decimal (719.29")

>>> a,b,c = datal[:3]

>>> str(a)

r1.347

>>> float (a)

1.34

>>> round(a, 1)

Decimal ("1.3")
>>> int (a)

1

>>> g « 5
Decimal ("6.70")
>>> a *« b
Decimal ('2.5058")
>>> c % a
Decimal ("0.77")

Decimal ("1.87"),

And some mathematical functions are also available to Decimal:

>>> getcontext () .prec = 28

>>> Decimal (2) .sqrt ()

Decimal (71.414213562373095048801688724")
>>> Decimal (1) .exp ()

Decimal (72.718281828459045235360287471")
>>> Decimal ("10") .1n{()

Decimal (72.302585092994045684017991455")
>>> Decimal ("107) .1ogl0 ()

Decimal ("1")

The quantize () method rounds a number to a fixed exponent. This method is useful for monetary applications that
often round results to a fixed number of places:

>>> Decimal (' 7.325") .quantize (Decimal (' .01"), rounding=ROUND_DOWN)
Decimal (' 7.32")

>>> Decimal (' 7.325") .quantize (Decimal (’'1.’), rounding=ROUND_UP)
Decimal (" 8")

As shown above, the get context () function accesses the current context and allows the settings to be changed.
This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make an
alternate active, use the set context () function.

8.4. decimal — Decimal fixed point and floating point arithmetic 209

The Python Library Reference, Release 3.2.1

In accordance with the standard, the Decimal module provides two ready to use standard contexts, BasicContext
and ExtendedContext. The former is especially useful for debugging because many of the traps are enabled:

>>> myothercontext = Context (prec=60, rounding=ROUND_HALF_DOWN)

>>> setcontext (myothercontext)

>>> Decimal (1) / Decimal (7)

Decimal (70.142857142857142857142857142857142857142857142857142857142857")

>>> ExtendedContext

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, clamp=0, flags=[], traps=[])

>>> setcontext (ExtendedContext)

>>> Decimal (1) / Decimal (7)

Decimal (Y 0.142857143")

>>> Decimal (42) / Decimal (0)

Decimal (' Infinity’)

>>> setcontext (BasicContext)
>>> Decimal (42) / Decimal (0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-
Decimal (42) / Decimal (0)
DivisionByZero: x / 0

Contexts also have signal flags for monitoring exceptional conditions encountered during computations. The flags
remain set until explicitly cleared, so it is best to clear the flags before each set of monitored computations by using
the clear_flags () method.

>>> setcontext (ExtendedContext)

>>> getcontext () .clear_flags|()

>>> Decimal (355) / Decimal (113)

Decimal ("3.14159292")

>>> getcontext ()

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1l, clamp=0, flags=[Inexact, Rounded], traps=[])

The flags entry shows that the rational approximation to Pi was rounded (digits beyond the context precision were
thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in the t raps field of a context:

>>> setcontext (ExtendedContext)
>>> Decimal (1) / Decimal (0)
Decimal (' Infinity’)
>>> getcontext () .traps[DivisionByZero] = 1
>>> Decimal (1) / Decimal (0)
Traceback (most recent call last):
File "<pyshell#112>", line 1, in -toplevel-
Decimal (1) / Decimal (0)
DivisionByZero: x / 0

Most programs adjust the current context only once, at the beginning of the program. And, in many applications,
data is converted to Decimal with a single cast inside a loop. With context set and decimals created, the bulk of the
program manipulates the data no differently than with other Python numeric types.

210 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2.1

8.4.2 Decimal objects

class decimal .Decimal (value="0", context=None)
Construct a new Decimal object based from value.

value can be an integer, string, tuple, float, or another Decimal object. If no value is given, returns
Decimal (' 0'). If value is a string, it should conform to the decimal numeric string syntax after leading
and trailing whitespace characters are removed:

sign R A

digit A O A A A L A S I LA I LA A A B LA
indicator ti= e’ | TE!

digits ::= digit [digit]...

decimal-part ::= digits 7.’ [digits] | [’.’] digits

exponent-part ::= 1indicator [sign] digits

infinity ::= ’'Infinity’” | "Inf’

nan ::= 'NaN’ [digits] | ’sNaN’ [digits]

numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string ::= [sign] numeric-value | [sign] nan

Other Unicode decimal digits are also permitted where digit appears above. These include decimal digits
from various other alphabets (for example, Arabic-Indic and Devanagari digits) along with the fullwidth digits
"\uffl0’ through " \uff19’.

If value is a tuple, it should have three components, a sign (0 for positive or 1 for negative), a
tuple of digits, and an integer exponent. For example, Decimal ((0, (1, 4, 1, 4), -3)) returns
Decimal (’1.414").

If value is a f1loat, the binary floating point value is losslessly converted to its exact decimal equivalent.
This conversion can often require 53 or more digits of precision. For example, Decimal (float (1.1"))
converts to Decimal (¥1.100000000000000088817841970012523233890533447265625").

The context precision does not affect how many digits are stored. That is determined exclusively by the number
of digits in value. For example, Decimal (' 3.00000") records all five zeros even if the context precision is
only three.

The purpose of the context argument is determining what to do if value is a malformed string. If the context
traps InvalidOperation, an exception is raised; otherwise, the constructor returns a new Decimal with the
value of NaN.

Once constructed, Decimal objects are immutable. Changed in version 3.2: The argument to the constructor is
now permitted to be a £ 1 oat instance. Decimal floating point objects share many properties with the other built-
in numeric types such as f1oat and int. All of the usual math operations and special methods apply. Likewise,
decimal objects can be copied, pickled, printed, used as dictionary keys, used as set elements, compared, sorted,
and coerced to another type (such as f1oat or int).

Decimal objects cannot generally be combined with floats or instances of fractions.Fraction in arith-
metic operations: an attempt to add a Decimal to a float, for example, will raise a TypeError. However,
it is possible to use Python’s comparison operators to compare a Decimal instance x with another number y.
This avoids confusing results when doing equality comparisons between numbers of different types. Changed
in version 3.2: Mixed-type comparisons between Decimal instances and other numeric types are now fully
supported. In addition to the standard numeric properties, decimal floating point objects also have a number of
specialized methods:

adjusted ()
Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the lead digit
remains: Decimal (' 321e+5’) .adjusted () returns seven. Used for determining the position of
the most significant digit with respect to the decimal point.

8.4. decimal — Decimal fixed point and floating point arithmetic 211

The Python Library Reference, Release 3.2.1

as_tuple ()
Return a named tuple representation of the number: DecimalTuple (sign, digits,
exponent).

canonical ()
Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always
canonical, so this operation returns its argument unchanged.

compare (other[, context])
Compare the values of two Decimal instances. compare () returns a Decimal instance, and if either
operand is a NaN then the result is a NaN:

a or b is a NaN ==> Decimal ('NaN’)
a <b ==> Decimal (' -1")
a ==> ==> Decimal ("0")
a>b ==> Decimal ("1")

compare_signal (other[, context])
This operation is identical to the compare () method, except that all NaNs signal. That is, if neither
operand is a signaling NaN then any quiet NaN operand is treated as though it were a signaling NaN.

compare_total (other)
Compare two operands using their abstract representation rather than their numerical value. Similar to
the compare () method, but the result gives a total ordering on Decimal instances. Two Decimal
instances with the same numeric value but different representations compare unequal in this ordering:

>>> Decimal ("12.0") .compare_total (Decimal ("12"))
Decimal ("-1")

Quiet and signaling NaNs are also included in the total ordering. The result of this function is
Decimal (" 0’) if both operands have the same representation, Decimal (-1) if the first operand
is lower in the total order than the second, and Decimal (1’) if the first operand is higher in the total
order than the second operand. See the specification for details of the total order.

compare_total_mag (other)
Compare two operands using their abstract representation rather than their value as in
compare_total (), but ignoring the sign of each operand. x.compare_total_mag(y) is
equivalent to x . copy_abs () .compare_total (y.copy_abs ()).

conjugate ()
Just returns self, this method is only to comply with the Decimal Specification.

copy_abs ()
Return the absolute value of the argument. This operation is unaffected by the context and is quiet: no
flags are changed and no rounding is performed.

copy_negate ()
Return the negation of the argument. This operation is unaffected by the context and is quiet: no flags are
changed and no rounding is performed.

copy_sign (other)
Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For
example:

>>> Decimal ("2.3") .copy_sign (Decimal ("-1.5"))
Decimal (" -2.3")

This operation is unaffected by the context and is quiet: no flags are changed and no rounding is performed.

212 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2.1

exp ([context])
Return the value of the (natural) exponential function e «x at the given number. The result is correctly
rounded using the ROUND__HALF_EVEN rounding mode.

>>> Decimal (1) .exp ()

Decimal (72.718281828459045235360287471")

>>> Decimal (321) .exp ()

Decimal ("2.561702493119680037517373933E+139")

from_float (f)
Classmethod that converts a float to a decimal number, exactly.

Note Decimal.from_float(0.1) is not the same as Decimal(‘0.1’). Since 0.1 is not ex-
actly representable in binary floating point, the value is stored as the nearest repre-
sentable value which is 0x1.999999999999ap-4. That equivalent value in decimal is

0.1000000000000000055511151231257827021181583404541015625.

Note: From Python 3.2 onwards, a Decimal instance can also be constructed directly from a f1oat.

>>> Decimal.from_ float (0.1)

Decimal (0.1000000000000000055511151231257827021181583404541015625")
>>> Decimal.from_float (float ('nan’))

Decimal ("NaN’)

>>> Decimal.from_ float (float ('inf’))

Decimal (! Infinity’)

>>> Decimal.from_float (float (! —inf’))

Decimal (' -Infinity’)

New in version 3.1.

fma (other, third [, context])
Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other.

>>> Decimal (2) .fma (3, 5)
Decimal ("11")

is_canonical ()
Return True if the argument is canonical and Fa 1 se otherwise. Currently, a Decimal instance is always
canonical, so this operation always returns True.

is_finite()
Return True if the argument is a finite number, and False if the argument is an infinity or a NaN.

is_infinite()
Return True if the argument is either positive or negative infinity and False otherwise.

is_nan()
Return True if the argument is a (quiet or signaling) NaN and False otherwise.

is_normal ()
Return True if the argument is a normal finite number. Return False if the argument is zero, subnormal,
infinite or a NaN.

is_gnan{()
Return True if the argument is a quiet NaN, and False otherwise.

8.4. decimal — Decimal fixed point and floating point arithmetic 213

The Python Library Reference, Release 3.2.1

is_signed()
Return True if the argument has a negative sign and False otherwise. Note that zeros and NaNs can
both carry signs.

is_snan ()
Return True if the argument is a signaling NaN and False otherwise.

is_subnormal ()
Return True if the argument is subnormal, and False otherwise.

is_zero()
Return True if the argument is a (positive or negative) zero and Fal se otherwise.

1n ([context])
Return the natural (base e) logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

1logl0 ([context])
Return the base ten logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

logb ([context])
For a nonzero number, return the adjusted exponent of its operand as a Decimal instance. If the operand
is a zero then Decimal (—Infinity’) is returned and the DivisionByZero flag is raised. If the
operand is an infinity then Decimal (' Infinity’) is returned.

logical_and (other[, context])
logical_and () is alogical operation which takes two logical operands (see Logical operands). The
result is the digit-wise and of the two operands.

logical_invert ([context])
logical_invert () is alogical operation. The result is the digit-wise inversion of the operand.

logical_or (other[, context])
logical_or () is a logical operation which takes two logical operands (see Logical operands). The
result is the digit-wise or of the two operands.

logical_xor (other[, context])
logical_xor () is alogical operation which takes two logical operands (see Logical operands). The
result is the digit-wise exclusive or of the two operands.

max (other[, context])
Likemax (self, other) exceptthatthe context rounding rule is applied before returning and that NaN
values are either signaled or ignored (depending on the context and whether they are signaling or quiet).

max_mag (other[, context])
Similar to the max () method, but the comparison is done using the absolute values of the operands.

min (other[, context])
Likemin (self, other) exceptthatthe context rounding rule is applied before returning and that NaN
values are either signaled or ignored (depending on the context and whether they are signaling or quiet).

min_mag (other[, context])
Similar to the min () method, but the comparison is done using the absolute values of the operands.

next_minus ([context])
Return the largest number representable in the given context (or in the current thread’s context if no context
is given) that is smaller than the given operand.

next_plus ([context])
Return the smallest number representable in the given context (or in the current thread’s context if no
context is given) that is larger than the given operand.

214

Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2.1

next_toward (other[, context])
If the two operands are unequal, return the number closest to the first operand in the direction of the second
operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be
the same as the sign of the second operand.

normalize ([context])
Normalize the number by stripping the rightmost trailing zeros and converting any result equal to
Decimal ("0’) toDecimal (' 0e0’). Used for producing canonical values for members of an equiv-
alence class. For example, Decimal (* 32.100’) and Decimal (' 0.321000e+2’) both normalize
to the equivalent value Decimal (" 32.17).

number class ([context])
Return a string describing the class of the operand. The returned value is one of the following ten strings.

*"-Infinity", indicating that the operand is negative infinity.
*"-Normal", indicating that the operand is a negative normal number.
*"—Subnormal", indicating that the operand is negative and subnormal.
*"—Zero", indicating that the operand is a negative zero.
*"+Zero", indicating that the operand is a positive zero.
*"+Subnormal", indicating that the operand is positive and subnormal.
*"+Normal", indicating that the operand is a positive normal number.
*"+Infinity", indicating that the operand is positive infinity.
*"NaN", indicating that the operand is a quiet NaN (Not a Number).
*"sNaN", indicating that the operand is a signaling NaN.

quantize (exp[, rotmding[, comext[, watchexp]]])

Return a value equal to the first operand after rounding and having the exponent of the second operand.

>>> Decimal (/1.41421356") .quantize (Decimal ("1.000"))
Decimal ("1.414")

Unlike other operations, if the length of the coefficient after the quantize operation would be greater than
precision, then an ITnvalidOperation is signaled. This guarantees that, unless there is an error condi-
tion, the quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact.

If the exponent of the second operand is larger than that of the first then rounding may be necessary. In this
case, the rounding mode is determined by the rounding argument if given, else by the given context
argument; if neither argument is given the rounding mode of the current thread’s context is used.

If watchexp is set (default), then an error is returned whenever the resulting exponent is greater than Emax
or less than Et iny.

radix ()
Return Decimal (10), the radix (base) in which the Decimal class does all its arithmetic. Included for
compatibility with the specification.

remainder near (other[, context])
Compute the modulo as either a positive or negative value depending on which is closest to zero. For
instance, Decimal (10) .remainder_near (6) returns Decimal (' -2’) which is closer to zero
than Decimal ("4").

If both are equally close, the one chosen will have the same sign as self.

8.4. decimal — Decimal fixed point and floating point arithmetic 215

The Python Library Reference, Release 3.2.1

rotate (other[, context])
Return the result of rotating the digits of the first operand by an amount specified by the second operand.
The second operand must be an integer in the range -precision through precision. The absolute value of
the second operand gives the number of places to rotate. If the second operand is positive then rotation is
to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with
zeros to length precision if necessary. The sign and exponent of the first operand are unchanged.

same_quantum (other[, context])
Test whether self and other have the same exponent or whether both are NaN.

scaleb (other[, context])
Return the first operand with exponent adjusted by the second. Equivalently, return the first operand
multiplied by 10 «other. The second operand must be an integer.

shift (other[, context])
Return the result of shifting the digits of the first operand by an amount specified by the second operand.
The second operand must be an integer in the range -precision through precision. The absolute value of
the second operand gives the number of places to shift. If the second operand is positive then the shift is
to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and
exponent of the first operand are unchanged.

sqrt ([context])
Return the square root of the argument to full precision.

to_eng_string([context])
Convert to an engineering-type string.

Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal
place. For example, converts Decimal (' 123E+1’) to Decimal (' 1.23E+3")

to_integral ([rounding[, context]])
Identical to the to_integral_value () method. The to_integral name has been kept for com-
patibility with older versions.

to_integral_exact ([rounding[, context]])
Round to the nearest integer, signaling ITnexact or Rounded as appropriate if rounding occurs. The
rounding mode is determined by the rounding parameter if given, else by the given context. If
neither parameter is given then the rounding mode of the current context is used.

to_integral_value ([rounding [context]])
Round to the nearest integer without signaling Tnexact or Rounded. If given, applies rounding; other-
wise, uses the rounding method in either the supplied context or the current context.

Logical operands

The logical_and(), logical_invert (), logical_or (), and logical_xor () methods expect their
arguments to be logical operands. A logical operand is a Decimal instance whose exponent and sign are both zero,
and whose digits are all either 0 or 1.

8.4.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine which
signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed using the getcontext () and
setcontext () functions:

216 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2.1

decimal.getcontext ()
Return the current context for the active thread.

decimal.setcontext (¢)
Set the current context for the active thread to c.

You can also use the with statement and the 1ocalcontext () function to temporarily change the active context.

decimal.localcontext ([c])
Return a context manager that will set the current context for the active thread to a copy of ¢ on entry to the
with-statement and restore the previous context when exiting the with-statement. If no context is specified, a
copy of the current context is used.

For example, the following code sets the current decimal precision to 42 places, performs a calculation, and then
automatically restores the previous context:

from decimal import localcontext

with localcontext () as ctx:

ctx.prec = 42 # Perform a high precision calculation
s = calculate_something ()
s = +s # Round the final result back to the default precision

New contexts can also be created using the Context constructor described below. In addition, the module provides
three pre-made contexts:

class decimal.BasicContext
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_UP. All flags are cleared. All traps are enabled (treated as exceptions) except
Inexact, Rounded, and Subnormal.

Because many of the traps are enabled, this context is useful for debugging.

class decimal .ExtendedContext
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_EVEN. All flags are cleared. No traps are enabled (so that exceptions are not
raised during computations).

Because the traps are disabled, this context is useful for applications that prefer to have result value of NaN
or Infinity instead of raising exceptions. This allows an application to complete a run in the presence of
conditions that would otherwise halt the program.

class decimal .DefaultContext
This context is used by the Context constructor as a prototype for new contexts. Changing a field (such a
precision) has the effect of changing the default for new contexts created by the Context constructor.

This context is most useful in multi-threaded environments. Changing one of the fields before threads are started
has the effect of setting system-wide defaults. Changing the fields after threads have started is not recommended
as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create contexts
explicitly as described below.

The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps for Overflow, Invali-
dOperation, and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created with the Context constructor.

class decimal .Context (prec=None, rounding=None, traps=None, flags=None, = Emin=None,
Emax=None, capitals=None, clamp=None)
Creates a new context. If a field is not specified or is None, the default values are copied from the

8.4. decimal — Decimal fixed point and floating point arithmetic 217

The Python Library Reference, Release 3.2.1

DefaultContext. If the flags field is not specified or is None, all flags are cleared.
The prec field is a positive integer that sets the precision for arithmetic operations in the context.
The rounding option is one of:
*ROUND_CEILING (towards Infinity),
*ROUND_DOWN (towards zero),
*ROUND_FLOOR (towards —Infinity),
*ROUND__HALF_DOWN (to nearest with ties going towards zero),
*ROUND_HALF_EVEN (to nearest with ties going to nearest even integer),
*ROUND__HALF_UP (to nearest with ties going away from zero), or
*ROUND_UP (away from zero).

*ROUND__05UP (away from zero if last digit after rounding towards zero would have been 0 or 5; otherwise
towards zero)

The traps and flags fields list any signals to be set. Generally, new contexts should only set traps and leave the
flags clear.

The Emin and Emax fields are integers specifying the outer limits allowable for exponents.

The capitals field is either 0 or 1 (the default). If set to 1, exponents are printed with a capital E; otherwise, a
lowercase e is used: Decimal (' 6.02e+23").

The clamp field is either O (the default) or 1. If set to 1, the exponent e of a Decimal instance representable in
this context is strictly limited to the range Emin - prec + 1 <= e <= Emax - prec + 1. If clamp
is 0 then a weaker condition holds: the adjusted exponent of the Decimal instance is at most Emax. When
clamp is 1, a large normal number will, where possible, have its exponent reduced and a corresponding number
of zeros added to its coefficient, in order to fit the exponent constraints; this preserves the value of the number
but loses information about significant trailing zeros. For example:

>>> Context (prec=6, Emax=999, clamp=1) .create_decimal(’1.23e999")
Decimal ("1.23000E+999")

A clamp value of 1 allows compatibility with the fixed-width decimal interchange formats specified in IEEE
754.

The Context class defines several general purpose methods as well as a large number of methods for do-
ing arithmetic directly in a given context. In addition, for each of the Decimal methods described above
(with the exception of the adjusted () and as_tuple () methods) there is a corresponding Context
method. For example, for a Context instance C and Decimal instance x, C.exp (x) is equivalent to
x.exp (context=C). Each Context method accepts a Python integer (an instance of int) anywhere that
a Decimal instance is accepted.

clear_flags ()
Resets all of the flags to 0.

copy ()
Return a duplicate of the context.

copy_decimal (num)
Return a copy of the Decimal instance num.

create_decimal (num)
Creates a new Decimal instance from num but using self as context. Unlike the Decimal constructor, the
context precision, rounding method, flags, and traps are applied to the conversion.

218

Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2.1

This is useful because constants are often given to a greater precision than is needed by the application.
Another benefit is that rounding immediately eliminates unintended effects from digits beyond the current
precision. In the following example, using unrounded inputs means that adding zero to a sum can change
the result:

>>> getcontext () .prec 3

>>> Decimal (' 3.4445") + Decimal(’1.0023")

Decimal ("4.45")

>>> Decimal (' 3.4445") + Decimal(0) + Decimal(’1.0023")
Decimal ("4.44")

This method implements the to-number operation of the IBM specification. If the argument is a string, no
leading or trailing whitespace is permitted.

create_decimal_from float (f)
Creates a new Decimal instance from a float f but rounding using self as the context. Unlike the
Decimal.from_float () class method, the context precision, rounding method, flags, and traps are
applied to the conversion.

>>> context = Context (prec=5, rounding=ROUND_DOWN)
>>> context.create_decimal_from float (math.pi)
Decimal (" 3.1415")

>>> context = Context (prec=5, traps=[Inexact])

>>> context.create_decimal_from_float (math.pi)
Traceback (most recent call last):

decimal.Inexact: None

New in version 3.1.

Etiny ()
Returns a value equal to Emin - prec + 1 which is the minimum exponent value for subnormal re-
sults. When underflow occurs, the exponent is set to Et iny.

Etop ()
Returns a value equal to Emax — prec + 1.

The usual approach to working with decimals is to create Decimal instances and then apply arithmetic opera-
tions which take place within the current context for the active thread. An alternative approach is to use context
methods for calculating within a specific context. The methods are similar to those for the Decimal class and
are only briefly recounted here.

abs (x)
Returns the absolute value of x.

add (x, y)
Return the sum of x and y.

canonical (x)
Returns the same Decimal object x.

compare (x, y)
Compares x and y numerically.

compare_signal (x,y)
Compares the values of the two operands numerically.

compare_total (x,y)
Compares two operands using their abstract representation.

8.4. decimal — Decimal fixed point and floating point arithmetic 219

The Python Library Reference, Release 3.2.1

compare_total_mag(x,y)
Compares two operands using their abstract representation, ignoring sign.

copy_abs (x)
Returns a copy of x with the sign set to 0.

copy_negate (x)
Returns a copy of x with the sign inverted.

copy_sign (x,y)
Copies the sign from y to x.

divide (x,y)
Return x divided by y.

divide_int (x,y)
Return x divided by y, truncated to an integer.

divmod (x, y)
Divides two numbers and returns the integer part of the result.

exp (x)
Returns e ** x.

fma (x, y, 2)
Returns x multiplied by y, plus z.

is_canonical (x)
Returns True if x is canonical; otherwise returns False.

is_finite (x)
Returns True if x is finite; otherwise returns False.

is_infinite (x)
Returns True if x is infinite; otherwise returns False.

is_nan (x)
Returns True if x is a gNaN or sNaN; otherwise returns False.

is _normal (x)
Returns True if x is a normal number; otherwise returns False.

is_gnan (x)
Returns True if x is a quiet NaN; otherwise returns False.

is_signed (x)
Returns True if x is negative; otherwise returns False.

is_snan (x)
Returns True if x is a signaling NaN; otherwise returns False.

is_subnormal (x)
Returns True if x is subnormal; otherwise returns False.

is_zero (x)
Returns True if x is a zero; otherwise returns False.

1n (x)
Returns the natural (base e) logarithm of x.

logl0 (x)
Returns the base 10 logarithm of x.

220 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2.1

logb (x)
Returns the exponent of the magnitude of the operand’s MSD.

logical_and (x,y)
Applies the logical operation and between each operand’s digits.

logical_invert (x)
Invert all the digits in x.

logical_or (x,y)
Applies the logical operation or between each operand’s digits.

logical_xor (x,y)
Applies the logical operation xor between each operand’s digits.

max (x,y)
Compares two values numerically and returns the maximum.

max_mag (x, y)
Compares the values numerically with their sign ignored.

min (x,y)
Compares two values numerically and returns the minimum.

min_mag (x,y)
Compares the values numerically with their sign ignored.

minus (x)
Minus corresponds to the unary prefix minus operator in Python.

multiply (x, y)
Return the product of x and y.

next_minus (x)
Returns the largest representable number smaller than x.

next_plus (x)
Returns the smallest representable number larger than x.

next_toward (x,y)
Returns the number closest to x, in direction towards y.

normalize (x)
Reduces x to its simplest form.

number class (x)
Returns an indication of the class of x.

plus (x)
Plus corresponds to the unary prefix plus operator in Python. This operation applies the context precision
and rounding, so it is not an identity operation.

power (x, y[, modulo])
Return x to the power of y, reduced modulo modulo if given.

With two arguments, compute x* xy. If x is negative then y must be integral. The result will be inexact
unless v is integral and the result is finite and can be expressed exactly in ‘precision’ digits. The result
should always be correctly rounded, using the rounding mode of the current thread’s context.

With three arguments, compute (xx*y) % modulo. For the three argument form, the following restric-
tions on the arguments hold:

eall three arguments must be integral

8.4. decimal — Decimal fixed point and floating point arithmetic 221

The Python Library Reference, Release 3.2.1

*y must be nonnegative
eat least one of x or y must be nonzero
*modulo must be nonzero and have at most ‘precision’ digits

The value resulting from Context .power (x, y, modulo) is equal to the value that would be ob-
tained by computing (x+*y) % modulo with unbounded precision, but is computed more efficiently.
The exponent of the result is zero, regardless of the exponents of x, y and modulo. The result is always
exact.

quantize (x,y)
Returns a value equal to x (rounded), having the exponent of y.

radix ()
Just returns 10, as this is Decimal, :)

remainder (x, y)
Returns the remainder from integer division.

The sign of the result, if non-zero, is the same as that of the original dividend.

remainder_near (x,y)
Returns x — y * n, where n is the integer nearest the exact value of x / v (if the result is O then its
sign will be the sign of x).

rotate (x, y)
Returns a rotated copy of x, y times.

same_quantum (x, y)
Returns True if the two operands have the same exponent.

scaleb (x,y)
Returns the first operand after adding the second value its exp.

shift (x,y)
Returns a shifted copy of x, y times.

sqgrt (x)
Square root of a non-negative number to context precision.

subtract (x, y)
Return the difference between x and y.

to_eng_string (x)
Converts a number to a string, using scientific notation.

to_integral_exact (x)
Rounds to an integer.

to_sci_string (x)
Converts a number to a string using scientific notation.

8.4.4 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one context trap
enabler.

The context flag is set whenever the condition is encountered. After the computation, flags may be checked for
informational purposes (for instance, to determine whether a computation was exact). After checking the flags, be
sure to clear all flags before starting the next computation.

222 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2.1

If the context’s trap enabler is set for the signal, then the condition causes a Python exception to be raised. For example,
ifthe DivisionByZero trapis set,thenaDivisionByZero exception is raised upon encountering the condition.

class decimal .Clamped
Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the context’s Emin and Emax limits. If possible, the
exponent is reduced to fit by adding zeros to the coefficient.

class decimal .DecimalException
Base class for other signals and a subclass of ArithmeticError.

class decimal .DivisionByZero
Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal is not
trapped, returns Infinity or —~-Infinity with the sign determined by the inputs to the calculation.

class decimal.Inexact
Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The signal flag
or trap is used to detect when results are inexact.

class decimal.InvalidOperation
An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trapped, returns NaN. Possible causes
include:

Infinity - Infinity

0 » Infinity

Infinity / Infinity

x % 0

Infinity % x

X._rescale(non-integer)
sgrt (-x) and x > 0

0 »x O

X %% (non—integer)

x xx Infinity

class decimal.Overflow
Numerical overflow.

Indicates the exponent is larger than Emax after rounding has occurred. If not trapped, the result depends on
the rounding mode, either pulling inward to the largest representable finite number or rounding outward to
Infinity. Ineither case, Inexact and Rounded are also signaled.

class decimal .Rounded
Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero (such as rounding 5.00 to 5.0). If
not trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

class decimal . Subnormal
Exponent was lower than Emin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the result
unchanged.

8.4. decimal — Decimal fixed point and floating point arithmetic 223

The Python Library Reference, Release 3.2.1

class decimal .Underflow
Numerical underflow with result rounded to zero.

Occurs when a subnormal result is pushed to zero by rounding. Tnexact and Subnormal are also signaled.
The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError (exceptions.Exception)
DecimalException
Clamped
DivisionByZero (DecimalException, exceptions.ZeroDivisionError)
Inexact
Overflow (Inexact, Rounded)
Underflow (Inexact, Rounded, Subnormal)
InvalidOperation
Rounded
Subnormal

8.4.5 Floating Point Notes
Mitigating round-off error with increased precision

The use of decimal floating point eliminates decimal representation error (making it possible to represent 0 . 1 exactly);
however, some operations can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities resulting in
loss of significance. Knuth provides two instructive examples where rounded floating point arithmetic with insufficient
precision causes the breakdown of the associative and distributive properties of addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext
>>> getcontext () .prec = 8

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal(’7.51111111")
>>> (u + v) + w

Decimal (" 9.5111111")

>>> u + (v + w)

Decimal (" 107)

>>> u, v, w = Decimal (20000), Decimal (-6), Decimal ('6.0000003")
>>> (u*xv) + (uxw)

Decimal ("0.01")

>>> u o+ (VHw)

Decimal (" 0.0060000")

The decimal module makes it possible to restore the identities by expanding the precision sufficiently to avoid loss
of significance:

>>> getcontext () .prec = 20

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal(’7.51111111")
>>> (u + v) + w

Decimal (¥ 9.51111111")

>>> u + (v + w)

Decimal (¥ 9.51111111")

>>>

>>> u, v, w = Decimal (20000), Decimal(-6), Decimal(’6.0000003")

224 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2.1

>>> (u*v) + (u*w)
Decimal (*0.0060000")
>>> u * (vtw)
Decimal (*0.0060000")

Special values

The number system for the decimal module provides special values including NaN, sNaN, -Infinity,
Infinity, and two zeros, +0 and —0.

Infinities can be constructed directly with: Decimal (' Infinity’). Also, they can arise from dividing by zero
when the DivisionByZero signal is not trapped. Likewise, when the Over £ 1 ow signal is not trapped, infinity can
result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very large, indeter-
minate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and return NaN, or if the TnvalidOperation signal is trapped, raise an excep-
tion. For example, 0/ 0 returns NaN which means “not a number”. This variety of NaN is quiet and, once created, will
flow through other computations always resulting in another NaN. This behavior can be useful for a series of compu-
tations that occasionally have missing inputs — it allows the calculation to proceed while flagging specific results as
invalid.

A variant is sNaN which signals rather than remaining quiet after every operation. This is a useful return value when
an invalid result needs to interrupt a calculation for special handling.

The behavior of Python’s comparison operators can be a little surprising where a NaN is involved. A test
for equality where one of the operands is a quiet or signaling NaN always returns False (even when doing
Decimal (' NaN’)==Decimal (' NaN'’)), while a test for inequality always returns True. An attempt to compare
two Decimals using any of the <, <=, > or >= operators will raise the TnvalidOperation signal if either operand
is a NaN, and return False if this signal is not trapped. Note that the General Decimal Arithmetic specification
does not specify the behavior of direct comparisons; these rules for comparisons involving a NaN were taken from
the IEEE 854 standard (see Table 3 in section 5.7). To ensure strict standards-compliance, use the compare () and
compare—-signal () methods instead.

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted if the
calculation had been carried out to greater precision. Since their magnitude is zero, both positive and negative zeros
are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero with differing
precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed to normalized floating
point representations, it is not immediately obvious that the following calculation returns a value equal to zero:

>>> 1 / Decimal (' Infinity’)
Decimal (" 0E-1000000026")

8.4.6 Working with threads

The getcontext () function accesses a different Context object for each thread. Having separate thread contexts
means that threads may make changes (such as get context . prec=10) without interfering with other threads.

Likewise, the setcontext () function automatically assigns its target to the current thread.

If setcontext () has not been called before get context (), then getcontext () will automatically create a
new context for use in the current thread.

The new context is copied from a prototype context called DefaultContext. To control the defaults so that each thread
will use the same values throughout the application, directly modify the DefaultContext object. This should be done

8.4. decimal — Decimal fixed point and floating point arithmetic 225

The Python Library Reference, Release 3.2.1

before any threads are started so that there won’t be a race condition between threads calling get context (). For
example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12

DefaultContext.rounding = ROUND_DOWN

DefaultContext.traps = ExtendedContext.traps.copy ()
DefaultContext.traps[InvalidOperation] = 1

setcontext (DefaultContext)

Afterwards, the threads can be started
tl.start ()
t2.start ()
t3.start ()

8.4.7 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work with the Decimal class:

def moneyfmt (value, places=2, curr='’, sep=',’, dp=".",
pos=’’", neg='-', trailneg='"'):
"""Convert Decimal to a money formatted string.

places: required number of places after the decimal point
curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)
only specify as blank when places 1s zero
pos: optional sign for positive numbers: ’+’, space or blank
neg: optional sign for negative numbers: ’-’/, ' (’, space or blank
trailneg:optional trailing minus indicator: ’'-’, ’)’, space or blank

>>> d = Decimal (7-1234567.8901")

>>> moneyfmt (d, curr=’5")

’-51,234,567.89"

>>> moneyfmt (d, places=0, sep=’.’, dp=’’, neg=’’, trailneg=’-")
71.234.568-7

>>> moneyfmt (d, curr=’$’, neg=’(’, trailneg=")")

7 ($1,234,567.89)"

>>> moneyfmt (Decimal (123456789), sep=" ')

7123 456 789.007

>>> moneyfmt (Decimal ("-0.02"), neg=’'<’, trailneg=’>")

7<0.02>"

g = Decimal (10) *x —-places # 2 places ——> 70.01"
sign, digits, exp = value.quantize (qg) .as_tuple()
result = []

digits = list (map(str, digits))
build, next = result.append, digits.pop
if sign:
build(trailneq)
for i in range (places):

226 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2.1

def

def

build (next ()
if places:

build (dp)
if not digits:

build (' 0")
i=0

while digits:

build (next ())

i+=1
if 1 == 3
i=0
build
build (curr)

if digits else ’0’)

and digits:

(sep)

build(neg if sign else pos)
return '’ .join(reversed(result))

pi():

"""Compute Pi to the current precision.

>>> print (pi())

3.141592653589793238462643383

mmn

getcontext () .prec += 2

extra digits for intermediate steps

three = Decimal (3) # substitute "three=3.0" for regular floats
lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
while s != lasts:
lasts = s
n, na = n+na, nat+8
d, da = d+da, da+32
t = (t »n) / d
s +=t
getcontext () .prec —= 2

return +s

exp (x) :

"""Return e raised to the power of x.

unary plus applies the new precision

Result type matches input type.

>>> print (exp (Decimal (1)))
2.718281828459045235360287471
>>> print (exp (Decimal (2)))
7.389056098930650227230427461
>>> print (exp(2.0))

7.38905609893

>>> print (exp (2+07))
(7.38905609893+07)

mmn

getcontext () .prec += 2

i, lasts, s, fact, num = 0, 0, 1, 1, 1
while s != lasts:

lasts = s

i +=1

fact »= i

8.4.

decimal — Decimal fixed point and floating point arithmetic

227

The Python Library Reference, Release 3.2.1

num x= x
s += num / fact
getcontext () .prec —= 2

return +s

def cos (x):
"""Return the cosine of x as measured in radians.

The Taylor series approximation works best for a small value of x.

Q

For larger values, first compute x = x % (2 x pi).
>>> print (cos (Decimal (70.57)))
0.8775825618903727161162815826

>>> print (cos (0.5))

0.87758256189

>>> print (cos (0.5+07))
(0.87758256189+07)

mmn

getcontext () .prec += 2

i, lasts, s, fact, num, sign =0, O, 1, 1, 1, 1
while s != lasts:

lasts = s

i += 2

fact »= 1 % (i-1)
num *= X % X

sign x= -1
s += num / fact x sign
getcontext () .prec —= 2

return +s

def sin(x):
"""Return the sine of x as measured in radians.

The Taylor series approximation works best for a small value of x.

Q

For larger values, first compute x = x % (2 % pi).
>>> print (sin(Decimal (70.57)))
0.4794255386042030002732879352

>>> print (sin(0.5))

0.479425538604

>>> print (sin(0.5+07))
(0.479425538604+07)

mmn

getcontext () .prec += 2

i, lasts, s, fact, num, sign =1, 0, x, 1, x, 1
while s != lasts:

lasts = s

i += 2

fact »= 1 % (i-1)

num *= x * X

sign *= -1

s += num / fact * sign

228 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2.1

getcontext () .prec —= 2
return +s

8.4.8 Decimal FAQ

Q. It is cumbersome to type decimal .Decimal (* 1234.5"). Is there a way to minimize typing when using the
interactive interpreter?

A. Some users abbreviate the constructor to just a single letter:

>>> D = decimal.Decimal
>>> D(’1.23"7) + D(’3.45")
Decimal ("4.68")

Q. In a fixed-point application with two decimal places, some inputs have many places and need to be rounded. Others
are not supposed to have excess digits and need to be validated. What methods should be used?

A. The quantize () method rounds to a fixed number of decimal places. If the Tnexact trap is set, it is also useful
for validation:

>>> TWOPLACES = Decimal (10) *#* =2 # same as Decimal (70.01")

>>> # Round to two places
>>> Decimal (' 3.214") .quantize (TWOPLACES)
Decimal (" 3.217)

>>> # Validate that a number does not exceed two places
>>> Decimal ('3.21") .quantize (TWOPLACES, context=Context (traps=[Inexact]))
Decimal ("3.21")

>>> Decimal ("3.214") .quantize (TWOPLACES, context=Context (traps=[Inexact]))
Traceback (most recent call last):

Inexact: None

Q. Once I have valid two place inputs, how do I maintain that invariant throughout an application?

A. Some operations like addition, subtraction, and multiplication by an integer will automatically preserve fixed point.
Others operations, like division and non-integer multiplication, will change the number of decimal places and need to
be followed-up with a quantize () step:

>>> a = Decimal (’7102.72") # Initial fixed-point values

>>> b = Decimal ("3.17")

>>> a + b # Addition preserves fixed-point
Decimal (Y105.89")

>>> a - b

Decimal (" 99.55")

>>> a x 42 # So does integer multiplication
Decimal ("4314.24")

>>> (a = b).quantize (TWOPLACES) # Must quantize non-integer multiplication
Decimal (" 325.62")

>>> (b / a).quantize (TWOPLACES) # And quantize division

Decimal (Y 0.03")
In developing fixed-point applications, it is convenient to define functions to handle the quantize () step:

>>> def mul (x, y, fp=TWOPLACES) :

.. return (x * y).quantize (fp)

>>> def div(x, y, fp=TWOPLACES) :
return (x / y).quantize (fp)

8.4. decimal — Decimal fixed point and floating point arithmetic 229

The Python Library Reference, Release 3.2.1

>>> mul (a, b) # Automatically preserve fixed-point
Decimal (" 325.62")

>>> div (b, a)

Decimal (" 0.03")

Q. There are many ways to express the same value. The numbers 200, 200.000, 2E2, and 02E+4 all have the same
value at various precisions. Is there a way to transform them to a single recognizable canonical value?

A. The normalize () method maps all equivalent values to a single representative:

>>> values = map(Decimal, 200 200.000 2E2 .02E+4’ .split())
>>> [v.normalize () for v in values]
[Decimal (' 2E+2’), Decimal (' 2E+2’), Decimal (' 2E+2’), Decimal (' 2E+2")]

Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential representation?

A. For some values, exponential notation is the only way to express the number of significant places in the coeffi-
cient. For example, expressing 5.0E+3 as 5000 keeps the value constant but cannot show the original’s two-place
significance.

If an application does not care about tracking significance, it is easy to remove the exponent and trailing zeroes, losing
significance, but keeping the value unchanged:

>>> def remove_exponent (d) :
return d.quantize (Decimal (1)) if d == d.to_integral() else d.normalize ()

>>> remove_exponent (Decimal (' 5E+37))
Decimal (' 5000")

Q. Is there a way to convert a regular float to a Decimal?

A. Yes, any binary floating point number can be exactly expressed as a Decimal though an exact conversion may take
more precision than intuition would suggest:

>>> Decimal (math.pi)
Decimal (73.141592653589793115997963468544185161590576171875")

Q. Within a complex calculation, how can I make sure that I haven’t gotten a spurious result because of insufficient
precision or rounding anomalies.

A. The decimal module makes it easy to test results. A best practice is to re-run calculations using greater precision
and with various rounding modes. Widely differing results indicate insufficient precision, rounding mode issues,
ill-conditioned inputs, or a numerically unstable algorithm.

Q. I noticed that context precision is applied to the results of operations but not to the inputs. Is there anything to
watch out for when mixing values of different precisions?

A. Yes. The principle is that all values are considered to be exact and so is the arithmetic on those values. Only the
results are rounded. The advantage for inputs is that “what you type is what you get”. A disadvantage is that the results
can look odd if you forget that the inputs haven’t been rounded:

>>> getcontext () .prec = 3

>>> Decimal (’3.104") + Decimal(’2.104")

Decimal ('5.21")

>>> Decimal (’3.104") + Decimal("0.000") + Decimal (’2.104")
Decimal ("5.20")

The solution is either to increase precision or to force rounding of inputs using the unary plus operation:

>>> getcontext () .prec = 3
>>> +Decimal (" 1.23456789") # unary plus triggers rounding
Decimal ("1.23")

230 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2.1

Alternatively, inputs can be rounded upon creation using the Context .create_decimal () method:

>>> Context (prec=5, rounding=ROUND_DOWN) .create_decimal ('1.2345678")
Decimal (*1.2345")

8.5 fractions — Rational numbers

Source code: Lib/fractions.py

The fractions module provides support for rational number arithmetic.

A Fraction instance can be constructed from a pair of integers, from another rational number, or from a string.

class fractions.Fraction (numerator=0, denominator=1)
class fractions.Fraction (other_fraction)

class fractions.Fraction (float)

class fractions.Fraction (decimal)

class fractions.Fraction (string)

The first version requires that numerator and denominator are instances of numbers.Rational and
returns a new Fraction instance with value numerator/denominator. If denominator is 0, it
raises a ZeroDivisionError. The second version requires that other_fraction is an instance of
numbers.Rational and returns a Fraction instance with the same value. The next two versions ac-
cept either a f1loat or a decimal.Decimal instance, and return a Fraction instance with exactly the
same value. Note that due to the usual issues with binary floating-point (see tut-fp-issues), the argument to
Fraction(1l.1) is notexactly equal to 11/10, and so Fraction (1.1) does not return Fraction (11,
10) as one might expect. (But see the documentation for the 1 imit_denominator () method below.) The
last version of the constructor expects a string or unicode instance. The usual form for this instance is:

[sign] numerator [’/’ denominator]

where the optional sign may be either ‘+’ or ‘-* and numerator and denominator (if present) are strings
of decimal digits. In addition, any string that represents a finite value and is accepted by the £ 1oat constructor
is also accepted by the Fraction constructor. In either form the input string may also have leading and/or
trailing whitespace. Here are some examples:

>>> from fractions import Fraction
>>> Fraction(1l6, -10)
Fraction (-8, 5)

>>> Fraction (123)

Fraction (123, 1)

>>> Fraction()

Fraction (0, 1)

>>> Fraction(’3/7")
Fraction (3, 7)

[40794 refs]

>>> Fraction(’ -3/7 ")
Fraction (-3, 7)

>>> Fraction(’1.414213 \t\n’)
Fraction (1414213, 1000000)
>>> Fraction(’—-.125")
Fraction (-1, 8)

>>> Fraction ('’ 7e-6")
Fraction (7, 1000000)

8.5.

fractions — Rational numbers 231

http://hg.python.org/cpython/file/default/Lib/fractions.py

The Python Library Reference, Release 3.2.1

>>> Fraction(2.25)

Fraction (9, 4)

>>> Fraction(1l.1)

Fraction(2476979795053773, 2251799813685248)
>>> from decimal import Decimal

>>> Fraction (Decimal("1.17))

Fraction (11, 10)

The Fraction class inherits from the abstract base class numbers.Rational, and implements all of the
methods and operations from that class. Fract ion instances are hashable, and should be treated as immutable.
In addition, Fraction has the following methods: Changed in version 3.2: The Fract ion constructor now
accepts float and decimal.Decimal instances.

from float (fit)
This class method constructs a Fraction representing the exact value of flif, which must be a f1loat.
Beware that Fraction.from_float (0.3) is not the same value as Fraction (3, 10)

Note: From Python 3.2 onwards, you can also construct a Fract ion instance directly froma float.

from_decimal (dec)
This class method constructs a Fraction representing the exact value of dec, which must be a
decimal.Decimal instance.

Note: From Python 3.2 onwards, you can also construct a Fraction instance directly from a
decimal.Decimal instance.

limit_denominator (max_denominator=1000000)
Finds and returns the closest Fraction to self that has denominator at most max_denominator. This
method is useful for finding rational approximations to a given floating-point number:

>>> from fractions import Fraction
>>> Fraction(’3.1415926535897932") .1imit_denominator (1000)
Fraction (355, 113)

or for recovering a rational number that’s represented as a float:

>>> from math import pi, cos

>>> Fraction (cos (pi/3))

Fraction (4503599627370497, 9007199254740992)
>>> Fraction(cos(pi/3)) .limit_denominator ()
Fraction(1l, 2)

>>> Fraction(l.1l) .limit_denominator ()
Fraction (11, 10)

__floor_ ()
Returns the greatest int <= self. This method can also be accessed through the math.floor ()
function:

>>> from math import floor
>>> floor (Fraction (355, 113))
3

232

Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2.1

__ceil ()
Returns the least int >= self. This method can also be accessed through the math.ceil () function.

__round__ ()

__round___ (ndigits)
The first version returns the nearest int to self, rounding half to even. The second version rounds self
to the nearest multiple of Fraction (1, 10+xndigits) (logically, if ndigits is negative), again
rounding half toward even. This method can also be accessed through the round () function.

fractions.ged (a, b)
Return the greatest common divisor of the integers a and b. If either a or b is nonzero, then the absolute value of
gcd (a, b) is the largest integer that divides both a and b. gcd (a, b) has the same sign as b if b is nonzero;
otherwise it takes the sign of a. gcd (0, 0) returns 0.

See Also:

Module numbers The abstract base classes making up the numeric tower.

8.6 random — Generate pseudo-random numbers

Source code: Lib/random.py

This module implements pseudo-random number generators for various distributions.

For integers, there is uniform selection from a range. For sequences, there is uniform selection of a random element, a
function to generate a random permutation of a list in-place, and a function for random sampling without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential, gamma,
and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic function random (), which generates a random float uniformly in
the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces 53-bit precision
floats and has a period of 2#*19937-1. The underlying implementation in C is both fast and threadsafe. The Mersenne
Twister is one of the most extensively tested random number generators in existence. However, being completely
deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic purposes.

The functions supplied by this module are actually bound methods of a hidden instance of the random.Random
class. You can instantiate your own instances of Random to get generators that don’t share state.

Class Random can also be subclassed if you want to use a different basic generator of your own devising: in that
case, override the random (), seed (), getstate (), and setstate () methods. Optionally, a new generator
can supply a get randbits () method — this allows randrange () to produce selections over an arbitrarily large
range.

The random module also provides the Sy stemRandom class which uses the system function os.urandom () to
generate random numbers from sources provided by the operating system.

Bookkeeping functions:

random. seed ([x], version=2)
Initialize the random number generator.

If x is omitted or None, the current system time is used. If randomness sources are provided by the operating
system, they are used instead of the system time (see the os . urandom () function for details on availability).

If x is an int, it is used directly.

8.6. random — Generate pseudo-random numbers 233

http://hg.python.org/cpython/file/default/Lib/random.py

The Python Library Reference, Release 3.2.1

With version 2 (the default), a st r, bytes, or bytearray object gets converted to an int and all of its bits
are used. With version 1, the hash () of x is used instead. Changed in version 3.2: Moved to the version 2
scheme which uses all of the bits in a string seed.

random.getstate ()
Return an object capturing the current internal state of the generator. This object can be passed to setstate ()
to restore the state.

random.setstate (state)
state should have been obtained from a previous call to get state (), and setstate () restores the internal
state of the generator to what it was at the time setstate () was called.

random.getrandbits (k)
Returns a Python integer with k random bits. This method is supplied with the MersenneTwister generator and
some other generators may also provide it as an optional part of the API. When available, get randbits ()
enables randrange () to handle arbitrarily large ranges.

Functions for integers:

random. randrange ([start], stop[, step])
Return a randomly selected element from range (start, stop, step). This is equivalent to
choice (range (start, stop, step)), butdoesn’tactually build a range object.

The positional argument pattern matches that of range (). Keyword arguments should not be used because
the function may use them in unexpected ways. Changed in version 3.2: randrange () is more sophisticated
about producing equally distributed values. Formerly it used a style like int (random () *n) which could
produce slightly uneven distributions.

random.randint (a, b)
Return a random integer N such that a <= N <= b. Alias for randrange (a, b+1).

Functions for sequences:

random. choice (seq)
Return a random element from the non-empty sequence seq. If seq is empty, raises IndexError.

random.shuffle (x[, random])
Shuffle the sequence x in place. The optional argument random is a 0-argument function returning a random
float in [0.0, 1.0); by default, this is the function random ().

Note that for even rather small 1en (x), the total number of permutations of x is larger than the period of most
random number generators; this implies that most permutations of a long sequence can never be generated.

random. sample (population, k)
Return a k length list of unique elements chosen from the population sequence or set. Used for random sampling
without replacement.

Returns a new list containing elements from the population while leaving the original population unchanged.
The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows raffle
winners (the sample) to be partitioned into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each
occurrence is a possible selection in the sample.

To choose a sample from a range of integers, use an range () object as an argument. This is especially fast
and space efficient for sampling from a large population: sample (range (10000000), 60).

The following functions generate specific real-valued distributions. Function parameters are named after the corre-
sponding variables in the distribution’s equation, as used in common mathematical practice; most of these equations
can be found in any statistics text.

234 Chapter 8. Numeric and Mathematical Modules

The Python Library Reference, Release 3.2.1

random.random ()
Return the next random floating point number in the range [0.0, 1.0).

random.uniform (a, b)
Return a random floating point number N such thata <= N <= bfora <= bandb <= N <= aforb <
a.

The end-point value b may or may not be included in the range depending on floating-point rounding in the
equationa + (b-a) * random().

random.triangular (low, high, mode)
Return a random floating point number N such that low <= N <= high and with the specified mode between
those bounds. The low and high bounds default to zero and one. The mode argument defaults to the midpoint
between the bounds, giving a symmetric distribution.

random.betavariate (alpha, beta)
Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0. Returned values range
between 0 and 1.

random.expovariate (lambd)
Exponential distribution. lambd is 1.0 divided by the desired mean. It should be nonzero. (The parameter would
be called “lambda”, but that is a reserved word in Python.) Returned values range from O to positive infinity if
lambd is positive, and from negative infinity to 0 if lambd is negative.

random.gammavariate (alpha, beta)
Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > 0 and beta >
0.

random.gauss (mu, sigma)
Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster than the
normalvariate () function defined below.

random.lognormvariate (mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution
with mean mu and standard deviation sigma. mu can have any value, and sigma must be greater than zero.

random.normalvariate (mu, sigma)
Normal distribution. mu is the mean, and sigma is the standard deviation.

random.vonmisesvariate (mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration parameter, which
must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform random
angle over the range 0 to 2*pi.

random.paretovariate (alpha)
Pareto distribution. alpha is the shape parameter.

random.weibullvariate (alpha, beta)
Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

Alternative Generator:

class random. SystemRandom ([seed])
Class that uses the os.urandom () function for generating random numbers from sources provided by the
operating system. Not available on all systems. Does not rely on software state, and sequences are not repro-
ducible. Accordingly, the seed () method has no effect and is ignored. The get state () and setstate ()
methods raise Not ImplementedError if called.

See Also:

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom
number generator”’, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.

8.6. random — Generate pseudo-random numbers 235

The Python Library Reference, Release 3.2.1

Complementary-Multiply-with-Carry recipe for a compatible alternative random number generator with a long period
and comparatively simple update operations.

8.6.1 Notes on Reproducibility
Sometimes it is useful to be able to reproduce the sequences given by a pseudo random number generator. By re-using
a seed value, the same sequence should be reproducible from run to run as long as multiple threads are not running.

Most of the random module’s algorithms and seeding functions are subject to change across Python versions, but two
aspects are guaranteed not to change:

* If a new seeding method is added, then a backward compatible seeder will be offered.

* The generator’s random () method will continue to produce the same sequence when the compatible seeder is
given the same seed.

8.6.2 Examples and Recipes

Basic usage:
>>> random.random () # Random float x, 0.0 <= x < 1.0

0.37444887175646646

>>> random.uniform (1, 10) # Random float x, 1.0 <= x < 10.0
1.1800146073117523

>>> random.randrange (10) # Integer from 0 to 9

7

>>> random.randrange (0, 101, 2) # Even integer from 0 to 100
26

>>> random.choice (" abcdefghij’) # Single random element

ICI

>>> items = [1, 2, 3, 4, 5, 6, 7]

>>> random.shuffle (items)
>>> jtems
[71 3’ 2/ 5’ 6’ 4/ 11

>>> random.sample([1l, 2, 3, 4, 5], 3) # Three samples without replacement
(4, 1, 5]
A common task is to make a random. choice () with weighted probababilites.

If the weights are small integer ratios, a simple technique is to build a sample population with repeats:

>>> weighted_choices = [('Red’, 3), ('Blue’, 2), ('Yellow’, 1), ('Green’, 4)]
>>> population = [val for val, cnt in weighted_choices for i in range (cnt)]
>>> random.choice (population)

"Green’

A more general approach is to arrange the weights in a cumulative distribution with itertools.accumulate (),
and then locate the random value with bisect .bisect ():

>>> choices, weights = zip(xweighted_choices)
>>> cumdist = list (itertools.accumulate (weights))

236 Chapter 8. Numeric and Mathematical Modules

http://code.activestate.com/recipes/576707/

The Python Library Reference, Release 3.2.1

>>> x = random.random() * cumdist[-1]
>>> choices[bisect.bisect (cumdist, x)]
"Blue’

8.6. random — Generate pseudo-random numbers 237

The Python Library Reference, Release 3.2.1

238 Chapter 8. Numeric and Mathematical Modules

CHAPTER
NINE

FUNCTIONAL PROGRAMMING
MODULES

The modules described in this chapter provide functions and classes that support a functional programming style, and
general operations on callables.

The following modules are documented in this chapter:

9.1 itertools — Functions creating iterators for efficient looping

This module implements a number of iferator building blocks inspired by constructs from APL, Haskell, and SML.
Each has been recast in a form suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in combination.
Together, they form an “iterator algebra” making it possible to construct specialized tools succinctly and efficiently in
pure Python.

For instance, SML provides a tabulation tool: tabulate (£) which produces a sequence £ (0), £ (1),
The same effect can be achieved in Python by combining map () and count () to form map (£, count ()).

These tools and their built-in counterparts also work well with the high-speed functions in the operator mod-
ule. For example, the multiplication operator can be mapped across two vectors to form an efficient dot-product:
sum (map (operator.mul, vectorl, vector2)).

Infinite Iterators:

Iterator Argu- Results Example
ments
count () | start, start, start+step, start+2*step, ... count (10) —--> 10 11 12 13 14
[step] e
cycle() | p p0, pl, ... plast, p0, p1, ... cycle(’ABCD’) -—> A B CDAB
CD
repeat ()| elem [,n] elem, elem, elem, ... endlessly or up repeat (10, 3) --> 10 10 10
to n times

Iterators terminating on the shortest input sequence:

239

The Python Library Reference, Release 3.2.1

Iterator Arguments Results Example
accumulatep) pO, pO+pl, pO+pl+p2, ... accumulate([1,2,3,4,5]) ——> 1 3 6
10 15
chain () P9 - PO, pl, ... plast, qO0, ql, ... chain(’ABC’, 'DEF’) -——> A B C D E
F
compress (|) data, selectors | (d[0] if s[0]), (d[1]if s[1]), | compress (' ABCDEF’, [1,0,1,0,1,11)
e -—> A CEF
dropwhile|(pred, seq seq[n], seq[n+1], starting dropwhile (lambda x: x<5,
when pred fails [1,4,6,4,1]) ——> 6 4 1
filterfallspred, seq elements of seq where filterfalse(lambda x: x%2,
pred(elem) is False range (10)) -—> 0 2 4 6 8
groupby ()| iterable[, sub-iterators grouped by
keyfunc] value of keyfunc(v)
islice () | seq, [start,] elements from islice (" ABCDEFG’, 2, None) ——> C D
stop [, step] seq([start:stop:step] EFG
starmap ()| func, seq func(*seq[0]), starmap (pow, [(2,5), (3,2),
func(*seq[1]), ... (10,3)]1) —-—> 32 9 1000
takewhile|(pred, seq seq[0], seq[1], until pred takewhile (lambda x: x<5,
fails [1,4,6,4,1]) ——> 1 4
tee () it, n itl, it2 , ... itn splits one
iterator into n
zip_longelsp,@, ... (pl01, q[OD), (p[1], q[1]), ... | zip_longest (' ABCD’, ’'xy’,
fillvalue='-') --> Ax By C- D-
Combinatoric generators:
Iterator Arguments | Results
product () P9 - cartesian product, equivalent to a nested for-loop
[repeat=1]
permutations () pL 1] r-length tuples, all possible orderings, no repeated
elements
combinations () p,T r-length tuples, in sorted order, no repeated

combinations_with_replacement () p,r

product (" ABCD’,
permutations (' ABCD’,

combinations (" ABCD’,

repeat=2)

2)

2)

combinations_with_replacement ({ ABCD’,

2)

elements

r-length tuples, in sorted order, with repeated
elements
AA AB
CD DA
AB AC
DC
AB
AA

AC
DB
AD

AD
DC
BA

BA
DD
BC

BB BC BD CA CB CC

BD CA CB CD DA DB

AC
AB

AD
AC

BC
AD

BD
BB

CD

BC BD CC CD DD

9.1.1 ltertool functions

The following module functions all construct and return iterators. Some provide streams of infinite length, so they

should only be accessed by functions or loops that truncate the stream.

itertools.accumulate (iterable)

Make an iterator that returns accumulated sums. Elements may be any addable type including Decimal or
Fraction. Equivalent to:

def accumulate (iterable) :
"Return running totals’

accumulate([1,2,3,4,5])

-—> 1 3 6 10 15

240

Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2.1

it = iter(iterable)

total = next (it)

yield total

for element in it:
total = total + element
yield total

New in version 3.2.

itertools.chain (*terables)

Make an iterator that returns elements from the first iterable until it is exhausted, then proceeds to the next
iterable, until all of the iterables are exhausted. Used for treating consecutive sequences as a single sequence.
Equivalent to:

def chain(xiterables):
chain(’ABC’, ’'DEF’) —-—> A B C D E F
for it in iterables:
for element in it:
yield element

classmethod chain.from_ iterable (iterable)

Alternate constructor for chain (). Gets chained inputs from a single iterable argument that is evaluated lazily.
Equivalent to:

@classmethod
def from iterable(iterables):
chain.from iterable([’ABC’, ’'DEF’]) —-—> A B C D E F
for it in iterables:
for element in it:
yield element

itertools.combinations (iterable, r)

Return r length subsequences of elements from the input iterable.

Combinations are emitted in lexicographic sort order. So, if the input iterable is sorted, the combination tuples
will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are unique,
there will be no repeat values in each combination.

Equivalent to:

def combinations (iterable, r):
combinations (’ABCD’, 2) ——-> AB AC AD BC BD CD
combinations (range (4), 3) —-—-> 012 013 023 123
pool = tuple(iterable)
n = len(pool)
if r > n:
return
indices = list (range(r))
yield tuple(pool[i] for i in indices)
while True:

for i in reversed(range(r)):
if indices[i] != i + n - r:
break
else:

9.1. itertools — Functions creating iterators for efficient looping 241

The Python Library Reference, Release 3.2.1

return
indices[i] += 1
for j in range(i+l, r):

indices[]j] = indices[j-1] + 1
yield tuple(pool[i] for i in indices)

The code for combinations () can be also expressed as a subsequence of permutations () after filtering
entries where the elements are not in sorted order (according to their position in the input pool):

def combinations (iterable, r):
pool = tuple(iterable)

n = len(pool)
for indices in permutations(range(n), r):
if sorted(indices) == list (indices):

yield tuple(pool[i] for i in indices)

The number of items returnedisn! / r! / (n-r)! when0 <= r <= norzerowhenr > n.

itertools.combinations_with_replacement (iterable, r)

Return r length subsequences of elements from the input iterable allowing individual elements to be repeated
more than once.

Combinations are emitted in lexicographic sort order. So, if the input iterable is sorted, the combination tuples
will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are unique,
the generated combinations will also be unique.

Equivalent to:

def combinations_with_replacement (iterable, 1r):
combinations_with_replacement ("ABC’, 2) —--> AA AB AC BB BC CC
pool = tuple(iterable)
n = len(pool)
if not n and r:
return
indices = [0] * r
yield tuple(pool[i] for i in indices)
while True:
for i in reversed(range(r)):
1

if indices[i] !'= n - 1:
break
else:
return
indices[i:] = [indices[i] + 1] * (r - 1i)

yield tuple(pool[i] for i in indices)

The code for combinations_with_replacement () can be also expressed as a subsequence of
product () after filtering entries where the elements are not in sorted order (according to their position in
the input pool):

def combinations_with_replacement (iterable, 1r):
pool = tuple(iterable)
n = len(pool)
for indices in product (range(n), repeat=r):

242

Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2.1

if sorted(indices) == list (indices):
yield tuple(pool[i] for i in indices)

The number of items returned is (n+r-1)! / r! / (n-1)! whenn > 0. New in version 3.1.

itertools.compress (data, selectors)
Make an iterator that filters elements from data returning only those that have a corresponding element in se-
lectors that evaluates to True. Stops when either the data or selectors iterables has been exhausted. Equivalent
to:

def compress(data, selectors):
compress (’ABCDEF’, [1,0,1,0,1,1]) -——> A C E F
return (d for d, s in zip(data, selectors) if s)

New in version 3.1.

itertools.count (start=0, step=1)
Make an iterator that returns evenly spaced values starting with n. Often used as an argument to map () to
generate consecutive data points. Also, used with zip () to add sequence numbers. Equivalent to:

def count (start=0, step=1):
count (10) ——> 10 11 12 13 14
count (2.5, 0.5) -> 2.5 3.0 3.5

n = start
while True:
yield n

n += step

When counting with floating point numbers, better accuracy can sometimes be achieved by substituting mul-
tiplicative code such as: (start + step x* i for i in count ()). Changed in version 3.1: Added
step argument and allowed non-integer arguments.

itertools.cycle (iterable)
Make an iterator returning elements from the iterable and saving a copy of each. When the iterable is exhausted,
return elements from the saved copy. Repeats indefinitely. Equivalent to:

def cycle (iterable):

cycle(’ABCD’) -—> A B CDABCDADBTCD
saved = []
for element in iterable:

yield element

saved.append (element)
while saved:

for element in saved:

yield element

Note, this member of the toolkit may require significant auxiliary storage (depending on the length of the iter-
able).

itertools.dropwhile (predicate, iterable)
Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns every
element. Note, the iterator does not produce any output until the predicate first becomes false, so it may have a
lengthy start-up time. Equivalent to:

def dropwhile (predicate, iterable):
dropwhile (lambda x: x<5, [1,4,6,4,1]) —> 6 4 1

9.1. itertools — Functions creating iterators for efficient looping 243

The Python Library Reference, Release 3.2.1

iterable = iter(iterable)
for x in iterable:
if not predicate(x):
yield x
break
for x in iterable:
yield x

itertools.filterfalse (predicate, iterable)
Make an iterator that filters elements from iterable returning only those for which the predicate is False. If
predicate is None, return the items that are false. Equivalent to:

def filterfalse(predicate, iterable):
filterfalse (lambda x: x%2, range(10)) --> 0 2 4 6 8
if predicate is None:
predicate = bool
for x in iterable:
if not predicate(x):
yield x

itertools.groupby (iterable, key=None)
Make an iterator that returns consecutive keys and groups from the iterable. The key is a function computing
a key value for each element. If not specified or is None, key defaults to an identity function and returns the
element unchanged. Generally, the iterable needs to already be sorted on the same key function.

The operation of groupby () is similar to the unigq filter in Unix. It generates a break or new group every
time the value of the key function changes (which is why it is usually necessary to have sorted the data using
the same key function). That behavior differs from SQL’s GROUP BY which aggregates common elements
regardless of their input order.

The returned group is itself an iterator that shares the underlying iterable with groupby () . Because the source
is shared, when the groupby () object is advanced, the previous group is no longer visible. So, if that data is
needed later, it should be stored as a list:

groups = []

uniquekeys = []

data = sorted(data, key=keyfunc)

for k, g in groupby(data, keyfunc):
groups.append (list (g)) # Store group iterator as a list
uniquekeys.append (k)

groupby () is equivalent to:

class groupby:

[k for k, g in groupby (’AAAABBBCCDAABBB’)] --> A B C D A B
[list(g) for k, g in groupby (’AAAABBBCCD’)] —--> AAAA BBB CC D
def _ _init__ (self, iterable, key=None):

if key is None:

key = lambda x: x

self.keyfunc = key

self.it = iter (iterable)

self.tgtkey = self.currkey = self.currvalue = object ()
def _ iter_ (self):

return self
def = next_ (self):

244 Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2.1

while self.currkey == self.tgtkey:
self.currvalue = next (self.it) # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)

self.tgtkey = self.currkey
return (self.currkey, self._grouper (self.tgtkey))
def _grouper(self, tgtkey):

while self.currkey == tgtkey:
yield self.currvalue
self.currvalue = next (self.it) # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)

itertools.islice (iterable[, start], stop[, step])

Make an iterator that returns selected elements from the iterable. If start is non-zero, then elements from the
iterable are skipped until start is reached. Afterward, elements are returned consecutively unless step is set
higher than one which results in items being skipped. If stop is None, then iteration continues until the iterator
is exhausted, if at all; otherwise, it stops at the specified position. Unlike regular slicing, islice () does
not support negative values for start, stop, or step. Can be used to extract related fields from data where the
internal structure has been flattened (for example, a multi-line report may list a name field on every third line).
Equivalent to:

def islice(iterable, =xargs):
islice (’ABCDEFG’, 2) —--> A B
islice(’ABCDEFG’, 2, 4) ——> C D
islice (’ABCDEFG’, 2, None) —--> C D E F G
islice(’ABCDEFG’, 0, None, 2) —-—> A C E G
s = slice(*args)

it = iter(range(s.start or 0, s.stop or sys.maxsize, s.step or 1))
nexti = next (it)
for i, element in enumerate (iterable) :
if i == nexti:
yield element
nexti = next (it)

If start is None, then iteration starts at zero. If step is None, then the step defaults to one.

itertools.permutations (iterable, r=None)

Return successive r length permutations of elements in the iterable.

If r is not specified or is None, then r defaults to the length of the iterable and all possible full-length permuta-
tions are generated.

Permutations are emitted in lexicographic sort order. So, if the input iterable is sorted, the permutation tuples
will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are unique,
there will be no repeat values in each permutation.

Equivalent to:

def permutations(iterable, r=None) :
permutations (’ABCD’, 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
permutations (range (3)) --> 012 021 102 120 201 210
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
if r > n:

9.1. itertools — Functions creating iterators for efficient looping 245

The Python Library Reference, Release 3.2.1

return
indices = list (range(n))
cycles = range(n, n-r, —-1)
yield tuple(pool[i] for i in indices([:r])
while n:
for i in reversed(range(r)):
cycles[i] —=1
if cycles[i] == O0:
indices[i:] = indices[i+1l:] + indices[1:1+1]
cycles[i] = n — 1
else:
J = cycles|[i]
indices[i], indices[-]J] = indices[-3j], indices[i]
yield tuple(pool[i] for i in indices[:r])
break
else:
return

The code for permutations () can be also expressed as a subsequence of product (), filtered to exclude
entries with repeated elements (those from the same position in the input pool):

def permutations (iterable, r=None) :
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
for indices in product (range(n), repeat=r):
if len(set (indices)) == r:
yield tuple(pool[i] for i in indices)

The number of items returnedisn! / (n-r)! when 0 <= r <= norzerowhenr > n.

itertools.product (*iterables, repeat=1)

Cartesian product of input iterables.

Equivalent to nested for-loops in a generator expression. For example, product (A, B) returns the same as
((x,y) for x in A for y in B).

The nested loops cycle like an odometer with the rightmost element advancing on every iteration. This pattern

creates a lexicographic ordering so that if the input’s iterables are sorted, the product tuples are emitted in sorted
order.

To compute the product of an iterable with itself, specify the number of repetitions with the optional repeat
keyword argument. For example, product (A, repeat=4) means the same as product (A, A, A,
A).

This function is equivalent to the following code, except that the actual implementation does not build up inter-
mediate results in memory:

def product (xargs, repeat=1):
product (ABCD’, ’xy’) —-—-> Ax Ay Bx By Cx Cy Dx Dy
product (range (2), repeat=3) —--> 000 001 010 011 100 101 110 111

pools = [tuple(pool) for pool in args] * repeat
result = [[]]
for pool in pools:

result = [x+[y] for x in result for y in pool]

246

Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2.1

for prod in result:
yield tuple (prod)

itertools.repeat(obkc{,ﬁmes])
Make an iterator that returns object over and over again. Runs indefinitely unless the times argument is specified.
Used as argument to map () for invariant parameters to the called function. Also used with zip () to create an
invariant part of a tuple record. Equivalent to:

def repeat (object, times=None) :
repeat (10, 3) —--> 10 10 10
if times is None:
while True:
yield object
else:
for i in range(times):
yield obiject

itertools.starmap (function, iterable)
Make an iterator that computes the function using arguments obtained from the iterable. Used instead of map ()
when argument parameters are already grouped in tuples from a single iterable (the data has been “pre-zipped”).
The difference between map () and starmap () parallels the distinction between function (a,b) and
function (xc). Equivalent to:

def starmap (function, iterable):
starmap (pow, [(2,5), (3,2), (10,3)]) —-—> 32 9 1000
for args in iterable:
yield function (xargs)

itertools.takewhile (predicate, iterable)
Make an iterator that returns elements from the iterable as long as the predicate is true. Equivalent to:

def takewhile (predicate, iterable):
takewhile (lambda x: x<5, [1,4,6,4,1]) ——> 1 4
for x in iterable:
if predicate (x):
yield x
else:
break

itertools.tee (iterable, n=2)
Return n independent iterators from a single iterable. Equivalent to:

def tee(iterable, n=2):
it = iter(iterable)
deques = [collections.deque() for i in range(n)]
def gen (mydeque) :
while True:

if not mydeque: # when the local deque is empty
newval = next (it) # fetch a new value and
for d in deques: # load it to all the deques

d.append (newval)
yield mydeque.popleft ()
return tuple(gen(d) for d in deques)

9.1. itertools — Functions creating iterators for efficient looping 247

The Python Library Reference, Release 3.2.1

Once tee () has made a split, the original iterable should not be used anywhere else; otherwise, the iterable
could get advanced without the tee objects being informed.

This itertool may require significant auxiliary storage (depending on how much temporary data needs to be
stored). In general, if one iterator uses most or all of the data before another iterator starts, it is faster to use
list () instead of tee ().

itertools.zip_longest (*iterables, fillvalue=None)
Make an iterator that aggregates elements from each of the iterables. If the iterables are of uneven length,
missing values are filled-in with fillvalue. Iteration continues until the longest iterable is exhausted. Equivalent
to:

def zip_longest (r*rargs, fillvalue=None) :
zip_longest (’ABCD’, ’'xy’, fillvalue="-’) —--> Ax By C- D-

def sentinel (counter = ([fillvalue]=x (len(args)-1)) .pop):

yield counter () # yields the fillvalue, or raises IndexError
fillers = repeat(fillvalue)
iters = [chain(it, sentinel (), fillers) for it in args]
try:

for tup in zip(xiters):

yield tup

except IndexError:

pass

If one of the iterables is potentially infinite, then the zip_longest () function should be wrapped with some-
thing that limits the number of calls (for example islice () or takewhile ()). If not specified, fillvalue
defaults to None.

9.1.2 ltertools Recipes

This section shows recipes for creating an extended toolset using the existing itertools as building blocks.

The extended tools offer the same high performance as the underlying toolset. The superior memory performance
is kept by processing elements one at a time rather than bringing the whole iterable into memory all at once. Code
volume is kept small by linking the tools together in a functional style which helps eliminate temporary variables.
High speed is retained by preferring “vectorized” building blocks over the use of for-loops and generators which incur
interpreter overhead.

def take(n, iterable):
"Return first n items of the iterable as a list"
return list (islice(iterable, n))

def tabulate (function, start=0):
"Return function(0), function(l),
return map (function, count (start))

n

def consume (iterator, n):
"Advance the iterator n-steps ahead. If n is none, consume entirely."
Use functions that consume iterators at C speed.
if n is None:
feed the entire iterator into a zero-length deque
collections.deque (iterator, maxlen=0)
else:
advance to the empty slice starting at position n
next (islice (iterator, n, n), None)

248 Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2.1

def

def

def

def

def

def

def

def

def

nth (iterable, n, default=None) :
"Returns the nth item or a default value"
return next (islice(iterable, n, None), default)

quantify (iterable, pred=bool):
"Count how many times the predicate is true"
return sum (map (pred, iterable))

padnone (iterable) :
"""Returns the sequence elements and then returns None indefinitely.

Useful for emulating the behavior of the built-in map() function.

mmn

return chain(iterable, repeat (None))

ncycles (iterable, n):
"Returns the sequence elements n times"
return chain.from_iterable (repeat (tuple (iterable), n))

dotproduct (vecl, vec2):
return sum(map (operator.mul, wvecl, vec2))

flatten (listOfLists) :
"Flatten one level of nesting"
return chain.from_iterable(listOfLists)

repeatfunc (func, times=None, xargs):
"""Repeat calls to func with specified arguments.
Example: repeat func (random.random)

mmn

if times is None:
return starmap (func, repeat (args))
return starmap (func, repeat (args, times))

pairwise (iterable) :

"s -> (s0,sl), (sl,s2), (s2, s3), ..."
a, b = tee(iterable)

next (b, None)

return zip(a, b)

grouper (n, iterable, fillvalue=None) :
"grouper (3, ’'ABCDEFG’, ’'x’") —--> ABC DEF Gxx"
args = [iter (iterable)] * n

return zip_longest (rargs, fillvalue=fillvalue)

def roundrobin (xiterables) :
"roundrobin (ABC’, ’'D’, 'EF’) -——> A DE B F C"
Recipe credited to George Sakkis
pending = len(iterables)
nexts = cycle(iter(it).__next_ for it in iterables)
while pending:
try:
9.1. itertools — Functions creating iterators for efficient looping 249

The Python Library Reference, Release 3.2.1

for next in nexts:
yield next ()
except StopIteration:
pending —= 1
nexts = cycle(islice (nexts, pending))

def partition(pred, iterable):
"Use a predicate to partition entries into false entries and true entries’
partition(is_odd, range(10)) —-—-> 0 2 4 6 8 and 1 3 5 7 9
tl, t2 = tee(iterable)
return filterfalse(pred, tl), filter(pred, t2)

def powerset (iterable):
"powerset ([1,2,3]1) ——> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list (iterable)
return chain.from_iterable (combinations (s, r) for r in range(len(s)+1))

def unique_everseen (iterable, key=None) :
"List unique elements, preserving order. Remember all elements ever seen."
unique_everseen (' AAAABBBCCDAABBB’) —--> A B C D
unique_everseen (’ABBCcAD’, str.lower) —--> A B C D
seen = set ()
seen_add = seen.add
if key is None:
for element in filterfalse(seen._ contains_ , iterable):
seen_add (element)
yield element
else:
for element in iterable:
k = key(element)
if k not in seen:
seen_add (k)
yield element

def unique_justseen(iterable, key=None) :
"List unique elements, preserving order. Remember only the element just seen."
unique_justseen (' AAAABBBCCDAABBB’) --> A B C D A B
unique_justseen (’ABBCcAD’, str.lower) —-——-> A B C A D
return map (next, map (itemgetter (1), groupby(iterable, key)))

def iter_except (func, exception, first=None) :
""" Call a function repeatedly until an exception 1is raised.

Converts a call-until-exception interface to an iterator interface.
Like __builtin__ .iter (func, sentinel) but uses an exception instead
of a sentinel to end the loop.

Examples:

iter_except (functools.partial (heappop, h), IndexError) # priority queue iterator
iter except (d.popitem, KeyError) # non-blocking dict itera
iter_except (d.popleft, IndexError) # non-blocking deque iter
iter_except (q.get_nowait, Queue.Empty) # loop over a producer Qu
#

iter_except (s.pop, KeyError) non-blocking set iterat

250 Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2.1

mmn

try:
if first is not None:

yield first () # For database APIs needing an initial cast to db.fir

while 1:
yield func()
except exception:
pass

def random_product (xargs, repeat=1):
"Random selection from itertools.product (xargs, *xkwds)"
pools = [tuple(pool) for pool in args] »* repeat
return tuple (random.choice (pool) for pool in pools)

def random_permutation(iterable, r=None):
"Random selection from itertools.permutations (iterable, r)"
pool = tuple(iterable)
r = len(pool) if r is None else r
return tuple (random.sample (pool, r))

def random_combination (iterable, r):
"Random selection from itertools.combinations (iterable, r)"
pool = tuple(iterable)
n = len(pool)
indices = sorted(random.sample (range(n), r))
return tuple(pool[i] for 1 in indices)

def random_combination_with_replacement (iterable, r):
"Random selection from itertools.combinations_with_replacement (iterable, r)
pool = tuple(iterable)
n = len(pool)
indices = sorted(random.randrange (n) for i in range(r))
return tuple(pool[i] for i in indices)

Note, many of the above recipes can be optimized by replacing global lookups with local variables defined as default
values. For example, the dotproduct recipe can be written as:

def dotproduct (vecl, vec2, sum=sum, map=map, mul=operator.mul) :
return sum(map (mul, vecl, vec2))

9.2 functools — Higher order functions and operations on callable
objects

Source code: Lib/functools.py

The functools module is for higher-order functions: functions that act on or return other functions. In general, any
callable object can be treated as a function for the purposes of this module.

The functools module defines the following functions:

functools.cmp_to_key (func)
Transform an old-style comparison function to a key-function. Used with tools that accept key
functions (such as sorted(), min(), max (), heapg.nlargest (), heapg.nsmallest (),

9.2. functools — Higher order functions and operations on callable objects 251

n

http://hg.python.org/cpython/file/default/Lib/functools.py

The Python Library Reference, Release 3.2.1

itertools.groupby ()). This function is primarily used as a transition tool for programs being converted
from Py2.x which supported the use of comparison functions.

A compare function is any callable that accept two arguments, compares them, and returns a negative number
for less-than, zero for equality, or a positive number for greater-than. A key function is a callable that accepts
one argument and returns another value indicating the position in the desired collation sequence.

Example:
sorted(iterable, key=cmp_to_key (locale.strcoll)) # locale-aware sort order

New in version 3.2.

@functools.lru_cache (maxsize=100)

Decorator to wrap a function with a memoizing callable that saves up to the maxsize most recent calls. It can
save time when an expensive or I/O bound function is periodically called with the same arguments.

Since a dictionary is used to cache results, the positional and keyword arguments to the function must be hash-
able.

If maxsize is set to None, the LRU feature is disabled and the cache can grow without bound.

To help measure the effectiveness of the cache and tune the maxsize parameter, the wrapped function is instru-
mented with a cache_info () function that returns a named tuple showing hits, misses, maxsize and currsize.
In a multi-threaded environment, the hits and misses are approximate.

The decorator also provides a cache_clear () function for clearing or invalidating the cache.

The original underlying function is accessible through the _ wrapped___ attribute. This is useful for intro-
spection, for bypassing the cache, or for rewrapping the function with a different cache.

An LRU (least recently used) cache works best when more recent calls are the best predictors of upcoming calls
(for example, the most popular articles on a news server tend to change daily). The cache’s size limit assures
that the cache does not grow without bound on long-running processes such as web servers.

Example of an LRU cache for static web content:

@lru_cache (maxsize=20)
def get_pep (num) :
"Retrieve text of a Python Enhancement Proposal’
resource = ’'http://www.python.org/dev/peps/pep-%04d/’ % num
try:
with urllib.request.urlopen(resource) as s:
return s.read()
except urllib.error .HTTPError:
return ’'Not Found’

>>> for n in 8, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991:

pep = get_pep(n)
print (n, len (pep))

>>> print (get_pep.cache_info())
CacheInfo (hits=3, misses=8, maxsize=20, currsize=38)

Example of efficiently computing Fibonacci numbers using a cache to implement a dynamic programming
technique:

@lru_cache (maxsize=None)
def fib(n):

252

Chapter 9. Functional Programming Modules

http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Dynamic_programming

The Python Library Reference, Release 3.2.1

if n < 2:
return n
return fib(n-1) + fib(n-2)

>>> print ([fib(n) for n in range(16)])
(o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

>>> print (fib.cache_info())
CacheInfo (hits=28, misses=16, maxsize=None, currsize=16)

New in version 3.2.

@functools.total_ordering
Given a class defining one or more rich comparison ordering methods, this class decorator supplies the rest.
This simplifies the effort involved in specifying all of the possible rich comparison operations:

The class must define one of __1t_ (), _ le_ (),
should supply an __eq___ () method.

gt__(),or __ge__ (). In addition, the class

For example:

@total_ordering
class Student:
def _ _eq_ (self, other):
return ((self.lastname.lower (), self.firstname.lower()) ==
(other.lastname.lower (), other.firstname.lower()))
def _ 1t (self, other):
return ((self.lastname.lower (), self.firstname.lower()) <
(other.lastname.lower (), other.firstname.lower()))

New in version 3.2.

functools.partial (func, *args, **keywords)
Return a new partial object which when called will behave like func called with the positional arguments
args and keyword arguments keywords. If more arguments are supplied to the call, they are appended to args.
If additional keyword arguments are supplied, they extend and override keywords. Roughly equivalent to:

def partial (func, =xargs, xxkeywords):
def newfunc (xfargs, *xfkeywords):
newkeywords = keywords.copy ()
newkeywords.update (fkeywords)

return func (* (args + fargs), =*xnewkeywords)

newfunc. func = func
newfunc.args = args
newfunc.keywords = keywords

return newfunc

The partial () isused for partial function application which “freezes” some portion of a function’s arguments
and/or keywords resulting in a new object with a simplified signature. For example, partial () can be used
to create a callable that behaves like the int () function where the base argument defaults to two:

>>> from functools import partial

>>> basetwo = partial (int, base=2)

>>> basetwo.__doc___ "Convert base 2 string to an int.’
>>> basetwo (" 10010")

18

9.2. functools — Higher order functions and operations on callable objects 253

The Python Library Reference, Release 3.2.1

functools.reduce (function, itemble[, initializer])

Apply function of two arguments cumulatively to the items of sequence, from left to right, so as to reduce
the sequence to a single value. For example, reduce (lambda x, y: x+y, [1, 2, 3, 4, 5])
calculates ((((1+2)+3)+4)+5). The left argument, x, is the accumulated value and the right argument, y,
is the update value from the sequence. If the optional initializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is empty. If initializer is not given and
sequence contains only one item, the first item is returned.

functools.update_wrapper (wrapper, wrapped, assigned=WRAPPER_ASSIGNMENTS, up-

dated=WRAPPER_UPDATES)
Update a wrapper function to look like the wrapped function. The optional arguments are tuples to specify

which attributes of the original function are assigned directly to the matching attributes on the wrapper function
and which attributes of the wrapper function are updated with the corresponding attributes from the original
function. The default values for these arguments are the module level constants WRAPPER _ASSIGNMENTS
(which assigns to the wrapper function’s __name__, __module__, __annotations__ and __doc__, the docu-
mentation string) and WRAPPER_UPDATES (which updates the wrapper function’s __dict__, i.e. the instance
dictionary).

To allow access to the original function for introspection and other purposes (e.g. bypassing a caching decorator
such as 1ru_cache ()), this function automatically adds a __wrapped___ attribute to the wrapper that refers to
the original function.

The main intended use for this function is in decorator functions which wrap the decorated function and return
the wrapper. If the wrapper function is not updated, the metadata of the returned function will reflect the wrapper
definition rather than the original function definition, which is typically less than helpful.

update_wrapper () may be used with callables other than functions. Any attributes named in assigned or
updated that are missing from the object being wrapped are ignored (i.e. this function will not attempt to set
them on the wrapper function). AttributeError is still raised if the wrapper function itself is missing any
attributes named in updated. New in version 3.2: Automatic addition of the __wrapped___ attribute.New
in version 3.2: Copying of the __annotations___ attribute by default.Changed in version 3.2: Missing
attributes no longer trigger an AttributeError.

@functools.wraps (wrapped, assigned=WRAPPER_ASSIGNMENTS, updated=WRAPPER_UPDATES)

This is a convenience function for invoking partial (update_wrapper, wrapped=wrapped,
assigned=assigned, updated=updated) as a function decorator when defining a wrapper function.
For example:

>>> from functools import wraps
>>> def my_decorator (f) :
@wraps (f)
def wrapper (rargs, =*xkwds):
print (' Calling decorated function’)
return f (xargs, *xkwds)
return wrapper

>>> @my_decorator
def example():
"""Docstring"""
print (' Called example function’)

>>> example ()

Calling decorated function
Called example function
>>> example._ name_
"example’

254

Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2.1

>>> example.__doc

"Docstring’

Without the use of this decorator factory, the name of the example function would have been ' wrapper’, and
the docstring of the original example () would have been lost.

9.2.1 partial Objects

partial objects are callable objects created by partial (). They have three read-only attributes:

partial. func
A callable object or function. Calls to the partial object will be forwarded to func with new arguments and
keywords.

partial.args
The leftmost positional arguments that will be prepended to the positional arguments provided to a partial
object call.

partial.keywords
The keyword arguments that will be supplied when the partial object is called.

partial objects are like function objects in that they are callable, weak referencable, and can have attributes.
There are some important differences. For instance, the __name___and __doc___ attributes are not created automat-
ically. Also, partial objects defined in classes behave like static methods and do not transform into bound methods
during instance attribute look-up.

9.3 operator — Standard operators as functions

The operator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For example, operator.add (x, y) is equivalent to the expression x+y. The function names are those used for
special class methods; variants without leading and trailing ___ are also provided for convenience.

The functions fall into categories that perform object comparisons, logical operations, mathematical operations and
sequence operations.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

operator.lt (a, b)

operator.le (a, b)

operator.eq(a, b)

operator.ne (a, b)

operator.ge (a, b)

operator.gt (a, b)

operator.__1lt__ (a,b)

operator._ le_ (a,b)

operator.__eq _ (a,b)

operator.__ne__ (a,b)

operator.__ge__(a,b)

operator.__gt__ (a,b)
Perform “rich comparisons” between a and b. Specifically, 1t (a, b) is equivalentto a < b, le(a, b)
is equivalentto a <= b, eqg(a, b) isequivalenttoa == b,ne(a, b) isequivalenttoa !'= b, gt (a,

b) isequivalentto a > b and ge (a, b) isequivalentto a >= b. Note that these functions can return any
value, which may or may not be interpretable as a Boolean value. See comparisons for more information about
rich comparisons.

9.3. operator — Standard operators as functions 255

The Python Library Reference, Release 3.2.1

The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and boolean
operations:

operator.not_ (obj)

operator.__not__ (obj)
Return the outcome of not obj. (Note that there is no __not__ () method for object instances; only the
interpreter core defines this operation. The result is affected by the __bool__ () and ___len__ () methods.)

operator.truth (0bj)
Return True if 0bj is true, and False otherwise. This is equivalent to using the bool constructor.

operator.is_ (a, b)
Return a is b. Tests object identity.

operator.is_not (a, b)
Return a is not Db. Tests object identity.

The mathematical and bitwise operations are the most numerous:

operator.abs (0bj)
operator.__abs__ (obj)
Return the absolute value of obj.

operator.add (a, b)
operator.__add__ (a,b)
Return a + b, for a and b numbers.

operator.and_ (a, b)
operator.__and__ (a,b)
Return the bitwise and of ¢ and b.

operator.floordiv (a, b)
operator._ floordiv__ (a,b)
Returna // b.

operator.index (a)
operator.__index__ (a)
Return a converted to an integer. Equivalentto a.___index__ ().

operator.inv (0bj)
operator.invert (obj)
operator.__inv__ (obj)

operator.__invert__ (obj)
Return the bitwise inverse of the number 0bj. This is equivalent to ~ob j.

operator.lshift (a, b)
operator._ lshift_ (a,b)
Return a shifted left by b.

operator.mod (a, b)
operator._ mod__ (a,b)
Returna % b.

operator.mul (a, b)
operator._ mul__ (a,b)
Return a * b, for a and b numbers.

operator.neg (0bj)
operator.__neg__ (obj)
Return obj negated (-ob j).

operator.or_ (a, b)

256 Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2.1

operator.__or__ (a,b)
Return the bitwise or of a and b.

operator.pos (0bj)
operator.__pos__ (obj)
Return 0bj positive (+obj).

operator.pow (a, b)
operator.__pow__ (a,b)
Return a *+* b, for a and b numbers.

operator.rshift (a, b)
operator._ _rshift_ (a, b)
Return a shifted right by b.

operator.sub (a, b)
operator.__sub__ (a,b)
Returna - b.

operator.truediv (a, b)
operator._ _truediv__ (a, b)
Return a / b where 2/3 is .66 rather than 0. This is also known as “true” division.

operator.xor (a, b)
operator._ xor__ (a,b)
Return the bitwise exclusive or of a and b.

Operations which work with sequences (some of them with mappings too) include:

operator.concat (a, b)
operator._ _concat__ (a,b)
Return a + b for @ and b sequences.

operator.contains (a, b)
operator.__ _contains__ (a, b)
Return the outcome of the test b in a. Note the reversed operands.

operator.countOf (a, b)
Return the number of occurrences of b in a.

operator.delitem (a, b)
operator._ _delitem__ (a,b)
Remove the value of a at index b.

operator.getitem(aq, b)
operator.__getitem _ (a,b)
Return the value of a at index b.

operator.indexOf (qa, b)
Return the index of the first of occurrence of b in a.

operator.setitem(a, b, ¢)
operator.__ setitem__ (a,b,c)
Set the value of a at index b to c.

Example: Build a dictionary that maps the ordinals from 0 to 255 to their character equivalents.

>>> d = {}

>>> keys = range (256)

>>> vals = map (chr, keys)

>>> map (operator.setitem, [d]xlen(keys), keys, vals)

9.3. operator — Standard operators as functions 257

The Python Library Reference, Release 3.2.1

The operator module also defines tools for generalized attribute and item lookups. These are useful for making
fast field extractors as arguments for map (), sorted (), itertools.groupby (), or other functions that expect
a function argument.

operator.attrgetter(aﬁrLaQﬁm])
Return a callable object that fetches arfr from its operand. If more than one attribute is requested, returns
a tuple of attributes. After, f = attrgetter (‘name’), the call f (b) returns b.name. After, £ =
attrgetter ('name’, ’‘date’),thecall £ (b) returns (b.name, b.date). Equivalent to:

def attrgetter (xitems) :
if any(not isinstance(item, str) for item in items):
raise TypeError (’attribute name must be a string’)
if len(items) == 1:
attr items[0]
def g (obj):
return resolve_attr(obj, attr)

else:
def g (obj):
return tuple (resolve_att (obj, attr) for attr in items)
return g

def resolve_attr(obj, attr):
for name in attr.split("."):
obj = getattr (obj, name)
return obj

The attribute names can also contain dots; after f = attrgetter (' date.month’),thecall f (b) returns
b.date.month.

operator.itemgetter(ﬁanLaamm])
Return a callable object that fetches item from its operand using the operand’s __getitem__ () method. If
multiple items are specified, returns a tuple of lookup values. Equivalent to:

def itemgetter (xitems) :
if len(items) == 1:
item items [0]
def g (obj):
return obj[item]

else:
def g (obj):
return tuple (obj[item] for item in items)
return g

The items can be any type accepted by the operand’s __ _getitem__ () method. Dictionaries accept any
hashable value. Lists, tuples, and strings accept an index or a slice:

>>> itemgetter (1) (' ABCDEFG')

IBI

>>> itemgetter(l,3,5) (' ABCDEFG’)

("B’, 'D', 'F’)

>>> jtemgetter(slice (2,None)) (' ABCDEFG’)
" CDEFG’

Example of using itemgetter () to retrieve specific fields from a tuple record:

258 Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2.1

>>> inventory = [(’apple’, 3), ('banana’, 2), ('pear’, 5), ('orange’,
>>> getcount = itemgetter (1)

>>> list (map (getcount, inventory))

[3, 2, 5, 1]

>>> sorted(inventory, key=getcount)

[("orange’, 1), (’banana’, 2), ("apple’, 3), ('pear’, 5)]

operator.methodcaller (name[, args...])

1)]

Return a callable object that calls the method name on its operand. If additional arguments and/or keyword
arguments are given, they will be given to the method as well. After £

call £ (b) returns b.name (). After £ =
returns b . name (' foo’, bar=1). Equivalent to:

def methodcaller (name,
def caller (obj):
return getattr (obj,
return caller

*xargs,

9.3.1 Mapping Operators to Functions

name) (xargs,

methodcaller (! name’,

*xkwargs) :

" foo’,

*xkwargs)

methodcaller (' name’), the
bar=1), the call £ (b)

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions in the

operator module.

Operation Syntax Function

Addition a+b add (a, Db)

Concatenation seqgl + seq2 concat (seql, seg2)

Containment Test obj in seq contains (seq, obj)

Division a/ b div(a, b)

Division a // b floordiv(a, b)

Bitwise And a &b and_(a, b)

Bitwise Exclusive Or a b xor (a, b)

Bitwise Inversion ~ a invert (a)

Bitwise Or a | b or_(a, b)

Exponentiation a *xx b pow (a, b)

Identity a is b is_(a, b)

Identity a is not b is_not (a, b)

Indexed Assignment objlk] = v setitem(obj, k, wv)

Indexed Deletion del obj[k] delitem(obj, k)

Indexing obj[k] getitem(obj, k)

Left Shift a << b lshift (a, b)

Modulo a s b mod (a, b)

Multiplication a * b mul (a, b)

Negation (Arithmetic) | - a neg(a)

Negation (Logical) not a not_ (a)

Positive + a pos (a)

Right Shift a >> b rshift (a, b)

Sequence Repetition seq * 1 repeat (seq, 1i)

Slice Assignment seq[i:]j] = values | setitem(seq, slice(i, Jj), values)

Slice Deletion del seqg[i:j] delitem(seq, slice (i, 7J))

Slicing seq[i:]] getitem(seq, slice (i, 3))

String Formatting s % obj mod (s, ob3j)

Subtraction a - b sub (a, b)
Continued on next page

9.3. operator — Standard operators as functions

259

The Python Library Reference, Release 3.2.1

Table 9.1 — continued from previous page

Truth Test obj truth (obj)
Ordering a <b 1t (a, b)
Ordering a <=b le(a, b)
Equality a ==>b eq(a, b)
Difference a !'=b ne(a, b)
Ordering a >= b ge(a, b)
Ordering a>b gt (a, b)

9.4 Inplace Operators

Many operations have an “in-place” version. Listed below are functions providing a more primitive access
to in-place operators than the usual syntax does; for example, the statement x += y is equivalent to x =
operator.iadd(x, y). Another way to put it is to say that z = operator.iadd(x, y) is equivalent
to the compound statement z = x; z += y.

In those examples, note that when an in-place method is called, the computation and assignment are performed in two
separate steps. The in-place functions listed below only do the first step, calling the in-place method. The second step,
assignment, is not handled.

For immutable targets such as strings, numbers, and tuples, the updated value is computed, but not assigned back to
the input variable:

>>> a = "hello’

>>> jadd(a, ’ world’)
"hello world’

>>> a

"hello’

For mutable targets such as lists and dictionaries, the inplace method will perform the update, so no subsequent
assignment is necessary:

>>>S: [/h/, ’e,, /l/, Vll, /O/]

>>> iadd(s, [I l, ,W’, IOI, ,r,, ’l,, Idl])

[’h’, ,e’, Ill’ ’l’, IOI’ l4 I, ,W’, ’O,, ’r’, ’l’, ’d’}
>>> s

[’hl, IeI, Il’, Ill, IO’, 4 I, IW’, IOI, IrI, Ill, IdIJ

operator.iadd (a, b)
operator._ _iadd_ (a,b)
a = iadd(a, D) isequivalenttoa += b.

operator.iand (a, b)
operator.__iand__ (a,b)
a = iand(a, D) isequivalenttoa &= b.

operator.iconcat (a, b)
operator._ _iconcat__ (a,b)
a = iconcat (a, b) isequivalenttoa += b fora and b sequences.

operator.ifloordiv (a, b)
operator._ ifloordiv__ (a,b)
a = ifloordiv(a, b) isequivalenttoa //= b.

operator.ilshift (a, b)
operator._ _ilshift__ (a,b)
a = ilshift (a, b) isequivalenttoa <<= b.

260 Chapter 9. Functional Programming Modules

The Python Library Reference, Release 3.2.1

operator.imod (a, b)
operator.__imod__ (a,b)
a = imod(a, b) isequivalenttoa %= b.

operator.imul (a, b)
operator._ _imul__ (a,b)
a = imul (a, b) isequivalenttoa *= b.

operator.ior (a,b)
operator._ _ior__ (a,b)
a = ior(a, b) isequivalenttoa |= b.

operator.ipow (a, b)
operator.__ipow__ (a,b)
a = ipow(a, b) isequivalenttoa *x= b.

operator.irshift (a, b)
operator._ _irshift__ (a,b)
a = irshift (a, b) isequivalenttoa >>= b.

operator.isub (a, b)
operator._ _isub__ (a, b)
a = isub(a, Db) isequivalenttoa -= b.

operator.itruediv (a, b)
operator.__itruediv__ (a,b)
a = itruediv (a, b) isequivalenttoa /= b.

operator.ixor (a, b)
operator._ _ixor_ _ (a,b)
a = ixor(a, D) isequivalenttoa "= b.

9.4. Inplace Operators 261

The Python Library Reference, Release 3.2.1

262 Chapter 9. Functional Programming Modules

CHAPTER
TEN

FILE AND DIRECTORY ACCESS

The modules described in this chapter deal with disk files and directories. For example, there are modules for reading
the properties of files, manipulating paths in a portable way, and creating temporary files. The full list of modules in
this chapter is:

10.1 os.path — Common pathname manipulations

This module implements some useful functions on pathnames. To read or write files see open (), and for accessing
the filesystem see the os module. The path parameters can be passed as either strings, or bytes. Applications are
encouraged to represent file names as (Unicode) character strings. Unfortunately, some file names may not be repre-
sentable as strings on Unix, so applications that need to support arbitrary file names on Unix should use bytes objects
to represent path names. Vice versa, using bytes objects cannot represent all file names on Windows (in the standard
mbcs encoding), hence Windows applications should use string objects to access all files.

Note: All of these functions accept either only bytes or only string objects as their parameters. The result is an object
of the same type, if a path or file name is returned.

Note: Since different operating systems have different path name conventions, there are several versions of this
module in the standard library. The os.path module is always the path module suitable for the operating system
Python is running on, and therefore usable for local paths. However, you can also import and use the individual
modules if you want to manipulate a path that is always in one of the different formats. They all have the same
interface:

* posixpath for UNIX-style paths

* ntpath for Windows paths

* macpath for old-style MacOS paths
* os2emxpath for OS/2 EMX paths

os.path.abspath (path)
Return a normalized absolutized version of the pathname parh. On most platforms, this is equivalent to
normpath (join (os.getcwd (), path)).

os.path.basename (path)
Return the base name of pathname path. This is the second half of the pair returned by split (path).
Note that the result of this function is different from the Unix basename program; where basename for
" /foo/bar/’ returns ' bar’, the basename () function returns an empty string ().

263

The Python Library Reference, Release 3.2.1

oS

oSs.

os.

Oos.

oSs.

Oos.

Oos.

Oos.

Oos.

oSs.

os.

.path.commonprefix (list)
Return the longest path prefix (taken character-by-character) that is a prefix of all paths in list. If list is empty,
return the empty string (). Note that this may return invalid paths because it works a character at a time.

path.dirname (path)
Return the directory name of pathname path. This is the first half of the pair returned by split (path).

path.exists (path)
Return True if path refers to an existing path. Returns False for broken symbolic links. On some platforms,
this function may return False if permission is not granted to execute os . stat () on the requested file, even
if the path physically exists.

path.lexists (path)
Return True if path refers to an existing path. Returns True for broken symbolic links. Equivalent to
exists () on platforms lacking os.lstat ().

path.expanduser (path)
On Unix and Windows, return the argument with an initial component of ~ or ~user replaced by that user‘s
home directory.

On Unix, an initial ~ is replaced by the environment variable HOME if it is set; otherwise the current user’s home
directory is looked up in the password directory through the built-in module pwd. An initial ~user is looked
up directly in the password directory.

On Windows, HOME and USERPROF ILE will be used if set, otherwise a combination of HOMEPATH and
HOMEDRIVE will be used. An initial ~user is handled by stripping the last directory component from the
created user path derived above.

If the expansion fails or if the path does not begin with a tilde, the path is returned unchanged.

path.expandvars (path)
Return the argument with environment variables expanded. Substrings of the form $name or ${name} are
replaced by the value of environment variable name. Malformed variable names and references to non-existing
variables are left unchanged.

On Windows, $name$% expansions are supported in addition to $name and $ {name}.

path.getatime (path)
Return the time of last access of path. The return value is a number giving the number of seconds since the
epoch (see the t ime module). Raise os . error if the file does not exist or is inaccessible.

Ifos.stat_float_times () returns True, the result is a floating point number.

path.getmtime (path)
Return the time of last modification of path. The return value is a number giving the number of seconds since
the epoch (see the t ime module). Raise os . error if the file does not exist or is inaccessible.

Ifos.stat_float_times () returns True, the result is a floating point number.

path.getctime (path)
Return the system’s ctime which, on some systems (like Unix) is the time of the last change, and, on others (like
Windows), is the creation time for path. The return value is a number giving the number of seconds since the
epoch (see the t ime module). Raise os . error if the file does not exist or is inaccessible.

path.getsize (path)
Return the size, in bytes, of path. Raise os . error if the file does not exist or is inaccessible.

path.isabs (path)
Return True if path is an absolute pathname. On Unix, that means it begins with a slash, on Windows that it
begins with a (back)slash after chopping off a potential drive letter.

264 Chapter 10. File and Directory Access

The Python Library Reference, Release 3.2.1

oS

oS

os.

Oos.

Oos.

oSs.

os.

os

os.

os.

.path.isfile (path)

Return True if path is an existing regular file. This follows symbolic links, soboth is1ink () andisfile ()
can be true for the same path.

.path.isdir (path)

Return True if path is an existing directory. This follows symbolic links, so both islink () and isdir ()
can be true for the same path.

path.islink (path)
Return True if path refers to a directory entry that is a symbolic link. Always False if symbolic links are not
supported.

path.ismount (path)
Return True if pathname path is a mount point: a point in a file system where a different file system has been
mounted. The function checks whether path‘s parent, path/. ., is on a different device than path, or whether
path/. . and path point to the same i-node on the same device — this should detect mount points for all Unix
and POSIX variants.

path. join (pathl [, pach[,]])

Join one or more path components intelligently. If any component is an absolute path, all previous components
(on Windows, including the previous drive letter, if there was one) are thrown away, and joining continues.
The return value is the concatenation of pathl, and optionally path2, etc., with exactly one directory separator
(os . sep) following each non-empty part except the last. (This means that an empty last part will result in
a path that ends with a separator.) Note that on Windows, since there is a current directory for each drive,
os.path.join("c:", "foo") represents a path relative to the current directory on drive C: (c: foo),
not c: \foo.

path.normcase (path)
Normalize the case of a pathname. On Unix and Mac OS X, this returns the path unchanged; on case-insensitive
filesystems, it converts the path to lowercase. On Windows, it also converts forward slashes to backward slashes.
Raise a TypeError if the type of path is not str or bytes.

path.normpath (path)
Normalize a pathname. This collapses redundant separators and up-level references so that A/ /B, A/B/,
A/./BandA/foo/../B all become A/B.

It does not normalize the case (use normcase () for that). On Windows, it converts forward slashes to back-
ward slashes. It should be understood that this may change the meaning of the path if it contains symbolic
links!

.path.realpath (path)

Return the canonical path of the specified filename, eliminating any symbolic links encountered in the path (if
they are supported by the operating system).

path.relpath (path, start=None)
Return a relative filepath to path either from the current directory or from an optional start point.

start defaults to os . curdir.
Availability: Unix, Windows.

path.samefile (pathl, path2)
Return True if both pathname arguments refer to the same file or directory. On Unix, this is determined by the
device number and i-node number and raises an exception if a os . stat () call on either pathname fails.

On Windows, two files are the same if they resolve to the same final path name using the Windows API call
GetFinalPathNameByHandle. This function raises an exception if handles cannot be obtained to either file.

Availability: Unix, Windows. Changed in version 3.2: Added Windows support.

10.1. os.path — Common pathname manipulations 265

The Python Library Reference, Release 3.2.1

os.path.sameopenfile (fpl, fp2)
Return True if the file descriptors fpl and fp2 refer to the same file.

Availability: Unix, Windows. Changed in version 3.2: Added Windows support.

os.path.samestat (statl, stat2)
Return True if the stat tuples statl and star2 refer to the same file. These structures may have been re-
turned by fstat (), 1stat (), or stat (). This function implements the underlying comparison used by
samefile () and sameopenfile ().

Availability: Unix.

os.path.split (path)
Split the pathname path into a pair, (head, tail) where tail is the last pathname component and head is
everything leading up to that. The rail part will never contain a slash; if path ends in a slash, rail will be empty.
If there is no slash in path, head will be empty. If path is empty, both head and tail are empty. Trailing slashes
are stripped from head unless it is the root (one or more slashes only). In all cases, join (head, tail)
returns a path to the same location as path (but the strings may differ).

os.path.splitdrive (path)
Split the pathname path into a pair (drive, tail) where drive is either a mount point or the empty string.
On systems which do not use drive specifications, drive will always be the empty string. In all cases, drive +
tail will be the same as path.

On Windows, splits a pathname into drive/UNC sharepoint and relative path.

If the path contains a drive letter, drive will contain everything up to and including the colon. e.g.
splitdrive ("c:/dir") returns ("c:", "/dir")

If the path contains a UNC path, drive will contain the host name and share, up to but not including the fourth sep-
arator. e.g. splitdrive ("//host/computer/dir") returns ("//host/computer", "/dir")

os.path.splitext (path)
Split the pathname path into a pair (root, ext) such that root + ext == path, and ext is empty
or begins with a period and contains at most one period. Leading periods on the basename are ignored;
splitext (' .cshrc’) returns (' .cshrc’,).

os.path.splitunc (path)
Deprecated since version 3.1: Use splitdrive instead. Split the pathname path into a pair (unc, rest) so
that unc is the UNC mount point (such as r’ \\host\mount '), if present, and rest the rest of the path (such
as r’ \path\file.ext’). For paths containing drive letters, unc will always be the empty string.

Availability: Windows.

os.path.supports_unicode_filenames
True if arbitrary Unicode strings can be used as file names (within limitations imposed by the file system).

10.2 fileinput — lterate over lines from multiple input streams

Source code: Lib/fileinput.py

This module implements a helper class and functions to quickly write a loop over standard input or a list of files. If
you just want to read or write one file see open ().

The typical use is:

266 Chapter 10. File and Directory Access

http://hg.python.org/cpython/file/default/Lib/fileinput.py

The Python Library Reference, Release 3.2.1

import fileinput
for line in fileinput.input():
process (line)

This iterates over the lines of all files listed in sys.argv[1:], defaulting to sys.stdin if the list is empty. If
a filename is ’ —', it is also replaced by sys.stdin. To specify an alternative list of filenames, pass it as the first
argument to input (). A single file name is also allowed.

All files are opened in text mode by default, but you can override this by specifying the mode parameter in the call to
input () or FileInput. If an I/O error occurs during opening or reading a file, IOError is raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for interactive
use, or if it has been explicitly reset (e.g. using sys.stdin.seek (0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is noticeable at all
is when the last file opened is empty.

Lines are returned with any newlines intact, which means that the last line in a file may not have one.

You can control how files are opened by providing an opening hook via the openhook parameter to
fileinput.input () or FileInput (). The hook must be a function that takes two arguments, filename and
mode, and returns an accordingly opened file-like object. Two useful hooks are already provided by this module.

The following function is the primary interface of this module:

fileinput.input (files=None, inplace=False, backup="", bufsize=0, mode="r’, openhook=None)
Create an instance of the FileInput class. The instance will be used as global state for the functions of this
module, and is also returned to use during iteration. The parameters to this function will be passed along to the
constructor of the Fi leTInput class.

The FileInput instance can be used as a context manager in the with statement. In this example, input is
closed after the with statement is exited, even if an exception occurs:

with fileinput.input (files=('spam.txt’, ’'eggs.txt’)) as f:
for line in f:
process (line)

Changed in version 3.2: Can be used as a context manager.

The following functions use the global state created by fileinput.input (); if there is no active state,
RuntimeError israised.

fileinput.filename ()
Return the name of the file currently being read. Before the first line has been read, returns None.

fileinput.fileno ()
Return the integer “file descriptor” for the current file. When no file is opened (before the first line and between
files), returns —1.

fileinput.lineno ()
Return the cumulative line number of the line that has just been read. Before the first line has been read, returns
0. After the last line of the last file has been read, returns the line number of that line.

fileinput.filelineno ()
Return the line number in the current file. Before the first line has been read, returns 0. After the last line of the
last file has been read, returns the line number of that line within the file.

fileinput.isfirstline()
Returns true if the line just read is the first line of its file, otherwise returns false.

fileinput.isstdin()
Returns true if the last line was read from sys. stdin, otherwise returns false.

10.2. fileinput — lterate over lines from multiple input streams 267

The Python Library Reference, Release 3.2.1

fileinput.nextfile ()
Close the current file so that the next iteration will read the first line from the next file (if any); lines not read
from the file will not count towards the cumulative line count. The filename is not changed until after the first
line of the next file has been read. Before the first line has been read, this function has no effect; it cannot be
used to skip the first file. After the last line of the last file has been read, this function has no effect.

fileinput.close ()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as well:

class fileinput .FileInput (files=None, inplace=False, backup="‘, bufsize=0, mode="r’, open-
) hook=None))
Class FileInput is the implementation; its methods filename (), fileno(), lineno/(),

filelineno (), isfirstline (), isstdin (), nextfile () and close () correspond to the func-
tions of the same name in the module. In addition it has a readline () method which returns the next input
line, and a __getitem__ () method which implements the sequence behavior. The sequence must be ac-
cessed in strictly sequential order; random access and readline () cannot be mixed.

With mode you can specify which file mode will be passed to open (). It mustbe oneof ' r’, ' rU’, ' U’ and
"rb’.

The openhook, when given, must be a function that takes two arguments, filename and mode, and returns an
accordingly opened file-like object. You cannot use inplace and openhook together.

A FileInput instance can be used as a context manager in the with statement. In this example, input is
closed after the with statement is exited, even if an exception occurs:

with FileInput (files=('spam.txt’, ’'eggs.txt’)) as input:
process (input)

Changed in version 3.2: Can be used as a context manager.

Optional in-place filtering: if the keyword argument inplace=True is passed to fileinput.input () or
to the FileInput constructor, the file is moved to a backup file and standard output is directed to the input file
(if a file of the same name as the backup file already exists, it will be replaced silently). This makes it possible to
write a filter that rewrites its input file in place. If the backup parameter is given (typically as backup=’ . <some
extension>'), it specifies the extension for the backup file, and the backup file remains around; by default, the
extension is / .bak’ and it is deleted when the output file is closed. In-place filtering is disabled when standard input
is read.

Note: The current implementation does not work for MS-DOS 843 filesystems.

The two following opening hooks are provided by this module:

fileinput .hook_compressed (filename, mode)
Transparently opens files compressed with gzip and bzip2 (recognized by the extensions ’ .gz’ and ’ .bz2’)
using the gzip and bz2 modules. If the filename extension is not ’ .gz’ or ’ .bz2’, the file is opened
normally (ie, using open () without any decompression).

Usage example: fi = fileinput.FileInput (openhook=fileinput.hook_compressed)

fileinput .hook_encoded (encoding)
Returns a hook which opens each file with codecs . open (), using the given encoding to read the file.

Usageexample: f1i = fileinput.FilelInput (openhook=fileinput.hook_encoded("iso-8859-1"))

268 Chapter 10. File and Directory Access

The Python Library Reference, Release 3.2.1

10.3 stat — Interpreting stat () results

Source code: Lib/stat.py

The stat module defines constants and functions for interpreting the results of os.stat (), os.fstat () and
os.lstat () (if they exist). For complete details about the stat (), fstat () and lstat () calls, consult the
documentation for your system.

The stat module defines the following functions to test for specific file types:

stat.S_ISDIR (mode)
Return non-zero if the mode is from a directory.

stat .S_ISCHR (mode)
Return non-zero if the mode is from a character special device file.

stat .S_ISBLK (mode)
Return non-zero if the mode is from a block special device file.

stat.S_ISREG (mode)
Return non-zero if the mode is from a regular file.

stat.S_ISFIFO (mode)
Return non-zero if the mode is from a FIFO (named pipe).

stat.S_ISLNK (mode)
Return non-zero if the mode is from a symbolic link.

stat .S_ISSOCK (mode)
Return non-zero if the mode is from a socket.

Two additional functions are defined for more general manipulation of the file’s mode:

stat .S_IMODE (mode)
Return the portion of the file’s mode that can be set by os . chmod () —that is, the file’s permission bits, plus
the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

stat.S_IFMT (mode)
Return the portion of the file’s mode that describes the file type (used by the S_I S~ () functions above).

Normally, you would use the os .path.is* () functions for testing the type of a file; the functions here are useful
when you are doing multiple tests of the same file and wish to avoid the overhead of the stat () system call for each
test. These are also useful when checking for information about a file that isn’t handled by os . path, like the tests
for block and character devices.

Example:

import os, sys
from stat import =

def walktree(top, callback):
77’ recursively descend the directory tree rooted at top,
calling the callback function for each regular file’’’

for £ in os.listdir (top):
pathname = os.path.join(top, f)
mode = os.stat (pathname) [ST_MODE]
if S_ISDIR(mode):
It’s a directory, recurse into it

10.3. stat — Interpreting stat () results 269

http://hg.python.org/cpython/file/default/Lib/stat.py

The Python Library Reference, Release 3.2.1

walktree (pathname, callback)
elif S_TISREG (mode) :
It’s a file, call the callback function
callback (pathname)
else:
Unknown file type, print a message
print (' Skipping %s’ % pathname)
def visitfile(file):
print (visiting’, file)
if _ name_ == '__ _main_ '":
walktree (sys.argv([1l], visitfile)

All the variables below are simply symbolic indexes into the 10-tuple returned by os.stat (), os.fstat () or
os.lstat ().

stat.ST_MODE
Inode protection mode.

stat .ST_INO
Inode number.

stat .ST_DEV
Device inode resides on.

stat .ST_NLINK
Number of links to the inode.

stat .ST_UID
User id of the owner.

stat.ST_GID
Group id of the owner.

stat.ST_SIZE
Size in bytes of a plain file; amount of data waiting on some special files.

stat.ST_ATIME
Time of last access.

stat .ST_MTIME
Time of last modification.

stat.ST_CTIME
The “ctime” as reported by the operating system. On some systems (like Unix) is the time of the last metadata
change, and, on others (like Windows), is the creation time (see platform documentation for details).

The interpretation of “file size” changes according to the file type. For plain files this is the size of the file in bytes.
For FIFOs and sockets under most flavors of Unix (including Linux in particular), the “size” is the number of bytes
waiting to be read at the time of the call to os.stat (), os.fstat (), or os.lstat (); this can sometimes be
useful, especially for polling one of these special files after a non-blocking open. The meaning of the size field for
other character and block devices varies more, depending on the implementation of the underlying system call.

The variables below define the flags used in the ST_MODE field.
Use of the functions above is more portable than use of the first set of flags:

stat.S_IFMT
Bit mask for the file type bit fields.

270 Chapter 10. File and Directory Access

The Python Library Reference, Release 3.2.1

stat.S_IFSOCK
Socket.

stat.S_IFLNK
Symbolic link.

stat.S_IFREG
Regular file.

stat.S_IFBLK
Block device.

stat.S_IFDIR
Directory.

stat .S_IFCHR
Character device.

stat.S_IFIFO
FIFO.

The following flags can also be used in the mode argument of os . chmod () :

stat.S_ISUID
Set UID bit.

stat.S_ISGID

Set-group-ID bit. This bit has several special uses. For a directory it indicates that BSD semantics is to be used
for that directory: files created there inherit their group ID from the directory, not from the effective group ID
of the creating process, and directories created there will also get the S_TSGID bit set. For a file that does not
have the group execution bit (S_TIXGRP) set, the set-group-ID bit indicates mandatory file/record locking (see

also S_ENFMT).

stat.S_ISVTX

Sticky bit. When this bit is set on a directory it means that a file in that directory can be renamed or deleted only
by the owner of the file, by the owner of the directory, or by a privileged process.

stat.S_IRWXU
Mask for file owner permissions.

stat.S_IRUSR
Owner has read permission.

stat.S_IWUSR
Owner has write permission.

stat.S_IXUSR
Owner has execute permission.

stat .S_IRWXG
Mask for group permissions.

stat .S_IRGRP
Group has read permission.

stat .S_IWGRP
Group has write permission.

stat .S_IXGRP
Group has execute permission.

stat .S_IRWXO

Mask for permissions for others (not in group).

10.3. stat — Interpreting stat () results

271

The Python Library Reference, Release 3.2.1

stat.S_IROTH
Others have read permission.

stat.S_IWOTH
Others have write permission.

stat.S_IXOTH
Others have execute permission.

stat .S_ENFMT

System V file locking enforcement. This flag is shared with S_TISGID: file/record locking is enforced on files

that do not have the group execution bit (S__IXGRP) set.

stat.S_IREAD
Unix V7 synonym for S_TRUSR.

stat.S_IWRITE
Unix V7 synonym for S_TWUSR.

stat.S_IEXEC
Unix V7 synonym for S_TXUSR.

The following flags can be used in the flags argument of os.chflags ():

stat .UF_NODUMP
Do not dump the file.

stat .UF_IMMUTABLE
The file may not be changed.

stat .UF_APPEND
The file may only be appended to.

stat .UF_OPAQUE
The directory is opaque when viewed through a union stack.

stat .UF_NOUNLINK
The file may not be renamed or deleted.

stat .UF_COMPRESSED
The file is stored compressed (Mac OS X 10.6+).

stat .UF_HIDDEN
The file should not be displayed in a GUI (Mac OS X 10.5+).

stat.SF_ARCHIVED
The file may be archived.

stat.SF_IMMUTABLE
The file may not be changed.

stat .SF_APPEND
The file may only be appended to.

stat .SF_NOUNLINK
The file may not be renamed or deleted.

stat .SF_SNAPSHOT
The file is a snapshot file.

See the *BSD or Mac OS systems man page chflags (2) for more information.

272 Chapter 10

. File and Directory Access

The Python Library Reference, Release 3.2.1

10.4 filecmp — File and Directory Comparisons

Source code: Lib/filecmp.py

The fi1ecmp module defines functions to compare files and directories, with various optional time/correctness trade-
offs. For comparing files, see also the di f£1ib module.

The £1ilecmp module defines the following functions:

filecmp.cmp (fl, f2, shallow=True)
Compare the files named f7 and f2, returning True if they seem equal, False otherwise.

Unless shallow is given and is false, files with identical os . stat () signatures are taken to be equal.

Files that were compared using this function will not be compared again unless their os.stat () signature
changes.

Note that no external programs are called from this function, giving it portability and efficiency.

filecmp.cmpfiles (dirl, dir2, common, shallow=True)
Compare the files in the two directories dir/ and dir2 whose names are given by common.

Returns three lists of file names: match, mismatch, errors. match contains the list of files that match, mismatch
contains the names of those that don’t, and errors lists the names of files which could not be compared. Files
are listed in errors if they don’t exist in one of the directories, the user lacks permission to read them or if the
comparison could not be done for some other reason.

The shallow parameter has the same meaning and default value as for filecmp.cmp ().

For example, cmpfiles(’a’, 'b’, ['c’, "d/e’]) will compare a/c with b/c and a/d/e with
b/d/e. ’c’ and ' d/e’ will each be in one of the three returned lists.

Example:

>>> import filecmp

>>> filecmp.cmp ('undoc.rst’, ’"undoc.rst’)
True

>>> filecmp.cmp (’undoc.rst’, ’"index.rst’)
False

10.4.1 The dircmp class

dircmp instances are built using this constructor:

class filecmp.diremp (a, b, ignore=None, hide=None)
Construct a new directory comparison object, to compare the directories a and b. ignore is a list of names
to ignore, and defaults to ['RCS’, ’CVS’, ’tags’]. hide is a list of names to hide, and defaults to
[os.curdir, os.pardir].

The dircmp class provides the following methods:

report ()
Print (to sys. stdout) a comparison between a and b.

report_partial_ closure ()
Print a comparison between a and b and common immediate subdirectories.

report_full_ closure ()
Print a comparison between a and b and common subdirectories (recursively).

10.4. filecmp — File and Directory Comparisons 273

http://hg.python.org/cpython/file/default/Lib/filecmp.py

The Python Library Reference, Release 3.2.1

The dircmp offers a number of interesting attributes that may be used to get various bits of information about
the directory trees being compared.

Note that via __getattr__ () hooks, all attributes are computed lazily, so there is no speed penalty if only
those attributes which are lightweight to compute are used.

left 1list
Files and subdirectories in a, filtered by hide and ignore.

right_list
Files and subdirectories in b, filtered by hide and ignore.

common
Files and subdirectories in both @ and b.

left_only
Files and subdirectories only in a.

right_only
Files and subdirectories only in b.

common_dirs
Subdirectories in both a and b.

common_files
Files in both a and b

common_ funny
Names in both a and b, such that the type differs between the directories, or names for which os . stat ()
reports an error.

same_files
Files which are identical in both a and b.

diff files
Files which are in both a and b, whose contents differ.

funny files
Files which are in both a and b, but could not be compared.

subdirs
A dictionary mapping names in common_dirs to dircmp objects.

10.5 tempfile — Generate temporary files and directories

Source code: Lib/tempfile.py

This module generates temporary files and directories. It works on all supported platforms. It provides three new
functions, NamedTemporaryFile (), mkstemp (), and mkdtemp (), which should eliminate all remaining need
to use the insecure mktemp () function. Temporary file names created by this module no longer contain the process
ID; instead a string of six random characters is used.

Also, all the user-callable functions now take additional arguments which allow direct control over the location and
name of temporary files. It is no longer necessary to use the global tempdir and template variables. To maintain
backward compatibility, the argument order is somewhat odd; it is recommended to use keyword arguments for clarity.

The module defines the following user-callable items:

274 Chapter 10. File and Directory Access

http://hg.python.org/cpython/file/default/Lib/tempfile.py

The Python Library Reference, Release 3.2.1

tempfile.TemporaryFile (mode="w+b’, buffering=None, encoding=None, newline=None, suffix="",
prefix="tmp’, dir=None)
Return a file-like object that can be used as a temporary storage area. The file is created using mkstemp ().
It will be destroyed as soon as it is closed (including an implicit close when the object is garbage collected).
Under Unix, the directory entry for the file is removed immediately after the file is created. Other platforms do
not support this; your code should not rely on a temporary file created using this function having or not having
a visible name in the file system.

The mode parameter defaults to ’ w+b’ so that the file created can be read and written without being closed.
Binary mode is used so that it behaves consistently on all platforms without regard for the data that is stored.
buffering, encoding and newline are interpreted as for open ().

The dir, prefix and suffix parameters are passed to mkstemp ().

The returned object is a true file object on POSIX platforms. On other platforms, it is a file-like object whose
file attribute is the underlying true file object. This file-like object can be used in a with statement, just like
a normal file.

tempfile.NamedTemporaryFile (mode="w+b’, buffering=None, encoding=None, newline=None, suf-

fix="", prefix="tmp’, dir=None, delete=True)
This function operates exactly as TemporaryFile () does, except that the file is guaranteed to have a visible
name in the file system (on Unix, the directory entry is not unlinked). That name can be retrieved from the
name member of the file object. Whether the name can be used to open the file a second time, while the named
temporary file is still open, varies across platforms (it can be so used on Unix; it cannot on Windows NT or
later). If delete is true (the default), the file is deleted as soon as it is closed. The returned object is always a
file-like object whose f£ile attribute is the underlying true file object. This file-like object can be used in a
with statement, just like a normal file.

tempfile.SpooledTemporaryFile (max_size=0, mode="w+b’, buffering=None, encoding=None,
newline=None, suffix="", prefix="tmp’, dir=None)
This function operates exactly as TemporaryFile () does, except that data is spooled in memory until the
file size exceeds max_size, or until the file’s £i1leno () method is called, at which point the contents are written
to disk and operation proceeds as with TemporaryFile ().

The resulting file has one additional method, rollover (), which causes the file to roll over to an on-disk file
regardless of its size.

The returned object is a file-like object whose __fi1e attribute is either a St ringIO object or a true file object,
depending on whether rollover () has been called. This file-like object can be used in a with statement,
just like a normal file.

tempfile.TemporaryDirectory (suffix="", prefix="tmp’, dir=None)
This function creates a temporary directory using mkdtemp () (the supplied arguments are passed directly
to the underlying function). The resulting object can be used as a context manager (see context-managers).
On completion of the context (or destruction of the temporary directory object), the newly created temporary
directory and all its contents are removed from the filesystem.

The directory name can be retrieved from the name member of the returned object.
The directory can be explicitly cleaned up by calling the cleanup () method. New in version 3.2.

tempfile.mkstemp (suffix="", prefix="tmp’, dir=None, text=False)
Creates a temporary file in the most secure manner possible. There are no race conditions in the file’s creation,
assuming that the platform properly implements the os . 0_EXCL flag for os . open (). The file is readable and
writable only by the creating user ID. If the platform uses permission bits to indicate whether a file is executable,
the file is executable by no one. The file descriptor is not inherited by child processes.

Unlike TemporaryFile (), theuser of mkstemp () is responsible for deleting the temporary file when done
with it.

10.5. tempfile — Generate temporary files and directories 275

The Python Library Reference, Release 3.2.1

If suffix is specified, the file name will end with that suffix, otherwise there will be no suffix. mkstemp () does
not put a dot between the file name and the suffix; if you need one, put it at the beginning of suffix.

If prefix is specified, the file name will begin with that prefix; otherwise, a default prefix is used.

If dir is specified, the file will be created in that directory; otherwise, a default directory is used. The default di-
rectory is chosen from a platform-dependent list, but the user of the application can control the directory location
by setting the TMPDIR, TEMP or TMP environment variables. There is thus no guarantee that the generated
filename will have any nice properties, such as not requiring quoting when passed to external commands via
os.popen ().

If rext is specified, it indicates whether to open the file in binary mode (the default) or text mode. On some
platforms, this makes no difference.

mkstemp () returns a tuple containing an OS-level handle to an open file (as would be returned by
os.open ()) and the absolute pathname of that file, in that order.

tempfile.mkdtemp (suffix="‘, prefix="tmp’, dir=None)

Creates a temporary directory in the most secure manner possible. There are no race conditions in the directory’s
creation. The directory is readable, writable, and searchable only by the creating user ID.

The user of mkdtemp () is responsible for deleting the temporary directory and its contents when done with it.
The prefix, suffix, and dir arguments are the same as for mkstemp ().

mkdtemp () returns the absolute pathname of the new directory.

tempfile.mktemp (suffix="°, prefix="tmp’, dir=None)

Deprecated since version 2.3: Use mkstemp () instead. Return an absolute pathname of a file that did not exist
at the time the call is made. The prefix, suffix, and dir arguments are the same as for mkstemp ().

Warning: Use of this function may introduce a security hole in your program. By the time you get around
to doing anything with the file name it returns, someone else may have beaten you to the punch. mktemp ()
usage can be replaced easily with NamedTemporaryFile (), passing it the delete=False parameter:

>>> f = NamedTemporaryFile (delete=False)

>>> f

<open file ’'<fdopen>’, mode ’'wt+tb’ at 0x384698>

>>> f.name

" /var/folders/5q/5qTPn6xq2RaWgk+1Ytw3-U+++TI/—Tmp—/tmpG7V1Y0’
>>> f.write("Hello World!\n")

>>> f.close ()

>>> os.unlink (f.name)

>>> os.path.exists (f.name)

False

The module uses two global variables that tell it how to construct a temporary name. They are initialized at the first
call to any of the functions above. The caller may change them, but this is discouraged; use the appropriate function
arguments, instead.

tempfile.tempdir

When set to a value other than None, this variable defines the default value for the dir argument to all the
functions defined in this module.

If tempdir is unset or None at any call to any of the above functions, Python searches a standard list of
directories and sets fempdir to the first one which the calling user can create files in. The list is:

1.The directory named by the TMPDIR environment variable.

2.The directory named by the TEMP environment variable.

276

Chapter 10. File and Directory Access

The Python Library Reference, Release 3.2.1

3.The directory named by the TMP environment variable.
4.A platform-specific location:

*On Windows, the directories C : \TEMP, C: \TMP, \TEMP, and \ TMP, in that order.

*On all other platforms, the directories /tmp, /var/tmp, and /usr/tmp, in that order.
5.As a last resort, the current working directory.

tempfile.gettempdir ()
Return the directory currently selected to create temporary files in. If t empdi r is not None, this simply returns
its contents; otherwise, the search described above is performed, and the result returned.

tempfile.gettempprefix ()
Return the filename prefix used to create temporary files. This does not contain the directory component.

10.5.1 Examples

Here are some examples of typical usage of the tempfile module:

>>> import tempfile

create a temporary file and write some data to it
>>> fp = tempfile.TemporaryFile ()

>>> fp.write(b’Hello world!’)

read data from file

>>> fp.seek (0)

>>> fp.read()

b’Hello world!’

close the file, it will be removed

>>> fp.close()

create a temporary file using a context manager
>>> with tempfile.TemporaryFile() as fp:
fp.write (b’Hello world!")
fp.seek (0)
c.. fp.read()
b’Hello world!’
>>>
file is now closed and removed

create a temporary directory using the context manager
>>> with tempfile.TemporaryDirectory () as tmpdirname:

print (' created temporary directory’, tmpdirname)
>>>

directory and contents have been removed

10.6 glob — Unix style pathname pattern expansion

Source code: Lib/glob.py

The glob module finds all the pathnames matching a specified pattern according to the rules used by the Unix shell.
No tilde expansion is done, but =, ?, and character ranges expressed with [] will be correctly matched. This is done by

10.6. glob — Unix style pathname pattern expansion 277

http://hg.python.org/cpython/file/default/Lib/glob.py

The Python Library Reference, Release 3.2.1

usingthe os.listdir () and fnmatch.fnmatch () functions in concert, and not by actually invoking a subshell.
(For tilde and shell variable expansion, use os .path.expanduser () and os.path.expandvars ().)

glob.glob (pathname)
Return a possibly-empty list of path names that match pathname, which must be a string containing a path
specification. pathname can be either absolute (like /usr/src/Python-1.5/Makefile) or relative (like
../../Tools/x/*.gif), and can contain shell-style wildcards. Broken symlinks are included in the results
(as in the shell).

glob.iglob (pathname)
Return an iterator which yields the same values as glob () without actually storing them all simultaneously.

For example, consider a directory containing only the following files: 1.gif, 2.txt, and card.gif. glob ()
will produce the following results. Notice how any leading components of the path are preserved.

>>> import glob

>>> glob.glob (' ./[0-9].%")
["./1l.gif", "./2.txt’]

>>> glob.glob (' *x.gif’)
["1.gif’, ’'card.gif’]

>>> glob.glob (' ?.gif")
[71.gif’]

See Also:

Module £fnmatch Shell-style filename (not path) expansion

10.7 f£nmatch — Unix filename pattern matching

Source code: Lib/fnmatch.py

This module provides support for Unix shell-style wildcards, which are not the same as regular expressions (which are
documented in the re module). The special characters used in shell-style wildcards are:

Pattern Meaning

* matches everything

? matches any single character
[seq] matches any character in seq
[!seq] matches any character not in seq

Note that the filename separator (* /’ on Unix) is not special to this module. See module g1lob for pathname ex-
pansion (glob uses fnmatch () to match pathname segments). Similarly, filenames starting with a period are not
special for this module, and are matched by the x and ? patterns.

fnmatch. fnmatch (filename, pattern)
Test whether the filename string matches the pattern string, returning True or False. If the operating system
is case-insensitive, then both parameters will be normalized to all lower- or upper-case before the comparison is
performed. fnmatchcase () can be used to perform a case-sensitive comparison, regardless of whether that’s
standard for the operating system.

This example will print all file names in the current directory with the extension . t xt:

import fnmatch
import os

for file in os.listdir(’.’):

278 Chapter 10. File and Directory Access

http://hg.python.org/cpython/file/default/Lib/fnmatch.py

The Python Library Reference, Release 3.2.1

if fnmatch.fnmatch(file, ’"*.txt’):
print (file)

fnmatch.fnmatchcase (filename, pattern)
Test whether filename matches pattern, returning True or False; the comparison is case-sensitive.

fnmatch. filter (names, pattern)
Return the subset of the list of names that match pattern. It is the same as [n for n in names if
fnmatch (n, pattern)], butimplemented more efficiently.

fnmatch.translate (pattern)
Return the shell-style pattern converted to a regular expression.

Be aware there is no way to quote meta-characters.

Example:

>>> import fnmatch, re

>>>

>>> regex = fnmatch.translate(’x.txt’)

>>> regex

TR\ Ext S

>>> reobj = re.compile (regex)

>>> reobj.match (’ foobar.txt’)

<_sre.SRE_Match object at 0Ox...>
See Also:

Module glob Unix shell-style path expansion.

10.8 linecache — Random access to text lines

Source code: Lib/linecache.py

The 1inecache module allows one to get any line from any file, while attempting to optimize internally, using a
cache, the common case where many lines are read from a single file. This is used by the t raceback module to
retrieve source lines for inclusion in the formatted traceback.

The 1inecache module defines the following functions:

linecache.getline (filename, lineno, module_globals=None)
Get line lineno from file named filename. This function will never raise an exception — it will return ” on errors
(the terminating newline character will be included for lines that are found).

If a file named filename is not found, the function will look for it in the module search path, sys .path, after
first checking for a PEP 302 ___1oader___ in module_globals, in case the module was imported from a zipfile
or other non-filesystem import source.

linecache.clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously read using get 1ine ().

linecache.checkcache (filename=None)
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you require
the updated version. If filename is omitted, it will check all the entries in the cache.

Example:

10.8. linecache — Random access to text lines 279

http://hg.python.org/cpython/file/default/Lib/linecache.py
http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.2.1

>>> import linecache
>>> linecache.getline(’ /etc/passwd’, 4)
"sys:x:3:3:sys:/dev:/bin/sh\n’

10.9 shutil — High-level file operations

Source code: Lib/shutil.py

The shut il module offers a number of high-level operations on files and collections of files. In particular, functions
are provided which support file copying and removal. For operations on individual files, see also the os module.

Warning: Even the higher-level file copying functions (copy (), copy?2 ()) cannot copy all file metadata.

On POSIX platforms, this means that file owner and group are lost as well as ACLs. On Mac OS, the resource fork
and other metadata are not used. This means that resources will be lost and file type and creator codes will not be
correct. On Windows, file owners, ACLs and alternate data streams are not copied.

10.9.1 Directory and files operations

shutil.copyfileobj (fsrc,fdst[, length])
Copy the contents of the file-like object fsrc to the file-like object fdst. The integer length, if given, is the buffer
size. In particular, a negative length value means to copy the data without looping over the source data in chunks;
by default the data is read in chunks to avoid uncontrolled memory consumption. Note that if the current file
position of the fsrc object is not 0, only the contents from the current file position to the end of the file will be
copied.

shutil.copyfile (src, dst)
Copy the contents (no metadata) of the file named src to a file named dst. dst must be the complete target file
name; look at copy () for a copy that accepts a target directory path. If src and dst are the same files, Error
is raised. The destination location must be writable; otherwise, an TOError exception will be raised. If dst
already exists, it will be replaced. Special files such as character or block devices and pipes cannot be copied
with this function. src and dst are path names given as strings.

shutil.copymode (src, dst)
Copy the permission bits from s7c to dst. The file contents, owner, and group are unaffected. src and dst are
path names given as strings.

shutil.copystat (src, dst)
Copy the permission bits, last access time, last modification time, and flags from src to dst. The file contents,
owner, and group are unaffected. src and dst are path names given as strings.

shutil.copy (src, dst)
Copy the file src to the file or directory dst. If dst is a directory, a file with the same basename as src is created (or
overwritten) in the directory specified. Permission bits are copied. src and dst are path names given as strings.

shutil.copy2 (src, dst)
Similar to copy (), but metadata is copied as well — in fact, this is just copy () followed by copystat ().
This is similar to the Unix command cp -p.

shutil.ignore_patterns (*patterns)
This factory function creates a function that can be used as a callable for copytree () ‘s ignore argument,
ignoring files and directories that match one of the glob-style patterns provided. See the example below.

280 Chapter 10. File and Directory Access

http://hg.python.org/cpython/file/default/Lib/shutil.py

The Python Library Reference, Release 3.2.1

shutil.copytree (src, dst, symlinks=False, ignore=None, copy_function=copy2, ig-
nore_dangling_symlinks=False)
Recursively copy an entire directory tree rooted at src. The destination directory, named by dst, must not already
exist; it will be created as well as missing parent directories. Permissions and times of directories are copied

with copystat (), individual files are copied using copy?2 () .

If symlinks is true, symbolic links in the source tree are represented as symbolic links in the new tree; if false or
omitted, the contents of the linked files are copied to the new tree.

When symlinks is false, if the file pointed by the symlink doesn’t exist, a exception will be added in the
list of errors raised in a Error exception at the end of the copy process. You can set the optional ig-
nore_dangling_symlinks flag to true if you want to silence this exception. Notice that this option has no effect
on platforms that don’t support os . symlink ().

If ignore is given, it must be a callable that will receive as its arguments the directory being visited by
copytree (), and a list of its contents, as returned by os.listdir (). Since copytree () is called
recursively, the ignore callable will be called once for each directory that is copied. The callable must return
a sequence of directory and file names relative to the current directory (i.e. a subset of the items in its second
argument); these names will then be ignored in the copy process. ignore_patterns () canbe used to create
such a callable that ignores names based on glob-style patterns.

If exception(s) occur, an Error is raised with a list of reasons.

If copy_function is given, it must be a callable that will be used to copy each file. It will be called with the source
path and the destination path as arguments. By default, copy2 () is used, but any function that supports the
same signature (like copy ()) can be used. Changed in version 3.2: Added the copy_function argument to be
able to provide a custom copy function.Changed in version 3.2: Added the ignore_dangling_symlinks argument
to silent dangling symlinks errors when symlinks is false.

shutil.rmtree (path, ignore_errors=False, onerror=None)
Delete an entire directory tree; path must point to a directory (but not a symbolic link to a directory). If
ignore_errors is true, errors resulting from failed removals will be ignored; if false or omitted, such errors are
handled by calling a handler specified by onerror or, if that is omitted, they raise an exception.

If onerror is provided, it must be a callable that accepts three parameters: function, path, and excinfo.
The first parameter, function, is the function which raised the exception; it will be os.path.islink (),
os.listdir(), os.remove () or os.rmdir (). The second parameter, path, will be the path
name passed to function. The third parameter, excinfo, will be the exception information return by
sys.exc_info (). Exceptions raised by onerror will not be caught.

shutil .move (src, dst)
Recursively move a file or directory to another location.

If the destination is on the current filesystem, then simply use rename. Otherwise, copy src (with copy2 ()) to
the dst and then remove src.

exception shutil .Error
This exception collects exceptions that raised during a multi-file operation. For copytree (), the exception
argument is a list of 3-tuples (srcname, dstname, exception).

copytree example

This example is the implementation of the copytree () function, described above, with the docstring omitted. It
demonstrates many of the other functions provided by this module.

def copytree(src, dst, symlinks=False) :

names = os.listdir (src)
os.makedirs (dst)
errors = []

10.9. shutil — High-level file operations 281

The Python Library Reference, Release 3.2.1

for name in names:
srcname = os.path.join(src, name)
dstname = os.path.join(dst, name)
try:
if symlinks and os.path.islink (srcname) :
linkto = os.readlink (srcname)
os.symlink (linkto, dstname)
elif os.path.isdir (srcname) :
copytree (srcname, dstname, symlinks)
else:
copy?2 (srcname, dstname)
XXX What about devices, sockets etc.?
except (IOError, os.error) as why:
errors.append((srcname, dstname, str(why)))
catch the Error from the recursive copytree so that we can
continue with other files
except Error as err:
errors.extend(err.args[0])
try:
copystat (src, dst)
except WindowsError:
can’t copy file access times on Windows
pass
except OSError as why:
errors.extend((src, dst, str(why)))
if errors:
raise Error (errors)

Another example that uses the ignore_patterns () helper:

from shutil import copytree, ignore_patterns

copytree (source, destination, ignore=ignore_patterns(’x.pyc’, "tmp=*’))
This will copy everything except . pyc files and files or directories whose name starts with tmp.
Another example that uses the ignore argument to add a logging call:

from shutil import copytree

import logging

def _logpath(path, names):
logging.info ('Working in %s’ % path)
return [] # nothing will be ignored

copytree (source, destination, ignore=_logpath)

10.9.2 Archiving operations

shutil.make_archive (base_name, format[, root_dir[, base_dir[, verbose[, dry_run[, owner[, group[,

logger] 111111

Create an archive file (such as zip or tar) and return its name.

base_name is the name of the file to create, including the path, minus any format-specific extension. format is

39 G

the archive format: one of “zip”, “tar”, “bztar” (if the bz 2 module is available) or “gztar”.

282 Chapter 10. File and Directory Access

The Python Library Reference, Release 3.2.1

root_dir is a directory that will be the root directory of the archive; for example, we typically chdir into root_dir
before creating the archive.

base_dir is the directory where we start archiving from; i.e. base_dir will be the common prefix of all files and
directories in the archive.

root_dir and base_dir both default to the current directory.
owner and group are used when creating a tar archive. By default, uses the current owner and group.
logger is an instance of 1ogging.Logger. New in version 3.2.

shutil.get_archive_formats ()
Returns a list of supported formats for archiving. Each element of the returned sequence is a tuple (name,
description)

By default shutil provides these formats:
egztar: gzip’ed tar-file
ebztar: bzip2’ed tar-file (if the bz 2 module is available.)
etar: uncompressed tar file
ozip: ZIP file

You can register new formats or provide your own archiver for any existing formats, by using
register_archive_format (). New in version 3.2.

shutil.register_archive_format (name, function[, extra_args[, description]])
Registers an archiver for the format name. function is a callable that will be used to invoke the archiver.

If given, extra_args is a sequence of (name, value) pairs that will be used as extra keywords arguments
when the archiver callable is used.

description is used by get_archive_formats () which returns the list of archivers. Defaults to an empty
list. New in version 3.2.

shutil.unregister_archive_format (name)
Remove the archive format name from the list of supported formats. New in version 3.2.

shutil.unpack_archive Uilename[, extract_dir[, format]])
Unpack an archive. filename is the full path of the archive.

extract_dir is the name of the target directory where the archive is unpacked. If not provided, the current working
directory is used.

13 (1)

format is the archive format: one of “zip”, “tar”, or “gztar”. Or any other format registered with
register_unpack_format (). If not provided, unpack_archive () will use the archive file name
extension and see if an unpacker was registered for that extension. In case none is found, a ValueError is
raised. New in version 3.2.

shutil.register_unpack_format (name, extensions, function[, extra_args[, description]])
Registers an unpack format. name is the name of the format and extensions is a list of extensions corresponding
to the format, like . zip for Zip files.

function is the callable that will be used to unpack archives. The callable will receive the path of the archive,
followed by the directory the archive must be extracted to.

When provided, extra_args is a sequence of (name, value) tuples that will be passed as keywords argu-
ments to the callable.

description can be provided to describe the format, and will be returned by the get_unpack_formats ()
function. New in version 3.2.

10.9. shutil — High-level file operations 283

The Python Library Reference, Release 3.2.1

shutil.unregister_unpack_format (name)
Unregister an unpack format. name is the name of the format. New in version 3.2.

shutil.get_unpack_formats ()
Return a list of all registered formats for unpacking. Each element of the returned sequence is a tuple (name,
extensions,

description).
By default shutil provides these formats:
egztar: gzip’ed tar-file
ebztar: bzip2’ed tar-file (if the bz 2 module is available.)
etar: uncompressed tar file
ozip: ZIP file

You can register new formats or provide your own unpacker for any existing formats, by using
register_unpack_format (). New in version 3.2.

Archiving example

In this example, we create a gzip’ed tar-file archive containing all files found in the . ssh directory of the user:

>>> from shutil import make_archive

>>> import os
>>> archive_name = os.path.expanduser (os.path.join(’~’, ’'myarchive’))
>>> root_dir = os.path.expanduser (os.path.join(’~’, ’.ssh’))

>>> make_archive (archive_name, root_dir)

" /Users/tarek/myarchive.tar.gz’

"gztar’,

The resulting archive contains:

$ tar —-tzvf /Users/tarek/myarchive.tar.gz

drwx—————-— tarek/staff 0 2010-02-01 16:23:40 ./

-rw-r—-—-r—— tarek/staff 609 2008-06-09 13:26:54 ./authorized_keys
-rwxr-xr—-x tarek/staff 65 2008-06-09 13:26:54 ./config
—rWx—————— tarek/staff 668 2008-06-09 13:26:54 ./id_dsa
-rwxr—-xr—-x tarek/staff 609 2008-06-09 13:26:54 ./id_dsa.pub
—rW——————— tarek/staff 1675 2008-06-09 13:26:54 ./id_rsa
-rw-r—-—-r—— tarek/staff 397 2008-06-09 13:26:54 ./id_rsa.pub
-rw-r——-r—— tarek/staff 37192 2010-02-06 18:23:10 ./known_hosts

10.10 macpath — Mac OS 9 path manipulation functions

This module is the Mac OS 9 (and earlier) implementation of the os.path module. It can be used to manipulate
old-style Macintosh pathnames on Mac OS X (or any other platform).

The following functions are available in this module: normcase (), normpath (), isabs (), join(),
split (), isdir(),isfile(),walk(),exists (). For other functions available in os .path dummy coun-
terparts are available.

See Also:

Module os Operating system interfaces, including functions to work with files at a lower level than Python file
objects.

Module io Python’s built-in I/O library, including both abstract classes and some concrete classes such as file I/O.

284 Chapter 10. File and Directory Access

The Python Library Reference, Release 3.2.1

Built-in function open () The standard way to open files for reading and writing with Python.

10.10. macpath — Mac OS 9 path manipulation functions 285

The Python Library Reference, Release 3.2.1

286 Chapter 10. File and Directory Access

CHAPTER
ELEVEN

DATA PERSISTENCE

The modules described in this chapter support storing Python data in a persistent form on disk. The pickle and
marshal modules can turn many Python data types into a stream of bytes and then recreate the objects from the
bytes. The various DBM-related modules support a family of hash-based file formats that store a mapping of strings
to other strings.

The list of modules described in this chapter is:

11.1 pickle — Python object serialization

The pickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a Python
object structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte stream, and
“unpickling” is the inverse operation, whereby a byte stream is converted back into an object hierarchy. Pickling (and
” 1 or “flattening”, however, to avoid confusion, the

ELIT3

unpickling) is alternatively known as “serialization”, “marshalling,
terms used here are “pickling” and “unpickling”..

Warning: The pickle module is not intended to be secure against erroneous or maliciously constructed data.
Never unpickle data received from an untrusted or unauthenticated source.

11.1.1 Relationship to other Python modules

The pickle module has an transparent optimizer (_pickle) written in C. It is used whenever available. Otherwise
the pure Python implementation is used.

Python has a more primitive serialization module called marshal, but in general pickle should always be the
preferred way to serialize Python objects. marshal exists primarily to support Python’s . pyc files.

The pickle module differs from marshal in several significant ways:

* The pickle module keeps track of the objects it has already serialized, so that later references to the same
object won’t be serialized again. marshal doesn’t do this.

This has implications both for recursive objects and object sharing. Recursive objects are objects that contain
references to themselves. These are not handled by marshal, and in fact, attempting to marshal recursive objects
will crash your Python interpreter. Object sharing happens when there are multiple references to the same object
in different places in the object hierarchy being serialized. pick1e stores such objects only once, and ensures
that all other references point to the master copy. Shared objects remain shared, which can be very important
for mutable objects.

I Don’t confuse this with the marshal module

287

The Python Library Reference, Release 3.2.1

e marshal cannot be used to serialize user-defined classes and their instances. pickle can save and restore
class instances transparently, however the class definition must be importable and live in the same module as
when the object was stored.

e The marshal serialization format is not guaranteed to be portable across Python versions. Because its primary
job in life is to support . pyc files, the Python implementers reserve the right to change the serialization format
in non-backwards compatible ways should the need arise. The pickle serialization format is guaranteed to be
backwards compatible across Python releases.

Note that serialization is a more primitive notion than persistence; although pickle reads and writes file objects, it
does not handle the issue of naming persistent objects, nor the (even more complicated) issue of concurrent access
to persistent objects. The pickle module can transform a complex object into a byte stream and it can transform
the byte stream into an object with the same internal structure. Perhaps the most obvious thing to do with these byte
streams is to write them onto a file, but it is also conceivable to send them across a network or store them in a database.
The module shelve provides a simple interface to pickle and unpickle objects on DBM-style database files.

11.1.2 Data stream format

The data format used by pickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can’t represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, the pickle data format uses a compact binary representation. The module pickletools contains
tools for analyzing data streams generated by pickle.

There are currently 4 different protocols which can be used for pickling.

* Protocol version 0 is the original human-readable protocol and is backwards compatible with earlier versions of
Python.

¢ Protocol version 1 is the old binary format which is also compatible with earlier versions of Python.
* Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of new-style classes.

* Protocol version 3 was added in Python 3.0. It has explicit support for bytes and cannot be unpickled by Python
2.x pickle modules. This is the current recommended protocol, use it whenever it is possible.

Refer to PEP 307 for information about improvements brought by protocol 2. See pickletools‘s source code for
extensive comments about opcodes used by pickle protocols.

11.1.3 Module Interface

To serialize an object hierarchy, you first create a pickler, then you call the pickler’s dump () method. To de-serialize
a data stream, you first create an unpickler, then you call the unpickler’s 1oad () method. The pickle module
provides the following constant:

pickle.HIGHEST_ PROTOCOL
The highest protocol version available. This value can be passed as a protocol value.

pickle.DEFAULT_PROTOCOL
The default protocol used for pickling. May be less than HIGHEST PROTOCOL. Currently the default protocol
is 3; a backward-incompatible protocol designed for Python 3.0.

The pickle module provides the following functions to make the pickling process more convenient:

pickle.dump (obj, file, protocol=None, *, fix_imports=True)
Write a pickled representation of obj to the open file object file. This is equivalent to Pickler (file,
protocol) .dump (obj).

288 Chapter 11. Data Persistence

http://www.python.org/dev/peps/pep-0307

The Python Library Reference, Release 3.2.1

The optional protocol argument tells the pickler to use the given protocol; supported protocols are O, 1, 2, 3.
The default protocol is 3; a backward-incompatible protocol designed for Python 3.0.

Specifying a negative protocol version selects the highest protocol version supported. The higher the protocol
used, the more recent the version of Python needed to read the pickle produced.

The file argument must have a write() method that accepts a single bytes argument. It can thus be an on-disk file
opened for binary writing, a 10 .BytesTIO instance, or any other custom object that meets this interface.

If fix_imports is True and protocol is less than 3, pickle will try to map the new Python 3.x names to the old
module names used in Python 2.x, so that the pickle data stream is readable with Python 2.x.

pickle.dumps (0bj, protocol=None, *, fix_imports=True)
Return the pickled representation of the object as a bytes object, instead of writing it to a file.

The optional protocol argument tells the pickler to use the given protocol; supported protocols are 0, 1, 2, 3.
The default protocol is 3; a backward-incompatible protocol designed for Python 3.0.

Specifying a negative protocol version selects the highest protocol version supported. The higher the protocol
used, the more recent the version of Python needed to read the pickle produced.

If fix_imports is True and protocol is less than 3, pickle will try to map the new Python 3.x names to the old
module names used in Python 2.x, so that the pickle data stream is readable with Python 2.x.

pickle.load (file, *, fix_imports=True, encoding="ASCII”, errors="strict”)
Read a pickled object representation from the open file object file and return the reconstituted object hierarchy
specified therein. This is equivalent to Unpickler (file) .load ().

The protocol version of the pickle is detected automatically, so no protocol argument is needed. Bytes past the
pickled object’s representation are ignored.

The argument file must have two methods, a read() method that takes an integer argument, and a readline()
method that requires no arguments. Both methods should return bytes. Thus file can be an on-disk file opened
for binary reading, a io.BytesIO object, or any other custom object that meets this interface.

Optional keyword arguments are fix_imports, encoding and errors, which are used to control compatibility
support for pickle stream generated by Python 2.x. If fix_imports is True, pickle will try to map the old Python
2.x names to the new names used in Python 3.x. The encoding and errors tell pickle how to decode 8-bit string
instances pickled by Python 2.x; these default to ‘ASCII’ and ‘strict’, respectively.

pickle.loads (bytes_object, *, fix_imports=True, encoding="ASCII”, errors="strict”)
Read a pickled object hierarchy from a bytes object and return the reconstituted object hierarchy specified
therein

The protocol version of the pickle is detected automatically, so no protocol argument is needed. Bytes past the
pickled object’s representation are ignored.

Optional keyword arguments are fix_imports, encoding and errors, which are used to control compatibility
support for pickle stream generated by Python 2.x. If fix_imports is True, pickle will try to map the old Python
2.x names to the new names used in Python 3.x. The encoding and errors tell pickle how to decode 8-bit string
instances pickled by Python 2.x; these default to ‘ASCII’ and ‘strict’, respectively.

The pickle module defines three exceptions:

exception pickle.PickleError
Common base class for the other pickling exceptions. It inherits Exception.

exception pickle.PicklingError
Error raised when an unpicklable object is encountered by Pickler. Itinherits PickleError.

Refer to What can be pickled and unpickled? to learn what kinds of objects can be pickled.

11.1. pickle — Python object serialization 289

The Python Library Reference, Release 3.2.1

exception pickle.UnpicklingError

Error raised when there a problem unpickling an object, such as a data corruption or a security violation. It
inherits PickleError.

Note that other exceptions may also be raised during unpickling, including (but not necessarily limited to)
AttributeError, EOFError, ImportError, and IndexError.

The pickle module exports two classes, Pickler and Unpickler:

class pickle.Pickler (file, protocol=None, *, fix_imports=True)

This takes a binary file for writing a pickle data stream.

The optional protocol argument tells the pickler to use the given protocol; supported protocols are 0, 1, 2, 3.
The default protocol is 3; a backward-incompatible protocol designed for Python 3.0.

Specifying a negative protocol version selects the highest protocol version supported. The higher the protocol
used, the more recent the version of Python needed to read the pickle produced.

The file argument must have a write() method that accepts a single bytes argument. It can thus be an on-disk file
opened for binary writing, a 1o .BytesIO instance, or any other custom object that meets this interface.

If fix_imports is True and protocol is less than 3, pickle will try to map the new Python 3.x names to the old
module names used in Python 2.x, so that the pickle data stream is readable with Python 2.x.

dump (0bj)
Write a pickled representation of obj to the open file object given in the constructor.

persistent_id (obj)
Do nothing by default. This exists so a subclass can override it.

If persistent_id () returns None, obj is pickled as usual. Any other value causes Pickler to emit
the returned value as a persistent ID for obj. The meaning of this persistent ID should be defined by
Unpickler.persistent_load (). Note that the value returned by persistent_id () cannot
itself have a persistent ID.

See Persistence of External Objects for details and examples of uses.

fast
Deprecated. Enable fast mode if set to a true value. The fast mode disables the usage of memo, therefore
speeding the pickling process by not generating superfluous PUT opcodes. It should not be used with
self-referential objects, doing otherwise will cause Pickler to recurse infinitely.

Usepickletools.optimize () if you need more compact pickles.

class pickle.Unpickler (file, *, fix_imports=True, encoding="ASCII”, errors="strict”)

This takes a binary file for reading a pickle data stream.
The protocol version of the pickle is detected automatically, so no protocol argument is needed.

The argument file must have two methods, a read() method that takes an integer argument, and a readline()
method that requires no arguments. Both methods should return bytes. Thus file can be an on-disk file object
opened for binary reading, a io.BytesIO object, or any other custom object that meets this interface.

Optional keyword arguments are fix_imports, encoding and errors, which are used to control compatibility
support for pickle stream generated by Python 2.x. If fix_imports is True, pickle will try to map the old Python
2.x names to the new names used in Python 3.x. The encoding and errors tell pickle how to decode 8-bit string
instances pickled by Python 2.x; these default to ‘ASCII” and ‘strict’, respectively.

load ()
Read a pickled object representation from the open file object given in the constructor, and return the
reconstituted object hierarchy specified therein. Bytes past the pickled object’s representation are ignored.

290

Chapter 11. Data Persistence

The Python Library Reference, Release 3.2.1

persistent_load (pid)
Raise an UnpickingError by default.

If defined, persistent_load () should return the object specified by the persistent ID pid. If an
invalid persistent ID is encountered, an UnpickingError should be raised.

See Persistence of External Objects for details and examples of uses.

find class (module, name)
Import module if necessary and return the object called name from it, where the module and name argu-
ments are st r objects. Note, unlike its name suggests, find_class () isalso used for finding functions.

Subclasses may override this to gain control over what type of objects and how they can be loaded, poten-
tially reducing security risks. Refer to Restricting Globals for details.

11.1.4 What can be pickled and unpickled?

The following types can be pickled:
e None, True, and False
* integers, floating point numbers, complex numbers
* strings, bytes, bytearrays
* tuples, lists, sets, and dictionaries containing only picklable objects
* functions defined at the top level of a module
* built-in functions defined at the top level of a module
* classes that are defined at the top level of a module

* instances of such classes whose __dict___ or __setstate__ () is picklable (see section Pickling Class
Instances for details)

Attempts to pickle unpicklable objects will raise the PicklingError exception; when this happens, an unspecified
number of bytes may have already been written to the underlying file. Trying to pickle a highly recursive data structure
may exceed the maximum recursion depth, a Runt imeError will be raised in this case. You can carefully raise this
limit with sys.setrecursionlimit ().

Note that functions (built-in and user-defined) are pickled by “fully qualified” name reference, not by value. This
means that only the function name is pickled, along with the name of module the function is defined in. Neither the
function’s code, nor any of its function attributes are pickled. Thus the defining module must be importable in the
unpickling environment, and the module must contain the named object, otherwise an exception will be raised. >

Similarly, classes are pickled by named reference, so the same restrictions in the unpickling environment apply. Note
that none of the class’s code or data is pickled, so in the following example the class attribute att r is not restored in
the unpickling environment:

class Foo:
attr = A class attribute’
picklestring = pickle.dumps (Foo)
These restrictions are why picklable functions and classes must be defined in the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to the class and still
load objects that were created with an earlier version of the class. If you plan to have long-lived objects that will see

2 The exception raised will likely be an TmportError oran AttributeError but it could be something else.

11.1. pickle — Python object serialization 291

The Python Library Reference, Release 3.2.1

many versions of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can
be made by the class’s __setstate__ () method.

11.1.5 Pickling Class Instances

In this section, we describe the general mechanisms available to you to define, customize, and control how class
instances are pickled and unpickled.

In most cases, no additional code is needed to make instances picklable. By default, pickle will retrieve the class and
the attributes of an instance via introspection. When a class instance is unpickled, its __init__ () method is usually
not invoked. The default behaviour first creates an uninitialized instance and then restores the saved attributes. The
following code shows an implementation of this behaviour:

def save(obj):
return (obj._ _class_ , obj._ _dict_)

def load(cls, attributes):
obj = cls.__new__ (cls)
obj.__dict_ .update (attributes)
return ob]j

Classes can alter the default behaviour by providing one or several special methods:

object.__getnewargs_ ()
In protocol 2 and newer, classes that implements the __getnewargs__ () method can dictate the values
passed to the __new__ () method upon unpickling. This is often needed for classes whose __new__ ()
method requires arguments.

object._ _getstate_ ()
Classes can further influence how their instances are pickled; if the class defines the method
__getstate__ (),itis called and the returned object is pickled as the contents for the instance, instead of the
contents of the instance’s dictionary. If the __getstate__ () method is absent, the instance’s ___dict__ is
pickled as usual.

object.__setstate__ (state)
Upon unpickling, if the class defines ___setstate__ (), it is called with the unpickled state. In that case,
there is no requirement for the state object to be a dictionary. Otherwise, the pickled state must be a dictionary
and its items are assigned to the new instance’s dictionary.

Note: If _ getstate_ () returns a false value, the __setstate__ () method will not be called upon
unpickling.

Refer to the section Handling Stateful Objects for more information about how to use the methods ___getstate_ ()
and __setstate__ ().

Note: Atunpickling time, some methods like ___getattr__ (),__getattribute__ (),or__setattr__ ()
may be called upon the instance. In case those methods rely on some internal invariant being true, the type should
implement __getnewargs___ () to establish such an invariant; otherwise, neither __new___ () nor __init__ ()
will be called.

As we shall see, pickle does not use directly the methods described above. In fact, these methods are part of the copy
protocol which implements the ___reduce___ () special method. The copy protocol provides a unified interface for
retrieving the data necessary for pickling and copying objects. *

3 The copy module uses this protocol for shallow and deep copying operations.

292 Chapter 11. Data Persistence

The Python Library Reference, Release 3.2.1

Although powerful, implementing __ reduce__ () directly in your classes is error prone. For this rea-
son, class designers should use the high-level interface (i.e., __getnewargs__ (), __getstate__ () and
__setstate__ ()) whenever possible. We will show, however, cases where using ___reduce__ () is the only
option or leads to more efficient pickling or both.

object._ _reduce_ ()
The interface is currently defined as follows. The __reduce__ () method takes no argument and shall return
either a string or preferably a tuple (the returned object is often referred to as the “reduce value”).

If a string is returned, the string should be interpreted as the name of a global variable. It should be the object’s
local name relative to its module; the pickle module searches the module namespace to determine the object’s
module. This behaviour is typically useful for singletons.

When a tuple is returned, it must be between two and five items long. Optional items can either be omitted, or
None can be provided as their value. The semantics of each item are in order:

*A callable object that will be called to create the initial version of the object.

*A tuple of arguments for the callable object. An empty tuple must be given if the callable does not accept
any argument.

*Optionally, the object’s state, which will be passed to the object’s ___setstate__ () method as previ-
ously described. If the object has no such method then, the value must be a dictionary and it will be added
to the object’s ___dict___ attribute.

*Optionally, an iterator (and not a sequence) yielding successive items. These items will be appended to the
object either using ob7j.append (item) or, in batch, using obj.extend (list_of_items). This
is primarily used for list subclasses, but may be used by other classes as long as they have append ()
and extend () methods with the appropriate signature. (Whether append () or extend () is used
depends on which pickle protocol version is used as well as the number of items to append, so both must
be supported.)

*Optionally, an iterator (not a sequence) yielding successive key-value pairs. These items will be stored to
the object using obj [key] = wvalue. Thisis primarily used for dictionary subclasses, but may be used
by other classes as long as they implement __setitem__ ().

object.__reduce_ex__ (protocol)
Alternatively, a __reduce_ex__ () method may be defined. The only difference is this method should take
a single integer argument, the protocol version. When defined, pickle will prefer it over the __reduce__ ()
method. In addition, __reduce__ () automatically becomes a synonym for the extended version. The main
use for this method is to provide backwards-compatible reduce values for older Python releases.

Persistence of External Objects

For the benefit of object persistence, the pickle module supports the notion of a reference to an object outside the
pickled data stream. Such objects are referenced by a persistent ID, which should be either a string of alphanumeric
characters (for protocol 0) # or just an arbitrary object (for any newer protocol).

The resolution of such persistent IDs is not defined by the pick1e module; it will delegate this resolution to the user
defined methods on the pickler and unpickler, persistent_id () and persistent_load () respectively.

To pickle objects that have an external persistent id, the pickler must have a custom persistent_id () method that
takes an object as an argument and returns either None or the persistent id for that object. When None is returned, the
pickler simply pickles the object as normal. When a persistent ID string is returned, the pickler will pickle that object,
along with a marker so that the unpickler will recognize it as a persistent ID.

4 The limitation on alphanumeric characters is due to the fact the persistent IDs, in protocol 0, are delimited by the newline character. Therefore
if any kind of newline characters occurs in persistent IDs, the resulting pickle will become unreadable.

11.1. pickle — Python object serialization 293

The Python Library Reference, Release 3.2.1

To unpickle external objects, the unpickler must have a custom persistent_load () method that takes a persistent
ID object and returns the referenced object.

Here is a comprehensive example presenting how persistent ID can be used to pickle external objects by reference.

Simple example presenting how persistent ID can be used to pickle
external objects by reference.

import pickle
import sqglite3
from collections import namedtuple

Simple class representing a record in our database.
MemoRecord = namedtuple ("MemoRecord", "key, task")

class DBPickler (pickle.Pickler):

def persistent_id(self, obj):

Instead of pickling MemoRecord as a regular class instance, we emit a

persistent ID.

if isinstance (obj, MemoRecord) :
Here, our persistent ID is simply a tuple, containing a tag and a
key, which refers to a specific record in the database.
return ("MemoRecord", obij.key)

else:
If obj does not have a persistent ID, return None. This means obj
needs to be pickled as usual.
return None

class DBUnpickler (pickle.Unpickler):

def _ init_ (self, file, connection):
super () .__init__ (file)
self.connection = connection

def persistent_load(self, pid):

This method is invoked whenever a persistent ID is encountered.

Here, pid is the tuple returned by DBPickler.

cursor = self.connection.cursor ()

type_tag, key_id = pid

if type_tag == "MemoRecord":
Fetch the referenced record from the database and return 1it.
cursor.execute ("SELECT % FROM memos WHERE key=?", (str(key_id),))
key, task = cursor.fetchone()
return MemoRecord(key, task)

else:
Always raises an error if you cannot return the correct object.
Otherwise, the unpickler will think None is the object referenced
by the persistent ID.
raise pickle.UnpicklingError ("unsupported persistent object")

def main():
import io

294 Chapter 11. Data Persistence

The Python Library Reference, Release 3.2.1

import pprint

Initialize and populate our database.

conn = sqglite3.connect (":memory:")

cursor = conn.cursor ()

cursor.execute ("CREATE TABLE memos (key INTEGER PRIMARY KEY, task TEXT)")
tasks = (

"give food to fish’,
"prepare group meeting’,
"fight with a zebra’,
)
for task in tasks:
cursor.execute ("INSERT INTO memos VALUES (NULL, ?)", (task,))

Fetch the records to be pickled.

cursor.execute ("SELECT = FROM memos")

memos = [MemoRecord(key, task) for key, task in cursor]
Save the records using our custom DBPickler.

file = i0.BytesIO()

DBPickler (file) .dump (memos)

print ("Pickled records:")
pprint.pprint (memos)

Update a record, just for good measure.
cursor.execute ("UPDATE memos SET task=’learn italian’ WHERE key=1")

Load the records from the pickle data stream.
file.seek (0)
memos = DBUnpickler (file, conn).load()

print ("Unpickled records:")
pprint .pprint (memos)

if name == '_ main_ ':

main ()

Handling Stateful Objects

Here’s an example that shows how to modify pickling behavior for a class. The TextReader class opens a text
file, and returns the line number and line contents each time its readline () method is called. If a TextReader
instance is pickled, all attributes except the file object member are saved. When the instance is unpickled, the file is
reopened, and reading resumes from the last location. The __setstate__ () and __getstate__ () methods
are used to implement this behavior.

class TextReader:
"""print and number lines in a text file."""

def _ init_ (self, filename):
self.filename = filename
self.file = open(filename)
self.lineno = 0

11.1. pickle — Python object serialization 295

The Python Library Reference, Release 3.2.1

def readline(self):
self.lineno += 1
line = self.file.readline()
if not line:
return None
if line.endswith(’\n’):
line = line[:-1]

o)

return "%$i: %$s" % (self.lineno, line)

def _ getstate_ (self):
Copy the object’s state from self._ dict___ which contains
all our instance attributes. Always use the dict.copy ()
method to avoid modifying the original state.
state = self.__dict__.copy()
Remove the unpicklable entries.
del state[’ file’]
return state

def _ setstate_ (self, state):
Restore instance attributes (i.e., filename and lineno).
self.__dict__ .update(state)
Restore the previously opened file’s state. To do so, we need to
reopen it and read from it until the line count is restored.
file = open(self.filename)
for _ in range(self.lineno):
file.readline ()
Finally, save the file.
self.file = file

A sample usage might be something like this:

>>> reader = TextReader ("hello.txt")

>>> reader.readline ()

"1l: Hello world!’

>>> reader.readline ()

72: I am line number two.’

>>> new_reader = pickle.loads (pickle.dumps (reader))
>>> new_reader.readline ()

"3: Goodbye!’

11.1.6 Restricting Globals

By default, unpickling will import any class or function that it finds in the pickle data. For many applications, this
behaviour is unacceptable as it permits the unpickler to import and invoke arbitrary code. Just consider what this
hand-crafted pickle data stream does when loaded:

>>> import pickle

>>> pickle.loads (b"cos\nsystem\n (S’echo hello world’\ntR.")
hello world

0

In this example, the unpickler imports the os.system () function and then apply the string argument “echo hello
world”. Although this example is inoffensive, it is not difficult to imagine one that could damage your system.

For this reason, you may want to control what gets unpickled by customizing Unpickler.find_class (). Unlike
its name suggests, find_class () is called whenever a global (i.e., a class or a function) is requested. Thus it is

296 Chapter 11. Data Persistence

The Python Library Reference, Release 3.2.1

possible to either forbid completely globals or restrict them to a safe subset.
Here is an example of an unpickler allowing only few safe classes from the bui 1t ins module to be loaded:

import builtins
import io
import pickle

safe_builtins = {
"range’,
"complex’,
"'set’,
"frozenset’,
"slice’,

class RestrictedUnpickler (pickle.Unpickler):

def find class(self, module, name):
Only allow safe classes from builtins.
if module == "builtins" and name in safe_builtins:
return getattr (builtins, name)
Forbid everything else.
raise pickle.UnpicklingError ("global '%s.%s’ is forbidden" %
(module, name))

def restricted_loads(s):
"""Helper function analogous to pickle.loads()."""
return RestrictedUnpickler (io.BytesIO(s)) .load()

A sample usage of our unpickler working has intended:

>>> restricted_loads (pickle.dumps ([1l, 2, range(l5)]))

[1, 2, range(0, 15)]

>>> restricted_loads (b"cos\nsystem\n (S’echo hello world’\ntR.")
Traceback (most recent call last):

pickle.UnpicklingError: global 'os.system’ is forbidden
>>> restricted_loads (b’ cbuiltins\neval\n’
b’ (S\’getattr(__import__ ("os"), "system")’
C.. b’ ("echo hello world")\’\ntR.’)
Traceback (most recent call last):

pickle.UnpicklingError: global ’'builtins.eval’ is forbidden

As our examples shows, you have to be careful with what you allow to be unpickled. Therefore if security is a concern,
you may want to consider alternatives such as the marshalling APl in xm1lrpc.client or third-party solutions.

11.1.7 Examples

For the simplest code, use the dump () and 1oad () functions.

import pickle

An arbitrary collection of objects supported by pickle.
data = {

11.1. pickle — Python object serialization 297

The Python Library Reference, Release 3.2.1

ra’ [1, 2.0, 3, 4+6j]/
"b’: ("character string", b"byte string"),
"¢’ : set ([None, True, False])

with open(’data.pickle’, "wb’) as f:
Pickle the ’data’ dictionary using the highest protocol available.
pickle.dump (data, f, pickle.HIGHEST_PROTOCOL)

The following example reads the resulting pickled data.
import pickle
with open(’data.pickle’, ’'rb’) as f:
The protocol version used 1s detected automatically, so we do not

have to specify it.
data = pickle.load(f)

See Also:

Module copyreg Pickle interface constructor registration for extension types.
Module pickletools Tools for working with and analyzing pickled data.
Module shelve Indexed databases of objects; uses pickle.

Module copy Shallow and deep object copying.

Module marshal High-performance serialization of built-in types.

11.2 copyreg — Register pickle support functions

The copyreg module provides support for the pickle module. The copy module is likely to use this in the future
as well. It provides configuration information about object constructors which are not classes. Such constructors may

be factory functions or class instances.

copyreg.constructor (object)

Declares object to be a valid constructor. If object is not callable (and hence not valid as a constructor), raises

TypeError.

copyreqg.pickle (type, function, constructor=None)

Declares that function should be used as a “reduction” function for objects of type type. function should return

either a string or a tuple containing two or three elements.

The optional constructor parameter, if provided, is a callable object which can be used to reconstruct the object
when called with the tuple of arguments returned by function at pickling time. TypeError will be raised if

object is a class or constructor is not callable.

See the pickle module for more details on the interface expected of function and constructor.

11.3 shelve — Python object persistence

Source code: Lib/shelve.py

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)
in a shelf can be essentially arbitrary Python objects — anything that the pickle module can handle. This includes

298 Chapter 11. Data Persistence

http://hg.python.org/cpython/file/default/Lib/shelve.py

The Python Library Reference, Release 3.2.1

most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

shelve.open (filename, flag="c’, protocol=None, writeback=False)
Open a persistent dictionary. The filename specified is the base filename for the underlying database. As a
side-effect, an extension may be added to the filename and more than one file may be created. By default, the
underlying database file is opened for reading and writing. The optional flag parameter has the same interpreta-
tion as the flag parameter of dbm. open ().

By default, version 3 pickles are used to serialize values. The version of the pickle protocol can be specified
with the protocol parameter.

Because of Python semantics, a shelf cannot know when a mutable persistent-dictionary entry is modified. By
default modified objects are written only when assigned to the shelf (see Example). If the optional writeback
parameter is set to True, all entries accessed are also cached in memory, and written back on sync () and
close (); this can make it handier to mutate mutable entries in the persistent dictionary, but, if many entries
are accessed, it can consume vast amounts of memory for the cache, and it can make the close operation very
slow since all accessed entries are written back (there is no way to determine which accessed entries are mutable,
nor which ones were actually mutated).

Note: Do not rely on the shelf being closed automatically; always call close () explicitly when you don’t
need it any more, or use a with statement with contextlib.closing ().

Warning: Because the shelve module is backed by pickle, it is insecure to load a shelf from an untrusted
source. Like with pickle, loading a shelf can execute arbitrary code.

Shelf objects support all methods supported by dictionaries. This eases the transition from dictionary based scripts to
those requiring persistent storage.

Two additional methods are supported:

Shelf.sync()
Write back all entries in the cache if the shelf was opened with writeback set to True. Also empty the cache and
synchronize the persistent dictionary on disk, if feasible. This is called automatically when the shelf is closed
with close ().

Shelf.close ()
Synchronize and close the persistent dict object. Operations on a closed shelf will fail witha ValueError.

See Also:

Persistent dictionary recipe with widely supported storage formats and having the speed of native dictionaries.

11.3.1 Restrictions

* The choice of which database package will be used (such as dbm.ndbm or dbm.gnu) depends on which
interface is available. Therefore it is not safe to open the database directly using dbm. The database is also
(unfortunately) subject to the limitations of dbm, if it is used — this means that (the pickled representation of)
the objects stored in the database should be fairly small, and in rare cases key collisions may cause the database
to refuse updates.

e The shelve module does not support concurrent read/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open for
reading or writing. Unix file locking can be used to solve this, but this differs across Unix versions and requires
knowledge about the database implementation used.

11.3. shelve — Python object persistence 299

http://code.activestate.com/recipes/576642/

The Python Library Reference, Release 3.2.1

class shelve.Shelf (dict, protocol=None, writeback=False, keyencoding="utf-8’)
A subclass of col lections.MutableMapping which stores pickled values in the dict object.

By default, version O pickles are used to serialize values. The version of the pickle protocol can be specified
with the protocol parameter. See the pick1le documentation for a discussion of the pickle protocols.

If the writeback parameter is True, the object will hold a cache of all entries accessed and write them back to
the dict at sync and close times. This allows natural operations on mutable entries, but can consume much more
memory and make sync and close take a long time.

The keyencoding parameter is the encoding used to encode keys before they are used with the underlying dict.
New in version 3.2: The keyencoding parameter; previously, keys were always encoded in UTF-8.

class shelve.BsdDbShelf (dict, protocol=None, writeback=False, keyencoding="utf-8’)
A subclass of Shelf which exposes first (), next (), previous (), last () and set_location ()
which are available in the third-party bsddb module from pybsddb but not in other database modules. The dict
object passed to the constructor must support those methods. This is generally accomplished by calling one of
bsddb.hashopen (), bsddb.btopen () or bsddb.rnopen (). The optional protocol, writeback, and
keyencoding parameters have the same interpretation as for the Shel f class.

class shelve .DbfilenameShelf (filename, flag="c’, protocol=None, writeback=False)
A subclass of Shelf which accepts a filename instead of a dict-like object. The underlying file will be opened
using dbm. open (). By default, the file will be created and opened for both read and write. The optional
flag parameter has the same interpretation as for the open () function. The optional protocol and writeback
parameters have the same interpretation as for the She 1 f class.

11.3.2 Example

To summarize the interface (key is a string, data is an arbitrary object):

import shelve

d = shelve.open(filename) # open —-- file may get suffix added by low-level
library
dlkey] = data store data at key (overwrites old data if

using an existing key)
data = dlkey] retrieve a COPY of data at key (raise KeyError 1f no

#
#
#
such key)
#
#

del dlkey] delete data stored at key (raises KeyError
if no such key)

flag = key in d # true if the key exists

klist = list(d.keys()) # a list of all existing keys (slow!)

as d was opened WITHOUT writeback=True, beware:
d[’"xx"]1 = [0, 1, 2] # this works as expected, but...
d[’xx’].append(3) # #this doesn’t!+ —— d[’xx’] is STILL [0, 1, 2]!

having opened d without writeback=True, you need to code carefully:

temp = d[/xx’] # extracts the copy
temp.append (5) # mutates the copy
d[’xx"] = temp # stores the copy right back, to persist it

or, d=shelve.open (filename,writeback=True) would let you just code
d[’xx’].append(5) and have it work as expected, BUT it would also
consume more memory and make the d.close() operation slower.

300 Chapter 11. Data Persistence

http://www.jcea.es/programacion/pybsddb.htm

The Python Library Reference, Release 3.2.1

d.close () # close 1t
See Also:
Module dbm Generic interface to dbm-style databases.

Module pickle Object serialization used by shelve.

11.4 marshal — Internal Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely does). >

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC
calls, see the modules pickle and shelve. The marshal module exists mainly to support reading and writing
the “pseudo-compiled” code for Python modules of .pyc files. Therefore, the Python maintainers reserve the right
to modify the marshal format in backward incompatible ways should the need arise. If you’re serializing and de-
serializing Python objects, use the pickle module instead — the performance is comparable, version independence
is guaranteed, and pickle supports a substantially wider range of objects than marshal.

Warning: The marshal module is not intended to be secure against erroneous or maliciously constructed data.
Never unmarshal data received from an untrusted or unauthenticated source.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are supported: booleans, integers,
floating point numbers, complex numbers, strings, bytes, bytearrays, tuples, lists, sets, frozensets, dictionaries, and
code objects, where it should be understood that tuples, lists, sets, frozensets and dictionaries are only supported as
long as the values contained therein are themselves supported; and recursive lists, sets and dictionaries should not
be written (they will cause infinite loops). The singletons None, E11lipsis and StopIteration can also be
marshalled and unmarshalled.

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

marshal .dump (value,ﬁle[, version])
Write the value on the open file. The value must be a supported type. The file must be an open file object such as
sys.stdout orreturned by open () or os.popen (). It must be opened in binary mode (* wb’ or ' w+b"’).

If the value has (or contains an object that has) an unsupported type, a ValueError exception is raised — but
garbage data will also be written to the file. The object will not be properly read back by 1oad ().

The version argument indicates the data format that dump should use (see below).

marshal. load (file)
Read one value from the open file and return it. If no valid value is read (e.g. because the data has a different
Python version’s incompatible marshal format), raise EOFError, ValueError or TypeError. The file
must be an open file object opened in binary mode (rb’ or ' r+b’).

Note: If an object containing an unsupported type was marshalled with dump (), 1oad () will substitute
None for the unmarshallable type.

5 The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

11.4. marshal — Internal Python object serialization 301

The Python Library Reference, Release 3.2.1

marshal .dumps (value[, version])
Return the string that would be written to a file by dump (value, file). The value must be a supported
type. Raise a ValueError exception if value has (or contains an object that has) an unsupported type.

The version argument indicates the data format that dumps should use (see below).

marshal.loads (string)
Convert the string to a value. If no valid value is found, raise EOFError, ValueError or TypeError.
Extra characters in the string are ignored.

In addition, the following constants are defined:

marshal.version
Indicates the format that the module uses. Version 0 is the historical format, version 1 shares interned strings
and version 2 uses a binary format for floating point numbers. The current version is 2.

11.5 dbm — Interfaces to Unix “databases”

dbm is a generic interface to variants of the DBM database — dbm . gnu or dbm.ndbm. If none of these modules is
installed, the slow-but-simple implementation in module dbm . dumb will be used. There is a third party interface to
the Oracle Berkeley DB.

exception dbm.error
A tuple containing the exceptions that can be raised by each of the supported modules, with a unique exception
also named dbm.error as the first item — the latter is used when dbm. error is raised.

dbm.whichdb (filename)
This function attempts to guess which of the several simple database modules available — dbm.gnu,
dbm . ndbm or dbm. dumb — should be used to open a given file.

Returns one of the following values: None if the file can’t be opened because it’s unreadable or doesn’t exist;
the empty string () if the file’s format can’t be guessed; or a string containing the required module name, such
as ' dbm.ndbm’ or ' dbm.gnu’.

dbm. open (file, flag="r’, mode=00666)
Open the database file file and return a corresponding object.

If the database file already exists, the whichdb () function is used to determine its type and the appropriate
module is used; if it does not exist, the first module listed above that can be imported is used.

The optional flag argument can be:

Value Meaning

"r’ Open existing database for reading only (default)

"w! Open existing database for reading and writing

rc’ Open database for reading and writing, creating it if it doesn’t exist
"n’ Always create a new, empty database, open for reading and writing

The optional mode argument is the Unix mode of the file, used only when the database has to be created. It
defaults to octal 00666 (and will be modified by the prevailing umask).

The object returned by open () supports the same basic functionality as dictionaries; keys and their corresponding
values can be stored, retrieved, and deleted, and the in operator and the keys () method are available, as well
as get () and setdefault (). Changed in version 3.2: get () and setdefault () are now available in all
database modules. Key and values are always stored as bytes. This means that when strings are used they are implicitly
converted to the default encoding before being stored.

302 Chapter 11. Data Persistence

http://www.jcea.es/programacion/pybsddb.htm

The Python Library Reference, Release 3.2.1

The following example records some hostnames and a corresponding title, and then prints out the contents of the
database:

import dbm

Open database, creating it 1f necessary.
db = dbm.open(’cache’, ’'c’)

Record some values

db[b’hello’] = b’there’
db['www.python.org’] = ’Python Website’
db['www.cnn.com’] = ’"Cable News Network’

Note that the keys are considered bytes now.

assert db[b’www.python.org’] == b’Python Website’
Notice how the value is now in bytes.
assert db[’'www.cnn.com’] == b’Cable News Network’

Often-used methods of the dict interface work too.
print (db.get (' python.org’, b’not present’))

Storing a non-string key or value will raise an exception (most
likely a TypeError).
db[’www.yahoo.com’] = 4

Close when done.

db.close ()

See Also:

Module shelve Persistence module which stores non-string data.

The individual submodules are described in the following sections.

11.5.1 dbm.gnu — GNU'’s reinterpretation of dbm

Platforms: Unix

This module is quite similar to the dbm module, but uses the GNU library gdbm instead to provide some additional
functionality. Please note that the file formats created by dbom. gnu and dbm . ndbm are incompatible.

The dbm . gnu module provides an interface to the GNU DBM library. dbm. gnu.gdbm objects behave like map-
pings (dictionaries), except that keys and values are always converted to bytes before storing. Printing a gdbm object
doesn’t print the keys and values, and the items () and values () methods are not supported.

exception dbm.gnu.error
Raised on dbm. gnu-specific errors, such as I/O errors. KeyError is raised for general mapping errors like
specifying an incorrect key.

dbm.gnu.open (ﬁlename[,ﬂag[, mode]])
Open a gdbm database and return a gdbm object. The filename argument is the name of the database file.

The optional flag argument can be:

11.5. dbm — Interfaces to Unix “databases” 303

The Python Library Reference, Release 3.2.1

Value Meaning

"¢’ Open existing database for reading only (default)

"W’ Open existing database for reading and writing

rc’ Open database for reading and writing, creating it if it doesn’t exist
"n’ Always create a new, empty database, open for reading and writing

The following additional characters may be appended to the flag to control how the database is opened:

Value Meaning

rfr Open the database in fast mode. Writes to the database will not be synchronized.

rs’ Synchronized mode. This will cause changes to the database to be immediately written to the file.
"u’ Do not lock database.

Not all flags are valid for all versions of gdbm. The module constant open_flags is a string of supported flag
characters. The exception error is raised if an invalid flag is specified.

The optional mode argument is the Unix mode of the file, used only when the database has to be created. It
defaults to octal 00666.

In addition to the dictionary-like methods, gdbm objects have the following methods:

gdbm. firstkey ()
It’s possible to loop over every key in the database using this method and the nextkey () method. The
traversal is ordered by gdbm‘s internal hash values, and won’t be sorted by the key values. This method
returns the starting key.

gdbm.nextkey (key)
Returns the key that follows key in the traversal. The following code prints every key in the database db,
without having to create a list in memory that contains them all:

k = db.firstkey ()
while k != None:
print (k)
k = db.nextkey (k)

gdbm.reorganize ()
If you have carried out a lot of deletions and would like to shrink the space used by the gdbm file, this
routine will reorganize the database. gdbm objects will not shorten the length of a database file except by
using this reorganization; otherwise, deleted file space will be kept and reused as new (key, value) pairs
are added.

gdbm. sync ()
When the database has been opened in fast mode, this method forces any unwritten data to be written to
the disk.

11.5.2 dbm.ndbm — Interface based on ndbm

Platforms: Unix

The dbm.ndbm module provides an interface to the Unix “(n)dbm” library. Dbm objects behave like mappings
(dictionaries), except that keys and values are always stored as bytes. Printing a dlbm object doesn’t print the keys and
values, and the items () and values () methods are not supported.

This module can be used with the “classic”” ndbm interface or the GNU GDBM compatibility interface. On Unix, the
configure script will attempt to locate the appropriate header file to simplify building this module.

exception dbm.ndbm.error
Raised on dbm . ndbm-specific errors, such as I/O errors. KeyError is raised for general mapping errors like
specifying an incorrect key.

304 Chapter 11. Data Persistence

The Python Library Reference, Release 3.2.1

dbm.ndbm.library
Name of the ndbm implementation library used.

dbm.ndbm.open (ﬁlename[,ﬂag[, mode]])
Open a dbm database and return a dlom object. The filename argument is the name of the database file (without
the .dir or .pag extensions).

The optional flag argument must be one of these values:

Value | Meaning

il Open existing database for reading only (default)

"’ Open existing database for reading and writing

el Open database for reading and writing, creating it if it doesn’t exist
"n’ Always create a new, empty database, open for reading and writing

The optional mode argument is the Unix mode of the file, used only when the database has to be created. It
defaults to octal 00666 (and will be modified by the prevailing umask).

11.5.3 dbm.dumb — Portable DBM implementation

Note: The dbm.dumb module is intended as a last resort fallback for the dbm module when a more robust module is
not available. The dbm . dumb module is not written for speed and is not nearly as heavily used as the other database
modules.

The dbm.dumb module provides a persistent dictionary-like interface which is written entirely in Python. Unlike
other modules such as dbm.gnu no external library is required. As with other persistent mappings, the keys and
values are always stored as bytes.

The module defines the following:

exception dbm.dumb .error
Raised on dbm . dumb-specific errors, such as I/O errors. KeyError is raised for general mapping errors like
specifying an incorrect key.

dbm.dumb . open (ﬁlename[, ﬂag[, mode]])
Open a dumbdbm database and return a dumbdbm object. The filename argument is the basename of the
database file (without any specific extensions). When a dumbdbm database is created, files with .dat and
.dir extensions are created.

The optional flag argument is currently ignored; the database is always opened for update, and will be created if
it does not exist.

The optional mode argument is the Unix mode of the file, used only when the database has to be created. It
defaults to octal 00666 (and will be modified by the prevailing umask).

In addition to the methods provided by the collections.MutableMapping class, dumbdbm objects
provide the following method:

dumbdbm. sync ()
Synchronize the on-disk directory and data files. This method is called by the Shelve.sync () method.

11.6 sqlite3 — DB-API 2.0 interface for SQLite databases

SQLite is a C library that provides a lightweight disk-based database that doesn’t require a separate server process
and allows accessing the database using a nonstandard variant of the SQL query language. Some applications can use

11.6. sqglite3 — DB-API 2.0 interface for SQLite databases 305

The Python Library Reference, Release 3.2.1

SQLite for internal data storage. It’s also possible to prototype an application using SQLite and then port the code to
a larger database such as PostgreSQL or Oracle.

sqlite3 was written by Gerhard Héring and provides a SQL interface compliant with the DB-API 2.0 specification
described by PEP 249.

To use the module, you must first create a Connection object that represents the database. Here the data will be
stored in the /tmp/example file:

conn = sglite3.connect (' /tmp/example’)
You can also supply the special name : memory : to create a database in RAM.

Once you have a Connection, you can create a Cursor object and call its execute () method to perform SQL
commands:

c = conn.cursor()

Create table

c.execute ('’ " create table stocks
(date text, trans text, symbol text,
gty real, price real)’’’)

Insert a row of data
c.execute ("""insert into stocks
values (’2006-01-05","BUY’,"RHAT’,100,35.14)""")

Save (commit) the changes
conn.commit ()

We can also close the cursor 1f we are done with it
c.close ()

Usually your SQL operations will need to use values from Python variables. You shouldn’t assemble your query using
Python’s string operations because doing so is insecure; it makes your program vulnerable to an SQL injection attack.

Instead, use the DB-API’s parameter substitution. Put ? as a placeholder wherever you want to use a value, and then
provide a tuple of values as the second argument to the cursor’s execute () method. (Other database modules may
use a different placeholder, such as $s or : 1.) For example:

Never do this —- insecure!
symbol = " IBM’
c.execute("... where symbol = "%s’" % symbol)

Do this instead
t = (symbol,)
c.execute ('select *x from stocks where symbol=?’', t)

Larger example
for t in [('2006-03-28", ’'BUY’, ’"IBM’, 1000, 45.00),
("2006-04-05’, ’'BUY’, ’'MSOFT’, 1000, 72.00),
("2006-04-06", ’SELL’, ’"IBM’, 500, 53.00),
]:

c.execute (’insert into stocks wvalues (?2,7?,7?2,?2,?2)’, t)

To retrieve data after executing a SELECT statement, you can either treat the cursor as an iferator, call the cursor’s
fetchone () method to retrieve a single matching row, or call fetchall () to get a list of the matching rows.

This example uses the iterator form:

306 Chapter 11. Data Persistence

http://www.python.org/dev/peps/pep-0249

The Python Library Reference, Release 3.2.1

>>> ¢ = conn.cursor ()
>>> c.execute('select % from stocks order by price’)
>>> for row in c:

print (row)
("2006-01-05", ’BUY’, "RHAT’, 100, 35.14)
("2006-03-28", ’'BUY’, 'IBM’, 1000, 45.0)
("2006-04-06", ’'SELL’, ’'IBM’, 500, 53.0)
(72006-04-05", ’'BUY’, ’'MSOFT’, 1000, 72.0)
>>>

See Also:

http://code.google.com/p/pysqlite/ The pysqlite web page — sqlite3 is developed externally under the name
“pysqlite”.

http://www.sqlite.org The SQLite web page; the documentation describes the syntax and the available data types for
the supported SQL dialect.

PEP 249 - Database API Specification 2.0 PEP written by Marc-André Lemburg.

11.6.1 Module functions and constants

sgqlite3.PARSE_DECLTYPES
This constant is meant to be used with the detect_types parameter of the connect () function.

Setting it makes the sglite3 module parse the declared type for each column it returns. It will parse out the
first word of the declared type, i. e. for “integer primary key”, it will parse out “integer”, or for “number(10)” it
will parse out “number”. Then for that column, it will look into the converters dictionary and use the converter
function registered for that type there.

sglite3.PARSE_COLNAMES
This constant is meant to be used with the detect_types parameter of the connect () function.

Setting this makes the SQLite interface parse the column name for each column it returns. It will look for a
string formed [mytype] in there, and then decide that ‘mytype’ is the type of the column. It will try to find an
entry of ‘mytype’ in the converters dictionary and then use the converter function found there to return the value.
The column name found in Cursor.description is only the first word of the column name, i. e. if you use
something like “ as "x [datetime]"’ in your SQL, then we will parse out everything until the first blank

[T

for the column name: the column name would simply be “x”.

sglite3.connect (database[, timeout, detect_types, isolation_level, check_same_thread, factory,

cached_statements])
Opens a connection to the SQLite database file database. You can use " :memory:" to open a database

connection to a database that resides in RAM instead of on disk.

When a database is accessed by multiple connections, and one of the processes modifies the database, the SQLite
database is locked until that transaction is committed. The timeout parameter specifies how long the connection
should wait for the lock to go away until raising an exception. The default for the timeout parameter is 5.0 (five
seconds).

For the isolation_level parameter, please see the Connection.isolation_level property of
Connection objects.

SQLite natively supports only the types TEXT, INTEGER, FLOAT, BLOB and NULL. If you want to use other
types you must add support for them yourself. The detect_types parameter and the using custom converters
registered with the module-level register_converter () function allow you to easily do that.

11.6. sqglite3 — DB-API 2.0 interface for SQLite databases 307

http://code.google.com/p/pysqlite/
http://www.sqlite.org
http://www.python.org/dev/peps/pep-0249

The Python Library Reference, Release 3.2.1

detect_types defaults to 0 (i. e. off, no type detection), you can set it to any combination of
PARSE_DECLTYPES and PARSE_COLNAMES to turn type detection on.

By default, the sgq1ite3 module uses its Connection class for the connect call. You can, however, subclass
the Connection class and make connect () use your class instead by providing your class for the factory
parameter.

Consult the section SQLite and Python types of this manual for details.

The sglite3 module internally uses a statement cache to avoid SQL parsing overhead. If you want to ex-
plicitly set the number of statements that are cached for the connection, you can set the cached_statements
parameter. The currently implemented default is to cache 100 statements.

sqlite3.register_converter (fypename, callable)

Registers a callable to convert a bytestring from the database into a custom Python type. The callable will
be invoked for all database values that are of the type typename. Confer the parameter detect_types of the
connect () function for how the type detection works. Note that the case of rypename and the name of the
type in your query must match!

sqlite3.register_adapter (type, callable)

Registers a callable to convert the custom Python type type into one of SQLite’s supported types. The callable
callable accepts as single parameter the Python value, and must return a value of the following types: int, float,
str or bytes.

sglite3.complete_statement (sql)

Returns True if the string sq/ contains one or more complete SQL statements terminated by semicolons. It does
not verify that the SQL is syntactically correct, only that there are no unclosed string literals and the statement
is terminated by a semicolon.

This can be used to build a shell for SQLite, as in the following example:
A minimal SQLite shell for experiments

import sqglite3

con = sqglite3.connect (":memory:")
con.isolation_level = None

cur = con.cursor ()

buffer = ""

print ("Enter your SQL commands to execute in sqglite3.")
print ("Enter a blank line to exit.")

while True:
line = input ()
if line == "":
break
buffer += line
if sglite3.complete_statement (buffer):
try:
buffer = buffer.strip()
cur.execute (buffer)

if buffer.lstrip() .upper () .startswith ("SELECT") :
print (cur.fetchall())
except sglite3.Error as e:

308

Chapter 11. Data Persistence

The Python Library Reference, Release 3.2.1

print ("An error occurred:", e.args[0])
buffer = ""

con.close ()

sglite3.enable_callback_tracebacks (flag)
By default you will not get any tracebacks in user-defined functions, aggregates, converters, authorizer callbacks
etc. If you want to debug them, you can call this function with flag as True. Afterwards, you will get tracebacks
from callbacks on sys.stderr. Use False to disable the feature again.

11.6.2 Connection Objects

class sglite3.Connection
A SQLite database connection has the following attributes and methods:

Connection.isolation_level
Get or set the current isolation level. None for autocommit mode or one of “DEFERRED”, “IMMEDIATE” or
“EXCLUSIVE”. See section Controlling Transactions for a more detailed explanation.

Connection.in_transaction
True if a transaction is active (there are uncommitted changes), False otherwise. Read-only attribute. New
in version 3.2.

Connection.cursor ([cursorClass])
The cursor method accepts a single optional parameter cursorClass. If supplied, this must be a custom cursor
class that extends sgqlite3.Cursor.

Connection.commit ()
This method commits the current transaction. If you don’t call this method, anything you did since the last call
to commit () is not visible from from other database connections. If you wonder why you don’t see the data
you’ve written to the database, please check you didn’t forget to call this method.

Connection.rollback ()
This method rolls back any changes to the database since the last call to commit ().

Connection.close ()
This closes the database connection. Note that this does not automatically call commit (). If you just close
your database connection without calling commit () first, your changes will be lost!

Connection.execute (sql[, parameters])
This is a nonstandard shortcut that creates an intermediate cursor object by calling the cursor method, then calls
the cursor’s execute method with the parameters given.

Connection.executemany (sql[, parameters])
This is a nonstandard shortcut that creates an intermediate cursor object by calling the cursor method, then calls
the cursor’s executemany method with the parameters given.

Connection.executescript (sql_script)
This is a nonstandard shortcut that creates an intermediate cursor object by calling the cursor method, then calls
the cursor’s executescript method with the parameters given.

Connection.create_function (name, num_params, func)
Creates a user-defined function that you can later use from within SQL statements under the function name
name. num_params is the number of parameters the function accepts, and func is a Python callable that is called
as the SQL function.

The function can return any of the types supported by SQLite: bytes, str, int, float and None.

Example:

11.6. sqglite3 — DB-API 2.0 interface for SQLite databases 309

The Python Library Reference, Release 3.2.1

import sqglite3
import hashlib

def mdSsum(t) :
return hashlib.md5 (t) .hexdigest ()

con = sqglite3.connect (":memory:")
con.create_function("md5", 1, md5sum)
cur = con.cursor ()

cur.execute ("select md5(?)", ("foo",))

print (cur.fetchone () [0])
Connection.create_aggregate (name, num_params, aggregate_class)
Creates a user-defined aggregate function.

The aggregate class must implement a step method, which accepts the number of parameters num_params,
and a finalize method which will return the final result of the aggregate.

The finalize method can return any of the types supported by SQLite: bytes, str, int, float and None.
Example:
import sqglite3
class MySum:
def _ init_ (self

) :
self.count = 0

def step(self, wvalue):
self.count += value

def finalize(self):
return self.count

con = sqglite3.connect (":memory:")
con.create_aggregate ("mysum", 1, MySum)
cur = con.cursor ()

cur.execute ("create table test (i)")
cur.execute ("insert into test (i) wvalues (1)")
cur.execute ("insert into test (i) wvalues (2)")
cur.execute ("select mysum(i) from test")
print (cur.fetchone () [0])

Connection.create_ collation (name, callable)
Creates a collation with the specified name and callable. The callable will be passed two string arguments. It
should return -1 if the first is ordered lower than the second, O if they are ordered equal and 1 if the first is
ordered higher than the second. Note that this controls sorting (ORDER BY in SQL) so your comparisons don’t
affect other SQL operations.

Note that the callable will get its parameters as Python bytestrings, which will normally be encoded in UTF-8.

The following example shows a custom collation that sorts “the wrong way’”:
import sqglite3

def collate_reverse(stringl, string2):

310 Chapter 11. Data Persistence

The Python Library Reference, Release 3.2.1

if stringl == string2:
return O

elif stringl < string2:
return 1

else:
return -1

con = sqglite3.connect (":memory:")
con.create_collation ("reverse", collate_reverse)

cur = con.cursor ()
cur.execute ("create table test (x)")
cur.executemany ("insert into test (x) wvalues (2)", [("a",), ("b",)1)
cur.execute ("select x from test order by x collate reverse")
for row in cur:
print (row)
con.close ()

To remove a collation, call create_collation with None as callable:
con.create_collation("reverse", None)

Connection.interrupt ()
You can call this method from a different thread to abort any queries that might be executing on the connection.
The query will then abort and the caller will get an exception.

Connection.set_authorizer (authorizer_callback)
This routine registers a callback. The callback is invoked for each attempt to access a column of a table in
the database. The callback should return SQLITE_ OK if access is allowed, SQLITE_DENY if the entire SQL
statement should be aborted with an error and SQLITE_IGNORE if the column should be treated as a NULL
value. These constants are available in the sg1ite3 module.

The first argument to the callback signifies what kind of operation is to be authorized. The second and third
argument will be arguments or None depending on the first argument. The 4th argument is the name of the

database (“main”, “temp”, etc.) if applicable. The 5th argument is the name of the inner-most trigger or view
that is responsible for the access attempt or None if this access attempt is directly from input SQL code.

Please consult the SQLite documentation about the possible values for the first argument and the meaning of the
second and third argument depending on the first one. All necessary constants are available in the sglite3
module.

Connection.set_progress_handler (handler, n)
This routine registers a callback. The callback is invoked for every n instructions of the SQLite virtual machine.

This is useful if you want to get called from SQLite during long-running operations, for example to update a
GUL

If you want to clear any previously installed progress handler, call the method with None for handler.

Connection.enable_load_extension (enabled)
This routine allows/disallows the SQLite engine to load SQLite extensions from shared libraries. SQLite ex-
tensions can define new functions, aggregates or whole new virtual table implementations. One well-known
extension is the fulltext-search extension distributed with SQLite. New in version 3.2.

import sqglite3

con = sqglite3.connect (":memory:")

11.6. sqglite3 — DB-API 2.0 interface for SQLite databases 311

The Python Library Reference, Release 3.2.1

enable extension loading
con.enable_load_extension (True)

Load the fulltext search extension
con.execute ("select load _extension(’./fts3.so’)")

alternatively you can load the extension using an API call:
con.load _extension("./fts3.so")

disable extension laoding again
con.enable_load_extension (False)

example from SQLite wiki
con.execute ("create virtual table recipe using fts3(name, ingredients)")
con.executescript ("""

insert into
insert into
insert into

insert into
nmnn ")

for row in con.execute ("select rowid,

print (row)

recipe (name,
recipe (name,
recipe (name,
recipe (name,

ingredients
ingredients
ingredients
ingredients

Loadable extensions are disabled by default. See °.

Connection.load extension (path)
This routine loads a SQLite extension from a shared library. You have to enable extension loading with
enable_load_extension () before you can use this routine. New in version 3.2. Loadable extensions
are disabled by default. See !.

Connection.row_factory

)
)
)
)

name,

values
values
values
values

broccoli stew’, ’"broccoli peppers

(I

(" pumpkin stew’, ’pumpkin onions gar
("broccoli pie’, ’"broccoli cheese on
("pumpkin pie’, ’pumpkin sugar flour

ingredients from recipe where name match ’

You can change this attribute to a callable that accepts the cursor and the original row as a tuple and will return
the real result row. This way, you can implement more advanced ways of returning results, such as returning an
object that can also access columns by name.

Example:

import sqlite3

def dict_factory(cursor, row):

for idx, col in enumerate (cursor.description):

d = {}
d[col[0]] = row[idx]
return d
con = sglite3.connect (":memory:")

con.row_factory

cur = con.cursor ()

dict_factory

cur.execute ("select 1 as a")
print (cur.fetchone () ["a"])

If returning a tuple doesn’t suffice and you want name-based access to columns, you should consider setting

row_factory to the highly-optimized sglite3.Row type.

Row provides both index-based and case-

6 The sqlite3 module is not built with loadable extension support by default, because some platforms (notably Mac OS X) have SQLite libraries
which are compiled without this feature. To get loadable extension support, you must pass —enable-loadable-sqlite-extensions to configure.

312

Chapter 11. Data Persistence

The Python Library Reference, Release 3.2.1

insensitive name-based access to columns with almost no memory overhead. It will probably be better than
your own custom dictionary-based approach or even a db_row based solution.

Connection.text_factory
Using this attribute you can control what objects are returned for the TEXT data type. By default, this attribute
is setto st r and the sglite3 module will return Unicode objects for TEXT. If you want to return bytestrings
instead, you can set it to bytes.

For efficiency reasons, there’s also a way to return st r objects only for non-ASCII data, and byt es otherwise.
To activate it, set this attribute to sgqlite3.0OptimizedUnicode.

You can also set it to any other callable that accepts a single bytestring parameter and returns the resulting object.

See the following example code for illustration:
import sqglite3

con = sqglite3.connect (":memory:")
cur = con.cursor ()

Create the table
con.execute ("create table person(lastname, firstname)")

AUSTRIA = "\xdé6sterreich"

by default, rows are returned as Unicode
cur.execute ("select ?", (AUSTRIA,))

row = cur.fetchone()

assert row[0] == AUSTRIA

but we can make sqglite3 always return bytestrings

con.text_factory = str

cur.execute ("select ?", (AUSTRIA,))
row = cur.fetchone ()

assert type(row[0]) == str

the bytestrings will be encoded in UTF-8, unless you stored garbage in the

database
assert row[0] == AUSTRIA.encode ("utf-8")

we can also implement a custom text_factory

here we implement one that will ignore Unicode characters that cannot be

decoded from UTF-8

con.text_factory = lambda x: str(x, "utf-8", "ignore")

cur.execute ("select ?", ("this is latinl and would normally create errors"
"\xed\x£f6\xfc".encode ("latinl"),))

row = cur.fetchone()

assert type(row[0]) == str

sqglite3 offers a built-in optimized text_factory that will return bytestring
objects, 1if the data is in ASCII only, and otherwise return unicode objects

con.text_factory = sglite3.OptimizedUnicode
cur.execute ("select ?", (AUSTRIA,))

row = cur.fetchone /()

assert type(row[0]) == str

cur.execute ("select ?", ("Germany",))

11.6. sqglite3 — DB-API 2.0 interface for SQLite databases 313

The Python Library Reference, Release 3.2.1

row = cur.fetchone()
assert type(row[0]) == str

Connection.total_changes
Returns the total number of database rows that have been modified, inserted, or deleted since the database
connection was opened.

Connection.iterdump
Returns an iterator to dump the database in an SQL text format. Useful when saving an in-memory database for
later restoration. This function provides the same capabilities as the . dump command in the sqlite3 shell.

Example:

Convert file existing db.db to SQOL dump file dump.sql
import sqglite3, os

con = sqglite3.connect ('existing_db.db’)
with open ('dump.sqgl’, 'w’) as f:
for line in con.iterdump () :

o)

f.write(’%s\n’ % line)

11.6.3 Cursor Objects

class sglite3.Cursor
A Cursor instance has the following attributes and methods.

Cursor.execute(sqﬂ;panﬂnaem])
Executes an SQL statement. The SQL statement may be parametrized (i. e. placeholders instead of SQL
literals). The sglite3 module supports two kinds of placeholders: question marks (qmark style) and named
placeholders (named style).

This example shows how to use parameters with qmark style:

import sqglite3

con = sqglite3.connect ("mydb")
cur = con.cursor ()

who = "Yeltsin"

age = 72

cur.execute ("select name_last, age from people where name_last=? and age=?", (who, age
print (cur.fetchone())

This example shows how to use the named style:

import sqglite3

con = sqglite3.connect ("mydb")
cur = con.cursor ()

who = "Yeltsin"

age = 72

314 Chapter 11. Data Persistence

The Python Library Reference, Release 3.2.1

cur.execute ("select name_last, age from people where name_last=:who and age=:age",
{"who": who, "age": age})
print (cur.fetchone())

execute () will only execute a single SQL statement. If you try to execute more than one statement with it, it
will raise a Warning. Use executescript () if you want to execute multiple SQL statements with one call.

Cursor.executemany (sql, seq_of_parameters)
Executes an SQL command against all parameter sequences or mappings found in the sequence sgl. The
sglite3 module also allows using an iferator yielding parameters instead of a sequence.

import sqglite3

class IterChars:
def @ init_ (self):
self.count = ord(’a’)

def @ iter_ (self):
return self

def = next_ (self):
if self.count > ord(’'z’):
raise StopIteration
self.count += 1

return (chr(self.count - 1),) # this is a I-tuple
con = sglite3.connect (":memory:")
cur = con.cursor ()

cur.execute ("create table characters(c)")

thelter = IterChars/()
cur.executemany ("insert into characters(c) values (?)", thelter)

cur.execute ("select ¢ from characters")
print (cur.fetchall())

Here’s a shorter example using a generator:
import sqglite3

def char_generator():
import string
for ¢ in string.letters[:26]:
yield (c,)

con = sqglite3.connect (":memory:")
cur con.cursor ()
cur.execute ("create table characters(c)")

cur.executemany ("insert into characters(c) values (?)", char_generator())

cur.execute ("select ¢ from characters")
print (cur.fetchall())

11.6. sqglite3 — DB-API 2.0 interface for SQLite databases 315

The Python Library Reference, Release 3.2.1

Cursor.executescript (sqgl_script)
This is a nonstandard convenience method for executing multiple SQL statements at once. It issues a COMMIT
statement first, then executes the SQL script it gets as a parameter.

sql_script can be an instance of st r or bytes.

Example:
import sqglite3

con = sqglite3.connect (":memory:")
cur = con.cursor ()
cur.executescript ("""
create table person
firstname,
lastname,
age

)i

create table book (
title,
author,
published

)

insert into book (title, author, published)
values (
"Dirk Gently’’s Holistic Detective Agency’,
"Douglas Adams’,
1987
)

nn ")

Cursor.fetchone ()
Fetches the next row of a query result set, returning a single sequence, or None when no more data is available.

Cursor.fetchmany(b&w=cumvnanuyﬁaﬂ)
Fetches the next set of rows of a query result, returning a list. An empty list is returned when no more rows are
available.

The number of rows to fetch per call is specified by the size parameter. If it is not given, the cursor’s arraysize
determines the number of rows to be fetched. The method should try to fetch as many rows as indicated by the
size parameter. If this is not possible due to the specified number of rows not being available, fewer rows may
be returned.

Note there are performance considerations involved with the size parameter. For optimal performance, it is
usually best to use the arraysize attribute. If the size parameter is used, then it is best for it to retain the same
value from one fet chmany () call to the next.

Cursor.fetchall ()
Fetches all (remaining) rows of a query result, returning a list. Note that the cursor’s arraysize attribute can
affect the performance of this operation. An empty list is returned when no rows are available.

Cursor.rowcount
Although the Cursor class of the sglite3 module implements this attribute, the database engine’s own
support for the determination of “rows affected”/’rows selected” is quirky.

