
Oracle Berkeley DB

Berkeley DB
API Reference

for C++

11g Release 2
Library Version 11.2.5.2

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at: http://
www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No
third-party use is permitted without the express prior written consent of Oracle.

Other names may be trademarks of their respective owners.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
http://forums.oracle.com/forums/forum.jspa?forumID=271

Published 6/10/2011

http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://forums.oracle.com/forums/forum.jspa?forumID=271

6/10/2011 DB C++ API Page iii

Table of Contents
Preface ... xiii

Conventions Used in this Book .. xiv
For More Information .. xv

1. Introduction to Berkeley DB APIs .. 1
2. The Db Handle ... 2

Database and Related Methods .. 3
Db::associate() ... 6
Db::associate_foreign() .. 10
Db::close() ... 13
Db::compact() ... 16
db_copy .. 20
Db ... 21
Db::del() ... 23
Db::err() ... 26
Db::exists() .. 28
Db::fd() .. 30
Db::get() ... 31
Db::get_bt_minkey() ... 36
Db::get_byteswapped() .. 37
Db::get_cachesize() .. 38
Db::get_create_dir() ... 39
Db::get_dbname() .. 40
Db::get_encrypt_flags() ... 41
Db::get_errfile() .. 42
Db::get_errpfx() .. 43
Db::get_flags() .. 44
Db::get_h_ffactor() .. 45
Db::get_h_nelem() ... 46
Db::get_heapsize() ... 47
Db::get_lorder() .. 48
Db::get_msgfile() ... 49
Db::get_multiple() ... 50
Db::get_open_flags() ... 51
Db::get_partition_callback() .. 52
Db::get_partition_dirs() ... 53
Db::get_partition_keys() .. 54
Db::get_pagesize() ... 55
Db::get_priority() ... 56
Db::get_q_extentsize() .. 57
Db::get_re_delim() ... 58
Db::get_re_len() .. 59
Db::get_re_pad() ... 60
Db::get_re_source() .. 61
Db::get_type() .. 62
Db::join() .. 63
Db::key_range() ... 66

6/10/2011 DB C++ API Page iv

Db::open() ... 69
Db::put() ... 74
Db::remove() .. 79
Db::rename() .. 81
Db::set_alloc() .. 83
Db::set_append_recno() ... 85
Db::set_bt_compare() ... 87
Db::set_bt_compress() ... 89
Db::set_bt_minkey() ... 92
Db::set_bt_prefix() ... 93
Db::set_cachesize() .. 95
Db::set_create_dir() ... 97
Db::set_dup_compare() ... 98
Db::set_encrypt() ... 100
Db::set_errcall() ... 102
Db::set_errfile() ... 104
Db::set_error_stream() ... 106
Db::set_errpfx() ... 107
Db::set_feedback() ... 108
Db::set_flags() ... 110
Db::set_h_compare() ... 116
Db::set_h_ffactor() ... 118
Db::set_h_hash() .. 119
Db::set_h_nelem() .. 120
Db::set_heapsize() .. 121
Db::set_lorder() ... 122
Db::set_message_stream() ... 123
Db::set_msgcall() ... 124
Db::set_msgfile() .. 126
Db::set_pagesize() .. 127
Db::set_partition() .. 128
Db::set_partition_dirs() .. 130
Db::set_priority() ... 131
Db::set_q_extentsize() ... 132
Db::set_re_delim() .. 133
Db::set_re_len() ... 134
Db::set_re_pad() .. 136
Db::set_re_source() ... 137
Db::stat() ... 139
Db::stat_print() .. 147
Db::sync() .. 148
Db::truncate() ... 150
Db::upgrade() .. 152
Db::verify() ... 154
DbHeapRecordId ... 157

3. The Dbc Handle ... 159
Database Cursors and Related Methods ... 160
Db::cursor() .. 161
Dbc::close() .. 163

6/10/2011 DB C++ API Page v

Dbc::cmp() ... 165
Dbc::count() ... 167
Dbc::del() .. 169
Dbc::dup() .. 171
Dbc::get() .. 173
Dbc::get_priority() .. 181
Dbc::put() .. 182
Dbc::set_priority() .. 186

4. The Dbt Handle ... 187
DBT and Bulk Operations .. 192
DbMultipleIterator .. 193
DbMultipleDataIterator ... 194
DbMultipleKeyDataIterator .. 196
DbMultipleRecnoDataIterator .. 198
DbMultipleBuilder ... 200
DbMultipleDataBuilder .. 201
DbMultipleKeyDataBuilder ... 203
DbMultipleRecnoDataBuilder .. 205

5. The DbEnv Handle .. 207
Database Environments and Related Methods .. 208
Db::get_env() .. 210
DbEnv::add_data_dir() ... 211
DbEnv::close() ... 213
DbEnv ... 215
DbEnv::dbremove() ... 217
DbEnv::dbrename() ... 219
DbEnv::err() .. 221
DbEnv::failchk() ... 223
DbEnv::fileid_reset() ... 225
DbEnv::full_version() ... 227
DbEnv::get_create_dir() ... 228
DbEnv::get_data_dirs() ... 229
DbEnv::get_encrypt_flags() .. 230
DbEnv::get_errfile() .. 231
DbEnv::get_errpfx() ... 232
DbEnv::get_flags() .. 233
DbEnv::get_home() ... 234
DbEnv::get_intermediate_dir_mode() ... 235
DbEnv::get_memory_init() ... 236
DbEnv::get_memory_max() .. 238
DbEnv::get_msgfile() ... 239
DbEnv::get_open_flags() ... 240
DbEnv::get_shm_key() .. 241
DbEnv::get_thread_count() .. 242
DbEnv::get_timeout() .. 243
DbEnv::get_tmp_dir() .. 244
DbEnv::get_verbose() ... 245
DbEnv::log_verify() ... 247
DbEnv::lsn_reset() .. 250

6/10/2011 DB C++ API Page vi

DbEnv::open() ... 252
DbEnv::remove() .. 258
DbEnv::set_alloc() .. 260
DbEnv::set_app_dispatch() .. 262
DbEnv::set_data_dir() .. 264
DbEnv::set_create_dir() .. 266
DbEnv::set_encrypt() ... 268
DbEnv::set_event_notify() ... 270
DbEnv::set_errcall() .. 275
DbEnv::set_errfile() ... 277
DbEnv::set_error_stream() .. 279
DbEnv::set_errpfx() ... 280
DbEnv::set_feedback() ... 281
DbEnv::set_flags() ... 283
DbEnv::set_intermediate_dir_mode() .. 290
DbEnv::set_isalive() ... 292
DbEnv::set_memory_init() ... 294
DbEnv::set_memory_max() .. 296
DbEnv::set_message_stream() .. 298
DbEnv::set_msgcall() ... 299
DbEnv::set_msgfile() ... 301
DbEnv::set_shm_key() .. 302
DbEnv::set_thread_count() .. 304
DbEnv::set_thread_id() ... 306
DbEnv::set_thread_id_string() .. 308
DbEnv::set_timeout() ... 310
DbEnv::set_tmp_dir() ... 312
DbEnv::set_verbose() ... 314
DbEnv::stat_print() ... 317
DbEnv::strerror() .. 318
DbEnv::version() ... 319

6. The DbException Class .. 320
DB C++ Exceptions .. 321
DbDeadlockException ... 322
DbLockNotGrantedException .. 323
DbMemoryException .. 325
DbRepHandleDeadException ... 326
DbRunRecoveryException .. 327

7. The DbLock Handle ... 328
Locking Subsystem and Related Methods ... 329
DbEnv::get_lk_conflicts() .. 330
DbEnv::get_lk_detect() .. 331
DbEnv::get_lk_max_lockers() ... 332
DbEnv::get_lk_max_locks() .. 333
DbEnv::get_lk_max_objects() ... 334
DbEnv::get_lk_partitions() ... 335
DbEnv::get_lk_priority() ... 336
DbEnv::get_lk_tablesize() ... 337
DbEnv::set_lk_conflicts() .. 338

6/10/2011 DB C++ API Page vii

DbEnv::set_lk_detect() ... 340
DbEnv::set_lk_max_lockers() .. 342
DbEnv::set_lk_max_locks() .. 344
DbEnv::set_lk_max_objects() ... 346
DbEnv::set_lk_partitions() ... 348
DbEnv::set_lk_priority() .. 350
DbEnv::set_lk_tablesize() .. 351
DbEnv::lock_detect() ... 353
DbEnv::lock_get() ... 355
DbEnv::lock_id() ... 358
DbEnv::lock_id_free() .. 359
DbEnv::lock_put() ... 360
DbEnv::lock_stat() .. 361
DbEnv::lock_stat_print() ... 366
DbEnv::lock_vec() ... 368

8. The DbLsn Handle .. 372
Logging Subsystem and Related Methods ... 373
DbEnv::get_lg_bsize() .. 374
DbEnv::get_lg_dir() ... 375
DbEnv::get_lg_filemode() .. 376
DbEnv::get_lg_max() ... 377
DbEnv::get_lg_regionmax() .. 378
DbEnv::log_archive() ... 379
DbEnv::log_cursor() ... 381
DbEnv::log_file() .. 382
DbEnv::log_flush() .. 383
DbEnv::log_get_config() .. 384
DbEnv::log_printf() ... 386
DbEnv::log_put() .. 387
DbEnv::log_set_config() .. 389
DbEnv::log_stat() .. 392
DbEnv::log_stat_print() .. 396
DbEnv::set_lg_bsize() ... 397
DbEnv::set_lg_dir() ... 399
DbEnv::set_lg_filemode() .. 401
DbEnv::set_lg_max() .. 402
DbEnv::set_lg_regionmax() .. 404
The DbLogc Handle ... 406
DbLogc::close() .. 407
DbLogc::get() .. 408
DbEnv::log_compare() .. 410

9. The DbMpoolFile Handle ... 411
Memory Pools and Related Methods ... 412
Db::get_mpf() ... 414
DbEnv::get_cache_max() .. 415
DbEnv::get_cachesize() .. 416
DbEnv::get_mp_max_openfd() .. 417
DbEnv::get_mp_max_write() .. 418
DbEnv::get_mp_mmapsize() ... 419

6/10/2011 DB C++ API Page viii

DbEnv::get_mp_mtxcount() ... 420
DbEnv::get_mp_pagesize() .. 421
DbEnv::get_mp_tablesize() .. 422
DbEnv::memp_fcreate() .. 423
DbEnv::memp_register() ... 424
DbEnv::memp_stat() .. 426
DbEnv::memp_stat_print() .. 432
DbEnv::memp_sync() ... 433
DbEnv::memp_trickle() ... 434
DbEnv::set_cache_max() ... 435
DbEnv::set_cachesize() ... 437
DbEnv::set_mp_max_openfd() .. 439
DbEnv::set_mp_max_write() .. 440
DbEnv::set_mp_mmapsize() ... 442
DbEnv::set_mp_mtxcount() .. 444
DbEnv::set_mp_pagesize() ... 445
DbEnv::set_mp_tablesize() .. 446
DbMpoolFile::close() .. 447
DbMpoolFile::get() .. 448
DbMpoolFile::open() .. 451
DbMpoolFile::put() .. 453
DbMpoolFile::sync() ... 455
DbMpoolFile::get_clear_len() ... 456
DbMpoolFile::get_fileid() .. 457
DbMpoolFile::get_flags() ... 458
DbMpoolFile::get_ftype() .. 459
DbMpoolFile::get_lsn_offset() ... 460
DbMpoolFile::get_maxsize() ... 461
DbMpoolFile::get_pgcookie() .. 462
DbMpoolFile::get_priority() .. 463
DbMpoolFile::set_clear_len() .. 464
DbMpoolFile::set_fileid() ... 465
DbMpoolFile::set_flags() ... 467
DbMpoolFile::set_ftype() .. 469
DbMpoolFile::set_lsn_offset() ... 470
DbMpoolFile::set_maxsize() ... 471
DbMpoolFile::set_pgcookie() .. 472
DbMpoolFile::set_priority() .. 473

10. Mutex Methods ... 475
Mutex Methods .. 476
DbEnv::mutex_alloc() .. 477
DbEnv::mutex_free() ... 479
DbEnv::mutex_get_align() ... 480
DbEnv::mutex_get_increment() ... 481
DbEnv::mutex_get_init() ... 482
DbEnv::mutex_get_max() .. 483
DbEnv::mutex_get_tas_spins() .. 484
DbEnv::mutex_lock() ... 485
DbEnv::mutex_set_align() ... 486

6/10/2011 DB C++ API Page ix

DbEnv::mutex_set_increment() ... 488
DbEnv::mutex_set_init() ... 490
DbEnv::mutex_set_max() .. 491
DbEnv::mutex_set_tas_spins() .. 493
DbEnv::mutex_stat() .. 494
DbEnv::mutex_stat_print() .. 497
DbEnv::mutex_unlock() .. 498

11. Replication Methods ... 499
Replication and Related Methods .. 500
The DbSite Handle .. 502
DbChannel::close() .. 503
DbChannel::send_msg() .. 504
DbChannel::send_request() .. 506
DbChannel::set_timeout() ... 508
DbSite::close() ... 509
DbSite::get_config() .. 510
DbSite::get_address() .. 511
DbSite::get_eid() .. 512
DbSite::remove() .. 513
DbSite::set_config() .. 514
DbEnv::rep_elect() .. 516
DbEnv::rep_get_clockskew() .. 519
DbEnv::rep_get_config() ... 520
DbEnv::rep_get_limit() ... 521
DbEnv::rep_get_nsites() .. 522
DbEnv::rep_get_priority() ... 523
DbEnv::rep_get_request() ... 524
DbEnv::rep_get_timeout() ... 525
DbEnv::rep_process_message() ... 526
DbEnv::rep_set_clockskew() ... 529
DbEnv::rep_set_config() ... 531
DbEnv::rep_set_limit() ... 534
DbEnv::rep_set_nsites() .. 536
DbEnv::rep_set_priority() .. 538
DbEnv::rep_set_request() .. 539
DbEnv::rep_set_timeout() ... 541
DbEnv::rep_set_transport() .. 544
DbEnv::rep_start() .. 547
DbEnv::rep_stat() ... 549
DbEnv::rep_stat_print() .. 556
DbEnv::rep_sync() ... 557
DbEnv::repmgr_channel() .. 558
DbEnv::repmgr_local_site() .. 560
DbEnv::repmgr_get_ack_policy() ... 561
DbEnv::repmgr_msg_dispatch() ... 562
DbEnv::repmgr_set_ack_policy() ... 564
DbEnv::repmgr_site() ... 566
DbEnv::repmgr_site_by_eid() ... 568
DbEnv::repmgr_site_list() .. 569

6/10/2011 DB C++ API Page x

DbEnv::repmgr_start() ... 571
DbEnv::repmgr_stat() ... 573
DbEnv::repmgr_stat_print() ... 575
DbEnv::txn_applied() ... 576
DbTxn::set_commit_token() ... 578

12. The DbSequence Handle ... 579
Sequences and Related Methods ... 580
DbSequence .. 581
DbSequence::close() .. 583
DbSequence::get() .. 584
DbSequence::get_cachesize() ... 586
DbSequence::get_dbp() .. 587
DbSequence::get_flags() ... 588
DbSequence::get_key() ... 589
DbSequence::get_range() .. 590
DbSequence::initial_value() ... 591
DbSequence::open() .. 592
DbSequence::remove() ... 594
DbSequence::set_cachesize() ... 596
DbSequence::set_flags() ... 597
DbSequence::set_range() .. 598
DbSequence::stat() ... 599
DbSequence::stat_print() .. 601

13. The DbTxn Handle .. 602
Transaction Subsystem and Related Methods ... 603
Db::get_transactional() .. 604
DbEnv::cdsgroup_begin() .. 605
DbEnv::get_tx_max() ... 606
DbEnv::get_tx_timestamp() ... 607
DbEnv::set_tx_max() ... 608
DbEnv::set_tx_timestamp() ... 610
DbEnv::txn_recover() ... 611
DbEnv::txn_begin() ... 613
DbEnv::txn_checkpoint() ... 617
DbEnv::txn_stat() ... 619
DbEnv::txn_stat_print() .. 623
DbTxn::abort() ... 624
DbTxn::commit() .. 625
DbTxn::discard() .. 627
DbTxn::get_name() ... 629
DbTxn::get_priority() ... 630
DbTxn::id() ... 631
DbTxn::prepare() .. 632
DbTxn::set_name() ... 634
DbTxn::set_priority() ... 635
DbTxn::set_timeout() .. 636

A. Berkeley DB Command Line Utilities .. 638
Utilities ... 639
db_archive ... 640

6/10/2011 DB C++ API Page xi

db_checkpoint ... 642
db_deadlock ... 644
db_dump ... 646
db_hotbackup .. 650
db_load ... 653
db_log_verify .. 657
db_printlog ... 660
db_recover ... 662
db_replicate ... 665
db_sql_codegen ... 667
dbsql .. 673
db_stat .. 675
db_tuner .. 679
db_upgrade .. 680
db_verify ... 682
sqlite3 .. 684

B. DB_CONFIG Parameter Reference ... 685
DB_CONFIG Parameters .. 686
add_data_dir ... 688
mutex_set_align ... 689
mutex_set_increment .. 690
mutex_set_max .. 691
mutex_set_tas_spins .. 692
rep_set_clockskew .. 693
rep_set_config ... 694
rep_set_limit .. 695
rep_set_nsites ... 696
rep_set_priority ... 697
rep_set_request ... 698
rep_set_timeout ... 699
repmgr_set_ack_policy ... 700
repmgr_site .. 701
set_cachesize .. 702
set_cache_max .. 703
set_create_dir ... 704
set_flags .. 705
set_intermediate_dir_mode ... 707
set_lg_bsize .. 708
set_lg_dir ... 709
set_lg_filemode ... 710
set_lg_max ... 711
set_lg_regionmax ... 712
set_lk_detect .. 713
set_lk_max_lockers ... 714
set_lk_max_locks .. 715
set_lk_max_objects ... 716
set_lk_partitions .. 717
log_set_config ... 718
set_mp_max_openfd .. 719

6/10/2011 DB C++ API Page xii

set_mp_max_write .. 720
set_mp_mmapsize .. 721
set_open_flags ... 722
set_shm_key ... 723
set_thread_count ... 724
set_timeout .. 725
set_tmp_dir .. 726
set_tx_max ... 727
set_verbose .. 728

6/10/2011 DB C++ API Page xiii

Preface
Welcome to Berkeley DB 11g Release 2 (DB). This document describes the C++ API for DB
library version 11.2.5.2. It is intended to describe the DB API, including all classes, methods,
and functions. As such, this document is intended for C++ developers who are actively writing
or maintaining applications that make use of DB databases.

6/10/2011 DB C++ API Page xiv

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example:
"Db::open() is a Db class method."

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory."

Program examples are displayed in a monospaced font on a shaded background. For example:

typedef struct vendor {
 char name[MAXFIELD]; // Vendor name
 char street[MAXFIELD]; // Street name and number
 char city[MAXFIELD]; // City
 char state[3]; // Two-digit US state code
 char zipcode[6]; // US zipcode
 char phone_number[13]; // Vendor phone number
} VENDOR;

Note

Finally, notes of interest are represented using a note block such as this.

6/10/2011 DB C++ API Page xv

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a DB application:

• Getting Started with Berkeley DB for C++

• Getting Started with Transaction Processing for C++

• Berkeley DB Getting Started with Replicated Applications for C++

• Berkeley DB C API Reference Guide

• Berkeley DB STL API Reference Guide

• Berkeley DB TCL API Reference Guide

• Berkeley DB Installation and Build Guide

• Berkeley DB Programmer's Reference Guide

• Berkeley DB Getting Started with the SQL APIs

To download the latest Berkeley DB documentation along with white papers and other
collateral, visit http://www.oracle.com/technetwork/indexes/documentation/index.html.

For the latest version of the Oracle Berkeley DB downloads, visit http://www.oracle.com/
technetwork/database/berkeleydb/downloads/index.html.

Contact Us

You can post your comments and questions at the Oracle Technology (OTN) forum for Oracle
Berkeley DB at: http://forums.oracle.com/forums/forum.jspa?forumID=271, or for Oracle
Berkeley DB High Availability at: http://forums.oracle.com/forums/forum.jspa?forumID=272.

For sales or support information, email to: berkeleydb-info_us@oracle.com You can subscribe
to a low-volume email announcement list for the Berkeley DB product family by sending email
to: bdb-join@oss.oracle.com

http://download.oracle.com/docs/cd/E17076_02/html/gsg/CXX/BerkeleyDB-Core-Cxx-GSG.pdf
http://download.oracle.com/docs/cd/E17076_02/html/gsg_txn/CXX/BerkeleyDB-Core-Cxx-Txn.pdf
http://download.oracle.com/docs/cd/E17076_02/html/gsg_db_rep/CXX/Replication_CXX_GSG.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/C/BDB-C_APIReference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/STL/BDB-STL_APIReference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/TCL/BDB-TCL_APIReference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/installation/BDB_Installation.pdf
http://download.oracle.com/docs/cd/E17076_02/html/programmer_reference/BDB_Prog_Reference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/bdb-sql/BDB-SQL-Guide.pdf
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://forums.oracle.com/forums/forum.jspa?forumID=271
http://forums.oracle.com/forums/forum.jspa?forumID=272
mailto:berkeleydb-info_us@oracle.com
mailto:bdb-join@oss.oracle.com

6/10/2011 DB C++ API Page 1

Chapter 1. Introduction to Berkeley DB APIs
Welcome to the Berkeley DB API Reference Manual for C++.

DB is a general-purpose embedded database engine that is capable of providing a wealth of
data management services. It is designed from the ground up for high-throughput applications
requiring in-process, bullet-proof management of mission-critical data. DB can gracefully scale
from managing a few bytes to terabytes of data. For the most part, DB is limited only by your
system's available physical resources.

This manual describes the various APIs and command line utilities available for use in the DB
library.

For a general description of using DB beyond the reference material available in this manual,
see the Getting Started Guides which are identified in this manual's preface.

This manual is broken into chapters, each one of which describes a series of APIs designed
to work with one particular aspect of the DB library. In many cases, each such chapter is
organized around a "handle", or class, which provides an interface to DB structures such as
databases, environments or locks. However, in some cases, methods for multiple handles
are combined together when they are used to control or interface with some isolated DB
functionality. See, for example, the The DbLsn Handle (page 372) chapter.

Within each chapter, methods, functions and command line utilities are organized
alphabetically.

6/10/2011 DB C++ API Page 2

Chapter 2. The Db Handle
The Db is the handle for a single Berkeley DB database. A Berkeley DB database provides
a mechanism for organizing key-data pairs of information. From the perspective of some
database systems, a Berkeley DB database could be thought of as a single table within a larger
database.

You create a Db handle using the Db (page 21) constructor. For most database activities, you
must then open the handle using the Db::open() (page 69) method. When you are done with
them, handles must be closed using the Db::close() (page 13) method.

Alternatively, you can create a Db and then rename, remove or verify the database
without performing an open. See Db::rename() (page 81), Db::remove() (page 79) or
Db::verify() (page 154) for information on these activities.

It is possible to create databases such that they are organized within a database environment.
Environments are optional for simple Berkeley DB applications that do not use transactions,
recovery, replication or any other advanced features. For simple Berkeley DB applications,
environments still offer some advantages. For example, they provide some organizational
benefits on-disk (all databases are located on disk relative to the environment). Also, if you
are using multiple databases, then environments allow your databases to share a common in-
memory cache, which makes for more efficient usage of your hardware's resources.

See DbEnv for information on using database environments.

You specify the underlying organization of the data in the database (e.g. BTree, Hash, Queue,
and Recno) when you open the database. When you create a database, you are free to specify
any of the available database types. On subsequent opens, you must either specify the
access method used when you first opened the database, or you can specify DB_UNKNOWN in
order to have this information retrieved for you. See the Db::open() (page 69) method for
information on specifying database types.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 3

Database and Related Methods

Database Operations Description

Db::associate() Associate a secondary index

Db::associate_foreign() Associate a foreign index

Db::close() Close a database

Db::compact() Compact a database

Db Create a database handle

Db::del() Delete items from a database

Db::err() Error message

Db::exists() Return if an item appears in a database

Db::fd() Return a file descriptor from a database

Db::get() Get items from a database

Db::get_byteswapped() Return if the underlying database is in host
order

Db::get_dbname() Return the file and database name

Db::get_multiple() Return if the database handle references
multiple databases

Db::get_open_flags() Returns the flags specified to Db::open

Db::get_type() Return the database type

Db::join() Perform a database join on cursors

Db::key_range() Return estimate of key location

Db::open() Open a database

Db::put() Store items into a database

Db::remove() Remove a database

Db::rename() Rename a database

Db::set_priority(), Db::get_priority() Set/get cache page priority

Db::stat() Database statistics

Db::stat_print() Display database statistics

Db::sync() Flush a database to stable storage

Db::truncate() Empty a database

Db::upgrade() Upgrade a database

Db::verify() Verify/salvage a database

Db::cursor() Create a cursor handle

Database Configuration

Db::set_alloc() Set local space allocation functions

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 4

Database Operations Description

Db::set_cachesize(), Db::get_cachesize() Set/get the database cache size

Db::set_create_dir(), Db::get_create_dir() Set/get the directory in which a database is
placed

Db::set_dup_compare() Set a duplicate comparison function

Db::set_encrypt(), Db::get_encrypt_flags() Set/get the database cryptographic key

Db::set_errcall() Set error message callback

Db::set_errfile(), Db::get_errfile() Set/get error message FILE

Db::set_error_stream() Set C++ ostream used for error messages

Db::set_errpfx(), Db::get_errpfx() Set/get error message prefix

Db::set_feedback() Set feedback callback

Db::set_flags(), Db::get_flags() Set/get general database configuration

Db::set_lorder(), Db::get_lorder() Set/get the database byte order

Db::set_message_stream() Set C++ ostream used for informational
messages

Db::set_msgcall() Set informational message callback

Db::set_msgfile(), Db::get_msgfile() Set/get informational message FILE

Db::set_pagesize(), Db::get_pagesize() Set/get the underlying database page size

Db::set_partition() Set database partitioning

Db::set_partition_dirs(),
Db::get_partition_dirs()

Set/get the directories used for database
partitions

Btree/Recno Configuration

Db::set_append_recno() Set record append callback

Db::set_bt_compare() Set a Btree comparison function

Db::set_bt_compress() Set Btree compression functions

Db::set_bt_minkey(), Db::get_bt_minkey() Set/get the minimum number of keys per
Btree page

Db::set_bt_prefix() Set a Btree prefix comparison function

Db::set_re_delim(), Db::get_re_delim() Set/get the variable-length record delimiter

Db::set_re_len(), Db::get_re_len() Set/get the fixed-length record length

Db::set_re_pad(), Db::get_re_pad() Set/get the fixed-length record pad byte

Db::set_re_source(), Db::get_re_source() Set/get the backing Recno text file

Hash Configuration

Db::set_h_compare() Set a Hash comparison function

Db::set_h_ffactor(), Db::get_h_ffactor() Set/get the Hash table density

Db::set_h_hash() Set a hashing function

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 5

Database Operations Description

Db::set_h_nelem(), Db::get_h_nelem() Set/get the Hash table size

Queue Configuration

Db::set_q_extentsize(),
Db::get_q_extentsize()

Set/get Queue database extent size

Heap

Db::set_heapsize(), Db::get_heapsize() Set/get the database heap size

DbHeapRecordId

Database Utilities

db_copy Copy a named database to a target directory

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 6

Db::associate()
#include <db_cxx.h>

int
Db::associate(DbTxn *txnid, Db *secondary,
 int (*callback)(Db *secondary,
 const Dbt *key, const Dbt *data, Dbt *result), u_int32_t flags);

The Db::associate() function is used to declare one database a secondary index for a
primary database. The Db handle that you call the associate() method from is the primary
database.

After a secondary database has been "associated" with a primary database, all updates to the
primary will be automatically reflected in the secondary and all reads from the secondary
will return corresponding data from the primary. Note that as primary keys must be unique
for secondary indices to work, the primary database must be configured without support for
duplicate data items. See Secondary Indices in the Berkeley DB Programmer's Reference Guide
for more information.

The Db::associate() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 613); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 605); otherwise NULL. If no transaction handle is specified,
but the operation occurs in a transactional database, the operation will be implicitly
transaction protected.

secondary

The secondary parameter should be an open database handle of either a newly created and
empty database that is to be used to store a secondary index, or of a database that was
previously associated with the same primary and contains a secondary index. Note that it is
not safe to associate as a secondary database a handle that is in use by another thread of
control or has open cursors. If the handle was opened with the DB_THREAD flag it is safe to
use it in multiple threads of control after the Db::associate() method has returned. Note
also that either secondary keys must be unique or the secondary database must be configured
with support for duplicate data items.

callback

The callback parameter is a callback function that creates the set of secondary keys
corresponding to a given primary key and data pair.

The callback parameter may be NULL if both the primary and secondary database handles
were opened with the DB_RDONLY flag.

../../programmer_reference/am_second.html

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 7

The callback takes four arguments:

• secondary

The secondary parameter is the database handle for the secondary.

• key

The key parameter is a Dbt referencing the primary key.

• data

The data parameter is a Dbt referencing the primary data item.

• result

The result parameter is a zeroed Dbt in which the callback function should fill in data and
size fields that describe the secondary key or keys.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

The result Dbt can have the following flags set in its flags field:

• DB_DBT_APPMALLOC

If the callback function needs to allocate memory for the result data field (rather than
simply pointing into the primary key or datum), DB_DBT_APPMALLOC should be set in the
flags field of the result Dbt, which indicates that Berkeley DB should free the memory when
it is done with it.

• DB_DBT_MULTIPLE

To return multiple secondary keys, DB_DBT_MULTIPLE should be set in the flags field of
the result Dbt, which indicates Berkeley DB should treat the size field as the number of
secondary keys (zero or more), and the data field as a pointer to an array of that number of
Dbts describing the set of secondary keys.

When multiple secondary keys are returned, keys may not be repeated. In other words,
there must be no repeated record numbers in the array for Recno and Queue databases,
and keys must not compare equally using the secondary database's comparison function for
Btree and Hash databases. If keys are repeated, operations may fail and the secondary may
become inconsistent with the primary.

The DB_DBT_APPMALLOC flag may be set for any Dbt in the array of returned Dbt's to
indicate that Berkeley DB should free the memory referenced by that particular Dbt's data
field when it is done with it.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 8

The DB_DBT_APPMALLOC flag may be combined with DB_DBT_MULTIPLE in the result Dbt's
flag field to indicate that Berkeley DB should free the array once it is done with all of the
returned keys.

In addition, the callback can optionally return the following special value:

• DB_DONOTINDEX

If any key/data pair in the primary yields a null secondary key and should be left out of the
secondary index, the callback function may optionally return DB_DONOTINDEX. Otherwise,
the callback function should return 0 in case of success or an error outside of the Berkeley
DB name space in case of failure; the error code will be returned from the Berkeley DB call
that initiated the callback.

If the callback function returns DB_DONOTINDEX for any key/data pairs in the primary
database, the secondary index will not contain any reference to those key/data pairs, and
such operations as cursor iterations and range queries will reflect only the corresponding
subset of the database. If this is not desirable, the application should ensure that the
callback function is well-defined for all possible values and never returns DB_DONOTINDEX.

Returning DB_DONOTINDEX is equivalent to setting DB_DBT_MULTIPLE on the result Dbt and
setting the size field to zero.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_CREATE

If the secondary database is empty, walk through the primary and create an index to it in
the empty secondary. This operation is potentially very expensive.

If the secondary database has been opened in an environment configured with transactions,
the entire secondary index creation is performed in the context of a single transaction.

Care should be taken not to use a newly-populated secondary database in another thread of
control until the Db::associate() call has returned successfully in the first thread.

If transactions are not being used, care should be taken not to modify a primary database
being used to populate a secondary database, in another thread of control, until the
Db::associate() call has returned successfully in the first thread. If transactions are being
used, Berkeley DB will perform appropriate locking and the application need not do any
special operation ordering.

• DB_IMMUTABLE_KEY

Specifies the secondary key is immutable.

This flag can be used to optimize updates when the secondary key in a primary record will
never be changed after the primary record is inserted. For immutable secondary keys, a

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 9

best effort is made to avoid calling the secondary callback function when primary records
are updated. This optimization may reduce the overhead of update operations significantly
if the callback function is expensive.

Be sure to specify this flag only if the secondary key in the primary record is never changed.
If this rule is violated, the secondary index will become corrupted, that is, it will become
out of sync with the primary.

Errors

The Db::associate() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw
a DbRepHandleDeadException (page 326) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

EINVAL

If the secondary database handle has already been associated with this or another database
handle; the secondary database handle is not open; the primary database has been configured
to allow duplicates; or if an invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 10

Db::associate_foreign()
#include <db_cxx.h>

int
DB::associate_foreign(Db *secondary,,
 int (*callback)(Db *secondary,
 const Dbt *key, Dbt *data, const Dbt *foreignkey, int *changed),
 u_int32_t flags);

The Db::associate_foreign() function is used to declare one database a foreign constraint
for a secondary database. The Db handle that you call the associate_foreign() method
from is the foreign database.

After a foreign database has been "associated" with a secondary database, all keys inserted
into the secondary must exist in the foreign database. Attempting to add a record with a
foreign key that does not exist in the foreign database will cause the put method to fail and
return DB_FOREIGN_CONFLICT.

Deletions in the foreign database affect the secondary in a manner defined by the flags
parameter. See Foreign Indices in the Berkeley DB Programmer's Reference Guide for more
information.

The Db::associate_foreign() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

secondary

The secondary parameter should be an open database handle of a database that contains a
secondary index who's keys also exist in the foreign database.

callback

The callback parameter is a callback function that nullifies the foreign key portion of a data
Dbt.

The callback parameter must be NULL if either DB_FOREIGN_ABORT or DB_FOREIGN_CASCADE
is set.

The callback takes four arguments:

• secondary

The secondary parameter is the database handle for the secondary.

• key

The key parameter is a Dbt referencing the primary key.

• data

../../programmer_reference/am_foreign.html

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 11

The data parameter is a Dbt referencing the primary data item to be updated.

• foreignkey

The foreignkey parameter is a Dbt referencing the foreign key which is being deleted.

• changed

The changed parameter is a pointer to a boolean value, indicated whether data has
changed.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

flags

The flags parameter must be set to one of the following values:

• DB_FOREIGN_ABORT

Abort the deletion of a key in the foreign database and return DB_FOREIGN_CONFLICT
if that key exists in the secondary database. The deletion should be protected by a
transaction to ensure database integrity after the aborted delete.

• DB_FOREIGN_CASCADE

The deletion of a key in the foreign database will also delete that key from the secondary
database (and the corresponding entry in the secondary's primary database.)

• DB_FOREIGN_NULLIFY

The deletion of a key in the foreign database will call the nullification function passed to
associate_foreign and update the secondary database with the changed data.

Errors

The Db::associate_foreign() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw
a DbRepHandleDeadException (page 326) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 12

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

EINVAL

If the foreign database handle is a secondary index; the foreign database handle has been
configured to allow duplicates; the foreign database handle is a renumbering recno database;
callback is configured and DB_FOREIGN_NULLIFY is not; DB_FOREIGN_NULLIFY is configured
and callback is not.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 13

Db::close()
#include <db_cxx.h>

int
Db::close(u_int32_t flags);

The Db::close() method flushes cached database information to disk, closes any open
cursors, frees allocated resources, and closes underlying files. When the close operation for a
cursor fails, the method returns a non-zero error value for the first instance of such an error,
and continues to close the rest of the cursors and database handles.

Although closing a database handle will close any open cursors, it is recommended that
applications explicitly close all their Dbc handles before closing the database. The reason why
is that when the cursor is explicitly closed, the memory allocated for it is reclaimed; however,
this will not happen if you close a database while cursors are still opened.

The same rule, for the same reasons, hold true for DbTxn handles. Simply make sure you close
all your transaction handles before closing your database handle.

Because key/data pairs are cached in memory, applications should make a point to always
either close database handles or sync their data to disk (using the Db::sync() (page 148)
method) before exiting, to ensure that any data cached in main memory are reflected in the
underlying file system.

When called on a database that is the primary database for a secondary index, the primary
database should be closed only after all secondary indices referencing it have been closed.

When multiple threads are using the Db concurrently, only a single thread may call the
Db::close() method.

The Db handle may not be accessed again after Db::close() is called, regardless of its
return.

If you do not close the Db handle explicitly, it will be closed when the environment handle
that owns the Db handle is closed.

The Db::close() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success. The error values that
Db::close() method returns include the error values of Dbc::close() and the following:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 14

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.

Parameters

flags

The flags parameter must be set to 0 or be set to the following value:

• DB_NOSYNC

Do not flush cached information to disk. This flag is a dangerous option. It should be set only
if the application is doing logging (with transactions) so that the database is recoverable
after a system or application crash, or if the database is always generated from scratch
after any system or application crash.

It is important to understand that flushing cached information to disk only minimizes the
window of opportunity for corrupted data. Although unlikely, it is possible for database
corruption to happen if a system or application crash occurs while writing data to the
database. To ensure that database corruption never occurs, applications must either: use
transactions and logging with automatic recovery; use logging and application-specific
recovery; or edit a copy of the database, and once all applications using the database have
successfully called Db::close(), atomically replace the original database with the updated
copy.

Note that this flag only works when the database has been opened using an environment.

Errors

The Db::close() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

The error messages returned for the first error encountered when Db::close() method closes
any open cursors include:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 15

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 16

Db::compact()
#include <db_cxx.h>

int
Db::compact(DbTxn *txnid,
 Dbt *start, Dbt *stop, DB_COMPACT *c_data, u_int32_t flags, Dbt *end);

The Db::compact() method compacts Btree, Hash, and Recno access method databases, and
optionally returns unused Btree, Hash or Recno database pages to the underlying filesystem.

The Db::compact() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 613); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 605); otherwise NULL.

If a transaction handle is supplied to this method, then the operation is performed using that
transaction. In this event, large sections of the tree may be locked during the course of the
transaction.

If no transaction handle is specified, but the operation occurs in a transactional database,
the operation will be implicitly transaction protected using multiple transactions. These
transactions will be periodically committed to avoid locking large sections of the tree. Any
deadlocks encountered cause the compaction operation to be retried from the point of the
last transaction commit.

start

If non-NULL, the start parameter is the starting point for compaction. For a Btree or Recno
database, compaction will start at the smallest key greater than or equal to the specified key.
For a Hash database, the compaction will start in the bucket specified by the integer stored in
the key. If NULL, compaction will start at the beginning of the database.

stop

If non-NULL, the stop parameter is the stopping point for compaction. For a Btree or Recno
database, compaction will stop at the page with the smallest key greater than the specified
key. For a Hash database, compaction will stop in the bucket specified by the integer stored in
the key. If NULL, compaction will stop at the end of the database.

c_data

If non-NULL, the c_data parameter contains additional compaction configuration parameters,
and returns compaction operation statistics, in a structure of type DB_COMPACT.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 17

The following input configuration fields are available from the DB_COMPACT structure:

• int compact_fillpercent;

If non-zero, this provides the goal for filling pages, specified as a percentage between 1 and
100. Any page in the database not at or above this percentage full will be considered for
compaction. The default behavior is to consider every page for compaction, regardless of its
page fill percentage.

• int compact_pages;

If non-zero, the call will return after the specified number of pages have been freed, or no
more pages can be freed.

• db_timeout_t compact_timeout;

If non-zero, and no txnid parameter was specified, this parameter identifies the lock
timeout used for implicit transactions, in microseconds.

The following output statistics fields are available from the DB_COMPACT structure:

• u_int32_t compact_deadlock;

An output statistics parameter: if no txnid parameter was specified, the number of
deadlocks which occurred.

• u_int32_t compact_pages_examine;

An output statistics parameter: the number of database pages reviewed during the
compaction phase.

• u_int32_t compact_empty_buckets;

An output statistics parameter: the number of empty hash buckets that were found the
compaction phase.

• u_int32_t compact_pages_free;

An output statistics parameter: the number of database pages freed during the compaction
phase.

• u_int32_t compact_levels;

An output statistics parameter: the number of levels removed from the Btree or Recno
database during the compaction phase.

• u_int32_t compact_pages_truncated;

An output statistics parameter: the number of database pages returned to the filesystem.

flags

The flags parameter must be set to 0 or one of the following values:

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 18

• DB_FREELIST_ONLY

Do no page compaction, only returning pages to the filesystem that are already free and at
the end of the file.

• DB_FREE_SPACE

Return pages to the filesystem when possible. If this flag is not specified, pages emptied as
a result of compaction will be placed on the free list for re-use, but never returned to the
filesystem.

Note that only pages at the end of a file can be returned to the filesystem. Because of the
one-pass nature of the compaction algorithm, any unemptied page near the end of the file
inhibits returning pages to the file system. A repeated call to the Db::compact() method
with a low compact_fillpercent may be used to return pages in this case.

end

If non-NULL, the end parameter will be filled with the database key marking the end of the
compaction operation in a Btree or Recno database. This is generally the first key of the
page where the operation stopped. For a Hash database, this will hold the integer value
representing which bucket the compaction stopped in.

Errors

The Db::compact() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw
a DbRepHandleDeadException (page 326) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 19

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

EACCES

An attempt was made to modify a read-only database.

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 20

db_copy
#include <db.h>

int
db_copy(DB_ENV *dbenv, const char *dbfile, const char *target,
 const char *password);

The db_copy() routine copies the named database file to the target directory. An optional
password can be specified for encrypted database files. This routine can be used on operating
systems that do not support atomic file system reads to create a hot backup of a database
file. If the specified database file is for a QUEUE database with extents, all extent files for
that database will be copied as well.

Parameters

dbenv

An open environment handle for the environment containing the database file.

dbfile

The path name to the file to be backed up. The file name is resolved using the usual BDB
library name resolution rules.

target

The directory to which you want the database copied. This is specified relative to the current
directory of the executing process or as an absolute path.

password

Specified only if the database file is encrypted. The resulting backup file will be encrypted as
well.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 21

Db
#include <db_cxx.h>

class Db {
public:
 Db(DbEnv *dbenv, u_int32_t flags);
 ~Db();

 DB *Db::get_DB();
 const DB *Db::get_const_DB() const;
 static Db *Db::get_Db(DB *db);
 static const Db *Db::get_const_Db(const DB *db);
 ...
};

The Db handle is the handle for a Berkeley DB database, which may or may not be part of a
database environment.

Db handles are free-threaded if the DB_THREAD flag is specified to the Db::open() (page
69) method when the database is opened or if the database environment in which the
database is opened is free-threaded. The handle should not be closed while any other handle
that refers to the database is in use; for example, database handles must not be closed
while cursor handles into the database remain open, or transactions that include operations
on the database have not yet been committed or aborted. Once the Db::close() (page 13),
Db::remove() (page 79), Db::rename() (page 81), or Db::verify() (page 154) methods are
called, the handle may not be accessed again, regardless of the method's return.

The constructor creates a Db object that is the handle for a Berkeley DB database. The
constructor allocates memory internally; calling the Db::close() (page 13), Db::remove() (page
79), or Db::rename() (page 81) methods will free that memory.

Note that destroying the Db object is synonomous with calling Db::close(0).

Each Db object has an associated DB struct, which is used by the underlying implementation
of Berkeley DB and its C-language API. The Db::get_DB() method returns a pointer to this
struct. Given a const Db object, Db::get_const_DB() returns a const pointer to the same
struct.

Given a DB struct, the Db::get_Db() method returns the corresponding Db object, if there is
one. If the DB object was not associated with a Db (that is, it was not returned from a call to
the Db::get_DB() method), then the result of Db::get_Db() is undefined. Given a const DB
struct, Db::get_const_Db() returns the associated const Dbobject, if there is one.

These methods may be useful for Berkeley DB applications including both C and C++ language
software. It should not be necessary to use these calls in a purely C++ application.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 22

Parameters

dbenv

If no dbenv value is specified, the database is standalone; that is, it is not part of any
Berkeley DB environment.

If a dbenv value is specified, the database is created within the specified Berkeley DB
environment. The database access methods automatically make calls to the other subsystems
in Berkeley DB, based on the enclosing environment. For example, if the environment has
been configured to use locking, the access methods will automatically acquire the correct
locks when reading and writing pages of the database.

flags

The flags parameter must be set to 0 or the following value:

• DB_CXX_NO_EXCEPTION

The Berkeley DB C++ API supports two different error behaviors. By default, whenever an
error occurs, an exception is thrown that encapsulates the error information. This generally
allows for cleaner logic for transaction processing because a try block can surround a single
transaction. However, if this flag is specified, exceptions are not thrown; instead, each
individual function returns an error code.

If a dbenv value is specified, this flag is ignored, and the error behavior of the specified
environment is used instead.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 23

Db::del()
#include <db_cxx.h>

int
Db::del(DbTxn *txnid, Dbt *key, u_int32_t flags);

The Db::del() method removes key/data pairs from the database. The key/data pair
associated with the specified key is discarded from the database. In the presence of duplicate
key values, all records associated with the designated key will be discarded.

When called on a database that has been made into a secondary index using the
Db::associate() (page 6) method, the Db::del() method deletes the key/data pair from the
primary database and all secondary indices.

The Db::del() method will return DB_NOTFOUND if the specified key is not in the database.
The Db::del() method will return DB_KEYEMPTY if the database is a Queue or Recno
database and the specified key exists, but was never explicitly created by the application or
was later deleted. Unless otherwise specified, the Db::del() method either returns a non-
zero error value or throws an exception that encapsulates a non-zero error value on failure,
and returns 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 613); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 605); otherwise NULL. If no transaction handle is specified,
but the operation occurs in a transactional database, the operation will be implicitly
transaction protected.

key

The key Dbt operated on.

flags

The flags parameter must be set to 0 or one of the following values:

• DB_CONSUME

If the database is of type DB_QUEUE then this flag may be set to force the head of the
queue to move to the first non-deleted item in the queue. Normally this is only done if the
deleted item is exactly at the head when deleted.

• DB_MULTIPLE

Delete multiple data items using keys from the buffer to which the key parameter refers.

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 24

To delete records in bulk by key with the btree or hash access methods, construct
a bulk buffer in the key Dbt using DbMultipleDataBuilder (page 201). To delete
records in bulk by record number, construct a bulk buffer in the key Dbt using
DbMultipleRecnoDataBuilder (page 205) with a data size of zero.

A successful bulk delete operation is logically equivalent to a loop through each key/data
pair, performing a Db::del() (page 23) for each one.

See the DBT and Bulk Operations (page 192) for more information on working with bulk
updates.

The DB_MULTIPLE flag may only be used alone.

• DB_MULTIPLE_KEY

Delete multiple data items using keys and data from the buffer to which the key parameter
refers.

To delete records in bulk with the btree or hash access methods, construct a bulk buffer
in the key Dbt using DbMultipleKeyDataBuilder (page 203). To delete records in bulk
with the recno or hash access methods, construct a bulk buffer in the key Dbt using
DbMultipleRecnoDataBuilder (page 205).

See the DBT and Bulk Operations (page 192) for more information on working with bulk
updates.

The DB_MULTIPLE_KEY flag may only be used alone.

Errors

The Db::del() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DB_FOREIGN_CONFLICT

A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for
that record does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 11) was declared for a foreign key database, and then
subsequently a record was deleted from the foreign key database without first removing
it from the constrained secondary database.

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 25

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw
a DbRepHandleDeadException (page 326) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EACCES

An attempt was made to modify a read-only database.

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 26

Db::err()
#include <db_cxx.h>

Db::err(int error, const char *fmt, ...);

Db::errx(const char *fmt, ...);

The DbEnv::err() (page 221), DbEnv::errx(), Db::err() and Db::errx() methods provide
error-messaging functionality for applications written using the Berkeley DB library.

The Db::err() and DbEnv::err() (page 221) methods construct an error message consisting
of the following elements:

• An optional prefix string

If no error callback function has been set using the DbEnv::set_errcall() (page 275)
method, any prefix string specified using the DbEnv::set_errpfx() (page 280) method,
followed by two separating characters: a colon and a <space> character.

• An optional printf-style message

The supplied message fmt, if non-NULL, in which the ANSI C X3.159-1989 (ANSI C) printf
function specifies how subsequent parameters are converted for output.

• A separator

Two separating characters: a colon and a <space> character.

• A standard error string

The standard system or Berkeley DB library error string associated with the error value, as
returned by the DbEnv::strerror() (page 318) method.

The Db::errx() and DbEnv::errx() methods are the same as the Db::err() and
DbEnv::err() (page 221) methods, except they do not append the final separator characters
and standard error string to the error message.

This constructed error message is then handled as follows:

• If an error callback function has been set (see Db::set_errcall() (page 102) and
DbEnv::set_errcall() (page 275)), that function is called with two parameters: any prefix
string specified (see Db::set_errpfx() (page 107) and DbEnv::set_errpfx() (page 280)) and
the error message.

• If a C library FILE * has been set (see Db::set_errfile() (page 104) and
DbEnv::set_errfile() (page 277)), the error message is written to that output stream.

• If a C++ ostream has been set (see DbEnv::set_error_stream() (page 279) and
Db::set_error_stream() (page 106)), the error message is written to that stream.

• If none of these output options have been configured, the error message is written to stderr,
the standard error output stream.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 27

Parameters

error

The error parameter is the error value for which the DbEnv::err() (page 221) and Db::err()
methods will display an explanatory string.

fmt

The fmt parameter is an optional printf-style message to display.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 28

Db::exists()
#include <db_cxx.h>

int
Db::exists(DbTxn *txnid, Dbt *key, u_int32_t flags);

The Db::exists() method returns whether the specified key appears in the database.

The Db::exists() method will return DB_NOTFOUND if the specified key is not in the
database. The Db::exists() method will return DB_KEYEMPTY if the database is a Queue
or Recno database and the specified key exists, but was never explicitly created by the
application or was later deleted.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 613); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 605); otherwise NULL. If no transaction handle is specified,
but the operation occurs in a transactional database, the operation will be implicitly
transaction protected.

key

The key Dbt operated on.

flags

The flags parameter must be set to zero or by bitwise inclusively OR'ing together one or more
of the following values:

• DB_READ_COMMITTED

Configure a transactional read operation to have degree 2 isolation (the read is not
repeatable).

• DB_READ_UNCOMMITTED

Configure a transactional read operation to have degree 1 isolation, reading modified
but not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not
specified when the underlying database was opened.

• DB_RMW

Acquire write locks instead of read locks when doing the read, if locking is configured.
Setting this flag can eliminate deadlock during a read-modify-write cycle by acquiring the
write lock during the read part of the cycle so that another thread of control acquiring a
read lock for the same item, in its own read-modify-write cycle, will not result in deadlock.

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 29

Because the Db::exists() method will not hold locks across Berkeley DB calls in non-
transactional operations, the DB_RMW flag to the Db::exists() call is meaningful only in
the presence of transactions.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 30

Db::fd()
#include <db_cxx.h>

int
Db::fd(int *fdp);

The Db::fd() method provides access to a file descriptor representative of the underlying
database. A file descriptor referring to the same file will be returned to all processes that call
Db::open() (page 69) with the same file parameter.

This file descriptor may be safely used as a parameter to the fcntl(2) and flock(2) locking
functions.

The Db::fd() method only supports a coarse-grained form of locking. Applications should
instead use the Berkeley DB lock manager where possible.

The Db::fd() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

fdp

The fdp parameter references memory into which the current file descriptor is copied.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 31

Db::get()
#include <db_cxx.h>

int
Db::get(DbTxn *txnid, Dbt *key, Dbt *data, u_int32_t flags);

int
Db::pget(DbTxn *txnid, Dbt *key, Dbt *pkey, Dbt *data, u_int32_t flags);

The Db::get() method retrieves key/data pairs from the database. The address and length of
the data associated with the specified key are returned in the structure to which data refers.

In the presence of duplicate key values, Db::get() will return the first data item for the
designated key. Duplicates are sorted by:

• Their sort order, if a duplicate sort function was specified.

• Any explicit cursor designated insertion.

• By insert order. This is the default behavior.

Retrieval of duplicates requires the use of cursor operations. See Dbc::get() (page 173) for
details.

When called on a database that has been made into a secondary index using the
Db::associate() (page 6) method, the Db::get() and Db::pget() methods return the key
from the secondary index and the data item from the primary database. In addition, the
Db::pget() method returns the key from the primary database. In databases that are not
secondary indices, the Db::pget() method will always fail.

The Db::get() method will return DB_NOTFOUND if the specified key is not in the database.
The Db::get() method will return DB_KEYEMPTY if the database is a Queue or Recno
database and the specified key exists, but was never explicitly created by the application or
was later deleted. Unless otherwise specified, the Db::get() method either returns a non-
zero error value or throws an exception that encapsulates a non-zero error value on failure,
and returns 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 613); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 605); otherwise NULL. If no transaction handle is specified,
but the operation occurs in a transactional database, the operation will be implicitly
transaction protected.

key

The key Dbt operated on.

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 32

If DB_DBT_PARTIAL is set for the Dbt used for this parameter, and if the flags parameter is not
set to DB_CONSUME DB_CONSUME_WAIT, or DB_SET_RECNO, then this method will fail and
return EINVAL.

pkey

The pkey parameter is the return key from the primary database. If DB_DBT_PARTIAL is set for
the Dbt used for this parameter, then this method will fail and return EINVAL.

data

The data Dbt operated on.

flags

The flags parameter must be set to 0 or one of the following values:

• DB_CONSUME

Return the record number and data from the available record closest to the head of the
queue, and delete the record. The record number will be returned in key, as described
in Dbt. The data will be returned in the data parameter. A record is available if it is not
deleted and is not currently locked. The underlying database must be of type Queue for
DB_CONSUME to be specified.

• DB_CONSUME_WAIT

The DB_CONSUME_WAIT flag is the same as the DB_CONSUME flag, except that if the Queue
database is empty, the thread of control will wait until there is data in the queue before
returning. The underlying database must be of type Queue for DB_CONSUME_WAIT to be
specified.

If lock or transaction timeouts have been specified, the Db::get() method with the
DB_CONSUME_WAIT flag may return DB_LOCK_NOTGRANTED. This failure, by itself, does not
require the enclosing transaction be aborted.

• DB_GET_BOTH

Retrieve the key/data pair only if both the key and data match the arguments.

When using a secondary index handle, the DB_GET_BOTH: flag causes:

• the Db::pget() version of this method to retun the secondary key/primary key/data
tuple only if both the primary and secondary keys match the arguments.

• the Db::get() version of this method to result in an error.

• DB_SET_RECNO

Retrieve the specified numbered key/data pair from a database. Upon return, both the key
and data items will have been filled in.

../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 33

The data field of the specified key must be a pointer to a logical record number (that is, a
db_recno_t). This record number determines the record to be retrieved.

For DB_SET_RECNO to be specified, the underlying database must be of type Btree, and it
must have been created with the DB_RECNUM flag.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags
parameter:

• DB_IGNORE_LEASE

Return the data item irrespective of the state of master leases. The item will be returned
under all conditions: if master leases are not configured, if the request is made to a client,
if the request is made to a master with a valid lease, or if the request is made to a master
without a valid lease.

• DB_MULTIPLE

Return multiple data items in the buffer to which the data parameter refers.

In the case of Btree or Hash databases, all of the data items associated with the specified
key are entered into the buffer. In the case of Queue or Recno databases, all of the data
items in the database, starting at, and subsequent to, the specified key, are entered into
the buffer.

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM). The buffer must be at least as large as the page size of the underlying
database, aligned for unsigned integer access, and be a multiple of 1024 bytes in size.
If the buffer size is insufficient, then upon return from the call the size field of the data
parameter will have been set to an estimated buffer size, and the error DB_BUFFER_SMALL
is returned. (The size is an estimate as the exact size needed may not be known until all
entries are read. It is best to initially provide a relatively large buffer, but applications
should be prepared to resize the buffer as necessary and repeatedly call the method.)

The DB_MULTIPLE flag may only be used alone, or with the DB_GET_BOTH and
DB_SET_RECNO options. The DB_MULTIPLE flag may not be used when accessing databases
made into secondary indices using the Db::associate() (page 6) method.

See the DBT and Bulk Operations (page 192) for more information on working with bulk
get.

• DB_READ_COMMITTED

Configure a transactional get operation to have degree 2 isolation (the read is not
repeatable).

• DB_READ_UNCOMMITTED

Configure a transactional get operation to have degree 1 isolation, reading modified but not
yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified
when the underlying database was opened.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 34

• DB_RMW

Acquire write locks instead of read locks when doing the read, if locking is configured.
Setting this flag can eliminate deadlock during a read-modify-write cycle by acquiring the
write lock during the read part of the cycle so that another thread of control acquiring a
read lock for the same item, in its own read-modify-write cycle, will not result in deadlock.

Because the Db::get() method will not hold locks across Berkeley DB calls in non-
transactional operations, the DB_RMW flag to the Db::get() call is meaningful only in the
presence of transactions.

Errors

The Db::get() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbMemoryException or DB_BUFFER_SMALL

The requested item could not be returned due to undersized buffer.

DbMemoryException (page 325) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_BUFFER_SMALL is returned.

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

The DB_CONSUME_WAIT flag was specified, lock or transaction timers were configured and the
lock could not be granted before the wait-time expired.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw
a DbRepHandleDeadException (page 326) (if your application is configured to throw

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 35

exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DB_REP_LEASE_EXPIRED

The operation failed because the site's replication master lease has expired.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EINVAL

If a record number of 0 was specified; the DB_THREAD flag was specified to the
Db::open() (page 69) method and none of the DB_DBT_MALLOC, DB_DBT_REALLOC or
DB_DBT_USERMEM flags were set in the Dbt; the Db::pget() method was called with a Db
handle that does not refer to a secondary index; or if an invalid flag value or parameter was
specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 36

Db::get_bt_minkey()
#include <db_cxx.h>

int
Db::get_bt_minkey(u_int32_t *bt_minkeyp);

The Db::get_bt_minkey() method returns the minimum number of key/data pairs
intended to be stored on any single Btree leaf page. This value can be set using the
Db::set_bt_minkey() (page 92) method.

The Db::get_bt_minkey() method may be called at any time during the life of the
application.

The Db::get_bt_minkey() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bt_minkeyp

The Db::get_bt_minkey() method returns the minimum number of key/data pairs intended
to be stored on any single Btree leaf page in bt_minkeyp.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_bt_minkey() (page 92)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 37

Db::get_byteswapped()
#include <db_cxx.h>

int
Db::get_byteswapped(int *isswapped);

The Db::get_byteswapped() method returns whether the underlying database files were
created on an architecture of the same byte order as the current one, or if they were not
(that is, big-endian on a little-endian machine, or vice versa). This information may be used to
determine whether application data needs to be adjusted for this architecture or not.

The Db::get_byteswapped() method may not be called before the Db::open() (page 69)
method is called.

The Db::get_byteswapped() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

isswapped

If the underlying database files were created on an architecture of the same byte order as the
current one, 0 is stored into the memory location referenced by isswapped. If the underlying
database files were created on an architecture of a different byte order as the current one, 1
is stored into the memory location referenced by isswapped.

Errors

The Db::get_byteswapped() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called before Db::open() (page 69) was called; or if an invalid flag value
or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 38

Db::get_cachesize()
#include <db_cxx.h>

int
Db::get_cachesize(u_int32_t *gbytesp, u_int32_t *bytesp, int *ncachep);

The Db::get_cachesize() method returns the current size and composition of the cache.
These values may be set using the Db::set_cachesize() (page 95) method.

The Db::get_cachesize() method may be called at any time during the life of the
application.

The Db::get_cachesize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

gbytesp

The gbytesp parameter references memory into which the gigabytes of memory in the cache
is copied.

bytesp

The bytesp parameter references memory into which the additional bytes of memory in the
cache is copied.

ncachep

The ncachep parameter references memory into which the number of caches is copied.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_cachesize() (page 95)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 39

Db::get_create_dir()
#include <db_cxx.h>

int
Db::get_create_dir(const char **dirp);

Determine which directory a database file will be created in or was found in.

The Db::get_create_dir() method may be called at any time.

The Db::get_create_dir() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dirp

The dirp will be set to the directory specified in the call to Db::set_create_dir() (page
97) method on this handle or to the directory that the database was found in after
Db::open() (page 69) has been called.

Errors

The Db::get_create_dir() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 40

Db::get_dbname()
#include <db_cxx.h>

int
Db::get_dbname(const char **filenamep, const char **dbnamep);

The Db::get_dbname() method returns the filename and database name used by the Db
handle.

The Db::get_dbname() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

filenamep

The filenamep parameter references memory into which a pointer to the current filename is
copied.

dbnamep

The dbnamep parameter references memory into which a pointer to the current database
name is copied.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 41

Db::get_encrypt_flags()
#include <db_cxx.h>

int
Db::get_encrypt_flags(u_int32_t *flagsp);

The Db::get_encrypt_flags() method returns the encryption flags. This flag can be set
using the Db::set_encrypt() (page 100) method.

The Db::get_encrypt_flags() method may be called at any time during the life of the
application.

The Db::get_encrypt_flags() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The Db::get_encrypt_flags() method returns the encryption flags in flagsp.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_encrypt() (page 100)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 42

Db::get_errfile()
#include <db_cxx.h>

void Db::get_errfile(FILE **errfilep);

The Db::get_errfile() method returns the FILE *, as set by the Db::set_errfile() (page
104) method.

The Db::get_errfile() method may be called at any time during the life of the application.

Parameters

errfilep

The Db::get_errfile() method returns the FILE * in errfilep.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_errfile() (page 104)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 43

Db::get_errpfx()
#include <db_cxx.h>

void Db::get_errpfx(const char **errpfxp);

The Db::get_errpfx() method returns the error prefix.

The Db::get_errpfx() method may be called at any time during the life of the application.

Parameters

errpfxp

The Db::get_errpfx() method returns a reference to the error prefix in errpfxp.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_errpfx() (page 107)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 44

Db::get_flags()
#include <db_cxx.h>

int Db::get_flags(u_int32_t *flagsp);

The Db::get_flags() method returns the current database flags as set by the
Db::set_flags() (page 110) method.

The Db::get_flags() method may be called at any time during the life of the application.

The Db::get_flags() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The Db::get_flags() method returns the current flags in flagsp.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_flags() (page 110)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 45

Db::get_h_ffactor()
#include <db_cxx.h>

int Db::get_h_ffactor(u_int32_t *h_ffactorp);

The Db::get_h_ffactor() method returns the hash table density as set by the
Db::set_h_ffactor() (page 118) method. The hash table density is the number of items that
Berkeley DB tries to place in a hash bucket before splitting the hash bucket.

The Db::get_h_ffactor() method may be called at any time during the life of the
application.

The Db::get_h_ffactor() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

h_ffactorp

The Db::get_h_ffactor() method returns the hash table density in h_ffactorp.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_h_ffactor() (page 118)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 46

Db::get_h_nelem()
#include <db_cxx.h>

int
Db::get_h_nelem(u_int32_t *h_nelemp);

The Db::get_h_nelem() method returns the estimate of the final size of the hash table as set
by the Db::set_h_nelem() (page 120) method.

The Db::get_h_nelem() method may be called at any time during the life of the application.

The Db::get_h_nelem() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

h_nelemp

The Db::get_h_nelem() method returns the estimate of the final size of the hash table in
h_nelemp.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_h_nelem() (page 120)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 47

Db::get_heapsize()
#include <db_cxx.h>

int
Db::get_heapsize(u_int32_t *gbytesp, u_int32_t *bytesp);

Used when the underlying database is configured to use the Heap access method. This
method returns the maximum size of the database's heap file. This value may be set using the
Db::set_heapsize() (page 121) method.

The Db::get_heapsize() method may be called at any time during the life of the
application.

The Db::get_heapsize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

gbytesp

The gbytesp parameter references memory into which is copied the maximum number of
gigabytes in the heap.

bytesp

The bytesp parameter references memory into which is copied the additional bytes in the
heap.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_heapsize() (page 121)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 48

Db::get_lorder()
#include <db_cxx.h>

int
Db::get_lorder(int *lorderp);

The Db::get_lorder() method returns the database byte order; a byte order of 4,321
indicates a big endian order, and a byte order of 1,234 indicates a little endian order. This
value is set using the Db::set_lorder() (page 122) method.

The Db::get_lorder() method may be called at any time during the life of the application.

The Db::get_lorder() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lorderp

The Db::get_lorder() method returns the database byte order in lorderp.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_lorder() (page 122)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 49

Db::get_msgfile()
#include <db_cxx.h>

void Db::get_msgfile(FILE **msgfilep);

The Db::get_msgfile() method returns the FILE * used to output informational or
statistical messages. This file handle is configured using the Db::set_msgfile() (page 126)
method.

The Db::get_msgfile() method may be called at any time during the life of the application.

Parameters

msgfilep

The Db::get_msgfile() method returns the FILE * in msgfilep.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_msgfile() (page 126)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 50

Db::get_multiple()
#include <db_cxx.h>

int
Db::get_multiple()

This method returns non-zero if the Db handle references a physical file supporting multiple
databases, and 0 otherwise.

In this case, the Db handle is a handle on a database whose key values are the names of the
databases stored in the physical file and whose data values are opaque objects. No keys or
data values may be modified or stored using the database handle.

This method may not be called before the Db::open() (page 69) method is called.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 51

Db::get_open_flags()
#include <db_cxx.h>

int
Db::get_open_flags(u_int32_t *flagsp);

The Db::get_open_flags() method returns the current open method flags. That is, this
method returns the flags that were specified when Db::open() (page 69) was called.

The Db::get_open_flags() method may not be called before the Db::open() method is
called.

The Db::get_open_flags() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The Db::get_open_flags() method returns the current open method flags in flagsp.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 52

Db::get_partition_callback()
#include <db_cxx.h>

int
Db::get_partition_callback(u_int32_t *partsp,
 u_int32_t (**callback_fcn) (DB *dbp, DBT *key);

The Db::get_partition_callback() method returns the partitioning information as set by
the Db::set_partition() (page 128) method.

The Db::get_partition_callback() method may be called at any time during the life of
the application.

The Db::get_partition_callback() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

partsp

The Db::get_partition_callback() method returns number of partitions in the partsp
parameter.

callback_fcn

The callback_fcn parameter will be set to the partitioning function.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_partition() (page 128)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 53

Db::get_partition_dirs()
#include <db_cxx.h>

int
Db::get_partition_dirs(const char ***dirsp);

Determine which directorise the database partitions files will be created in or were found in.

The Db::get_partition_dirs() method may be called at any time.

The Db::get_partition_dirs() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dirsp

The dirsp will be set to the array of directories specified in the call to
Db::set_partition_dirs() (page 130) method on this handle or to the directoreies that the
database partitions were found in after Db::open() (page 69) has been called.

Errors

The Db::get_partition_dirs() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 54

Db::get_partition_keys()
#include <db_cxx.h>

int
Db::get_partition_keys(u_int32_t *partsp, DBT *keysp);

The Db::get_partition_keys() method returns the partitioning information as set by the
Db::set_partition() (page 128) method.

The Db::get_partition_keys() method may be called at any time during the life of the
application.

The Db::get_partition_keys() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

partsp

The Db::get_partition_keys() method returns number of partitions in the partsp
parameter.

keysp

The keysp parameter will be set to the array of partitioning keys.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_partition() (page 128)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 55

Db::get_pagesize()
#include <db_cxx.h>

int
Db::get_pagesize(u_int32_t *pagesizep);

The Db::get_pagesize() method returns the database's current page size, as set by the
Db::set_pagesize() (page 127) method. Note that if Db::set_pagesize() was not called by
your application, then the default pagesize is selected based on the underlying filesystem I/O
block size. If you call Db::get_pagesize() before you have opened the database, the value
returned by this method is therefore the underlying filesystem I/O block size.

The Db::get_pagesize() method may be called only after the database has been opened.

The Db::get_pagesize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

pagesizep

The Db::get_pagesize() method returns the page size in pagesizep.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_pagesize() (page 127)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 56

Db::get_priority()
#include <db_cxx.h>

int
Db::get_priority(DB_CACHE_PRIORITY *priorityp);

The Db::get_priority() method returns the cache priority for pages referenced by the Db
handle. This priority value is set using the Db::set_priority() (page 131) method.

The Db::get_priority() method may be called only after the database has been opened.

The Db::get_priority() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priorityp

The Db::get_priority() method returns a reference to the cache priority in priorityp. See
Db::set_priority() (page 131) for a list of possible priorities.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_priority() (page 131)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 57

Db::get_q_extentsize()
#include <db_cxx.h>

int
Db::get_q_extentsize(u_int32_t *extentsizep);

The Db::get_q_extentsize() method returns the number of pages in an extent. This value
is used only for Queue databases and is set using the Db::set_q_extentsize() (page 132)
method.

The Db::get_q_extentsize() method may be called only after the database has been
opened.

The Db::get_q_extentsize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

extentsizep

The Db::get_q_extentsize() method returns the number of pages in an extent in
extentsizep. If used on a handle that has not yet been opened, 0 is returned.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_q_extentsize() (page 132)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 58

Db::get_re_delim()
#include <db_cxx.h>

int
Db::get_re_delim(int *delimp);

The Db::get_re_delim() method returns the delimiting byte, which is used to mark the end
of a record in the backing source file for the Recno access method. This value is set using the
Db::set_re_delim() (page 133) method.

The Db::get_re_delim() method may be called only after the database has been opened.

The Db::get_re_delim() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

delimp

The Db::get_re_delim() method returns the delimiting byte in delimp. If this method is
called on a handle that has not yet been opened, then the default delimiting byte is returned.
See Db::set_re_delim() (page 133) for details.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_re_delim() (page 133)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 59

Db::get_re_len()
#include <db_cxx.h>

int
Db::get_re_len(u_int32_t *re_lenp);

The Db::get_re_len() method returns the length of the records held in a Queue access
method database. This value can be set using the Db::set_re_len() (page 134) method.

The Db::get_re_len() method may be called only after the database has been opened.

The Db::get_re_len() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

re_lenp

The Db::get_re_len() method returns the record length in re_lenp. If the record length has
never been set using Db::set_re_len() (page 134), then 0 is returned.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_re_len() (page 134)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 60

Db::get_re_pad()
#include <db_cxx.h>

int
Db::get_re_pad(int *re_padp);

The Db::get_re_pad() method returns the pad character used for short, fixed-length
records used by the Queue and Recno access methods. This character is set using the
Db::set_re_pad() (page 136) method.

The Db::get_re_pad() method may be called only after the database has been opened.

The Db::get_re_pad() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

re_padp

The Db::get_re_pad() method returns the pad character in re_padp. If used on a
handle that has not yet been opened, the default pad character is returned. See the
Db::set_re_pad() (page 136) method description for what that default value is.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_re_pad() (page 136)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 61

Db::get_re_source()
#include <db_cxx.h>

int
Db::get_re_source(const char **sourcep);

The Db::get_re_source() method returns the source file used by the Recno access method.
This file is configured for the Recno access method using the Db::set_re_source() (page 137)
method.

The Db::get_re_source() method may be called only after the database has been opened.

The Db::get_re_source() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

sourcep

The Db::get_re_source() method returns a reference to the source file in sourcep.

Class

Db

See Also

Database and Related Methods (page 3), Db::set_re_source() (page 137)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 62

Db::get_type()
#include <db_cxx.h>

int
Db::get_type(DBTYPE *type);

The Db::get_type() method returns the type of the underlying access method (and file
format). The type value is one of DB_BTREE, DB_HASH, DB_RECNO, or DB_QUEUE. This value
may be used to determine the type of the database after a return from Db::open() (page
69) with the type parameter set to DB_UNKNOWN.

The Db::get_type() method may not be called before the Db::open() (page 69) method is
called.

The Db::get_type() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

type

The type parameter references memory into which the type of the underlying access method
is copied.

Errors

The Db::get_type() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called before Db::open() (page 69) was called; or if an invalid flag value
or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 63

Db::join()
#include <db_cxx.h>

int
Db::join(Dbc **curslist, Dbc **dbcp, u_int32_t flags);

The Db::join() method creates a specialized join cursor for use in performing equality or
natural joins on secondary indices. For information on how to organize your data to use this
functionality, see Equality join.

The Db::join() method is called using the Db handle of the primary database.

The join cursor supports only the Dbc::get() (page 173) and Dbc::close() (page 163) cursor
functions:

• Dbc::get() (page 173)

Iterates over the values associated with the keys to which each item in curslist was
initialized. Any data value that appears in all items specified by the curslist parameter
is then used as a key into the primary, and the key/data pair found in the primary is
returned. The flags parameter must be set to 0 or the following value:

• DB_JOIN_ITEM

Do not use the data value found in all the cursors as a lookup key for the primary, but
simply return it in the key parameter instead. The data parameter is left unchanged.

In addition, the following flag may be set by bitwise inclusively OR'ing it into the flags
parameter:

• DB_READ_UNCOMMITTED

Configure a transactional join operation to have degree 1 isolation, reading modified but
not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not
specified when the underlying database was opened.

• DB_RMW

Acquire write locks instead of read locks when doing the read, if locking is configured.
Setting this flag can eliminate deadlock during a read-modify-write cycle by acquiring the
write lock during the read part of the cycle so that another thread of control acquiring
a read lock for the same item, in its own read-modify-write cycle, will not result in
deadlock.

• Dbc::close() (page 163)

Close the returned cursor and release all resources. (Closing the cursors in curslist is the
responsibility of the caller.)

The Db::join() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

../../programmer_reference/am_cursor.html#am_join

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 64

Parameters

curslist

The curslist parameter contains a NULL terminated array of cursors. Each cursor must have
been initialized to refer to the key on which the underlying database should be joined.
Typically, this initialization is done by a Dbc::get() (page 173) call with the DB_SET flag
specified. Once the cursors have been passed as part of a curslist, they should not be
accessed or modified until the newly created join cursor has been closed, or else inconsistent
results may be returned.

Joined values are retrieved by doing a sequential iteration over the first cursor in the curslist
parameter, and a nested iteration over each secondary cursor in the order they are specified
in the curslist parameter. This requires database traversals to search for the current datum in
all the cursors after the first. For this reason, the best join performance normally results from
sorting the cursors from the one that refers to the least number of data items to the one that
refers to the most. By default, Db::join() does this sort on behalf of its caller.

For the returned join cursor to be used in a transaction-protected manner, the cursors listed in
curslist must have been created within the context of the same transaction.

dbcp

The newly created join cursor is returned in the memory location to which dbcp refers.

flags

The flags parameter must be set to 0 or the following value:

• DB_JOIN_NOSORT

Do not sort the cursors based on the number of data items to which they refer. If the data
are structured so that cursors with many data items also share many common elements,
higher performance will result from listing those cursors before cursors with fewer data
items; that is, a sort order other than the default. The DB_JOIN_NOSORT flag permits
applications to perform join optimization prior to calling the Db::join() method.

Errors

The Db::join() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw
a DbRepHandleDeadException (page 326) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 65

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EINVAL

If cursor methods other than Dbc::get() (page 173) or Dbc::close() (page 163) were called;
or if an invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 66

Db::key_range()
#include <db_cxx.h>

int
Db::key_range(DbTxn *txnid
 Dbt *key, DB_KEY_RANGE *key_range, u_int32_t flags);

The Db::key_range() method returns an estimate of the proportion of keys that are less
than, equal to, and greater than the specified key. The underlying database must be of type
Btree.

The Db::key_range() method fills in a structure of type DB_KEY_RANGE. The following data
fields are available from the DB_KEY_RANGE structure:

• double less;

A value between 0 and 1, the proportion of keys less than the specified key.

• double equal;

A value between 0 and 1, the proportion of keys equal to the specified key.

• double greater;

A value between 0 and 1, the proportion of keys greater than the specified key.

Values are in the range of 0 to 1; for example, if the field less is 0.05, 5% of the keys in the
database are less than the key parameter. The value for equal will be zero if there is no
matching key, and will be non-zero otherwise.

The Db::key_range() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 613); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 605); otherwise NULL. If no transaction handle is specified,
but the operation occurs in a transactional database, the operation will be implicitly
transaction protected. The Db::key_range() method does not retain the locks it acquires for
the life of the transaction, so estimates may not be repeatable.

key

The key Dbt operated on.

key_range

The estimates are returned in the key_range parameter, which contains three elements of
type double: less, equal, and greater. Values are in the range of 0 to 1; for example, if the

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 67

field less is 0.05, 5% of the keys in the database are less than the key parameter. The value
for equal will be zero if there is no matching key, and will be non-zero otherwise.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The Db::key_range() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw
a DbRepHandleDeadException (page 326) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

EINVAL

If the underlying database was not of type Btree; or if an invalid flag value or parameter was
specified.

Class

Db

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 68

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 69

Db::open()
#include <db_cxx.h>

int
Db::open(DbTxn *txnid, const char *file,
 const char *database, DBTYPE type, u_int32_t flags, int mode);

The Db::open() method opens the database represented by the file and database.

The currently supported Berkeley DB file formats (or access methods) are Btree, Hash, Heap,
Queue, and Recno. The Btree format is a representation of a sorted, balanced tree structure.
The Hash format is an extensible, dynamic hashing scheme. The Queue format supports fast
access to fixed-length records accessed sequentially or by logical record number. The Recno
format supports fixed- or variable-length records, accessed sequentially or by logical record
number, and optionally backed by a flat text file.

Storage and retrieval for the Berkeley DB access methods are based on key/data pairs; see Dbt
for more information.

Calling Db::open() is a relatively expensive operation, and maintaining a set of open
databases will normally be preferable to repeatedly opening and closing the database for each
new query.

The Db::open() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success. If Db::open() fails,
the Db::close() (page 13) method must be called to discard the Db handle.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 613); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 605); otherwise NULL. If no transaction handle is specified,
but the DB_AUTO_COMMIT flag is specified, the operation will be implicitly transaction
protected. Note that transactionally protected operations on a Db handle requires the Db
handle itself be transactionally protected during its open. Also note that the transaction must
be committed before the handle is closed; see Berkeley DB handles for more information.

file

The file parameter is used as the name of an underlying file that will be used to back the
database; see File naming for more information.

In-memory databases never intended to be preserved on disk may be created by setting the
file parameter to NULL. Whether other threads of control can access this database is driven
entirely by whether the database parameter is set to NULL.

When using a Unicode build on Windows (the default), the file argument will be interpreted as
a UTF-8 string, which is equivalent to ASCII for Latin characters.

../../programmer_reference/program_scope.html
../../programmer_reference/env_naming.html

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 70

database

The database parameter is optional, and allows applications to have multiple databases in a
single file. Although no database parameter needs to be specified, it is an error to attempt
to open a second database in a file that was not initially created using a database name.
Further, the database parameter is not supported by the Queue format. Finally, when opening
multiple databases in the same physical file, it is important to consider locking and memory
cache issues; see Opening multiple databases in a single file for more information.

If both the database and file parameters are NULL, the database is strictly temporary and
cannot be opened by any other thread of control. Thus the database can only be accessed by
sharing the single database handle that created it, in circumstances where doing so is safe.

If the database parameter is not set to NULL, the database can be opened by other threads
of control and will be replicated to client sites in any replication group, regardless of whether
the file parameter is set to NULL.

type

The type parameter is of type DBTYPE, and must be set to one of DB_BTREE, DB_HASH,
DB_HEAP, DB_QUEUE, DB_RECNO, or DB_UNKNOWN. If type is DB_UNKNOWN, the database must
already exist and Db::open() will automatically determine its type. The Db::get_type() (page
62) method may be used to determine the underlying type of databases opened using
DB_UNKNOWN.

It is an error to specify the incorrect type for a database that already exists.

flags

The flags parameter must be set to zero or by bitwise inclusively OR'ing together one or more
of the following values:

• DB_AUTO_COMMIT

Enclose the Db::open() call within a transaction. If the call succeeds, the open operation
will be recoverable and all subsequent database modification operations based on this
handle will be transactionally protected. If the call fails, no database will have been
created.

• DB_CREATE

Create the database. If the database does not already exist and the DB_CREATE flag is not
specified, the Db::open() will fail.

• DB_EXCL

Return an error if the database already exists. The DB_EXCL flag is only meaningful when
specified with the DB_CREATE. flag.

• DB_MULTIVERSION

Open the database with support for multiversion concurrency control. This will cause
updates to the database to follow a copy-on-write protocol, which is required to support

../../programmer_reference/am_opensub.html
../../programmer_reference/transapp_read.html

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 71

snapshot isolation. The DB_MULTIVERSION flag requires that the database be transactionally
protected during its open and is not supported by the queue format.

• DB_NOMMAP

Do not map this database into process memory (see the DbEnv::set_mp_mmapsize() (page
442) method for further information).

• DB_RDONLY

Open the database for reading only. Any attempt to modify items in the database will fail,
regardless of the actual permissions of any underlying files.

• DB_READ_UNCOMMITTED

Support transactional read operations with degree 1 isolation. Read operations on the
database may request the return of modified but not yet committed data. This flag must
be specified on all Db handles used to perform dirty reads or database updates, otherwise
requests for dirty reads may not be honored and the read may block.

• DB_THREAD

Cause the Db handle returned by Db::open() to be free-threaded; that is, concurrently
usable by multiple threads in the address space.

• DB_TRUNCATE

Physically truncate the underlying file, discarding all previous databases it might have
held. Underlying filesystem primitives are used to implement this flag. For this reason, it is
applicable only to the file and cannot be used to discard databases within a file.

The DB_TRUNCATE flag cannot be lock or transaction-protected, and it is an error to specify
it in a locking or transaction-protected environment.

mode

On Windows systems, the mode parameter is ignored.

On UNIX systems or in IEEE/ANSI Std 1003.1 (POSIX) environments, files created by the
database open are created with mode mode (as described in chmod(2)) and modified by the
process' umask value at the time of creation (see umask(2)). Created files are owned by the
process owner; the group ownership of created files is based on the system and directory
defaults, and is not further specified by Berkeley DB. System shared memory segments
created by the database open are created with mode mode, unmodified by the process' umask
value. If mode is 0, the database open will use a default mode of readable and writable by
both owner and group.

Environment Variables

If the database was opened within a database environment, the environment variable
DB_HOME may be used as the path of the database environment home.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 72

Db::open() is affected by any database directory specified using the
DbEnv::set_data_dir() (page 264) method, or by setting the "set_data_dir" string in the
environment's DB_CONFIG file.

• TMPDIR

If the file and dbenv parameters to Db::open() are NULL, the environment variable
TMPDIR may be used as a directory in which to create temporary backing files

Errors

The Db::open() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

ENOENT

The file or directory does not exist.

ENOENT

A nonexistent re_source file was specified.

DB_OLD_VERSION

The database cannot be opened without being first upgraded.

EEXIST

DB_CREATE and DB_EXCL were specified and the database exists.

EINVAL

If an unknown database type, page size, hash function, pad byte, byte order, or a flag value
or parameter that is incompatible with the specified database was specified; the DB_THREAD
flag was specified and fast mutexes are not available for this architecture; the DB_THREAD
flag was specified to Db::open(), but was not specified to the DbEnv::open() call for
the environment in which the Db handle was created; a backing flat text file was specified

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 73

with either the DB_THREAD flag or the provided database environment supports transaction
processing; a Heap database is in use and Db::set_heapsize() (page 121) was used to set a
heap size that is different from the value used to create the database; or if an invalid flag
value or parameter was specified.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw
a DbRepHandleDeadException (page 326) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 74

Db::put()
#include <db_cxx.h>

int
Db::put(DbTxn *txnid, Dbt *key, Dbt *data, u_int32_t flags);

The Db::put() method stores key/data pairs in the database. The default behavior of the
Db::put() function is to enter the new key/data pair, replacing any previously existing key
if duplicates are disallowed, or adding a duplicate data item if duplicates are allowed. If the
database supports duplicates, the Db::put() method adds the new data value at the end of
the duplicate set. If the database supports sorted duplicates, the new data value is inserted at
the correct sorted location.

Unless otherwise specified, the Db::put() method either returns a non-zero error value or
throws an exception that encapsulates a non-zero error value on failure, and returns 0 on
success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 613); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 605); otherwise NULL. If no transaction handle is specified,
but the operation occurs in a transactional database, the operation will be implicitly
transaction protected.

key

The key Dbt operated on.

If creating a new record in a Heap database, the key Dbt must be empty. The put method will
return the new record's Record ID (RID) in the key Dbt.

data

The data Dbt operated on.

flags

The flags parameter must be set to 0 or one of the following values:

• DB_APPEND

Append the key/data pair to the end of the database. For the DB_APPEND flag to be
specified, the underlying database must be a Heap, Queue or Recno database. The record
number allocated to the record is returned in the specified key.

There is a minor behavioral difference between the Recno and Queue access methods for
the DB_APPEND flag. If a transaction enclosing a Db::put() operation with the DB_APPEND

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 75

flag aborts, the record number may be reallocated in a subsequent DB_APPEND operation if
you are using the Recno access method, but it will not be reallocated if you are using the
Queue access method.

For a Heap database, if the put operation results in the creation of a new record, then this
flag is required.

• DB_NODUPDATA

In the case of the Btree and Hash access methods, enter the new key/data pair only if it
does not already appear in the database.

The DB_NODUPDATA flag may only be specified if the underlying database has been
configured to support sorted duplicates. The DB_NODUPDATA flag may not be specified to
the Queue or Recno access methods.

The Db::put() method will return DB_KEYEXIST (page 184) if DB_NODUPDATA is set and
the key/data pair already appears in the database.

• DB_NOOVERWRITE

Enter the new key/data pair only if the key does not already appear in the database. The
Db::put() method call with the DB_NOOVERWRITE flag set will fail if the key already exists
in the database, even if the database supports duplicates.

The Db::put() method will return DB_KEYEXIST (page 184) if DB_NOOVERWRITE is set and
the key already appears in the database.

This enforcement of uniqueness of keys applies only to the primary key. The behavior
of insertions into secondary databases is not affected by the DB_NOOVERWRITE flag. In
particular, the insertion of a record that would result in the creation of a duplicate key in a
secondary database that allows duplicates would not be prevented by the use of this flag.

• DB_MULTIPLE

Put multiple data items using keys from the buffer to which the key parameter refers and
data values from the buffer to which the data parameter refers.

To put records in bulk with the btree or hash access methods, construct bulk buffers in
the key and data Dbt using DbMultipleDataBuilder (page 201). To put records in bulk with
the recno or queue access methods, construct bulk buffers in the data Dbt as before, but
construct the key Dbt using DbMultipleRecnoDataBuilder (page 205) with a data size of
zero.

A successful bulk operation is logically equivalent to a loop through each key/data pair,
performing a Db::put() (page 74) for each one.

See DBT and Bulk Operations (page 192) for more information on working with bulk
updates.

The DB_MULTIPLE flag may only be used alone, or with the DB_OVERWRITE_DUP option.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 76

• DB_MULTIPLE_KEY

Put multiple data items using keys and data from the buffer to which the key parameter
refers.

To put records in bulk with the btree or hash access methods, construct a bulk buffer
in the key Dbt using DbMultipleKeyDataBuilder (page 203). To put records in bulk
with the recno or queue access methods, construct a bulk buffer in the key Dbt using
DbMultipleRecnoDataBuilder (page 205).

See DBT and Bulk Operations (page 192) for more information on working with bulk
updates.

The DB_MULTIPLE_KEY flag may only be used alone, or with the DB_OVERWRITE_DUP option.

• DB_OVERWRITE_DUP

Ignore duplicate records when overwriting records in a database configured for sorted
duplicates.

Normally, if a database is configured for sorted duplicates, an attempt to put a record that
compares identically to a record already existing in the database will fail. Using this flag
causes the put to silently proceed, without failure.

This flag is extremely useful when performing bulk puts (using the DB_MULTIPLE or
DB_MULTIPLE_KEY flags). Depending on the number of records you are writing to the
database with a bulk put, you may not want the operation to fail in the event that
a duplicate record is encountered. Using this flag along with the DB_MULTIPLE or
DB_MULTIPLE_KEY flags allows the bulk put to complete, even if a duplicate record is
encountered.

This flag is also useful if you are using a custom comparison function that compares only
part of the data portion of a record. In this case, two records can compare equally when,
in fact, they are not equal. This flag allows the put to complete, even if your custom
comparison routine claims the two records are equal.

Errors

The Db::put() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DB_FOREIGN_CONFLICT

A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for
that record does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 11) was declared for a foreign key database, and then
subsequently a record was deleted from the foreign key database without first removing
it from the constrained secondary database.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 77

DB_HEAP_FULL

An attempt was made to add or update a record in a Heap database. However, the size of the
database was constrained using the Db::set_heapsize() (page 121) method, and that limit has
been reached.

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw
a DbRepHandleDeadException (page 326) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

EACCES

An attempt was made to modify a read-only database.

EINVAL

If a record number of 0 was specified; an attempt was made to add a record to a fixed-length
database that was too large to fit; an attempt was made to do a partial put; an attempt
was made to add a record to a secondary index; or if an invalid flag value or parameter was
specified.

ENOSPC

A btree exceeded the maximum btree depth (255).

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 78

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 79

Db::remove()
#include <db_cxx.h>

int
Db::remove(const char *file, const char *database, u_int32_t flags);

The Db::remove() method removes the database specified by the file and database
parameters. If no database is specified, the underlying file represented by file is removed,
incidentally removing all of the databases it contained.

Applications should never remove databases with open Db handles, or in the case of removing
a file, when any database in the file has an open handle. For example, some architectures do
not permit the removal of files with open system handles. On these architectures, attempts to
remove databases currently in use by any thread of control in the system may fail.

The Db::remove() method should not be called if the remove is intended to be
transactionally safe; the DbEnv::dbremove() (page 217) method should be used instead.

The Db::remove() method may not be called after calling the Db::open() (page 69) method
on any Db handle. If the Db::open() (page 69) method has already been called on a Db handle,
close the existing handle and create a new one before calling Db::remove. ()

The Db handle may not be accessed again after Db::remove() is called, regardless of its
return.

The Db::remove() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

file

The file parameter is the physical file which contains the database(s) to be removed.

database

The database parameter is the database to be removed.

flags

The flags parameter is currently unused, and must be set to 0.

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME
may be used as the path of the database environment home.

Db::remove() is affected by any database directory specified using the
DbEnv::set_data_dir() (page 264) method, or by setting the "set_data_dir" string in the
environment's DB_CONFIG file.

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 80

Errors

The Db::remove() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

ENOENT

The file or directory does not exist.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 81

Db::rename()
#include <db_cxx.h>

int
Db::rename(const char *file,
 const char *database, const char *newname, u_int32_t flags);

The Db::rename() method renames the database specified by the file and database
parameters to newname. If no database is specified, the underlying file represented by file is
renamed, incidentally renaming all of the databases it contained.

Applications should not rename databases that are currently in use. If an underlying file is
being renamed and logging is currently enabled in the database environment, no database
in the file may be open when the Db::rename() method is called. In particular, some
architectures do not permit renaming files with open handles. On these architectures,
attempts to rename databases that are currently in use by any thread of control in the system
may fail.

The Db::rename() method should not be called if the rename is intended to be
transactionally safe; the DbEnv::dbrename() (page 219) method should be used instead.

The Db::rename() method may not be called after calling the Db::open() (page 69) method
on any Db handle. If the Db::open() (page 69) method has already been called on a Db handle,
close the existing handle and create a new one before calling Db::rename().

The Db handle may not be accessed again after Db::rename() is called, regardless of its
return.

The Db::rename() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

file

The file parameter is the physical file which contains the database(s) to be renamed.

When using a Unicode build on Windows (the default), the file argument will be interpreted as
a UTF-8 string, which is equivalent to ASCII for Latin characters.

database

The database parameter is the database to be renamed.

newname

The newname parameter is the new name of the database or file.

flags

The flags parameter is currently unused, and must be set to 0.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 82

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME
may be used as the path of the database environment home.

Db::rename() is affected by any database directory specified using the
DbEnv::set_data_dir() (page 264) method, or by setting the "set_data_dir" string in the
environment's DB_CONFIG file.

Errors

The Db::rename() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

ENOENT

The file or directory does not exist.

Class

Db

See Also

Database and Related Methods (page 3)

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 83

Db::set_alloc()
#include <db_cxx.h>

int
Db::set_alloc(db_malloc_fcn_type app_malloc,
 db_realloc_fcn_type app_realloc,
 db_free_fcn_type app_free);

Set the allocation functions used by the DbEnv and Db methods to allocate or free memory
owned by the application.

There are a number of interfaces in Berkeley DB where memory is allocated by the library and
then given to the application. For example, the DB_DBT_MALLOC flag, when specified in the
Dbt object, will cause the Db methods to allocate and reallocate memory which then becomes
the responsibility of the calling application. (See Dbt for more information.) Other examples
are the Berkeley DB interfaces which return statistical information to the application:
Db::stat() (page 139), DbEnv::lock_stat() (page 361), DbEnv::log_archive() (page 379),
DbEnv::log_stat() (page 392), DbEnv::memp_stat() (page 426), and DbEnv::txn_stat() (page
619). There is one method in Berkeley DB where memory is allocated by the application and
then given to the library: Db::associate() (page 6).

On systems in which there may be multiple library versions of the standard allocation
routines (notably Windows NT), transferring memory between the library and the application
will fail because the Berkeley DB library allocates memory from a different heap than the
application uses to free it. To avoid this problem, the DbEnv::set_alloc() (page 260) and
Db::set_alloc() methods can be used to pass Berkeley DB references to the application's
allocation routines.

It is not an error to specify only one or two of the possible allocation function parameters to
these interfaces; however, in that case the specified interfaces must be compatible with the
standard library interfaces, as they will be used together. The functions specified must match
the calling conventions of the ANSI C X3.159-1989 (ANSI C) library routines of the same name.

Because databases opened within Berkeley DB environments use the allocation interfaces
specified to the environment, it is an error to attempt to set those interfaces in a database
created within an environment.

The Db::set_alloc() method may not be called after the Db::open() (page 69) method is
called.

The Db::set_alloc() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Errors

The Db::set_alloc() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If called in a database environment, or called after Db::open() (page 69) was called; or if an
invalid flag value or parameter was specified.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 84

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 85

Db::set_append_recno()
#include <db_cxx.h>

int
Db::set_append_recno(int (*db_append_recno_fcn)(DB *dbp, Dbt *data,
 db_recno_t recno));

When using the DB_APPEND option of the Db::put() (page 74) method, it may be useful to
modify the stored data based on the generated key. If a callback function is specified using
the Db::set_append_recno() method, it will be called after the record number has been
selected, but before the data has been stored.

The Db::set_append_recno() method configures operations performed using the specified
Db handle, not all operations performed on the underlying database.

The Db::set_append_recno() method may not be called after the Db::open() (page 69)
method is called.

The Db::set_append_recno() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters

db_append_recno_fcn

The db_append_recno_fcn parameter is a function to call after the record number has been
selected but before the data has been stored into the database. The function takes three
parameters:

• dbp

The dbp parameter is the enclosing database handle.

• data

The data parameter is the data Dbt to be stored.

• recno

The recno parameter is the generated record number.

The called function may modify the data Dbt. If the function needs to allocate memory for
the data field, the flags field of the returned Dbt should be set to DB_DBT_APPMALLOC, which
indicates that Berkeley DB should free the memory when it is done with it.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 86

The callback function must return 0 on success and errno or a value outside of the Berkeley
DB error name space on failure.

Errors

The Db::set_append_recno() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 87

Db::set_bt_compare()
#include <db_cxx.h>

extern "C" {
 typedef int (*bt_compare_fcn_type)(DB *db, const DBT *dbt1,
 const DBT *dbt2);
};
int
Db::set_bt_compare(bt_compare_fcn_type bt_compare_fcn);

Set the Btree key comparison function. The comparison function is called whenever it is
necessary to compare a key specified by the application with a key currently stored in the
tree.

If no comparison function is specified, the keys are compared lexically, with shorter keys
collating before longer keys.

The Db::set_bt_compare() method configures operations performed using the specified Db
handle, not all operations performed on the underlying database.

The Db::set_bt_compare() method may not be called after the Db::open() (page 69) method
is called. If the database already exists when Db::open() (page 69) is called, the information
specified to Db::set_bt_compare() must be the same as that historically used to create the
database or corruption can occur.

The Db::set_bt_compare() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bt_compare_fcn

The bt_compare_fcn function is the application-specified Btree comparison function. The
comparison function takes three parameters:

• db

The db parameter is the enclosing database handle.

• dbt1

The dbt1 parameter is the Dbt representing the application supplied key.

• dbt2

The dbt2 parameter is the Dbt representing the current tree's key.

The bt_compare_fcn function must return an integer value less than, equal to, or greater
than zero if the first key parameter is considered to be respectively less than, equal to, or
greater than the second key parameter. In addition, the comparison function must cause the

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 88

keys in the database to be well-ordered. The comparison function must correctly handle any
key values used by the application (possibly including zero-length keys). In addition, when
Btree key prefix comparison is being performed (see Db::set_bt_prefix() (page 93) for
more information), the comparison routine may be passed a prefix of any database key. The
data and size fields of the Dbt are the only fields that may be used for the purposes of this
comparison, and no particular alignment of the memory to which by the data field refers may
be assumed.

Errors

The Db::set_bt_compare() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 89

Db::set_bt_compress()
#include <db_cxx.h>

extern "C" {
 typedef int (*bt_compress_fcn_type)(DB *db, const DBT *prevKey,
 const DBT *prevData, const DBT *key, const DBT *data, DBT *dest);
 typedef int (*bt_decompress_fcn_typ)(DB *db, const DBT *prevKey,
 const DBT *prevData, DBT *compressed, DBT *destKey,
 DBT *destData);
};
int
Db::set_bt_compress(bt_compress_fcn_type bt_compress_fcn,
 bt_decompress_fcn_type bt_decompress_fcn);

Set the Btree compression and decompression functions. The compression function is called
whenever a key/data pair is added to the tree and the decompression function is called
whenever data is requested from the tree.

This method is only compatible with prefix-based compression routines. This callback is mostly
intended for compressing keys. From a performance perspective, it is better to perform
compression of the data portion of your records outside of the Berkeley DB library.

If NULL function pointers are specified, then default compression and decompression functions
are used. Berkeley DB's default compression function performs prefix compression on all keys
and prefix compression on data values for duplicate keys. If using default compression, both
the default compression and decompression functions must be used.

The Db::set_bt_compress() method configures operations performed using the specified Db
handle, not all operations performed on the underlying database.

The Db::set_bt_compress() method may not be called after the Db::open() (page 69)
method is called. If the database already exists when Db::open() (page 69) is called, the
information specified to Db::set_bt_compress() must be the same as that historically used
to create the database or corruption can occur.

The Db::set_bt_compress() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bt_compress_fcn

The bt_compress_fcn function is the application-specified Btree compression function. The
compression function takes six parameters:

• db

The db parameter is the enclosing database handle.

• prevKey

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 90

The prevKey parameter is the Dbt representing the key immediately preceding the
application supplied key.

• prevData

The prevData parameter is the Dbt representing the data associated with prevKey.

• key

The key parameter is the Dbt representing the application supplied key.

• data

The data parameter is the Dbt representing the application supplied data.

• dest

The dest parameter is the Dbt representing the data stored in the tree, where the function
should write the compressed data.

The bt_compress_fcn function must return 0 on success and a non-zero value on failure. If
the compressed data cannot fit in dest->set_data() (the size of which is returned by dest-
>get_ulen()), the function should identify the required buffer size in dest->set_size() and
return DB_BUFFER_SMALL.

bt_decompress_fcn

The bt_decompress_fcn function is the application-specified Btree decompression function.
The decompression function takes six parameters:

• db

The db parameter is the enclosing database handle.

• prevKey

The prevKey parameter is the Dbt representing the key immediately preceding the key
being decompressed.

• prevData

The prevData parameter is the Dbt representing the data associated with prevKey.

• compressed

The compressed parameter is the Dbt representing the data stored in the tree, that is, the
compressed data.

• destKey

The key parameter is the Dbt where the decompression function should store the
decompressed key.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 91

• destData

The data parameter is the Dbt where the decompression function should store the
decompressed key.

The bt_decompress_fcn function must return 0 on success and a non-zero value on failure. If
the decompressed data cannot fit in key->set_data() or data->set_data() (the size of which
is returned by the Dbt's get_ulen() method), the function should identify the required buffer
size using the Dbt's set_size() method and return DB_BUFFER_SMALL.

Errors

The Db::set_bt_compress() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 92

Db::set_bt_minkey()
#include <db_cxx.h>

int
Db::set_bt_minkey(u_int32_t bt_minkey);

Set the minimum number of key/data pairs intended to be stored on any single Btree leaf
page.

This value is used to determine if key or data items will be stored on overflow pages instead
of Btree leaf pages. For more information on the specific algorithm used, see Minimum keys
per page. The bt_minkey value specified must be at least 2; if bt_minkey is not explicitly
set, a value of 2 is used.

The Db::set_bt_minkey() method configures a database, not only operations performed
using the specified Db handle.

The Db::set_bt_minkey() method may not be called after the Db::open() (page 69) method
is called. If the database already exists when Db::open() (page 69) is called, the information
specified to Db::set_bt_minkey() will be ignored.

The Db::set_bt_minkey() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bt_minkey

The bt_minkey parameter is the minimum number of key/data pairs intended to be stored on
any single Btree leaf page.

Errors

The Db::set_bt_minkey() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

../../programmer_reference/bt_conf.html#am_conf_bt_minkey
../../programmer_reference/bt_conf.html#am_conf_bt_minkey

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 93

Db::set_bt_prefix()
#include <db_cxx.h>

extern "C" {
 typedef size_t (*bt_prefix_fcn_type)(DB *, const *dbt1, const *dbt2);
};
int
Db::set_bt_prefix(bt_prefix_fcn_type bt_prefix_fcn);

Set the Btree prefix function. The prefix function is used to determine the amount by
which keys stored on the Btree internal pages can be safely truncated without losing their
uniqueness. See the Btree prefix comparison section of the Berkeley DB Reference Guide for
more details about how this works. The usefulness of this is data-dependent, but can produce
significantly reduced tree sizes and search times in some data sets.

If no prefix function or key comparison function is specified by the application, a default
lexical comparison function is used as the prefix function. If no prefix function is specified and
a key comparison function is specified, no prefix function is used. It is an error to specify a
prefix function without also specifying a Btree key comparison function.

The Db::set_bt_prefix() method configures operations performed using the specified Db
handle, not all operations performed on the underlying database.

The Db::set_bt_prefix() method may not be called after the Db::open() (page 69) method
is called. If the database already exists when Db::open() (page 69) is called, the information
specified to Db::set_bt_prefix() must be the same as that historically used to create the
database or corruption can occur.

The Db::set_bt_prefix() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bt_prefix_fcn

The bt_prefix_fcn function is the application-specific Btree prefix function. The prefix
function takes three parameters:

• db

The db parameter is the enclosing database handle.

• dbt1

The dbt1 parameter is a Dbt representing a database key.

• dbt2

The dbt2 parameter is a Dbt representing a database key.

../../programmer_reference/bt_conf.html#am_conf_bt_prefix

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 94

The bt_prefix_fcn function must return the number of bytes of the second key parameter
that would be required by the Btree key comparison function to determine the second key
parameter's ordering relationship with respect to the first key parameter. If the two keys are
equal, the key length should be returned. The prefix function must correctly handle any key
values used by the application (possibly including zero-length keys). The data and size fields
of the Dbt are the only fields that may be used for the purposes of this determination, and no
particular alignment of the memory to which the data field refers may be assumed.

Errors

The Db::set_bt_prefix() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 95

Db::set_cachesize()
#include <db_cxx.h>

int
Db::set_cachesize(u_int32_t gbytes, u_int32_t bytes, int ncache);

Set the size of the shared memory buffer pool -- that is, the cache. The cache should be the
size of the normal working data set of the application, with some small amount of additional
memory for unusual situations. (Note: the working set is not the same as the number of pages
accessed simultaneously, and is usually much larger.)

The default cache size is 256KB, and may not be specified as less than 20KB. Any cache size
less than 500MB is automatically increased by 25% to account for buffer pool overhead; cache
sizes larger than 500MB are used as specified. The maximum size of a single cache is 4GB on
32-bit systems and 10TB on 64-bit systems. (All sizes are in powers-of-two, that is, 256KB
is 2^18 not 256,000.) For information on tuning the Berkeley DB cache size, see Selecting a
cache size.

It is possible to specify caches to Berkeley DB large enough they cannot be allocated
contiguously on some architectures. For example, some releases of Solaris limit the amount of
memory that may be allocated contiguously by a process. If ncache is 0 or 1, the cache will be
allocated contiguously in memory. If it is greater than 1, the cache will be split across ncache
separate regions, where the region size is equal to the initial cache size divided by ncache.

Because databases opened within Berkeley DB environments use the cache specified to
the environment, it is an error to attempt to set a cache in a database created within an
environment.

The Db::set_cachesize() method may not be called after the Db::open() (page 69) method
is called.

The Db::set_cachesize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

gbytes

The size of the cache is set to gbytes gigabytes plus bytes.

bytes

The size of the cache is set to gbytes gigabytes plus bytes.

ncache

The ncache parameter is the number of caches to create.

Errors

The Db::set_cachesize() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

../../programmer_reference/general_am_conf.html#am_conf_cachesize
../../programmer_reference/general_am_conf.html#am_conf_cachesize

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 96

EINVAL

If the specified cache size was impossibly small; the method was called after Db::open() (page
69) was called; or if an invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 97

Db::set_create_dir()
#include <db_cxx.h>

int
Db::set_create_dir(const char *dir);

Specify which directory a database should be created in or looked for.

The Db::set_create_dir() method may not be called after the Db::open() (page 69) method
is called.

The Db::set_create_dir() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dir

The dir will be used to create or locate the database file specified in the Db::open() (page 69)
method call. The directory must be one of the directories in the environment list specified by
DbEnv::add_data_dir() (page 211).

Errors

The Db::set_create_dir() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 98

Db::set_dup_compare()
#include <db_cxx.h>

extern "C" {
 typedef int (*dup_compare_fcn_type)(DB *db, const DBT *dbt1,
 const DBT *dbt2);
};
int
Db::set_dup_compare(dup_compare_fcn_type dup_compare_fcn);

Set the duplicate data item comparison function. The comparison function is called whenever
it is necessary to compare a data item specified by the application with a data item currently
stored in the database. Calling Db::set_dup_compare() implies calling Db::set_flags() (page
110) with the DB_DUPSORT flag.

If no comparison function is specified, the data items are compared lexically, with shorter
data items collating before longer data items.

The Db::set_dup_compare() method may not be called after the Db::open() (page 69)
method is called. If the database already exists when Db::open() (page 69) is called, the
information specified to Db::set_dup_compare() must be the same as that historically used
to create the database or corruption can occur.

The Db::set_dup_compare() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dup_compare_fcn

The dup_compare_fcn function is the application-specified duplicate data item comparison
function. The function takes three arguments:

• db

The db parameter is the enclosing database handle.

• dbt1

The dbt1 parameter is a Dbt representing the application supplied data item.

• dbt2

The dbt2 parameter is a Dbt representing the current tree's data item.

The dup_compare_fcn function must return an integer value less than, equal to, or greater
than zero if the first data item parameter is considered to be respectively less than, equal
to, or greater than the second data item parameter. In addition, the comparison function
must cause the data items in the set to be well-ordered. The comparison function must
correctly handle any data item values used by the application (possibly including zero-length

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 99

data items). The data and size fields of the Dbt are the only fields that may be used for the
purposes of this comparison, and no particular alignment of the memory to which the data
field refers may be assumed.

Errors

The Db::set_dup_compare() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 100

Db::set_encrypt()
#include <db_cxx.h>

int
Db::set_encrypt(const char *passwd, u_int32_t flags);

Set the password used by the Berkeley DB library to perform encryption and decryption.

Because databases opened within Berkeley DB environments use the password specified to
the environment, it is an error to attempt to set a password in a database created within an
environment.

The Db::set_encrypt() method may not be called after the Db::open() (page 69) method is
called.

The Db::set_encrypt() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

passwd

The passwd parameter is the password used to perform encryption and decryption.

flags

The flags parameter must be set to 0 or the following value:

• DB_ENCRYPT_AES

Use the Rijndael/AES (also known as the Advanced Encryption Standard and Federal
Information Processing Standard (FIPS) 197) algorithm for encryption or decryption.

Errors

The Db::set_encrypt() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

EOPNOTSUPP

Cryptography is not available in this Berkeley DB release.

Class

Db

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 101

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 102

Db::set_errcall()
#include <db_cxx.h>

void Db::set_errcall(void (*db_errcall_fcn)
 (const DbEnv *dbenv, const char *errpfx, const char *msg));

When an error occurs in the Berkeley DB library, an exception is thrown or an error return
value is returned by the interface. In some cases, however, the errno value may be
insufficient to completely describe the cause of the error, especially during initial application
debugging.

The DbEnv::set_errcall() (page 275) and Db::set_errcall() methods are used to enhance
the mechanism for reporting error messages to the application. In some cases, when an error
occurs, Berkeley DB will call db_errcall_fcn() with additional error information. It is up to the
db_errcall_fcn() function to display the error message in an appropriate manner.

Setting db_errcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DbEnv::set_error_stream() (page 279) and
Db::set_error_stream() (page 106) methods to display the additional information via an
output stream, or the Db::set_errfile() (page 104) or Db::set_errfile() (page 277) methods
to display the additional information via a C library FILE *. You should not mix these
approaches.

This error-logging enhancement does not slow performance or significantly increase
application size, and may be run during normal operation as well as during application
debugging.

For Db handles opened inside of Berkeley DB environments, calling the Db::set_errcall()
method affects the entire environment and is equivalent to calling the
DbEnv::set_errcall() (page 275) method.

When used on a database that was not opened in an environment, the Db::set_errcall()
method configures operations performed using the specified Db handle, not all operations
performed on the underlying database.

The Db::set_errcall() method may be called at any time during the life of the application.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters

db_errcall_fcn

The db_errcall_fcn parameter is the application-specified error reporting function. The
function takes three parameters:

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 103

• dbenv

The dbenv parameter is the enclosing database environment.

• errpfx

The errpfx parameter is the prefix string (as previously set by Db::set_errpfx() (page 107)
or DbEnv::set_errpfx() (page 280)).

• msg

The msg parameter is the error message string.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 104

Db::set_errfile()
#include <db_cxx.h>

void Db::set_errfile(FILE *errfile);

When an error occurs in the Berkeley DB library, an exception is thrown or an error return
value is returned by the interface. In some cases, however, the errno value may be
insufficient to completely describe the cause of the error, especially during initial application
debugging.

The DbEnv::set_errfile() (page 277) and Db::set_errfile() methods are used to enhance
the mechanism for reporting error messages to the application by setting a C library FILE * to
be used for displaying additional Berkeley DB error messages. In some cases, when an error
occurs, Berkeley DB will output an additional error message to the specified file reference.

Alternatively, you can use the DbEnv::set_error_stream() (page 279) and
Db::set_error_stream() (page 106) methods to display the additional messages via an output
stream, or the DbEnv::set_errcall() (page 275) or Db::set_errcall() (page 102) methods to
capture the additional error information in a way that does not use C library FILE *'s. You
should not mix these approaches.

The error message will consist of the prefix string and a colon (":") (if a prefix string was
previously specified using Db::set_errpfx() (page 107) or DbEnv::set_errpfx() (page 280)),
an error string, and a trailing <newline> character.

The default configuration when applications first create Db or DbEnv handles is as if the
DbEnv::set_errfile() (page 277) or Db::set_errfile() methods were called with the
standard error output (stderr) specified as the FILE * argument. Applications wanting no
output at all can turn off this default configuration by calling the DbEnv::set_errfile() (page
277) or Db::set_errfile() methods with NULL as the FILE * argument. Additionally,
explicitly configuring the error output channel using any of the following methods will also
turn off this default output for the application:

• Db::set_errfile()

• DbEnv::set_errfile() (page 277)

• DbEnv::set_errcall() (page 275)

• Db::set_errcall() (page 102)

• DbEnv::set_error_stream() (page 279)

• Db::set_error_stream() (page 106)

This error logging enhancement does not slow performance or significantly increase
application size, and may be run during normal operation as well as during application
debugging.

For Db handles opened inside of Berkeley DB environments, calling the Db::set_errfile()
method affects the entire environment and is equivalent to calling the
DbEnv::set_errfile() (page 277) method.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 105

When used on a database that was not opened in an environment, the Db::set_errfile()
method configures operations performed using the specified Db handle, not all operations
performed on the underlying database.

The Db::set_errfile() method may be called at any time during the life of the application.

Parameters

errfile

The errfile parameter is a C library FILE * to be used for displaying additional Berkeley DB
error information.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 106

Db::set_error_stream()
#include <db_cxx.h>

void Db::set_error_stream(class ostream*);

When an error occurs in the Berkeley DB library, an exception is thrown or an errno value is
returned by the interface. In some cases, however, the errno value may be insufficient to
completely describe the cause of the error, especially during initial application debugging.

The DbEnv::set_error_stream() (page 279) and Db::set_error_stream() methods are used
to enhance the mechanism for reporting error messages to the application by setting the C+
+ ostream used for displaying additional Berkeley DB error messages. In some cases, when an
error occurs, Berkeley DB will output an additional error message to the specified stream.

The error message will consist of the prefix string and a colon (":") (if a prefix string was
previously specified using Db::set_errpfx() (page 107), an error string, and a trailing
<newline> character.

Setting stream to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_errfile() (page 277) or Db::set_errfile() (page
104) methods to display the additional information via a C Library FILE *, or the
DbEnv::set_errcall() (page 275) and Db::set_errcall() (page 102) methods to capture the
additional error information in a way that does not use either output streams or C Library
FILE *'s. You should not mix these approaches.

This error-logging enhancement does not slow performance or significantly increase
application size, and may be run during normal operation as well as during application
debugging.

For Db handles opened inside of Berkeley DB environments, calling the
Db::set_error_stream() method affects the entire environment and is equivalent to calling
the DbEnv::set_error_stream() (page 279) method.

The Db::set_error_stream() method may be called at any time during the life of the
application.

Parameters

stream

The stream parameter is the application-specified output stream to be used for additional
error information.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 107

Db::set_errpfx()
#include <db_cxx.h>

void Db::set_errpfx(const char *errpfx);

Set the prefix string that appears before error messages issued by Berkeley DB.

The Db::set_errpfx() and DbEnv::set_errpfx() (page 280) methods do not copy the
memory to which the errpfx parameter refers; rather, they maintain a reference to it.
Although this allows applications to modify the error message prefix at any time (without
repeatedly calling the interfaces), it means the memory must be maintained until the handle
is closed.

For Db handles opened inside of Berkeley DB environments, calling the Db::set_errpfx()
method affects the entire environment and is equivalent to calling the
DbEnv::set_errpfx() (page 280) method.

The Db::set_errpfx() method configures operations performed using the specified Db
handle, not all operations performed on the underlying database.

The Db::set_errpfx() method may be called at any time during the life of the application.

Parameters

errpfx

The errpfx parameter is the application-specified error prefix for additional error messages.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 108

Db::set_feedback()
#include <db_cxx.h>

int
Db::set_feedback(void (*db_feedback_fcn)(DB *dbp, int opcode,
 int percent));

Some operations performed by the Berkeley DB library can take non-trivial amounts of time.
The Db::set_feedback() method can be used by applications to monitor progress within
these operations. When an operation is likely to take a long time, Berkeley DB will call the
specified callback function with progress information.

It is up to the callback function to display this information in an appropriate manner.

The Db::set_feedback() method may be called at any time during the life of the
application.

The Db::set_feedback() method returns a non-zero error value on failure and 0 on success.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters

db_feedback_fcn

The db_feedback_fcn parameter is the application-specified feedback function called to
report Berkeley DB operation progress. The callback function must take three parameters:

• dbp

The dbp parameter is a reference to the enclosing database.

• opcode

The opcode parameter is an operation code. The opcode parameter may take on any of the
following values:

• DB_UPGRADE

The underlying database is being upgraded.

• DB_VERIFY

The underlying database is being verified.

• percent

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 109

The percent parameter is the percent of the operation that has been completed, specified
as an integer value between 0 and 100.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 110

Db::set_flags()
#include <db_cxx.h>

int
Db::set_flags(u_int32_t flags);

Configure a database. Calling Db::set_flags() is additive; there is no way to clear flags.

The Db::set_flags() method may not be called after the Db::open() (page 69) method is
called.

The Db::set_flags() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

General

The following flags may be specified for any Berkeley DB access method:

• DB_CHKSUM

Do checksum verification of pages read into the cache from the backing filestore. Berkeley
DB uses the SHA1 Secure Hash Algorithm if encryption is configured and a general hash
algorithm if it is not.

Calling Db::set_flags() with the DB_CHKSUM flag only affects the specified Db handle
(and any other Berkeley DB handles opened within the scope of that handle).

If the database already exists when Db::open() (page 69) is called, the DB_CHKSUM flag will
be ignored.

• DB_ENCRYPT

Encrypt the database using the cryptographic password specified to the
DbEnv::set_encrypt() (page 268) or Db::set_encrypt() (page 100) methods.

Calling Db::set_flags() with the DB_ENCRYPT flag only affects the specified Db handle
(and any other Berkeley DB handles opened within the scope of that handle).

If the database already exists when Db::open() (page 69) is called, the DB_ENCRYPT flag
must be the same as the existing database or an error will be returned.

Encrypted databases are not portable between machines of different byte orders, that
is, encrypted databases created on big-endian machines cannot be read on little-endian
machines, and vice versa.

• DB_TXN_NOT_DURABLE

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 111

If set, Berkeley DB will not write log records for this database. This means that updates
of this database exhibit the ACI (atomicity, consistency, and isolation) properties, but
not D (durability); that is, database integrity will be maintained, but if the application
or system fails, integrity will not persist. The database file must be verified and/or
restored from backup after a failure. In order to ensure integrity after application
shut down, the database handles must be closed without specifying DB_NOSYNC, or all
database changes must be flushed from the database environment cache using either
the DbEnv::txn_checkpoint() (page 617) or DbEnv::memp_sync() (page 433) methods.
All database handles for a single physical file must set DB_TXN_NOT_DURABLE, including
database handles for different databases in a physical file.

Calling Db::set_flags() with the DB_TXN_NOT_DURABLE flag only affects the specified Db
handle (and any other Berkeley DB handles opened within the scope of that handle).

Btree

The following flags may be specified for the Btree access method:

• DB_DUP

Permit duplicate data items in the database; that is, insertion when the key of the key/
data pair being inserted already exists in the database will be successful. The ordering of
duplicates in the database is determined by the order of insertion, unless the ordering is
otherwise specified by use of a cursor operation or a duplicate sort function.

The DB_DUPSORT flag is preferred to DB_DUP for performance reasons. The DB_DUP flag
should only be used by applications wanting to order duplicate data items manually.

Calling Db::set_flags() with the DB_DUP flag affects the database, including all threads
of control accessing the database.

If the database already exists when Db::open() (page 69) is called, the DB_DUP flag must be
the same as the existing database or an error will be returned.

It is an error to specify both DB_DUP and DB_RECNUM.

• DB_DUPSORT

Permit duplicate data items in the database; that is, insertion when the key of the key/
data pair being inserted already exists in the database will be successful. The ordering
of duplicates in the database is determined by the duplicate comparison function. If the
application does not specify a comparison function using the Db::set_dup_compare() (page
98) method, a default lexical comparison will be used. It is an error to specify both
DB_DUPSORT and DB_RECNUM.

Calling Db::set_flags() with the DB_DUPSORT flag affects the database, including all
threads of control accessing the database.

If the database already exists when Db::open() (page 69) is called, the DB_DUPSORT flag
must be the same as the existing database or an error will be returned.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 112

• DB_RECNUM

Support retrieval from the Btree using record numbers. For more information, see the
DB_SET_RECNO flag to the Db::get() (page 31) and Dbc::get() (page 173) methods.

Logical record numbers in Btree databases are mutable in the face of record insertion or
deletion. See the DB_RENUMBER flag in the Recno access method information for further
discussion.

Maintaining record counts within a Btree introduces a serious point of contention, namely
the page locations where the record counts are stored. In addition, the entire database
must be locked during both insertions and deletions, effectively single-threading the
database for those operations. Specifying DB_RECNUM can result in serious performance
degradation for some applications and data sets.

It is an error to specify both DB_DUP and DB_RECNUM.

Calling Db::set_flags() with the DB_RECNUM flag affects the database, including all
threads of control accessing the database.

If the database already exists when Db::open() (page 69) is called, the DB_RECNUM flag
must be the same as the existing database or an error will be returned.

• DB_REVSPLITOFF

Turn off reverse splitting in the Btree. As pages are emptied in a database, the Berkeley
DB Btree implementation attempts to coalesce empty pages into higher-level pages in
order to keep the database as small as possible and minimize search time. This can hurt
performance in applications with cyclical data demands; that is, applications where the
database grows and shrinks repeatedly. For example, because Berkeley DB does page-level
locking, the maximum level of concurrency in a database of two pages is far smaller than
that in a database of 100 pages, so a database that has shrunk to a minimal size can cause
severe deadlocking when a new cycle of data insertion begins.

Calling Db::set_flags() with the DB_REVSPLITOFF flag only affects the specified Db
handle (and any other Berkeley DB handles opened within the scope of that handle).

Hash

The following flags may be specified for the Hash access method:

• DB_DUP

Permit duplicate data items in the database; that is, insertion when the key of the key/
data pair being inserted already exists in the database will be successful. The ordering of
duplicates in the database is determined by the order of insertion, unless the ordering is
otherwise specified by use of a cursor operation.

The DB_DUPSORT flag is preferred to DB_DUP for performance reasons. The DB_DUP flag
should only be used by applications wanting to order duplicate data items manually.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 113

Calling Db::set_flags() with the DB_DUP flag affects the database, including all threads
of control accessing the database.

If the database already exists when Db::open() (page 69) is called, the DB_DUP flag must be
the same as the existing database or an error will be returned.

• DB_DUPSORT

Permit duplicate data items in the database; that is, insertion when the key of the key/
data pair being inserted already exists in the database will be successful. The ordering
of duplicates in the database is determined by the duplicate comparison function. If the
application does not specify a comparison function using the Db::set_dup_compare() (page
98) method, a default lexical comparison will be used.

Calling Db::set_flags() with the DB_DUPSORT flag affects the database, including all
threads of control accessing the database.

If the database already exists when Db::open() (page 69) is called, the DB_DUPSORT flag
must be the same as the existing database or an error will be returned.

• DB_REVSPLITOFF

Turns off hash bucket compaction. When a hash bucket is emptied, the Berkeley DB Hash
implementation will decrease the hash table size, coalescing buckets. This will decrease the
number of pages in the database. This can hurt performance in applications with cyclical
data demands — that is, applications where the database grows and shrinks repeatedly —
because of the cost of resplitting buckets when they grow again.

Calling Db::set_flags() with the DB_REVSPLITOFF flag only affects the specified Db
handle (and any other Berkeley DB handles opened within the scope of that handle).

Queue

The following flags may be specified for the Queue access method:

• DB_INORDER

The DB_INORDER flag modifies the operation of the DB_CONSUME or DB_CONSUME_WAIT
flags to Db::get() (page 31) to return key/data pairs in order. That is, they will always
return the key/data item from the head of the queue.

The default behavior of queue databases is optimized for multiple readers, and does
not guarantee that record will be retrieved in the order they are added to the queue.
Specifically, if a writing thread adds multiple records to an empty queue, reading threads
may skip some of the initial records when the next Db::get() (page 31) call returns.

This flag modifies the Db::get() (page 31) call to verify that the record being returned is
in fact the head of the queue. This will increase contention and reduce concurrency when
there are many reading threads.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 114

Calling Db::set_flags() with the DB_INORDER flag only affects the specified Db handle
(and any other Berkeley DB handles opened within the scope of that handle).

Recno

The following flags may be specified for the Recno access method:

• DB_RENUMBER

Specifying the DB_RENUMBER flag causes the logical record numbers to be mutable, and
change as records are added to and deleted from the database.

Using the Db::put() (page 74) or Dbc::put() (page 182) interfaces to create new records
will cause the creation of multiple records if the record number is more than one greater
than the largest record currently in the database. For example, creating record 28, when
record 25 was previously the last record in the database, will create records 26 and 27 as
well as 28. Attempts to retrieve records that were created in this manner will result in an
error return of DB_KEYEMPTY.

If a created record is not at the end of the database, all records following the new record
will be automatically renumbered upward by one. For example, the creation of a new
record numbered 8 causes records numbered 8 and greater to be renumbered upward by
one. If a cursor was positioned to record number 8 or greater before the insertion, it will be
shifted upward one logical record, continuing to refer to the same record as it did before.

If a deleted record is not at the end of the database, all records following the removed
record will be automatically renumbered downward by one. For example, deleting the
record numbered 8 causes records numbered 9 and greater to be renumbered downward
by one. If a cursor was positioned to record number 9 or greater before the removal, it will
be shifted downward one logical record, continuing to refer to the same record as it did
before.

If a record is deleted, all cursors that were positioned on that record prior to the removal
will no longer be positioned on a valid entry. This includes cursors used to delete an item.
For example, if a cursor was positioned to record number 8 before the removal of that
record, subsequent calls to Dbc::get() (page 173) with flags of DB_CURRENT will result
in an error return of DB_KEYEMPTY until the cursor is moved to another record. A call to
Dbc::get() (page 173) with flags of DB_NEXT will return the new record numbered 8 -
which is the record that was numbered 9 prior to the delete (if such a record existed).

For these reasons, concurrent access to a Recno database with the DB_RENUMBER flag
specified may be largely meaningless, although it is supported.

Calling Db::set_flags() with the DB_RENUMBER flag affects the database, including all
threads of control accessing the database.

If the database already exists when Db::open() (page 69) is called, the DB_RENUMBER flag
must be the same as the existing database or an error will be returned.

• DB_SNAPSHOT

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 115

This flag specifies that any specified re_source file be read in its entirety when
Db::open() (page 69) is called. If this flag is not specified, the re_source file may be read
lazily.

See the Db::set_re_source() (page 137) method for information on the re_source file.

Calling Db::set_flags() with the DB_SNAPSHOT flag only affects the specified Db handle
(and any other Berkeley DB handles opened within the scope of that handle).

Errors

The Db::set_flags() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 116

Db::set_h_compare()
#include <db_cxx.h>

extern "C" {
 typedef int (*compare_fcn_type)(DB *db, const DBT *dbt1,
 const DBT *dbt2);
};
int
Db::set_h_compare(compare_fcn_type compare_fcn);

Set the Hash key comparison function. The comparison function is called whenever it is
necessary to compare a key specified by the application with a key currently stored in the
database.

If no comparison function is specified, a byte-by-byte comparison is performed.

The Db::set_h_compare() method configures operations performed using the specified Db
handle, not all operations performed on the underlying database.

The Db::set_h_compare() method may not be called after the Db::open() (page 69) method
is called. If the database already exists when Db::open() (page 69) is called, the information
specified to Db::set_h_compare() must be the same as that historically used to create the
database or corruption can occur.

The Db::set_h_compare() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

compare_fcn

The compare_fcn function is the application-specified Hash comparison function. The
comparison function takes three parameters:

• db

The db parameter is the enclosing database handle.

• dbt1

The dbt1 parameter is the Dbt representing the application supplied key.

• dbt2

The dbt2 parameter is the Dbt representing the current database's key.

The compare_fcn function must return an integer value less than, equal to, or greater than
zero if the first key parameter is considered to be respectively less than, equal to, or greater
than the second key parameter. The comparison function must correctly handle any key values
used by the application (possibly including zero-length keys). The data and size fields of the

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 117

Dbt are the only fields that may be used for the purposes of this comparison, and no particular
alignment of the memory to which by the data field refers may be assumed.

Errors

The Db::set_h_compare() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 118

Db::set_h_ffactor()
#include <db_cxx.h>

int
Db::set_h_ffactor(u_int32_t h_ffactor);

Set the desired density within the hash table. If no value is specified, the fill factor will be
selected dynamically as pages are filled.

The density is an approximation of the number of keys allowed to accumulate in any one
bucket, determining when the hash table grows or shrinks. If you know the average sizes
of the keys and data in your data set, setting the fill factor can enhance performance. A
reasonable rule computing fill factor is to set it to the following:

 (pagesize - 32) / (average_key_size + average_data_size + 8)

The Db::set_h_ffactor() method configures a database, not only operations performed
using the specified Db handle.

The Db::set_h_ffactor() method may not be called after the Db::open() (page 69) method
is called. If the database already exists when Db::open() (page 69) is called, the information
specified to Db::set_h_ffactor() will be ignored.

The Db::set_h_ffactor() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

h_ffactor

The h_ffactor parameter is the desired density within the hash table.

Errors

The Db::set_h_ffactor() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 119

Db::set_h_hash()
#include <db_cxx.h>

extern "C" {
 typedef u_int32_t (*h_hash_fcn_type)
 (DB *, const void *bytes, u_int32_t length);
};
int
Db::set_h_hash(h_hash_fcn_type h_hash_fcn);

Set a user-defined hash function; if no hash function is specified, a default hash function is
used. Because no hash function performs equally well on all possible data, the user may find
that the built-in hash function performs poorly with a particular data set.

The Db::set_h_hash() method configures operations performed using the specified Db
handle, not all operations performed on the underlying database.

The Db::set_h_hash() method may not be called after the Db::open() (page 69) method is
called. If the database already exists when Db::open() (page 69) is called, the information
specified to Db::set_h_hash() must be the same as that historically used to create the
database or corruption can occur.

The Db::set_h_hash() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

h_hash_fcn

The h_hash_fcn parameter is the application-specified hash function.

Application-specified hash functions take a pointer to a byte string and a length as
parameters, and return a value of type u_int32_t. The hash function must handle any key
values used by the application (possibly including zero-length keys).

Errors

The Db::set_h_hash() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 120

Db::set_h_nelem()
#include <db_cxx.h>

int
Db::set_h_nelem(u_int32_t h_nelem);

Set an estimate of the final size of the hash table.

In order for the estimate to be used when creating the database, the
Db::set_h_ffactor() (page 118) method must also be called. If the estimate or fill factor
are not set or are set too low, hash tables will still expand gracefully as keys are entered,
although a slight performance degradation may be noticed.

The Db::set_h_nelem() method configures a database, not only operations performed using
the specified Db handle.

The Db::set_h_nelem() method may not be called after the Db::open() (page 69) method
is called. If the database already exists when Db::open() (page 69) is called, the information
specified to Db::set_h_nelem() will be ignored.

The Db::set_h_nelem() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

h_nelem

The h_nelem parameter is an estimate of the final size of the hash table.

Errors

The Db::set_h_nelem() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 121

Db::set_heapsize()
#include <db_cxx.h>

int
Db::set_heapsize(u_int32_t gbytes, u_int32_t bytes);

Sets the maximum on-disk database file size used by a database configured to use the Heap
access method. If this method is never called, the database's file size can grow without bound.
If this method is called, then the heap file can never grow larger than the limit defined by
this method. In that case, attempts to update or create records in a Heap database that has
reached its maximum size will result in a DB_HEAP_FULL error return.

The size specified to this method must be at least three times the database page size. That is,
a Heap database must contain at least three database pages. You can set the database page
size using the Db::set_pagesize() (page 127) method.

The Db::set_heapsize() method may not be called after the Db::open() (page 69) method is
called. Further, if this method is called on an existing Heap database, the size specified here
must match the size used to create the database. Note, however, that specifying an incorrect
size to this method will not result in an error return (EINVAL) until the database is opened.

The Db::set_heapsize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

gbytes

The size of the heap is set to gbytes gigabytes plus bytes.

bytes

The size of the heap is set to gbytes gigabytes plus bytes.

Errors

The Db::set_heapsize() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the specified heap size was too small; the method was called after Db::open() (page 69) was
called; or if an invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 122

Db::set_lorder()
#include <db_cxx.h>

int
Db::set_lorder(int lorder);

Set the byte order for integers in the stored database metadata. The host byte order of the
machine where the Berkeley DB library was compiled will be used if no byte order is set.

The access methods provide no guarantees about the byte ordering of the application data
stored in the database, and applications are responsible for maintaining any necessary
ordering.

The Db::set_lorder() method configures a database, not only operations performed using
the specified Db handle.

The Db::set_lorder() method may not be called after the Db::open() (page 69) method is
called. If the database already exists when Db::open() (page 69) is called, the information
specified to Db::set_lorder() will be ignored.

If creating additional databases in a single physical file, information specified to
Db::set_lorder() will be ignored and the byte order of the existing databases will be used.

The Db::set_lorder() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lorder

The lorder parameter should represent the byte order as an integer; for example, big endian
order is the number 4,321, and little endian order is the number 1,234.

Errors

The Db::set_lorder() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 123

Db::set_message_stream()
#include <db_cxx.h>

void Db::set_message_stream(class ostream*);

There are interfaces in the Berkeley DB library which either directly output informational
messages or statistical information, or configure the library to output such messages when
performing other operations. For example, the DbEnv::set_verbose() (page 314) and
DbEnv::stat_print() (page 317) methods.

The DbEnv::set_message_stream() (page 298) and Db::set_message_stream() methods are
used to display these messages for the application. In this case, the message will include a
trailing <newline> character.

Setting stream to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_msgfile() (page 301) or Db::set_msgfile() (page
126) methods to display the additional information via a C Library FILE *, or the
DbEnv::set_msgcall() (page 299) and Db::set_msgcall() (page 124) methods to capture the
additional error information in a way that does not use either output streams or C Library
FILE *'s. You should not mix these approaches.

For Db handles opened inside of Berkeley DB environments, calling the
Db::set_message_stream() method affects the entire environment and is equivalent to
calling the DbEnv::set_message_stream() (page 298) method.

The Db::set_message_stream() method configures operations performed using the specified
Db handle, not all operations performed on the underlying database.

The Db::set_message_stream() method may be called at any time during the life of the
application.

Parameters

stream

The stream parameter is the application-specified output stream to be used for additional
message information.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 124

Db::set_msgcall()
#include <db_cxx.h>

void Db::set_msgcall(void (*db_msgcall_fcn)(const DbEnv *dbenv,
 char *msg));

There are interfaces in the Berkeley DB library which either directly output informational
messages or statistical information, or configure the library to output such messages
when performing other operations, for example, DbEnv::set_verbose() (page 314) and
DbEnv::stat_print() (page 317).

The DbEnv::set_msgcall() (page 299) and Db::set_msgcall() methods are used to pass
these messages to the application, and Berkeley DB will call db_msgcall_fcn with each
message. It is up to the db_msgcall_fcn function to display the message in an appropriate
manner.

Setting db_msgcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DbEnv::set_error_stream() (page 279) and
Db::set_error_stream() (page 106) methods to display the messages via an output stream, or
the Db::set_msgfile() (page 126) or Db::set_msgfile() (page 301) methods to display the
messages via a C library FILE *. You should not mix these approaches.

For Db handles opened inside of Berkeley DB environments, calling the Db::set_msgcall()
method affects the entire environment and is equivalent to calling the
DbEnv::set_msgcall() method.

The Db::set_msgcall() method configures operations performed using the specified Db
handle, not all operations performed on the underlying database.

The Db::set_msgcall() method may be called at any time during the life of the application.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters

db_msgcall_fcn

The db_msgcall_fcn parameter is the application-specified message reporting function. The
function takes two parameters:

• dbenv

The dbenv parameter is the enclosing database environment.

• msg

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 125

The msg parameter is the message string.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 126

Db::set_msgfile()
#include <db_cxx.h>

void Db::set_msgfile(FILE *msgfile);

There are interfaces in the Berkeley DB library which either directly output informational
messages or statistical information, or configure the library to output such messages
when performing other operations, for example, DbEnv::set_verbose() (page 314) and
DbEnv::stat_print() (page 317).

The DbEnv::set_msgfile() (page 301) and Db::set_msgfile() methods are used to display
these messages for the application. In this case the message will include a trailing <newline>
character.

Setting msgfile to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_message_stream() (page 298) and
Db::set_message_stream() (page 123) methods to display the messages via an output stream,
or the DbEnv::set_msgcall() (page 299) or Db::set_msgcall() (page 124) methods to capture
the additional error information in a way that does not use C library FILE *'s. You should not
mix these approaches.

For Db handles opened inside of Berkeley DB environments, calling the Db::set_msgfile()
method affects the entire environment and is equivalent to calling the
DbEnv::set_msgfile() (page 301) method.

The Db::set_msgfile() method configures operations performed using the specified Db
handle, not all operations performed on the underlying database.

The Db::set_msgfile() method may be called at any time during the life of the application.

Parameters

msgfile

The msgfile parameter is a C library FILE * to be used for displaying messages.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 127

Db::set_pagesize()
#include <db_cxx.h>

int
Db::set_pagesize(u_int32_t pagesize);

Set the size of the pages used to hold items in the database, in bytes. The minimum page size
is 512 bytes, the maximum page size is 64K bytes, and the page size must be a power-of-two.
If the page size is not explicitly set, one is selected based on the underlying filesystem I/O
block size. The automatically selected size has a lower limit of 512 bytes and an upper limit of
16K bytes.

For information on tuning the Berkeley DB page size, see Selecting a page size.

The Db::set_pagesize() method configures a database, not only operations performed using
the specified Db handle.

The Db::set_pagesize() method may not be called after the Db::open() (page 69) method
is called. If the database already exists when Db::open() (page 69) is called, the information
specified to Db::set_pagesize() will be ignored.

If creating additional databases in a single physical file, information specified to
Db::set_pagesize() will be ignored and the page size of the existing databases will be used.

The Db::set_pagesize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

pagesize

The pagesize parameter sets the database page size.

Errors

The Db::set_pagesize() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

../../programmer_reference/general_am_conf.html#am_conf_pagesize

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 128

Db::set_partition()
#include <db_cxx.h>

int
Db::set_partition(u_int32_t parts, DBT *kyes,
 u_int32_t (*db_partition_fcn) (Db *db, DBT *key));

Set up partitioning for a database. Partitioning may be used on either BTREE or HASH
databases. Partitions may be specified by either a set of keys specifying a range of values in
each partition or with a callback function that returns the number of the partition to put a
specific key. Partition range keys may only be specified for BTREE databases.

Partitions are implimented as separate database files and can help reduce contention within
a logical database. Contention can come from multiple threads of control accessing database
pages simultaniously. Typically these pages are the root of a btree and the metadata page
which contains allocation information in both BTREE and HASH databases. Each partition has
its own metadata and root pages.

Parameters

Exactly one of the parameters keys and partition_fcn must be NULL.

parts

The parts parameter is the number of partitions to create. The value must be 2 or greater.

keys

The keys parameter is an array of DBT structures containing the keys that specify the range of
key values to be stored in each partition. Each key specifies the minimum value that may be
stored in the corresponding partition. The number of keys must be one less than the number
of partitions specified by the parts parameter since the first partition will hold any key less
than the first key in the array.

db_partition_fcn

The db_partition_fcn parameter is the application-specified partitioning function. The
function returns an integer which will be used modulo the number of partitions specified by
the parts parameter. The function will be called with two parameters:

• db

The db parameter is the database handle.

• key

The key parameter is the key for which a partition number should be returned.

Class

Db

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 129

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 130

Db::set_partition_dirs()
#include <db_cxx.h>

int
Db::set_partition_dirs(const char **dirs);

Specify which directories the database extents should be created in or looked for. If the
number of directories is less than the number of partitions, the directories will be used in a
round robin fashion.

The Db::set_partition_dirs() method may not be called after the Db::open() (page 69)
method is called.

The Db::set_partition_dirs() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dirs

The dirs points to an array of directories that will be used to create or locate the database
extent files specified in the Db::open() (page 69) method call. The directories must be
included in the environment list specified by DbEnv::add_data_dir() (page 211).

Errors

The Db::set_partition_dirs() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 131

Db::set_priority()
#include <db_cxx.h>

int
Db::set_priority(DB_CACHE_PRIORITY priority);

Set the cache priority for pages referenced by the Db handle.

The priority of a page biases the replacement algorithm to be more or less likely to discard a
page when space is needed in the buffer pool. The bias is temporary, and pages will eventually
be discarded if they are not referenced again. The Db::set_priority() method is only
advisory, and does not guarantee pages will be treated in a specific way.

The Db::set_priority() method may be called at any time during the life of the
application.

The Db::set_priority() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priority

The priority parameter must be set to one of the following values:

• DB_PRIORITY_VERY_LOW

The lowest priority: pages are the most likely to be discarded.

• DB_PRIORITY_LOW

The next lowest priority.

• DB_PRIORITY_DEFAULT

The default priority.

• DB_PRIORITY_HIGH

The next highest priority.

• DB_PRIORITY_VERY_HIGH

The highest priority: pages are the least likely to be discarded.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 132

Db::set_q_extentsize()
#include <db_cxx.h>

int
Db::set_q_extentsize(u_int32_t extentsize);

Set the size of the extents used to hold pages in a Queue database, specified as a number of
pages. Each extent is created as a separate physical file. If no extent size is set, the default
behavior is to create only a single underlying database file.

For information on tuning the extent size, see Selecting a extent size.

The Db::set_q_extentsize() method configures a database, not only operations performed
using the specified Db handle.

The Db::set_q_extentsize() method may not be called after the Db::open() (page 69)
method is called. If the database already exists when Db::open() (page 69) is called, the
information specified to Db::set_q_extentsize() will be ignored.

The Db::set_q_extentsize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

extentsize

The extentsize parameter is the number of pages in a Queue database extent.

Errors

The Db::set_q_extentsize() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

../../programmer_reference/rq_conf.html#am_conf_extentsize

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 133

Db::set_re_delim()
#include <db_cxx.h>

int
Db::set_re_delim(int re_delim);

Set the delimiting byte used to mark the end of a record in the backing source file for the
Recno access method.

This byte is used for variable length records if the re_source file is specified using the
Db::set_re_source() (page 137) method. If the re_source file is specified and no delimiting
byte was specified, <newline> characters (that is, ASCII 0x0a) are interpreted as end-of-record
markers.

The Db::set_re_delim() method configures a database, not only operations performed using
the specified Db handle.

The Db::set_re_delim() method may not be called after the Db::open() (page 69) method
is called. If the database already exists when Db::open() (page 69) is called, the information
specified to Db::set_re_delim() will be ignored.

The Db::set_re_delim() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

re_delim

The re_delim parameter is the delimiting byte used to mark the end of a record.

Errors

The Db::set_re_delim() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 134

Db::set_re_len()
#include <db_cxx.h>

int
Db::set_re_len(u_int32_t re_len);

For the Queue access method, specify that the records are of length re_len. For the Queue
access method, the record length must be enough smaller than the database's page size that
at least one record plus the database page's metadata information can fit on each database
page.

For the Recno access method, specify that the records are fixed-length, not byte-delimited,
and are of length re_len.

Any records added to the database that are less than re_len bytes long are automatically
padded (see Db::set_re_pad() (page 136) for more information).

Any attempt to insert records into the database that are greater than re_len bytes long will
cause the call to fail immediately and return an error.

The Db::set_re_len() method configures a database, not only operations performed using
the specified Db handle.

The Db::set_re_len() method may not be called after the Db::open() (page 69) method is
called. If the database already exists when Db::open() (page 69) is called, the information
specified to Db::set_re_len() will be ignored.

The Db::set_re_len() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

re_len

The re_len parameter is the length of a Queue or Recno database record, in bytes.

Errors

The Db::set_re_len() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

Class

Db

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 135

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 136

Db::set_re_pad()
#include <db_cxx.h>

int
Db::set_re_pad(int re_pad);

Set the padding character for short, fixed-length records for the Queue and Recno access
methods.

If no pad character is specified, <space> characters (that is, ASCII 0x20) are used for padding.

The Db::set_re_pad() method configures a database, not only operations performed using
the specified Db handle.

The Db::set_re_pad() method may not be called after the Db::open() (page 69) method is
called. If the database already exists when Db::open() (page 69) is called, the information
specified to Db::set_re_pad() will be ignored.

The Db::set_re_pad() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

re_pad

The re_pad parameter is the pad character for fixed-length records for the Queue and Recno
access methods.

Errors

The Db::set_re_pad() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 137

Db::set_re_source()
#include <db_cxx.h>

int
Db::set_re_source(char *source);

Set the underlying source file for the Recno access method. The purpose of the source value is
to provide fast access and modification to databases that are normally stored as flat text files.

The source parameter specifies an underlying flat text database file that is read to initialize
a transient record number index. In the case of variable length records, the records are
separated, as specified by Db::set_re_delim() (page 133). For example, standard UNIX
byte stream files can be interpreted as a sequence of variable length records separated by
<newline> characters.

In addition, when cached data would normally be written back to the underlying database file
(for example, the Db::close() (page 13) or Db::sync() (page 148) methods are called), the in-
memory copy of the database will be written back to the source file.

By default, the backing source file is read lazily; that is, records are not read from the file
until they are requested by the application. If multiple processes (not threads) are accessing
a Recno database concurrently, and are either inserting or deleting records, the backing
source file must be read in its entirety before more than a single process accesses the
database, and only that process should specify the backing source file as part of the
Db::open() (page 69) call. See the DB_SNAPSHOT flag for more information.

Reading and writing the backing source file specified by source cannot be transaction-
protected because it involves filesystem operations that are not part of the Db transaction
methodology. For this reason, if a temporary database is used to hold the records, it is
possible to lose the contents of the source file, for example, if the system crashes at the right
instant. If a file is used to hold the database, normal database recovery on that file can be
used to prevent information loss, although it is still possible that the contents of source will
be lost if the system crashes.

The source file must already exist (but may be zero-length) when Db::open() (page 69) is
called.

It is not an error to specify a read-only source file when creating a database, nor is it an error
to modify the resulting database. However, any attempt to write the changes to the backing
source file using either the Db::sync() (page 148) or Db::close() (page 13) methods will fail,
of course. Specify the DB_NOSYNC flag to the Db::close() (page 13) method to stop it from
attempting to write the changes to the backing file; instead, they will be silently discarded.

For all of the previous reasons, the source field is generally used to specify databases that are
read-only for Berkeley DB applications; and that are either generated on the fly by software
tools or modified using a different mechanism — for example, a text editor.

The Db::set_re_source() method configures operations performed using the specified Db
handle, not all operations performed on the underlying database.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 138

The Db::set_re_source() method may not be called after the Db::open() (page 69) method
is called. If the database already exists when Db::open() (page 69) is called, the information
specified to Db::set_re_source() must be the same as that historically used to create the
database or corruption can occur.

The Db::set_re_source() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

source

The backing flat text database file for a Recno database.

When using a Unicode build on Windows (the default), the source argument will be
interpreted as a UTF-8 string, which is equivalent to ASCII for Latin characters.

Errors

The Db::set_re_source() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 139

Db::stat()
#include <db_cxx.h>

int
Db::stat(void *sp, u_int32_t flags);

The Db::stat() method creates a statistical structure and copies a pointer to it into user-
specified memory locations. Specifically, if sp is non-NULL, a pointer to the statistics for the
database are copied into the memory location to which it refers.

The Db::stat() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 613); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 605); otherwise NULL. If no transaction handle is specified,
but the operation occurs in a transactional database, the operation will be implicitly
transaction protected.

flags

The flags parameter must be set to 0 or one of the following values:

• DB_FAST_STAT

Return only the values which do not require traversal of the database. Among other things,
this flag makes it possible for applications to request key and record counts without
incurring the performance penalty of traversing the entire database.

• DB_READ_COMMITTED

Database items read during a transactional call will have degree 2 isolation. This ensures
the stability of the data items read during the stat operation but permits that data to be
modified or deleted by other transactions prior to the commit of the specified transaction.

• DB_READ_UNCOMMITTED

Database items read during a transactional call will have degree 1 isolation, including
modified but not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag
was not specified when the underlying database was opened.

Statistical Structure

Statistical structures are stored in allocated memory. If application-specific allocation routines
have been declared (see DbEnv::set_alloc() (page 260) for more information), they are

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 140

used to allocate the memory; otherwise, the standard C library malloc(3) is used. The caller
is responsible for deallocating the memory. To deallocate the memory, free the memory
reference; references inside the returned memory need not be individually freed.

If the DB_FAST_STAT flag has not been specified, the Db::stat() method will access some of
or all the pages in the database, incurring a severe performance penalty as well as possibly
flushing the underlying buffer pool.

In the presence of multiple threads or processes accessing an active database, the information
returned by DB->stat may be out-of-date.

If the database was not opened read-only and the DB_FAST_STAT flag was not specified, the
cached key and record numbers will be updated after the statistical information has been
gathered.

The Db::stat() method may not be called before the Db::open() (page 69) method is called.

The Db::stat() method returns a non-zero error value on failure and 0 on success.

Hash Statistics

In the case of a Hash database, the statistics are stored in a structure of type DB_HASH_STAT.
The following fields will be filled in:

• uintmax_t hash_bfree;

The number of bytes free on bucket pages.

• u_int32_t hash_bigpages;

The number of big key/data pages.

• uintmax_t hash_big_bfree;

The number of bytes free on big item pages.

• u_int32_t hash_buckets;

The number of hash buckets. Returned if DB_FAST_STAT is set.

• u_int32_t hash_dup;

The number of duplicate pages.

• uintmax_t hash_dup_free;

The number of bytes free on duplicate pages.

• u_int32_t hash_ffactor;

The desired fill factor (number of items per bucket) specified at database-creation time.
Returned if DB_FAST_STAT is set.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 141

• u_int32_t hash_free;

The number of pages on the free list.

• u_int32_t hash_magic;

Magic number that identifies the file as a Hash file. Returned if DB_FAST_STAT is set.

• u_int32_t hash_metaflags;

Reports internal flags. For internal use only.

• u_int32_t hash_ndata;

The number of key/data pairs in the database. If DB_FAST_STAT was specified the count
will be the last saved value unless it has never been calculated, in which case it will be 0.
Returned if DB_FAST_STAT is set.

• u_int32_t hash_nkeys;

The number of unique keys in the database. If DB_FAST_STAT was specified the count will be
the last saved value unless it has never been calculated, in which case it will be 0. Returned
if DB_FAST_STAT is set.

• u_int32_t hash_overflows;

The number of overflow pages (overflow pages are pages that contain items that did not fit
in the main bucket page).

• uintmax_t hash_ovfl_free;

The number of bytes free on overflow pages.

• u_int32_t hash_pagecnt;

The number of pages in the database. Returned if DB_FAST_STAT is set.

• u_int32_t hash_pagesize;

The underlying database page (and bucket) size, in bytes. Returned if DB_FAST_STAT is set.

• u_int32_t hash_version;

The version of the Hash database. Returned if DB_FAST_STAT is set.

Heap Statistics

In the case of a Heap database, the statistics are stored in a structure of type DB_HEAP_STAT.
The following fields will be filled in:

• u_int32_t heap_magic;

Magic number that identifies the file as a Heap file. Returned if DB_FAST_STAT is set.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 142

• u_int32_t heap_version;

The version of the Heap database. Returned if DB_FAST_STAT is set.

• u_int32_t heap_metaflags;

Reports internal flags. For internal use only.

• u_int32_t heap_nrecs;

Reports the number of records in the Heap database. Returned if DB_FAST_STAT is set.

• u_int32_t heap_pagecnt;

The number of pages in the database. Returned if DB_FAST_STAT is set.

• u_int32_t heap_pagesize;

The underlying database page (and bucket) size, in bytes. Returned if DB_FAST_STAT is set.

• u_int32_t heap_nregions;

The number of regions in the Heap database. Returned if DB_FAST_STAT is set.

Btree and Recno Statistics

In the case of a Btree or Recno database, the statistics are stored in a structure of type
DB_BTREE_STAT. The following fields will be filled in:

• u_int32_t bt_dup_pg;

Number of database duplicate pages.

• uintmax_t bt_dup_pgfree;

Number of bytes free in database duplicate pages.

• u_int32_t bt_empty_pg;

Number of empty database pages.

• u_int32_t bt_free;

Number of pages on the free list.

• u_int32_t bt_int_pg;

Number of database internal pages.

• uintmax_t bt_int_pgfree;

Number of bytes free in database internal pages.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 143

• u_int32_t bt_leaf_pg;

Number of database leaf pages.

• uintmax_t bt_leaf_pgfree;

Number of bytes free in database leaf pages.

• u_int32_t bt_levels;

Number of levels in the database.

• u_int32_t bt_magic;

Magic number that identifies the file as a Btree database. Returned if DB_FAST_STAT is set.

• u_int32_t bt_metaflags;

Reports internal flags. For internal use only.

• u_int32_t bt_minkey;

The minimum keys per page. Returned if DB_FAST_STAT is set.

• u_int32_t bt_ndata;

For the Btree Access Method, the number of key/data pairs in the database. If the
DB_FAST_STAT flag is not specified, the count will be exact. Otherwise, the count will be
the last saved value unless it has never been calculated, in which case it will be 0.

For the Recno Access Method, the number of records in the database. If the database was
configured with mutable record numbers (see DB_RENUMBER), the count will be exact.
Otherwise, if the DB_FAST_STAT flag is specified the count will be exact but will include
deleted and implicitly created records; if the DB_FAST_STAT flag is not specified, the count
will be exact and will not include deleted or implicitly created records.

Returned if DB_FAST_STAT is set.

• u_int32_t bt_nkeys;

For the Btree Access Method, the number of keys in the database. If the DB_FAST_STAT
flag is not specified or the database was configured to support record numbers (see
DB_RECNUM), the count will be exact. Otherwise, the count will be the last saved value
unless it has never been calculated, in which case it will be 0.

For the Recno Access Method, the number of records in the database. If the database was
configured with mutable record numbers (see DB_RENUMBER), the count will be exact.
Otherwise, if the DB_FAST_STAT flag is specified the count will be exact but will include
deleted and implicitly created records; if the DB_FAST_STAT flag is not specified, the count
will be exact and will not include deleted or implicitly created records.

Returned if DB_FAST_STAT is set.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 144

• u_int32_t bt_over_pg;

Number of database overflow pages.

• uintmax_t bt_over_pgfree;

Number of bytes free in database overflow pages.

• u_int32_t bt_pagecnt;

The number of pages in the database. Returned if DB_FAST_STAT is set.

• u_int32_t bt_pagesize;

The underlying database page size, in bytes. Returned if DB_FAST_STAT is set.

• u_int32_t bt_re_len;

The length of fixed-length records. Returned if DB_FAST_STAT is set.

• u_int32_t bt_re_pad;

The padding byte value for fixed-length records. Returned if DB_FAST_STAT is set.

• u_int32_t bt_version;

The version of the Btree database. Returned if DB_FAST_STAT is set.

Queue Statistics

In the case of a Queue database, the statistics are stored in a structure of type
DB_QUEUE_STAT. The following fields will be filled in:

• u_int32_t qs_cur_recno;

Next available record number. Returned if DB_FAST_STAT is set.

• u_int32_t qs_extentsize;

Underlying database extent size, in pages. Returned if DB_FAST_STAT is set.

• u_int32_t qs_first_recno;

First undeleted record in the database. Returned if DB_FAST_STAT is set.

• u_int32_t qs_magic;

Magic number that identifies the file as a Queue file. Returned if DB_FAST_STAT is set.

• u_int32_t qs_metaflags;

Reports internal flags. For internal use only.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 145

• u_int32_t qs_nkeys;

The number of records in the database. If DB_FAST_STAT was specified the count will be the
last saved value unless it has never been calculated, in which case it will be 0. Returned if
DB_FAST_STAT is set.

• u_int32_t qs_ndata;

The number of records in the database. If DB_FAST_STAT was specified the count will be the
last saved value unless it has never been calculated, in which case it will be 0. Returned if
DB_FAST_STAT is set.

• u_int32_t qs_pages;

Number of pages in the database.

• u_int32_t qs_pagesize;

Underlying database page size, in bytes. Returned if DB_FAST_STAT is set.

• u_int32_t qs_pgfree;

Number of bytes free in database pages.

• u_int32_t qs_re_len;

The length of the records. Returned if DB_FAST_STAT is set.

• u_int32_t qs_re_pad;

The padding byte value for the records. Returned if DB_FAST_STAT is set.

• u_int32_t qs_version;

The version of the Queue file type. Returned if DB_FAST_STAT is set.

Errors

The Db::stat() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw
a DbRepHandleDeadException (page 326) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 146

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 147

Db::stat_print()
#include <db_cxx.h>

int
Db::stat_print(u_int32_t flags);

The Db::stat_print() method displays the database statistical information, as described
for the Db::stat() (page 139) method. The information is printed to a specified output channel
(see the DbEnv::set_msgfile() (page 301) method for more information), or passed to an
application callback function (see the DbEnv::set_msgcall() (page 299) method for more
information).

The Db::stat_print() method may not be called before the Db::open() (page 69) method is
called.

The Db::stat_print() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

For Berkeley DB SQL table or index statistics, see Command Line Features Unique to
dbsql (page 674).

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_FAST_STAT

Return only the values which do not require traversal of the database. Among other things,
this flag makes it possible for applications to request key and record counts without
incurring the performance penalty of traversing the entire database.

• DB_STAT_ALL

Display all available information.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 148

Db::sync()
#include <db_cxx.h>

int
Db::sync(u_int32_t flags);

The Db::sync() method flushes any cached information to disk. This method operates on
the database file level, so if the file contains multiple database handles then this method will
flush to disk any information that is cached for any of those handles.

If the database is in memory only, the Db::sync() method has no effect and will always
succeed.

It is important to understand that flushing cached information to disk only minimizes the
window of opportunity for corrupted data. Although unlikely, it is possible for database
corruption to happen if a system or application crash occurs while writing data to the
database. To ensure that database corruption never occurs, applications must either: use
transactions and logging with automatic recovery; use logging and application-specific
recovery; or edit a copy of the database, and once all applications using the database have
successfully called Db::close() (page 13), atomically replace the original database with the
updated copy.

The Db::sync() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The Db::sync() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw
a DbRepHandleDeadException (page 326) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 149

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 150

Db::truncate()
#include <db_cxx.h>

int
Db::truncate(DbTxn *txnid, u_int32_t *countp, u_int32_t flags);

The Db::truncate() method empties the database, discarding all records it contains. The
number of records discarded from the database is returned in countp.

When called on a database configured with secondary indices using the Db::associate() (page
6) method, the Db::truncate() method truncates the primary database and all secondary
indices. A count of the records discarded from the primary database is returned.

It is an error to call the Db::truncate() method on a database with open cursors.

The Db::truncate() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 613); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 605); otherwise NULL. If no transaction handle is specified,
but the operation occurs in a transactional database, the operation will be implicitly
transaction protected.

countp

The countp parameter references memory into which the number of records discarded from
the database is copied.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The Db::truncate() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 151

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If there are open cursors in the database; or if an invalid flag value or parameter was
specified.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 152

Db::upgrade()
#include <db_cxx.h>

int
Db::upgrade(const char *file, u_int32_t flags);

The Db::upgrade() method upgrades all of the databases included in the file file, if
necessary. If no upgrade is necessary, Db::upgrade() always returns success.

Database upgrades are done in place and are destructive. For example, if pages need to
be allocated and no disk space is available, the database may be left corrupted. Backups
should be made before databases are upgraded. See Upgrading databases for more
information.

Unlike all other database operations, Db::upgrade() may only be done on a system with the
same byte-order as the database.

The Db::upgrade() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

file

The file parameter is the physical file containing the databases to be upgraded.

flags

The flags parameter must be set to 0 or the following value:

• DB_DUPSORT

This flag is only meaningful when upgrading databases from releases before the Berkeley
DB 3.1 release.

As part of the upgrade from the Berkeley DB 3.0 release to the 3.1 release, the on-
disk format of duplicate data items changed. To correctly upgrade the format requires
applications to specify whether duplicate data items in the database are sorted or not.
Specifying the DB_DUPSORT flag informs Db::upgrade() that the duplicates are sorted;
otherwise they are assumed to be unsorted. Incorrectly specifying the value of this flag may
lead to database corruption.

Further, because the Db::upgrade() method upgrades a physical file (including all the
databases it contains), it is not possible to use Db::upgrade() to upgrade files in which
some of the databases it includes have sorted duplicate data items, and some of the
databases it includes have unsorted duplicate data items. If the file does not have more
than a single database, if the databases do not support duplicate data items, or if all of the
databases that support duplicate data items support the same style of duplicates (either
sorted or unsorted), Db::upgrade() will work correctly as long as the DB_DUPSORT flag is

../../programmer_reference/am_upgrade.html

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 153

correctly specified. Otherwise, the file cannot be upgraded using Db::upgrade;() it must
be upgraded manually by dumping and reloading the databases.

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME
may be used as the path of the database environment home.

Db::upgrade() is affected by any database directory specified using the
DbEnv::set_data_dir() (page 264) method, or by setting the "set_data_dir" string in the
environment's DB_CONFIG file.

Errors

The Db::upgrade() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

DB_OLD_VERSION

The database cannot be upgraded by this version of the Berkeley DB software.

Class

Db

See Also

Database and Related Methods (page 3)

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 154

Db::verify()
#include <db_cxx.h>

int
Db::verify(const char *file,
 const char *database, ostream *outfile, u_int32_t flags);

The Db::verify() method verifies the integrity of all databases in the file specified by
the file parameter, and optionally outputs the databases' key/data pairs to the file stream
specified by the outfile parameter.

The Db::verify() method does not perform any locking, even in Berkeley DB
environments that are configured with a locking subsystem. As such, it should only be
used on files that are not being modified by another thread of control.

The Db::verify() method may not be called after the Db::open() (page 69) method is called.

The Db handle may not be accessed again after Db::verify() is called, regardless of its
return.

The Db::verify() method will return DB_VERIFY_BAD if a database is corrupted. When the
DB_SALVAGE flag is specified, the DB_VERIFY_BAD return means that all key/data pairs in the
file may not have been successfully output. Unless otherwise specified, the Db::verify()
method either returns a non-zero error value or throws an exception that encapsulates a non-
zero error value on failure, and returns 0 on success.

Parameters

file

The file parameter is the physical file in which the databases to be verified are found.

database

The database parameter is the database in file on which the database checks for btree and
duplicate sort order and for hashing are to be performed. See the DB_ORDERCHKONLY flag for
more information.

The database parameter must be set to NULL except when the DB_ORDERCHKONLY flag is set.

outfile

The outfile parameter is an optional file stream to which the databases' key/data pairs are
written.

flags

The flags parameter must be set to 0 or the following value:

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 155

• DB_SALVAGE

Write the key/data pairs from all databases in the file to the file stream named in the
outfile parameter. Key values are written for Btree, Hash and Queue databases, but not for
Recno databases.

The output format is the same as that specified for the db_dump utility, and can be used as
input for the db_load utility.

Because the key/data pairs are output in page order as opposed to the sort order used by
db_dump, using Db::verify() to dump key/data pairs normally produces less than optimal
loads for Btree databases.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags
parameter:

• DB_AGGRESSIVE

Output all the key/data pairs in the file that can be found. By default, Db::verify() does
not assume corruption. For example, if a key/data pair on a page is marked as deleted,
it is not then written to the output file. When DB_AGGRESSIVE is specified, corruption is
assumed, and any key/data pair that can be found is written. In this case, key/data pairs
that are corrupted or have been deleted may appear in the output (even if the file being
salvaged is in no way corrupt), and the output will almost certainly require editing before
being loaded into a database.

• DB_PRINTABLE

When using the DB_SALVAGE flag, if characters in either the key or data items are printing
characters (as defined by isprint(3)), use printing characters to represent them. This flag
permits users to use standard text editors and tools to modify the contents of databases or
selectively remove data from salvager output.

Note: different systems may have different notions about what characters are considered
printing characters, and databases dumped in this manner may be less portable to external
systems.

• DB_NOORDERCHK

Skip the database checks for btree and duplicate sort order and for hashing.

The Db::verify() method normally verifies that btree keys and duplicate items are
correctly sorted, and hash keys are correctly hashed. If the file being verified contains
multiple databases using differing sorting or hashing algorithms, some of them must
necessarily fail database verification because only one sort order or hash function can be
specified before Db::verify() is called. To verify files with multiple databases having
differing sorting orders or hashing functions, first perform verification of the file as a whole
by using the DB_NOORDERCHK flag, and then individually verify the sort order and hashing
function for each database in the file using the DB_ORDERCHKONLY flag.

• DB_ORDERCHKONLY

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 156

Perform the database checks for btree and duplicate sort order and for hashing, skipped by
DB_NOORDERCHK.

When this flag is specified, a database parameter should also be specified, indicating
the database in the physical file which is to be checked. This flag is only safe to use on
databases that have already successfully been verified using Db::verify() with the
DB_NOORDERCHK flag set.

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME
may be used as the path of the database environment home.

Db::verify() is affected by any database directory specified using the
DbEnv::set_data_dir() (page 264) method, or by setting the "set_data_dir" string in the
environment's DB_CONFIG file.

Errors

The Db::verify() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 69) was called; or if an invalid flag value or
parameter was specified.

ENOENT

The file or directory does not exist.

Class

Db

See Also

Database and Related Methods (page 3)

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 157

DbHeapRecordId
#include <db_cxx.h>

class _exported DbHeapRecordId : private DB_HEAP_RID
{
public:
 db_pgno_t get_pgno() const { return pgno; }
 void set_pgno(db_pgno_t value) { pgno = value; }

 db_indx_t get_indx() const { return indx; }
 void set_indx(db_indx_t value) { indx = value; }

 DB_HEAP_RID *get_DB_HEAP_RID() { return (DB_HEAP_RID *)this; }
 const DB_HEAP_RID *get_const_DB_HEAP_RID() const
 { return (const DB_HEAP_RID *)this; }

 static DbHeapRecordId* get_DbHeapRecordId(DB_HEAP_RID *rid)
 { return (DbHeapRecordId *)rid; }
 static const DbHeapRecordId* get_const_DbHeapRecordId(DB_HEAP_RID *rid)
 { return (const DbHeapRecordId *)rid; }

 DbHeapRecordId(db_pgno_t pgno, db_indx_t indx);
 DbHeapRecordId();
 ~DbHeapRecordId();
 DbHeapRecordId(const DbHeapRecordId &);
 DbHeapRecordId &operator = (const DbHeapRecordId &);
};

Content used for the key in a Heap database record. Berkeley DB instantiates an object of this
class for you when you create a record in a Heap database. You should never instantiate an
object of this class or modify the contents of this class yourself; Berkeley DB must create and
manage it for you.

This object is returned in the key Dbt parameter of the method that you use to add a record
to the Heap database.

Class Methods

get_pgno()

Returns the database page number where the record is stored.

get_indx()

Returns the index in the offset table where the record can be found.

get_DB_HEAP_RID()

Returns a pointer to the underlying C-language structure used to store the database page
number and offset table index information.

Library Version 11.2.5.2 The Db Handle

6/10/2011 DB C++ API Page 158

set_pgno()

For internal use only. Changing the offset index has unpredictable results.

set_indx()

For internal use only. Changing the offset index has unpredictable results.

See Also

Database and Related Methods (page 3),

6/10/2011 DB C++ API Page 159

Chapter 3. The Dbc Handle
A Dbc object is a handle for a cursor into a Berkeley DB database.

Dbc handles are not free-threaded. Cursor handles may be shared by multiple threads if
access is serialized by the application.

You create a Dbc using the Db::cursor() (page 161) method.

If the cursor is to be used to perform operations on behalf of a transaction, the cursor must be
opened and closed within the context of that single transaction.

Once Dbc::close() (page 163) has been called, the handle may not be accessed again,
regardless of the method's return.

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 160

Database Cursors and Related Methods

Database Cursors and Related
Methods

Description

Db::cursor() Create a cursor handle

Dbc::close() Close a cursor handle

Dbc::cmp() Compare two cursors for equality.

Dbc::count() Return count of duplicates for current key

Dbc::del() Delete current key/data pair

Dbc::dup() Duplicate the cursor handle

Dbc::get() Retrieve by cursor

Dbc::put() Store by cursor

Dbc::set_priority(), Dbc::get_priority() Set/get the cursor's cache priority

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 161

Db::cursor()
#include <db_cxx.h>

int
Db::cursor(DbTxn *txnid, Dbc **cursorp, u_int32_t flags);

The Db::cursor() method returns a created database cursor.

Cursors may span threads, but only serially, that is, the application must serialize access to
the cursor handle.

The Db::cursor() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

txnid

To transaction-protect cursor operations, cursors must be opened and closed within the
context of a transaction. The txnid parameter specifies the transaction context in which the
cursor may be used.

Cursor operations are not automatically transaction-protected, even if the DB_AUTO_COMMIT
flag is specified to the DbEnv::set_flags() (page 283) or Db::open() (page 69) methods. If
cursor operations are to be transaction-protected, the txnid parameter must be a transaction
handle returned from DbEnv::txn_begin() (page 613); otherwise, NULL.

cursorp

The cursorp parameter references memory into which a pointer to the allocated cursor is
copied.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_CURSOR_BULK

Configure a cursor to optimize for bulk operations. Each successive operation on a cursor
configured with this flag attempts to continue on the same database page as the previous
operation, falling back to a search if a different page is required. This avoids searching
if there is a high degree of locality between cursor operations. This flag is currently only
effective with the btree access method. For other access methods, this flag is ignored.

• DB_READ_COMMITTED

Configure a transactional cursor to have degree 2 isolation. This ensures the stability of the
current data item read by this cursor but permits data read by this cursor to be modified or
deleted prior to the commit of the transaction for this cursor.

• DB_READ_UNCOMMITTED

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 162

Configure a transactional cursor to have degree 1 isolation. Read operations performed
by the cursor may return modified but not yet committed data. Silently ignored if the
DB_READ_UNCOMMITTED flag was not specified when the underlying database was opened.

• DB_WRITECURSOR

Specify that the cursor will be used to update the database. The underlying database
environment must have been opened using the DB_INIT_CDB flag.

• DB_TXN_SNAPSHOT

Configure a transactional cursor to operate with read-only snapshot isolation. For databases
with the DB_MULTIVERSION flag set, data values will be read as they are when the cursor is
opened, without taking read locks.

This flag implicitly begins a transaction that is committed when the cursor is closed.

This flag is silently ignored if DB_MULTIVERSION is not set on the underlying database or if a
transaction is supplied in the txnid parameter.

Errors

The Db::cursor() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw
a DbRepHandleDeadException (page 326) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database Cursors and Related Methods (page 160)

../../programmer_reference/transapp_read.html

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 163

Dbc::close()
#include <db_cxx.h>

int
Dbc::close(void);

The Dbc::close() method discards the cursor.

It is possible for the Dbc::close() method to return DB_LOCK_DEADLOCK, signaling that any
enclosing transaction should be aborted. If the application is already intending to abort the
transaction, this error should be ignored, and the application should proceed.

After the Dbc::close() method has been called, regardless of its return value, you can not
use the cursor handle again.

It is not required to close the cursor explicitly before closing the database handle or the
transaction handle that owns this cursor because, closing a database handle or a transaction
handle closes those open cursors.

However, it is recommended that you always close all cursor handles immediately after their
use to promote concurrency and to release resources such as page locks.

The Dbc::close() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Errors

The Dbc::close() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.

Class

Dbc

../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 164

See Also

Database Cursors and Related Methods (page 160)

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 165

Dbc::cmp()
#include <db_cxx.h>

int
Dbc::cmp(Dbc *other_cursor, int *result, u_int32_t flags);

The Dbc::cmp() method compares two cursors for equality. Two cursors are equal if and only
if they are positioned on the same item in the same database.

The Dbc::cmp() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

other_cursor

The other_cursor parameter references another cursor handle that will be used as the
comparator.

result

If the call is successful and both cursors are positioned on the same item, result is set to zero.
If the call is successful but the cursors are not positioned on the same item, result is set to a
non-zero value. If the call is unsuccessful, the value of result should be ignored.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The Dbc::cmp() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

• If either of the cursors are already closed.

• If the cursors have been opened against different databases.

• If either of the cursors have not been positioned.

• If the other_dbc parameter is NULL.

• If the result parameter is NULL.

Class

Dbc

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 166

See Also

Database Cursors and Related Methods (page 160)

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 167

Dbc::count()
#include <db_cxx.h>

int
Dbc::count(db_recno_t *countp, u_int32_t flags);

The Dbc::count() method returns a count of the number of data items for the key to which
the cursor refers.

The Dbc::count() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

countp

The countp parameter references memory into which the count of the number of duplicate
data items is copied.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The Dbc::count() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw
a DbRepHandleDeadException (page 326) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

EINVAL

If the cursor has not been initialized; or if an invalid flag value or parameter was specified.

Class

Dbc

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 168

See Also

Database Cursors and Related Methods (page 160)

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 169

Dbc::del()
#include <db_cxx.h>

int
Dbc::del(u_int32_t flags);

The Dbc::del() method deletes the key/data pair to which the cursor refers.

When called on a cursor opened on a database that has been made into a secondary index
using the Db::associate() (page 6) method, the Db::del() (page 23) method deletes the key/
data pair from the primary database and all secondary indices.

The cursor position is unchanged after a delete, and subsequent calls to cursor functions
expecting the cursor to refer to an existing key will fail.

The Dbc::del() method will return DB_KEYEMPTY if the element has already been deleted.
The Dbc::del() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or one of the following values:

• DB_CONSUME

If the database is of type DB_QUEUE then this flag may be set to force the head of the
queue to move to the first non-deleted item in the queue. Normally this is only done if the
deleted item is exactly at the head when deleted.

Errors

The Dbc::del() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DB_FOREIGN_CONFLICT

A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for
that record does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 11) was declared for a foreign key database, and then
subsequently a record was deleted from the foreign key database without first removing
it from the constrained secondary database.

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 170

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw
a DbRepHandleDeadException (page 326) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EACCES

An attempt was made to modify a read-only database.

EINVAL

If the cursor has not been initialized; or if an invalid flag value or parameter was specified.

EPERM

Write attempted on read-only cursor when the DB_INIT_CDB flag was specified to
DbEnv::open() (page 252).

Class

Dbc

See Also

Database Cursors and Related Methods (page 160)

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 171

Dbc::dup()
#include <db_cxx.h>

int
Dbc::dup(Dbc **cursorp, u_int32_t flags);

The Dbc::dup() method creates a new cursor that uses the same transaction and locker ID as
the original cursor. This is useful when an application is using locking and requires two or more
cursors in the same thread of control.

The Dbc::dup() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

cursorp

The Dbc::dup() method returns the newly created cursor in cursorp.

flags

The flags parameter must be set to 0 or the following flag:

• DB_POSITION

The newly created cursor is initialized to refer to the same position in the database as
the original cursor (if any) and hold the same locks (if any). If the DB_POSITION flag is
not specified, or the original cursor does not hold a database position and locks, the
created cursor is uninitialized and will behave like a cursor newly created using the
Db::cursor() (page 161) method.

Errors

The Dbc::dup() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw
a DbRepHandleDeadException (page 326) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 172

EINVAL

An invalid flag value or parameter was specified.

Class

Dbc

See Also

Database Cursors and Related Methods (page 160)

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 173

Dbc::get()
#include <db_cxx.h>

int
Dbc::get(Dbt *key, Dbt *data, u_int32_t flags);

int
Dbc::pget(Dbt *key, Dbt *pkey, Dbt *data, u_int32_t flags);

The Dbc::get() method retrieves key/data pairs from the database. The address and length
of the key are returned in the object to which key refers (except for the case of the DB_SET
flag, in which the key object is unchanged), and the address and length of the data are
returned in the object to which data refers.

When called on a cursor opened on a database that has been made into a secondary index
using the Db::associate() (page 6) method, the Dbc::get() and Dbc::pget() methods return
the key from the secondary index and the data item from the primary database. In addition,
the Dbc::pget() method returns the key from the primary database. In databases that are
not secondary indices, the Dbc::pget() method will always fail.

Modifications to the database during a sequential scan will be reflected in the scan; that
is, records inserted behind a cursor will not be returned while records inserted in front of a
cursor will be returned.

In Queue and Recno databases, missing entries (that is, entries that were never explicitly
created or that were created and then deleted) will be skipped during a sequential scan.

Unless otherwise specified, the Dbc::get() method either returns a non-zero error value
or throws an exception that encapsulates a non-zero error value on failure, and returns 0 on
success.

If Dbc::get() fails for any reason, the state of the cursor will be unchanged.

Parameters

key

The key Dbt operated on.

If DB_DBT_PARTIAL is set for the Dbt used for this parameter, and if the flags parameter is set
to DB_GET_BOTH, DB_GET_BOTH_RANGE, DB_SET, or DB_SET_RECNO, then this method will
fail and return EINVAL.

pkey

The return key from the primary database. If DB_DBT_PARTIAL is set for the Dbt used for this
parameter, then this method will fail and return EINVAL.

data

The data Dbt operated on.

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 174

flags

The flags parameter must be set to one of the following values:

• DB_CURRENT

Return the key/data pair to which the cursor refers.

The Dbc::get() method will return DB_KEYEMPTY if DB_CURRENT is set and the cursor
key/data pair was deleted.

• DB_FIRST

The cursor is set to refer to the first key/data pair of the database, and that pair is
returned. If the first key has duplicate values, the first data item in the set of duplicates is
returned.

If the database is a Queue or Recno database, Dbc::get() using the DB_FIRST flag will
ignore any keys that exist but were never explicitly created by the application, or were
created and later deleted.

The Dbc::get() method will return DB_NOTFOUND if DB_FIRST is set and the database is
empty.

• DB_GET_BOTH

Move the cursor to the specified key/data pair of the database. The cursor is positioned
to a key/data pair if both the key and data match the values provided on the key and data
parameters.

In all other ways, this flag is identical to the DB_SET flag.

When used with Dbc::pget() on a secondary index handle, both the secondary and primary
keys must be matched by the secondary and primary key item in the database. It is an error
to use the DB_GET_BOTH flag with the Dbc::get() version of this method and a cursor that
has been opened on a secondary index handle.

• DB_GET_BOTH_RANGE

Move the cursor to the specified key/data pair of the database. The key parameter must
be an exact match with a key in the database. The data item retrieved is the item in a
duplicate set that is the smallest value which is greater than or equal to the value provided
by the data parameter (as determined by the comparison function). If this flag is specified
on a database configured without sorted duplicate support, the behavior is identical to the
DB_GET_BOTH flag. Returns the datum associated with the given key/data pair.

In all other ways, this flag is identical to the DB_GET_BOTH flag.

• DB_GET_RECNO

Return the record number associated with the cursor. The record number will be returned in
data, as described in Dbt. The key parameter is ignored.

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 175

For DB_GET_RECNO to be specified, the underlying database must be of type Btree, and it
must have been created with the DB_RECNUM flag.

When called on a cursor opened on a database that has been made into a secondary index,
the Dbc::get() and Dbc::pget() methods return the record number of the primary
database in data. In addition, the Dbc::pget() method returns the record number of the
secondary index in pkey. If either underlying database is not of type Btree or is not created
with the DB_RECNUM flag, the out-of-band record number of 0 is returned.

• DB_JOIN_ITEM

Do not use the data value found in all of the cursors as a lookup key for the primary
database, but simply return it in the key parameter instead. The data parameter is left
unchanged.

For DB_JOIN_ITEM to be specified, the underlying cursor must have been returned from the
Db::join() (page 63) method.

This flag is not supported for Heap databases.

• DB_LAST

The cursor is set to refer to the last key/data pair of the database, and that pair is
returned. If the last key has duplicate values, the last data item in the set of duplicates is
returned.

If the database is a Queue or Recno database, Dbc::get() using the DB_LAST flag will
ignore any keys that exist but were never explicitly created by the application, or were
created and later deleted.

The Dbc::get() method will return DB_NOTFOUND if DB_LAST is set and the database is
empty.

• DB_NEXT

If the cursor is not yet initialized, DB_NEXT is identical to DB_FIRST. Otherwise, the cursor is
moved to the next key/data pair of the database, and that pair is returned. In the presence
of duplicate key values, the value of the key may not change.

If the database is a Queue or Recno database, Dbc::get() using the DB_NEXT flag will skip
any keys that exist but were never explicitly created by the application, or those that were
created and later deleted.

The Dbc::get() method will return DB_NOTFOUND if DB_NEXT is set and the cursor is
already on the last record in the database.

• DB_NEXT_DUP

If the next key/data pair of the database is a duplicate data record for the current key/
data pair, the cursor is moved to the next key/data pair of the database, and that pair is
returned.

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 176

The Dbc::get() method will return DB_NOTFOUND if DB_NEXT_DUP is set and the next
key/data pair of the database is not a duplicate data record for the current key/data pair.

If using a Heap database, this flag results in this method returning DB_NOTFOUND.

• DB_NEXT_NODUP

If the cursor is not yet initialized, DB_NEXT_NODUP is identical to DB_FIRST. Otherwise, the
cursor is moved to the next non-duplicate key of the database, and that key/data pair is
returned.

If the database is a Queue or Recno database, Dbc::get() using the DB_NEXT_NODUP flag
will ignore any keys that exist but were never explicitly created by the application, or those
that were created and later deleted.

The Dbc::get() method will return DB_NOTFOUND if DB_NEXT_NODUP is set and no non-
duplicate key/data pairs exist after the cursor position in the database.

If using a Heap database, this flag is identical to the DB_NEXT flag.

• DB_PREV

If the cursor is not yet initialized, DB_PREV is identical to DB_LAST. Otherwise, the cursor
is moved to the previous key/data pair of the database, and that pair is returned. In the
presence of duplicate key values, the value of the key may not change.

If the database is a Queue or Recno database, Dbc::get() using the DB_PREV flag will skip
any keys that exist but were never explicitly created by the application, or those that were
created and later deleted.

The Dbc::get() method will return DB_NOTFOUND if DB_PREV is set and the cursor is
already on the first record in the database.

• DB_PREV_DUP

If the previous key/data pair of the database is a duplicate data record for the current key/
data pair, the cursor is moved to the previous key/data pair of the database, and that pair is
returned.

The Dbc::get() method will return DB_NOTFOUND if DB_PREV_DUP is set and the previous
key/data pair of the database is not a duplicate data record for the current key/data pair.

If using a Heap database, this flag results in this method returning DB_NOTFOUND.

• DB_PREV_NODUP

If the cursor is not yet initialized, DB_PREV_NODUP is identical to DB_LAST. Otherwise, the
cursor is moved to the previous non-duplicate key of the database, and that key/data pair is
returned.

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 177

If the database is a Queue or Recno database, Dbc::get() using the DB_PREV_NODUP flag
will ignore any keys that exist but were never explicitly created by the application, or those
that were created and later deleted.

The Dbc::get() method will return DB_NOTFOUND if DB_PREV_NODUP is set and no non-
duplicate key/data pairs exist before the cursor position in the database.

If using a Heap database, this flag is identical to the DB_PREV flag.

• DB_SET

Move the cursor to the specified key/data pair of the database, and return the datum
associated with the given key.

The Dbc::get() method will return DB_NOTFOUND if DB_SET is set and no matching
keys are found. The Dbc::get() method will return DB_KEYEMPTY if DB_SET is set and
the database is a Queue or Recno database, and the specified key exists, but was never
explicitly created by the application or was later deleted. In the presence of duplicate key
values, Dbc::get() will return the first data item for the given key.

• DB_SET_RANGE

Move the cursor to the specified key/data pair of the database. In the case of the Btree
access method, the key is returned as well as the data item and the returned key/data pair
is the smallest key greater than or equal to the specified key (as determined by the Btree
comparison function), permitting partial key matches and range searches.

In all other ways the behavior of this flag is the same as the DB_SET flag.

• DB_SET_RECNO

Move the cursor to the specific numbered record of the database, and return the associated
key/data pair. The data field of the specified key must be a pointer to a memory location
from which a db_recno_t may be read, as described in Dbt. This memory location will be
read to determine the record to be retrieved.

For DB_SET_RECNO to be specified, the underlying database must be of type Btree, and it
must have been created with the DB_RECNUM flag.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags
parameter:

• DB_IGNORE_LEASE

This flag is relevant only when using a replicated environment.

Return the data item irrespective of the state of master leases. The item will be returned
under all conditions: if master leases are not configured, if the request is made to a client,
if the request is made to a master with a valid lease, or if the request is made to a master
without a valid lease.

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 178

• DB_READ_COMMITTED

Configure a transactional get operation to have degree 2 isolation (the read is not
repeatable).

• DB_READ_UNCOMMITTED

Database items read during a transactional call will have degree 1 isolation, including
modified but not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag
was not specified when the underlying database was opened.

• DB_MULTIPLE

Return multiple data items in the data parameter.

In the case of Btree or Hash databases, duplicate data items for the current key, starting
at the current cursor position, are entered into the buffer. Subsequent calls with both the
DB_NEXT_DUP and DB_MULTIPLE flags specified will return additional duplicate data items
associated with the current key or DB_NOTFOUND if there are no additional duplicate data
items to return. Subsequent calls with both the DB_NEXT and DB_MULTIPLE flags specified
will return additional duplicate data items associated with the current key or if there are no
additional duplicate data items will return the next key and its data items or DB_NOTFOUND
if there are no additional keys in the database.

In the case of Queue or Recno databases, data items starting at the current cursor position
are entered into the buffer. The record number of the first record will be returned in the
key parameter. The record number of each subsequent returned record must be calculated
from this value. Subsequent calls with the DB_MULTIPLE flag specified will return additional
data items or DB_NOTFOUND if there are no additional data items to return.

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM). The buffer must be at least as large as the page size of the underlying
database, aligned for unsigned integer access, and be a multiple of 1024 bytes in size.
If the buffer size is insufficient, then upon return from the call the size field of the data
parameter will have been set to an estimated buffer size, and the error DB_BUFFER_SMALL
is returned. (The size is an estimate as the exact size needed may not be known until all
entries are read. It is best to initially provide a relatively large buffer, but applications
should be prepared to resize the buffer as necessary and repeatedly call the method.)

The multiple data items can be iterated over using the DbMultipleDataIterator (page 194)
class.

The DB_MULTIPLE flag may only be used with the DB_CURRENT, DB_FIRST, DB_GET_BOTH,
DB_GET_BOTH_RANGE, DB_NEXT, DB_NEXT_DUP, DB_NEXT_NODUP, DB_SET, DB_SET_RANGE,
and DB_SET_RECNO options. The DB_MULTIPLE flag may not be used when accessing
databases made into secondary indices using the Db::associate() (page 6) method.

• DB_MULTIPLE_KEY

Return multiple key and data pairs in the data parameter.

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 179

Key and data pairs, starting at the current cursor position, are entered into the buffer.
Subsequent calls with both the DB_NEXT and DB_MULTIPLE_KEY flags specified will return
additional key and data pairs or DB_NOTFOUND if there are no additional key and data items
to return.

In the case of Btree or Hash databases, the multiple key and data pairs can be iterated over
using the DbMultipleKeyDataIterator (page 196) class.

In the case of Queue or Recno databases, the multiple record number and data pairs can be
iterated over using the DbMultipleRecnoDataIterator (page 198) class.

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM). The buffer must be at least as large as the page size of the underlying
database, aligned for unsigned integer access, and be a multiple of 1024 bytes in size.
If the buffer size is insufficient, then upon return from the call the size field of the data
parameter will have been set to an estimated buffer size, and the error DB_BUFFER_SMALL
is returned. (The size is an estimate as the exact size needed may not be known until all
entries are read. It is best to initially provide a relatively large buffer, but applications
should be prepared to resize the buffer as necessary and repeatedly call the method.)

The DB_MULTIPLE_KEY flag may only be used with the DB_CURRENT, DB_FIRST,
DB_GET_BOTH, DB_GET_BOTH_RANGE, DB_NEXT, DB_NEXT_DUP, DB_NEXT_NODUP, DB_SET,
DB_SET_RANGE, and DB_SET_RECNO options. The DB_MULTIPLE_KEY flag may not be used
when accessing databases made into secondary indices using the Db::associate() (page 6)
method.

• DB_RMW

Acquire write locks instead of read locks when doing the read, if locking is configured.
Setting this flag can eliminate deadlock during a read-modify-write cycle by acquiring the
write lock during the read part of the cycle so that another thread of control acquiring a
read lock for the same item, in its own read-modify-write cycle, will not result in deadlock.

Errors

The Dbc::get() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbMemoryException or DB_BUFFER_SMALL

The requested item could not be returned due to undersized buffer.

DbMemoryException (page 325) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_BUFFER_SMALL is returned.

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 180

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw
a DbRepHandleDeadException (page 326) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DB_REP_LEASE_EXPIRED

The operation failed because the site's replication master lease has expired.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EINVAL

If the DB_CURRENT, DB_NEXT_DUP or DB_PREV_DUP flags were specified and the cursor has
not been initialized; the Dbc::pget() method was called with a cursor that does not refer to
a secondary index; or if an invalid flag value or parameter was specified.

Class

Dbc

See Also

Database Cursors and Related Methods (page 160)

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 181

Dbc::get_priority()
#include <db_cxx.h>

int
Dbc::get_priority(DB_CACHE_PRIORITY *priorityp);

The Dbc::get_priority() method returns the cache priority for pages referenced by the Dbc
handle.

The Dbc::get_priority() method may be called at any time during the life of the
application.

The Dbc::get_priority() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priorityp

The Dbc::get_priority() method returns a reference to the cache priority for pages
referenced by the Dbc handle in priorityp.

Class

Dbc

See Also

Database Cursors and Related Methods (page 160)

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 182

Dbc::put()
#include <db_cxx.h>

int
Dbc::put(Dbt *key, Dbt *data, u_int32_t flags);

The Dbc::put() method stores key/data pairs into the database.

Unless otherwise specified, the Dbc::put() method either returns a non-zero error value
or throws an exception that encapsulates a non-zero error value on failure, and returns 0 on
success.

If Dbc::put() fails for any reason, the state of the cursor will be unchanged. If Dbc::put()
succeeds and an item is inserted into the database, the cursor is always positioned to refer to
the newly inserted item.

Parameters

key

The key Dbt operated on.

If creating a new record in a Heap database, the key Dbt must be empty. The put method will
return the new record's Record ID (RID) in the key Dbt.

data

The data Dbt operated on.

flags

The flags parameter must be set to one of the following values:

• DB_AFTER

In the case of the Btree and Hash access methods, insert the data element as a duplicate
element of the key to which the cursor refers. The new element appears immediately after
the current cursor position. It is an error to specify DB_AFTER if the underlying Btree or
Hash database is not configured for unsorted duplicate data items. The key parameter is
ignored.

In the case of the Recno access method, it is an error to specify DB_AFTER if the underlying
Recno database was not created with the DB_RENUMBER flag. If the DB_RENUMBER flag
was specified, a new key is created, all records after the inserted item are automatically
renumbered, and the key of the new record is returned in the structure to which the key
parameter refers. The initial value of the key parameter is ignored. See Db::open() (page
69) for more information.

The DB_AFTER flag may not be specified to the Queue access method.

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 183

The Dbc::put() method will return DB_NOTFOUND if the current cursor record has already
been deleted and the underlying access method is Hash.

• DB_BEFORE

In the case of the Btree and Hash access methods, insert the data element as a duplicate
element of the key to which the cursor refers. The new element appears immediately
before the current cursor position. It is an error to specify DB_AFTER if the underlying Btree
or Hash database is not configured for unsorted duplicate data items. The key parameter is
ignored.

In the case of the Recno access method, it is an error to specify DB_BEFORE if the
underlying Recno database was not created with the DB_RENUMBER flag. If the
DB_RENUMBER flag was specified, a new key is created, the current record and all records
after it are automatically renumbered, and the key of the new record is returned in the
structure to which the key parameter refers. The initial value of the key parameter is
ignored. See Db::open() (page 69) for more information.

The DB_BEFORE flag may not be specified to the Queue access method.

The Dbc::put() method will return DB_NOTFOUND if the current cursor record has already
been deleted and the underlying access method is Hash.

• DB_CURRENT

Overwrite the data of the key/data pair to which the cursor refers with the specified data
item. The key parameter is ignored.

The Dbc::put() method will return DB_NOTFOUND if the current cursor record has already
been deleted.

• DB_KEYFIRST

Insert the specified key/data pair into the database.

If the underlying database supports duplicate data items, and if the key already exists in
the database and a duplicate sort function has been specified, the inserted data item is
added in its sorted location. If the key already exists in the database and no duplicate sort
function has been specified, the inserted data item is added as the first of the data items
for that key.

• DB_KEYLAST

Insert the specified key/data pair into the database.

If the underlying database supports duplicate data items, and if the key already exists in
the database and a duplicate sort function has been specified, the inserted data item is
added in its sorted location. If the key already exists in the database, and no duplicate sort
function has been specified, the inserted data item is added as the last of the data items
for that key.

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 184

• DB_NODUPDATA

In the case of the Btree and Hash access methods, insert the specified key/data pair into
the database, unless a key/data pair comparing equally to it already exists in the database.
If a matching key/data pair already exists in the database, DB_KEYEXIST (page 184) is
returned. The DB_NODUPDATA flag may only be specified if the underlying database has
been configured to support sorted duplicate data items.

The DB_NODUPDATA flag may not be specified to the Queue or Recno access methods.

Errors

The Dbc::put() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DB_KEYEXIST

An attempt was made to insert a duplicate key into a database not configured for duplicate
data.

DB_FOREIGN_CONFLICT

A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for
that record does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 11) was declared for a foreign key database, and then
subsequently a record was deleted from the foreign key database without first removing
it from the constrained secondary database.

DB_HEAP_FULL

An attempt was made to add or update a record in a Heap database. However, the size of the
database was constrained using the Db::set_heapsize() (page 121) method, and that limit has
been reached.

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 185

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw
a DbRepHandleDeadException (page 326) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

EACCES

An attempt was made to modify a read-only database.

EINVAL

If the DB_AFTER, DB_BEFORE or DB_CURRENT flags were specified and the cursor has not been
initialized; the DB_AFTER or DB_BEFORE flags were specified and a duplicate sort function
has been specified; the DB_CURRENT flag was specified, a duplicate sort function has been
specified, and the data item of the referenced key/data pair does not compare equally to the
data parameter; the DB_AFTER or DB_BEFORE flags were specified, and the underlying access
method is Queue; an attempt was made to add a record to a fixed-length database that was
too large to fit; an attempt was made to add a record to a secondary index; or if an invalid
flag value or parameter was specified.

EPERM

Write attempted on read-only cursor when the DB_INIT_CDB flag was specified to
DbEnv::open() (page 252).

Class

Dbc

See Also

Database Cursors and Related Methods (page 160)

Library Version 11.2.5.2 The Dbc Handle

6/10/2011 DB C++ API Page 186

Dbc::set_priority()
#include <db_cxx.h>

int
Dbc::set_priority(DB_CACHE_PRIORITY priority);

Set the cache priority for pages referenced by the Dbc handle.

The priority of a page biases the replacement algorithm to be more or less likely to discard a
page when space is needed in the buffer pool. The bias is temporary, and pages will eventually
be discarded if they are not referenced again. The Dbc::set_priority() method is only
advisory, and does not guarantee pages will be treated in a specific way.

The Dbc::set_priority() method may be called at any time during the life of the
application.

The Dbc::set_priority() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priority

The priority parameter must be set to one of the following values:

• DB_PRIORITY_VERY_LOW

The lowest priority: pages are the most likely to be discarded.

• DB_PRIORITY_LOW

The next lowest priority.

• DB_PRIORITY_DEFAULT

The default priority.

• DB_PRIORITY_HIGH

The next highest priority.

• DB_PRIORITY_VERY_HIGH

The highest priority: pages are the least likely to be discarded.

Class

Dbc

See Also

Database Cursors and Related Methods (page 160)

6/10/2011 DB C++ API Page 187

Chapter 4. The Dbt Handle
#include <db_cxx.h>

class Dbt {
public:
 Dbt(void *data, size_t size);
 Dbt();
 Dbt(const Dbt &);
 Dbt &operator = (const Dbt &);
 ~Dbt();

 void *get_data() const;
 void set_data(void *);

 u_int32_t get_size() const;
 void set_size(u_int32_t);

 u_int32_t get_ulen() const;
 void set_ulen(u_int32_t);

 u_int32_t get_dlen() const;
 void set_dlen(u_int32_t);

 u_int32_t get_doff() const;
 void set_doff(u_int32_t);

 u_int32_t get_flags() const;
 void set_flags(u_int32_t);

 DBT *Dbt::get_DBT();
 const DBT *Dbt::get_const_DBT() const;
 static Dbt *Dbt::get_Dbt(DBT *dbt);
 static const Dbt *Dbt::get_const_Dbt(const DBT *dbt);
};

The Dbt class is used to encode key and data items in a Berkeley DB database.

Storage and retrieval for the Db access methods are based on key/data pairs. Both key and
data items are represented by Dbt objects. Key and data byte strings may refer to strings
of zero length up to strings of essentially unlimited length. See Database limits for more
information.

In the case when the flags structure element is set to 0, when the application is providing
Berkeley DB a key or data item to store into the database, Berkeley DB expects the data
object to point to a byte string of size bytes. When returning a key/data item to the
application, Berkeley DB will store into the data object a pointer to a byte string of size
bytes, and the memory to which the pointer refers will be allocated and managed by Berkeley
DB. Note that using the default flags for returned Dbts is only compatible with single threaded
usage of Berkeley DB.

../../programmer_reference/am_misc_dbsizes.html

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 188

Access to Dbt objects is not re-entrant. In particular, if multiple threads simultaneously access
the same Dbt object using Db API calls, the results are undefined, and may result in a crash.
One easy way to avoid problems is to use Dbt objects that are constructed as stack variables.

Each Dbt object has an associated DBT struct, which is used by the underlying implementation
of Berkeley DB and its C-language API. The Dbt::get_DBT() method returns a pointer to this
struct. Given a const Dbt object, Dbt::get_const_DBT() returns a const pointer to the same
struct.

Given a DBT struct, the Dbt::get_Dbt() method returns the corresponding Dbt object, if
there is one. If the DBT object was not associated with a Dbt (that is, it was not returned from
a call to Dbt::get_DBT()), then the result of Dbt::get_Dbt() is undefined. Given a const
DBT struct, Dbt::get_const_Dbt() returns the associated const Dbt object, if there is one.

These methods may be useful for Berkeley DB applications including both C and C++ language
software. It should not be necessary to use these calls in a purely C++ application.

• Dbt::set_data(void *data)

Set the data array.

The data parameter is an array of bytes to be used to set the content for the Dbt.

• Dbt::get_data()

Return the data array.

• Dbt::set_size(u_int32_t size)

Sets the byte size of the data array, in bytes.

• Dbt::get_size()

Return the data array size.

• Dbt::set_ulen(u_int32_t value)

Set the byte size of the user-specified buffer.

Note that applications can determine the length of a record by setting the ulen field to
0 and checking the return value in the size field. See the DB_DBT_USERMEM flag for more
information.

• Dbt::get_ulen()

Return the length in bytes of the user-specified buffer.

Note that applications can determine the length of a record by setting the ulen field to
0 and checking the return value in the size field. See the DB_DBT_USERMEM flag for more
information.

• Dbt::set_dlen(u_int32_t dlen)

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 189

Set the length of the partial record being read or written by the application, in bytes. See
the DB_DBT_PARTIAL flag for more information.

• Dbt::get_dlen()

Return the length of the partial record, in bytes.

• Dbt::set_doff(u_int32_t value)

Sets the offset of the partial record being read or written by the application, in bytes. See
the DB_DBT_PARTIAL flag for more information.

• Dbt::get_doff()

Return the offset of the partial record, in bytes.

• Dbt::set_flags(u_int32_t flags)

Set the object flag value.

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more
of the following values:

• DB_DBT_MALLOC

When this flag is set, Berkeley DB will allocate memory for the returned key or data item
(using malloc(3), or the user-specified malloc function), and return a pointer to it in the
data field of the key or data DBT structure. Because any allocated memory becomes the
responsibility of the calling application, the caller must determine whether memory was
allocated using the returned value of the data field.

It is an error to specify more than one of DB_DBT_MALLOC, DB_DBT_REALLOC, and
DB_DBT_USERMEM.

• DB_DBT_REALLOC

When this flag is set Berkeley DB will allocate memory for the returned key or data item
(using realloc(3), or the user-specified realloc function), and return a pointer to it in the
data field of the key or data DBT structure. Because any allocated memory becomes the
responsibility of the calling application, the caller must determine whether memory was
allocated using the returned value of the data field.

It is an error to specify more than one of DB_DBT_MALLOC, DB_DBT_REALLOC, and
DB_DBT_USERMEM.

• DB_DBT_USERMEM

The data field of the key or data structure must refer to memory that is at least
ulen bytes in length. If the length of the requested item is less than or equal to that
number of bytes, the item is copied into the memory to which the data field refers.

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 190

Otherwise, the size field is set to the length needed for the requested item, and the error
DB_BUFFER_SMALL is returned.

It is an error to specify more than one of DB_DBT_MALLOC, DB_DBT_REALLOC, and
DB_DBT_USERMEM.

If DB_DBT_MALLOC or DB_DBT_REALLOC is specified, Berkeley DB allocates a properly sized
byte array to contain the data. This can be convenient if you know little about the nature
of the data, specifically the size of data in the database. However, if your application
makes repeated calls to retrieve keys or data, you may notice increased garbage collection
due to this allocation. If you know the maximum size of data you are retrieving, you
might decrease the memory burden and speed your application by allocating your own
byte array and using DB_DBT_USERMEM. Even if you don't know the maximum size, you
can use this option and reallocate your array whenever your retrieval API call returns an
DB_BUFFER_SMALL error or throws an exception encapsulating an DB_BUFFER_SMALL.

• DB_DBT_PARTIAL

Do partial retrieval or storage of an item. If the calling application is doing a get, the
dlen bytes starting doff bytes from the beginning of the retrieved data record are
returned as if they comprised the entire record. If any or all of the specified bytes do not
exist in the record, the get is successful, and any existing bytes are returned.

For example, if the data portion of a retrieved record was 100 bytes, and a partial
retrieval was done using a DBT having a dlen field of 20 and a doff field of 85, the get call
would succeed, the data field would refer to the last 15 bytes of the record, and the size
field would be set to 15.

If the calling application is doing a put, the dlen bytes starting doff bytes from the
beginning of the specified key's data record are replaced by the data specified by the
data and size structure elements. If dlen is smaller than size the record will grow; if dlen
is larger than size the record will shrink. If the specified bytes do not exist, the record
will be extended using nul bytes as necessary, and the put call will succeed.

It is an error to attempt a partial put using the Db::put() (page 74) method in a database
that supports duplicate records. Partial puts in databases supporting duplicate records
must be done using a Dbc::put() (page 182) method.

It is an error to attempt a partial put with differing dlen and size values in Queue or
Recno databases with fixed-length records.

For example, if the data portion of a retrieved record was 100 bytes, and a partial put
was done using a DBT having a dlen field of 20, a doff field of 85, and a size field of 30,
the resulting record would be 115 bytes in length, where the last 30 bytes would be those
specified by the put call.

This flag is ignored when used with the pkey parameter on DB->pget() or DBcursor-
>pget().

• DB_DBT_APPMALLOC

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 191

After an application-supplied callback routine passed to either Db::associate() (page
6) or Db::set_append_recno() (page 85) is executed, the data field of a DBT may refer
to memory allocated with malloc(3) or realloc(3). In that case, the callback sets the
DB_DBT_APPMALLOC flag in the DBT so that Berkeley DB will call free(3) to deallocate the
memory when it is no longer required.

• DB_DBT_MULTIPLE

Set in a secondary key creation callback routine passed to Db::associate() (page 6) to
indicate that multiple secondary keys should be associated with the given primary key/
data pair. If set, the size field indicates the number of secondary keys and the data field
refers to an array of that number of DBT structures.

The DB_DBT_APPMALLOC flag may be set on any of the DBT structures to indicate that
their data field needs to be freed.

• DB_DBT_READONLY

When this flag is set Berkeley DB will not write into the DBT. This may be set on key
values in cases where the key is a static string that cannot be written and Berkeley DB
might try to update it because the application has set a user defined comparison function.

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 192

DBT and Bulk Operations

DBT and Bulk Operations Description

DbMultipleIterator Base class for bulk get retrieval

DbMultipleDataIterator Bulk retrieval iterator for data items

DbMultipleKeyDataIterator Bulk retrieval iterator for key/data pairs

DbMultipleRecnoDataIterator Bulk retrieval iterator for record number /
data item pairs

DbMultipleBuilder Base class for bulk buffer building

DbMultipleDataBuilder Bulk buffer builder for data items

DbMultipleKeyDataBuilder Bulk buffer builder for key/data pairs

DbMultipleRecnoDataBuilder Bulk buffer builder for record number / data
pairs

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 193

DbMultipleIterator
#include <db_cxx.h>

class DbMultipleIterator
{ };

The DbMultipleIterator class is a shared package-private base class for the three types of
bulk-return Iterator; it should never be instantiated directly, but it handles the functionality
shared by its subclasses.

Class

DbMultipleIterator

See Also

DBT and Bulk Operations (page 192)

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 194

DbMultipleDataIterator
#include <db_cxx.h>

class DbMultipleDataIterator
{
public:
 DbMultipleDataIterator(const Dbt &dbt);

 bool next(Dbt &data);
};

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the Db::get() (page
31) or Dbc::get() (page 173) methods, the data Dbt returned by those interfaces will refer to a
buffer that is filled with data. Access to that data is through the classes.

The DbMultipleDataIterator class is used to iterate through data returned using the
DB_MULTIPLE flag from a database belonging to any access method.

The constructor takes the The Dbt Handle (page 187) returned by the call to Db::get() (page
31) or Dbc::get() (page 173) that used the DB_MULTIPLE flag.

Note

All instances of the bulk retrieval classes may be used only once, and to traverse the
bulk retrieval buffer in the forward direction only. However, they are nondestructive,
so multiple iterators can be instantiated and used on the same returned data Dbt.

Parameters are:

• dbt

The dbt parameter is a data The Dbt Handle (page 187) returned by the call to
Db::get() (page 31) or Dbc::get() (page 173) that used the DB_MULTIPLE flag.

DbMultipleDataIterator.next()

The DbMultipleDataIterator.next() method returns the next data item in the original bulk
retrieval buffer.

The DbMultipleDataIterator.next() method method returns false if no more data are
available, and true otherwise.

Parameters are:

• data

The data parameter is a The Dbt Handle (page 187) that will be filled in with a reference
to a buffer, a size, and an offset that together yield the next data item in the original bulk
retrieval buffer.

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 195

Class

DbMultipleIterator

See Also

DBT and Bulk Operations (page 192)

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 196

DbMultipleKeyDataIterator
#include <db_cxx.h>

class DbMultipleKeyDataIterator
{
public:
 DbMultipleKeyDataIterator(const Dbt &dbt);

 bool next(Dbt &key, Dbt &data);
};

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the Db::get() (page
31) or Dbc::get() (page 173) methods, the data Dbt returned by those interfaces will refer to a
buffer that is filled with data. Access to that data is through these classes.

The DbMultipleDataIterator class is used to iterate through data returned using the
DB_MULTIPLE_KEY flag from a database belonging to Btree or Hash access methods.

The constructor takes the The Dbt Handle (page 187) returned by the call to Db::get() (page
31) or Dbc::get() (page 173) that used the DB_MULTIPLE_KEY flag.

Note

All instances of the bulk retrieval classes may be used only once, and to traverse the
bulk retrieval buffer in the forward direction only. However, they are nondestructive,
so multiple iterators can be instantiated and used on the same returned data Dbt.

Parameters are:

• dbt

The dbt parameter is a data The Dbt Handle (page 187) returned by the call to
Db::get() (page 31) or Dbc::get() (page 173) that used the DB_MULTIPLE_KEY flag.

DbMultipleKeyDataIterator.next()

The DbMultipleKeyDataIterator.next() method returns the next data item in the original
bulk retrieval buffer.

The DbMultipleKeyDataIterator.next() method method returns false if no more data are
available, and true otherwise.

Parameters are:

• key

The key parameter is a The Dbt Handle (page 187) that will be filled in with a reference
to a buffer, a size, and an offset that together yield the next data item in the original bulk
retrieval buffer.

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 197

• data

The data parameter is a The Dbt Handle (page 187) that will be filled in with a reference
to a buffer, a size, and an offset that together yield the next data item in the original bulk
retrieval buffer.

Class

DbMultipleIterator

See Also

DBT and Bulk Operations (page 192)

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 198

DbMultipleRecnoDataIterator
#include <db_cxx.h>

class DbMultipleRecnoDataIterator
{
public:
 DbMultipleRecnoDataIterator(const Dbt &dbt);

 bool next(db_recno_t &key, Dbt &data);
};

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the Db::get() (page
31) or Dbc::get() (page 173) methods, the data Dbt returned by those interfaces will refer to a
buffer that is filled with data. Access to that data is through these classes.

The DbMultipleDataIterator class is used to iterate through data returned using the
DB_MULTIPLE_KEY flag from a database belonging to Queue or Recno access methods.

The constructor takes the The Dbt Handle (page 187) returned by the call to Db::get() (page
31) or Dbc::get() (page 173) that used the DB_MULTIPLE_KEY flag.

Note

All instances of the bulk retrieval classes may be used only once, and to traverse the
bulk retrieval buffer in the forward direction only. However, they are nondestructive,
so multiple iterators can be instantiated and used on the same returned data Dbt.

Parameters are:

• dbt

The dbt parameter is a data The Dbt Handle (page 187) returned by the call to
Db::get() (page 31) or Dbc::get() (page 173) that used the DB_MULTIPLE_KEY flag.

DbMultipleRecnoDataIterator.next()

The DbMultipleRecnoDataIterator.next() method returns the next data item in the
original bulk retrieval buffer.

The DbMultipleRecnoDataIterator.next() method method returns false if no more data
are available, and true otherwise.

Parameters are:

• key

The key parameter is a The Dbt Handle (page 187) that will be filled in with a reference
to a buffer, a size, and an offset that together yield the next data item in the original bulk
retrieval buffer.

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 199

• data

The data parameter is a The Dbt Handle (page 187) that will be filled in with a reference
to a buffer, a size, and an offset that together yield the next data item in the original bulk
retrieval buffer.

Class

DbMultipleIterator

See Also

DBT and Bulk Operations (page 192)

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 200

DbMultipleBuilder
#include <db_cxx.h>

class DbMultipleBuilder
{ };

The DbMultipleBuilder class is a shared package-private base class for the three types of
bulk buffer builders; it should never be instantiated directly, but it handles the functionality
shared by its subclasses.

Class

Dbt

See Also

DBT and Bulk Operations (page 192)

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 201

DbMultipleDataBuilder
#include <db_cxx.h>

class DbMultipleDataBuilder
{
public:
 DbMultipleDataBuilder(Dbt &dbt);

 bool append(void *dbuf, size_t dlen);
 bool reserve(void *&ddest, size_t dlen);
};

This class builds a bulk buffer for use when the DB_MULTIPLE flag is specified to either
the Db::put() (page 74) or Db::del() (page 23) methods. The buffer in the Dbt passed
to the constructor is filled by calls to DbMultipleDataBuilder.append() (page 201) or
DbMultipleDataBuilder.reserve() (page 202).

The constructor takes a The Dbt Handle (page 187) that must be configured to contain a
buffer managed by the application, with the ulen field set to the size of the buffer.

Note

All instances of the bulk retrieval classes may be used only once, and to build the bulk
buffer in the forward direction only.

Parameters are:

• dbt

The dbt parameter is a The Dbt Handle (page 187) that must already be configured to
contain a buffer managed by the application, with the ulen field set to the size of the
buffer, which must be a multiple of 4.

DbMultipleDataBuilder.append()

The DbMultipleDataBuilder.append() method copies a data item to the end of the buffer.

The DbMultipleDataBuilder.append() method returns false if the data does not fit in the
buffer and true otherwise.

Parameters are:

• dbuf

A pointer to the data to be copied into the bulk buffer.

• dlen

The number of bytes to be copied.

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 202

DbMultipleDataBuilder.reserve()

The DbMultipleDataBuilder.reserve() method reserves space for the next data item
in the bulk buffer. Unlike the append(), no data is actually copied into the bulk buffer by
reserve(): copying the data is the responsibility of the application.

The DbMultipleDataBuilder.reserve() method returns false if the data does not fit in the
buffer and true otherwise.

Parameters are:

• ddest

Set to a pointer to the position in the bulk buffer reserved for the data item, if enough
space is available.

• dlen

The number of bytes to reserve.

Class

Dbt

See Also

DBT and Bulk Operations (page 192)

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 203

DbMultipleKeyDataBuilder
#include <db_cxx.h>

class DbMultipleKeyDataBuilder
{
public:
 DbMultipleKeyDataBuilder(Dbt &dbt);

 bool append(void *kbuf, size_t klen, void *dbuf, size_t dlen);
 bool reserve(void *&kdest, size_t klen, void *&ddest, size_t dlen);
};

This class builds a bulk buffer for use when the DB_MULTIPLE_KEY flag is specified to
either the Db::put() (page 74) or Db::del() (page 23) methods with the btree or hash
access methods. The buffer in the Dbt passed to the constructor is filled by calls to
DbMultipleKeyDataBuilder.append() (page 203) or DbMultipleKeyDataBuilder.reserve() (page
204).

The constructor takes a The Dbt Handle (page 187) that must be configured to contain a
buffer managed by the application, with the ulen field set to the size of the buffer.

Note

All instances of the bulk retrieval classes may be used only once, and to build the bulk
buffer in the forward direction only.

Parameters are:

• dbt

The dbt parameter is a The Dbt Handle (page 187) that must already be configured to
contain a buffer managed by the application, with the ulen field set to the size of the
buffer, which must be a multiple of 4.

DbMultipleKeyDataBuilder.append()

The DbMultipleKeyDataBuilder.append() method copies a key/data pair to the end of the
buffer.

The DbMultipleKeyDataBuilder.append() method returns false if the key/data pair does
not fit in the buffer and true otherwise.

Parameters are:

• kbuf

A pointer to the key to be copied into the bulk buffer.

• klen

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 204

The number of bytes of the key to be copied.

• dbuf

A pointer to the data item to be copied into the bulk buffer.

• dlen

The number of bytes of the data item to be copied.

DbMultipleKeyDataBuilder.reserve()

The DbMultipleKeyDataBuilder.reserve() method reserves space for the next key/data
pair in the bulk buffer. Unlike the append(), no data is actually copied into the bulk buffer by
reserve(): copying the data is the responsibility of the application.

The DbMultipleKeyDataBuilder.reserve() method returns false if the data does not fit in
the buffer and true otherwise.

Parameters are:

• kdest

Set to a pointer to the position in the bulk buffer reserved for the key, if enough space is
available.

• klen

The number of bytes to reserve for the key.

• ddest

Set to a pointer to the position in the bulk buffer reserved for the data item, if enough
space is available.

• dlen

The number of bytes to reserve for the data item.

Class

DbMultipleBuilder

See Also

DBT and Bulk Operations (page 192)

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 205

DbMultipleRecnoDataBuilder
#include <db_cxx.h>

class DbMultipleRecnoDataBuilder
{
public:
 DbMultipleRecnoDataBuilder(Dbt &dbt);

 bool append(db_recno_t recno, void *dbuf, size_t dlen);
 bool reserve(db_recno_t recno, void *&ddest, size_t dlen);
};

This class builds a bulk buffer for use when the DB_MULTIPLE_KEY flag is specified to either
the Db::put() (page 74) or Db::del() (page 23) methods with the recno or queue access
methods, or for the key when the DB_MULTIPLE flag is used. The buffer in the Dbt passed
to the constructor is filled by calls to DbMultipleRecnoDataBuilder.append() (page 205) or
DbMultipleRecnoDataBuilder.reserve() (page 206).

The constructor takes a The Dbt Handle (page 187) that must be configured to contain a
buffer managed by the application, with the ulen field set to the size of the buffer.

Note

All instances of the bulk retrieval classes may be used only once, and to build the bulk
buffer in the forward direction only.

Parameters are:

• dbt

The dbt parameter is a The Dbt Handle (page 187) that must already be configured to
contain a buffer managed by the application, with the ulen field set to the size of the
buffer, which must be a multiple of 4.

bool append(db_recno_t recno, void *dbuf, size_t dlen);

DbMultipleRecnoDataBuilder.append()

The DbMultipleRecnoDataBuilder.append() method copies a record number / data pair to
the end of the buffer.

The DbMultipleRecnoDataBuilder.append() method returns false if the record number /
data pair does not fit in the buffer and true otherwise.

Parameters are:

• recno

The record number to append.

Library Version 11.2.5.2 The Dbt Handle

6/10/2011 DB C++ API Page 206

• dbuf

A pointer to the data item to be copied into the bulk buffer.

• dlen

The number of bytes of the data item to be copied.

DbMultipleRecnoDataBuilder.reserve()

The DbMultipleRecnoDataBuilder.reserve() method reserves space for the next record
number / data pair in the bulk buffer. The record number is appended, but unlike the
append(), the data is not copied into the bulk buffer by reserve(): copying the data is the
responsibility of the application.

The DbMultipleRecnoDataBuilder.reserve() method returns false if the record does not
fit in the buffer and true otherwise.

Parameters are:

• recno

The record number to append.

• ddest

Set to a pointer to the position in the bulk buffer reserved for the data item, if enough
space is available.

• dlen

The number of bytes to reserve for the data item.

Class

DbMultipleBuilder

See Also

DBT and Bulk Operations (page 192)

6/10/2011 DB C++ API Page 207

Chapter 5. The DbEnv Handle
The DbEnv object is the handle for a Berkeley DB environment — a collection including support
for some or all of caching, locking, logging and transaction subsystems, as well as databases
and log files. Methods of the DbEnv handle are used to configure the environment as well as to
operate on subsystems and databases in the environment.

DbEnv handles are opened using the DbEnv::open() (page 252) method.

When you are done using your environment, close it using the DbEnv::close() (page 213)
method. Before closing your environment, make sure all open database handles are closed
first. See the Db::close() (page 13) method for more information.

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 208

Database Environments and Related Methods

Database Environment Operations Description

Db::get_env() Return the Db's underlying DbEnv handle

DbEnv::close() Close an environment

DbEnv Create an environment handle

DbEnv::dbremove() Remove a database

DbEnv::dbrename() Rename a database

DbEnv::err() Error message

DbEnv::failchk() Check for thread failure

DbEnv::fileid_reset() Reset database file IDs

DbEnv::full_version() Return full version information

DbEnv::get_home() Return environment's home directory

DbEnv::get_open_flags() Return flags with which the environment was
opened

DbEnv::log_verify() Verify log files of an environment.

DbEnv::lsn_reset() Reset database file LSNs

DbEnv::open() Open an environment

DbEnv::remove() Remove an environment

DbEnv::stat_print() Environment statistics

DbEnv::strerror() Error strings

DbEnv::version() Return version information

Environment Configuration

DbEnv::add_data_dir() add an environment data directory

DbEnv::set_alloc() Set local space allocation functions

DbEnv::set_app_dispatch() Configure application recovery callback

DbEnv::set_data_dir(), DbEnv::get_data_dirs() Set/get the environment data directory

DbEnv::set_create_dir(),
DbEnv::get_create_dir()

add an environment data directory

DbEnv::set_encrypt(),
DbEnv::get_encrypt_flags()

Set/get the environment cryptographic key

DbEnv::set_event_notify() Set event notification callback

DbEnv::set_errcall() Set error message callbacks

DbEnv::set_errfile(), DbEnv::get_errfile() Set/get error message FILE

DbEnv::set_error_stream() Set C++ ostream used for error messages

DbEnv::set_errpfx(), DbEnv::get_errpfx() Set/get error message prefix

DbEnv::set_feedback() Set feedback callback

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 209

Database Environment Operations Description

DbEnv::set_flags(), DbEnv::get_flags() Environment configuration

DbEnv::set_intermediate_dir_mode(),
DbEnv::get_intermediate_dir_mode()

Set/get intermediate directory creation mode

DbEnv::set_isalive() Set thread is-alive callback

DbEnv::set_memory_init(),
DbEnv::get_memory_init()

Set/get initial memory allocation

DbEnv::set_memory_max(),
DbEnv::get_memory_max()

Set/get maximum memory allocation

DbEnv::set_message_stream() Set C++ ostream used for informational
messages

DbEnv::set_msgcall() Set informational message callback

DbEnv::set_msgfile(), DbEnv::get_msgfile() Set/get informational message FILE

DbEnv::set_shm_key(), DbEnv::get_shm_key() Set/get system memory shared segment ID

DbEnv::set_thread_count(),
DbEnv::get_thread_count()

Set/get approximate thread count

DbEnv::set_thread_id() Set thread of control ID function

DbEnv::set_thread_id_string() Set thread of control ID format function

DbEnv::set_timeout(), DbEnv::get_timeout() Set/get lock and transaction timeout

DbEnv::set_tmp_dir(), DbEnv::get_tmp_dir() Set/get the environment temporary file
directory

DbEnv::set_verbose(), DbEnv::get_verbose() Set/get verbose messages

DbEnv::set_cachesize(),
DbEnv::get_cachesize()

Set/get the environment cache size

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 210

Db::get_env()
#include <db_cxx.h>

DbEnv *
Db::get_env();

The Db::get_env() method returns the handle for the database environment underlying the
database.

The Db::get_env() method may be called at any time during the life of the application.

Class

Db

See Also

Database and Related Methods (page 3)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 211

DbEnv::add_data_dir()
#include <db_cxx.h>

int
DbEnv::add_data_dir(const char *dir);

Add the path of a directory to be used as the location of the access method database files.
Paths specified to the Db::open() (page 69) function will be searched relative to this path.
Paths set using this method are additive, and specifying more than one will result in each
specified directory being searched for database files.

If no database directories are specified, database files must be named either by absolute
paths or relative to the environment home directory. See Berkeley DB File Naming for more
information.

The database environment's data directories may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"add_data_dir", one or more whitespace characters, and the directory name. Note that if you
use this method for your application, and you also want to use the db_recover (page 662),
db_printlog (page 660), db_archive (page 640), or db_log_verify (page 657) utilities, then
you should set create a DB_CONFIG file and set the "add_data_dir" parameter in it.

The DbEnv::add_data_dir() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv::add_data_dir() method may not be called after the DbEnv::open() (page 252)
method is called. If the database environment already exists when DbEnv::open() (page 252)
is called, the information specified to DbEnv::add_data_dir() must be consistent with the
existing environment or corruption can occur.

The DbEnv::add_data_dir() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dir

The dir parameter is a directory to be used as a location for database files.

When using a Unicode build on Windows (the default), this argument will be interpreted as a
UTF-8 string, which is equivalent to ASCII for Latin characters.

Errors

The DbEnv::add_data_dir() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag
value or parameter was specified.

../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 212

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 213

DbEnv::close()
#include <db_cxx.h>

DbEnv::close(u_int32_t flags);

The DbEnv::close() method closes the Berkeley DB environment, freeing any allocated
resources and closing all database handles opened with this environment handle, as well as
closing any underlying subsystems.

When you call the DbEnv::close() method, all open Db handles and Dbc handles are closed
automatically by this function. And, when you close a database handle, all cursors opened
with it are closed automatically.

In multiple threads of control, each thread of control opens a database environment
and the database handles within it. When you close each database handle using the
DbEnv::close() method, by default, the database is not synchronized and is similar
to calling the Db::close(DB_NOSYNC) method. This is to avoid unncessary database
synchronization when there are multiple environment handles open. To ensure all open
database handles are synchronized when you close the last environment handle, set the flag
parameter value of the DbEnv::close() method to DB_FORCESYNC. This is similar to calling
the Db::close(0) method to close each database handle.

If a database close operation fails, the method returns a non-zero error value for the first
instance of such an error, and continues to close the rest of the database and environment
handles.

The DbEnv handle should not be closed while any other handle that refers to it is not yet
closed; for example, database environment handles must not be closed while transactions
in the environment have not yet been committed or aborted. Specifically, this includes the
DbTxn, DbLogc and DbMpoolFile handles.

Where the environment was initialized with the DB_INIT_LOCK flag, calling DbEnv::close()
does not release any locks still held by the closing process, providing functionality for long-
lived locks. Processes that want to have all their locks released can do so by issuing the
appropriate DbEnv::lock_vec() (page 368) call.

Where the environment was initialized with the DB_INIT_MPOOL flag, calling DbEnv::close()
implies calls to DbMpoolFile::close() (page 447) for any remaining open files in the memory
pool that were returned to this process by calls to DbMpoolFile::open() (page 451). It does
not imply a call to DbMpoolFile::sync() (page 455) for those files.

Where the environment was initialized with the DB_INIT_TXN flag, calling DbEnv::close()
aborts any unresolved transactions. Applications should not depend on this behavior for
transactions involving Berkeley DB databases; all such transactions should be explicitly
resolved. The problem with depending on this semantic is that aborting an unresolved
transaction involving database operations requires a database handle. Because the database
handles should have been closed before calling DbEnv::close(), it will not be possible to
abort the transaction, and recovery will have to be run on the Berkeley DB environment
before further operations are done.

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 214

Where log cursors were created using the DbEnv::log_cursor() (page 381) method, calling
DbEnv::close() does not imply closing those cursors.

In multithreaded applications, only a single thread may call the DbEnv::close() method.

After DbEnv::close() has been called, regardless of its return, the Berkeley DB environment
handle may not be accessed again.

The DbEnv::close() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or be set to the following value:

• DB_FORCESYNC

When closing each database handle internally, synchronize the database. If this flag is not
specified, the database handle is closed without synchronizing the database.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 215

DbEnv
#include <db_cxx.h>

class DbEnv {
public:
 DbEnv(u_int32 flags);
 ~DbEnv();

 DB_ENV *DbEnv::get_DB_ENV();
 const DB_ENV *DbEnv::get_const_DB_ENV() const;
 static DbEnv *DbEnv::get_DbEnv(DB_ENV *dbenv);
 static const DbEnv *DbEnv::get_const_DbEnv(const DB_ENV *dbenv);
 ...
};

The DbEnv object is the handle for a Berkeley DB environment — a collection including support
for some or all of caching, locking, logging and transaction subsystems, as well as databases
and log files. Methods of the DbEnv handle are used to configure the environment as well as to
operate on subsystems and databases in the environment.

DbEnv handles are free-threaded if the DB_THREAD flag is specified to the
DbEnv::open() (page 252) method when the environment is opened. The DbEnv handle
should not be closed while any other handle remains open that is using it as a reference (for
example, Db or DbTxn). Once either the DbEnv::close() (page 213) or DbEnv::remove() (page
258) methods are called, the handle may not be accessed again, regardless of the method's
return.

The constructor creates the DbEnv object. The constructor allocates memory internally;
calling the DbEnv::close() (page 213) or DbEnv::remove() (page 258) methods will free that
memory.

Before the handle may be used, you must open it using the DbEnv::open() (page 252)
method.

The flags parameter must be set to 0.

• DB_CXX_NO_EXCEPTIONS

The Berkeley DB C++ API supports two different error behaviors. By default, whenever an
error occurs, an exception is thrown that encapsulates the error information. This generally
allows for cleaner logic for transaction processing because a try block can surround a single
transaction. However, if DB_CXX_NO_EXCEPTIONS is specified, exceptions are not thrown;
instead, each individual function returns an error code.

Each DbEnv object has an associated DB_ENV structure, which is used by the underlying
implementation of Berkeley DB and its C-language API. The DbEnv::get_DB_ENV() method
returns a pointer to this struct. Given a const DbEnv object, DbEnv::get_const_DB_ENV()
returns a const pointer to the same struct.

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 216

Given a DB_ENV struct, the DbEnv::get_DbEnv() method returns the corresponding DbEnv
object, if there is one. If the DB_ENV struct was not associated with a DbEnv (that is, it was
not returned from a call to DbEnv::get_DB_ENV()), then the result of DbEnv::get_DbEnv()
is undefined. Given a const DB_ENV struct, DbEnv::get_const_Db_Env() returns the
associated const DbEnv object, if there is one.

These methods may be useful for Berkeley DB applications including both C and C++ language
software. It should not be necessary to use these calls in a purely C++ application.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 217

DbEnv::dbremove()
#include <db_cxx.h>

int
DbEnv::dbremove(DbTxn *txnid,
 const char *file, const char *database, u_int32_t flags);

The DbEnv::dbremove() method removes the database specified by the file and database
parameters. If no database is specified, the underlying file represented by file is removed,
incidentally removing all of the databases it contained.

Applications should never remove databases with open Db handles, or in the case of removing
a file, when any database in the file has an open handle.

The DbEnv::dbremove() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

DbEnv::dbremove() is affected by any database directory specified using the
DbEnv::set_data_dir() (page 264) method, or by setting the set_data_dir string in the
environment's DB_CONFIG file.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 613); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 605); otherwise NULL. If no transaction handle is specified,
but the DB_AUTO_COMMIT flag is specified to either this method or the environment handle,
the operation will be implicitly transaction protected.

file

The file parameter is the physical file which contains the database(s) to be removed.

database

The database parameter is the database to be removed.

flags

The flags parameter must be set to 0 or the following value:

• DB_AUTO_COMMIT

Enclose the DbEnv::dbremove() call within a transaction. If the call succeeds, changes
made by the operation will be recoverable. If the call fails, the operation will have made no
changes.

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 218

Environment Variables

The environment variable DB_HOME may be used as the path of the database environment
home.

Errors

The DbEnv::dbremove() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If the method was called before DbEnv::open() (page 252) was called; or if an invalid flag
value or parameter was specified.

ENOENT

The file or directory does not exist.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 219

DbEnv::dbrename()
#include <db_cxx.h>

int
DbEnv::dbrename(DbTxn *txnid, const char *file,
 const char *database, const char *newname, u_int32_t flags);

The DbEnv::dbrename() method renames the database specified by the file and database
parameters to newname. If no database is specified, the underlying file represented by file is
renamed using the value supplied to newname, incidentally renaming all of the databases it
contained.

Applications should not rename databases that are currently in use. If an underlying file is
being renamed and logging is currently enabled in the database environment, no database in
the file may be open when the DbEnv::dbrename() method is called.

The DbEnv::dbrename() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

DbEnv::dbrename() is affected by any database directory specified using the
DbEnv::set_data_dir() (page 264) method, or by setting the set_data_dir string in the
environment's DB_CONFIG file.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 613); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 605); otherwise NULL. If no transaction handle is specified,
but the DB_AUTO_COMMIT flag is specified to either this method or the environment handle,
the operation will be implicitly transaction protected.

file

The file parameter is the physical file which contains the database(s) to be renamed.

When using a Unicode build on Windows (the default), the file argument will be interpreted as
a UTF-8 string, which is equivalent to ASCII for Latin characters.

database

The database parameter is the database to be renamed.

newname

The newname parameter is the new name of the database or file.

flags

The flags parameter must be set to 0 or the following value:

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 220

• DB_AUTO_COMMIT

Enclose the DbEnv::dbrename() call within a transaction. If the call succeeds, changes
made by the operation will be recoverable. If the call fails, the operation will have made no
changes.

Environment Variables

The environment variable DB_HOME may be used as the path of the database environment
home.

Errors

The DbEnv::dbrename() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If the method was called before DbEnv::open() (page 252) was called; or if an invalid flag
value or parameter was specified.

ENOENT

The file or directory does not exist.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 221

DbEnv::err()
#include <db_cxx.h>

DbEnv::err(int error, const char *fmt, ...);

DbEnv::errx(const char *fmt, ...);

The DbEnv::err(), DbEnv::errx,(), Db::err() (page 26) and Db::errx() methods provide
error-messaging functionality for applications written using the Berkeley DB library.

The Db::err() (page 26) and DbEnv::err() (page 221) methods constructs an error message
consisting of the following elements:

• An optional prefix string

If no error callback function has been set using the DbEnv::set_errcall() (page 275)
method, any prefix string specified using the DbEnv::set_errpfx() (page 280) method,
followed by two separating characters: a colon and a <space> character.

• An optional printf-style message

The supplied message fmt, if non-NULL, in which the ANSI C X3.159-1989 (ANSI C) printf
function specifies how subsequent parameters are converted for output.

• A separator

Two separating characters: a colon and a <space> character.

• A standard error string

The standard system or Berkeley DB library error string associated with the error value, as
returned by the DbEnv::strerror() (page 318) method.

This constructed error message is then handled as follows:

• If an error callback function has been set (see Db::set_errcall() (page 102) and
DbEnv::set_errcall() (page 275)), that function is called with two parameters: any prefix
string specified (see Db::set_errpfx() (page 107) and DbEnv::set_errpfx() (page 280)) and
the error message.

• If a C library FILE * has been set (see Db::set_errfile() (page 104) and
DbEnv::set_errfile() (page 277)), the error message is written to that output stream.

• If a C++ ostream has been set (see DbEnv::set_error_stream() (page 279) and
Db::set_error_stream() (page 106)), the error message is written to that stream.

• If none of these output options have been configured, the error message is written to stderr,
the standard error output stream.

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 222

Parameters

error

The error parameter is the error value for which the DbEnv::err() and Db::err() (page 26)
methods will display a explanatory string.

fmt

The fmt parameter is an optional printf-style message to display.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 223

DbEnv::failchk()
#include <db_cxx.h>

int
DbEnv::failchk(u_int32_t flags);

The DbEnv::failchk() method checks for threads of control (either a true thread or a
process) that have exited while manipulating Berkeley DB library data structures, while
holding a logical database lock, or with an unresolved transaction (that is, a transaction that
was never aborted or committed). For more information, see Architecting Data Store and
Concurrent Data Store applications, and Architecting Transactional Data Store applications,
both in the Berkeley DB Programmer's Reference Guide.

The DbEnv::failchk() method is used in conjunction with the
DbEnv::set_thread_count() (page 304), DbEnv::set_isalive() (page 292) and
DbEnv::set_thread_id() (page 306) methods. Before calling the failchk()method,
applications must:

1. Configure their database using the DbEnv::set_thread_count() (page 304) method.

2. Establish an is_alive() function and invoke DbEnv::set_isalive() (page 292) with that
function as the is_alive parameter.

3. Establish a thread_id function and invoke DbEnv::set_thread_id() (page 306) with that
function as the thread_id parameter.

If any of these methods are omitted, a program may be unable to allocate a thread control
block. This is true of the standalone Berkeley DB utility programs. To avoid problems when
using the standalone Berkeley DB utility programs with environments configured for failure
checking, incorporate the utility's functionality directly in the application, or call the
DbEnv::failchk() method along with its associated methods before running the utility.

If DbEnv::failchk() determines a thread of control exited while holding database read
locks, it will release those locks. If DbEnv::failchk() determines a thread of control exited
with an unresolved transaction, the transaction will be aborted. In either of these cases,
DbEnv::failchk() will return 0 and the application may continue to use the database
environment.

In either of these cases, the DbEnv::failchk() method will also report the process and
thread IDs associated with any released locks or aborted transactions. The information
is printed to a specified output channel (see the DbEnv::set_msgfile() (page 301)
method for more information), or passed to an application callback function (see the
DbEnv::set_msgcall() (page 299) method for more information).

If DbEnv::failchk() determines a thread of control has exited such that database
environment recovery is required, it will return DB_RUNRECOVERY. In this case, the
application should not continue to use the database environment. For a further description
as to the actions the application should take when this failure occurs, see Handling failure in
Data Store and Concurrent Data Store applications, and Handling failure in Transactional Data
Store applications, both in the Berkeley DB Programmer's Reference Guide.

../../programmer_reference/cam_app.html
../../programmer_reference/cam_app.html
../../programmer_reference/transapp_app.html
../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/cam_fail.html
../../programmer_reference/cam_fail.html
../../programmer_reference/transapp_fail.html
../../programmer_reference/transapp_fail.html

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 224

In multiprocess applications, it is recommended that the DbEnv handle used to invoke the
DbEnv::failchk() method not be shared and therefore not free-threaded.

The DbEnv::failchk() method may not be called by the application before the
DbEnv::open() (page 252) method is called.

The DbEnv::failchk() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DbEnv::failchk() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 225

DbEnv::fileid_reset()
#include <db_cxx.h>

int
DbEnv::fileid_reset(const char *file, u_int32_t flags);

The DbEnv::fileid_reset() method allows database files to be copied, and then the copy
used in the same database environment as the original.

All databases contain an ID string used to identify the database in the database environment
cache. If a physical database file is copied, and used in the same environment as another file
with the same ID strings, corruption can occur. The DbEnv::fileid_reset() method creates
new ID strings for all of the databases in the physical file.

The DbEnv::fileid_reset() method modifies the physical file, in-place. Applications should
not reset IDs in files that are currently in use.

The DbEnv::fileid_reset() method may be called at any time during the life of the
application.

The DbEnv::fileid_reset() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

file

The name of the physical file in which new file IDs are to be created.

flags

The flags parameter must be set to 0 or the following value:

• DB_ENCRYPT

The file contains encrypted databases.

Errors

The DbEnv::fileid_reset() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 226

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 227

DbEnv::full_version()
#include <db_cxx.h>

static char *
DbEnv::full_version(int *family, int *release, int *major, int *minor,
 int *patch);

The DbEnv::full_version() method returns a pointer to a string, suitable for display,
containing Berkeley DB version information. The string includes Oracle family and release
numbers, as well as Berkeley DB's traditional major, minor, and patch numbers.

Parameters

family

If family is non-NULL, the Oracle family number of the Berkeley DB release is copied to the
memory to which it refers.

release

If release is non-NULL, the Oracle release number of the Berkeley DB release is copied to the
memory to which it refers.

major

If major is non-NULL, the major version of the Berkeley DB release is copied to the memory to
which it refers.

minor

If minor is non-NULL, the minor version of the Berkeley DB release is copied to the memory to
which it refers.

patch

If patch is non-NULL, the patch version of the Berkeley DB release is copied to the memory to
which it refers.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 228

DbEnv::get_create_dir()
#include <db_cxx.h>

int
DbEnv::get_create_dir(const char **dirp);

The DbEnv::get_create_dir() method returns a pointer to the name of the directory to
create databases in.

The DbEnv::get_create_dir() method may be called at any time during the life of the
application.

The DbEnv::get_create_dir() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dirp

The DbEnv::get_create_dir() method returns a ponter to the name of the directory in
dirp.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 229

DbEnv::get_data_dirs()
#include <db_cxx.h>

int
DbEnv::get_data_dirs(const char ***dirpp);

The DbEnv::get_data_dirs() method returns the NULL-terminated array of directories.

The DbEnv::get_data_dirs() method may be called at any time during the life of the
application.

The DbEnv::get_data_dirs() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dirpp

The DbEnv::get_data_dirs() method returns a reference to the NULL-terminated array of
directories in dirpp.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 230

DbEnv::get_encrypt_flags()
#include <db_cxx.h>

int
DbEnv::get_encrypt_flags(u_int32_t *flagsp);

The DbEnv::get_encrypt_flags() method returns the encryption flags.

The DbEnv::get_encrypt_flags() method may be called at any time during the life of the
application.

The DbEnv::get_encrypt_flags() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The DbEnv::get_encrypt_flags() method returns the encryption flags in flagsp.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 231

DbEnv::get_errfile()
#include <db_cxx.h>

void
DbEnv::get_errfile(FILE **errfilep);

The DbEnv::get_errfile() method returns the FILE * used for displaying additional Berkeley
DB error messages. This C library is set using the DbEnv::set_errfile() (page 277) method.

The DbEnv::get_errfile() method may be called at any time during the life of the
application.

Parameters

errfilep

The DbEnv::get_errfile() method returns the FILE * in errfilep.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 232

DbEnv::get_errpfx()
#include <db_cxx.h>

void
DbEnv::get_errpfx(const char **errpfxp);

The DbEnv::get_errpfx() method returns the error prefix that appears before error
messages issued by Berkeley DB. This error prefix is set using the DbEnv::set_errpfx() (page
280) method.

The DbEnv::get_errpfx() method may be called at any time during the life of the
application.

Parameters

errpfxp

The DbEnv::get_errpfx() method returns a reference to the error prefix in errpfxp.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 233

DbEnv::get_flags()
#include <db_cxx.h>

int
DbEnv::get_flags(u_int32_t *flagsp)

The DbEnv::get_flags() method returns the configuration flags set for a DbEnv handle.
These flags are set using the DbEnv::set_flags() (page 283) method.

The DbEnv::get_flags() method may be called at any time during the life of the
application.

The DbEnv::get_flags() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The DbEnv::get_flags() method returns the configuration flags in flagsp.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 234

DbEnv::get_home()
#include <db_cxx.h>

int
DbEnv::get_home(const char **homep);

The DbEnv::get_home() method returns the database environment home directory. This
directory is normally identified when the DbEnv::open() (page 252) method is called.

The DbEnv::get_home() method may be called at any time during the life of the application.

The DbEnv::get_home() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 235

DbEnv::get_intermediate_dir_mode()
#include <db_cxx.h>

int
DbEnv::get_intermediate_dir_mode(u_int32_t *modep);

The DbEnv::get_intermediate_dir_mode() method returns the intermediate directory
permissions.

Intermediate directories are directories needed for recovery. Normally, Berkeley DB does not
create these directories and will do so only if the DbEnv::set_intermediate_dir_mode() (page
290) method is called.

The DbEnv::get_intermediate_dir_mode() method may be called at any time during the
life of the application.

The DbEnv::get_intermediate_dir_mode() method returns a non-zero error value on
failure and 0 on success.

Parameters

modep

The DbEnv::get_intermediate_dir_mode() method returns a reference to the intermediate
directory permissions in modep.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 236

DbEnv::get_memory_init()
#include <db_cxx.h>

int
DbEnv::get_memory_init(DB_MEM_CONFIG struct, u_int32_t *countp);

The DbEnv::get_memory_init() method returns the number of objects to allocate and
initialize when an environment is created. The count is returned for a specific named
structure. The count for each structure is set using the DbEnv::set_memory_init() (page 294)
method.

The DbEnv::get_memory_init() method may be called at any time during the life of the
application.

The DbEnv::get_memory_init() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

struct

The struct parameter identifies the structure for which you want an object count returned. It
must be one of the following values:

• DB_MEM_LOCK

Initialize locks. A thread uses this structure to lock a page (or record for the QUEUE access
method) and hold it to the end of a transactions.

• DB_MEM_LOCKOBJECT

Initialize lock objects. For each page (or record) which is locked in the system, a lock object
will be allocated.

• DB_MEM_LOCKER

Initialize lockers. Each thread which is active in a transactional environment will use a
locker structure either for each transaction which is active, or for each non-transactional
cursor that is active.

• DB_MEM_LOGID

Initialize the log fileid structures. For each database handle which is opened for writing in a
transactional environment, a log fileid structure is used.

• DB_MEM_TRANSACTION

Initialize transaction structures. Each active transaction uses a transaction structure until it
either commits or aborts.

• DB_MEM_THREAD

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 237

Initialize thread identification structures. If thread tracking is enabled then each active
thread will use a structure. Note that since a thread does not signal the BDB library that
it will no longer be making calls, unused structures may accumulate until a cleanup is
triggered either using a high water mark or by running DbEnv::failchk() (page 223).

countp

The countp parameter references memory into which object count for which the specified
structure is copied.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 238

DbEnv::get_memory_max()
#include <db_cxx.h>

int
DbEnv::get_memory_max(u_int32_t *gbytesp, u_int32_t *bytesp);

The DbEnv::get_memory_max() method returns the maximum amount of memory to be used
by shared structures other than mutexes and the page cache (memory pool). This value is set
using the DbEnv::set_memory_max() (page 296) method.

The DbEnv::get_memory_max() method may be called at any time during the life of the
application.

The DbEnv::get_memory_max() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

gbytesp

The gbytesp parameter references memory into which is copied the maximum number of
gigabytes of memory that can be allocated.

bytesp

The bytesp parameter references memory into which is copied the additional bytes of
memory that can be allocated.

sizep

The sizep parameter references memory into which is copied the maximum number of bytes
to be allocated.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 239

DbEnv::get_msgfile()
#include <db_cxx.h>

void
DbEnv::get_msgfile(FILE **msgfilep);

The DbEnv::get_msgfile() method returns the FILE * used for displaying messages. This is
set using the DbEnv::set_msgfile() (page 301) method.

The DbEnv::get_msgfile() method may be called at any time during the life of the
application.

Parameters

msgfilep

The DbEnv::get_msgfile() method returns the FILE * in msgfilep.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208), DbEnv::set_msgfile() (page 301)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 240

DbEnv::get_open_flags()
#include <db_cxx.h>

int
DbEnv::get_open_flags(u_int32_t *flagsp);

The DbEnv::get_open_flags() method returns the open method flags originally used to
create the database environment.

The DbEnv::get_open_flags() method may not be called before the DbEnv::open()
method is called.

The DbEnv::get_open_flags() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The DbEnv::get_open_flags() method returns the open method flags originally used to
create the database environment in flagsp.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208), DbEnv::open() (page 252)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 241

DbEnv::get_shm_key()
#include <db_cxx.h>

int
DbEnv::get_shm_key(long *shm_keyp);

The DbEnv::get_shm_key() method returns the base segment ID. This is used for
Berkeley DB environment shared memory regions created in system memory on VxWorks or
systems supporting X/Open-style shared memory interfaces. It may be specified using the
DbEnv::set_shm_key() (page 302) method.

The DbEnv::get_shm_key() method may be called at any time during the life of the
application.

The DbEnv::get_shm_key() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

shm_keyp

The DbEnv::get_shm_key() method returns the base segment ID in shm_keyp.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208), DbEnv::set_shm_key() (page 302)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 242

DbEnv::get_thread_count()
#include <db_cxx.h>

int
DbEnv::get_thread_count(u_int32_t *countp);

The DbEnv::get_thread_count() method returns the thread count as set by the
DbEnv::set_thread_count() (page 304) method.

The DbEnv::get_thread_count() method may be called at any time during the life of the
application.

The DbEnv::get_thread_count() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

countp

The DbEnv::get_thread_count() method returns the thread count in countp.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208), DbEnv::set_thread_count() (page
304)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 243

DbEnv::get_timeout()
#include <db_cxx.h>

int
DbEnv::get_timeout(db_timeout_t *timeoutp, u_int32_t flag);

The DbEnv::get_timeout() method returns a value, in microseconds, representing either
lock or transaction timeouts. These values are set using the DbEnv::set_timeout() (page 310)
method.

The DbEnv::get_timeout() method may be called at any time during the life of the
application.

The DbEnv::get_timeout() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

timeoutp

The timeoutp parameter references memory into which the timeout value of the specified
flag parameter is copied.

flag

The flags parameter must be set to one of the following values:

• DB_SET_LOCK_TIMEOUT

Return the timeout value for locks in this database environment.

• DB_SET_REG_TIMEOUT

Return the timeout value for how long to wait for processes to exit the environment before
recovery is started. This flag only has meaning when the DbEnv::open() (page 252) method
was called with the DB_REGISTER flag and recovery must be performed.

• DB_SET_TXN_TIMEOUT

Return the timeout value for transactions in this database environment.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208), DbEnv::set_timeout() (page 310)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 244

DbEnv::get_tmp_dir()
#include <db_cxx.h>

int
DbEnv::get_tmp_dir(const char **dirp);

The DbEnv::get_tmp_dir() method returns the database environment temporary file
directory.

The DbEnv::get_tmp_dir() method may be called at any time during the life of the
application.

The DbEnv::get_tmp_dir() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dirp

The DbEnv::get_tmp_dir() method returns a reference to the database environment
temporary file directory in dirp.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208), DbEnv::set_tmp_dir() (page 312)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 245

DbEnv::get_verbose()
#include <db_cxx.h>

int
DbEnv::get_verbose(u_int32_t which, int *onoffp);

The DbEnv::get_verbose() method returns whether the specified which parameter is
currently set or not. These parameters are set using the DbEnv::set_verbose() (page 314)
method.

The DbEnv::get_verbose() method may be called at any time during the life of the
application.

The DbEnv::get_verbose() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

which

The which parameter is the message value for which configuration is being checked. Must be
set to one of the following values:

• DB_VERB_DEADLOCK

Display additional information when doing deadlock detection.

• DB_VERB_FILEOPS

Display additional information when performing filesystem operations such as open, close or
rename. May not be available on all platforms.

• DB_VERB_FILEOPS_ALL

Display additional information when performing all filesystem operations, including read and
write. May not be available on all platforms.

• DB_VERB_RECOVERY

Display additional information when performing recovery.

• DB_VERB_REGISTER

Display additional information concerning support for the DB_REGISTER flag to the
DbEnv::open() (page 252) method.

• DB_VERB_REPLICATION

Display all detailed information about replication. This includes the information displayed
by all of the other DB_VERB_REP_* and DB_VERB_REPMGR_* values.

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 246

• DB_VERB_REP_ELECT

Display detailed information about replication elections.

• DB_VERB_REP_LEASE

Display detailed information about replication master leases.

• DB_VERB_REP_MISC

Display detailed information about general replication processing not covered by the other
DB_VERB_REP_* values.

• DB_VERB_REP_MSGS

Display detailed information about replication message processing.

• DB_VERB_REP_SYNC

Display detailed information about replication client synchronization.

• DB_VERB_REP_SYSTEM

Saves replication system information to a system-owned file. This value is on by default.

• DB_VERB_REPMGR_CONNFAIL

Display detailed information about Replication Manager connection failures.

• DB_VERB_REPMGR_MISC

Display detailed information about general Replication Manager processing.

• DB_VERB_WAITSFOR

Display the waits-for table when doing deadlock detection.

onoffp

The onoffp parameter references memory into which the configuration of the specified which
parameter is copied.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 247

DbEnv::log_verify()
#include <db_cxx.h>
int
DbEnv::log_verify(DB_ENV *dbenv, const DB_LOG_VERIFY_CONFIG *config);

The DbEnv::log_verify() method verifies the integrity of the log records of an environment
and writes both error and normal messages to the error/message output facility of the
database environment handle.

The DbEnv::log_verify() method does not perform the locking function, even in Berkeley
DB environments that are configured with a locking subsystem. Because this function does
not access any database files, you can call it even when the environment has other threads of
control attached and running.

The DbEnv::log_verify() method returns DB_LOG_VERIFY_BAD when either log errors are
detected or the internal data storage layer does not work. It returns EINVAL if you specify
wrong configurations. Unless otherwise specified, the DbEnv::log_verify() method either
returns a non-zero error value or throws an exception that encapsulates a non-zero error value
on failure, and returns 0 on success.

Parameters

config

The configuration parameter of type DB_LOG_VERIFY_CONFIG is for the verification of log
files. A struct variable of this type must be memset to 0 before setting any configurations to
it.

DB_LOG_VERIFY_CONFIG members

struct __db_logvrfy_config {
int continue_after_fail, verbose;
u_int32_t cachesize;
const char *temp_envhome;
const char *dbfile, *dbname;
DB_LSN start_lsn, end_lsn;
time_t start_time, end_time;
};

continue_after_fail

The continue_after_fail parameter specifies whether or not continue the verification process
when an error in the log is detected.

verbose

The verbose parameter specifies whether or not to display verbose output during the
verification process.

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 248

cachesize

The cachesize parameter specifies the size of the cache of the temporary internal
environment in bytes.

temp_envhome

The temp_envhome parameter is the home directory of the temporary database environment
that is used internally during the verification. It can be NULL, meaning the environment and
all databases are in-memory.

dbfile

The dbfile parameter specifies that for log records involving a database file, only those
related to this database file are verified. Log records not involving database files are verified
regardless of this parameter.

dbname

The dbname parameter specifies that for log records involving a database file, only those
related to this database file are verified. Log records not involving database files are verified
regardless of this parameter.

start_lsn and end_lsn

The start_lsn and end_lsn parameters specify the range of log records from the entire log
set, that must be verified. Either of them can be [0][0], to specify an open ended range. If
both of them are [0][0] (by default) the entire log is verified.

start_time and end_time

The start_time and end_time parameters specify range of log records from the entire log
set that must be verified for a time range. Either of them can be 0, to specify an open ended
range. If both of them are 0 (by default), the entire log is verified.

Note that the time range specified is not precise, because such a time range is converted to
an lsn range based on the time points we know from transaction commits and checkpoints.

You can specify either an lsn range or a time range. You can neither specify both nor specify
an lsn and a time as a range.

Environment Variables

If the database is opened within a database environment, the environment variable DB_HOME
can be used as the path of the database environment home.

Errors

The DbEnv::log_verify() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 249

EINVAL or DB_LOG_VERIFY_BAD.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 250

DbEnv::lsn_reset()
#include <db_cxx.h>

int
DbEnv::lsn_reset(const char *file, u_int32_t flags);

The DbEnv::lsn_reset() method allows database files to be moved from one transactional
database environment to another.

Database pages in transactional database environments contain references to the
environment's log files (that is, log sequence numbers, or LSNs). Copying or moving a database
file from one database environment to another, and then modifying it, can result in data
corruption if the LSNs are not first cleared.

Note that LSNs should be reset before moving or copying the database file into a new
database environment, rather than moving or copying the database file and then resetting
the LSNs. Berkeley DB has consistency checks that may be triggered if an application calls
DbEnv::lsn_reset() on a database in a new environment when the database LSNs still
reflect the old environment.

The DbEnv::lsn_reset() method modifies the physical file, in-place. Applications should not
reset LSNs in files that are currently in use.

The DbEnv::lsn_reset() method may be called at any time during the life of the
application.

The DbEnv::lsn_reset() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

file

The name of the physical file in which the LSNs are to be cleared.

flags

The flags parameter must be set to 0 or the following value:

• DB_ENCRYPT

The file contains encrypted databases.

Errors

The DbEnv::lsn_reset() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 251

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 252

DbEnv::open()
#include <db_cxx.h>

int
DbEnv::open(const char *db_home, u_int32_t flags, int mode);

The DbEnv::open() method opens a Berkeley DB environment. It provides a structure for
creating a consistent environment for processes using one or more of the features of Berkeley
DB.

The DbEnv::open() method method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success. If
DbEnv::open() fails, the DbEnv::close() (page 213) method must be called to discard the
DbEnv handle.

Warning

Using environments with some journaling filesystems might result in log file
corruption. This can occur if the operating system experiences an unclean shutdown
when a log file is being created. Please see Using Recovery on Journaling Filesystems
in the Berkeley DB Programmer's Reference Guide for more information.

Parameters

db_home

The db_home parameter is the database environment's home directory. For more information
on db_home, and filename resolution in general, see Berkeley DB File Naming. The
environment variable DB_HOME may be used as the path of the database home, as described
in Berkeley DB File Naming.

When using a Unicode build on Windows (the default), the db_home argument will be
interpreted as a UTF-8 string, which is equivalent to ASCII for Latin characters.

flags

The flags parameter specifies the subsystems that are initialized and how the application's
environment affects Berkeley DB file naming, among other things. The flags parameter must
be set to 0 or by bitwise inclusively OR'ing together one or more of the values described in this
section.

Because there are a large number of flags that can be specified, they have been grouped
together by functionality. The first group of flags indicates which of the Berkeley DB
subsystems should be initialized.

The choice of subsystems initialized for a Berkeley DB database environment is specified by
the thread of control initially creating the environment. Any subsequent thread of control
joining the environment will automatically be configured to use the same subsystems as were
created in the environment (unless the thread of control requests a subsystem not available
in the environment, which will fail). Applications joining an environment, able to adapt to

../../programmer_reference/transapp_journal.html
../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 253

whatever subsystems have been configured in the environment, should open the environment
without specifying any subsystem flags. Applications joining an environment, requiring specific
subsystems from their environments, should open the environment specifying those specific
subsystem flags.

• DB_INIT_CDB

Initialize locking for the Berkeley DB Concurrent Data Store product. In this mode, Berkeley
DB provides multiple reader/single writer access. The only other subsystem that should be
specified with the DB_INIT_CDB flag is DB_INIT_MPOOL.

• DB_INIT_LOCK

Initialize the locking subsystem. This subsystem should be used when multiple processes
or threads are going to be reading and writing a Berkeley DB database, so that they do not
interfere with each other. If all threads are accessing the database(s) read-only, locking
is unnecessary. When the DB_INIT_LOCK flag is specified, it is usually necessary to run a
deadlock detector, as well. See db_deadlock and DbEnv::lock_detect() (page 353) for more
information.

• DB_INIT_LOG

Initialize the logging subsystem. This subsystem should be used when recovery from
application or system failure is necessary. If the log region is being created and log files are
already present, the log files are reviewed; subsequent log writes are appended to the end
of the log, rather than overwriting current log entries.

• DB_INIT_MPOOL

Initialize the shared memory buffer pool subsystem. This subsystem should be used
whenever an application is using any Berkeley DB access method.

• DB_INIT_REP

Initialize the replication subsystem. This subsystem should be used whenever an application
plans on using replication. The DB_INIT_REP flag requires the DB_INIT_TXN and
DB_INIT_LOCK flags also be configured.

You can also specify this flag in the DB_CONFIG configuration file. The syntax is a single
line with the string "set_open_flags", one or more whitespace characters, the string
"DB_INIT_REP", optionally one or more whitespace characters and the string "on" or
"off". If the optional string is omitted, the default is "on"; for example, "set_open_flags
DB_INIT_REP" or "set_open_flags DB_INIT_REP on". Because the DB_CONFIG file is read when
the database environment is opened, it will silently overrule configuration done before that
time.

• DB_INIT_TXN

Initialize the transaction subsystem. This subsystem should be used when recovery
and atomicity of multiple operations are important. The DB_INIT_TXN flag implies the
DB_INIT_LOG flag.

../../programmer_reference/cam.html#cam_intro
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 254

The second group of flags govern what recovery, if any, is performed when the environment is
initialized:

• DB_RECOVER

Run normal recovery on this environment before opening it for normal use. If this flag is
set, the DB_CREATE and DB_INIT_TXN flags must also be set, because the regions will be
removed and re-created, and transactions are required for application recovery.

• DB_RECOVER_FATAL

Run catastrophic recovery on this environment before opening it for normal use. If this flag
is set, the DB_CREATE and DB_INIT_TXN flags must also be set, because the regions will be
removed and re-created, and transactions are required for application recovery.

A standard part of the recovery process is to remove the existing Berkeley DB environment and
create a new one in which to perform recovery. If the thread of control performing recovery
does not specify the correct region initialization information (for example, the correct
memory pool cache size), the result can be an application running in an environment with
incorrect cache and other subsystem sizes. For this reason, the thread of control performing
recovery should specify correct configuration information before calling the DbEnv::open()
method; or it should remove the environment after recovery is completed, leaving creation of
the correctly sized environment to a subsequent call to the DbEnv::open() method.

All Berkeley DB recovery processing must be single-threaded; that is, only a single thread of
control may perform recovery or access a Berkeley DB environment while recovery is being
performed. Because it is not an error to specify DB_RECOVER for an environment for which
no recovery is required, it is reasonable programming practice for the thread of control
responsible for performing recovery and creating the environment to always specify the
DB_CREATE and DB_RECOVER flags during startup.

The third group of flags govern file-naming extensions in the environment:

• DB_USE_ENVIRON

The Berkeley DB process' environment may be permitted to specify information to be used
when naming files; see Berkeley DB File Naming. Because permitting users to specify which
files are used can create security problems, environment information will be used in file
naming for all users only if the DB_USE_ENVIRON flag is set.

• DB_USE_ENVIRON_ROOT

The Berkeley DB process' environment may be permitted to specify information to be
used when naming files; see Berkeley DB File Naming. Because permitting users to specify
which files are used can create security problems, if the DB_USE_ENVIRON_ROOT flag is
set, environment information will be used in file naming only for users with appropriate
permissions (for example, users with a user-ID of 0 on UNIX systems).

Finally, there are a few additional unrelated flags:

• DB_CREATE

../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 255

Cause Berkeley DB subsystems to create any underlying files, as necessary.

• DB_LOCKDOWN

Lock shared Berkeley DB environment files and memory-mapped databases into memory.

• DB_FAILCHK

Internally call the DbEnv::failchk() (page 223) method as part of opening the environment.
When DB_FAILCHK is specified, a check is made to ensure all DbEnv::failchk()
prerequisites are meet.

If the DB_FAILCHK flag is used in conjunction with the DB_REGISTER flag, then a check
will be made to see if the environment needs recovery. If recovery is needed, a call will
be made to the DbEnv::failchk() method to release any database reads locks held by
the thread of control that exited and, if needed, to abort the unresolved transaction. If
DbEnv::failchk() determines environment recovery is still required, the recovery actions
for DB_REGISTER will be followed.

If the DB_FAILCHK flag is not used in conjunction with the DB_REGISTER flag, then make
an internal call to DbEnv::failchk() as the last step of opening the environment.
If DbEnv::failchk() determines database environment recovery is required,
DB_RUNRECOVERY will be returned.

• DB_PRIVATE

Allocate region memory from the heap instead of from memory backed by the filesystem or
system shared memory.

Note
Use of this flag means that the environment can only be accessed by one
environment handle. The environment cannot be accessed by multiple processes.
This is true even if one of those processes is one of the the Berkeley DB utilities.
(For example, db_archive, db_checkpoint or db_stat.) Nor can a single process open
multiple handles to the environment.

This flag has two effects on the Berkeley DB environment. First, all underlying data
structures are allocated from per-process memory instead of from shared memory that
is accessible to more than a single process. Second, mutexes are only configured to work
between threads.

See Shared Memory Regions for more information.

You can also specify this flag in the DB_CONFIG configuration file. The syntax is a single
line with the string "set_open_flags", one or more whitespace characters, the string
"DB_PRIVATE", optionally one or more whitespace characters and the string "on" or "off". If
the optional string is omitted, the default is "on"; for example, "set_open_flags DB_PRIVATE"
or "set_open_flags DB_PRIVATE on". Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/env_region.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 256

• DB_REGISTER

Check to see if recovery needs to be performed before opening the database environment.
(For this check to be accurate, all processes using the environment must specify
DB_REGISTER when opening the environment.) If recovery needs to be performed for any
reason (including the initial use of the DB_REGISTER flag), and DB_RECOVER is also specified,
recovery will be performed and the open will proceed normally. If recovery needs to be
performed and DB_RECOVER is not specified, DB_RUNRECOVERY will be returned. If recovery
does not need to be performed, the DB_RECOVER flag will be ignored. See Architecting
Transactional Data Store applications for more information.

• DB_SYSTEM_MEM

Allocate region memory from system shared memory instead of from heap memory or
memory backed by the filesystem.

See Shared Memory Regions for more information.

• DB_THREAD

Cause the DbEnv handle returned by DbEnv::open() to be free-threaded; that is,
concurrently usable by multiple threads in the address space. The DB_THREAD flag should
be specified if the DbEnv handle will be concurrently used by more than one thread in the
process, or if any Db handles opened in the scope of the DbEnv handle will be concurrently
used by more than one thread in the process.

This flag is required when using the Replication Manager.

You can also specify this flag in the DB_CONFIG configuration file. The syntax is a single
line with the string "set_open_flags", one or more whitespace characters, the string
"DB_THREAD", optionally one or more whitespace characters and the string "on" or "off". If
the optional string is omitted, the default is "on"; for example, "set_open_flags DB_THREAD"
or "set_open_flags DB_THREAD on". Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

mode

On Windows systems, the mode parameter is ignored.

On UNIX systems or in IEEE/ANSI Std 1003.1 (POSIX) environments, files created by Berkeley
DB are created with mode mode (as described in chmod(2)) and modified by the process'
umask value at the time of creation (see umask(2)). Created files are owned by the process
owner; the group ownership of created files is based on the system and directory defaults,
and is not further specified by Berkeley DB. System shared memory segments created by
Berkeley DB are created with mode mode, unmodified by the process' umask value. If mode is
0, Berkeley DB will use a default mode of readable and writable by both owner and group.

Errors

The DbEnv::open() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/transapp_app.html
../../programmer_reference/transapp_app.html
../../programmer_reference/env_region.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 257

DB_RUNRECOVERY

Either the DB_REGISTER flag was specified, a failure occurred, and no recovery flag was
specified, or the DB_FAILCHK flag was specified and recovery was deemed necessary.

DB_VERSION_MISMATCH

The version of the Berkeley DB library doesn't match the version that created the database
environment.

EAGAIN

The shared memory region was locked and (repeatedly) unavailable.

EINVAL

If the DB_THREAD flag was specified and fast mutexes are not available for this architecture;
The DB_HOME or TMPDIR environment variables were set, but empty; An incorrectly formatted
NAME VALUE entry or line was found; or if an invalid flag value or parameter was specified.

ENOENT

The file or directory does not exist.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 258

DbEnv::remove()
#include <db_cxx.h>

int
DbEnv::remove(const char *db_home, u_int32_t flags);

The DbEnv::remove() method destroys a Berkeley DB environment if it is not currently in
use. The environment regions, including any backing files, are removed. Any log or database
files and the environment directory are not removed.

If there are processes that have called DbEnv::open() (page 252) without calling
DbEnv::close() (page 213) (that is, there are processes currently using the environment),
DbEnv::remove() will fail without further action unless the DB_FORCE flag is set, in which
case DbEnv::remove() will attempt to remove the environment, regardless of any processes
still using it.

The result of attempting to forcibly destroy the environment when it is in use is unspecified.
Processes using an environment often maintain open file descriptors for shared regions within
it. On UNIX systems, the environment removal will usually succeed, and processes that
have already joined the region will continue to run in that region without change. However,
processes attempting to join the environment will either fail or create new regions. On other
systems in which the unlink(2) system call will fail if any process has an open file descriptor
for the file (for example Windows/NT), the region removal will fail.

Calling DbEnv::remove() should not be necessary for most applications because the
Berkeley DB environment is cleaned up as part of normal database recovery procedures.
However, applications may want to call DbEnv::remove() as part of application shut down
to free up system resources. For example, if the DB_SYSTEM_MEM flag was specified to
DbEnv::open() (page 252), it may be useful to call DbEnv::remove() in order to release
system shared memory segments that have been allocated. Or, on architectures in which
mutexes require allocation of underlying system resources, it may be useful to call
DbEnv::remove() in order to release those resources. Alternatively, if recovery is not
required because no database state is maintained across failures, and no system resources
need to be released, it is possible to clean up an environment by simply removing all the
Berkeley DB files in the database environment's directories.

In multithreaded applications, only a single thread may call the DbEnv::remove() method.

A DbEnv handle that has already been used to open an environment should not be used to call
the DbEnv::remove() method; a new DbEnv handle should be created for that purpose.

After DbEnv::remove() has been called, regardless of its return, the Berkeley DB
environment handle may not be accessed again.

The DbEnv::remove() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 259

Parameters

db_home

The db_home parameter names the database environment to be removed.

When using a Unicode build on Windows (the default), the db_home argument will be
interpreted as a UTF-8 string, which is equivalent to ASCII for Latin characters.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_FORCE

If set, the environment is removed, regardless of any processes that may still using it,
and no locks are acquired during this process. (Generally, this flag is specified only when
applications were unable to shut down cleanly, and there is a risk that an application may
have died holding a Berkeley DB lock.)

• DB_USE_ENVIRON

The Berkeley DB process' environment may be permitted to specify information to be used
when naming files; see Berkeley DB File Naming. Because permitting users to specify which
files are used can create security problems, environment information will be used in file
naming for all users only if the DB_USE_ENVIRON flag is set.

• DB_USE_ENVIRON_ROOT

The Berkeley DB process' environment may be permitted to specify information to be
used when naming files; see Berkeley DB File Naming. Because permitting users to specify
which files are used can create security problems, if the DB_USE_ENVIRON_ROOT flag is
set, environment information will be used in file naming only for users with appropriate
permissions (for example, users with a user-ID of 0 on UNIX systems).

Errors

The DbEnv::remove() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EBUSY

The shared memory region was in use and the force flag was not set.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 260

DbEnv::set_alloc()
#include <db_cxx.h>

extern "C" {
 typedef void *(*db_malloc_fcn_type)(size_t);
 typedef void *(*db_realloc_fcn_type)(void *, size_t);
 typedef void *(*db_free_fcn_type)(void *);
};

int
DbEnv::set_alloc(db_malloc_fcn_type app_malloc,
 db_realloc_fcn_type app_realloc,
 db_free_fcn_type app_free);

Set the allocation functions used by the DbEnv and Db methods to allocate or free memory
owned by the application.

There are a number of interfaces in Berkeley DB where memory is allocated by the library
and then given to the application. For example, the DB_DBT_MALLOC flag, when specified
in the Dbt object, will cause the Db methods to allocate and reallocate memory which then
becomes the responsibility of the calling application. Other examples are the Berkeley DB
interfaces which return statistical information to the application: Db::stat() (page 139),
DbEnv::lock_stat() (page 361), DbEnv::log_archive() (page 379), DbEnv::log_stat() (page
392), DbEnv::memp_stat() (page 426), and DbEnv::txn_stat() (page 619). There is one
method in Berkeley DB where memory is allocated by the application and then given to the
library: the callback specified to Db::associate() (page 6).

On systems in which there may be multiple library versions of the standard allocation routines
(notably Windows NT), transferring memory between the library and the application will fail
because the Berkeley DB library allocates memory from a different heap than the application
uses to free it. To avoid this problem, the DbEnv::set_alloc() and Db::set_alloc() (page 83)
methods can be used to pass Berkeley DB references to the application's allocation routines.

It is not an error to specify only one or two of the possible allocation function parameters to
these interfaces; however, in that case the specified interfaces must be compatible with the
standard library interfaces, as they will be used together. The functions specified must match
the calling conventions of the ANSI C X3.159-1989 (ANSI C) library routines of the same name.

The DbEnv::set_alloc() method configures operations performed using the specified DbEnv
handle, not all operations performed on the underlying database environment.

The DbEnv::set_alloc() method may not be called after the DbEnv::open() (page 252)
method is called.

The DbEnv::set_alloc() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 261

Parameters

app_malloc

The app_malloc parameter is the application-specified malloc function.

app_realloc

The app_realloc parameter is the application-specified realloc function.

app_free

The app_free parameter is the application-specified free function.

Errors

The DbEnv::set_alloc() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 262

DbEnv::set_app_dispatch()
#include <db_cxx.h>

int
DbEnv::set_app_dispatch(int (*tx_recover)(DbEnv *dbenv,
 Dbt *log_rec, DbLsn *lsn, db_recops op));

Declare a function to be called during transaction abort and recovery to process application-
specific log records.

The DbEnv::set_app_dispatch() method configures operations performed using
the specified DbEnv handle, not all operations performed on the underlying database
environment.

The DbEnv::set_app_dispatch() method may not be called after the DbEnv::open() (page
252) method is called. If the database environment already exists when DbEnv::open() (page
252) is called, the information specified to DbEnv::set_app_dispatch() must be consistent
with the existing environment or corruption can occur.

The DbEnv::set_app_dispatch() method returns a non-zero error value on failure and 0 on
success.

Parameters

tx_recover

The tx_recover parameter is the application's abort and recovery function. The function takes
four parameters:

• dbenv

The dbenv parameter is the enclosing database environment handle.

• log_rec

The log_rec parameter is a log record.

• lsn

The lsn parameter is a log sequence number.

• op

The op parameter is one of the following values:

• DB_TXN_BACKWARD_ROLL

The log is being read backward to determine which transactions have been committed
and to abort those operations that were not; undo the operation described by the log
record.

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 263

• DB_TXN_FORWARD_ROLL

The log is being played forward; redo the operation described by the log record.

• DB_TXN_ABORT

The log is being read backward during a transaction abort; undo the operation described
by the log record.

• DB_TXN_APPLY

The log is being applied on a replica site; redo the operation described by the log record.

• DB_TXN_PRINT

The log is being printed for debugging purposes; print the contents of this log record in
the desired format.

The DB_TXN_FORWARD_ROLL and DB_TXN_APPLY operations frequently imply the same
actions, redoing changes that appear in the log record, although if a recovery function
is to be used on a replication client where reads may be taking place concurrently with
the processing of incoming messages, DB_TXN_APPLY operations should also perform
appropriate locking. The macro DB_REDO(op) checks that the operation is one of
DB_TXN_FORWARD_ROLL or DB_TXN_APPLY, and should be used in the recovery code to
refer to the conditions under which operations should be redone. Similarly, the macro
DB_UNDO(op) checks if the operation is one of DB_TXN_BACKWARD_ROLL or DB_TXN_ABORT.

The function must return 0 on success and either errno or a value outside of the Berkeley DB
error name space on failure.

Errors

The DbEnv::set_app_dispatch() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 264

DbEnv::set_data_dir()
#include <db_cxx.h>

int
DbEnv::set_data_dir(const char *dir);

Note

This interface has been deprecated. You should use DbEnv::add_data_dir() (page 211)
and DbEnv::set_create_dir() (page 266) instead.

Set the path of a directory to be used as the location of the access method database files.
Paths specified to the Db::open() (page 69) function will be searched relative to this path.
Paths set using this method are additive, and specifying more than one will result in each
specified directory being searched for database files. If any directories are specified, database
files will always be created in the first path specified.

If no database directories are specified, database files must be named either by absolute
paths or relative to the environment home directory. See Berkeley DB File Naming for more
information.

The database environment's data directories may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_data_dir", one or more whitespace characters, and the directory name. Note that if you
use this method for your application, and you also want to use the db_recover (page 662),
db_printlog (page 660), db_archive (page 640), or db_log_verify (page 657) utilities, then
you should set create a DB_CONFIG file and set the "set_data_dir" parameter in it.

The DbEnv::set_data_dir() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv::set_data_dir() method may not be called after the DbEnv::open() (page 252)
method is called. If the database environment already exists when DbEnv::open() (page 252)
is called, the information specified to DbEnv::set_data_dir() must be consistent with the
existing environment or corruption can occur.

The DbEnv::set_data_dir() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dir

The dir parameter is a directory to be used as a location for database files.

When using a Unicode build on Windows (the default), this argument will be interpreted as a
UTF-8 string, which is equivalent to ASCII for Latin characters.

../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 265

Errors

The DbEnv::set_data_dir() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 266

DbEnv::set_create_dir()
#include <db_cxx.h>

int
DbEnv::set_create_dir(const char *dir);

Sets the path of a directory to be used as the location to create the access method database
files. When the Db::open() (page 69) function is used to create a file it will be created relative
to this path.

If no database directories are specified, database files will be created either by absolute
paths or relative to the environment home directory. See Berkeley DB File Naming for more
information.

The database environment's create directory may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_create_dir", one or more whitespace characters, and the directory name.

The DbEnv::set_create_dir() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv::set_create_dir() method may be called at any time.

The DbEnv::set_create_dir() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dir

The dir parameter is a directory to be used to create database files. This directory must be
one of the directories specified via a call to DbEnv::add_data_dir() (page 211)

When using a Unicode build on Windows (the default), this argument will be interpreted as a
UTF-8 string, which is equivalent to ASCII for Latin characters.

Errors

The DbEnv::set_create_dir() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv

../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 267

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 268

DbEnv::set_encrypt()
#include <db_cxx.h>

int
DbEnv::set_encrypt(const char *passwd, u_int32_t flags);

Set the password used by the Berkeley DB library to perform encryption and decryption.

The DbEnv::set_encrypt() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::set_encrypt() method may not be called after the DbEnv::open() (page 252)
method is called. If the database environment already exists when DbEnv::open() (page 252)
is called, the information specified to DbEnv::set_encrypt() must be consistent with the
existing environment or an error will be returned.

The DbEnv::set_encrypt() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

passwd

The passwd parameter is the password used to perform encryption and decryption.

flags

The flags parameter must be set to 0 or the following value:

• DB_ENCRYPT_AES

Use the Rijndael/AES (also known as the Advanced Encryption Standard and Federal
Information Processing Standard (FIPS) 197) algorithm for encryption or decryption.

Errors

The DbEnv::set_encrypt() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

EOPNOTSUPP

Cryptography is not available in this Berkeley DB release.

Class

DbEnv

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 269

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 270

DbEnv::set_event_notify()
#include <db_cxx.h>

int
DbEnv::set_event_notify(
 void (*db_event_fcn)(DB_ENV *dbenv, u_int32_t event,
 void *event_info));

The DbEnv::set_event_notify() method configures a callback function which is called to
notify the process of specific Berkeley DB events.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

The DbEnv::set_event_notify() method configures operations performed using
the specified DbEnv handle, not all operations performed on the underlying database
environment.

The DbEnv::set_event_notify() method may be called at any time during the life of the
application.

The DbEnv::set_event_notify() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

db_event_fcn

The db_event_fcn parameter is the application's event notification function. The function
takes three parameters:

• dbenv

The dbenv parameter is the enclosing database environment handle.

• event

The event parameter is one of the following values:

• DB_EVENT_PANIC

Errors can occur in the Berkeley DB library where the only solution is to shut down the
application and run recovery (for example, if Berkeley DB is unable to allocate heap
memory). In such cases, the Berkeley DB methods will return DB_RUNRECOVERY. It is
often easier to simply exit the application when such errors occur rather than gracefully
return up the stack.

../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 271

When event is set to DB_EVENT_PANIC, the database environment has failed. All threads
of control in the database environment should exit the environment, and recovery should
be run.

• DB_EVENT_REG_ALIVE

Recovery is needed in an environment where the DB_REGISTER flag was specified on the
DbEnv::open() (page 252) method and there is a process attached to the environment.
The callback function is triggered once for each process attached.

The event_info parameter points to a pid_t value containing the process identifier (pid)
of the process the Berkeley DB library detects is attached to the environment.

• DB_EVENT_REG_PANIC

Recovery is needed in an environment where the DB_REGISTER flag was specified on the
DbEnv::open() (page 252) method. All threads of control in the database environment
should exit the environment.

This event is different than the DB_EVENT_PANIC event because it can only be triggered
when DB_REGISTER was specified. It can be used to distinguish between the case when a
process dies in the environment and recovery is initiated versus the case when an error
happened (for example, if Berkeley DB is unable to allocate heap memory)

• DB_EVENT_REP_CLIENT

The local site is now a replication client.

This event is generated when the replication role changes to client, either from master
or from being unset. The role is unset when an environment is first created and after an
environment is recovered. This event is not generated when restarting replication in an
environment that was previously a client and was opened without recovery.

• DB_EVENT_REP_CONNECT_BROKEN

A previously established replication message connection between the local site and a
remote site has been broken. This event supplies the EID of the remote site, and an
integer error code that identifies the reason the connection was broken.

• DB_EVENT_REP_CONNECT_ESTD

A replication message connection has been established between the local site and a
remote site. This event supplied the EID of the remote site.

• DB_EVENT_REP_CONNECT_TRY_FAILED

An attempt to establish a connection between the local site and a remote site has failed.
This event supplies the EID of the remote site, and an integer error code that identifies
the reason the connection attempt failed.

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 272

• DB_EVENT_REP_DUPMASTER

Replication Manager has detected a duplicate master situation, and has changed the
local site to the client role as a result. If the DB_REPMGR_CONF_ELECTIONS (page
532) configuration parameter has been turned off, the application should now choose
and assign the correct master site. If DB_REPMGR_CONF_ELECTIONS is turned on, the
application may ignore this event.

The DB_EVENT_REP_DUPMASTER event is provided only to applications configured for the
replication manager.

• DB_EVENT_REP_ELECTED

The local replication site has just won an election. An application using the Base
replication API should arrange for a call to the DbEnv::rep_start() (page 547) method
after receiving this event, to reconfigure the local environment as a replication master.

Replication Manager applications may safely ignore this event. The Replication Manager
calls DbEnv::rep_start() (page 547) automatically on behalf of the application when
appropriate (resulting in firing of the DB_EVENT_REP_MASTER event).

• DB_EVENT_REP_ELECTION_FAILED

Replication Manager tried to run an election to choose a master site, but the election
failed due to lack of timely participation by a sufficient number of other sites. Replication
Manager will automatically retry the election later. This event is for information only.

The DB_EVENT_REP_ELECTION_FAILED event is provided only to applications configured
for the replication manager.

• DB_EVENT_REP_ELECTION_STARTED

Replication Manager has started an election to choose a master site.

• DB_EVENT_REP_INIT_DONE

Replication Manager has completed an internal initialization procedure.

• DB_EVENT_REP_JOIN_FAILURE

The local client site is unable to synchronize with a new master, possibly
because the client has turned off automatic internal initialization by setting the
DB_REP_CONF_AUTOINIT flag to 0.

• DB_EVENT_REP_LOCAL_SITE_REMOVED

The local site has been removed from the replication group.

• DB_EVENT_REP_MASTER

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 273

The local site is now the master site of its replication group. It is the application's
responsibility to begin acting as the master environment.

This event is generated when the replication role changes to master, either from client
or from being unset. The role is unset when an environment is first created and after an
environment is recovered. This event is not generated when restarting replication in an
environment that was previously a master and was opened without recovery.

• DB_EVENT_REP_MASTER_FAILURE

A Replication Manager client site has detected the loss of connection to the master site.
If the DB_REPMGR_CONF_ELECTIONS (page 532) configuration parameter is turned on,
Replication Manager will automatically start an election in order to choose a new master.
In this case, this event may be ignored.

When DB_REPMGR_CONF_ELECTIONS is turned off, the application should choose and assign
a new master. Failure to do so means that your replication group has no master, and so it
cannot service write requests.

The DB_EVENT_REP_MASTER_FAILURE event is provided only to applications configured for
the replication manager.

• DB_EVENT_REP_NEWMASTER

The replication group of which this site is a member has just established a new master;
the local site is not the new master. The event_info parameter points to an integer
containing the environment ID of the new master.

• DB_EVENT_REP_PERM_FAILED

The replication manager did not receive enough acknowledgements (based on the
acknowledgement policy configured with DbEnv::repmgr_set_ack_policy() (page 564))
to ensure a transaction's durability within the replication group. The transaction will be
flushed to the master's local disk storage for durability.

The DB_EVENT_REP_PERM_FAILED event is provided only to applications configured for
the replication manager.

• DB_EVENT_REP_SITE_ADDED

A new site has joined the group. The event_info parameter points to an integer
containing the environment ID of the new site.

• DB_EVENT_REP_SITE_REMOVED

An existing remote site has been removed from the group. The event_info parameter
points to an integer containing the environment ID of the site that was removed.

• DB_EVENT_REP_STARTUPDONE

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 274

The client has completed startup synchronization and is now processing live log records
received from the master.

• DB_EVENT_WRITE_FAILED

A Berkeley DB write to stable storage failed.

• event_info

The event_info parameter may reference memory which contains additional information
describing an event. By default, event_info is NULL; specific events may pass non-NULL
values, in which case the event will also describe the memory's structure.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 275

DbEnv::set_errcall()
#include <db_cxx.h>

void DbEnv::set_errcall(void (*db_errcall_fcn)
 (const Dbenv *dbenv, const char *errpfx, const char *msg));

When an error occurs in the Berkeley DB library, an exception is thrown or an error return
value is returned by the interface. In some cases, however, the errno value may be
insufficient to completely describe the cause of the error, especially during initial application
debugging.

The DbEnv::set_errcall() and DbEnv::set_errcall() (page 275) methods are used to
enhance the mechanism for reporting error messages to the application. In some cases, when
an error occurs, Berkeley DB will call db_errcall_fcn with additional error information. It is up
to the db_errcall_fcn function to display the error message in an appropriate manner.

Setting db_errcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DbEnv::set_error_stream() (page 279) and
Db::set_error_stream() (page 106) methods to display the additional information via an output
stream, or the Db::set_errfile() (page 104) or Db::set_errfile() (page 277) methods to display
the additional information via a C library FILE *. You should not mix these approaches.

This error-logging enhancement does not slow performance or significantly increase
application size, and may be run during normal operation as well as during application
debugging.

The DbEnv::set_errcall() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv::set_errcall() method may be called at any time during the life of the
application.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters

db_errcall_fcn

The db_errcall_fcn parameter is the application-specified error reporting function. The
function takes three parameters:

• dbenv

The dbenv parameter is the enclosing database environment.

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 276

• errpfx

The errpfx parameter is the prefix string (as previously set by Db::set_errpfx() (page 107) or
DbEnv::set_errpfx() (page 280)).

• msg

The msg parameter is the error message string.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 277

DbEnv::set_errfile()
#include <db_cxx.h>

void
DbEnv::set_errfile(FILE *errfile);

When an error occurs in the Berkeley DB library, an exception is thrown or an error return
value is returned by the interface. In some cases, however, the return value may be
insufficient to completely describe the cause of the error especially during initial application
debugging.

The DbEnv::set_errfile() and Db::set_errfile() (page 104) methods are used to enhance
the mechanism for reporting error messages to the application by setting a C library FILE * to
be used for displaying additional Berkeley DB error messages. In some cases, when an error
occurs, Berkeley DB will output an additional error message to the specified file reference.

Alternatively, you can use the DbEnv::set_error_stream() (page 279) and
Db::set_error_stream() (page 106) methods to display the additional messages via an output
stream, or the DbEnv::set_errcall() (page 275) or Db::set_errcall() (page 102) methods to
capture the additional error information in a way that does not use C library FILE *'s. You
should not mix these approaches.

The error message will consist of the prefix string and a colon (":") (if a prefix string was
previously specified using Db::set_errpfx() (page 107) or DbEnv::set_errpfx() (page 280)), an
error string, and a trailing <newline> character.

The default configuration when applications first create Db or DbEnv handles is as if the
Db::set_errfile() (page 104) or DbEnv::set_errfile() methods were called with the
standard error output (stderr) specified as the FILE * argument. Applications wanting no
output at all can turn off this default configuration by calling the Db::set_errfile() (page 104)
or DbEnv::set_errfile() methods with NULL as the FILE * argument. Additionally, explicitly
configuring the error output channel using any of the following methods will also turn off this
default output for the application:

• DbEnv::set_errfile()

• Db::set_errfile() (page 104)

• DbEnv::set_errcall() (page 275)

• Db::set_errcall() (page 102)

• DbEnv::set_error_stream() (page 279)

• Db::set_error_stream() (page 106)

This error logging enhancement does not slow performance or significantly increase
application size, and may be run during normal operation as well as during application
debugging.

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 278

The DbEnv::set_errfile() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv::set_errfile() method may be called at any time during the life of the
application.

Parameters

errfile

The errfile parameter is a C library FILE * to be used for displaying additional Berkeley DB
error information.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 279

DbEnv::set_error_stream()
#include <db_cxx.h>

void DbEnv::set_error_stream(class ostream*);

When an error occurs in the Berkeley DB library, an exception is thrown or an errno value is
returned by the interface. In some cases, however, the errno value may be insufficient to
completely describe the cause of the error, especially during initial application debugging.

The DbEnv::set_error_stream() and Db::set_error_stream() (page 106) methods are used
to enhance the mechanism for reporting error messages to the application by setting the C+
+ ostream used for displaying additional Berkeley DB error messages. In some cases, when an
error occurs, Berkeley DB will output an additional error message to the specified stream.

The error message will consist of the prefix string and a colon (":") (if a prefix string was
previously specified using Db::set_errpfx() (page 107), an error string, and a trailing <newline>
character.

Setting stream to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_errfile() (page 277) or Db::set_errfile() (page
104) methods to display the additional information via a C Library FILE *, or the
DbEnv::set_errcall() (page 275) and Db::set_errcall() (page 102) methods to capture the
additional error information in a way that does not use either output streams or C Library
FILE *'s. You should not mix these approaches.

This error-logging enhancement does not slow performance or significantly increase
application size, and may be run during normal operation as well as during application
debugging.

The DbEnv::set_error_stream() method configures operations performed using
the specified DbEnv handle, not all operations performed on the underlying database
environment.

The DbEnv::set_error_stream() method may be called at any time during the life of the
application.

Parameters

stream

The stream parameter is the application-specified output stream to be used for additional
error information.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 280

DbEnv::set_errpfx()
#include <db_cxx.h>

void
DbEnv::set_errpfx(const char *errpfx);

Set the prefix string that appears before error messages issued by Berkeley DB.

The Db::set_errpfx() (page 107) and DbEnv::set_errpfx() methods do not copy the memory
to which the errpfx parameter refers; rather, they maintain a reference to it. Although this
allows applications to modify the error message prefix at any time (without repeatedly calling
the interfaces), it means the memory must be maintained until the handle is closed.

The DbEnv::set_errpfx() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv::set_errpfx() method may be called at any time during the life of the
application.

Parameters

errpfx

The errpfx parameter is the application-specified error prefix for additional error messages.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 281

DbEnv::set_feedback()
#include <db_cxx.h>

int
DbEnv::set_feedback(void (*db_feedback_fcn)(DbEnv *dbenv, int opcode,
 int percent));

Some operations performed by the Berkeley DB library can take non-trivial amounts of time.
The DbEnv::set_feedback() method can be used by applications to monitor progress within
these operations. When an operation is likely to take a long time, Berkeley DB will call the
specified callback function with progress information.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

It is up to the callback function to display this information in an appropriate manner.

The DbEnv::set_feedback() method configures operations performed using the specified
DbEnv handle.

The DbEnv::set_feedback() method may be called at any time during the life of the
application.

The DbEnv::set_feedback() method returns a non-zero error value on failure and 0 on
success.

Parameters

db_feedback_fcn

The db_feedback_fcn parameter is the application-specified feedback function called to
report Berkeley DB operation progress. The callback function must take three parameters:

• dbenv

The dbenv parameter is a reference to the enclosing database environment.

• opcode

The opcode parameter is an operation code. The opcode parameter may take on any of the
following values:

• DB_RECOVER

The environment is being recovered.

• percent

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 282

The percent parameter is the percent of the operation that has been completed, specified
as an integer value between 0 and 100.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 283

DbEnv::set_flags()
#include <db_cxx.h>

int
DbEnv::set_flags(u_int32_t flags, int onoff);

Configure a database environment.

The database environment's flag values may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_flags",
one or more whitespace characters, and the method flag parameter as a string, and
optionally one or more whitespace characters, and the string "on" or "off". If the optional
string is omitted, the default is "on"; for example, "set_flags DB_TXN_NOSYNC" or "set_flags
DB_TXN_NOSYNC on". Because the DB_CONFIG file is read when the database environment is
opened, it will silently overrule configuration done before that time.

The DbEnv::set_flags() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set by bitwise inclusively OR'ing together one or more of the
following values:

• DB_AUTO_COMMIT

If set, Db handle operations for which no explicit transaction handle was specified, and
which modify databases in the database environment, will be automatically enclosed within
a transaction.

Calling DbEnv::set_flags() with this flag only affects the specified DbEnv handle (and any
other Berkeley DB handles opened within the scope of that handle). For consistent behavior
across the environment, all DbEnv handles opened in the environment must either set this
flag or the flag should be specified in the DB_CONFIG configuration file.

This flag may be used to configure Berkeley DB at any time during the life of the
application.

• DB_CDB_ALLDB

If set, Berkeley DB Concurrent Data Store applications will perform locking on an
environment-wide basis rather than on a per-database basis.

Calling DbEnv::set_flags() with the DB_CDB_ALLDB flag only affects the specified DbEnv
handle (and any other Berkeley DB handles opened within the scope of that handle). For
consistent behavior across the environment, all DbEnv handles opened in the environment
must either set the DB_CDB_ALLDB flag or the flag should be specified in the DB_CONFIG
configuration file.

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 284

The DB_CDB_ALLDB flag may be used to configure Berkeley DB only before the
DbEnv::open() (page 252) method is called.

• DB_DIRECT_DB

Turn off system buffering of Berkeley DB database files to avoid double caching.

Calling DbEnv::set_flags() with the DB_DIRECT_DB flag only affects the specified DbEnv
handle (and any other Berkeley DB handles opened within the scope of that handle). For
consistent behavior across the environment, all DbEnv handles opened in the environment
must either set the DB_DIRECT_DB flag or the flag should be specified in the DB_CONFIG
configuration file.

The DB_DIRECT_DB flag may be used to configure Berkeley DB at any time during the life of
the application.

• DB_HOTBACKUP_IN_PROGRESS

Set this flag prior to creating a hot backup of a database environment. If a transaction
with the bulk insert optimization enabled (with the DB_TXN_BULK (page 614) flag)
is in progress, setting the DB_HOTBACKUP_IN_PROGRESS flag forces a checkpoint in the
environment. After this flag is set in the environment, the bulk insert optimization is
disabled, until the flag is reset. Using this protocol allows a hot backup procedure to
make a consistent copy of the database even when bulk transactions are ongoing. For
more information, see the section on Hot Backup in the Getting Started With Transaction
Processing Guide and the description of the DB_TXN_BULK (page 614) flag in the
DbEnv::txn_begin() (page 613) method.

The db_hotbackup (page 650) utility implements the protocol described above.

• DB_DSYNC_DB

Configure Berkeley DB to flush database writes to the backing disk before returning
from the write system call, rather than flushing database writes explicitly in a separate
system call, as necessary. This is only available on some systems (for example, systems
supporting the IEEE/ANSI Std 1003.1 (POSIX) standard O_DSYNC flag, or systems supporting
the Windows FILE_FLAG_WRITE_THROUGH flag). This flag may result in inaccurate file
modification times and other file-level information for Berkeley DB database files. This flag
will almost certainly result in a performance decrease on most systems. This flag is only
applicable to certain filesysystems (for example, the Veritas VxFS filesystem), where the
filesystem's support for trickling writes back to stable storage behaves badly (or more likely,
has been misconfigured).

Calling DbEnv::set_flags() with the DB_DSYNC_DB flag only affects the specified DbEnv
handle (and any other Berkeley DB handles opened within the scope of that handle). For
consistent behavior across the environment, all DbEnv handles opened in the environment
must either set the DB_DSYNC_DB flag or the flag should be specified in the DB_CONFIG
configuration file.

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 285

The DB_DSYNC_DB flag may be used to configure Berkeley DB at any time during the life of
the application.

• DB_MULTIVERSION

If set, all databases in the environment will be opened as if DB_MULTIVERSION is passed to
the Db::open() (page 69) method. This flag will be ignored for queue databases for which
DB_MULTIVERSION is not supported.

Calling DbEnv::set_flags() with the DB_MULTIVERSION flag only affects the specified
DbEnv handle (and any other Berkeley DB handles opened within the scope of that
handle). For consistent behavior across the environment, all DbEnv handles opened in the
environment must either set the DB_MULTIVERSION flag or the flag should be specified in
the DB_CONFIG configuration file.

The DB_MULTIVERSION flag may be used to configure Berkeley DB at any time during the life
of the application.

• DB_NOLOCKING

If set, Berkeley DB will grant all requested mutual exclusion mutexes and database locks
without regard for their actual availability. This functionality should never be used for
purposes other than debugging.

Calling DbEnv::set_flags() with the DB_NOLOCKING flag only affects the specified DbEnv
handle (and any other Berkeley DB handles opened within the scope of that handle).

The DB_NOLOCKING flag may be used to configure Berkeley DB at any time during the life of
the application.

• DB_NOMMAP

If set, Berkeley DB will copy read-only database files into the local cache instead
of potentially mapping them into process memory (see the description of the
DbEnv::set_mp_mmapsize() (page 442) method for further information).

Calling DbEnv::set_flags() with the DB_NOMMAP flag only affects the specified DbEnv
handle (and any other Berkeley DB handles opened within the scope of that handle). For
consistent behavior across the environment, all DbEnv handles opened in the environment
must either set the DB_NOMMAP flag or the flag should be specified in the DB_CONFIG
configuration file.

The DB_NOMMAP flag may be used to configure Berkeley DB at any time during the life of
the application.

• DB_NOPANIC

If set, Berkeley DB will ignore any panic state in the database environment. (Database
environments in a panic state normally refuse all attempts to call Berkeley DB functions,
returning DB_RUNRECOVERY.) This functionality should never be used for purposes other
than debugging.

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 286

Calling DbEnv::set_flags() with the DB_NOPANIC flag only affects the specified DbEnv
handle (and any other Berkeley DB handles opened within the scope of that handle).

The DB_NOPANIC flag may be used to configure Berkeley DB at any time during the life of
the application.

• DB_OVERWRITE

Overwrite files stored in encrypted formats before deleting them. Berkeley DB overwrites
files using alternating 0xff, 0x00 and 0xff byte patterns. For file overwriting to be effective,
the underlying file must be stored on a fixed-block filesystem. Systems with journaling or
logging filesystems will require operating system support and probably modification of the
Berkeley DB sources.

Calling DbEnv::set_flags() with the DB_OVERWRITE flag only affects the specified DbEnv
handle (and any other Berkeley DB handles opened within the scope of that handle).

The DB_OVERWRITE flag may be used to configure Berkeley DB at any time during the life of
the application.

• DB_PANIC_ENVIRONMENT

If set, Berkeley DB will set the panic state for the database environment. (Database
environments in a panic state normally refuse all attempts to call Berkeley DB functions,
returning DB_RUNRECOVERY.) This flag may not be specified using the environment's
DB_CONFIG file.

Calling DbEnv::set_flags() with the DB_PANIC_ENVIRONMENT flag affects the database
environment, including all threads of control accessing the database environment.

The DB_PANIC_ENVIRONMENT flag may be used to configure Berkeley DB only after the
DbEnv::open() (page 252) method is called.

• DB_REGION_INIT

In some applications, the expense of page-faulting the underlying shared memory regions
can affect performance. (For example, if the page-fault occurs while holding a lock, other
lock requests can convoy, and overall throughput may decrease.) If set, Berkeley DB will
page-fault shared regions into memory when initially creating or joining a Berkeley DB
environment. In addition, Berkeley DB will write the shared regions when creating an
environment, forcing the underlying virtual memory and filesystems to instantiate both
the necessary memory and the necessary disk space. This can also avoid out-of-disk space
failures later on.

Calling DbEnv::set_flags() with the DB_REGION_INIT flag only affects the specified DbEnv
handle (and any other Berkeley DB handles opened within the scope of that handle). For
consistent behavior across the environment, all DbEnv handles opened in the environment
must either set the DB_REGION_INIT flag or the flag should be specified in the DB_CONFIG
configuration file.

../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 287

The DB_REGION_INIT flag may be used to configure Berkeley DB at any time during the life
of the application.

• DB_TIME_NOTGRANTED

If set, database calls timing out based on lock or transaction timeout values will return
DB_LOCK_NOTGRANTED instead of DB_LOCK_DEADLOCK. This allows applications to
distinguish between operations which have deadlocked and operations which have exceeded
their time limits.

Calling DbEnv::set_flags() with the DB_TIME_NOTGRANTED flag only affects the
specified DbEnv handle (and any other Berkeley DB handles opened within the scope of that
handle). For consistent behavior across the environment, all DbEnv handles opened in the
environment must either set the DB_TIME_NOTGRANTED flag or the flag should be specified
in the DB_CONFIG configuration file.

The DB_TIME_NOTGRANTED flag may be used to configure Berkeley DB at any time during the
life of the application.

Note that the DbEnv::lock_get() (page 355) and DbEnv::lock_vec() (page 368) methods
are unaffected by this flag.

• DB_TXN_NOSYNC

If set, Berkeley DB will not write or synchronously flush the log on transaction commit. This
means that transactions exhibit the ACI (atomicity, consistency, and isolation) properties,
but not D (durability); that is, database integrity will be maintained, but if the application
or system fails, it is possible some number of the most recently committed transactions may
be undone during recovery. The number of transactions at risk is governed by how many log
updates can fit into the log buffer, how often the operating system flushes dirty buffers to
disk, and how often the log is checkpointed.

Calling DbEnv::set_flags() with the DB_TXN_NOSYNC flag only affects the specified
DbEnv handle (and any other Berkeley DB handles opened within the scope of that
handle). For consistent behavior across the environment, all DbEnv handles opened in the
environment must either set the DB_TXN_NOSYNC flag or the flag should be specified in the
DB_CONFIG configuration file.

The DB_TXN_NOSYNC flag may be used to configure Berkeley DB at any time during the life
of the application.

• DB_TXN_NOWAIT

If set and a lock is unavailable for any Berkeley DB operation performed in the context of a
transaction, cause the operation to return DB_LOCK_DEADLOCK (or DB_LOCK_NOTGRANTED
if configured using the DB_TIME_NOTGRANTED flag).

Calling DbEnv::set_flags() with the DB_TXN_NOWAIT flag only affects the specified
DbEnv handle (and any other Berkeley DB handles opened within the scope of that
handle). For consistent behavior across the environment, all DbEnv handles opened in the

../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED
../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK
../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 288

environment must either set the DB_TXN_NOWAIT flag or the flag should be specified in the
DB_CONFIG configuration file.

The DB_TXN_NOWAIT flag may be used to configure Berkeley DB at any time during the life
of the application.

• DB_TXN_SNAPSHOT

If set, all transactions in the environment will be started as if DB_TXN_SNAPSHOT were
passed to the DbEnv::txn_begin() (page 613) method, and all non-transactional cursors will
be opened as if DB_TXN_SNAPSHOT were passed to the Db::cursor() (page 161) method.

Calling DbEnv::set_flags() with the DB_TXN_SNAPSHOT flag only affects the specified
DbEnv handle (and any other Berkeley DB handles opened within the scope of that
handle). For consistent behavior across the environment, all DbEnv handles opened in the
environment must either set the DB_TXN_SNAPSHOT flag or the flag should be specified in
the DB_CONFIG configuration file.

The DB_TXN_SNAPSHOT flag may be used to configure Berkeley DB at any time during the
life of the application.

• DB_TXN_WRITE_NOSYNC

If set, Berkeley DB will write, but will not synchronously flush, the log on transaction
commit. This means that transactions exhibit the ACI (atomicity, consistency, and isolation)
properties, but not D (durability); that is, database integrity will be maintained, but if the
system fails, it is possible some number of the most recently committed transactions may
be undone during recovery. The number of transactions at risk is governed by how often the
system flushes dirty buffers to disk and how often the log is checkpointed.

Calling DbEnv::set_flags() with the DB_TXN_WRITE_NOSYNC flag only affects the
specified DbEnv handle (and any other Berkeley DB handles opened within the scope of
that handle). For consistent behavior across the environment, all DbEnv handles opened
in the environment must either set the DB_TXN_WRITE_NOSYNC flag or the flag should be
specified in the DB_CONFIG configuration file.

The DB_TXN_WRITE_NOSYNC flag may be used to configure Berkeley DB at any time during
the life of the application.

• DB_YIELDCPU

If set, Berkeley DB will yield the processor immediately after each page or mutex
acquisition. This functionality should never be used for purposes other than stress testing.

Calling DbEnv::set_flags() with the DB_YIELDCPU flag only affects the specified DbEnv
handle (and any other Berkeley DB handles opened within the scope of that handle). For
consistent behavior across the environment, all DbEnv handles opened in the environment
must either set the DB_YIELDCPU flag or the flag should be specified in the DB_CONFIG
configuration file.

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 289

The DB_YIELDCPU flag may be used to configure Berkeley DB at any time during the life of
the application.

onoff

If the onoff parameter is zero, the specified flags are cleared; otherwise they are set.

Errors

The DbEnv::set_flags() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 290

DbEnv::set_intermediate_dir_mode()
#include <db_cxx.h>

int
DbEnv::set_intermediate_dir_mode(u_int32_t mode);

By default, Berkeley DB does not create intermediate directories needed for recovery, that
is, if the file /a/b/c/mydatabase is being recovered, and the directory path b/c does not
exist, recovery will fail. This default behavior is because Berkeley DB does not know what
permissions are appropriate for intermediate directory creation, and creating the directory
might result in a security problem.

The DbEnv::set_intermediate_dir_mode() method causes Berkeley DB to create any
intermediate directories needed during recovery, using the specified permissions.

On UNIX systems or in IEEE/ANSI Std 1003.1 (POSIX) environments, created directories are
owned by the process owner; the group ownership of created directories is based on the
system and directory defaults, and is not further specified by Berkeley DB.

The database environment's intermediate directory permissions may also be configured using
the environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "set_intermediate_dir_mode", one or more whitespace characters, and the directory
permissions. Because the DB_CONFIG file is read when the database environment is opened, it
will silently overrule configuration done before that time.

The DbEnv::set_intermediate_dir_mode() method configures operations performed
using the specified DbEnv handle, not all operations performed on the underlying database
environment.

The DbEnv::set_intermediate_dir_mode() method may not be called after the
DbEnv::open() (page 252) method is called.

The DbEnv::set_intermediate_dir_mode() method either returns a non-zero error value
or throws an exception that encapsulates a non-zero error value on failure, and returns 0 on
success.

Parameters

mode

The mode parameter specifies the directory permissions.

Directory permissions are interpreted as a string of nine characters, using the character
set r (read), w (write), x (execute or search), and - (none). The first character is the read
permissions for the directory owner (set to either r or -). The second character is the write
permissions for the directory owner (set to either w or -). The third character is the execute
permissions for the directory owner (set to either x or -).

Similarly, the second set of three characters are the read, write and execute/search
permissions for the directory group, and the third set of three characters are the read,

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 291

write and execute/search permissions for all others. For example, the string rwx------ would
configure read, write and execute/search access for the owner only. The string rwxrwx---
would configure read, write and execute/search access for both the owner and the group.
The string rwxr----- would configure read, write and execute/search access for the directory
owner and read-only access for the directory group.

Errors

The DbEnv::set_intermediate_dir_mode() method may fail and throw a DbException
exception, encapsulating one of the following non-zero errors, or return one of the following
non-zero errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 292

DbEnv::set_isalive()
#include <db_cxx.h>

int
DbEnv::set_isalive(int (*is_alive)(DbEnv *dbenv, pid_t pid,
 db_threadid_t tid, u_int32_t flags));

Declare a function that returns if a thread of control (either a true thread or a process)
is still running. The DbEnv::set_isalive() method supports the DbEnv::failchk() (page
223) method. For more information, see Architecting Data Store and Concurrent Data Store
applications, and Architecting Transactional Data Store applications, both in the Berkeley DB
Programmer's Reference Guide.

The DbEnv::set_isalive() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv::set_isalive() method may be called at any time during the life of the
application.

The DbEnv::set_isalive() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

is_alive

The is_alive parameter is a function which returns non-zero if the thread of control,
identified by the pid and tid arguments, is still running. The function takes four arguments:

• dbenv

The dbenv parameter is the enclosing database environment handle, allowing application
access to the application-private fields of that object.

• pid

The pid parameter is a process ID returned by the function specified to the
DbEnv::set_thread_id() (page 306) method.

• tid

The tid parameter is a thread ID returned by the function specified to the
DbEnv::set_thread_id() (page 306) method.

• flags

The flags parameter must be set to 0 or the following value:

• DB_MUTEX_PROCESS_ONLY

Return only if the process is alive, the thread ID should be ignored.

../../programmer_reference/cam_app.html
../../programmer_reference/cam_app.html
../../programmer_reference/transapp_app.html

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 293

Errors

The DbEnv::set_isalive() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 294

DbEnv::set_memory_init()
#include <db_cxx.h>

int
DbEnv::set_memory_init(DB_MEM_CONFIG object, u_int32_t count);

This method sets the number of objects to allocate and initialize for a specified structure
when an environment is created. Doing this helps avoid memory contention after startup.
Using this method is optional; failure to use this method causes BDB to allocate a minimal
number of structures that will grow dynamically. These structures are all allocated from
the main environment region. The amount of memory in this region can be set via the
DbEnv::set_memory_max() (page 296) method. If this method is not called then memory will
be limited to the initial settings or by the (deprecated) set maximum interfaces.

The database environment's initialization may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_memory_init", one or more whitespace characters, followed by the struct specification,
more white space and the count to be allocated. Because the DB_CONFIG file is read when the
database environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_memory_init() method must be called prior to opening the database
environment. It may be called as often as needed to set the different configurations.

Parameters

struct

The struct parameter must be set to one of the following:

• DB_MEM_LOCK

Initialize locks. A thread uses this structure to lock a page (or record for the QUEUE access
method) and hold it to the end of a transactions.

• DB_MEM_LOCKOBJECT

Initialize lock objects. For each page (or record) which is locked in the system, a lock object
will be allocated.

• DB_MEM_LOCKER

Initialize lockers. Each thread which is active in a transactional environment will use a
locker structure either for each transaction which is active, or for each non-transactional
cursor that is active.

• DB_MEM_LOGID

Initialize the log fileid structures. For each database handle which is opened for writing in a
transactional environment, a log fileid structure is used.

• DB_MEM_TRANSACTION

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 295

Initialize transaction structures. Each active transaction uses a transaction structure until it
either commits or aborts.

Note

Currently transaction structures are not preallocated. This setting will be used to
preallocate memory and objects related to transactions such as locker structures
and mutexes.

• DB_MEM_THREAD

Initialize thread identification structures. If thread tracking is enabled then each active
thread will use a structure. Note that since a thread does not signal the BDB library that
it will no longer be making calls, unused structures may accumulate until a cleanup is
triggered either using a high water mark or by running DbEnv::failchk() (page 223).

count

The count parameter sets the number of specified objects to initialize.

The count specified for locks and lock objects should be at least 5 times the number of lock
table partitions. You can examine the current number of lock table partitions configured for
your environment using the DbEnv::get_lk_partitions() (page 335) method.

Errors

The DbEnv::set_memory_init() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 296

DbEnv::set_memory_max()
#include <db_cxx.h>

int
DbEnv::set_memory_max(roff_t size);

This method sets the maximum amount of memory to be used by shared structures in the main
environment region. These are the structures used to coordinate access to the environment
other than mutexes and those in the page cache (memory pool). If the region files are in
memory mapped files, or if DB_PRIVATE is specified, the memory specified by this method is
not allocated completely at startup. As memory is needed, the shared region will be extended
or, in the case of DB_PRIVATE, more memory will be allocated using the system malloc call.
For memory mapped files, a mapped region will be allocated to this size but the underlying
file will only be allocated sufficient memory to hold the initial allocation of shared memory
structures as set by DbEnv::set_memory_init() (page 294).

If no memory maximum is specified then it is calculated from defaults, initial settings or
(deprecated) maximum settings of the various shared structures. In the case of environments
created with DB_PRIVATE, no maximum need be set and the shared structure allocation will
grow as needed until the process memory limit is exhausted.

The database environment's maximum memory may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_memory_max", one or more whitespace characters, followed by the maximum to be
allocated. Because the DB_CONFIG file is read when the database environment is opened, it
will silently overrule configuration done before that time.

The DbEnv::set_memory_max() method must be called prior to opening the database
environment.

Parameters

size

The size parameter identifies the maximum number of bytes to allocate.

Errors

The DbEnv::set_memory_max() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 297

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 298

DbEnv::set_message_stream()
#include <db_cxx.h>

void DbEnv::set_message_stream(class ostream*);

There are interfaces in the Berkeley DB library which either directly output informational
messages or statistical information, or configure the library to output such messages when
performing other operations. For example, the DbEnv::set_verbose() (page 314) and
DbEnv::stat_print() (page 317) methods.

The DbEnv::set_message_stream() and Db::set_message_stream() (page 123) methods are
used to display these messages for the application. In this case, the message will include a
trailing <newline> character.

Setting stream to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_msgfile() (page 301) or Db::set_msgfile() (page
126) methods to display the additional information via a C Library FILE *, or the
DbEnv::set_msgcall() (page 299) and Db::set_msgcall() (page 124) methods to capture the
additional error information in a way that does not use either output streams or C Library
FILE *'s. You should not mix these approaches.

The DbEnv::set_message_stream() method configures operations performed using
the specified DbEnv handle, not all operations performed on the underlying database
environment.

The DbEnv::set_message_stream() method may be called at any time during the life of the
application.

Parameters

stream

The stream parameter is the application-specified output stream to be used for additional
message information.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 299

DbEnv::set_msgcall()
#include <db_cxx.h>

void DbEnv::set_msgcall(void (*db_msgcall_fcn)(const DbEnv *dbenv,
 const char *msg));

There are interfaces in the Berkeley DB library which either directly output informational
messages or statistical information, or configure the library to output such messages
when performing other operations, for example, DbEnv::set_verbose() (page 314) and
DbEnv::stat_print() (page 317).

The DbEnv::set_msgcall() and Db::set_msgcall() (page 124) methods are used to pass these
messages to the application, and Berkeley DB will call db_msgcall_fcn with each message. It
is up to the db_msgcall_fcn function to display the message in an appropriate manner.

Setting db_msgcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DbEnv::set_error_stream() (page 279) and
Db::set_error_stream() (page 106) methods to display the messages via an output stream,
or the Db::set_msgfile() (page 126) or Db::set_msgfile() (page 301) methods to display the
messages via a C library FILE *. You should not mix these approaches.

The DbEnv::set_msgcall() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv::set_msgcall() method may be called at any time during the life of the
application.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters

db_msgcall_fcn

The db_msgcall_fcn parameter is the application-specified message reporting function. The
function takes two parameters:

• dbenv

The dbenv parameter is the enclosing database environment.

• msg

The msg parameter is the message string.

Class

DbEnv

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 300

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 301

DbEnv::set_msgfile()
#include <db_cxx.h>

void
DbEnv::set_msgfile(FILE *msgfile);

There are interfaces in the Berkeley DB library which either directly output informational
messages or statistical information, or configure the library to output such messages
when performing other operations, for example, DbEnv::set_verbose() (page 314) and
DbEnv::stat_print() (page 317).

The DbEnv::set_msgfile() and Db::set_msgfile() (page 126) methods are used to display
these messages for the application. In this case the message will include a trailing <newline>
character.

Setting msgfile to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_message_stream() (page 298) and
Db::set_message_stream() (page 123) methods to display the messages via an output stream,
or the DbEnv::set_msgcall() (page 299) or Db::set_msgcall() (page 124) methods to capture
the additional error information in a way that does not use C library FILE *'s. You should not
mix these approaches.

The DbEnv::set_msgfile() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv::set_msgfile() method may be called at any time during the life of the
application.

Parameters

msgfile

The msgfile parameter is a C library FILE * to be used for displaying messages.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 302

DbEnv::set_shm_key()
#include <db_cxx.h>

int
DbEnv::set_shm_key(long shm_key);

Specify a base segment ID for Berkeley DB environment shared memory regions created in
system memory on VxWorks or systems supporting X/Open-style shared memory interfaces; for
example, UNIX systems supporting shmget(2) and related System V IPC interfaces.

This base segment ID will be used when Berkeley DB shared memory regions are first created.
It will be incremented a small integer value each time a new shared memory region is
created; that is, if the base ID is 35, the first shared memory region created will have a
segment ID of 35, and the next one will have a segment ID between 36 and 40 or so. A
Berkeley DB environment always creates a master shared memory region; an additional shared
memory region for each of the subsystems supported by the environment (Locking, Logging,
Memory Pool and Transaction); plus an additional shared memory region for each additional
memory pool cache that is supported. Already existing regions with the same segment IDs will
be removed. See Shared Memory Regions for more information.

The intent behind this method is two-fold: without it, applications have no way to ensure
that two Berkeley DB applications don't attempt to use the same segment IDs when creating
different Berkeley DB environments. In addition, by using the same segment IDs each time
the environment is created, previously created segments will be removed, and the set of
segments on the system will not grow without bound.

The database environment's base segment ID may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_shm_key", one or more whitespace characters, and the ID. Because the DB_CONFIG file
is read when the database environment is opened, it will silently overrule configuration done
before that time.

The DbEnv::set_shm_key() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv::set_shm_key() method may not be called after the DbEnv::open() (page 252)
method is called. If the database environment already exists when DbEnv::open() (page 252)
is called, the information specified to DbEnv::set_shm_key() must be consistent with the
existing environment or corruption can occur.

The DbEnv::set_shm_key() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

shm_key

The shm_key parameter is the base segment ID for the database environment.

../../programmer_reference/env_region.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 303

Errors

The DbEnv::set_shm_key() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 304

DbEnv::set_thread_count()
#include <db_cxx.h>

int
DbEnv::set_thread_count(u_int32_t count);

Declare an approximate number of threads in the database environment. This method
allocates resources in your environment for the threads your application will use. If you fail to
properly estimate the number of threads your application will use, your application will run
out of resources and errors will be returned when the application attempts to start one too
many threads.

The DbEnv::set_thread_count() method does not set the maximum number of threads but
is used to determine memory sizing and the thread control block reclamation policy.

The DbEnv::set_thread_count() method must be called prior to opening the database
environment. In addition, this method must be used with the DbEnv::failchk() (page 223)
method.

If a process invokes this method without the use of DbEnv::failchk() (page 223) the program
may be unable to allocate a thread control block. This is true of the standalone Berkeley DB
utility programs.

If a process has not configured an is_alive function from the DbEnv::set_isalive() (page
292) method, and then attempts to join a database environment configured for failure
checking with the DbEnv::failchk() (page 223), DbEnv::set_thread_id() (page 306),
DbEnv::set_isalive() (page 292) and DbEnv::set_thread_count() methods, the program may
be unable to allocate a thread control block and fail to join the environment. This is true of
the standalone Berkeley DB utility programs. To avoid problems when using the standalone
Berkeley DB utility programs with environments configured for failure checking, incorporate
the utility's functionality directly in the application, or call the DbEnv::failchk() (page 223)
method before running the utility.

The database environment's thread count may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_thread_count", one or more whitespace characters, and the thread count. Because the
DB_CONFIG file is read when the database environment is opened, it will silently overrule
configuration done before that time.

The DbEnv::set_thread_count() method configures operations performed using
the specified DbEnv handle, not all operations performed on the underlying database
environment.

The DbEnv::set_thread_count() method may not be called after the DbEnv::open() (page
252) method is called.

The DbEnv::set_thread_count() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 305

Parameters

count

The count parameter is an approximate thread count for the database environment.

Errors

The DbEnv::set_thread_count() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 306

DbEnv::set_thread_id()
#include <db_cxx.h>

int
DbEnv::set_thread_id(void (*thread_id)(DbEnv *dbenv,
 pid_t *pid, db_threadid_t *tid));

Declare a function that returns a unique identifier pair for the current thread of control. The
DbEnv::set_thread_id() method supports the DbEnv::failchk() (page 223) method. For
more information, see Architecting Data Store and Concurrent Data Store applications , and
Architecting Transactional Data Store applications , both in the Berkeley DB Programmer's
Reference Guide.

The DbEnv::set_thread_id() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv::set_thread_id() method may be called at any time during the life of the
application.

The DbEnv::set_thread_id() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

thread_id

The thread_id parameter is a function which returns a unique identifier pair for a thread of
control in a Berkeley DB application. The function takes three arguments:

• dbenv

The dbenv parameter is the enclosing database environment handle, allowing application
access to the application-private fields of that object.

• pid

The pid points to a memory location of type pid_t, or NULL. The process ID of the current
thread of control may be returned in this memory location, if it is not NULL.

• tid

The tid points to a memory location of type db_threadid_t, or NULL. The thread ID of the
current thread of control may be returned in this memory location, if it is not NULL.

Errors

The DbEnv::set_thread_id() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

../../programmer_reference/cam_app.html
../../programmer_reference/transapp_app.html
../../programmer_reference/transapp_app.html

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 307

EINVAL

An invalid flag value or parameter was specified.

Assigning Thread IDs

The standard system library calls to return process and thread IDs are often sufficient
for this purpose (for example, getpid() and pthread_self() on POSIX systems or
GetCurrentThreadID on Windows systems). However, if the Berkeley DB application
dynamically creates processes or threads, some care may be necessary in assigning unique
IDs. In most threading systems, process and thread IDs are available for re-use as soon as the
process or thread exits. If a new process or thread is created between the time of process
or thread exit, and the DbEnv::failchk() (page 223) method is run, it may be possible for
DbEnv::failchk() (page 223) to not detect that a thread of control exited without properly
releasing all Berkeley DB resources.

It may be possible to handle this problem by inhibiting process or thread creation between
thread of control exit and calling the DbEnv::failchk() (page 223) method. Alternatively, the
thread_id function must be constructed to not re-use pid/tid pairs. For example, in a single
process application, the returned process ID might be used as an incremental counter, with
the returned thread ID set to the actual thread ID. Obviously, the is_alive function specified
to the DbEnv::set_isalive() (page 292) method must be compatible with any thread_id
function specified to DbEnv::set_thread_id().

The db_threadid_t type is configured to be the same type as a standard thread identifier,
in Berkeley DB configurations where this type is known (for example, systems supporting
pthread_t or thread_t, or DWORD on Windows). If the Berkeley DB configuration process
is unable to determine the type of a standard thread identifier, the db_thread_t type is
set to uintmax_t (or the largest available unsigned integral type, on systems lacking the
uintmax_t type). Applications running on systems lacking a detectable standard thread type,
and which are also using thread APIs where a thread identifier is not an integral value and
so will not fit into the configured db_threadid_t type, must either translate between the
db_threadid_t type and the thread identifier (mapping the thread identifier to a unique
identifier of the appropriate size), or modify the Berkeley DB sources to use an appropriate
db_threadid_t type. Note: we do not currently know of any systems where this is necessary. If
your application has to solve this problem, please contact our support group and let us know.

If no thread_id function is specified by the application, the Berkeley DB library will
identify threads of control by using the taskIdSelf() call on VxWorks, the getpid() and
GetCurrentThreadID() calls on Windows, the getpid() and pthread_self() calls when
the Berkeley DB library has been configured for POSIX pthreads or Solaris LWP threads, the
getpid() and thr_self() calls when the Berkeley DB library has been configured for UI
threads, and otherwise getpid().

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 308

DbEnv::set_thread_id_string()
#include <db_cxx>

int
DbEnv::set_thread_id(void (*thread_id)
 (DbEnv *dbenv, pid_t *pid, db_threadid_t *tid));

Declare a function that formats a process ID and thread ID identifier pair for display into a
caller-supplied buffer. The function must return a reference to the caller-specified buffer. The
DbEnv::set_thread_id_string() method supports the DbEnv::set_thread_id() (page 306)
method.

The DbEnv::set_thread_id_string() method configures operations performed using
the specified DbEnv handle, not all operations performed on the underlying database
environment.

The DbEnv::set_thread_id_string() method may be called at any time during the life of
the application.

The DbEnv::set_thread_id_string() method either returns a non-zero error value or
throws an exception that encapsulates a non-zero error value on failure, and returns 0 on
success.

Parameters

thread_id_string

The thread_id_string parameter is a function which returns a buffer in which is an identifier
pair formatted for display. The function takes four arguments:

• dbenv

The dbenv parameter is the enclosing database environment handle, allowing application
access to the application-private fields of that object.

• pid

The pid argument is a process ID.

• tid

The tid argument is a thread ID.

• buf

The buf argument is character array of at least DB_THREADID_STRLEN bytes in length, into
which the identifier pair should be formatted.

If no thread_id_string function is specified, the default routine displays the identifier pair
as "pid/tid", that is, the process ID represented as an unsigned integer value, a slash ('/')
character, then the thread ID represented as an unsigned integer value.

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 309

Errors

The DbEnv::set_thread_id_string() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 310

DbEnv::set_timeout()
#include <db_cxx.h>

int
DbEnv::set_timeout(db_timeout_t timeout, u_int32_t flags);

The DbEnv::set_timeout() method sets timeout values for locks or transactions in the
database environment, and the wait time for a process to exit the environment when
DB_REGISTER recovery is needed.

DB_SET_LOCK_TIMEOUT and DB_SET_TXN_TIMEOUT timeouts are checked whenever a
thread of control blocks on a lock or when deadlock detection is performed. In the case of
DB_SET_LOCK_TIMEOUT, the lock is one requested explicitly through the Lock subsystem
interfaces. In the case of DB_SET_TXN_TIMEOUT, the lock is one requested on behalf of
a transaction. In either case, it may be a lock requested by the database access methods
underlying the application. These timeouts are only checked when the lock request first
blocks or when deadlock detection is performed, the accuracy of the timeout depends on how
often deadlock detection is performed.

Lock and transaction timeout values specified for the database environment may be
overridden on a per-lock or per-transaction basis. See DbEnv::lock_vec() (page 368) and
DbTxn::set_timeout() (page 636) for more information.

The DbEnv::set_timeout() method may not be used in a database environment without a
locking subsystem.

The DbEnv::set_timeout() method may be called at any time during the life of the
application.

The DbEnv::set_timeout() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

timeout

The timeout parameter is the timeout value. It must be specified as an unsigned 32-bit
number of microseconds, limiting the maximum timeout to roughly 71 minutes.

flags

The flags parameter must be set to one of the following values:

• DB_SET_LOCK_TIMEOUT

Set the timeout value for locks in this database environment.

The database environment's lock timeout value may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with
the string "set_lock_timeout", one or more whitespace characters, and the lock timeout

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 311

value. Because the DB_CONFIG file is read when the database environment is opened, it will
silently overrule configuration done before that time.

This flag configures a database environment, not only operations performed using the
specified DbEnv handle.

• DB_SET_REG_TIMEOUT

Set the timeout value on how long to wait for processes to exit the environment before
recovery is started when the DbEnv::open() (page 252) method was called with the
DB_REGISTER flag and recovery must be performed.

This wait timeout value may also be configured using the environment's DB_CONFIG file.
The syntax of the entry in that file is a single line with the string "set_reg_timeout", one or
more whitespace characters, and the wait timeout value. Because the DB_CONFIG file is
read when the database environment is opened, it will silently overrule configuration done
before that time.

This flag configures operations performed using the specified DbEnv handle.

• DB_SET_TXN_TIMEOUT

Set the timeout value for transactions in this database environment.

The database environment's transaction timeout value may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "set_txn_timeout", one or more whitespace characters, and the transaction timeout
value. Because the DB_CONFIG file is read when the database environment is opened, it will
silently overrule configuration done before that time.

This flag configures a database environment, not only operations performed using the
specified DbEnv handle.

Errors

The DbEnv::set_timeout() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 312

DbEnv::set_tmp_dir()
#include <db_cxx.h>

int
DbEnv::set_tmp_dir(const char *dir);

Specify the path of a directory to be used as the location of temporary files. The files created
to back in-memory access method databases will be created relative to this path. These
temporary files can be quite large, depending on the size of the database.

If no directories are specified, the following alternatives are checked in the specified order.
The first existing directory path is used for all temporary files.

1. The value of the environment variable TMPDIR.

2. The value of the environment variable TEMP.

3. The value of the environment variable TMP.

4. The value of the environment variable TempFolder.

5. The value returned by the GetTempPath interface.

6. The directory /var/tmp.

7. The directory /usr/tmp.

8. The directory /temp.

9. The directory /tmp.

10. The directory C:/temp.

11. The directory C:/tmp.

Note

Environment variables are only checked if one of the DB_USE_ENVIRON or
DB_USE_ENVIRON_ROOT flags were specified.

Note

The GetTempPath interface is only checked on Win/32 platforms.

The database environment's temporary file directory may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "set_tmp_dir", one or more whitespace characters, and the directory name. Because
the DB_CONFIG file is read when the database environment is opened, it will silently overrule
configuration done before that time.

The DbEnv::set_tmp_dir() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 313

The DbEnv::set_tmp_dir() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dir

The dir parameter is the directory to be used to store temporary files.

When using a Unicode build on Windows (the default), the this argument will be interpreted as
a UTF-8 string, which is equivalent to ASCII for Latin characters.

Errors

The DbEnv::set_tmp_dir() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 314

DbEnv::set_verbose()
#include <db_cxx.h>

int
DbEnv::set_verbose(u_int32_t which, int onoff);

The DbEnv::set_verbose() method turns specific additional informational and debugging
messages in the Berkeley DB message output on and off. To see the additional messages,
verbose messages must also be configured for the application. For more information on
verbose messages, see the DbEnv::set_msgfile() (page 301) method.

The database environment's messages may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_verbose", one or more whitespace characters, and the method which parameter as a
string and optionally one or more whitespace characters, and the string "on" or "off". If the
optional string is omitted, the default is "on"; for example, "set_verbose DB_VERB_RECOVERY"
or "set_verbose DB_VERB_RECOVERY on". Because the DB_CONFIG file is read when the
database environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_verbose() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv::set_verbose() method may be called at any time during the life of the
application.

The DbEnv::set_verbose() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

which

The which parameter must be set to one of the following values:

• DB_VERB_DEADLOCK

Display additional information when doing deadlock detection.

• DB_VERB_FILEOPS

Display additional information when performing filesystem operations such as open, close or
rename. May not be available on all platforms.

• DB_VERB_FILEOPS_ALL

Display additional information when performing all filesystem operations, including read and
write. May not be available on all platforms.

• DB_VERB_RECOVERY

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 315

Display additional information when performing recovery.

• DB_VERB_REGISTER

Display additional information concerning support for the DB_REGISTER flag to the
DbEnv::open() (page 252) method.

• DB_VERB_REPLICATION

Display all detailed information about replication. This includes the information displayed
by all of the other DB_VERB_REP_* and DB_VERB_REPMGR_* values.

• DB_VERB_REP_ELECT

Display detailed information about replication elections.

• DB_VERB_REP_LEASE

Display detailed information about replication master leases.

• DB_VERB_REP_MISC

Display detailed information about general replication processing not covered by the other
DB_VERB_REP_* values.

• DB_VERB_REP_MSGS

Display detailed information about replication message processing.

• DB_VERB_REP_SYNC

Display detailed information about replication client synchronization.

• DB_VERB_REP_SYSTEM

Saves replication system information to a system-owned file. This value is on by default.

• DB_VERB_REPMGR_CONNFAIL

Display detailed information about Replication Manager connection failures.

• DB_VERB_REPMGR_MISC

Display detailed information about general Replication Manager processing.

• DB_VERB_WAITSFOR

Display the waits-for table when doing deadlock detection.

onoff

If the onoff parameter is set to non-zero, the additional messages are output.

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 316

Errors

The DbEnv::set_verbose() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 317

DbEnv::stat_print()
#include <db_cxx.h>

int
DbEnv::stat_print(u_int32_t flags);

The DbEnv::stat_print() method displays the default statistical information. The
information is printed to a specified output channel (see the DbEnv::set_msgfile() (page
301) method for more information), or passed to an application callback function (see the
DbEnv::set_msgcall() (page 299) method for more information).

The DbEnv::stat_print() method may not be called before the DbEnv::open() (page 252)
method is called.

The DbEnv::stat_print() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

For Berkeley DB SQL environment statistics, see Command Line Features Unique to dbsql (page
674).

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_STAT_ALL

Display all available information.

• DB_STAT_CLEAR

Reset statistics after displaying their values.

• DB_STAT_SUBSYSTEM

Display information for all configured subsystems.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 318

DbEnv::strerror()
#include <db_cxx.h>

static char *
DbEnv::strerror(int error);

The DbEnv::strerror() method returns an error message string corresponding to the error
number error parameter.

This function is a superset of the ANSI C X3.159-1989 (ANSI C) strerror(3) function. If the error
number error is greater than or equal to 0, then the string returned by the system function
strerror(3) is returned. If the error number is less than 0, an error string appropriate to the
corresponding Berkeley DB library error is returned. See Error returns to applications for more
information.

Parameters

error

The error parameter is the error number for which an error message string is wanted.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

../../programmer_reference/program_errorret.html

Library Version 11.2.5.2 The DbEnv Handle

6/10/2011 DB C++ API Page 319

DbEnv::version()
#include <db_cxx.h>

static char *
DbEnv::version(int *major, int *minor, int *patch);

The DbEnv::version() method returns a pointer to a string, suitable for display, containing
Berkeley DB version information. For a method that returns this information as well as Oracle
release numbers, see DbEnv::full_version() (page 227).

Parameters

major

If major is non-NULL, the major version of the Berkeley DB release is copied to the memory to
which it refers.

minor

If minor is non-NULL, the minor version of the Berkeley DB release is copied to the memory to
which it refers.

patch

If patch is non-NULL, the patch version of the Berkeley DB release is copied to the memory to
which it refers.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

6/10/2011 DB C++ API Page 320

Chapter 6. The DbException Class
#include <db_cxx.h>
class DbException {
public:
 int get_errno() const;
 virtual const char *what() const;
 DbEnv *get_env() const;
};

This information describes the DbException class and how it is used by the various Berkeley
DB classes.

Most methods in the Berkeley DB classes return an int, but also throw an exception. This
allows for two different error behaviors. By default, the Berkeley DB C++ API is configured to
throw an exception whenever a serious error occurs. This generally allows for cleaner logic
for transaction processing because a try block can surround a single transaction. Alternatively,
Berkeley DB can be configured to not throw exceptions, and instead have the individual
function return an error code, by setting the DB_CXX_NO_EXCEPTIONS for the Db (page 21)
and DbEnv (page 215) constructors.

A DbException object contains an informational string, an errno, and a reference to
the environment from which the exception was thrown. The errno can be obtained by
using the DbException::get_errno() method, and can be used, in standard cases,
to determine the type of the exception. The informational string can be obtained by
using the DbException::what(). And, the environment can be obtained using the
DbException::get_env() method.

We expect in the future that this class will inherit from the standard class exception, but
certain language implementation bugs currently prevent this on some platforms.

Some methods may return non-zero values without issuing an exception. This occurs in
situations that are not normally considered an error, but when some informational status
is returned. For example, the Db::get() (page 31) method returns DB_NOTFOUND when a
requested key does not appear in the database.

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 11.2.5.2 The DbException Class

6/10/2011 DB C++ API Page 321

DB C++ Exceptions

DB C++ Exceptions Description

DbDeadlockException Exception class for deadlocks

DbLockNotGrantedException Exception class for lock request failures

DbMemoryException Exception class for insufficient memory

DbRepHandleDeadException Exception class for database and cursor
handles that are invalidated in a replicated
application.

DbRunRecoveryException Exception class for failures requiring recovery

Library Version 11.2.5.2 The DbException Class

6/10/2011 DB C++ API Page 322

DbDeadlockException
#include <db_cxx.h>

class DbDeadlockException : public DbException { ... };

This information describes the DbDeadlockException class and how it is used by the various
Berkeley DB classes.

A DbDeadlockException is thrown when multiple threads competing for a lock are
deadlocked, when a lock request has timed out (and DB_TIME_NOTGRANTED has not been set
in the environment), or when a lock request would need to block and the transaction has been
configured to not wait for locks. One of the threads' transactions is selected for termination,
and a DbDeadlockException is thrown to that thread.

The DbException errno value is set to DB_LOCK_DEADLOCK.

Library Version 11.2.5.2 The DbException Class

6/10/2011 DB C++ API Page 323

DbLockNotGrantedException
#include <db_cxx.h>

class DbLockNotGrantedException : public DbException {
public:
 db_lockop_t get_op() const;
 db_lockmode_t get_mode() const;
 const Dbt* get_obj() const;
 DbLock *get_lock() const;
 int get_index() const;
};

This information describes the DbLockNotGrantedException class and how it is used by the
various Berkeley DB classes.

A DbLockNotGrantedException is thrown when lock or transaction timeouts have been
configured, a database operation has timed out, and the DB_TIME_NOTGRANTED configuration
flag has been specified.

Additionally DbLockNotGrantedException is thrown when a Berkeley DB Concurrent Data
Store database environment configured for lock timeouts was unable to grant a lock in the
allowed time.

Finally, DbLockNotGrantedException is thrown when a lock requested using the
DbEnv::lock_get() (page 355) or DbEnv::lock_vec() (page 368) methods, where the
DB_LOCK_NOWAIT flag or lock timers were configured, could not be granted before the wait-
time expired.

The DbException errno value is set to DB_LOCK_NOTGRANTED.

The following getter methods are available on this class:

• get_op()

Returns DB_LOCK_GET when DbEnv::lock_get() (page 355) was called, and returns the op
for the failed DB_LOCKREQ when DbEnv::lock_vec() (page 368) was called. If this exception
is raised due to a database operation, DB_LOCK_GET is returned.

• get_mode()

Returns the mode parameter when DbEnv::lock_get() (page 355) was called, and returns
the mode for the failed DB_LOCKREQ when DbEnv::lock_vec() (page 368) was called. If this
exception is raised due to a database operation, DB_LOCK_NG is returned.

• get_obj()

Returns the object parameter when DbEnv::lock_get() (page 355) was called, and returns
the object for the failed DB_LOCKREQ when DbEnv::lock_vec() (page 368) was called. The
Dbt pointer may or may not refer valid memory, depending on whether the Dbt used in the

Library Version 11.2.5.2 The DbException Class

6/10/2011 DB C++ API Page 324

call to the failed DbEnv::lock_get() (page 355) or DbEnv::lock_vec() (page 368) method is
still in scope and has not been deleted.

• get_lock()

Returns NULL when DbEnv::lock_get() (page 355) was called, and returns the lock in the
failed DB_LOCKREQ when DbEnv::lock_vec() (page 368) was called. If this exception is
raised due to a database operation, NULL is returned.

• get_index()

Returns -1 when DbEnv::lock_get() (page 355) was called, and returns the index of the
failed DB_LOCKREQ when DbEnv::lock_vec() (page 368) was called. If this exception is
raised due to a database operation, 0 is returned.

Library Version 11.2.5.2 The DbException Class

6/10/2011 DB C++ API Page 325

DbMemoryException
#include <db_cxx.h>

class DbMemoryException : public DbException {
public:
 Dbt *get_dbt() const;
};

This information describes the DbMemoryException class and how it is used by the various
Berkeley DB classes.

A DbMemoryException is thrown when there is insufficient memory to complete an operation,
and there is the possibility of recovering. An example is during a Db::get() (page 31) or
Dbc::get() (page 173) operation with the Dbt flags set to DB_DBT_USERMEM.

The DbException errno value is set to DB_BUFFER_SMALL or ENOMEM.

The get_dbt() method returns the Dbt with insufficient memory to complete the operation,
causing the DbMemoryException to be thrown. The Dbt pointer may or may not refer to valid
memory, depending on whether the Dbt used in the call to the failed Berkeley DB method is
still in scope and has not been deleted.

Library Version 11.2.5.2 The DbException Class

6/10/2011 DB C++ API Page 326

DbRepHandleDeadException
#include <db_cxx.h>

class DbRepHandleDeadException : public DbException {
};

This information describes the DbRepHandleDead class and how it is used by the various
Berkeley DB classes.

A DbRepHandleDeadException is seen only for replicated applications. When a client
synchronizes with the master, it is possible for committed transactions to be rolled back. This
invalidates all the database and cursor handles opened in the replication environment.

This exception is therefore thrown when the application attempts to access a database or
cursor handle that has been invalidated due to a transaction roll back.

When this exception is seen, the application must abandon the attempted operation, discard
the handle, and then open a new one before proceeding with the abandoned operation.

Library Version 11.2.5.2 The DbException Class

6/10/2011 DB C++ API Page 327

DbRunRecoveryException
#include <db_cxx.h>

class DbRunRecoveryException : public DbException { ... };

This information describes the DbRunRecoveryException class and how it is used by the
various Berkeley DB classes.

Errors can occur in the Berkeley DB library where the only solution is to shut down the
application and run recovery (for example, if Berkeley DB is unable to allocate heap memory).
When a fatal error occurs in Berkeley DB, methods will throw a DbRunRecoveryException, at
which point all subsequent Berkeley DB calls will also fail in the same way. When this occurs,
recovery should be performed.

The DbException errno value is set to DB_RUNRECOVERY.

6/10/2011 DB C++ API Page 328

Chapter 7. The DbLock Handle

#include <db_cxx.h>

class DbLock {
public:
 DbLock();
 DbLock(const DbLock &);
 DbLock &operator = (const DbLock &);
 ~DbLock();
};

The locking interfaces for the Berkeley DB database environment are methods of the DbEnv
handle. The DbLock object is the handle for a single lock, and has no methods of its own.

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 329

Locking Subsystem and Related Methods

Locking Subsystem and Related
Methods

Description

DbDeadlockException Exception class for deadlocks

DbLockNotGrantedException Exception class for lock request failures

DbEnv::lock_detect() Perform deadlock detection

DbEnv::lock_get() Acquire a lock

DbEnv::lock_id() Acquire a locker ID

DbEnv::lock_id_free() Release a locker ID

DbEnv::lock_put() Release a lock

DbEnv::lock_stat() Return lock subsystem statistics

DbEnv::lock_stat_print() Print lock subsystem statistics

DbEnv::lock_vec() Acquire/release locks

DbEnv::cdsgroup_begin() Get a locker ID in Berkeley DB Concurrent
Data Store

Locking Subsystem Configuration

DbEnv::set_timeout(), DbEnv::get_timeout() Set/get lock and transaction timeout

DbEnv::set_lk_conflicts(),
DbEnv::get_lk_conflicts()

Set/get lock conflicts matrix

DbEnv::set_lk_detect(),
DbEnv::get_lk_detect()

Set/get automatic deadlock detection

DbEnv::set_lk_max_lockers(),
DbEnv::get_lk_max_lockers()

Set/get maximum number of lockers

DbEnv::set_lk_max_locks(),
DbEnv::get_lk_max_locks()

Set/get maximum number of locks

DbEnv::set_lk_max_objects(),
DbEnv::get_lk_max_objects()

Set/get maximum number of lock objects

DbEnv::set_lk_partitions(),
DbEnv::get_lk_partitions()

Set/get number of lock partitions

DbEnv::set_lk_priority(),
DbEnv::get_lk_priority()

Set/get a locker's deadlock priority

DbEnv::set_lk_tablesize(),
DbEnv::get_lk_tablesize()

Set/get size of the lock object hash table

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 330

DbEnv::get_lk_conflicts()
#include <db_cxx.h>

int
DbEnv::get_lk_conflicts(const u_int8_t **lk_conflictsp, int *lk_modesp);

The DbEnv::get_lk_conflicts() method returns the current conflicts array. You can specify
a conflicts array using DbEnv::set_lk_conflicts() (page 338)

The DbEnv::get_lk_conflicts() method may be called at any time during the life of the
application.

The DbEnv::get_lk_conflicts() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lk_conflictsp

The lk_conflictsp parameter references memory into which a pointer to the current conflicts
array is copied.

lk_modesp

The lk_modesp parameter references memory into which the size of the current conflicts
array is copied.

Errors

The DbEnv::get_lk_conflicts() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

The method was called on an environment which had been opened without being configured
for locking.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329), DbEnv::set_lk_conflicts() (page 338)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 331

DbEnv::get_lk_detect()
#include <db_cxx.h>

int
DbEnv::get_lk_detect(u_int32_t *lk_detectp);

The DbEnv::get_lk_detect() method returns the deadlock detector configuration. You can
manage this using the DbEnv::set_lk_detect() (page 340) method.

The DbEnv::get_lk_detect() method may be called at any time during the life of the
application.

The DbEnv::get_lk_detect() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lk_detectp

The DbEnv::get_lk_detect() method returns the deadlock detector configuration in
lk_detectp.

Errors

The DbEnv::get_lk_detect() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

The method was called on an environment which had been opened without being configured
for locking.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329), DbEnv::set_lk_detect() (page 340)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 332

DbEnv::get_lk_max_lockers()
#include <db_cxx.h>

int
DbEnv::get_lk_max_lockers(u_int32_t *, lk_maxp);

The DbEnv::get_lk_max_lockers() method returns the maximum number of potential
lockers. You can configure this using the DbEnv::set_lk_max_lockers() (page 342) method.

The DbEnv::get_lk_max_lockers() method may be called at any time during the life of the
application.

The DbEnv::get_lk_max_lockers() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lk_maxp

The DbEnv::get_lk_max_lockers() method returns the maximum number of lockers in
lk_maxp.

Errors

The DbEnv::get_lk_max_lockers() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

The method was called on an environment which had been opened without being configured
for locking.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329), DbEnv::set_lk_max_lockers() (page 342)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 333

DbEnv::get_lk_max_locks()
#include <db_cxx.h>

int
DbEnv::get_lk_max_locks(u_int32_t *lk_maxp);

The DbEnv::get_lk_max_locks() method returns the maximum number of potential locks.
You can configure this using the DbEnv::set_lk_max_locks() (page 344) method.

The DbEnv::get_lk_max_locks() method may be called at any time during the life of the
application.

The DbEnv::get_lk_max_locks() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lk_maxp

The DbEnv::get_lk_max_locks() method returns the maximum number of locks in lk_maxp.

Errors

The DbEnv::get_lk_max_locks() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

The method was called on an environment which had been opened without being configured
for locking.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329), DbEnv::set_lk_max_locks() (page 344)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 334

DbEnv::get_lk_max_objects()
#include <db_cxx.h>

int
DbEnv::get_lk_max_objects(u_int32_t *lk_maxp);

The DbEnv::get_lk_max_objects() method returns the maximum number of locked objects.
You can configure this using the DbEnv::set_lk_max_objects() (page 346) method.

The DbEnv::get_lk_max_objects() method may be called at any time during the life of the
application.

The DbEnv::get_lk_max_objects() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lk_maxp

The DbEnv::get_lk_max_objects() method returns the maximum number of potentially
locked objects in lk_maxp.

Errors

The DbEnv::get_lk_max_objects() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

The method was called on an environment which had been opened without being configured
for locking.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329), DbEnv::set_lk_max_objects() (page 346)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 335

DbEnv::get_lk_partitions()
#include <db_cxx.h>

int
DbEnv::get_lk_partitions(u_int32_t *lk_partitions);

The DbEnv::get_lk_partitions() method returns the number of lock table
partitions used in the Berkeley DB environment. You can configure this using the
DbEnv::set_lk_partitions() (page 348) method.

The DbEnv::get_lk_partitions() method may be called at any time during the life of the
application.

The DbEnv::get_lk_partitions() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lk_partitions

The DbEnv::get_lk_partitions() method returns the number of partitions in lk_partitions.

Errors

The DbEnv::get_lk_partitions() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

The method was called on an environment which had been opened without being configured
for locking.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329), DbEnv::set_lk_partitions() (page 348)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 336

DbEnv::get_lk_priority()
#include <db_cxx.h>

int
DbEnv::get_lk_priority(u_int32_t u_int32_t lockerid, u_int32_t *priority);

Get the deadlock priority for the given locker.

Parameters

lockerid

The lockerid parameter represents a locker returned by envM;lock_id().

priority

Upon return, the priority parameter will point to a value between 0 and 2^32-1.

Errors

The DbEnv::get_lk_priority() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329), DbEnv::set_lk_priority() (page 350)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 337

DbEnv::get_lk_tablesize()
#include <db_cxx.h>

int
DbEnv::get_lk_tablesize(u_int32_t *tablesizep);

The DbEnv::get_lk_tablesize() method returns the size of the lock object hash table in
the Berkeley DB environment. This value is set using the DbEnv::set_lk_tablesize() (page 351)
method.

The DbEnv::get_lk_tablesize() method may be called at any time during the life of the
application.

The DbEnv::get_lk_tablesize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

tablesizep

The tablesizep parameter references memory into which is copied the size of the lock object
hash table configured for the Berkeley DB environment.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 338

DbEnv::set_lk_conflicts()
#include <db_cxx.h>

int
DbEnv::set_lk_conflicts(u_int8_t *conflicts, int nmodes);

Set the locking conflicts matrix.

If DbEnv::set_lk_conflicts() is never called, a standard conflicts array is used; see
Standard Lock Modes for more information.

The DbEnv::set_lk_conflicts() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::set_lk_conflicts() method may not be called after the DbEnv::open() (page
252) method is called. If the database environment already exists when DbEnv::open() (page
252) is called, the information specified to DbEnv::set_lk_conflicts() will be ignored.

The DbEnv::set_lk_conflicts() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

conflicts

The conflicts parameter is the new locking conflicts matrix. The conflicts parameter is an
nmodes by nmodes array. A non-0 value for the array element indicates that requested_mode
and held_mode conflict:

 conflicts[requested_mode][held_mode]

The not-granted mode must be represented by 0.

nmodes

The nmodes parameter is the size of the lock conflicts matrix.

Errors

The DbEnv::set_lk_conflicts() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

ENOMEM

The conflicts array could not be copied.

../../programmer_reference/lock_stdmode.html

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 339

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 340

DbEnv::set_lk_detect()
#include <db_cxx.h>

int
DbEnv::set_lk_detect(u_int32_t detect);

Set if the deadlock detector is to be run whenever a lock conflict occurs, and specify what
lock request(s) should be rejected. As transactions acquire locks on behalf of a single locker
ID, rejecting a lock request associated with a transaction normally requires the transaction be
aborted.

The database environment's deadlock detector configuration may also be configured using
the environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "set_lk_detect", one or more whitespace characters, and the method detect parameter
as a string; for example, "set_lk_detect DB_LOCK_OLDEST". Because the DB_CONFIG file is
read when the database environment is opened, it will silently overrule configuration done
before that time.

The DbEnv::set_lk_detect() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::set_lk_detect() method may be called either before or after environment
open, but once it is set it may not be changed again during the environment's lifetime.

The DbEnv::set_lk_detect() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

detect

The detect parameter configures the deadlock detector. The deadlock detector will reject the
lock request with the lowest priority. If multiple lock requests have the lowest priority, then
the detect parameter is used to select which of those lock requests to reject. The specified
value must be one of the following list:

• DB_LOCK_DEFAULT

Use whatever lock policy was specified when the database environment was created. If no
lock policy has yet been specified, set the lock policy to DB_LOCK_RANDOM.

• DB_LOCK_EXPIRE

Reject lock requests which have timed out. No other deadlock detection is performed.

• DB_LOCK_MAXLOCKS

Reject the lock request for the locker ID with the most locks.

• DB_LOCK_MAXWRITE

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 341

Reject the lock request for the locker ID with the most write locks.

• DB_LOCK_MINLOCKS

Reject the lock request for the locker ID with the fewest locks.

• DB_LOCK_MINWRITE

Reject the lock request for the locker ID with the fewest write locks.

• DB_LOCK_OLDEST

Reject the lock request for the locker ID with the oldest lock.

• DB_LOCK_RANDOM

Reject the lock request for a random locker ID.

• DB_LOCK_YOUNGEST

Reject the lock request for the locker ID with the youngest lock.

Errors

The DbEnv::set_lk_detect() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 342

DbEnv::set_lk_max_lockers()
#include <db_cxx.h>

int
DbEnv::set_lk_max_lockers(u_int32_t max);

This method is deprecated. Instead, use DbEnv::set_memory_init() (page 294),
DbEnv::set_memory_max() (page 296), and DbEnv::set_lk_tablesize() (page 351).

Sets the maximum number of locking entities supported by the Berkeley DB environment.
This value is used by DbEnv::open() (page 252) to estimate how much space to allocate for
various lock-table data structures. The default value is 1000 lockers. For specific information
on configuring the size of the lock subsystem, see Configuring locking: sizing the system.

The database environment's maximum number of lockers may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "set_lk_max_lockers", one or more whitespace characters, and the number of lockers.
Because the DB_CONFIG file is read when the database environment is opened, it will silently
overrule configuration done before that time.

The DbEnv::set_lk_max_lockers() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::set_lk_max_lockers() method may not be called after the DbEnv::open() (page
252) method is called. If the database environment already exists when DbEnv::open() (page
252) is called, the information specified to DbEnv::set_lk_max_lockers() will be ignored.

The DbEnv::set_lk_max_lockers() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

max

The max parameter is the maximum number simultaneous locking entities supported by the
Berkeley DB environment.

Errors

The DbEnv::set_lk_max_lockers() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv, DbLock

../../programmer_reference/lock_max.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 343

See Also

Locking Subsystem and Related Methods (page 329)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 344

DbEnv::set_lk_max_locks()
#include <db_cxx.h>

int
DbEnv::set_lk_max_locks(u_int32_t max);

This method is deprecated. Instead, use DbEnv::set_memory_init() (page 294),
DbEnv::set_memory_max() (page 296), and DbEnv::set_lk_tablesize() (page 351).

Set the maximum number of locks supported by the Berkeley DB environment. This value is
used by DbEnv::open() (page 252) to estimate how much space to allocate for various lock-
table data structures. The default value is 1000 locks. The final value specified for the locks
should be more than or equal to the number of lock table partitions. For specific information
on configuring the size of the lock subsystem, see Configuring locking: sizing the system.

The database environment's maximum number of locks may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "set_lk_max_locks", one or more whitespace characters, and the number of locks.
Because the DB_CONFIG file is read when the database environment is opened, it will silently
overrule configuration done before that time.

The DbEnv::set_lk_max_locks() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::set_lk_max_locks() method may not be called after the DbEnv::open() (page
252) method is called. If the database environment already exists when DbEnv::open() (page
252) is called, the information specified to DbEnv::set_lk_max_locks() will be ignored.

The DbEnv::set_lk_max_locks() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

max

The max parameter is the maximum number of locks supported by the Berkeley DB
environment.

Errors

The DbEnv::set_lk_max_locks() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv, DbLock

../../programmer_reference/lock_max.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 345

See Also

Locking Subsystem and Related Methods (page 329)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 346

DbEnv::set_lk_max_objects()
#include <db_cxx.h>

int
DbEnv::set_lk_max_objects(u_int32_t max);

This method is deprecated. Instead, use DbEnv::set_memory_init() (page 294),
DbEnv::set_memory_max() (page 296), and DbEnv::set_lk_tablesize() (page 351).

Set the maximum number of locked objects supported by the Berkeley DB environment. This
value is used by DbEnv::open() (page 252) to estimate how much space to allocate for various
lock-table data structures. The default value is 1000 objects. The final value specified for the
lock objects should be more than or equal to the number of lock table partitions. For specific
information on configuring the size of the lock subsystem, see Configuring locking: sizing the
system.

The database environment's maximum number of objects may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "set_lk_max_objects", one or more whitespace characters, and the number of objects.
Because the DB_CONFIG file is read when the database environment is opened, it will silently
overrule configuration done before that time.

The DbEnv::set_lk_max_objects() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::set_lk_max_objects() method may not be called after the DbEnv::open() (page
252) method is called. If the database environment already exists when DbEnv::open() (page
252) is called, the information specified to DbEnv::set_lk_max_objects() will be ignored.

The DbEnv::set_lk_max_objects() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

max

The max parameter is the maximum number of locked objects supported by the Berkeley DB
environment.

Errors

The DbEnv::set_lk_max_objects() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

../../programmer_reference/lock_max.html
../../programmer_reference/lock_max.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 347

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 348

DbEnv::set_lk_partitions()
#include <db_cxx.h>

int
DbEnv::set_lk_partitions(u_int32_t partitions);

Set the number of lock table partitions in the Berkeley DB environment. The default value
is 10 times the number of CPUs on the system if there is more than one CPU. Increasing the
number of partitions can provide for greater throughput on a system with multiple CPUs and
more than one thread contending for the lock manager. On single processor systems more than
one partition may increase the overhead of the lock manager. Systems often report threading
contexts as CPUs. If your system does this, set the number of partitions to 1 to get optimal
performance.

The database environment's number of partitions may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "set_lk_partitions", one or more whitespace characters, and the number of partitions.
Because the DB_CONFIG file is read when the database environment is opened, it will silently
overrule configuration done before that time.

The DbEnv::set_lk_partitions() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::set_lk_partitions() method may not be called after the DbEnv::open() (page
252) method is called. If the database environment already exists when DbEnv::open() (page
252) is called, the information specified to DbEnv::set_lk_partitions() will be ignored.

The DbEnv::set_lk_partitions() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

partitions

The partitions parameter is the number of partitions to be configured in the Berkeley DB
environment.

Errors

The DbEnv::set_lk_partitions() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv, DbLock

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 349

See Also

Locking Subsystem and Related Methods (page 329)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 350

DbEnv::set_lk_priority()
#include <db_cxx.h>

int
DbEnv::set_lk_priority(u_int32_t u_int32_t lockerid, u_int32_t priority);

Set the priority of the given locker. This value is used when resolving deadlocks, the deadlock
resolution algorithm will reject a lock request from a locker with a lower priority before a
request from a locker with a higher priority.

By default, all lockers are created with a priority of 100.

The DbEnv::set_lk_priority() method may be called at any time during the life of the
application.

The DbEnv::set_lk_priority() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lockerid

The lockerid parameter represents a locker returned by DbEnv::lock_id().

priority

The priority parameter must be a value between 0 and 2^32-1.

Errors

The DbEnv::set_lk_priority() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 351

DbEnv::set_lk_tablesize()
#include <db_cxx.h>

int
DbEnv::set_lk_tablesize(u_int32_t tablesize);

Sets the number of buckets in the lock object hash table in the Berkeley DB environment. The
default value is estimated based on defaults, initial and (deprecated) maximum settings of
the number of lock objects allocated. The maximum memory allocation is also considered.
The table is generally set to be close to the number of lock objects in the system to avoid
collisions and delay in processing lock operations.

The database environment's tablesize may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_lk_tablesize", one or more whitespace characters, and the size of the table. Because the
DB_CONFIG file is read when the database environment is opened, it will silently overrule
configuration done before that time.

The DbEnv::set_lk_tablesize() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::set_lk_tablesize() method may not be called after the DbEnv::open() (page
252) method is called. If the database environment already exists when DbEnv::open() (page
252) is called, the information specified to DbEnv::set_lk_tablesize() will be ignored.

The DbEnv::set_lk_tablesize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

tablesize

The tablesize parameter provides the size of the lock object hash table to be configured in
the Berkeley DB environment.

Errors

The DbEnv::set_lk_tablesize() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv, DbLock

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 352

See Also

Locking Subsystem and Related Methods (page 329)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 353

DbEnv::lock_detect()
#include <db_cxx.h>

int
DbEnv::lock_detect(u_int32_t flags, u_int32_t atype, int *rejected);

The DbEnv::lock_detect() method runs one iteration of the deadlock detector. The
deadlock detector traverses the lock table and marks one of the participating lock requesters
for rejection in each deadlock it finds.

The DbEnv::lock_detect() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

atype

The atype parameter specifies which lock request(s) to reject. The deadlock detector will
reject the lock request with the lowest priority. If multiple lock requests have the lowest
priority, then the atype parameter is used to select which of those lock requests to reject. It
must be set to one of the following list:

• DB_LOCK_DEFAULT

Use the default lock policy, which is DB_LOCK_RANDOM.

• DB_LOCK_EXPIRE

Reject lock requests which have timed out. No other deadlock detection is performed.

• DB_LOCK_MAXLOCKS

Reject the lock request for the locker ID with the most locks.

• DB_LOCK_MAXWRITE

Reject the lock request for the locker ID with the most write locks.

• DB_LOCK_MINLOCKS

Reject the lock request for the locker ID with the fewest locks.

• DB_LOCK_MINWRITE

Reject the lock request for the locker ID with the fewest write locks.

• DB_LOCK_OLDEST

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 354

Reject the lock request for the locker ID with the oldest lock.

• DB_LOCK_RANDOM

Reject the lock request for a random locker ID.

• DB_LOCK_YOUNGEST

Reject the lock request for the locker ID with the youngest lock.

rejected

If the rejected parameter is non-NULL, the memory location to which it refers will be set to
the number of lock requests that were rejected.

Errors

The DbEnv::lock_detect() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 355

DbEnv::lock_get()
#include <db_cxx.h>

int
DbEnv::lock_get(u_int32_t locker, u_int32_t flags,
 const Dbt *object, const db_lockmode_t lock_mode, DbLock *lock);

The DbEnv::lock_get() method acquires a lock from the lock table, returning information
about it in the lock parameter.

The DbEnv::lock_get() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

locker

The locker parameter is an unsigned 32-bit integer quantity. It represents the entity
requesting the lock.

flags

The flags parameter must be set to 0 or the following value:

• DB_LOCK_NOWAIT

If a lock cannot be granted because the requested lock conflicts with an existing lock,
return DB_LOCK_NOTGRANTED immediately instead of waiting for the lock to become
available.

object

The object parameter is an untyped byte string that specifies the object to be locked.
Applications using the locking subsystem directly while also doing locking via the Berkeley DB
access methods must take care not to inadvertently lock objects that happen to be equal to
the unique file IDs used to lock files. See Access method locking conventions in the Berkeley
DB Programmer's Reference Guide for more information.

lock_mode

The lock_mode parameter is used as an index into the environment's lock conflict matrix.
When using the default lock conflict matrix, lock_mode must be set to one of the following
values:

• DB_LOCK_READ

read (shared)

• DB_LOCK_WRITE

../../programmer_reference/lock_am_conv.html

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 356

write (exclusive)

• DB_LOCK_IWRITE

intention to write (shared)

• DB_LOCK_IREAD

intention to read (shared)

• DB_LOCK_IWR

intention to read and write (shared)

See DbEnv::set_lk_conflicts() (page 338) and Standard Lock Modes for more information on the
lock conflict matrix.

lock

The DbEnv::lock_get() method returns the lock information in lock.

Errors

The DbEnv::lock_get() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

The DB_LOCK_NOWAIT flag or lock timers were configured and the lock could not be granted
before the wait-time expired.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

An invalid flag value or parameter was specified.

../../programmer_reference/lock_stdmode.html

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 357

EINVAL

The method was called on an environment which had been opened without being configured
for locking.

ENOMEM

The maximum number of locks has been reached.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 358

DbEnv::lock_id()
#include <db_cxx.h>

int
DbEnv::lock_id(u_int32_t *idp);

The DbEnv::lock_id() method copies a locker ID, which is guaranteed to be unique in the
environment's lock table, into the memory location to which idp refers.

The DbEnv::lock_id_free() (page 359) method should be called to return the locker ID to the
Berkeley DB library when it is no longer needed.

The DbEnv::lock_id() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

idp

The idp parameter references memory into which the allocated locker ID is copied.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 359

DbEnv::lock_id_free()
#include <db_cxx.h>

int
DbEnv::lock_id_free(u_int32_t id);

The DbEnv::lock_id_free() method frees a locker ID allocated by the
DbEnv::lock_id() (page 358) method.

The DbEnv::lock_id_free() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

id

The id parameter is the locker id to be freed.

Errors

The DbEnv::lock_id_free() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the locker ID is invalid or locks are still held by this locker ID; or if an invalid flag value or
parameter was specified.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 360

DbEnv::lock_put()
#include <db_cxx.h>

int
DbEnv::lock_put(DbLock *lock);

The DbEnv::lock_put() method releases lock.

The DbEnv::lock_put() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lock

The lock parameter is the lock to be released.

Errors

The DbEnv::lock_put() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 361

DbEnv::lock_stat()
#include <db_cxx.h>

int
DbEnv::lock_stat(DB_LOCK_STAT **statp, u_int32_t flags);

The DbEnv::lock_stat() method returns the locking subsystem statistics.

The DbEnv::lock_stat() method creates a statistical structure of type DB_LOCK_STAT and
copies a pointer to it into a user-specified memory location.

Statistical structures are stored in allocated memory. If application-specific allocation routines
have been declared (see DbEnv::set_alloc() (page 260) for more information), they are used
to allocate the memory; otherwise, the standard C library malloc(3) is used. The caller
is responsible for deallocating the memory. To deallocate the memory, free the memory
reference; references inside the returned memory need not be individually freed.

The following DB_LOCK_STAT fields will be filled in:

• u_int32_t st_cur_maxid;

The current maximum unused locker ID.

• u_int32_t st_hash_len;

Maximum length of a lock hash bucket.

• u_int32_t st_id;

The last allocated locker ID.

• u_int32_t st_initlocks;

The initial number of locks allocated in the lock table.

• u_int32_t st_initlockers;

The initial number of lockers allocated in the lock table.

• u_int32_t st_initobjects;

The initial number of lock objects allocated in the lock table.

• uintmax_t st_lock_nowait;

The number of lock requests not immediately available due to conflicts, for which the
thread of control did not wait.

• uintmax_t st_lock_wait;

The number of lock requests not immediately available due to conflicts, for which the
thread of control waited.

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 362

• uintmax_t st_lockers_nowait;

The number of requests to allocate or deallocate a locker for which the thread of control
did not wait.

• uintmax_t st_lockers_wait;

The number of requests to allocate or deallocate a locker for which the thread of control
waited.

• u_int32_t st_lockers;

The current number of lockers allocated in the lock table.

• u_int32_t st_locks;

The current number of locks allocated in the lock table.

• uintmax_t st_locksteals;

The maximum number of locks stolen by an empty partition.

• db_timeout_t st_locktimeout;

Lock timeout value.

• u_int32_t st_maxhlocks;

The maximum number of locks in any hash bucket at any one time.

• u_int32_t st_maxhobjects;

The maximum number of objects in any hash bucket at any one time.

• u_int32_t st_maxlockers;

The maximum number of lockers possible.

• u_int32_t st_maxlocks;

The maximum number of locks possible.

• uintmax_t st_maxlsteals;

The maximum number of lock steals for any one partition.

• u_int32_t st_maxnlockers;

The maximum number of lockers at any one time.

• u_int32_t st_maxnobjects;

The maximum number of lock objects at any one time. Note that if there is more than one
partition this is the sum of the maximum across all partitions.

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 363

• u_int32_t st_maxnlocks;

The maximum number of locks at any one time. Note that if there is more than one
partition, this is the sum of the maximum across all partitions.

• u_int32_t st_maxobjects;

The maximum number of lock objects possible.

• uintmax_t st_maxosteals;

The maximum number of object steals for any one partition.

• uintmax_t st_ndeadlocks;

The number of deadlocks.

• uintmax_t st_ndowngrade;

The total number of locks downgraded.

• u_int32_t st_nlockers;

The number of current lockers.

• u_int32_t st_nlocks;

The number of current locks.

• uintmax_t st_nlocktimeouts;

The number of lock requests that have timed out.

• int st_nmodes;

The number of lock modes.

• u_int32_t st_nobjects;

The number of current lock objects.

• uintmax_t st_nreleases;

The total number of locks released.

• uintmax_t st_nrequests;

The total number of locks requested.

• uintmax_t st_ntxntimeouts;

The number of transactions that have timed out. This value is also a component of
st_ndeadlocks, the total number of deadlocks detected.

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 364

• uintmax_t st_nupgrade;

The total number of locks upgraded.

• u_int32_t st_objects;

The current number of lock objects allocated in the lock table.

• uintmax_t st_objectsteals;

The maximum number of objects stolen by an empty partition.

• uintmax_t st_objs_nowait;

The number of requests to allocate or deallocate an object for which the thread of control
did not wait.

• uintmax_t st_objs_wait;

The number of requests to allocate or deallocate an object for which the thread of control
waited.

• uintmax_t st_part_max_nowait;

The number of times that a thread of control was able to obtain any one lock partition
mutex without waiting.

• uintmax_t st_part_max_wait;

The maximum number of times that a thread of control was forced to wait before obtaining
any one lock partition mutex.

• uintmax_t st_part_nowait;

The number of times that a thread of control was able to obtain the lock partition mutex
without waiting.

• uintmax_t st_part_wait;

The number of times that a thread of control was forced to wait before obtaining the lock
partition mutex.

• u_int32_t st_partitions;

The number of lock table partitions.

• uintmax_t st_region_nowait;

The number of times that a thread of control was able to obtain the lock region mutex
without waiting.

• uintmax_t st_region_wait;

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 365

The number of times that a thread of control was forced to wait before obtaining the lock
region mutex.

• roff_t st_regsize;

The region size, in bytes.

• u_int32_t st_tablesize;

The size of the object hash table.

• db_timeout_t st_txntimeout;

Transaction timeout value.

The DbEnv::lock_stat() method may not be called before the DbEnv::open() (page 252)
method is called.

The DbEnv::lock_stat() method returns a non-zero error value on failure and 0 on success.

Parameters

statp

The statp parameter references memory into which a pointer to the allocated statistics
structure is copied.

flags

The flags parameter must be set to 0 or the following value:

• DB_STAT_CLEAR

Reset statistics after returning their values.

Errors

The DbEnv::lock_stat() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 366

DbEnv::lock_stat_print()
#include <db_cxx.h>

int
DbEnv::lock_stat_print(u_int32_t flags);

The DbEnv::lock_stat_print() method displays the locking subsystem statistical
information, as described for the DbEnv::lock_stat() method. The information
is printed to a specified output channel (see the DbEnv::set_msgfile() (page 301)
method for more information), or passed to an application callback function (see the
DbEnv::set_msgcall() (page 299) method for more information).

The DbEnv::lock_stat_print() method may not be called before the DbEnv::open() (page
252) method is called.

The DbEnv::lock_stat_print() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_STAT_ALL

Display all available information.

• DB_STAT_CLEAR

Reset statistics after displaying their values.

• DB_STAT_LOCK_CONF

Display the lock conflict matrix.

• DB_STAT_LOCK_LOCKERS

Display the lockers within hash chains.

• DB_STAT_LOCK_OBJECTS

Display the lock objects within hash chains.

• DB_STAT_LOCK_PARAMS

Display the locking subsystem parameters.

Class

DbEnv, DbLock

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 367

See Also

Locking Subsystem and Related Methods (page 329)

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 368

DbEnv::lock_vec()
#include <db_cxx.h>

int
DbEnv::lock_vec(u_int32_t locker, u_int32_t flags,
 DB_LOCKREQ list[], int nlist, DB_LOCKREQ **elistp);

The DbEnv::lock_vec() method atomically obtains and releases one or more locks from the
lock table. The DbEnv::lock_vec() method is intended to support acquisition or trading
of multiple locks under one lock table semaphore, as is needed for lock coupling or in
multigranularity locking for lock escalation.

If any of the requested locks cannot be acquired, or any of the locks to be released cannot
be released, the operations before the failing operation are guaranteed to have completed
successfully, and DbEnv::lock_vec() returns a non-zero value. In addition, if elistp is not
NULL, it is set to point to the DB_LOCKREQ entry that was being processed when the error
occurred.

Unless otherwise specified, the DbEnv::lock_vec() method either returns a non-zero error
value or throws an exception that encapsulates a non-zero error value on failure, and returns
0 on success.

Parameters

locker

The locker parameter is an unsigned 32-bit integer quantity. It represents the entity
requesting or releasing the lock.

flags

The flags parameter must be set to 0 or the following value:

• DB_LOCK_NOWAIT

If a lock cannot be granted because the requested lock conflicts with an existing lock,
return DB_LOCK_NOTGRANTED immediately instead of waiting for the lock to become
available. In this case, if non-NULL, elistp identifies the request that was not granted.

list

The list array provided to DbEnv::lock_vec() is typedef'd as DB_LOCKREQ.

To ensure compatibility with future releases of Berkeley DB, all fields of the DB_LOCKREQ
structure that are not explicitly set should be initialized to 0 before the first time the
structure is used. Do this by declaring the structure external or static, or by calling
memset(3).

A DB_LOCKREQ structure has at least the following fields:

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 369

• lockop_t op;

The operation to be performed, which must be set to one of the following values:

• DB_LOCK_GET

Get the lock defined by the values of the mode and obj structure fields, for the specified
locker. Upon return from DbEnv::lock_vec(), if the lock field is non-NULL, a reference
to the acquired lock is stored there. (This reference is invalidated by any call to
DbEnv::lock_vec() or DbEnv::lock_put() (page 360) that releases the lock.)

• DB_LOCK_GET_TIMEOUT

Identical to DB_LOCK_GET except that the value in the timeout structure field overrides
any previously specified timeout value for this lock. A value of 0 turns off any previously
specified timeout.

• DB_LOCK_PUT

The lock to which the lock structure field refers is released. The locker parameter, and
mode and obj fields are ignored.

• DB_LOCK_PUT_ALL

All locks held by the specified locker are released. The lock, mode, and obj structure
fields are ignored. Locks acquired in operations performed by the current call to
DbEnv::lock_vec() which appear before the DB_LOCK_PUT_ALL operation are released;
those acquired in operations appearing after the DB_LOCK_PUT_ALL operation are not
released.

• DB_LOCK_PUT_OBJ

All locks held on obj are released. The locker parameter and the lock and mode
structure fields are ignored. Locks acquired in operations performed by the current call to
DbEnv::lock_vec() that appear before the DB_LOCK_PUT_OBJ operation are released;
those acquired in operations appearing after the DB_LOCK_PUT_OBJ operation are not
released.

• DB_LOCK_TIMEOUT

Cause the specified locker to timeout immediately. If the database environment has not
configured automatic deadlock detection, the transaction will timeout the next time
deadlock detection is performed. As transactions acquire locks on behalf of a single locker
ID, timing out the locker ID associated with a transaction will time out the transaction
itself.

• DB_LOCK lock;

A lock reference.

• const lockmode_t mode;

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 370

The lock mode, used as an index into the environment's lock conflict matrix. When using the
default lock conflict matrix, mode must be set to one of the following values:

• DB_LOCK_READ

read (shared)

• DB_LOCK_WRITE

write (exclusive)

• DB_LOCK_IWRITE

intention to write (shared)

• DB_LOCK_IREAD

intention to read (shared)

• DB_LOCK_IWR

intention to read and write (shared)

See DbEnv::set_lk_conflicts() (page 338) and Standard Lock Modes for more information on
the lock conflict matrix.

• const DBT obj;

An untyped byte string that specifies the object to be locked or released. Applications
using the locking subsystem directly while also doing locking via the Berkeley DB access
methods must take care not to inadvertently lock objects that happen to be equal to the
unique file IDs used to lock files. See Access method locking conventions in the Berkeley DB
Programmer's Reference Guide for more information.

• u_int32_t timeout;

The lock timeout value.

nlist

The nlist parameter specifies the number of elements in the list array.

elistp

If an error occurs, and the elistp parameter is non-NULL, it is set to point to the DB_LOCKREQ
entry that was being processed when the error occurred.

Errors

The DbEnv::lock_vec() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

../../programmer_reference/lock_stdmode.html
../../programmer_reference/lock_am_conv.html

Library Version 11.2.5.2 The DbLock Handle

6/10/2011 DB C++ API Page 371

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

The DB_LOCK_NOWAIT flag or lock timers were configured and the lock could not be granted
before the wait-time expired.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

An invalid flag value or parameter was specified.

ENOMEM

The maximum number of locks has been reached.

Class

DbEnv, DbLock

See Also

Locking Subsystem and Related Methods (page 329)

6/10/2011 DB C++ API Page 372

Chapter 8. The DbLsn Handle
#include <db_cxx.h>

class DbLsn : public DB_LSN { ... };

The DbLsn object is a log sequence number which specifies a unique location in a log file. A
DbLsn consists of two unsigned 32-bit integers -- one specifies the log file number, and the
other specifies an offset in the log file.

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 373

Logging Subsystem and Related Methods

Logging Subsystem and Related
Methods

Description

DbEnv::log_archive() List log and database files

DbEnv::log_file() Map Log Sequence Numbers to log files

DbEnv::log_flush() Flush log records

DbEnv::log_printf() Append informational message to the log

DbEnv::log_put() Write a log record

DbEnv::log_stat() Return log subsystem statistics

DbEnv::log_stat_print() Print log subsystem statistics

DbEnv::log_compare() Compare two Log Sequence Numbers

Logging Subsystem Cursors

DbEnv::log_cursor() Create a log cursor handle

The DbLogc Handle A log cursor handle

DbLogc::close() Close a log cursor

DbLogc::get() Retrieve a log record

Logging Subsystem Configuration

DbEnv::log_set_config(),
DbEnv::log_get_config()

Configure the logging subsystem

DbEnv::set_lg_bsize(), DbEnv::get_lg_bsize() Set/get log buffer size

DbEnv::set_lg_dir(), DbEnv::get_lg_dir() Set/get the environment logging directory

DbEnv::set_lg_filemode(),
DbEnv::get_lg_filemode()

Set/get log file mode

DbEnv::set_lg_max(), DbEnv::get_lg_max() Set/get log file size

DbEnv::set_lg_regionmax(),
DbEnv::get_lg_regionmax()

Set/get logging region size

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 374

DbEnv::get_lg_bsize()
#include <db_cxx.h>

int
DbEnv::get_lg_bsize(u_int32_t *lg_bsizep);

The DbEnv::get_lg_bsize() method returns the size of the log buffer, in bytes. You can
manage this value using the DbEnv::set_lg_bsize() (page 397) method.

The DbEnv::get_lg_bsize() method may be called at any time during the life of the
application.

The DbEnv::get_lg_bsize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lg_bsizep

The DbEnv::get_lg_bsize() method returns the size of the log buffer, in bytes in lg_bsizep.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods (page 373), DbEnv::set_lg_bsize() (page 397)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 375

DbEnv::get_lg_dir()
#include <db_cxx.h>

int
DbEnv::get_lg_dir(const char **dirp);

The DbEnv::get_lg_dir() method returns the log directory, which is the location for logging
files. You can manage this value using the DbEnv::set_lg_dir() (page 399) method.

The DbEnv::get_lg_dir() method may be called at any time during the life of the
application.

The DbEnv::get_lg_dir() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dirp

The DbEnv::get_lg_dir() method returns a reference to the log directory in dirp.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods (page 373), DbEnv::set_lg_dir() (page 399)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 376

DbEnv::get_lg_filemode()
#include <db_cxx.h>

int
DbEnv::get_lg_filemode(int *lg_modep);

The DbEnv::set_lg_filemode() method returns the log file mode. You can manage this
value using the DbEnv::set_lg_filemode() (page 401) method.

The DbEnv::set_lg_filemode() method may be called at any time during the life of the
application.

The DbEnv::set_lg_filemode() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lg_modep

The DbEnv::set_lg_filemode() method returns the log file mode in lg_modep.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods (page 373), DbEnv::set_lg_filemode() (page 401)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 377

DbEnv::get_lg_max()
#include <db_cxx.h>

int
DbEnv::get_lg_max(u_int32_t *lg_maxp);

The DbEnv::get_lg_max() method returns the maximum log file size. You can manage this
value using the DbEnv::set_lg_max() (page 402) method.

The DbEnv::get_lg_max() method may be called at any time during the life of the
application.

The DbEnv::get_lg_max() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lg_maxp

The DbEnv::get_lg_max() method returns the maximum log file size in lg_maxp.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods (page 373), DbEnv::set_lg_max() (page 402)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 378

DbEnv::get_lg_regionmax()
#include <db_cxx.h>

int
DbEnv::get_lg_regionmax(u_int32_t *lg_regionmaxp);

The DbEnv::get_lg_regionmax() method returns the size of the underlying logging
subsystem region. You can manage this value using the DbEnv::set_lg_regionmax() (page 404)
method.

The DbEnv::get_lg_regionmax() method may be called at any time during the life of the
application.

The DbEnv::get_lg_regionmax() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lg_regionmaxp

The DbEnv::get_lg_regionmax() method returns the size of the underlying logging
subsystem region in lg_regionmaxp.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods (page 373), DbEnv::set_lg_regionmax() (page 404)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 379

DbEnv::log_archive()
#include <db_cxx.h>

int
DbEnv::log_archive(char *(*listp)[], u_int32_t flags);

The DbEnv::log_archive() method returns an array of log or database filenames.

By default, DbEnv::log_archive() returns the names of all of the log files that are no longer
in use (for example, that are no longer involved in active transactions), and that may safely
be archived for catastrophic recovery and then removed from the system. If there are no
filenames to return, the memory location to which listp refers will be set to NULL.

When Replication Manager is in use, log archiving is performed in a replication group-aware
manner such that the log file status of other sites in the group is considered to determine if a
log file is in use.

Arrays of log filenames are stored in allocated memory. If application-specific allocation
routines have been declared (see DbEnv::set_alloc() (page 260) for more information), they
are used to allocate the memory; otherwise, the standard C library malloc(3) is used. The
caller is responsible for deallocating the memory. To deallocate the memory, free the memory
reference; references inside the returned memory need not be individually freed.

Log cursor handles (returned by the DbEnv::log_cursor() (page 381) method) may have open
file descriptors for log files in the database environment. Also, the Berkeley DB interfaces
to the database environment logging subsystem (for example, DbEnv::log_put() (page 387)
and DbTxn::abort() (page 624)) may allocate log cursors and have open file descriptors for
log files as well. On operating systems where filesystem related system calls (for example,
rename and unlink on Windows/NT) can fail if a process has an open file descriptor for the
affected file, attempting to move or remove the log files listed by DbEnv::log_archive()
may fail. All Berkeley DB internal use of log cursors operates on active log files only and
furthermore, is short-lived in nature. So, an application seeing such a failure should be
restructured to close any open log cursors it may have, and otherwise to retry the operation
until it succeeds. (Although the latter is not likely to be necessary; it is hard to imagine a
reason to move or rename a log file in which transactions are being logged or aborted.)

See db_archive for more information on database archival procedures.

The DbEnv::log_archive() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

listp

The listp parameter references memory into which the allocated array of log or database
filenames is copied. If there are no filenames to return, the memory location to which listp
refers will be set to NULL.

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 380

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_ARCH_ABS

All pathnames are returned as absolute pathnames, instead of relative to the database
home directory.

• DB_ARCH_DATA

Return the database files that need to be archived in order to recover the database from
catastrophic failure. If any of the database files have not been accessed during the lifetime
of the current log files, DbEnv::log_archive() will not include them in this list. It is also
possible that some of the files referred to by the log have since been deleted from the
system.

The DB_ARCH_DATA and DB_ARCH_LOG flags are mutually exclusive.

• DB_ARCH_LOG

Return all the log filenames, regardless of whether or not they are in use.

The DB_ARCH_DATA and DB_ARCH_LOG flags are mutually exclusive.

• DB_ARCH_REMOVE

Remove log files that are no longer needed; no filenames are returned. Automatic log file
removal is likely to make catastrophic recovery impossible.

The DB_ARCH_REMOVE flag may not be specified with any other flag.

Errors

The DbEnv::log_archive() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods (page 373)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 381

DbEnv::log_cursor()
#include <db_cxx.h>

int
DbEnv::log_cursor(DbLogc **cursorp, u_int32_t flags);

The DbEnv::log_cursor() method returns a created log cursor.

The DbEnv::log_cursor() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

cursorp

The cursorp parameter references memory into which a pointer to the created log cursor is
copied.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DbEnv::log_cursor() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods (page 373)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 382

DbEnv::log_file()
#include <db_cxx.h>

int
DbEnv::log_file(const DbLsn *lsn, char *namep, size_t len);

The DbEnv::log_file() method maps DbLsn structures to filenames, returning the name of
the file containing the record named by lsn.

This mapping of DbLsn structures to files is needed for database administration. For example,
a transaction manager typically records the earliest DbLsn needed for restart, and the
database administrator may want to archive log files to tape when they contain only DbLsn
entries before the earliest one needed for restart.

The DbEnv::log_file() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lsn

The lsn parameter is the DbLsn structure for which a filename is wanted.

namep

The namep parameter references memory into which the name of the file containing the
record named by lsn is copied.

len

The len parameter is the length of the namep buffer in bytes. If namep is too short to hold
the filename, DbEnv::log_file() will fail. (Log filenames are always 14 characters long.)

Errors

The DbEnv::log_file() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If supplied buffer was too small to hold the log filename; or if an invalid flag value or
parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods (page 373)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 383

DbEnv::log_flush()
#include <db_cxx.h>

int
DbEnv::log_flush(const DbLsn *lsn);

The DbEnv::log_flush() method writes log records to disk.

The DbEnv::log_flush() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lsn

All log records with DbLsn values less than or equal to the lsn parameter are written to disk. If
lsn is NULL, all records in the log are flushed.

Errors

The DbEnv::log_flush() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods (page 373)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 384

DbEnv::log_get_config()
#include <db_cxx.h>

int
DbEnv::log_get_config(u_int32_t which, int *onoffp)

The DbEnv::log_get_config() method returns whether the specified which parameter is
currently set or not. You can manage this value using the DbEnv::log_set_config() (page 389)
method.

The DbEnv::log_get_config() method may be called at any time during the life of the
application.

The DbEnv::log_get_config() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

which

The which parameter is the message value for which configuration is being checked. Must be
set to one of the following values:

• DB_LOG_DIRECT

System buffering is turned off for Berkeley DB log files to avoid double caching.

• DB_LOG_DSYNC

Berkeley DB is configured to flush log writes to the backing disk before returning from the
write system call, rather than flushing log writes explicitly in a separate system call, as
necessary.

• DB_LOG_AUTO_REMOVE

Berkeley DB automatically removes log files that are no longer needed.

• DB_LOG_IN_MEMORY

Transaction logs are maintained in memory rather than on disk. This means that transactions
exhibit the ACI (atomicity, consistency, and isolation) properties, but not D (durability).

• DB_LOG_ZERO

All pages of a log file are zeroed when that log file is created.

onoffp

The onoffp parameter references memory into which the configuration of the specified which
parameter is copied.

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 385

If the returned onoff value is zero, the parameter is off; otherwise, on.

Class

DbEnv

See Also

Logging Subsystem and Related Methods (page 373), DbEnv::log_set_config() (page 389)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 386

DbEnv::log_printf()
#include <db_cxx.h>

int
DbEnv::log_printf(DB_TXN *txnid, const char *fmt, ...);

The DbEnv::log_printf() method appends an informational message to the Berkeley DB
database environment log files.

The DbEnv::log_printf() method allows applications to include information in the database
environment log files, for later review using the db_printlog utility. This method is intended
for debugging and performance tuning.

The DbEnv::log_printf() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

txnid

If the logged message refers to an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 613); otherwise NULL.

fmt

A format string that specifies how subsequent arguments (or arguments accessed via the
variable-length argument facilities of stdarg(3)) are converted for output. The format string
may contain any formatting directives supported by the underlying C library vsnprintf(3)
function.

Errors

The DbEnv::log_printf() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods (page 373)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 387

DbEnv::log_put()
#include <db_cxx.h>

int
DbEnv::log_put(DbLsn *lsn, const Dbt *data, u_int32_t flags);

The DbEnv::log_put() method appends records to the log. The DbLsn of the put record is
returned in the lsn parameter.

The DbEnv::log_put() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lsn

The lsn parameter references memory into which the DbLsn of the put record is copied.

data

The data parameter is the record to write to the log.

The caller is responsible for providing any necessary structure to data. (For example, in
a write-ahead logging protocol, the application must understand what part of data is an
operation code, what part is redo information, and what part is undo information. In addition,
most transaction managers will store in data the DbLsn of the previous log record for the same
transaction, to support chaining back through the transaction's log records during undo.)

flags

The flags parameter must be set to 0 or the following value:

• DB_FLUSH

The log is forced to disk after this record is written, guaranteeing that all records with
DbLsn values less than or equal to the one being "put" are on disk before DbEnv::log_put()
returns.

Errors

The DbEnv::log_put() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the record to be logged is larger than the maximum log record; or if an invalid flag value or
parameter was specified.

Class

DbEnv, DbLogc, DbLsn

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 388

See Also

Logging Subsystem and Related Methods (page 373)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 389

DbEnv::log_set_config()
#include <db_cxx.h>

int
DbEnv::log_set_config(u_int32_t flags, int onoff);

The DbEnv::log_set_config() method configures the Berkeley DB logging subsystem.

The DbEnv::log_set_config() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::log_set_config() method may be called at any time during the life of the
application.

The DbEnv::log_set_config() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set by bitwise inclusively OR'ing together one or more of the
following values:

• DB_LOG_DIRECT

Turn off system buffering of Berkeley DB log files to avoid double caching.

Calling DbEnv::log_set_config() with the DB_LOG_DIRECT flag only affects the specified
DbEnv handle (and any other Berkeley DB handles opened within the scope of that
handle). For consistent behavior across the environment, all DbEnv handles opened in the
environment must either set the DB_LOG_DIRECT flag or the flag should be specified in the
DB_CONFIG configuration file.

The DB_LOG_DIRECT flag may be used to configure Berkeley DB at any time during the life
of the application.

• DB_LOG_DSYNC

Configure Berkeley DB to flush log writes to the backing disk before returning from the
write system call, rather than flushing log writes explicitly in a separate system call, as
necessary. This is only available on some systems (for example, systems supporting the
IEEE/ANSI Std 1003.1 (POSIX) standard O_DSYNC flag, or systems supporting the Windows
FILE_FLAG_WRITE_THROUGH flag). This flag may result in inaccurate file modification times
and other file-level information for Berkeley DB log files. This flag may offer a performance
increase on some systems and a performance decrease on others.

Calling DbEnv::log_set_config() with the DB_LOG_DSYNC flag only affects the specified
DbEnv handle (and any other Berkeley DB handles opened within the scope of that

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 390

handle). For consistent behavior across the environment, all DbEnv handles opened in the
environment must either set the DB_LOG_DSYNC flag or the flag should be specified in the
DB_CONFIG configuration file.

The DB_LOG_DSYNC flag may be used to configure Berkeley DB at any time during the life of
the application.

• DB_LOG_AUTO_REMOVE

If set, Berkeley DB will automatically remove log files that are no longer needed.

Automatic log file removal is likely to make catastrophic recovery impossible.

Replication Manager applications operate in a group-aware manner for log file removal, and
automatic log file removal simplifies the application.

Replication Base API applications will rarely want to configure automatic log file removal as
it increases the likelihood a master will be unable to satisfy a client's request for a recent
log record.

Calling DbEnv::log_set_config() with the DB_LOG_AUTO_REMOVE flag affects the
database environment, including all threads of control accessing the database environment.

The DB_LOG_AUTO_REMOVE flag may be used to configure Berkeley DB at any time during the
life of the application.

• DB_LOG_IN_MEMORY

If set, maintain transaction logs in memory rather than on disk. This means that transactions
exhibit the ACI (atomicity, consistency, and isolation) properties, but not D (durability); that
is, database integrity will be maintained, but if the application or system fails, integrity
will not persist. All database files must be verified and/or restored from a replication group
master or archival backup after application or system failure.

When in-memory logs are configured and no more log buffer space is available, Berkeley
DB methods may return an additional error value, DB_LOG_BUFFER_FULL. When choosing
log buffer and file sizes for in-memory logs, applications should ensure the in-memory log
buffer size is large enough that no transaction will ever span the entire buffer, and avoid a
state where the in-memory buffer is full and no space can be freed because a transaction
that started in the first log "file" is still active.

Calling DbEnv::log_set_config() with the DB_LOG_IN_MEMORY flag affects the database
environment, including all threads of control accessing the database environment.

The DB_LOG_IN_MEMORY flag may be used to configure Berkeley DB only before the
DbEnv::open() (page 252) method is called.

• DB_LOG_ZERO

If set, zero all pages of a log file when that log file is created. This has shown to provide
greater transaction throughput in some environments. The log file will be zeroed by the

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 391

thread which needs to re-create the new log file. Other threads may not write to the log
file while this is happening.

Calling DbEnv::log_set_config() with the DB_LOG_ZERO flag affects only the current
environment handle.

The DB_LOG_ZERO flag may be used to configure Berkeley DB at any time.

onoff

If the onoff parameter is zero, the specified flags are cleared; otherwise they are set.

Errors

The DbEnv::log_set_config() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Logging Subsystem and Related Methods (page 373)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 392

DbEnv::log_stat()
#include <db_cxx.h>

int
DbEnv::log_stat(DB_LOG_STAT **statp, u_int32_t flags);

The DbEnv::log_stat() method returns the logging subsystem statistics.

The DbEnv::log_stat() method creates a statistical structure of type DB_LOG_STAT and
copies a pointer to it into a user-specified memory location.

Statistical structures are stored in allocated memory. If application-specific allocation routines
have been declared (see DbEnv::set_alloc() (page 260) for more information), they are used
to allocate the memory; otherwise, the standard C library malloc(3) is used. The caller
is responsible for deallocating the memory. To deallocate the memory, free the memory
reference; references inside the returned memory need not be individually freed.

The following DB_LOG_STAT fields will be filled in:

• u_int32_t st_cur_file;

The current log file number.

• u_int32_t st_cur_offset;

The byte offset in the current log file.

• u_int32_t st_disk_file;

The log file number of the last record known to be on disk.

• u_int32_t st_disk_offset;

The byte offset of the last record known to be on disk.

• u_int32_t st_fileid_init;

The initial allocated file logging identifiers.

• u_int32_t st_lg_bsize;

The in-memory log record cache size.

• u_int32_t st_lg_size;

The log file size.

• u_int32_t st_magic;

The magic number that identifies a file as a log file.

• u_int32_t st_maxcommitperflush;

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 393

The maximum number of commits contained in a single log flush.

• u_int32_t st_maxnfileid;

The maximum number of file logging identifiers used.

• u_int32_t st_mincommitperflush;

The minimum number of commits contained in a single log flush that contained a commit.

• int st_mode;

The mode of any created log files.

• u_int32_t st_nfileid;

The current number of file logging identifiers.

• uintmax_t st_rcount;

The number of times the log has been read from disk.

• uintmax_t st_record;

The number of records written to this log.

• roff_t st_regsize;

The region size, in bytes.

• uintmax_t st_region_wait;

The number of times that a thread of control was forced to wait before obtaining the log
region mutex.

• uintmax_t st_region_nowait;

The number of times that a thread of control was able to obtain the log region mutex
without waiting.

• uintmax_t st_scount;

The number of times the log has been flushed to disk.

• u_int32_t st_version;

The version of the log file type.

• u_int32_t st_w_bytes;

The number of bytes over and above st_w_mbytes written to this log.

• u_int32_t st_w_mbytes;

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 394

The number of megabytes written to this log.

• u_int32_t st_wc_bytes;

The number of bytes over and above st_wc_mbytes written to this log since the last
checkpoint.

• u_int32_t st_wc_mbytes;

The number of megabytes written to this log since the last checkpoint.

• uintmax_t st_wcount_fill;

The number of times the log has been written to disk because the in-memory log record
cache filled up.

• uintmax_t st_wcount;

The number of times the log has been written to disk.

The DbEnv::log_stat() method may not be called before the DbEnv::open() (page 252)
method is called.

The DbEnv::log_stat() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

statp

The statp parameter references memory into which a pointer to the allocated statistics
structure is copied.

flags

The flags parameter must be set to 0 or the following value:

• DB_STAT_CLEAR

Reset statistics after returning their values.

Errors

The DbEnv::log_stat() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 395

See Also

Logging Subsystem and Related Methods (page 373)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 396

DbEnv::log_stat_print()
#include <db_cxx.h>

int
DbEnv::log_stat_print(u_int32_t flags);

The DbEnv::log_stat_print() method displays the logging subsystem statistical
information, as described for the DbEnv::log_stat() method. The information
is printed to a specified output channel (see the DbEnv::set_msgfile() (page 301)
method for more information), or passed to an application callback function (see the
DbEnv::set_msgcall() (page 299) method for more information).

The DbEnv::log_stat_print() method may not be called before the DbEnv::open() (page
252) method is called.

The DbEnv::log_stat_print() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_STAT_ALL

Display all available information.

• DB_STAT_CLEAR

Reset statistics after displaying their values.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods (page 373)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 397

DbEnv::set_lg_bsize()
#include <db_cxx.h>

int
DbEnv::set_lg_bsize(u_int32_t lg_bsize);

Sets the size of the in-memory log buffer, in bytes.

When the logging subsystem is configured for on-disk logging, the default size of the in-
memory log buffer is approximately 32KB. Log information is stored in-memory until the
storage space fills up or transaction commit forces the information to be flushed to stable
storage. In the presence of long-running transactions or transactions producing large amounts
of data, larger buffer sizes can increase throughput.

When the logging subsystem is configured for in-memory logging, the default size of the in-
memory log buffer is 1MB. Log information is stored in-memory until the storage space fills
up or transaction abort or commit frees up the memory for new transactions. In the presence
of long-running transactions or transactions producing large amounts of data, the buffer size
must be sufficient to hold all log information that can accumulate during the longest running
transaction. When choosing log buffer and file sizes for in-memory logs, applications should
ensure the in-memory log buffer size is large enough that no transaction will ever span the
entire buffer, and avoid a state where the in-memory buffer is full and no space can be freed
because a transaction that started in the first log "file" is still active.

The database environment's log buffer size may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_lg_bsize", one or more whitespace characters, and the size in bytes. Because the
DB_CONFIG file is read when the database environment is opened, it will silently overrule
configuration done before that time.

The DbEnv::set_lg_bsize() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::set_lg_bsize() method may not be called after the DbEnv::open() (page 252)
method is called. If the database environment already exists when DbEnv::open() (page 252) is
called, the information specified to DbEnv::set_lg_bsize() will be ignored.

The DbEnv::set_lg_bsize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lg_bsize

The lg_bsize parameter is the size of the in-memory log buffer, in bytes.

Errors

The DbEnv::set_lg_bsize() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 398

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods (page 373)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 399

DbEnv::set_lg_dir()
#include <db_cxx.h>

int
DbEnv::set_lg_dir(const char *dir);

The path of a directory to be used as the location of logging files. Log files created by the Log
Manager subsystem will be created in this directory.

If no logging directory is specified, log files are created in the environment home directory.
See Berkeley DB File Naming for more information.

For the greatest degree of recoverability from system or application failure, database files
and log files should be located on separate physical devices.

The database environment's logging directory may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_lg_dir",
one or more whitespace characters, and the directory name. Because the DB_CONFIG file is
read when the database environment is opened, it will silently overrule configuration done
before that time. Note that if you use this method for your application, and you also want
to use the db_recover (page 662), db_printlog (page 660), db_archive (page 640), or
db_log_verify (page 657) utilities, then you should set create a DB_CONFIG file and set the
"set_lg_dir" parameter in it.

The DbEnv::set_lg_dir() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv::set_lg_dir() method may not be called after the DbEnv::open() (page 252)
method is called. If the database environment already exists when DbEnv::open() (page 252)
is called, the information specified to DbEnv::set_lg_dir() must be consistent with the
existing environment or corruption can occur.

The DbEnv::set_lg_dir() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dir

The dir parameter is the directory used to store the logging files.

When using a Unicode build on Windows (the default), the dir argument will be interpreted as
a UTF-8 string, which is equivalent to ASCII for Latin characters.

Errors

The DbEnv::set_lg_dir() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 400

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods (page 373)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 401

DbEnv::set_lg_filemode()
#include <db_cxx.h>

int
DbEnv::set_lg_filemode(int lg_filemode);

Set the absolute file mode for created log files. This method is only useful for the rare
Berkeley DB application that does not control its umask value.

Normally, if Berkeley DB applications set their umask appropriately, all processes in the
application suite will have read permission on the log files created by any process in the
application suite. However, if the Berkeley DB application is a library, a process using the
library might set its umask to a value preventing other processes in the application suite from
reading the log files it creates. In this rare case, the DbEnv::set_lg_filemode() method can
be used to set the mode of created log files to an absolute value.

The database environment's log file mode may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_lg_filemode", one or more whitespace characters, and the absolute mode of created log
files. Because the DB_CONFIG file is read when the database environment is opened, it will
silently overrule configuration done before that time.

The DbEnv::set_lg_filemode() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::set_lg_filemode() method may be called at any time during the life of the
application.

The DbEnv::set_lg_filemode() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lg_filemode

The lg_filemode parameter is the absolute mode of the created log file.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods (page 373)

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 402

DbEnv::set_lg_max()
#include <db_cxx.h>

int
DbEnv::set_lg_max(u_int32_t lg_max);

Sets the maximum size of a single file in the log, in bytes. Because DbLsn file offsets are
unsigned four-byte values, the set value may not be larger than the maximum unsigned four-
byte value.

When the logging subsystem is configured for on-disk logging, the default size of a log file is
10MB.

When the logging subsystem is configured for in-memory logging, the default size of a log
file is 256KB. In addition, the configured log buffer size must be larger than the log file size.
(The logging subsystem divides memory configured for in-memory log records into "files", as
database environments configured for in-memory log records may exchange log records with
other members of a replication group, and those members may be configured to store log
records on-disk.) When choosing log buffer and file sizes for in-memory logs, applications
should ensure the in-memory log buffer size is large enough that no transaction will ever span
the entire buffer, and avoid a state where the in-memory buffer is full and no space can be
freed because a transaction that started in the first log "file" is still active.

See Log File Limits for more information.

The database environment's log file size may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_lg_max", one or more whitespace characters, and the size in bytes. Because the
DB_CONFIG file is read when the database environment is opened, it will silently overrule
configuration done before that time.

The DbEnv::set_lg_max() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::set_lg_max() method may be called at any time during the life of the
application.

If no size is specified by the application, the size last specified for the database region will be
used, or if no database region previously existed, the default will be used.

The DbEnv::set_lg_max() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lg_max

The lg_max parameter is the size of a single log file, in bytes.

../../programmer_reference/log_limits.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 403

Errors

The DbEnv::set_lg_max() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the size of the log file is less than four times the size of the in-memory log buffer; the
specified log file size was too large; or if an invalid flag value or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods (page 373)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 404

DbEnv::set_lg_regionmax()
#include <db_cxx.h>

int
DbEnv::set_lg_regionmax(u_int32_t lg_regionmax);

Set the size of the underlying logging area of the Berkeley DB environment, in bytes. By
default, or if the value is set to 0, the minimum region size is used, approximately 128KB.
The log region is used to store filenames, and so may need to be increased in size if a large
number of files will be opened and registered with the specified Berkeley DB environment's log
manager.

The database environment's log region size may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_lg_regionmax", one or more whitespace characters, and the size in bytes. Because the
DB_CONFIG file is read when the database environment is opened, it will silently overrule
configuration done before that time.

The DbEnv::set_lg_regionmax() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::set_lg_regionmax() method may not be called after the DbEnv::open() (page
252) method is called. If the database environment already exists when DbEnv::open() (page
252) is called, the information specified to DbEnv::set_lg_regionmax() will be ignored.

The DbEnv::set_lg_regionmax() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lg_regionmax

The lg_regionmax parameter is the size of the logging area in the Berkeley DB environment,
in bytes.

Errors

The DbEnv::set_lg_regionmax() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 405

See Also

Logging Subsystem and Related Methods (page 373)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 406

The DbLogc Handle
#include <db_cxx.h>

int
DbEnv::log_cursor(DbLogc **cursorp, u_int32_t flags);

The DbLogc object is the handle for a cursor into the log files, supporting sequential
access to the records stored in log files. The handle is not free-threaded. Once the
DbLogc::close() (page 407) method is called, the handle may not be accessed again,
regardless of that method's return.

For more information, see the DbLsn handle.

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 407

DbLogc::close()
#include <db_cxx.h>

int
DbLogc::close(u_int32_t flags);

The DbLogc::close() method discards the log cursor. After DbLogc::close() has been
called, regardless of its return, the cursor handle may not be used again.

The DbLogc::close() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DbLogc::close() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods (page 373)

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 408

DbLogc::get()
#include <db_cxx.h>

int
DbLogc::get(DbLsn *lsn, Dbt *data, u_int32_t flags);

The DbLogc::get() method returns records from the log.

Unless otherwise specified, the DbLogc::get() method either returns a non-zero error value
or throws an exception that encapsulates a non-zero error value on failure, and returns 0 on
success.

Parameters

lsn

When the flag parameter is set to DB_CURRENT, DB_FIRST, DB_LAST, DB_NEXT or DB_PREV, the
lsn parameter is overwritten with the DbLsn value of the record retrieved. When flag is set to
DB_SET, the lsn parameter is the DbLsn value of the record to be retrieved.

data

The data field of the data structure is set to the record retrieved, and the size field indicates
the number of bytes in the record. See Dbt for a description of other fields in the data
structure. The DB_DBT_MALLOC, DB_DBT_REALLOC and DB_DBT_USERMEM flags may be
specified for any Dbt used for data retrieval.

flags

The flags parameter must be set to one of the following values:

• DB_CURRENT

Return the log record to which the log currently refers.

• DB_FIRST

The first record from any of the log files found in the log directory is returned in the data
parameter. The lsn parameter is overwritten with the DbLsn of the record returned.

The DbLogc::get() method will return DB_NOTFOUND if DB_FIRST is set and the log is
empty.

• DB_LAST

The last record in the log is returned in the data parameter. The lsn parameter is
overwritten with the DbLsn of the record returned.

The DbLogc::get() method will return DB_NOTFOUND if DB_LAST is set and the log is
empty.

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 409

• DB_NEXT

The current log position is advanced to the next record in the log, and that record is
returned in the data parameter. The lsn parameter is overwritten with the DbLsn of the
record returned.

If the cursor has not been initialized via DB_FIRST, DB_LAST, DB_SET, DB_NEXT, or DB_PREV,
DbLogc::get() will return the first record in the log.

The DbLogc::get() method will return DB_NOTFOUND if DB_NEXT is set and the last log
record has already been returned or the log is empty.

• DB_PREV

The current log position is advanced to the previous record in the log, and that record is
returned in the data parameter. The lsn parameter is overwritten with the DbLsn of the
record returned.

If the cursor has not been initialized via DB_FIRST, DB_LAST, DB_SET, DB_NEXT, or DB_PREV,
DbLogc::get() will return the last record in the log.

The DbLogc::get() method will return DB_NOTFOUND if DB_PREV is set and the first log
record has already been returned or the log is empty.

• DB_SET

Retrieve the record specified by the lsn parameter.

Errors

The DbLogc::get() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the DB_CURRENT flag was set and the log cursor has not yet been initialized; the
DB_CURRENT, DB_NEXT, or DB_PREV flags were set and the log was opened with the
DB_THREAD flag set; the DB_SET flag was set and the specified log sequence number does not
appear in the log; or if an invalid flag value or parameter was specified.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods (page 373)

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 11.2.5.2 The DbLsn Handle

6/10/2011 DB C++ API Page 410

DbEnv::log_compare()
#include <db_cxx.h>

static int
DbEnv::log_compare(const DbLsn *lsn0, const DbLsn *lsn1);

The DbEnv::log_compare() method allows the caller to compare two DbLsn structures,
returning 0 if they are equal, 1 if lsn0 is greater than lsn1, and -1 if lsn0 is less than lsn1.

Parameters

lsn0

The lsn0 parameter is one of the DbLsn structures to be compared.

lsn1

The lsn1 parameter is one of the DbLsn structures to be compared.

Class

DbEnv, DbLogc, DbLsn

See Also

Logging Subsystem and Related Methods (page 373)

6/10/2011 DB C++ API Page 411

Chapter 9. The DbMpoolFile Handle
#include <db_cxx.h>

class DbMpoolFile {
public:
 DB_MPOOLFILE *DbMpoolFile::get_DB_MPOOLFILE();
 const DB_MPOOLFILE *DbMpoolFile::get_const_DB_MPOOLFILE() const;
 ...
};

The memory pool interfaces for the Berkeley DB database environment are methods of the
DbEnv handle. The DbEnv memory pool methods and the DB_MPOOLFILE class provide general-
purpose, page-oriented buffer management of files. Although designed to work with the other
Dbclasses, they are also useful for more general purposes. The memory pools are referred to
in this document as simply the cache.

The cache may be shared between processes. The cache is usually filled by pages from one or
more files. Pages in the cache are replaced in LRU (least-recently-used) order, with each new
page replacing the page that has been unused the longest. Pages retrieved from the cache
using DbMpoolFile::get() (page 448) are pinned in the cache until they are returned to the
control of the cache using the DbMpoolFile::put() (page 453) method.

The DbMpoolFile object is the handle for a file in the cache. The handle is not free-threaded.
Once the DbMpoolFile::close() (page 447) method is called, the handle may not be accessed
again, regardless of that method's return.

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 412

Memory Pools and Related Methods

Memory Pools and Related
Methods

Description

DbMemoryException Exception class for insufficient memory

Db::get_mpf() Return the DbMpoolFile for a Db

DbEnv::memp_stat() Return cache statistics

DbEnv::memp_stat_print() Print cache statistics

DbEnv::memp_sync() Flush all pages from the cache

DbEnv::memp_trickle() Flush some pages from the cache

Memory Pool Configuration

DbEnv::memp_register() Register a custom file type

DbEnv::set_cache_max(),
DbEnv::get_cache_max()

Set/get the maximum cache size

DbEnv::set_cachesize(),
DbEnv::get_cachesize()

Set/get the environment cache size

DbEnv::set_mp_max_openfd(),
DbEnv::get_mp_max_openfd()

Set/get the maximum number of open file
descriptors

DbEnv::set_mp_max_write(),
DbEnv::get_mp_max_write()

Set/get the maximum number of sequential
disk writes

DbEnv::set_mp_mmapsize(),
DbEnv::get_mp_mmapsize()

Set/get maximum file size to memory map
when opened read-only

DbEnv::set_mp_mtxcount(),
DbEnv::get_mp_mtxcount()

Set/get the number of mutexes allocated to
the hash table

DbEnv::set_mp_pagesize(),
DbEnv::get_mp_pagesize()

Set/get page size to configure the buffer pool

DbEnv::set_mp_tablesize(),
DbEnv::get_mp_tablesize()

Set/get the hash table size

Memory Pool Files

DbEnv::memp_fcreate() Create a memory pool file handle

DbMpoolFile::close() Close a file in the cache

DbMpoolFile::get() Get page from a file in the cache

DbMpoolFile::open() Open a file in the cache

DbMpoolFile::put() Return a page to the cache

DbMpoolFile::sync() Flush pages from a file from the cache

Memory Pool File Configuration

DbMpoolFile::set_clear_len(),
DbMpoolFile::get_clear_len()

Set/get number of bytes to clear when
creating a new page

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 413

Memory Pools and Related
Methods

Description

DbMpoolFile::set_fileid(),
DbMpoolFile::get_fileid()

Set/get file unique identifier

DbMpoolFile::set_flags(),
DbMpoolFile::get_flags()

Set/get file options

DbMpoolFile::set_ftype(),
DbMpoolFile::get_ftype()

Set/get file type

DbMpoolFile::set_lsn_offset(),
DbMpoolFile::get_lsn_offset()

Set/get file log-sequence-number offset

DbMpoolFile::set_maxsize(),
DbMpoolFile::get_maxsize()

Set/get maximum file size

DbMpoolFile::set_pgcookie(),
DbMpoolFile::get_pgcookie()

Set/get file cookie for pgin/pgout

DbMpoolFile::set_priority(),
DbMpoolFile::get_priority()

Set/get cache file priority

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 414

Db::get_mpf()
#include <db_cxx.h>

DbMpoolFile *
Db::get_mpf();

The Db::get_mpf() method returns the handle for the cache file underlying the database.

The Db::get_mpf() method should be used with caution on a replication client site. This
method exposes an internal structure that may not be valid after a client site synchronizes
with its master site.

The Db::get_mpf() method may be called at any time during the life of the application.

Class

Db

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 415

DbEnv::get_cache_max()
#include <db_cxx.h>

int
DbEnv::get_cache_max(u_int32_t *gbytesp, u_int32_t *bytesp);

The DbEnv::get_cache_max() method returns the maximum size of the cache as set using
the DbEnv::set_cache_max() (page 435) method.

The DbEnv::get_cache_max() method may be called at any time during the life of the
application.

The DbEnv::get_cache_max() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

gbytesp

The gbytesp parameter references memory into which the gigabytes of memory in the cache
is copied.

bytesp

The bytesp parameter references memory into which the additional bytes of memory in the
cache is copied.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208), DbEnv::set_cache_max() (page 435)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 416

DbEnv::get_cachesize()
#include <db_cxx.h>

int
DbEnv::get_cachesize(u_int32_t *gbytesp, u_int32_t *bytesp, int *ncachep);

The DbEnv::get_cachesize() method returns the current size and composition of the cache,
as set using the DbEnv::set_cachesize() (page 437) method.

The DbEnv::get_cachesize() method may be called at any time during the life of the
application.

The DbEnv::get_cachesize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

gbytesp

The gbytesp parameter references memory into which the gigabytes of memory in the cache
is copied.

bytesp

The bytesp parameter references memory into which the additional bytes of memory in the
cache is copied.

ncachep

The ncachep parameter references memory into which the number of caches is copied.

Class

DbEnv

See Also

Memory Pools and Related Methods (page 412), Database Environments and Related
Methods (page 208), DbEnv::set_cachesize() (page 437)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 417

DbEnv::get_mp_max_openfd()
#include <db_cxx.h>

int
DbEnv::get_mp_max_openfd(int *maxopenfdp);

Returns the maximum number of file descriptors the library will open
concurrently when flushing dirty pages from the cache. This value is set by the
DbEnv::set_mp_max_openfd() (page 439) method.

The DbEnv::get_mp_max_openfd() method may be called at any time during the life of the
application.

The DbEnv::get_mp_max_openfd() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

maxopenfdp

The DbEnv::get_mp_max_openfd() method returns the maximum number of file descriptors
open in maxopenfdp.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412), DbEnv::set_mp_max_openfd() (page 439)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 418

DbEnv::get_mp_max_write()
#include <db_cxx.h>

int
DbEnv::get_mp_max_write(int *maxwritep, db_timeout_t *maxwrite_sleepp);

The DbEnv::get_mp_max_write() method returns the current maximum number
of sequential write operations and microseconds to pause that the library can
schedule when flushing dirty pages from the cache. These values are set by the
DbEnv::set_mp_max_write() (page 440) method.

The DbEnv::get_mp_max_write() method may be called at any time during the life of the
application.

The DbEnv::get_mp_max_write() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

maxwritep

The maxwritep parameter references memory into which the maximum number of sequential
write operations is copied.

maxwrite_sleepp

The maxwrite_sleepp parameter references memory into which the microseconds to pause
before scheduling further write operations is copied.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412), DbEnv::set_mp_max_write() (page 440)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 419

DbEnv::get_mp_mmapsize()
#include <db_cxx.h>

int
DbEnv::get_mp_mmapsize(size_t *mp_mmapsizep);

The DbEnv::get_mp_mmapsize() method returns the the maximum file size, in bytes, for
a file to be mapped into the process address space. This value can be managed using the
DbEnv::set_mp_mmapsize() (page 442) method.

The DbEnv::get_mp_mmapsize() method may be called at any time during the life of the
application.

The DbEnv::get_mp_mmapsize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

mp_mmapsizep

The DbEnv::get_mp_mmapsize() method returns the maximum file map size in
mp_mmapsizep.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412), DbEnv::set_mp_mmapsize() (page 442)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 420

DbEnv::get_mp_mtxcount()
#include <db_cxx.h>

int
DbEnv::get_mp_mtxcount(u_int32_t mtxcount);

The DbEnv::get_mp_mtxcount() method returns the number of mutexes allocated for the
hash table in the buffer pool.

Parameters

mtxcount

This parameter specifies the number of mutexes allocated for the hash table in the buffer
pool.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412), DbEnv::set_mp_mtxcount() (page 444)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 421

DbEnv::get_mp_pagesize()
#include <db_cxx.h>

int
DbEnv::get_mp_pagesize(u_int32_t *pagesizep);

The DbEnv::get_mp_pagesize() method returns the assumed page size used to configure the
buffer pool.

The DbEnv::get_mp_pagesize() method may be called at any time during the life of the
application.

Parameters

pagesizep

This parameter specifies the assumed page size used to configure the buffer pool.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412), DbEnv::set_mp_pagesize() (page 445)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 422

DbEnv::get_mp_tablesize()
#include <db_cxx.h>

int
DbEnv::get_mp_tablesize(u_int32_t tablesize);

The DbEnv::get_mp_tablesize() method returns the hash table size in the buffer pool.

Parameters

tablesize

This parameter specifies the hash table size in the buffer pool.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412), DbEnv::set_mp_tablesize() (page 446)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 423

DbEnv::memp_fcreate()
#include <db_cxx.h>

int
DbEnv::memp_fcreate(DbMpoolFile **dbmfp, u_int32_t flags);

The DbEnv::memp_fcreate() method creates a DbMpoolFile structure that is the handle for
a Berkeley DB cache (that is, a shared memory buffer pool file). A pointer to this structure is
returned in the memory to which dbmfp refers. Calling the DbMpoolFile::close() (page 447)
method will discard the returned handle.

The DbEnv::memp_fcreate() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dbmfp

The DbEnv::memp_fcreate() method returns a pointer to a mpool structure in dbmfp.

flags

The flags parameter is currently unused, and must be set to 0.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 424

DbEnv::memp_register()
#include <db_cxx.h>

extern "C" {
 typedef int (*pgin_fcn_type)(DB_ENV *dbenv,
 db_pgno_t pgno, void *pgaddr, DBT *pgcookie);
 typedef int (*pgout_fcn_type)(DB_ENV *dbenv,
 db_pgno_t pgno, void *pgaddr, DBT *pgcookie);
};
int
DbEnv::memp_register(int ftype,
 pgin_fcn_type pgin_fcn, pgout_fcn_type pgout_fcn);

The DbEnv::memp_register() method registers page-in and page-out functions for files of
type ftype in the cache.

If the pgin_fcn function is non-NULL, it is called each time a page is read into the cache from
a file of type ftype, or a page is created for a file of type ftype (see the DB_MPOOL_CREATE
flag for the DbMpoolFile::get() (page 448) method).

If the pgout_fcn function is non-NULL, it is called each time a page is written to a file of type
ftype.

The purpose of the DbEnv::memp_register() function is to support processing when pages
are entered into, or flushed from, the cache. For example, this functionality might be used to
do byte-endian conversion as pages are read from, or written to, the underlying file.

A file type must be specified to make it possible for unrelated threads or processes that
are sharing a cache, to evict each other's pages from the cache. During initialization,
applications should call DbEnv::memp_register() for each type of file requiring input or
output processing that will be sharing the underlying cache. (No registry is necessary for
the standard Berkeley DB access method types because Db::open() (page 69) registers them
separately.)

If a thread or process does not call DbEnv::memp_register() for a file type, it is impossible
for it to evict pages for any file requiring input or output processing from the cache. For this
reason, DbEnv::memp_register() should always be called by each application sharing a
cache for each type of file included in the cache, regardless of whether or not the application
itself uses files of that type.

The DbEnv::memp_register() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

ftype

The ftype parameter specifies the type of file for which the page-in and page-out functions
will be called.

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 425

The ftype value for a file must be a non-zero positive number less than 128 (0 and negative
numbers are reserved for internal use by the Berkeley DB library).

pgin_fcn, pgout_fcn

The page-in and page-out functions.

The pgin_fcn and pgout_fcn functions are called with a reference to the current
database environment, the page number being read or written, a pointer to the
page being read or written, and any parameter pgcookie that was specified to the
DbMpoolFile::set_pgcookie() (page 472) method.

The pgin_fcn and pgout_fcn functions should return 0 on success, and a non-zero value
on failure, in which case the shared Berkeley DB library function calling it will also fail,
returning that non-zero value. The non-zero value should be selected from values outside of
the Berkeley DB library namespace.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 426

DbEnv::memp_stat()
#include <db_cxx.h>

int
DbEnv::memp_stat(DB_MPOOL_STAT **gsp,
 DB_MPOOL_FSTAT *(*fsp)[], u_int32_t flags);

The DbEnv::memp_stat() method returns the memory pool (that is, the buffer cache)
subsystem statistics.

The DbEnv::memp_stat() method creates statistical structures of type DB_MPOOL_STAT and
DB_MPOOL_FSTAT, and copy pointers to them into user-specified memory locations. The cache
statistics are stored in the DB_MPOOL_STAT structure and the per-file cache statistics are
stored the DB_MPOOL_FSTAT structure.

Statistical structures are stored in allocated memory. If application-specific allocation routines
have been declared (see DbEnv::set_alloc() (page 260) for more information), they are used
to allocate the memory; otherwise, the standard C library malloc(3) is used. The caller
is responsible for deallocating the memory. To deallocate the memory, free the memory
reference; references inside the returned memory need not be individually freed.

If gsp is non-NULL, the global statistics for the cache mp are copied into the memory location
to which it refers. The following DB_MPOOL_STAT fields will be filled in:

• u_int32_t st_gbytes;

Gigabytes of cache (total cache size is st_gbytes + st_bytes).

• u_int32_t st_bytes;

Bytes of cache (total cache size is st_gbytes + st_bytes).

• u_int32_t st_ncache;

Number of caches.

• u_int32_t st_max_ncache;

Maximum number of caches, as configured with the DbEnv::set_cache_max() (page 435)
method.

• roff_t st_regsize;

Individual cache size, in bytes.

• size_t st_mmapsize;

Maximum memory-mapped file size.

• int st_maxopenfd;

Maximum open file descriptors.

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 427

• int st_maxwrite;

Maximum sequential buffer writes.

• db_timeout_t st_maxwrite_sleep;

Microseconds to pause after writing maximum sequential buffers.

• u_int32_t st_map;

Requested pages mapped into the process' address space (there is no available information
about whether or not this request caused disk I/O, although examining the application page
fault rate may be helpful).

• uintmax_t st_cache_hit;

Requested pages found in the cache.

• uintmax_t st_cache_miss;

Requested pages not found in the cache.

• uintmax_t st_page_create;

Pages created in the cache.

• uintmax_t st_page_in;

Pages read into the cache.

• uintmax_t st_page_out;

Pages written from the cache to the backing file.

• uintmax_t st_ro_evict;

Clean pages forced from the cache.

• uintmax_t st_rw_evict;

Dirty pages forced from the cache.

• uintmax_t st_page_trickle;

Dirty pages written using the DbEnv::memp_trickle() (page 434) method.

• u_int32_t st_pages;

Pages in the cache.

• u_int32_t st_page_clean;

Clean pages currently in the cache.

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 428

• u_int32_t st_page_dirty;

Dirty pages currently in the cache.

• u_int32_t st_hash_buckets;

Number of hash buckets in buffer hash table.

• uintmax_t st_hash_examined;

Total number of hash elements traversed during hash table lookups.

• u_int32_t st_hash_longest;

Longest chain ever encountered in buffer hash table lookups.

• u_int32_t st_hash_mutexes;

The number of hash bucket mutexes in the buffer hash table.

• uintmax_t st_hash_nowait;

Number of times that a thread of control was able to obtain a hash bucket lock without
waiting.

• u_int32_t st_hash_searches;

Total number of buffer hash table lookups.

• uintmax_t st_hash_wait;

Number of times that a thread of control was forced to wait before obtaining a hash bucket
lock.

• uintmax_t st_hash_max_nowait;

The number of times a thread of control was able to obtain the hash bucket lock without
waiting on the bucket which had the maximum number of times that a thread of control
needed to wait.

• uintmax_t st_hash_max_wait;

Maximum number of times any hash bucket lock was waited for by a thread of control.

• uintmax_t st_region_wait;

Number of times that a thread of control was forced to wait before obtaining a cache region
mutex.

• uintmax_t st_region_nowait;

Number of times that a thread of control was able to obtain a cache region mutex without
waiting.

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 429

• uintmax_t st_mvcc_frozen;

Number of buffers frozen.

• uintmax_t st_mvcc_thawed;

Number of buffers thawed.

• uintmax_t st_mvcc_freed;

Number of frozen buffers freed.

• uintmax_t st_alloc;

Number of page allocations.

• uintmax_t st_alloc_buckets;

Number of hash buckets checked during allocation.

• uintmax_t st_alloc_max_buckets;

Maximum number of hash buckets checked during an allocation.

• uintmax_t st_alloc_pages;

Number of pages checked during allocation.

• uintmax_t st_alloc_max_pages;

Maximum number of pages checked during an allocation.

• uintmax_t st_io_wait;

Number of operations blocked waiting for I/O to complete.

• uintmax_t st_sync_interrupted;

Number of mpool sync operations interrupted.

If fsp is non-NULL, a pointer to a NULL-terminated variable length array of statistics for
individual files, in the cache mp, is copied into the memory location to which it refers. If no
individual files currently exist in the cache, fsp will be set to NULL.

The per-file statistics are stored in structures of type DB_MPOOL_FSTAT. The following
DB_MPOOL_FSTAT fields will be filled in for each file in the cache; that is, each element of the
array:

• char * file_name;

The name of the file.

• size_t st_pagesize;

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 430

Page size in bytes.

• uintmax_t st_cache_hit;

Requested pages found in the cache.

• uintmax_t st_cache_miss;

Requested pages not found in the cache.

• u_int32_t st_map;

Requested pages mapped into the process' address space.

• uintmax_t st_page_create;

Pages created in the cache.

• uintmax_t st_page_in;

Pages read into the cache.

• uintmax_t st_page_out;

Pages written from the cache to the backing file.

The DbEnv::memp_stat() method may not be called before the DbEnv::open() (page 252)
method is called.

The DbEnv::memp_stat() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

gsp

The gsp parameter references memory into which a pointer to the allocated global statistics
structure is copied.

fsp

The fsp parameter references memory into which a pointer to the allocated per-file statistics
structures is copied.

flags

The flags parameter must be set to 0 or the following value:

• DB_STAT_CLEAR

Reset statistics after returning their values.

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 431

Errors

The DbEnv::memp_stat() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 432

DbEnv::memp_stat_print()
#include <db_cxx.h>

int
DbEnv::memp_stat_print(u_int32_t flags);

The DbEnv::memp_stat_print() method displays cache subsystem statistical information,
as described for the DbEnv::memp_stat() (page 426) method. The information is
printed to a specified output channel (see the DbEnv::set_msgfile() (page 301)
method for more information), or passed to an application callback function (see the
DbEnv::set_msgcall() (page 299) method for more information).

The DbEnv::memp_stat_print() method may not be called before the DbEnv::open() (page
252) method is called.

The DbEnv::memp_stat_print() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_STAT_ALL

Display all available information.

• DB_STAT_CLEAR

Reset statistics after displaying their values.

• DB_STAT_MEMP_HASH

Display the buffers with hash chains.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 433

DbEnv::memp_sync()
#include <db_cxx.h>

int
DbEnv::memp_sync(DbLsn *lsn);

The DbEnv::memp_sync() method flushes modified pages in the cache to their backing files.

Pages in the cache that cannot be immediately written back to disk (for example, pages that
are currently in use by another thread of control) are waited for and written to disk as soon as
it is possible to do so.

The DbEnv::memp_sync() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lsn

The purpose of the lsn parameter is to enable a transaction manager to ensure, as part of a
checkpoint, that all pages modified by a certain time have been written to disk.

All modified pages with a a log sequence number (DbLsn) less than the lsn parameter are
written to disk. If lsn is NULL, all modified pages in the cache are written to disk.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 434

DbEnv::memp_trickle()
#include <db_cxx.h>

int
DbEnv::memp_trickle(int percent, int *nwrotep);

The DbEnv::memp_trickle() method ensures that a specified percent of the pages in the
cache are clean, by writing dirty pages to their backing files.

The purpose of the DbEnv::memp_trickle() function is to enable a memory pool manager to
ensure that a page is always available for reading in new information without having to wait
for a write.

The DbEnv::memp_trickle() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

percent

The percent parameter is the percent of the pages in the cache that should be clean.

nwrotep

The nwrotep parameter references memory into which the number of pages written to reach
the specified percentage is copied.

Errors

The DbEnv::memp_trickle() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors: following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 435

DbEnv::set_cache_max()
#include <db_cxx.h>

int
DbEnv::set_cache_max(u_int32_t gbytes, u_int32_t bytes);

Sets the maximum cache size in bytes. The specified size is rounded to the nearest multiple
of the cache region size, which is the initial cache size divided by the number of regions
specified to the DbEnv::set_cachesize() (page 437) method. If no value is specified, it
defaults to the initial cache size.

The database environment's maximum cache size may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "set_cache_max", one or more whitespace characters, and the maximum cache size
in bytes, specified in two parts: the gigabytes of cache and the additional bytes of cache.
Because the DB_CONFIG file is read when the database environment is opened, it will silently
overrule configuration done before that time.

The DbEnv::set_cache_max() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::set_cache_max() method may be called at any time during the life of the
application.

The DbEnv::set_cache_max() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

gbytes

The gbytes parameter specifies the number of bytes which, when added to the bytes
parameter, specifies the maximum size of the cache.

bytes

The bytes parameter specifies the number of bytes which, when added to the gbytes
parameter, specifies the maximum size of the cache.

Errors

The DbEnv::set_cache_max() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 436

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 437

DbEnv::set_cachesize()
#include <db_cxx.h>

int
DbEnv::set_cachesize(u_int32_t gbytes, u_int32_t bytes, int ncache);

Sets the size of the shared memory buffer pool — that is, the cache. The cache should be the
size of the normal working data set of the application, with some small amount of additional
memory for unusual situations. (Note: the working set is not the same as the number of pages
accessed simultaneously, and is usually much larger.)

The default cache size is 256KB, and may not be specified as less than 20KB. Any cache size
less than 500MB is automatically increased by 25% to account for cache overhead; cache sizes
larger than 500MB are used as specified. The maximum size of a single cache is 4GB on 32-bit
systems and 10TB on 64-bit systems. (All sizes are in powers-of-two, that is, 256KB is 2^18 not
256,000.) For information on tuning the Berkeley DB cache size, see Selecting a cache size.

It is possible to specify caches to Berkeley DB large enough they cannot be allocated
contiguously on some architectures. For example, some releases of Solaris limit the amount of
memory that may be allocated contiguously by a process. If ncache is 0 or 1, the cache will be
allocated contiguously in memory. If it is greater than 1, the cache will be split across ncache
separate regions, where the region size is equal to the initial cache size divided by ncache.

The cache may be resized by calling DbEnv::set_cachesize() after the environment is
open. The supplied size will be rounded to the nearest multiple of the region size and may not
be larger than the maximum size configured with DbEnv::set_cache_max() (page 435). The
ncache parameter is ignored when resizing the cache.

The database environment's initial cache size may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_cachesize", one or more whitespace characters, and the initial cache size specified in
three parts: the gigabytes of cache, the additional bytes of cache, and the number of caches,
also separated by whitespace characters. For example, "set_cachesize 2 524288000 3" would
create a 2.5GB logical cache, split between three physical caches. Because the DB_CONFIG
file is read when the database environment is opened, it will silently overrule configuration
done before that time.

The DbEnv::set_cachesize() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::set_cachesize() method may be called at any time during the life of the
application.

The DbEnv::set_cachesize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

gbytes

The size of the cache is set to gbytes gigabytes plus bytes.

../../programmer_reference/general_am_conf.html#am_conf_cachesize
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 438

bytes

The size of the cache is set to gbytes gigabytes plus bytes.

ncache

The ncache parameter is the number of caches to create.

Errors

The DbEnv::set_cachesize() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the specified cache size was impossibly small; or if an invalid flag value or parameter was
specified.

Class

DbEnv

See Also

Database Environments and Related Methods (page 208)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 439

DbEnv::set_mp_max_openfd()
#include <db_cxx.h>

int
DbEnv::set_mp_max_openfd(int maxopenfd);

The DbEnv::set_mp_max_openfd() method limits the number of file descriptors the library
will open concurrently when flushing dirty pages from the cache.

The database environment's limit on open file descriptors to flush dirty pages may also be
configured using the environment's DB_CONFIG file. The syntax of the entry in that file is a
single line with the string "set_mp_max_openfd", one or more whitespace characters, and
the number of open file descriptors. Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_mp_max_openfd() (page 439) method configures a database environment,
not only operations performed using the specified DbEnv handle.

The DbEnv::set_mp_max_openfd() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

maxopenfd

The maximum number of file descriptors that may be concurrently opened by the library when
flushing dirty pages from the cache.

Errors

The DbEnv::set_mp_max_openfd() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 440

DbEnv::set_mp_max_write()
#include <db_cxx.h>

int
DbEnv::set_mp_max_write(int maxwrite, db_timeout_t maxwrite_sleep);

The DbEnv::set_mp_max_write() method limits the number of sequential write operations
scheduled by the library when flushing dirty pages from the cache.

The database environment's maximum number of sequential write operations may also be
configured using the environment's DB_CONFIG file. The syntax of the entry in that file is
a single line with the string "set_mp_max_write", one or more whitespace characters, and
the maximum number of sequential writes and the number of microseconds to sleep, also
separated by whitespace characters. Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

The DbEnv::set_mp_max_write() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::set_mp_max_write() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

maxwrite

The maximum number of sequential write operations scheduled by the library when flushing
dirty pages from the cache, or 0 if there is no limitation on the number of sequential write
operations.

maxwrite_sleep

The number of microseconds the thread of control should pause before scheduling further
write operations. It must be specified as an unsigned 32-bit number of microseconds, limiting
the maximum pause to roughly 71 minutes.

Errors

The DbEnv::set_mp_max_write() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbMpoolFile

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 441

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 442

DbEnv::set_mp_mmapsize()
#include <db_cxx.h>

int
DbEnv::set_mp_mmapsize(size_t mp_mmapsize);

Files that are opened read-only in the cache (and that satisfy a few other criteria) are, by
default, mapped into the process address space instead of being copied into the local cache.
This can result in better-than-usual performance because available virtual memory is normally
much larger than the local cache, and page faults are faster than page copying on many
systems. However, it can cause resource starvation in the presence of limited virtual memory,
and it can result in immense process sizes in the presence of large databases.

The DbEnv::set_mp_mmapsize() method sets the maximum file size, in bytes, for a file to be
mapped into the process address space. If no value is specified, it defaults to 10MB.

The database environment's maximum mapped file size may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "set_mp_mmapsize", one or more whitespace characters, and the size in bytes. Because
the DB_CONFIG file is read when the database environment is opened, it will silently overrule
configuration done before that time.

The DbEnv::set_mp_mmapsize() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::set_mp_mmapsize() method may be called at any time during the life of the
application.

The DbEnv::set_mp_mmapsize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

mp_mmapsize

The mp_mmapsize parameter is the maximum file size, in bytes, for a file to be mapped into
the process address space.

Errors

The DbEnv::set_mp_mmapsize() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbMpoolFile

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 443

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 444

DbEnv::set_mp_mtxcount()
#include <db_cxx.h>

int
DbEnv::set_mp_mtxcount(u_int32_t mtxcount);

The DbEnv::set_mp_mtxcount() method overrides the default number of mutexes for the
hash table in each memory pool cache. The defualt is one mutex per hash bucket. Setting it to
a lower number decreases the number of mutexes used and the amount of memory needed to
store them at the expense of concurrency in the memory pool. This can also improve startup
time. Setting a number greater than the number size of the hash table will waste mutexes and
space.

You must call this method only before the environment is opened.

Parameters

mtxcount

Specifies the number of mutexes allocated to the buffer pool hash table.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412), DbEnv::get_mp_mtxcount() (page 420)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 445

DbEnv::set_mp_pagesize()
#include <db_cxx.h>

int
DbEnv::set_mp_pagesize(u_int32_t pagesize);

The DbEnv::set_mp_pagesize() method sets the pagesize used to allocate the hash table
and the number of mutexes expected to be needed by the buffer pool.

You must call this method only before the environment is opened.

Parameters

pagesize

The pagesize parameter specifies expected page size use. Generally, it is set to the expected
average page size for all the data pages that are in the buffer pool.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412), DbEnv::get_mp_pagesize() (page 421)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 446

DbEnv::set_mp_tablesize()
#include <db_cxx.h>

int
DbEnv::set_mp_tablesize(u_int32_t tablesize);

The DbEnv::set_mp_tablesize() method overrides the calculated hash tablesize. Tablesize
is adjusted to a near prime number to enhance the hashing algorithm.

You must call this method only before the environment is opened.

Parameters

tablesize

The tablesize parameter specifies the size of the buffer pool hash table. It is adjusted to a
near prime number to enhance the hashing algorithm.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412), DbEnv::get_mp_tablesize() (page 422)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 447

DbMpoolFile::close()
#include <db_cxx.h>

int
DbMpoolFile::close(u_int32_t flags);

The DbMpoolFile::close() method closes the source file indicated by the DbMpoolFile
structure. Calling DbMpoolFile::close() does not imply a call to DbMpoolFile::sync() (page
455); that is, no pages are written to the source file as as a result of calling
DbMpoolFile::close.().

If the DbMpoolFile was temporary, any underlying files created for this DbMpoolFile will be
removed.

After DbMpoolFile::close() has been called, regardless of its return, the DbMpoolFile
handle may not be accessed again.

The DbMpoolFile::close() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 448

DbMpoolFile::get()
#include <db_cxx.h>

int
DbMpoolFile::get(db_pgno_t *pgnoaddr,
 DbTxn *txnid, u_int32_t flags, void **pagep);

The DbMpoolFile::get() method returns pages from the cache.

All pages returned by DbMpoolFile::get() will be retained (that is, latched) in the
cache until a subsequent call to DbMpoolFile::put() (page 453). There is no deadlock
detection among latches so care must be taken in the application if the DB_MPOOL_DIRTY or
DB_MPOOL_EDIT flags are used as these get exlusive latches on the pages.

The returned page is size_t type aligned.

Fully or partially created pages have all their bytes set to a nul byte, unless the
DbMpoolFile::set_clear_len() (page 464) method was called to specify other behavior before
the file was opened.

The DbMpoolFile::get() method will return DB_PAGE_NOTFOUND if the requested page
does not exist and DB_MPOOL_CREATE was not set. Unless otherwise specified, the
DbMpoolFile::get() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_MPOOL_CREATE

If the specified page does not exist, create it. In this case, the pgin method, if specified, is
called.

• DB_MPOOL_DIRTY

The page will be modified and must be written to the source file before being evicted
from the cache. For files open with the DB_MULTIVERSION flag set, a new copy of the
page will be made if this is the first time the specified transaction is modifying it. A page
fetched with the DB_MPOOL_DIRTY flag will be exclusively latched until a subsequent call
to DbMpoolFile::put() (page 453).

• DB_MPOOL_EDIT

The page will be modified and must be written to the source file before being evicted from
the cache. No copy of the page will be made, regardless of the DB_MULTIVERSION setting.
This flag is only intended for use in situations where a transaction handle is not available,

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 449

such as during aborts or recovery. A page fetched with the DB_MPOOL_EDIT flag will be
exclusively latched until a subsequent call to DbMpoolFile::put() (page 453).

• DB_MPOOL_LAST

Return the last page of the source file, and copy its page number into the memory location
to which pgnoaddr refers.

• DB_MPOOL_NEW

Create a new page in the file, and copy its page number into the memory location
to which pgnoaddr refers. In this case, the pgin_fcn callback, if specified on
DbEnv::memp_register() (page 424), is not called.

The DB_MPOOL_CREATE, DB_MPOOL_LAST, and DB_MPOOL_NEW flags are mutually exclusive.

pagep

The pagep parameter references memory into which a pointer to the returned page is copied.

pgnoaddr

If the flags parameter is set to DB_MPOOL_LAST or DB_MPOOL_NEW, the page number of the
created page is copied into the memory location to which the pgnoaddr parameter refers.
Otherwise, the pgnoaddr parameter is the page to create or retrieve.

Note

Page numbers begin at 0; that is, the first page in the file is page number 0, not page
number 1.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is
a transaction handle returned from DbEnv::txn_begin() (page 613); otherwise NULL.
A transaction is required if the file is open for multiversion concurrency control by
passing DB_MULTIVERSION to DbMpoolFile::open() (page 451) and the DB_MPOOL_DIRTY,
DB_MPOOL_CREATE or DB_MPOOL_NEW flags were specified. Otherwise it is ignored.

Errors

The DbMpoolFile::get() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EACCES

The DB_MPOOL_DIRTY or DB_MPOOL_EDIT flag was set and the source file was not opened for
writing.

EAGAIN

The page reference count has overflowed. (This should never happen unless there is a bug in
the application.)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 450

EINVAL

If the DB_MPOOL_NEW flag was set, and the source file was not opened for writing; more than
one of DB_MPOOL_CREATE, DB_MPOOL_LAST, and DB_MPOOL_NEW was set; or if an invalid flag
value or parameter was specified.

DB_LOCK_DEADLOCK

For transactions configured with DB_TXN_SNAPSHOT, the page has been modified since the
transaction began.

ENOMEM

The cache is full, and no more pages will fit in the cache.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 451

DbMpoolFile::open()
#include <db_cxx.h>

int
DbMpoolFile::open(const char *file, u_int32_t flags, int mode,
 size_t pagesize);

The DbMpoolFile::open() method opens a file in the in-memory cache.

The DbMpoolFile::open() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

file

The file parameter is the name of the file to be opened. If file is NULL, a private temporary
file is created that cannot be shared with any other process (although it may be shared with
other threads of control in the same process).

When using a Unicode build on Windows (the default), the file argument will be interpreted as
a UTF-8 string, which is equivalent to ASCII for Latin characters.

flags

The flags parameter must be set to zero or by bitwise inclusively OR'ing together one or more
of the following values:

• DB_CREATE

Create any underlying files, as necessary. If the database do not already exist and the
DB_CREATE flag is not specified, the call will fail.

• DB_DIRECT

If set and supported by the system, turn off system buffering of the file to avoid double
caching.

• DB_MULTIVERSION

Open the file with support for multiversion concurrency control. Calls to
DbMpoolFile::get() (page 448) with dirty pages will cause copies to be made in the cache.

• DB_NOMMAP

Always copy this file into the local cache instead of potentially mapping it into process
memory (see the DbEnv::set_mp_mmapsize() (page 442) method for further information).

• DB_ODDFILESIZE

../../programmer_reference/transapp_read.html

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 452

Attempts to open files which are not a multiple of the page size in length will fail, by
default. If the DB_ODDFILESIZE flag is set, any partial page at the end of the file will be
ignored and the open will proceed.

• DB_RDONLY

Open any underlying files for reading only. Any attempt to modify the file using the memory
pool (cache) functions will fail, regardless of the actual permissions of the file.

mode

On Windows systems, the mode parameter is ignored.

On UNIX systems or in IEEE/ANSI Std 1003.1 (POSIX) environments, files created by
DbMpoolFile::open() are created with mode mode (as described in chmod(2)) and modified
by the process' umask value at the time of creation (see umask(2)). Created files are owned
by the process owner; the group ownership of created files is based on the system and
directory defaults, and is not further specified by Berkeley DB. System shared memory
segments created by DbMpoolFile::open() are created with mode mode, unmodified by the
process' umask value. If mode is 0, DbMpoolFile::open() will use a default mode of readable
and writable by both owner and group.

pagesize

The pagesize parameter is the size, in bytes, of the unit of transfer between the application
and the cache, although it is not necessarily the unit of transfer between the cache and the
underlying filesystem.

Errors

The DbMpoolFile::open() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the file has already been entered into the cache, and the pagesize value is not the same as
when the file was entered into the cache, or the length of the file is not zero or a multiple of
the pagesize; the DB_RDONLY flag was specified for an in-memory cache; or if an invalid flag
value or parameter was specified.

ENOMEM

The maximum number of open files has been reached.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 453

DbMpoolFile::put()
#include <db_cxx.h>

int
DbMpoolFile::put(void *pgaddr, DB_CACHE_PRIORITY priority,
 u_int32_t flags);

The DbMpoolFile::put() method returns a reference to a page in the cache, setting the
priority of the page as specified by the priority parameter.

The DbMpoolFile::put() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

pgaddr

The pgaddr parameter is the address of the page to be returned to the cache. The pgaddr
parameter must be a value previously returned by the DbMpoolFile::get() (page 448) method.

priority

Set the page's priority as follows:

• DB_PRIORITY_UNCHANGED

The priority is unchanged.

• DB_PRIORITY_VERY_LOW

The lowest priority: pages are the most likely to be discarded.

• DB_PRIORITY_LOW

The next lowest priority.

• DB_PRIORITY_DEFAULT

The default priority.

• DB_PRIORITY_HIGH

The next highest priority.

• DB_PRIORITY_VERY_HIGH

The highest priority: pages are the least likely to be discarded.

flags

The flags parameter is currently unused, and must be set to 0.

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 454

Errors

The DbMpoolFile::put() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 455

DbMpoolFile::sync()
#include <db_cxx.h>

int
DbMpoolFile::sync();

The DbMpoolFile::sync() method writes all modified pages associated with the DbMpoolFile
back to the source file. If any of the modified pages are pinned (that is, currently in use),
DbMpoolFile::sync() will ignore them.

The DbMpoolFile::sync() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 456

DbMpoolFile::get_clear_len()
#include <db_cxx.h>

int
DbMpoolFile::get_clear_len(u_int32_t *lenp);

The DbMpoolFile::get_clear_len() method returns the bytes to be cleared.

The DbMpoolFile::get_clear_len() method may be called at any time during the life of
the application.

The DbMpoolFile::get_clear_len() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lenp

The DbMpoolFile::get_clear_len() method returns the bytes to be cleared in lenp.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 457

DbMpoolFile::get_fileid()
#include <db_cxx.h>

int DbMpoolFile::get_fileid(u_int8_t *fileid);

The DbMpoolFile::get_fileid() method copies the file's identifier into the memory
location referenced by fileid. The fileid specifies a unique identifier for the file, which is
used so that the cache functions (that is, the shared memory buffer pool functions) are able
to uniquely identify files. This is necessary for multiple processes wanting to share a file to
correctly identify the file in the cache.

The DbMpoolFile::get_fileid() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412), DbMpoolFile::set_fileid() (page 465)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 458

DbMpoolFile::get_flags()
#include <db_cxx.h>

int
DbMpoolFile::get_flags(u_int32_t *flagsp);

The DbMpoolFile::get_flags() method returns the flags used to configure a file in the
cache.

The DbMpoolFile::get_flags() method may be called at any time during the life of the
application.

The DbMpoolFile::get_flags() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The DbMpoolFile::get_flags() method returns the flags in flagsp.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412), DbMpoolFile::set_flags() (page 467)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 459

DbMpoolFile::get_ftype()
#include <db_cxx.h>

int
DbMpoolFile::get_ftype(int *ftypep);

The DbMpoolFile::get_ftype() method returns the file type. The file type is
used for the purposes of file processing, and will be the same as is set using the
DbEnv::memp_register() (page 424) method.

The DbMpoolFile::get_ftype() method may be called at any time during the life of the
application.

The DbMpoolFile::get_ftype() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

ftypep

The DbMpoolFile::get_ftype() method returns the file type in ftypep.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412), DbMpoolFile::set_ftype() (page 469)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 460

DbMpoolFile::get_lsn_offset()
#include <db_cxx.h>

int
DbMpoolFile::get_lsn_offset(int32_t *lsn_offsetp);

The DbMpoolFile::get_lsn_offset() method returns the log sequence number byte offset
configured for a file's pages using the DbMpoolFile::set_lsn_offset() (page 470) method.

The DbMpoolFile::get_lsn_offset() method may be called at any time during the life of
the application.

The DbMpoolFile::get_lsn_offset() method either returns a non-zero error value or
throws an exception that encapsulates a non-zero error value on failure, and returns 0 on
success.

Parameters

lsn_offsetp

The DbMpoolFile::get_lsn_offset() method returns the log sequence number byte offset
in lsn_offsetp.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412), DbMpoolFile::set_lsn_offset() (page 470)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 461

DbMpoolFile::get_maxsize()
#include <db_cxx.h>

int
DbMpoolFile::get_maxsize(u_int32_t *gbytesp, u_int32_t *bytesp);

Returns the maximum size configured for the file, as configured using the
DbMpoolFile::set_maxsize() (page 471) method.

The DbMpoolFile::get_maxsize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

The DbMpoolFile::get_maxsize() method may be called at any time during the life of the
application.

Parameters

gbytesp

The gbytesp parameter references memory into which the gigabytes of memory in the
maximum file size is copied.

bytesp

The bytesp parameter references memory into which the additional bytes of memory in the
maximum file size is copied.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412), DbMpoolFile::set_maxsize() (page 471)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 462

DbMpoolFile::get_pgcookie()
#include <db_cxx.h>

int
DbMpoolFile::get_pgcookie(DBT *dbt);

The DbMpoolFile::get_pgcookie() method returns the byte string provided to the
functions registered to do input or output processing of the file's pages as they are read
from or written to, the backing filesystem store. This byte string is configured using the
DbMpoolFile::set_pgcookie() (page 472) method.

The DbMpoolFile::get_pgcookie() method may be called at any time during the life of the
application.

The DbMpoolFile::get_pgcookie() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dbt

The DbMpoolFile::get_pgcookie() method returns a reference to the byte string in dbt.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412), DbMpoolFile::set_pgcookie() (page 472)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 463

DbMpoolFile::get_priority()
#include <db_cxx.h>

int
DbMpoolFile::get_priority(DB_CACHE_PRIORITY *priorityp);

The DbMpoolFile::get_priority() method returns the cache priority for the file
referenced by the DbMpoolFile handle. The priority of a page biases the replacement
algorithm to be more or less likely to discard a page when space is needed in the cache. This
value is set using the DbMpoolFile::set_priority() (page 473) method.

The DbMpoolFile::get_priority() method may be called at any time during the life of the
application.

The DbMpoolFile::get_priority() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priorityp

The DbMpoolFile::get_priority() method returns a reference to the cache priority for the
file referenced by the DbMpoolFile handle in priorityp.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412), DbMpoolFile::set_priority() (page 473)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 464

DbMpoolFile::set_clear_len()
#include <db_cxx.h>

int DbMpoolFile::set_clear_len(u_int32_t len);

The DbMpoolFile::set_clear_len() method sets the number of initial bytes in a page
that should be set to nul when the page is created as a result of the DB_MPOOL_CREATE
or DB_MPOOL_NEW flags specified to DbMpoolFile::get() (page 448). If no clear length is
specified, the entire page is cleared when it is created.

The DbMpoolFile::set_clear_len() method configures a file in the cache, not only
operations performed using the specified DbMpoolFile handle.

The DbMpoolFile::set_clear_len() method may not be called after the
DbMpoolFile::open() (page 451) method is called. If the file is already open in the
cache when DbMpoolFile::open() (page 451) is called, the information specified to
DbMpoolFile::set_clear_len() must be consistent with the existing file or an error will be
returned.

The DbMpoolFile::set_clear_len() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

len

The len parameter is the number of initial bytes in a page that should be set to nul when the
page is created. A value of 0 results in the entire page being set to nul bytes.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 465

DbMpoolFile::set_fileid()
#include <db_cxx.h>

int
DbMpoolFile::set_fileid(u_int8_t *fileid);

The DbMpoolFile::set_fileid() method specifies a unique identifier for the file. (The
shared memory buffer pool functions must be able to uniquely identify files in order that
multiple processes wanting to share a file will correctly identify it in the cache.)

On most UNIX/POSIX systems, the fileid field will not need to be set, and the memory pool
functions will use the file's device and inode numbers for this purpose. On Windows systems,
the memory pool functions use the values returned by GetFileInformationByHandle() by
default — these values are known to be constant between processes and over reboot in the
case of NTFS (in which they are the NTFS MFT indices).

On other filesystems (for example, FAT or NFS), these default values are not necessarily
unique between processes or across system reboots. Applications wanting to maintain a
shared cache between processes or across system reboots, in which the cache contains
pages from files stored on such filesystems, must specify a unique file identifier using the
DbMpoolFile::set_fileid() method, and each process opening the file must provide the
same unique identifier.

This call should not be necessary for most applications. Specifically, it is not necessary if
the cache is not shared between processes and is reinstantiated after each system reboot, if
the application is using the Berkeley DB access methods instead of calling the pool functions
explicitly, or if the files in the cache are stored on filesystems in which the default values as
described previously are invariant between process and across system reboots.

The DbMpoolFile::set_fileid() method configures a file in the cache, not only operations
performed using the specified DbMpoolFile handle.

The DbMpoolFile::set_fileid() method may not be called after the
DbMpoolFile::open() (page 451) method is called.

The DbMpoolFile::set_fileid() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

fileid

The fileid parameter is the unique identifier for the file. Unique file identifiers must be a
DB_FILE_ID_LEN length array of bytes.

Class

DbEnv, DbMpoolFile

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 466

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 467

DbMpoolFile::set_flags()
#include <db_cxx.h>

int
DbMpoolFile::set_flags(u_int32_t flags, bool onoff);

Configure a file in the cache.

To set the flags for a particular database, call the DbMpoolFile::set_flags() method using
the DbMpoolFile handle stored in the mpf field of the Db handle.

The DbMpoolFile::set_flags() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set by bitwise inclusively OR'ing together one or more of the
following values:

• DB_MPOOL_NOFILE

If set, no backing temporary file will be opened for the specified in-memory database,
even if it expands to fill the entire cache. Attempts to create new database pages after the
cache has been filled will fail.

The DB_MPOOL_NOFILE flag configures a file in the cache, not only operations performed
using the specified DbMpoolFile handle.

The DB_MPOOL_NOFILE flag may be used to configure Berkeley DB at any time during the life
of the application.

• DB_MPOOL_UNLINK

If set, remove the file when the last reference to it is closed.

The DB_MPOOL_ULINK flag configures a file in the cache, not only operations performed
using the specified DbMpoolFile handle.

The DB_MPOOL_ULINK flag may be used to configure Berkeley DB at any time during the life
of the application.

onoff

If onoff is zero, the specified flags are cleared; otherwise they are set.

Class

DbEnv, DbMpoolFile

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 468

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 469

DbMpoolFile::set_ftype()
#include <db_cxx.h>

int
DbMpoolFile::set_flags(int ftype);

The DbMpoolFile::set_ftype() method specifies a file type for the purposes of input
or output processing of the file's pages as they are read from or written to, the backing
filesystem store.

The DbMpoolFile::set_ftype() method configures a file in the cache, not only operations
performed using the specified DbMpoolFile handle.

The DbMpoolFile::set_ftype() method may not be called after the
DbMpoolFile::open() (page 451) method is called. If the file is already open in the
cache when DbMpoolFile::open() (page 451) is called, the information specified to
DbMpoolFile::set_ftype() will replace the existing information.

The DbMpoolFile::set_ftype() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

ftype

The ftype parameter sets the file's type for the purposes of input and output processing.
The ftype must be the same as a ftype parameter previously specified to the
DbEnv::memp_register() (page 424) method.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 470

DbMpoolFile::set_lsn_offset()
#include <db_cxx.h>

int DbMpoolFile::set_lsn_offset(int32_t lsn_offset);

The DbMpoolFile::set_lsn_offset() method specifies the zero-based byte offset of a
log sequence number (DbLsn) on the file's pages, for the purposes of page-flushing as part of
transaction checkpoint. (See the DbEnv::memp_sync() (page 433) documentation for more
information.)

The DbMpoolFile::set_lsn_offset() method configures a file in the cache, not only
operations performed using the specified DbMpoolFile handle.

The DbMpoolFile::set_lsn_offset() method may not be called after the
DbMpoolFile::open() (page 451) method is called. If the file is already open in the
cache when DbMpoolFile::open() (page 451) is called, the information specified to
DbMpoolFile::set_lsn_offset() must be consistent with the existing file or an error will
be returned.

The DbMpoolFile::set_lsn_offset() method either returns a non-zero error value or
throws an exception that encapsulates a non-zero error value on failure, and returns 0 on
success.

Parameters

lsn_offset

The lsn_offset parameter is the zero-based byte offset of the log sequence number on the
file's pages.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 471

DbMpoolFile::set_maxsize()
#include <db_cxx.h>

int
DbMpoolFile::set_maxsize(u_int32_t gbytes, u_int32_t bytes);

Set the maximum size for the file to be gbytes gigabytes plus bytes. Attempts to allocate new
pages in the file after the limit has been reached will fail.

To set the maximum file size for a particular database, call the
DbMpoolFile::set_maxsize() method using the DbMpoolFile handle stored in the mpf field
of the Db handle. Attempts to insert new items into the database after the limit has been
reached may fail.

The DbMpoolFile::set_maxsize() method configures a file in the cache, not only operations
performed using the specified DbMpoolFile handle.

The DbMpoolFile::set_maxsize() method may be called at any time during the life of the
application.

The DbMpoolFile::set_maxsize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bytes

The maximum size of the file is set to gbytes gigabytes plus bytes.

gbytes

The maximum size of the file is set to gbytes gigabytes plus bytes.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 472

DbMpoolFile::set_pgcookie()
#include <db_cxx.h>

int
DbMpoolFile::set_pgcookie(DBT *pgcookie);

The DbMpoolFile::set_pgcookie() method specifies a byte string that is provided to the
functions registered to do input or output processing of the file's pages as they are read from
or written to, the backing filesystem store. (See the DbEnv::memp_register() (page 424)
documentation for more information.)

The DbMpoolFile::set_pgcookie() method configures a file in the cache, not only
operations performed using the specified DbMpoolFile handle.

The DbMpoolFile::set_pgcookie() method may not be called after the
DbMpoolFile::open() (page 451) method is called. If the file is already open in the
cache when DbMpoolFile::open() (page 451) is called, the information specified to
DbMpoolFile::set_pgcookie() will replace the existing information.

The DbMpoolFile::set_pgcookie() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

pgcookie

The pgcookie parameter is a byte string provided to the functions registered to do input or
output processing of the file's pages.

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 473

DbMpoolFile::set_priority()
#include <db_cxx.h>

int
DbMpoolFile::set_priority(DB_CACHE_PRIORITY priority);

Set the cache priority for pages referenced by the DbMpoolFile handle.

The priority of a page biases the replacement algorithm to be more or less likely to discard a
page when space is needed in the cache. The bias is temporary, and pages will eventually be
discarded if they are not referenced again. The DbMpoolFile::set_priority() method is
only advisory, and does not guarantee pages will be treated in a specific way.

To set the priority for the pages belonging to a particular database, call the
DbMpoolFile::set_priority() method using the DbMpoolFile handle returned by the
Db::get_mpf() (page 414) method.

The DbMpoolFile::set_priority() method configures a file in the cache, not only
operations performed using the specified DbMpoolFile handle.

The DbMpoolFile::set_priority() method may be called at any time during the life of the
application.

The DbMpoolFile::set_priority() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priority

The priority parameter must be set to one of the following values:

• DB_PRIORITY_VERY_LOW

The lowest priority: pages are the most likely to be discarded.

• DB_PRIORITY_LOW

The next lowest priority.

• DB_PRIORITY_DEFAULT

The default priority.

• DB_PRIORITY_HIGH

The next highest priority.

• DB_PRIORITY_VERY_HIGH

The highest priority: pages are the least likely to be discarded.

Library Version 11.2.5.2 The DbMpoolFile Handle

6/10/2011 DB C++ API Page 474

Class

DbEnv, DbMpoolFile

See Also

Memory Pools and Related Methods (page 412)

6/10/2011 DB C++ API Page 475

Chapter 10. Mutex Methods
This chapter describes methods that can be used to manage mutexes within DB. Many of the
methods described here are used to configure DB's internal mutex system. However, a series
of APIs are available for use as a general-purpose, cross platform mutex management system.
These methods can be used independently of DB's main purpose, which is as a high-end data
management engine.

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 476

Mutex Methods

Mutexes and Related Methods Description

DbEnv::mutex_alloc() Allocate a mutex

DbEnv::mutex_free() Free a mutex

DbEnv::mutex_lock() Lock a mutex

DbEnv::mutex_stat() Mutex statistics

DbEnv::mutex_stat_print() Print mutex statistics

DbEnv::mutex_unlock() Unlock a mutex

Mutex Configuration

DbEnv::mutex_set_align(),
DbEnv::mutex_get_align()

Configure mutex alignment

DbEnv::mutex_set_increment(),
DbEnv::mutex_get_increment()

Configure number of additional mutexes

DbEnv::mutex_set_init(),
DbEnv::mutex_get_init()

Configure initial number of mutexes

DbEnv::mutex_set_max(),
DbEnv::mutex_get_max()

Configure total number of mutexes

DbEnv::mutex_set_tas_spins(),
DbEnv::mutex_get_tas_spins()

Configure test-and-set mutex spin count

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 477

DbEnv::mutex_alloc()
#include <db_cxx.h>

int
DbEnv::mutex_alloc(u_int32_t flags, db_mutex_t *mutexp);

The DbEnv::mutex_alloc() method allocates a mutex and returns a reference to it into the
memory specified by mutexp.

The DbEnv::mutex_alloc() method may not be called before the DbEnv::open() (page 252)
method is called.

The DbEnv::mutex_alloc() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_MUTEX_PROCESS_ONLY

The mutex is associated with a single process. The DbEnv::failchk() (page 223) method will
release mutexes held by any process which has exited.

• DB_MUTEX_SELF_BLOCK

The mutex must be self-blocking. That is, if a thread of control locks the mutex and then
attempts to lock the mutex again, the thread of control will block until another thread
of control releases the original lock on the mutex, allowing the original thread of control
to lock the mutex the second time. Attempting to re-acquire a mutex for which the
DB_MUTEX_SELF_BLOCK flag was not specified will result in undefined behavior.

mutexp

The mutexp parameter references memory into which the mutex reference is copied.

Errors

The DbEnv::mutex_alloc() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 478

See Also

Mutex Methods (page 476)

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 479

DbEnv::mutex_free()
#include <db_cxx.h>

int
DbEnv::mutex_free(db_mutex_t mutex);

The DbEnv::mutex_free() method discards a mutex allocated by DbEnv::mutex_alloc() (page
477).

The DbEnv::mutex_free() method may not be called before the DbEnv::open() (page 252)
method is called.

The DbEnv::mutex_free() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

mutex

The mutex parameter is a mutex previously allocated by DbEnv::mutex_alloc() (page 477).

Errors

The DbEnv::mutex_free() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Mutex Methods (page 476)

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 480

DbEnv::mutex_get_align()
#include <db_cxx.h>

int
DbEnv::mutex_get_align(u_int32_t *alignp);

The DbEnv::mutex_get_align() method returns the mutex alignment, in bytes.

The DbEnv::mutex_get_align() method may be called at any time during the life of the
application.

The DbEnv::mutex_get_align() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

alignp

The DbEnv::mutex_get_align() method returns the mutex alignment, in bytes in alignp.

Class

DbEnv

See Also

Mutex Methods (page 476)

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 481

DbEnv::mutex_get_increment()
#include <db_cxx.h>

int
DbEnv::mutex_get_increment(u_int32_t *incrementp);

The DbEnv::mutex_get_increment() method returns the number of additional mutexes to
allocate.

The DbEnv::mutex_get_increment() method may be called at any time during the life of
the application.

The DbEnv::mutex_get_increment() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

incrementp

The DbEnv::mutex_get_increment() method returns the number of additional mutexes to
allocate in incrementp.

Class

DbEnv

See Also

Mutex Methods (page 476)

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 482

DbEnv::mutex_get_init()
#include <db_cxx.h>

int
DbEnv::mutex_get_init(u_int32_t *init);

The DbEnv::mutex_get_init() method returns the inital number of mutexes allocated. This
value can be set using the DbEnv::mutex_set_init() (page 490) method.

The DbEnv::mutex_get_init() method may be called at any time during the life of the
application.

The DbEnv::mutex_get_init() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

init

The DbEnv::mutex_get_init() method returns the inital number of mutexes allocated in
init.

Class

DbEnv

See Also

Mutex Methods (page 476)

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 483

DbEnv::mutex_get_max()
#include <db_cxx.h>

int
DbEnv::mutex_get_max(u_int32_t *maxp);

The DbEnv::mutex_get_max() method returns the total number of mutexes allocated.

The DbEnv::mutex_get_max() method may be called at any time during the life of the
application.

The DbEnv::mutex_get_max() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

maxp

The DbEnv::mutex_get_max() method returns the total number of mutexes allocated in
maxp.

Class

DbEnv

See Also

Mutex Methods (page 476)

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 484

DbEnv::mutex_get_tas_spins()
#include <db_cxx.h>

int
DbEnv::mutex_get_tas_spins(u_int32_t *, tas_spinsp);

The DbEnv::mutex_get_tas_spins() method returns the test-and-set spin count. This value
may be configured using the DbEnv::mutex_set_tas_spins() (page 493) method.

The DbEnv::mutex_get_tas_spins() method may be called at any time during the life of
the application.

The DbEnv::mutex_get_tas_spins() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

tas_spinsp

The DbEnv::mutex_get_tas_spins() method returns the test-and-set spin count in
tas_spinsp.

Class

DbEnv

See Also

Mutex Methods (page 476)

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 485

DbEnv::mutex_lock()
#include <db_cxx.h>

int
DbEnv::mutex_lock(db_mutex_t mutex);

The DbEnv::mutex_lock() method locks the mutex allocated by DbEnv::mutex_alloc() (page
477). The thread of control calling DbEnv::mutex_lock() will block until the lock is
available.

The DbEnv::mutex_lock() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

mutex

The mutex parameter is a mutex previously allocated by DbEnv::mutex_alloc() (page 477).

Errors

The DbEnv::mutex_lock() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Mutex Methods (page 476)

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 486

DbEnv::mutex_set_align()
#include <db_cxx.h>

int
DbEnv::mutex_set_align(u_int32_t align);

Set the mutex alignment, in bytes.

It is sometimes advantageous to align mutexes on specific byte boundaries in order to
minimize cache line collisions. The DbEnv::mutex_set_align() method specifies an
alignment for mutexes allocated by Berkeley DB.

The database environment's mutex alignment may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"mutex_set_align", one or more whitespace characters, and the mutex alignment in bytes.
Because the DB_CONFIG file is read when the database environment is opened, it will silently
overrule configuration done before that time.

The DbEnv::mutex_set_align() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::mutex_set_align() method may not be called after the DbEnv::open() (page
252) method is called. If the database environment already exists when DbEnv::open() (page
252) is called, the information specified to DbEnv::mutex_set_align() will be ignored.

The DbEnv::mutex_set_align() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

align

The align parameter is the mutex alignment, in bytes. The mutex alignment must be a power-
of-two.

Errors

The DbEnv::mutex_set_align() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 487

See Also

Mutex Methods (page 476)

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 488

DbEnv::mutex_set_increment()
#include <db_cxx.h>

int
DbEnv::mutex_set_increment(u_int32_t increment);

Configure the number of additional mutexes to allocate.

If an application will allocate mutexes for its own use, the DbEnv::mutex_set_increment()
method is used to add a number of mutexes to the default allocation.

Calling the DbEnv::mutex_set_increment() method discards any value previously set using
the DbEnv::mutex_set_max() method.

The database environment's number of additional mutexes may also be configured using
the environment's DB_CONFIG file. The syntax of the entry in that file is a single line with
the string "mutex_set_increment", one or more whitespace characters, and the number of
additional mutexes. Because the DB_CONFIG file is read when the database environment is
opened, it will silently overrule configuration done before that time.

The DbEnv::mutex_set_increment() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::mutex_set_increment() method may not be called after the
DbEnv::open() (page 252) method is called. If the database environment already
exists when DbEnv::open() (page 252) is called, the information specified to
DbEnv::mutex_set_increment() will be ignored.

The DbEnv::mutex_set_increment() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

increment

The increment parameter is the number of additional mutexes to allocate.

Errors

The DbEnv::mutex_set_increment() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 489

See Also

Mutex Methods (page 476)

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 490

DbEnv::mutex_set_init()
#include <db_cxx.h>

int
DbEnv::mutex_set_init(u_int32_t init);

Configure the inital number of mutexes to allocate.

Berkeley DB allocates a default number of mutexes based on the initial configuration of the
database environment. The DbEnv::mutex_set_init() method is used to override this
default number of mutexes to allocate. This may be done to either speed up startup, or to
force more work to be done at startup to avoid later contention due to allocation.

The database environment's inital number of mutexes may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with
the string "mutex_set_init", one or more whitespace characters, and the initial number of
mutexes. Because the DB_CONFIG file is read when the database environment is opened, it
will silently overrule configuration done before that time.

The DbEnv::mutex_set_init() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::mutex_set_init() method may not be called after the DbEnv::open() (page 252)
method is called. If the database environment already exists when DbEnv::open() (page 252) is
called, the information specified to DbEnv::mutex_set_init() will be ignored.

The DbEnv::mutex_set_init() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

init

The init parameter is the absolute number of mutexes to allocate.

Errors

The DbEnv::mutex_set_init() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Mutex Methods (page 476)

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 491

DbEnv::mutex_set_max()
#include <db_cxx.h>

int
DbEnv::mutex_set_max(u_int32_t max);

Configure the total number of mutexes to allocate.

Berkeley DB allocates a default number of mutexes based on the initial configuration of
the database environment. That default calculation may be too small if the application
has an unusual need for mutexes (for example, if the application opens an unexpectedly
large number of databases) or too large (if the application is trying to minimize its memory
footprint). The DbEnv::mutex_set_max() method is used to specify an absolute number of
mutexes to allocate.

Calling the DbEnv::mutex_set_max() method discards any value previously set using the
DbEnv::mutex_set_increment() method.

The database environment's total number of mutexes may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with
the string "mutex_set_max", one or more whitespace characters, and the total number of
mutexes. Because the DB_CONFIG file is read when the database environment is opened, it
will silently overrule configuration done before that time.

The DbEnv::mutex_set_max() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::mutex_set_max() method may not be called after the DbEnv::open() (page 252)
method is called. If the database environment already exists when DbEnv::open() (page 252) is
called, the information specified to DbEnv::mutex_set_max() will be ignored.

The DbEnv::mutex_set_max() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

max

The max parameter is the absolute number of mutexes to allocate.

Errors

The DbEnv::mutex_set_max() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 492

Class

DbEnv

See Also

Mutex Methods (page 476)

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 493

DbEnv::mutex_set_tas_spins()
#include <db_cxx.h>

int
DbEnv::mutex_set_tas_spins(u_int32_t tas_spins);

Specify that test-and-set mutexes should spin tas_spins times without blocking. The
value defaults to 1 on uniprocessor systems and to 50 times the number of processors on
multiprocessor systems.

The database environment's test-and-set spin count may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "set_tas_spins", one or more whitespace characters, and the number of spins. Because
the DB_CONFIG file is read when the database environment is opened, it will silently overrule
configuration done before that time.

The DbEnv::mutex_set_tas_spins() method configures operations performed using
the specified DbEnv handle, not all operations performed on the underlying database
environment.

The DbEnv::mutex_set_tas_spins() method may be called at any time during the life of
the application.

The DbEnv::mutex_set_tas_spins() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

tas_spins

The tas_spins parameter is the number of spins test-and-set mutexes should execute before
blocking.

Errors

The DbEnv::mutex_set_tas_spins() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Mutex Methods (page 476)

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 494

DbEnv::mutex_stat()
#include <db_cxx.h>

int
DbEnv::mutex_stat(DB_MUTEX_STAT **statp, u_int32_t flags);

The DbEnv::mutex_stat() method returns the mutex subsystem statistics.

The DbEnv::mutex_stat() method creates a statistical structure of type DB_MUTEX_STAT and
copies a pointer to it into a user-specified memory location.

Statistical structures are stored in allocated memory. If application-specific allocation routines
have been declared (see DbEnv::set_alloc() (page 260) for more information), they are used
to allocate the memory; otherwise, the standard C library malloc(3) is used. The caller
is responsible for deallocating the memory. To deallocate the memory, free the memory
reference; references inside the returned memory need not be individually freed.

The following DB_MUTEX_STAT fields will be filled in:

• u_int32_t st_mutex_align;

The mutex alignment, in bytes.

• int st_mutex_cnt;

The total number of mutexes configured.

• u_int32_t st_mutex_free;

The number of mutexes currently available.

• u_int32_t st_mutex_init;

The initial number of mutexes configured.

• u_int32_t st_mutex_inuse;

The number of mutexes currently in use.

• u_int32_t st_mutex_inuse_max;

The maximum number of mutexes ever in use.

• u_int32_t st_mutex_max;

The maximum number of mutexes.

• u_int32_t st_mutex_tas_spins;

The number of times test-and-set mutexes will spin without blocking.

• uintmax_t st_region_wait;

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 495

The number of times that a thread of control was forced to wait before obtaining the mutex
region mutex.

• uintmax_t st_region_nowait;

The number of times that a thread of control was able to obtain the mutex region mutex
without waiting.

• roff_t st_regmax;

The max size of the mutex region size.

• roff_t st_regsize;

The size of the mutex region, in bytes.

The DbEnv::mutex_stat() method may not be called before the DbEnv::open() (page 252)
method is called.

The DbEnv::mutex_stat() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

statp

The statp parameter references memory into which a pointer to the allocated statistics
structure is copied.

flags

The flags parameter must be set to 0 or the following value:

• DB_STAT_CLEAR

Reset statistics after returning their values.

Errors

The DbEnv::mutex_stat() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 496

See Also

Mutex Methods (page 476)

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 497

DbEnv::mutex_stat_print()
#include <db_cxx.h>

int
DbEnv::mutex_stat_print(u_int32_t flags);

The DbEnv::mutex_stat_print() method displays the mutex subsystem statistical
information, as described for the DbEnv::mutex_stat() method. The information
is printed to a specified output channel (see the DbEnv::set_msgfile() (page 301)
method for more information), or passed to an application callback function (see the
DbEnv::set_msgcall() (page 299) method for more information).

The DbEnv::mutex_stat_print() method may not be called before the DbEnv::open() (page
252) method is called.

The DbEnv::mutex_stat_print() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_STAT_ALL

Display all available information.

• DB_STAT_CLEAR

Reset statistics after displaying their values.

Class

DbEnv

See Also

Mutex Methods (page 476)

Library Version 11.2.5.2 Mutex Methods

6/10/2011 DB C++ API Page 498

DbEnv::mutex_unlock()
#include <db_cxx.h>

int
DbEnv::mutex_unlock(db_mutex_t mutex);

The DbEnv::mutex_unlock() method unlocks the mutex locked by
DbEnv::mutex_lock() (page 485).

The DbEnv::mutex_unlock() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

mutex

The mutex parameter is a mutex previously locked by DbEnv::mutex_lock() (page 485).

Errors

The DbEnv::mutex_unlock() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Mutex Methods (page 476)

6/10/2011 DB C++ API Page 499

Chapter 11. Replication Methods
This chapter describes the APIs available to build Berkeley DB replicated applications. There
are two different ways to build replication into a Berkeley DB application, and the APIs for
both are described in this chapter.

For an overview of the two different ways to build a replicated application, see the Berkeley
DB Getting Started with Replicated Applications guide.

The first, and simplest, way to build a replication Berkeley DB application is via the
Replication Manager. If the Replication Manager does not meet your application's architectural
requirements, you can write your own replication implementation using the "Base APIs".

Note that the Replication Manager is written using the Base APIs.

Note, also, that applications which make use of the Replication Manager use many of the
Base APIs as the situation warrants. That said, a few Base API methods cannot be used by
applications that are making use of the Replication Manager. Where this is the case, this is
noted in the following method descriptions.

Finally, Replication Manager applications use the DbSite class to manage and configure
replication sites. This handle is not used in any way by Base API applications.

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 500

Replication and Related Methods

Replication Manager Methods Description

DbChannel::close() Closes a DB_CHANNEL handle

DbChannel::send_msg() Sends an asynchronous message on a
DB_CHANNEL

DbChannel::send_request() Sends a synchronous message on a
DB_CHANNEL

DbChannel::set_timeout() Sets the default timeout for the DB_CHANNEL

DbEnv::repmgr_channel() Creates a DB_CHANNEL handle

DbEnv::repmgr_local_site() Returns a DB_SITE handle for the local site

DbEnv::repmgr_msg_dispatch() Creates a DB_CHANNEL handle

DbEnv::repmgr_set_ack_policy(),
DbEnv::repmgr_get_ack_policy()

Specify the Replication Manager's client
acknowledgement policy

DbEnv::repmgr_site() Creates a DB_SITE handle

DbEnv::repmgr_site_by_eid() Creates a DB_SITE handle given an EID value

DbEnv::repmgr_site_list() List the sites and their status

DbEnv::repmgr_start() Start the Replication Manager

DbEnv::repmgr_stat() Replication Manager statistics

DbEnv::repmgr_stat_print() Print Replication Manager statistics

Base API Methods

DbEnv::rep_elect() Hold a replication election

DbEnv::rep_process_message() Process a replication message

DbEnv::rep_set_transport() Configure replication transport callback

DbEnv::rep_start() Start replication

Additional Replication Methods

DbEnv::rep_stat() Replication statistics

DbEnv::rep_stat_print() Print replication statistics

DbEnv::rep_sync() Replication synchronization

DbEnv::txn_applied() Check if a transaction has been replicated

Replication Configuration

DbSite::close() Closes the DB_SITE handle

DbSite::get_address() Returns a site's network address

DbSite::get_eid() Returns a site's Environment ID

DbSite::remove() Removes the site from the replication group

DbSite::set_config(), DbSite::get_config() Configure a DB_SITE handle

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 501

Replication Manager Methods Description

DbEnv::rep_set_clockskew(),
DbEnv::rep_get_clockskew()

Configure master lease clock adjustment

DbEnv::rep_set_config(),
DbEnv::rep_get_config()

Configure the replication subsystem

DbEnv::rep_set_limit(),
DbEnv::rep_get_limit()

Limit data sent in response to a single
message

DbEnv::rep_set_nsites(),
DbEnv::rep_get_nsites()

Configure replication group site count

DbEnv::rep_set_priority(),
DbEnv::rep_get_priority()

Configure replication site priority

DbEnv::rep_set_request(),
DbEnv::rep_get_request()

Configure replication client retransmission
requests

DbEnv::rep_set_timeout(),
DbEnv::rep_get_timeout()

Configure replication timeouts

Transaction Operations

DbTxn::set_commit_token() Set a commit token

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 502

The DbSite Handle

The DbSite handle is used by Replication Manager applications to manage and configure
replication sites. You create a DbSite handle using the DbEnv::repmgr_site() (page 566),
DbEnv::repmgr_site_by_eid() (page 568), or DbEnv::repmgr_local_site() (page 560),
methods. All DbSite handles must be closed before closing DbEnv handles. Use the
DbSite::close() (page 509) method to close a DbSite handle.

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 503

DbChannel::close()
#include <db_cxx.h>

int
DbChannel::close(u_int32_t flags);

The DbChannel::close() method closes the DbChannel handle, freeing any resources
allocated to the handle. All DbChannel handles must be closed before the encompassing
environment handle is closed. Also, all on-going messaging operations on the channel should
be allowed to complete before attempting to close the channel handle.

After DbChannel::close() has been called, regardless of its return, the DbChannel handle
may not be accessed again.

The DbChannel::close() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

This parameter is currently unused, and must be set to 0.

Errors

The DbChannel::close() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If this method is called from a Base API application, or if an invalid flag value or parameter
was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 504

DbChannel::send_msg()
#include <db_cxx.h>

int
DbChannel::send_msg(Dbt *msg, u_int32_t nmsg, u_int32_t flags);

The DbChannel::send_msg() method sends a message on the message channel. The message
is sent asynchronously; the method does not wait for a response before returning. This method
usually completes quickly because it only waits for the local TCP implementation to accept
the bytes into its network data buffer. However, this message could block briefly for longer
messages, and/or if the network data buffer is nearly full. This method could even block
indefinitely if the remote site is slow to read.

If you want to block while waiting for a response from a remote site, use the
DbChannel::send_request() (page 506) method instead of this method.

The message sent by this method is received and handled at remote sites using a message
dispatch callback, which is configured using the DbEnv::repmgr_msg_dispatch() (page 562)
method. Note that the DbChannel::send_msg() method may be used within the the message
dispatch callback on the remote site to send a response or acknowledgement for messages
that it receives and is handling.

This method may be used on channels opened to any destination (see the
DbEnv::repmgr_channel() (page 558) method for a list of potential destinations).

The DbChannel::send_msg() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

msg

Refers to an array of Dbt handles. For more information, see The Dbt Handle (page 187).

Any flags provided to the Dbt handles used in this array are ignored.

nmsg

Indicates how many elements are contained in the msg array.

flags

This parameter is currently unused, and must be set to 0.

Errors

The DbChannel::send_msg() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 505

DB_NOSERVER

A message was sent to a remote site that has not configured a message dispatch call-back
function. Use the DbEnv::repmgr_msg_dispatch() (page 562) method at every site belonging
to the replication group to configure a message dispatch call-back function.

EINVAL

If this method is called from a Base API application, or if an invalid flag value or parameter
was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 506

DbChannel::send_request()
#include <db_cxx.h>

int
DbChannel::send_request(Dbt *request, u_int32_t nrequest,
 Dbt *response, db_timeout_t timeout,
 u_int32_t flags);

The DbChannel::send_request() method sends a message on the message channel. The
message is sent synchronously; the method blocks waiting for a response before returning. If
a response is not received within the timeout value configured for this request, this method
returns with an error condition.

If you do not want to block while waiting for a response from a remote site, use the
DbChannel::send_msg() (page 504) method.

The message sent by this method is received and handled at remote sites using a message
dispatch callback, which is configured using the DbEnv::repmgr_msg_dispatch() (page 562)
method.

The DbChannel::send_request() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

request

Refers to an array of Dbt handles. For more information, see The Dbt Handle (page 187).

Any flags provided to the Dbt handles used in this array are ignored.

nrequest

Indicates how many elements are contained in the msg array.

response

Points to a single Dbt handle, which is used to receive the response from the remote site.
By default, the response is expected to be a single-part message. If there is a possibility
that the response could be a multi-part message, specify DB_MULTIPLE to this method's flags
parameter.

The response Dbt should specify one of the following flags: DB_DBT_MALLOC, DB_DBT_REALLOC,
or DB_DBT_USERMEM.

For more information on configuring and using Dbts, see The Dbt Handle (page 187).

Note that the response Dbt can be empty. In this way an application can send an
acknowledgement even if there is no other information that needs to be sent.

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 507

timeout

Configures the amount of time that may elapse while this method waits for a response from
the remote site. If this timeout period elapses without a response, this method returns with
an error condition.

The timeout value must be specified as an unsigned 32-bit number of microseconds, limiting
the maximum timeout to roughly 71 minutes.

A timeout value of 0 indicates that the channel's default timeout value should be used. This
default is configured using the DbChannel::set_timeout() (page 508) method.

flags

This parameter must be set to either DB_MULTIPLE or 0.

If there is a possibility that the response can consist of multiple Dbt handles, specify
DB_MULTIPLE to this parameter. In that case, the response buffer is formatted for bulk
operations.

Errors

The DbChannel::send_request() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

DB_BUFFER_SMALL

DB_MULTIPLE was not specified for the response Dbt, but the remote site sent a response
consisting of more than one Dbt; or a buffer supplied using DB_DBT_USERMEM was not large
enough to contain the message response.

DB_NOSERVER

A message was sent to a remote site that has not configured a message dispatch call-back
function. Use the DbEnv::repmgr_msg_dispatch() (page 562) method at every site belonging
to the replication group to configure a message dispatch call-back function.

EINVAL

If this method is called from a Base API application, or if an invalid flag value or parameter
was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 508

DbChannel::set_timeout()
#include <db_cxx.h>

int
DbChannel::set_timeout(db_timeout_t timeout);

The DbChannel::set_timeout() method sets the default timeout value for the DbChannel
handle. This timeout is used by the DbChannel::send_request() (page 506) method.

The DbChannel::set_timeout() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

timeout

Configures the amount of time that may elapse while the DbChannel::send_request() (page
506) method waits for a message response. The timeout value must be specified as an
unsigned 32-bit number of microseconds, limiting the maximum timeout to roughly 71
minutes.

Errors

The DbChannel::set_timeout() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If this method is called from a Base API application, or if an invalid flag value or parameter
was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 509

DbSite::close()
#include <db_cxx.h>

int
DbSite::close();

The DbSite::close() method deallocates the DbSite handle. The handle must not be
accessed again after this method is called, regardless of the return value.

Use of this method does not in any way affect the configuration of the site to which the
handle refers, or of the replication group in general.

All DbSite handles must be closed before the owning DbEnv handle is closed.

The DbSite::close() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Errors

The DbSite::close() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

Class

DbSite

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 510

DbSite::get_config()
#include <db_cxx.h>

int
DbSite::get_config(u_int32_t which, u_int32_t *valuep);

The DbSite::get_config() method returns whether the specified which parameter is
currently set. See the DbSite::set_config() (page 514) method for the configuration flags that
can be set for a DbSite handle.

The DbSite::get_config() method may be called at any time during the life of the
application.

The DbSite::get_config() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

which

The which parameter is the configuration flag to check. See the DbSite::set_config() (page
514) method for a list of configuration flags that you can provide to this parameter.

valuep

The valuep parameter references memory into which the configuration of the specified which
parameter is copied.

If the returned value is zero, the parameter is off; otherwise it is on.

Class

DbSite

See Also

Replication and Related Methods (page 500), DbSite::set_config() (page 514)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 511

DbSite::get_address()
#include <db_cxx.h>

int
DbSite::get_address(const char **hostp, u_int *portp);

The DbSite::get_address() method returns a replication site's network address. That is,
this method returns the site's hostname and port.

The DbSite::get_address() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

hostp

References memory into which is copied a pointer to the internal storage of the host name.

portp

References memory into which the port number will be copied.

Class

DbSite

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 512

DbSite::get_eid()
#include <db_cxx.h>

int
DbSite::get_eid(int *eidp);

The DbSite::get_eid() method returns a replication site's Environment ID (EID). This
method can be called only after environment open.

The DbSite::get_eid() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

eidp

References memory into which the EID will be copied.

Errors

The DbSite::get_eid() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If an invalid flag value or parameter was specified.

Class

DbSite

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 513

DbSite::remove()
#include <db_cxx.h>

int
DbSite::remove();

The DbSite::remove() method removes the site from the replication group. If called at the
master site, repmgr updates the membership database directly. If called from a client, this
method causes a request to be sent to the master to perform the operation. The method then
awaits confirmation.

The DbSite handle must not be accessed again after this method is called, regardless of the
return value.

The DbSite::remove() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Errors

The DbSite::remove() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

DB_REP_UNAVAIL

The master updated the database but did not receive enough acknowledgements from clients
sufficient to meet the current ack policy.

Class

DbSite

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 514

DbSite::set_config()
#include <db_cxx.h>

int
DbSite::set_config(u_int32_t which, u_int32_t value);

The DbSite::set_config() method configures a replication site.

The DbSite::set_config() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

which

This parameter must be set to one of the following values:

• DB_BOOTSTRAP_HELPER

Specifies that a remote site may be used as a "helper" when the local site is first joining the
replication group. Once the local site has been established as a member of the group, this
setting is ignored.

• DB_GROUP_CREATOR

Specifies that this site should create the initial membership database contents, defining a
"group" of just the one site, rather than trying to join an existing group when it starts for
the first time.

This setting can only be applied to the local site.

• DB_LEGACY

Specifies that the site is already part of an existing group. This setting causes the site to
be upgraded from a previous version of BDB. All sites in the legacy group must specify this
setting for themselves (the local site) and for all other sites currently existing in the group.
Once the upgrade has been completed, this setting is no longer required.

• DB_LOCAL_SITE

Specifies that this site is the local site within the replication group. The application
must identify exactly one site as the local site in this way, before calling the
DbEnv::repmgr_start() (page 571) method.

• DB_REPMGR_PEER

Specifies that the site may be used as a target for "client-to-client" synchronization
messages. This setting is ignored if it is specified for the local site.

value

If 0, the parameter identified by the which is turned off. Otherwise, it is turned on.

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 515

Errors

The DbSite::set_config() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If an invalid flag value or parameter was specified.

Class

DbSite

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 516

DbEnv::rep_elect()
#include <db_cxx.h>

int
DbEnv::rep_elect(u_int32_t nsites, u_int32_t nvotes, u_int32_t flags);

The DbEnv::rep_elect() method holds an election for the master of a replication group.

The DbEnv::rep_elect() method is not called by most replication applications. It should
only be called by Base API applications implementing their own network transport layer,
explicitly holding replication group elections and handling replication messages outside of the
Replication Manager framework.

If the election is successful, Berkeley DB will notify the application of the results of the
election by means of either the DB_EVENT_REP_ELECTED or DB_EVENT_REP_NEWMASTER
events (see DbEnv::set_event_notify() (page 270) method for more information). The
application is responsible for adjusting its relationship to the other database environments in
the replication group, including directing all database updates to the newly selected master,
in accordance with the results of the election.

The thread of control that calls the DbEnv::rep_elect() method must not be the thread of
control that processes incoming messages; processing the incoming messages is necessary to
successfully complete an election.

Before calling this method do the following:

• open the database environment by calling the DbEnv::open() (page 252) method.

• configure the database environment to send replication messages by calling the
DbEnv::rep_set_transport() (page 544) method.

• configure the database environment as a client or a master by calling the
DbEnv::rep_start() (page 547) method.

How Elections are Held

Elections are done in two parts: first, replication sites collect information from the other
replication sites they know about, and second, replication sites cast their votes for a new
master. The second phase is triggered by one of two things: either the replication site gets
election information from nsites sites, or the election timeout expires. Once the second phase
is triggered, the replication site will cast a vote for the new master of its choice if, and only
if, the site has election information from at least nvotes sites. If a site receives nvotes votes
for it to become the new master, then it will become the new master.

We recommend nvotes be set to at least:

 (sites participating in the election / 2) + 1

to ensure there are never more than two masters active at the same time even in the case
of a network partition. When a network partitions, the side of the partition with more

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 517

than half the environments will elect a new master and continue, while the environments
communicating with fewer than half of the environments will fail to find a new master, as no
site can get nvotes votes.

We recommend nsites be set to:

 number of sites in the replication group - 1

when choosing a new master after a current master fails. This allows the group to reach a
consensus without having to wait for the timeout to expire.

When choosing a master from among a group of client sites all restarting at the same time,
it makes more sense to set nsites to the total number of sites in the group, since there is no
known missing site. Furthermore, in order to ensure the best choice from among sites that
may take longer to boot than the local site, setting nvotes also to this same total number of
sites will guarantee that every site in the group is considered. Alternatively, using the special
timeout for full elections allows full participation on restart but allows election of a master
if one site does not reboot and rejoin the group in a reasonable amount of time. (See the
Elections section in the Berkeley DB Programmer's Reference Guide for more information.)

Setting nsites to lower values can increase the speed of an election, but can also result in
election failure, and is usually not recommended.

Parameters

nsites

The nsites parameter specifies the number of replication sites expected to participate in the
election. Once the current site has election information from that many sites, it will short-
circuit the election and immediately cast its vote for a new master. The nsites parameter
must be no less than nvotes, or 0 if the election should use the value previously set using the
DbEnv::rep_set_nsites() (page 536) method. If an application is using master leases, then
the value must be 0 and the value from DbEnv::rep_set_nsites() (page 536) method must be
used.

nvotes

The nvotes parameter specifies the minimum number of replication sites from which the
current site must have election information, before the current site will cast a vote for a new
master. The nvotes parameter must be no greater than nsites, or 0 if the election should use
the value ((nsites / 2) + 1) as the nvotes argument.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DbEnv::rep_elect() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

../../programmer_reference/rep_elect.html

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 518

DB_REP_UNAVAIL

The replication group was unable to elect a master, or was unable to complete the election
in the election timeout period (see DbEnv::rep_set_timeout() (page 541) method for more
information).

EINVAL

If the database environment was not already configured to communicate with a replication
group by a call to DbEnv::rep_set_transport() (page 544); if the database environment was
not already opened; if this method is called from a Replication Manager application; or if an
invalid flag value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 519

DbEnv::rep_get_clockskew()
#include <db_cxx.h>

DbEnv::rep_get_clockskew(u_int32_t *fast_clockp, u_in32_t *slow_clockp);

The DbEnv::rep_get_clockskew() method returns the current clock skew ratio values, as
set by the DbEnv::rep_set_clockskew() (page 529) method.

The DbEnv::rep_get_clockskew() method may be called at any time during the life of the
application.

The DbEnv::rep_get_clockskew() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

fast_clockp

The fast_clockp parameter references memory into which the value for the fastest clock in
the group of sites is copied.

slow_clockp

The slow_clockp parameter references memory into which the value for the slowest clock in
the group of sites is copied.

Class

DbEnv

See Also

Replication and Related Methods (page 500), DbEnv::rep_set_clockskew() (page 529)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 520

DbEnv::rep_get_config()
#include <db_cxx.h>

int
DbEnv::rep_get_config(u_int32_t which, int *onoffp);

The DbEnv::rep_get_config() method returns whether the specified which parameter
is currently set or not. See the DbEnv::rep_set_config() (page 531) method for the
configuration flags that can be set for replication.

The DbEnv::rep_get_config() method may be called at any time during the life of the
application.

The DbEnv::rep_get_config() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

which

The which parameter is the configuration flag which is being checked. See the
DbEnv::rep_set_config() (page 531) method for a list of configuration flags that you can
provide to this parameter.

onoffp

The onoffp parameter references memory into which the configuration of the specified which
parameter is copied.

If the returned onoff value is zero, the parameter is off; otherwise it is on.

Class

DbEnv

See Also

Replication and Related Methods (page 500), DbEnv::rep_set_config() (page 531)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 521

DbEnv::rep_get_limit()
#include <db_cxx.h>

int
DbEnv::rep_get_limit(u_int32_t *gbytesp, u_int32_t *bytesp);

The DbEnv::rep_get_limit() method returns the byte-count limit on the amount of
data that will be transmitted from a site in response to a single message processed by the
DbEnv::rep_process_message() (page 526) method. This value is configurable using the
DbEnv::rep_set_limit() (page 534) method.

The DbEnv::rep_get_limit() method may be called at any time during the life of the
application.

The DbEnv::rep_get_limit() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

gbytesp

The gbytesp parameter references memory into which the gigabytes component of the
current transmission limit is copied.

bytesp

The bytesp parameter references memory into which the bytes component of the current
transmission limit is copied.

Class

DbEnv

See Also

Replication and Related Methods (page 500), DbEnv::rep_set_limit() (page 534)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 522

DbEnv::rep_get_nsites()
#include <db_cxx.h>

int
DbEnv::rep_get_nsites(u_int32_t *nsitesp);

The DbEnv::rep_get_nsites() method returns the total number of sites in the
replication group. For Base API applications, his value is configurable using the
DbEnv::rep_set_nsites() (page 536) method. For Replication Manager applications, this value
is determined dynamically.

For Base API applications, this method may be called at any time during the life of the
application. For Replication Manager applications, this method may be called only after a
successful call to the DbEnv::repmgr_start() (page 571) method.

The DbEnv::rep_get_nsites() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

nsitesp

The DbEnv::rep_get_nsites() method returns the total number of sites in the replication
group in nsitesp.

Class

DbEnv

See Also

Replication and Related Methods (page 500), DbEnv::rep_set_nsites() (page 536)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 523

DbEnv::rep_get_priority()
#include <db_cxx.h>

int
DbEnv::rep_get_priority(u_int32_t *priorityp);

The DbEnv::rep_get_priority() method returns the database environment priority as
configured using the DbEnv::rep_set_priority() (page 538) method.

The DbEnv::rep_get_priority() method may be called at any time during the life of the
application.

The DbEnv::rep_get_priority() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priorityp

The DbEnv::rep_get_priority() method returns the database environment priority in
priorityp.

Class

DbEnv

See Also

Replication and Related Methods (page 500), DbEnv::rep_set_priority() (page 538)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 524

DbEnv::rep_get_request()
#include <db_cxx.h>

int
DbEnv::rep_get_request(u_int32_t *minp, u_int32_t *maxp);

The DbEnv::rep_get_request() method returns the minimum and maximum number of
microseconds a client waits before requesting retransmission. These values can be configured
using the DbEnv::rep_set_request() (page 539) method.

The DbEnv::rep_get_request() method may be called at any time during the life of the
application.

The DbEnv::rep_get_request() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

minp

The minp parameter references memory into which the minimum number of microseconds a
client will wait before requesting retransmission is copied.

maxp

The maxp parameter references memory into which the maximum number of microseconds a
client will wait before requesting retransmission is copied.

Class

DbEnv

See Also

Replication and Related Methods (page 500), DbEnv::rep_set_request() (page 539)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 525

DbEnv::rep_get_timeout()
#include <db_cxx.h>

int
DbEnv::rep_get_timeout(int which, u_int32_t *timeoutp);

The DbEnv::rep_get_timeout() method returns the timeout value for the specified which
parameter. Timeout values can be managed using the DbEnv::rep_set_timeout() (page 541)
method.

The DbEnv::rep_get_timeout() method may be called at any time during the life of the
application.

The DbEnv::rep_get_timeout() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

which

The which parameter is the timeout for which the value is being returned. See the
DbEnv::rep_set_timeout() (page 541) method for a list of timeouts that you can provide to
this parameter.

timeoutp

The timeoutp parameter references memory into which the timeout value of the specified
which parameter is copied.

The returned timeout value is in microseconds.

Errors

The DbEnv::rep_get_timeout() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500), DbEnv::rep_set_timeout() (page 541)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 526

DbEnv::rep_process_message()
#include <db_cxx.h>

int
DbEnv::rep_process_message(Dbt *control, Dbt *rec, int envid,
 DbLsn *ret_lsnp)

The DbEnv::rep_process_message() method processes an incoming replication message
sent by a member of the replication group to the local database environment.

The DbEnv::rep_process_message() method is not called by most replication applications.
It should only be called by Base API applications implementing their own network transport
layer, explicitly holding replication group elections and handling replication messages outside
of the Replication Manager framework.

For implementation reasons, all incoming replication messages must be processed using the
same DbEnv handle. It is not required that a single thread of control process all messages,
only that all threads of control processing messages use the same handle.

Before calling this method, the enclosing database environment must already have been
opened by calling the DbEnv::open() (page 252) method and must already have been
configured to send replication messages by calling the DbEnv::rep_set_transport() (page 544)
method.

The DbEnv::rep_process_message() method has additional return values:

• DB_REP_DUPMASTER

The DbEnv::rep_process_message() method will return DB_REP_DUPMASTER if the
replication group has more than one master. The application should reconfigure itself as a
client by calling the DbEnv::rep_start() (page 547) method, and then call for an election by
calling DbEnv::rep_elect() (page 516).

• DB_REP_HOLDELECTION

The DbEnv::rep_process_message() method will return DB_REP_HOLDELECTION
if an election is needed. The application should call for an election by calling
DbEnv::rep_elect() (page 516).

• DB_REP_IGNORE

The DbEnv::rep_process_message() method will return DB_REP_IGNORE if this message
cannot be processed. This is an indication that this message is irrelevant to the current
replication state (for example, an old message from a previous generation arrives and is
processed late).

• DB_REP_ISPERM

The DbEnv::rep_process_message() method will return DB_REP_ISPERM if processing this
message results in the processing of records that are permanent. The maximum LSN of the
permanent records stored is returned.

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 527

• DB_REP_JOIN_FAILURE

The DbEnv::rep_process_message() method will return DB_REP_JOIN_FAILURE if a new
master has been chosen but the client is unable to synchronize with the new master. This
is possibly because the client has turned off automatic internal initialization by setting the
DB_REP_CONF_AUTOINIT flag to 0.

• DB_REP_NEWSITE

The DbEnv::rep_process_message() method will return DB_REP_NEWSITE if the system
received contact information from a new environment. The rec parameter contains
the opaque data specified to the DbEnv::rep_start() (page 547) cdata parameter. The
application should take whatever action is needed to establish a communication channel
with this new environment.

• DB_REP_NOTPERM

The DbEnv::rep_process_message() method will return DB_REP_NOTPERM if a message
carrying a DB_REP_PERMANENT flag was processed successfully, but was not written to disk.
The LSN of this record is returned. The application should take whatever action is deemed
necessary to retain its recoverability characteristics.

Unless otherwise specified, the DbEnv::rep_process_message() method either returns
a non-zero error value or throws an exception that encapsulates a non-zero error value on
failure, and returns 0 on success.

Parameters

control

The control parameter should reference a copy of the control parameter specified by
Berkeley DB on the sending environment. See the DbEnv::rep_set_transport() (page 544)
method for more information.

rec

The rec parameter should reference a copy of the rec parameter specified by Berkeley DB on
the sending environment. See the DbEnv::rep_set_transport() (page 544) method for more
information.

envid

The envid parameter should contain the local identifier that corresponds to the environment
that sent the message to be processed (see Replication environment IDs for more
information).

ret_lsnp

If DbEnv::rep_process_message() method returns DB_REP_NOTPERM then the ret_lsnp
parameter will contain the log sequence number of this permanent log message that could not
be written to disk. If DbEnv::rep_process_message() method returns DB_REP_ISPERM then

../../programmer_reference/rep_id.html

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 528

the ret_lsnp parameter will contain largest log sequence number of the permanent records
that are now written to disk as a result of processing this message. In all other cases the value
of ret_lsnp is undefined.

Errors

The DbEnv::rep_process_message() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the database environment was not already configured to communicate with a replication
group by a call to DbEnv::rep_set_transport() (page 544); if the database environment was
not already opened; if this method is called from a Replication Manager application; or if an
invalid flag value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 529

DbEnv::rep_set_clockskew()
#include <db_cxx.h>

int
DbEnv::rep_set_clockskew(u_int32_t fast_clock, u_int32_t slow_clock);

The DbEnv::rep_set_clockskew() method sets the clock skew ratio among replication
group members based on the fastest and slowest measurements among the group for use
with master leases. Calling this method is optional; the default values for clock skew
assume no skew. The user must also configure leases via the DbEnv::rep_set_config() (page
531) method. Additionally, the user must also set the master lease timeout via the
DbEnv::rep_set_timeout() (page 541) method. For Base API applications, the user must
also set the number of sites in the replication group via the DbEnv::rep_set_nsites() (page
536) method. These methods may be called in any order. For a description of the clock skew
values, see Clock skew in the Berkeley DB Programmer's Reference Guide. For a description of
master leases, see Master leases in the Berkeley DB Programmer's Reference Guide.

These arguments can be used to express either raw measurements of a clock timing
experiment or a percentage across machines. For example, if a group of sites has a 2%
variance, then fast_clock should be set to 102, and slow_clock should be set to 100. Or, for a
0.03% difference, you can use 10003 and 10000 respectively.

The database environment's replication subsystem may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "rep_set_clockskew", one or more whitespace characters, and the clockskew specified
in two parts: the fast_clock and the slow_clock. For example, "rep_set_clockskew 102 100".
Because the DB_CONFIG file is read when the database environment is opened, it will silently
overrule configuration done before that time.

The DbEnv::rep_set_clockskew() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::rep_set_clockskew() method may not be called after the
DbEnv::repmgr_start() (page 571) or DbEnv::rep_start() (page 547) methods are called.

The DbEnv::rep_set_clockskew() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

fast_clock

The value, relative to the slow_clock, of the fastest clock in the group of sites.

slow_clock

The value of the slowest clock in the group of sites.

../../programmer_reference/rep_clock_skew.html
../../programmer_reference/rep_lease.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 530

Errors

The DbEnv::rep_set_clockskew() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after replication is started with a call to the
DbEnv::repmgr_start() (page 571) or the DbEnv::rep_start() (page 547) method; or if an
invalid flag value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 531

DbEnv::rep_set_config()
#include <db_cxx.h>

int
DbEnv::rep_set_config(u_int32_t which, int onoff);

The DbEnv::rep_set_config() method configures the Berkeley DB replication subsystem.

The database environment's replication subsystem may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with
the string "rep_set_config", one or more whitespace characters, and the method which
parameter as a string and optionally one or more whitespace characters, and the string "on"
or "off". If the optional string is omitted, the default is "on"; for example, "rep_set_config
DB_REP_CONF_NOWAIT" or "rep_set_config DB_REP_CONF_NOWAIT on". Because the
DB_CONFIG file is read when the database environment is opened, it will silently overrule
configuration done before that time.

The DbEnv::rep_set_config() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::rep_set_config() method may not be called to set in-memory replication
after the environment is opened using the DbEnv::open() (page 252) method. This method
may also not be called to set master leases after the DbEnv::rep_start() (page 547) or
DbEnv::repmgr_start() (page 571) methods are called. For all other which parameters, this
method may be called at any time during the life of the application.

The DbEnv::rep_set_config() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

which

The which parameter must be set to one of the following values:

• DB_REP_CONF_AUTOINIT

The replication master will automatically re-initialize outdated clients. This option is turned
on by default.

• DB_REP_CONF_BULK

The replication master sends groups of records to the clients in a single network transfer.

• DB_REP_CONF_DELAYCLIENT

The client should delay synchronizing to a newly declared master. Clients configured in
this way will remain unsynchronized until the application calls the DbEnv::rep_sync() (page
557) method.

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 532

• DB_REP_CONF_INMEM

Store internal replication information in memory only.

By default, replication creates files in the environment home directory to preserve some
internal information. If this configuration flag is turned on, replication only stores this
internal information in-memory and cannot keep persistent state across a site crash or
reboot. This results in the following limitations:

• A master site should not reappoint itself master immediately after crashing or rebooting
because the application would incur a slightly higher risk of client crashes. The former
master site should rejoin the replication group as a client. The application should either
hold an election or appoint a different site to be the next master.

• An application has a slightly higher risk that elections will fail or be unable to complete.
Calling additional elections should eventually yield a winner.

• An application has a slight risk that the wrong site may win an election, resulting in the
loss of some data. This is consistent with the general loss of data durability when running
in-memory.

This configuration flag can only be turned on before the environment is opened with the
DbEnv::open() (page 252) method. Its value cannot be changed while the environment is
open. All sites in the replication group should have the same value for this configuration
flag.

• DB_REP_CONF_LEASE

Master leases will be used for this site.

Configuring this option may result in DB_REP_LEASE_EXPIRED error returns from the
Db::get() (page 31) and Dbc::get() (page 173) methods when attempting to read entries
from a database after the site's master lease has expired.

This configuration flag may not be set after the DbEnv::repmgr_start() (page 571) method
or the DbEnv::rep_start() (page 547) method is called. All sites in the replication group
should have the same value for this configuration flag.

• DB_REP_CONF_NOWAIT

Berkeley DB method calls that would normally block while clients are in recovery will return
errors immediately.

• DB_REPMGR_CONF_ELECTIONS

Replication Manager automatically runs elections to choose a new master when the old
master appears to have become disconnected. This option is turned on by default.

If this option is turned off, the application is responsible for assigning the new master
explicitly, by calling the DB_ENV->repmgr_start() method.

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 533

Caution

Most Replication Manager applications should accept the default automatic
behavior. Allowing two sites in a replication group to act as master simultaneously
can lead to loss of data.

In an application with multiple processes per database environment, only the main
replication process may change this configuration setting.

• DB_REPMGR_CONF_2SITE_STRICT

Replication Manager observes the strict "majority" rule in managing elections, even in a
group with only 2 sites. This means the client in a 2-site group will be unable to take over
as master if the original master fails or becomes disconnected. (See the Elections section
in the Berkeley DB Programmer's Reference Guide for more information.) Both sites in
the replication group should have the same value for this configuration flag. This option is
turned on by default.

onoff

If the onoff parameter is zero, the configuration flag is turned off. Otherwise, it is turned on.
Most configuration flags are turned off by default, exceptions are noted above.

Errors

The DbEnv::rep_set_config() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If setting in-memory replication after the database environment is already opened; if setting
master leases after replication is started; if setting the 2-site strict majority rule for a Base
API application; or if an invalid flag value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

../../programmer_reference/rep_elect.html

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 534

DbEnv::rep_set_limit()
#include <db_cxx.h>

int
DbEnv::rep_set_limit(u_int32_t gbytes, u_int32_t bytes);

The DbEnv::rep_set_limit() method sets record transmission throttling. This is a byte-
count limit on the amount of data that will be transmitted from a site in response to a single
message processed by the DbEnv::rep_process_message() (page 526) method. The limit is not
a hard limit, and the record that exceeds the limit is the last record to be sent.

Record transmission throttling is turned on by default with a limit of 10MB.

If the values passed to the DbEnv::rep_set_limit() method are both zero, then the
transmission limit is turned off.

The database environment's replication subsystem may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "rep_set_limit", one or more whitespace characters, and the limit specified in two
parts: the gigabytes and the bytes values. For example, "rep_set_limit 0 1048576" sets a
1 megabyte limit. Because the DB_CONFIG file is read when the database environment is
opened, it will silently overrule configuration done before that time.

The DbEnv::rep_set_limit() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::rep_set_limit() method may be called at any time during the life of the
application.

The DbEnv::rep_set_limit() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

gbytes

The gbytes parameter specifies the number of gigabytes which, when added to the bytes
parameter, specifies the maximum number of bytes that will be sent in a single call to the
DbEnv::rep_process_message() (page 526) method.

bytes

The bytes parameter specifies the number of bytes which, when added to the gbytes
parameter, specifies the maximum number of bytes that will be sent in a single call to the
DbEnv::rep_process_message() (page 526) method.

Class

DbEnv

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 535

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 536

DbEnv::rep_set_nsites()
#include <db_cxx.h>

int
DbEnv::rep_set_nsites(u_int32_t nsites);

The DbEnv::rep_set_nsites() method specifies the total number of sites in a replication
group. This method should not be used by Replication Manager applications; the number of
sites in use by a Replication Manager application is determined dynamically.

The DbEnv::rep_set_nsites() method is typically called by Base API applications.
(However, see also the DbEnv::rep_elect() (page 516) method nsites parameter.)

The database environment's replication subsystem may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "rep_set_nsites", one or more whitespace characters, and the number of sites specified.
For example, "rep_set_nsites 5" sets the number of sites to 5. Because the DB_CONFIG file is
read when the database environment is opened, it will silently overrule configuration done
before that time.

The DbEnv::rep_set_nsites() method configures a database environment, not only
operations performed using the specified DbEnv handle.

If master leases are in use, the DbEnv::rep_set_nsites() method should not be
called after the DbEnv::rep_start() (page 547) method is called as this could cause
you to lose data previously thought to be durable. If master leases are not in use, the
DbEnv::rep_set_nsites() method may be called at any time during the life of the
application.

The DbEnv::rep_set_nsites() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

nsites

An integer specifying the total number of sites in the replication group.

Errors

The DbEnv::rep_set_nsites() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If master leases are in use and replication has already been started; or if an invalid flag value
or parameter was specified.

Class

DbEnv

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 537

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 538

DbEnv::rep_set_priority()
#include <db_cxx.h>

int
DbEnv::rep_set_priority(u_int32_t priority);

The DbEnv::rep_set_priority() method specifies the database environment's priority in
replication group elections. A special value of 0 indicates that this environment cannot be a
replication group master.

The database environment's replication subsystem may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "rep_set_priority", one or more whitespace characters, and the priority of this site. For
example, "rep_set_priority 1" sets the priority of this site to 1. Because the DB_CONFIG file
is read when the database environment is opened, it will silently overrule configuration done
before that time.

Note that if the application never explicitly sets a priority, then a default value of 100 is used.

The DbEnv::rep_set_priority() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::rep_set_priority() method may be called at any time during the life of the
application.

The DbEnv::rep_set_priority() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priority

The priority of this database environment in the replication group. The priority must be a non-
zero integer, or 0 if this environment cannot be a replication group master. (See Replication
environment priorities for more information).

Class

DbEnv

See Also

Replication and Related Methods (page 500)

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/rep_pri.html
../../programmer_reference/rep_pri.html

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 539

DbEnv::rep_set_request()
#include <db_cxx.h>

int
DbEnv::rep_set_request(u_int32_t min, u_int32_t max);

The DbEnv::rep_set_request() method sets a threshold for the minimum and maximum
time that a client waits before requesting retransmission of a missing message. Specifically, if
the client detects a gap in the sequence of incoming log records or database pages, Berkeley
DB will wait for at least min microseconds before requesting retransmission of the missing
record. Berkeley DB will double that amount before requesting the same missing record again,
and so on, up to a maximum threshold of max microseconds.

These values are thresholds only. Replication Manager applications use these values to
determine when to automatically request retransmission of missing messages. For Base API
applications, Berkeley DB has no thread available in the library as a timer, so the threshold is
only checked when a thread enters the Berkeley DB library to process an incoming replication
message. Any amount of time may have passed since the last message arrived and Berkeley
DB only checks whether the amount of time since a request was made is beyond the threshold
value or not.

By default the minimum is 40000 and the maximum is 1280000 (1.28 seconds). These defaults
are fairly arbitrary and the application likely needs to adjust these. The values should be
based on expected load and performance characteristics of the master and client host
platforms and transport infrastructure as well as round-trip message time.

The database environment's replication subsystem may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "rep_set_request", one or more whitespace characters, and the request times specified
in two parts: the min and the max. For example, "rep_set_request 40000 1280000". Because
the DB_CONFIG file is read when the database environment is opened, it will silently overrule
configuration done before that time.

The DbEnv::rep_set_request() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::rep_set_request() method may be called at any time during the life of the
application.

The DbEnv::rep_set_request() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

min

The minimum number of microseconds a client waits before requesting retransmission.

max

The maximum number of microseconds a client waits before requesting retransmission.

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 540

Errors

The DbEnv::rep_set_request() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 541

DbEnv::rep_set_timeout()
#include <db_cxx.h>

int
DbEnv::rep_set_timeout(int which, u_int32_t timeout);

The DbEnv::rep_set_timeout() method specifies a variety of replication timeout values.

The database environment's replication subsystem may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "rep_set_timeout", one or more whitespace characters, and the which parameter
specified as a string and the timeout specified as two parts. For example, "rep_set_timeout
DB_REP_CONNECTION_RETRY 15000000" specifies the connection retry timeout for 15 seconds.
Because the DB_CONFIG file is read when the database environment is opened, it will silently
overrule configuration done before that time.

The DbEnv::rep_set_timeout() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::rep_set_timeout() method may not be called to set the master lease timeout
after the DbEnv::repmgr_start() (page 571) method or the DbEnv::rep_start() (page 547)
method is called. For all other timeouts, the DbEnv::rep_set_timeout() method may be
called at any time during the life of the application.

The DbEnv::rep_set_timeout() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

timeout

The timeout parameter is the timeout value. It must be specified as an unsigned 32-bit
number of microseconds, limiting the maximum timeout to roughly 71 minutes.

which

The which parameter must be set to one of the following values:

• DB_REP_ACK_TIMEOUT

Configure the amount of time the Replication Manager's transport function waits to collect
enough acknowledgments from replication group clients, before giving up and returning a
failure indication. The default wait time is 1 second.

• DB_REP_CHECKPOINT_DELAY

Configure the amount of time a master site will delay between completing a checkpoint and
writing a checkpoint record into the log. This delay allows clients to complete their own
checkpoints before the master requires completion of them. The default is 30 seconds. If
all databases in the environment, and the environment's transaction log, are configured to

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 542

reside in memory (never preserved to disk), then, although checkpoints are still necessary,
the delay is not useful and should be set to 0.

• DB_REP_CONNECTION_RETRY

Configure the amount of time the Replication Manager will wait before trying to re-establish
a connection to another site after a communication failure. The default wait time is 30
seconds.

• DB_REP_ELECTION_TIMEOUT

The timeout period for an election. The default timeout is 2 seconds.

• DB_REP_ELECTION_RETRY

Configure the amount of time the Replication Manager will wait before retrying a failed
election. The default wait time is 10 seconds.

• DB_REP_FULL_ELECTION_TIMEOUT

An optional configuration timeout period to wait for full election participation the first time
the replication group finds a master. By default this option is turned off and normal election
timeouts are used. (See the Elections section in the Berkeley DB Programmer's Reference
Guide for more information.)

• DB_REP_HEARTBEAT_MONITOR

The amount of time the Replication Manager, running at a client site, waits for some
message activity on the connection from the master (heartbeats or other messages) before
concluding that the connection has been lost. This timeout should be of longer duration
than the DB_REP_HEARTBEAT_SEND timeout to ensure that heartbeats are not missed. When
0 (the default), no monitoring is performed.

• DB_REP_HEARTBEAT_SEND

The frequency at which the Replication Manager, running at a master site, broadcasts
a heartbeat message in an otherwise idle system. When 0 (the default), no heartbeat
messages will be sent.

• DB_REP_LEASE_TIMEOUT

Configure the amount of time a client grants its master lease to a master. When using
master leases all sites in a replication group must use the same lease timeout value.
There is no default value. If leases are desired, this method must be called prior to calling
DbEnv::rep_start() (page 547) method. See also DbEnv::rep_set_clockskew() (page 529)
method, DbEnv::rep_set_config() (page 531) method or Master leases.

Errors

The DbEnv::rep_set_timeout() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

../../programmer_reference/rep_elect.html
../../programmer_reference/rep_lease.html

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 543

EINVAL

If setting the lease timeout and replication has already been started; if setting a Replication
Manager timeout for a Base API application; or if an invalid flag value or parameter was
specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 544

DbEnv::rep_set_transport()
#include <db_cxx.h>

int
DbEnv::rep_set_transport(int envid,
 int (*send)(DB_ENV *dbenv,
 const Dbt *control, const Dbt *rec, const DbLsn *lsnp,
 int envid, u_int32_t flags));

The DbEnv::rep_set_transport() method initializes the communication infrastructure for a
database environment participating in a replicated application.

The DbEnv::rep_set_transport() method is not called by most replication applications.
It should only be called by Base API applications implementing their own network transport
layer, explicitly holding replication group elections and handling replication messages outside
of the Replication Manager framework.

The DbEnv::rep_set_transport() method configures operations performed using
the specified DbEnv handle, not all operations performed on the underlying database
environment.

The DbEnv::rep_set_transport() method may be called at any time during the life of the
application.

The DbEnv::rep_set_transport() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Note

Berkeley DB is not re-entrant. The callback function for this method should not
attempt to make library calls (for example, to release locks or close open handles).
Re-entering Berkeley DB is not guaranteed to work correctly, and the results are
undefined.

Parameters

envid

The envid parameter is the local environment's ID. It must be a non-negative integer and
uniquely identify this Berkeley DB database environment (see Replication environment IDs for
more information).

send

The send callback function is used to transmit data using the replication application's
communication infrastructure. The parameters to send are as follows:

• dbenv

The dbenv parameter is the enclosing database environment handle.

../../programmer_reference/rep_id.html

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 545

• control

The control parameter is the first of the two data elements to be transmitted by the send
function.

• rec

The rec parameter is the second of the two data elements to be transmitted by the send
function.

• lsnp

If the type of message to be sent has an LSN associated with it, then the lsnp parameter
contains the LSN of the record being sent. This LSN can be used to determine that certain
records have been processed successfully by clients.

• envid

The envid parameter is a positive integer identifier that specifies the replication
environment to which the message should be sent (see Replication environment IDs for more
information).

The special identifier DB_EID_BROADCAST indicates that a message should be broadcast
to every environment in the replication group. The application may use a true broadcast
protocol or may send the message in sequence to each machine with which it is in
communication. In both cases, the sending site should not be asked to process the message.

The special identifier DB_EID_INVALID indicates an invalid environment ID. This may be used
to initialize values that are subsequently checked for validity.

• flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more
of the following values:

• DB_REP_ANYWHERE

The message is a client request that can be satisfied by another client as well as by the
master.

• DB_REP_NOBUFFER

The record being sent should be transmitted immediately and not buffered or delayed.

• DB_REP_PERMANENT

The record being sent is critical for maintaining database integrity (for example, the
message includes a transaction commit). The application should take appropriate action
to enforce the reliability guarantees it has chosen, such as waiting for acknowledgement
from one or more clients.

• DB_REP_REREQUEST

../../programmer_reference/rep_id.html
../../programmer_reference/rep_id.html#rep_id.DB_EID_INVALID

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 546

The message is a client request that has already been made and to which no response was
received.

It may sometimes be useful to pass application-specific data to the send function; see
Environment FAQ for a discussion on how to do this.

The send function must return 0 on success and non-zero on failure. If the send function fails,
the message being sent is necessary to maintain database integrity, and the local log is not
configured for synchronous flushing, the local log will be flushed; otherwise, any error from
the send function will be ignored.

Errors

The DbEnv::rep_set_transport() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

The method is called from a Replication Manager application; or an invalid flag value or
parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

../../programmer_reference/env_faq.html

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 547

DbEnv::rep_start()
#include <db_cxx.h>

int
DbEnv::rep_start(Dbt *cdata, u_int32_t flags);

The DbEnv::rep_start() method configures the database environment as a client or master
in a group of replicated database environments.

The DbEnv::rep_start() method is not called by most replication applications. It should
only be called by Base API applications implementing their own network transport layer,
explicitly holding replication group elections and handling replication messages outside of the
Replication Manager framework.

Replication master environments are the only database environments where replicated
databases may be modified. Replication client environments are read-only as long as they
are clients. Replication client environments may be upgraded to be replication master
environments in the case that the current master fails or there is no master present. If master
leases are in use, this method cannot be used to appoint a master, and should only be used to
configure a database environment as a master as the result of an election.

The enclosing database environment must already have been opened by calling the
DbEnv::open() (page 252) method and must already have been configured to send replication
messages by calling the DbEnv::rep_set_transport() (page 544) method.

The DbEnv::rep_start() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

cdata

The cdata parameter is an opaque data item that is sent over the communication
infrastructure when the client comes online (see Connecting to a new site for more
information). If no such information is useful, cdata should be NULL.

flags

The flags parameter must be set to one of the following values:

• DB_REP_CLIENT

Configure the environment as a replication client.

• DB_REP_MASTER

Configure the environment as a replication master.

Errors

The DbEnv::rep_start() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

../../programmer_reference/rep_newsite.html

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 548

DB_REP_UNAVAIL

If the flags parameter was passed as DB_REP_MASTER but the database environment
cannot currently become the replication master because it is temporarily initializing and is
incomplete.

EINVAL

If the database environment was not already configured to communicate with a replication
group by a call to DbEnv::rep_set_transport() (page 544); the database environment was not
already opened; this method is called from a Replication Manager application; outstanding
master leases are granted; this method is used to appoint a new master when master leases
are in use; or if an invalid flag value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 549

DbEnv::rep_stat()
#include <db_cxx.h>

int
DbEnv::rep_stat(DB_REP_STAT **statp, u_int32_t flags);

The DbEnv::rep_stat() method returns the replication subsystem statistics.

The DbEnv::rep_stat() method creates a statistical structure of type DB_REP_STAT and
copies a pointer to it into a user-specified memory location.

Statistical structures are stored in allocated memory. If application-specific allocation routines
have been declared (see DbEnv::set_alloc() (page 260) for more information), they are used
to allocate the memory; otherwise, the standard C library malloc(3) is used. The caller
is responsible for deallocating the memory. To deallocate the memory, free the memory
reference; references inside the returned memory need not be individually freed.

The following DB_REP_STAT fields will be filled in:

• uintmax_t st_bulk_fills;

The number of times the bulk buffer filled up, forcing the buffer content to be sent.

• uintmax_t st_bulk_overflows;

The number of times a record was bigger than the entire bulk buffer, and therefore had to
be sent as a singleton.

• uintmax_t st_bulk_records;

The number of records added to a bulk buffer.

• uintmax_t st_bulk_transfers;

The number of bulk buffers transferred (via a call to the application's send function).

• uintmax_t st_client_rerequests;

The number of times this client site received a "re-request" message, indicating that a
request it previously sent to another client could not be serviced by that client. (Compare
to st_client_svc_miss.)

• uintmax_t st_client_svc_miss;

The number of "request" type messages received by this client that could not be processed,
forcing the originating requester to try sending the request to the master (or another
client).

• uintmax_t st_client_svc_req;

The number of "request" type messages received by this client. ("Request" messages are
usually sent from a client to the master, but a message marked with the DB_REP_ANYWHERE

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 550

flag in the invocation of the application's send function may be sent to another client
instead.)

• u_int32_t st_dupmasters;

The number of duplicate master conditions originally detected at this site.

• u_int32_t st_egen;

The election generation number for the current or next election.

• int st_election_cur_winner;

The environment ID of the winner of the current or last election.

• u_int32_t st_election_datagen;

The master data generation number of the winner of the current or last election.

• u_int32_t st_election_gen;

The master generation number of the winner of the current or last election.

• DB_LSN st_election_lsn;

The maximum LSN of the winner of the current or last election.

• u_int32_t st_election_nsites;

The number of sites responding to this site during the current election.

• u_int32_t st_election_nvotes;

The number of votes required in the current or last election.

• u_int32_t st_election_priority;

The priority of the winner of the current or last election.

• u_int32_t st_election_sec;

The number of seconds the last election took (the total election time is st_election_sec
plus st_election_usec).

• int st_election_status;

The current election phase (0 if no election is in progress).

• u_int32_t st_election_tiebreaker;

The tiebreaker value of the winner of the current or last election.

• u_int32_t st_election_usec;

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 551

The number of microseconds the last election took (the total election time is
st_election_sec plus st_election_usec).

• u_int32_t st_election_votes;

The number of votes received during the current election.

• uintmax_t st_elections;

The number of elections held.

• uintmax_t st_elections_won;

The number of elections won.

• int st_env_id;

The current environment ID.

• u_int32_t st_env_priority;

The current environment priority.

• u_int32_t st_gen;

The current master generation number.

• uintmax_t st_lease_chk;

The number of lease validity checks.

• uintmax_t st_lease_chk_misses;

The number of invalid lease validity checks.

• uintmax_t st_lease_chk_refresh;

The number of lease refresh attempts during lease validity checks.

• uintmax_t st_lease_sends;

The number of live messages sent while using leases.

• uintmax_t st_log_duplicated;

The number of duplicate log records received.

• uintmax_t st_log_queued;

The number of log records currently queued.

• uintmax_t st_log_queued_max;

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 552

The maximum number of log records ever queued at once.

• uintmax_t st_log_queued_total;

The total number of log records queued.

• uintmax_t st_log_records;

The number of log records received and appended to the log.

• uintmax_t st_log_requested;

The number of times log records were missed and requested.

• int st_master;

The current master environment ID.

• uintmax_t st_master_changes;

The number of times the master has changed.

• u_int32_t st_max_lease_sec;

The number of seconds of the longest lease (the total lease time is st_max_lease_sec plus
st_max_lease_usec).

• u_int32_t st_max_lease_usec;

The number of microseconds of the longest lease (the total lease time is st_max_lease_sec
plus st_max_lease_usec).

• DB_LSN st_max_perm_lsn;

The LSN of the maximum permanent log record, or 0 if there are no permanent log records.

• uintmax_t st_msgs_badgen;

The number of messages received with a bad generation number.

• uintmax_t st_msgs_processed;

The number of messages received and processed.

• uintmax_t st_msgs_recover;

The number of messages ignored due to pending recovery.

• uintmax_t st_msgs_send_failures;

The number of failed message sends.

• uintmax_t st_msgs_sent;

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 553

The number of messages sent.

• uintmax_t st_newsites;

The number of new site messages received.

• DB_LSN st_next_lsn;

In replication environments configured as masters, the next LSN to be used. In replication
environments configured as clients, the next LSN expected.

• u_int32_t st_next_pg;

The next page number we expect to receive.

• u_int32_t st_nsites;

The number of sites used in the last election.

• uintmax_t st_nthrottles;

Transmission limited. This indicates the number of times that data transmission
was stopped to limit the amount of data sent in response to a single call to
DbEnv::rep_process_message() (page 526).

• uintmax_t st_outdated;

The number of outdated conditions detected.

• uintmax_t st_pg_duplicated;

The number of duplicate pages received.

• uintmax_t st_pg_records;

The number of pages received and stored.

• uintmax_t st_pg_requested;

The number of pages missed and requested from the master.

• uintmax_t st_startsync_delayed;

The number of times the client had to delay the start of a cache flush operation (initiated
by the master for an impending checkpoint) because it was missing some previous log
record(s).

• u_int32_t st_startup_complete;

The client site has completed its startup procedures and is now handling live records from
the master.

• u_int32_t st_status;

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 554

The current replication mode. Set to DB_REP_MASTER if the environment is a replication
master, DB_REP_CLIENT if the environment is a replication client, or 0 if replication is not
configured.

• uintmax_t st_txns_applied;

The number of transactions applied.

• DB_LSN st_waiting_lsn;

The LSN of the first log record we have after missing log records being waited for, or 0 if no
log records are currently missing.

• u_int32_t st_waiting_pg;

The page number of the first page we have after missing pages being waited for, or 0 if no
pages are currently missing.

The DbEnv::rep_stat() method may not be called before the DbEnv::open() (page 252)
method is called.

The DbEnv::rep_stat() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

statp

The statp parameter references memory into which a pointer to the allocated statistics
structure is copied.

flags

The flags parameter must be set to 0 or the following value:

• DB_STAT_CLEAR

Reset statistics after returning their values.

Errors

The DbEnv::rep_stat() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the database environment was not already opened; or if an invalid flag value or parameter
was specified.

Class

DbEnv

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 555

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 556

DbEnv::rep_stat_print()
#include <db_cxx.h>

int
DbEnv::rep_stat_print(u_int32_t flags);

The DbEnv::rep_stat_print() method displays the replication subsystem statistical
information, as described for the DbEnv::rep_stat() method. The information
is printed to a specified output channel (see the DbEnv::set_msgfile() (page 301)
method for more information), or passed to an application callback function (see the
DbEnv::set_msgcall() (page 299) method for more information).

The DbEnv::rep_stat_print() method may not be called before the DbEnv::open() (page
252) method is called.

The DbEnv::rep_stat_print() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_STAT_ALL

Display all available information.

• DB_STAT_CLEAR

Reset statistics after displaying their values.

Errors

The DbEnv::rep_stat_print() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called before DbEnv::open() (page 252) was called; or if an invalid flag
value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 557

DbEnv::rep_sync()
#include <db_cxx.h>

int
DbEnv::rep_sync(u_int32_t flags);

The DbEnv::rep_sync() method forces master synchronization to begin for this client.
This method is the other half of setting the DB_REP_CONF_DELAYCLIENT flag via the
DbEnv::rep_set_config() (page 531) method.

If an application has configured delayed master synchronization, the application must
synchronize explicitly (otherwise the client will remain out-of-date and will ignore all
database changes forwarded from the replication group master). The DbEnv::rep_sync()
method may be called any time after the client application learns that the new master has
been established (by receiving a DB_EVENT_REP_NEWMASTER event notification).

Before calling this method, the enclosing database environment must already have been
opened by calling the DbEnv::open() (page 252) method and must already have been
configured to send replication messages by calling the DbEnv::rep_set_transport() (page 544)
method.

The DbEnv::rep_sync() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DbEnv::rep_sync() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the database environment was not already configured to communicate with a replication
group by a call to DbEnv::rep_set_transport() (page 544); the database environment was not
already opened; or if an invalid flag value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 558

DbEnv::repmgr_channel()
#include <db_cxx.h>

int
DbEnv::repmgr_channel(int eid, DB_CHANNEL **channelp, u_int32_t flags);

The DbEnv::repmgr_channel() method returns a DbChannel handle. This is used to create
and manage custom message traffic between the sites in the replication group.

This method allocates memory for the handle, returning a pointer to the structure in the
memory to which channelp refers. To release the allocated memory and discard the handle,
call the DbChannel::close() (page 503) method.

The DbEnv::repmgr_channel() method may be called at any time after
DbEnv::repmgr_start() (page 571) has been called with a 0 return code.

The DbEnv::repmgr_channel() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

eid

This parameter must be set to one of the following:

• The numerical env ID of a remote site in the replication group.

• DB_EID_MASTER

Messages sent on this channel are sent only to the master site. Note that messages are
always sent to the current master, even if the master has changed since the channel was
opened. If the current master is disconnected or unknown, the operation fails and repmgr
returns an error code.

If the local site is the master, then sending messages on this channel will result in the local
site receiving those messages echoed back to itself.

channelp

References memory into which a pointer to the allocated handle is copied.

flags

This parameter is currently unused, and must be set to 0.

Errors

The DbEnv::repmgr_channel() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 559

EINVAL

If this method is called from a Base API application; or if an invalid flag value or parameter
was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 560

DbEnv::repmgr_local_site()
#include <db_cxx.h>

int
DbEnv::repmgr_local_site(DB_SITE **sitep);

The DbEnv::repmgr_local_site() method returns a DbSite handle that defines the
local site's host/port network address. You use the DbSite handle to configure and manage
replication sites.

This method allocates memory for the handle, returning a pointer to the structure in the
memory to which sitep refers. To release the allocated memory and discard the handle, call
the DbSite::close() (page 509) method.

The DbEnv::repmgr_local_site() method may be called at any time after the environment
handle has been created.

The DbEnv::repmgr_local_site() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

sitep

References memory into which a pointer to the allocated handle is copied.

Errors

The DbEnv::repmgr_local_site() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If this method is called from a Base API application, or if an invalid flag value or parameter
was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 561

DbEnv::repmgr_get_ack_policy()
#include <db_cxx.h>

int
DbEnv::repmgr_get_ack_policy(int *ack_policyp);

The DbEnv::repmgr_get_ack_policy() method returns the Replication Manager's client
acknowledgment policy. This is configured using the DbEnv::repmgr_set_ack_policy() (page
564) method.

The DbEnv::repmgr_get_ack_policy() method may be called at any time during the life of
the application.

The DbEnv::repmgr_get_ack_policy() method either returns a non-zero error value or
throws an exception that encapsulates a non-zero error value on failure, and returns 0 on
success.

Parameters

ack_policyp

The ack_policyp parameter references memory into which the Replication Manager's client
acknowledgement policy is copied.

Class

DbEnv

See Also

Replication and Related Methods (page 500), DbEnv::repmgr_set_ack_policy() (page 564)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 562

DbEnv::repmgr_msg_dispatch()
#include <db_cxx.h>

int
DbEnv::repmgr_msg_dispatch(
 void (*msg_dispatch_fcn) (DbEnv *env, DbChannel *channel,
 Dbt *request, u_int32_t nrequest,
 u_int32_t cb_flags),
 u_int32_t flags);

Sets the message dispatch function. This function is responsible for receiving messages
sent from remote sites using either the DbChannel::send_msg() (page 504) or
DbChannel::send_request() (page 506) methods. If the message received by this function was
sent using the DbChannel::send_msg() (page 504) method then no response is required. If the
message was sent using the DbChannel::send_request() (page 506) method, then this function
must send a response using the DbChannel::send_msg() (page 504) method.

For best results, the DbEnv::repmgr_msg_dispatch() method should be called before the
Replication Manager has been started.

The DbEnv::repmgr_msg_dispatch() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

msg_dispatch_fcn

This parameter is the application-specific function used to handle messages sent over
Replication Manager message channels. It takes four parameters:

• channel

Provides the DbChannel to be used to send a response back to the originator of the message.
If the message was sent by the remote site using DbChannel::send_request() (page 506) then
this function should send a response back to the originator using the channel provided on
this parameter. The message should be sent by calling DbChannel::send_msg() (page 504)
exactly once.

This channel is valid only during the current invocation of the dispatch function; it is
destroyed when the dispatch function returns. The application may not save a copy of
the pointer and use it later elsewhere. Methods that do not make sense in the context
of a message dispatch function (such as DbChannel::send_request() (page 506) and
DbChannel::close() (page 503)) will be rejected with EINVAL.

• request

Array of Dbts containing the message received from the remote site.

• nrequest

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 563

Specifies the number of elements in the request array.

• cb_flags

This flag is DB_REPMGR_NEED_RESPONSE if the message requires a response. Otherwise, it is
0.

This function does not return a value. If the function encounters an error, you can reflect the
error back to the originator of the message by formatting an error message of your own design
into the response.

flags

This parameter is currently unused, and must be set to 0.

Errors

The DbEnv::repmgr_msg_dispatch() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If this method is called from a Base API application, or if an invalid flag value or parameter
was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 564

DbEnv::repmgr_set_ack_policy()
#include <db_cxx.h>

int
DbEnv::repmgr_set_ack_policy(int ack_policy);

The DbEnv::repmgr_set_ack_policy() method specifies how master and client sites will
handle acknowledgment of replication messages which are necessary for "permanent" records.
The current implementation requires all sites in a replication group configure the same
acknowledgement policy.

The database environment's replication subsystem may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "repmgr_set_ack_policy", one or more whitespace characters, and the ack_policy
parameter specified as a string. For example, "repmgr_set_ack_policy DB_REPMGR_ACKS_ALL".
Because the DB_CONFIG file is read when the database environment is opened, it will silently
overrule configuration done before that time.

Waiting for client acknowledgements is always limited by the DB_REP_ACK_TIMEOUT specified
by the DbEnv::rep_set_timeout() (page 541) method. If an insufficient number of client
acknowledgements have been received, then the master will invoke the event callback
function, if set, with the DB_EVENT_REP_PERM_FAILED value. (See the Choosing a Replication
Manager Ack Policy section in the Berkeley DB Programmer's Reference Guide for more
information.)

The DbEnv::repmgr_set_ack_policy() method configures a database environment, not only
operations performed using the specified DbEnv handle.

The DbEnv::repmgr_set_ack_policy() method may be called at any time during the life of
the application.

The DbEnv::repmgr_set_ack_policy() method either returns a non-zero error value or
throws an exception that encapsulates a non-zero error value on failure, and returns 0 on
success.

Parameters

ack_policy

Some acknowledgement policies use the concept of an electable peer, which is a client
capable of being subsequently elected master of the replication group. The ack_policy
parameter must be set to one of the following values:

• DB_REPMGR_ACKS_ALL

The master should wait until all replication clients have acknowledged each permanent
replication message.

• DB_REPMGR_ACKS_ALL_AVAILABLE

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/rep_mgr_ack.html
../../programmer_reference/rep_mgr_ack.html

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 565

The master should wait until all currently connected replication clients have
acknowledged each permanent replication message. This policy will then invoke the
DB_EVENT_REP_PERM_FAILED event if fewer than a quorum of clients acknowledged during
that time.

• DB_REPMGR_ACKS_ALL_PEERS

The master should wait until all electable peers have acknowledged each permanent
replication message.

• DB_REPMGR_ACKS_NONE

The master should not wait for any client replication message acknowledgments.

• DB_REPMGR_ACKS_ONE

The master should wait until at least one client site has acknowledged each permanent
replication message.

• DB_REPMGR_ACKS_ONE_PEER

The master should wait until at least one electable peer has acknowledged each permanent
replication message.

• DB_REPMGR_ACKS_QUORUM

The master should wait until it has received acknowledgements from the minimum number
of electable peers sufficient to ensure that the effect of the permanent record remains
durable if an election is held. This is the default acknowledgement policy.

Errors

The DbEnv::repmgr_set_ack_policy() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If this method is called from a base replication API application; or if an invalid flag value or
parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 566

DbEnv::repmgr_site()
#include <db_cxx.h>

int
DbEnv::repmgr_site(const char * host, u_int16_t port,
 DB_SITE **sitep, u_int32_t flags);

The DbEnv::repmgr_site() method returns a DbSite handle that defines a site's host/port
network address. You use the DbSite handle to configure and manage replication sites.

This method allocates memory for the handle, returning a pointer to the structure in the
memory to which sitep refers. To release the allocated memory and discard the handle, call
the DbSite::close() (page 509) method.

The DbEnv::repmgr_site() method may be called at any time after the environment handle
has been created.

The DbEnv::repmgr_site() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

host

The site's host identification string, generally a TCP/IP host name.

port

The port number on which the site is listening.

sitep

References memory into which a pointer to the allocated handle is copied.

flags

This parameter is currently unused, and must be set to 0.

Errors

The DbEnv::repmgr_site() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If this method is called from a Base API application, or if an invalid flag value or parameter
was specified.

Class

DbEnv

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 567

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 568

DbEnv::repmgr_site_by_eid()
#include <db_cxx.h>

int
DbEnv::repmgr_site_by_eid(int eid, DB_SITE **sitep

The DbEnv::repmgr_site_by_eid() method returns a DbSite handle based on the site's
Environment ID value. You use the DbSite handle to configure and manage replication sites.

This method allocates memory for the handle, returning a pointer to the structure in the
memory to which sitep refers. To release the allocated memory and discard the handle, call
the DbSite::close() (page 509) method.

The DbEnv::repmgr_site_by_eid() method may be called at any time after environment
open time.

The DbEnv::repmgr_site_by_eid() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

eid

The Environment ID of the site for which you want to create the DbSite handle. You can obtain
a site's EID by using the DbSite::get_eid() (page 512) method.

sitep

References memory into which a pointer to the allocated handle is copied.

Errors

The DbEnv::repmgr_site() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If this method is called from a Base API application, or if an invalid flag value or parameter
was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 569

DbEnv::repmgr_site_list()
#include <db_cxx.h>

int
DbEnv::repmgr_site_list(u_int *countp, DB_REPMGR_SITE **listp);

The DbEnv::repmgr_site_list() method returns the status of the sites currently known by
the Replication Manager.

The DbEnv::repmgr_site_list() method creates a statistical structure of type
DB_REPMGR_SITE and copies a pointer to it into a user-specified memory location.

Statistical structures are stored in allocated memory. If application-specific allocation routines
have been declared (see DbEnv::set_alloc() (page 260) for more information), they are used
to allocate the memory; otherwise, the standard C library malloc(3) is used. The caller
is responsible for deallocating the memory. To deallocate the memory, free the memory
reference; references inside the returned memory need not be individually freed.

The following DB_REPMGR_SITE fields will be filled in:

• int eid;

Environment ID assigned by the Replication Manager. This is the same value that is passed to
the application's event notification function for the DB_EVENT_REP_NEWMASTER event.

• char host[];

Null-terminated host name.

• u_int port;

TCP/IP port number.

• u_int32_t status;

Zero (if unknown), or one of the following constants: DB_REPMGR_CONNECTED,
DB_REPMGR_DISCONNECTED.

• u_int32_t flags;

Zero or a bitwise inclusive OR of the DB_REPMGR_ISPEER constant. The DB_REPMGR_ISPEER
value means that the site is a possible client-to-client peer.

The DbEnv::repmgr_site_list() method may be called only after the
DbEnv::repmgr_start() (page 571) method has been called with a 0 return code.

The DbEnv::repmgr_site_list() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 570

Parameters

countp

A count of the returned structures will be stored into the memory referenced by countp.

listp

A reference to an array of structures will be stored into the memory referenced by listp.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 571

DbEnv::repmgr_start()
#include <db_cxx.h>

int
DbEnv::repmgr_start(int nthreads, u_int32_t flags);

The DbEnv::repmgr_start() method starts the Replication Manager.

There are two ways to build Berkeley DB replication applications: the most common approach
is to use the Berkeley DB library Replication Manager, where the Berkeley DB library manages
the replication group, including network transport, all replication message processing and
acknowledgment, and group elections. Applications using the Replication Manager generally
make the following calls:

1. Use DbEnv::repmgr_site() (page 566) to obtain a DbSite handle, then use that handle to
configure the sites in your replication group.

a. Use DbSite::set_config() (page 514) to configure sites in your replication group.

b. Use DbSite::remove() (page 513) to remove a site from the replication group.

2. Call DbEnv::repmgr_set_ack_policy() (page 564) to configure the message
acknowledgment policy which best supports the replication group's transactional needs.

3. Call DbEnv::rep_set_priority() (page 538) to configure the local site's election priority.

4. Call DbEnv::repmgr_start() to start the replication application.

For more information on building Replication Manager applications, please see the Replication
Getting Started Guide included in the Berkeley DB documentation.

Applications with special needs (for example, applications using network protocols not
supported by the Berkeley DB Replication Manager), must perform additional configuration
and call other Berkeley DB replication Base API methods. For more information on
building Base API applications, please see the Base API Methods section in the Berkeley DB
Programmer's Reference Guide.

Starting the Replication Manager consists of opening the TCP/IP listening socket to accept
incoming connections, and starting all necessary background threads. When multiple
processes share a database environment, only one process can open the listening socket; the
DbEnv::repmgr_start() method automatically opens the socket in the first process to call
it, and skips this step in the later calls from other processes.

The DbEnv::repmgr_start() method may not be called before the DbEnv::open() (page 252)
method is called to open. In addition, this method may not be called before your replication
sites have been configured using the DbSite class. In addition, the local environment must be
opened with the DB_THREAD flag set.

The DbEnv::repmgr_start() method will return DB_REP_IGNORE as an informational, non-
error return code, if another process has previously become the TCP/IP listener (though the

../../programmer_reference/rep_base_meth.html

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 572

current call has nevertheless successfully started Replication Manager's background threads).
Unless otherwise specified, the DbEnv::repmgr_start() method either returns a non-zero
error value or throws an exception that encapsulates a non-zero error value on failure, and
returns 0 on success.

Parameters

nthreads

Specify the number of threads of control created and dedicated to processing replication
messages. In addition to these message processing threads, the Replication Manager creates
and manages a few of its own threads of control.

flags

The flags parameter must be set to one of the following values:

• DB_REP_MASTER

Start as a master site, and do not call for an election. Note there must never be more than
a single master in any replication group, and only one site at a time should ever be started
with the DB_REP_MASTER flag specified.

• DB_REP_CLIENT

Start as a client site, and do not call for an election.

• DB_REP_ELECTION

Start as a client, and call for an election if no master is found.

Errors

The DbEnv::repmgr_start() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the database environment was not already opened or was opened without the DB_THREAD
flag set; a local site has not already been configured, this method is called from a Base API
application; or if an invalid flag value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 573

DbEnv::repmgr_stat()
#include <db_cxx.h>

int
DbEnv::repmgr_stat(DB_REPMGR_STAT **statp, u_int32_t flags);

The DbEnv::repmgr_stat() method returns the Replication Manager statistics.

The DbEnv::repmgr_stat() method creates a statistical structure of type DB_REPMGR_STAT
and copies a pointer to it into a user-specified memory location.

Statistical structures are stored in allocated memory. If application-specific allocation routines
have been declared (see DbEnv::set_alloc() (page 260) for more information), they are used
to allocate the memory; otherwise, the standard C library malloc(3) is used. The caller
is responsible for deallocating the memory. To deallocate the memory, free the memory
reference; references inside the returned memory need not be individually freed.

The following DB_REPMGR_STAT fields will be filled in:

• uintmax_t st_connect_fail;

The number of times an attempt to open a new TCP/IP connection failed.

• uintmax_t st_connection_drop;

The number of times an existing TCP/IP connection failed.

• uintmax_t st_msgs_dropped;

The number of outgoing messages that were completely dropped, because the outgoing
message queue was full. (Berkeley DB replication is tolerant of dropped messages, and will
automatically request retransmission of any missing messages as needed.)

• uintmax_t st_msgs_queued;

The number of outgoing messages which could not be transmitted immediately, due to a full
network buffer, and had to be queued for later delivery.

• uintmax_t st_perm_failed;

The number of times a message critical for maintaining database integrity (for example, a
transaction commit), originating at this site, did not receive sufficient acknowledgement
from clients, according to the configured acknowledgement policy and acknowledgement
timeout.

• uintmax_t st_elect_threads;

The number of currently active election threads.

• uintmax_t st_max_elect_threads;

The number of election threads for which space is reserved.

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 574

The DbEnv::repmgr_stat() method may not be called before the DbEnv::open() (page 252)
method is called.

The DbEnv::repmgr_stat() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

statp

The statp parameter references memory into which a pointer to the allocated statistics
structure is copied.

flags

The flags parameter must be set to 0 or the following value:

• DB_STAT_CLEAR

Reset statistics after returning their values.

Errors

The DbEnv::repmgr_stat() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called before DbEnv::open() (page 252) was called; or if an invalid flag
value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 575

DbEnv::repmgr_stat_print()
#include <db_cxx.h>

int
DbEnv::repmgr_stat_print(u_int32_t flags);

The DbEnv::repmgr_stat_print() method displays the Replication Manager statistical
information, as described for the DbEnv::repmgr_stat() method. The information
is printed to a specified output channel (see the DbEnv::set_msgfile() (page 301)
method for more information), or passed to an application callback function (see the
DbEnv::set_msgcall() (page 299) method for more information).

The DbEnv::repmgr_stat_print() method may not be called before the
DbEnv::open() (page 252) method is called.

The DbEnv::repmgr_stat_print() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_STAT_ALL

Display all available information.

• DB_STAT_CLEAR

Reset statistics after displaying their values.

Errors

The DbEnv::repmgr_stat_print() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called before DbEnv::open() (page 252) was called; or if an invalid flag
value or parameter was specified.

Class

DbEnv

See Also

Replication and Related Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 576

DbEnv::txn_applied()
#include <db_cxx.h>

int
DB_ENV->txn_applied(DB_ENV *env, DB_TXN_TOKEN *token,
 db_timeout_t timeout, u_int32_t flags);

The DbEnv::txn_applied() method checks to see if a specified transaction has been
replicated from the master of a replication group. It may be called by applications using
either the Base API or the Replication Manager.

If the transaction has not yet arrived, this method will block for the amount of time
specified on the timeout parameter while it waits for the result to be determined. For more
information, please refer to the Read your writes consistency section in the Berkeley DB
Programmer's Reference Guide.

The DbEnv::txn_applied() method may not be called before the DbEnv::open() (page 252)
method.

The DbEnv::txn_applied() method returns a non-zero error on failure and 0 to indicate
that the specified transaction has been applied at the local site. It may also return one of the
following non-zero return codes:

• DB_TIMEOUT

Returned if the specified transaction has not yet arrived at the calling site, but can be
expected to arrive soon. If a non-zero timeout parameter is given, the this method always
waits for the specified amount of time before returning DB_TIMEOUT.

• DB_NOTFOUND

Returned if the transaction is expected to never arrive. This occurs if the transaction has
not been applied at the local site because the transaction has been rolled back due to a
master takeover.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

token

A pointer to a buffer containing a copy of a commit token previously generated at
the replication group's master environment. Commit tokens are created using the
DbTxn::set_commit_token() (page 578) method.

timeout

Specifies the maximum time to wait for the transaction to arrive by replication, expressed in
microseconds. To check the status of the transaction without waiting, provide a timeout value
of 0.

../../programmer_reference/rep_ryw.html

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 577

Errors

The DbEnv::txn_applied() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

DB_KEYEMPTY

The specified token was generated by a transaction that did not modify the database
environment (for example, a read-only transaction).

DbDeadlockException or DB_LOCK_DEADLOCK

While waiting for the result to be determined, the API became locked out due to replication
role change and/or master/client synchronization. The application should abort in-flight
transactions, pause briefly, and then retry.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

EINVAL

If the specified token was generated from a non-replicated database environment.

Class

DbEnv

See Also

Transaction Subsystem and Related Methods (page 603), Replication and Related
Methods (page 500)

Library Version 11.2.5.2 Replication Methods

6/10/2011 DB C++ API Page 578

DbTxn::set_commit_token()
#include <db_cxx.h>

int
DbTxn::set_commit_token(DB_TXN_TOKEN *buffer);

The DbTxn::set_commit_token() method configures the transaction for commit token
generation, and accepts the address of an application-supplied buffer to receive the token.
The actual generation of the token contents does not occur until commit time.

Commit tokens are used to enable some consistency guarantees for replicated applications.
Please see the Read your writes consistency section in the Berkeley DB Programmer's
Reference Guide for more information.

The DbTxn::set_commit_token() method may be called at any time after the
DbEnv::txn_begin() (page 613) method has been called, and before DbTxn::commit() (page
625) has been called.

The DbTxn::set_commit_token() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

buffer

The address of an application-supplied buffer. The buffer memory must remain available, and
will be filled in later by Berkeley DB, at the time of the commit() call.

Errors

The DbTxn::set_commit_token() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the transaction is a nested transaction; if this method is called on a replication client; if the
database environment is not configured for logging.

Class

DbTxn

See Also

Transaction Subsystem and Related Methods (page 603), Replication and Related
Methods (page 500)

../../programmer_reference/rep_ryw.html

6/10/2011 DB C++ API Page 579

Chapter 12. The DbSequence Handle
Sequences provide an arbitrary number of persistent objects that return an increasing or
decreasing sequence of integers. Opening a sequence handle associates it with a record in a
database. The handle can maintain a cache of values from the database so that a database
update is not needed as the application allocates a value.

A sequence is stored as a record pair in a database. The database may be of any type, but
must not have been configured to support duplicate data items. The sequence is referenced
by the key used when the sequence is created, therefore the key must be compatible with the
underlying access method. If the database stores fixed-length records, the record size must be
at least 64 bytes long.

You create a sequence using the DbSequence (page 581) method.

For more information on sequences, see the Berkeley DB Programmer's Reference Guide
guide.

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 580

Sequences and Related Methods

Sequences and Related Methods Description

DbSequence Create a sequence handle

DbSequence::close() Close a sequence

DbSequence::get() Get the next sequence element(s)

DbSequence::get_dbp() Return a handle for the underlying sequence
database

DbSequence::get_key() Return the key for a sequence

DbSequence::initial_value() Set the initial value of a sequence

DbSequence::open() Open a sequence

DbSequence::remove() Remove a sequence

DbSequence::stat() Return sequence statistics

DbSequence::stat_print() Print sequence statistics

Sequences Configuration

DbSequence::set_cachesize(),
DbSequence::get_cachesize()

Set/get the cache size of a sequence

DbSequence::set_flags(),
DbSequence::get_flags()

Set/get the flags for a sequence

DbSequence::set_range(),
DbSequence::get_range()

Set/get the range for a sequence

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 581

DbSequence
#include <db_cxx.h>

class DbSequence {
public:
 DbSequence(Db *db, u_int32_t flags);
 ~DbSequence();

 DB_SEQUENCE *DbSequence::get_DB();
 const DB *DbSequence::get_const_DB() const;
 static DbSequence *DbSequence::get_DbSequence(DB *db);
 static const DbSequence
 *DbSequence::get_const_DbSequence(const DB *db);
 ...
};

The DbSequence handle is the handle used to manipulate a sequence object. A sequence
object is stored in a record in a database.

DbSequence handles are free-threaded if the DB_THREAD flag is specified to the
DbSequence::open() (page 592) method when the sequence is opened. Once the
DbSequence::close() (page 583) or DbSequence::remove() (page 594) methods are called,
the handle can not be accessed again, regardless of the method's return.

Each handle opened on a sequence may maintain a separate cache of values which are
returned to the application using the DbSequence::get() (page 584) method either singly or
in groups depending on its delta parameter.

Calling the DbSequence::close() (page 583) or DbSequence::remove() (page 594) methods
discards this handle.

Parameters

db

The db parameter is an open database handle which holds the persistent data for the
sequence. The database may be of any type, but must not have been configured to support
duplicate data items.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The db_sequence_create method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 582

Class

DbSequence

See Also

Sequences and Related Methods (page 580)

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 583

DbSequence::close()
#include <db_cxx.h>

int
DbSequence::close(u_int32_t flags);

The DbSequence::close() method closes the sequence handle. Any unused cached values
are lost.

The DbSequence handle may not be accessed again after DbSequence::close() is called,
regardless of its return.

The DbSequence::close() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DbSequence::close() method method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbSequence

See Also

Sequences and Related Methods (page 580)

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 584

DbSequence::get()
#include <db_cxx.h>

int
DbSequence::get(DbTxn *txnid, int32_t delta, db_seq_t *retp,
 u_int32_t flags);

The DbSequence::get() method returns the next available element in the sequence and
changes the sequence value by delta. The value of delta must be greater than zero. If there
are enough cached values in the sequence handle then they will be returned. Otherwise the
next value will be fetched from the database and incremented (decremented) by enough to
cover the delta and the next batch of cached values.

For maximum concurrency a non-zero cache size should be specified prior to opening the
sequence handle and DB_TXN_NOSYNC should be specified for each DbSequence::get()
method call.

By default, sequence ranges do not wrap; to cause the sequence to wrap around the beginning
or end of its range, specify the DB_SEQ_WRAP flag to the DbSequence::set_flags() (page 597)
method.

The DbSequence::get() method will return EINVAL if the record in the database is not a valid
sequence record, or the sequence has reached the beginning or end of its range and is not
configured to wrap.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 613); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 605); otherwise NULL. If no transaction handle is specified,
but the operation occurs in a transactional database, the operation will be implicitly
transaction protected. No txnid handle may be specified if the sequence handle was opened
with a non-zero cache size.

If the underlying database handle was opened in a transaction, calling DbSequence::get()
may result in changes to the sequence object; these changes will be automatically
committed in a transaction internal to the Berkeley DB library. If the thread of control calling
DbSequence::get() has an active transaction, which holds locks on the same database as
the one in which the sequence object is stored, it is possible for a thread of control calling
DbSequence::get() to self-deadlock because the active transaction's locks conflict with the
internal transaction's locks. For this reason, it is often preferable for sequence objects to be
stored in their own database.

delta

Specifies the amount to increment or decrement the sequence.

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 585

retp

retp points to the memory to hold the return value from the sequence.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_TXN_NOSYNC

If the operation is implicitly transaction protected (the txnid argument is NULL but the
operation occurs to a transactional database), do not synchronously flush the log when the
transaction commits.

Class

DbSequence

See Also

Sequences and Related Methods (page 580)

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 586

DbSequence::get_cachesize()
#include <db_cxx.h>

int DbSequence::get_cachesize(u_int32_t *sizep);

The DbSequence::get_cachesize() method returns the current cache size.

The DbSequence::get_cachesize() method may be called at any time during the life of the
application.

The DbSequence::get_cachesize() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

sizep

The DbSequence::get_cachesize() method returns the current cache size in sizep.

Class

DbSequence

See Also

Sequences and Related Methods (page 580)

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 587

DbSequence::get_dbp()
#include <db_cxx.h>

int
DbSequence::get_dbp(Db **dbp);

The DbSequence::get_dbp() method returns the database handle used by the sequence.

The DbSequence::get_dbp() method may be called at any time during the life of the
application.

The DbSequence::get_dbp() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dbp

The dbp parameter references memory into which a pointer to the database handle is copied.

Class

DbSequence

See Also

Sequences and Related Methods (page 580)

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 588

DbSequence::get_flags()
#include <db_cxx.h>

int DbSequence::get_flags(u_int32_t *flagsp);

The DbSequence::get_flags() method returns the current flags.

The DbSequence::get_flags() method may be called at any time during the life of the
application.

The DbSequence::get_flags() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The DbSequence::get_flags() method returns the current flags in flagsp.

Class

DbSequence

See Also

Sequences and Related Methods (page 580)

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 589

DbSequence::get_key()
#include <db_cxx.h>

int
DbSequence::get_key(Dbt *key);

The DbSequence::get_key() method returns the key for the sequence.

The DbSequence::get_key() method may be called at any time during the life of the
application.

The DbSequence::get_key() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

key

The key parameter references memory into which a pointer to the key data is copied.

Class

DbSequence

See Also

Sequences and Related Methods (page 580)

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 590

DbSequence::get_range()
#include <db_cxx.h>

int DbSequence::get_range(u_int32_t, db_seq_t *minp, db_seq_t *maxp);

The DbSequence::get_range() method returns the range of values in the sequence.

The DbSequence::get_range() method may be called at any time during the life of the
application.

The DbSequence::get_range() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

minp

The DbSequence::get_range() method returns the minimum value in minp.

maxp

The DbSequence::get_range() method returns the maximum value in maxp.

Class

DbSequence

See Also

Sequences and Related Methods (page 580)

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 591

DbSequence::initial_value()
#include <db_cxx.h>

int
DbSequence::initial_value(db_seq_t value);

Set the initial value for a sequence. This call is only effective when the sequence is being
created.

The DbSequence::initial_value() method may not be called after the
DbSequence::open() (page 592) method is called.

The DbSequence::initial_value() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

value

The initial value to set.

Errors

The DbSequence::initial_value() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbSequence

See Also

Sequences and Related Methods (page 580)

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 592

DbSequence::open()
#include <db_cxx.h>

int
DbSequence::open(DbTxn *txnid, Dbt *key, u_int32_t flags);

The DbSequence::open() method opens the sequence represented by the key. The key
must be compatible with the underlying database specified in the corresponding call to
DbSequence (page 581).

The DbSequence::open() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

key

The key specifies which record in the database stores the persistent sequence data.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_CREATE

Create the sequence. If the sequence does not already exist and the DB_CREATE flag is not
specified, the DbSequence::open() method will fail.

• DB_EXCL

Return an error if the sequence already exists. This flag is only meaningful when specified
with the DB_CREATE flag.

• DB_THREAD

Cause the DbSequence handle returned by DbSequence::open() to be free-threaded; that
is, usable by multiple threads within a single address space. Note that if multiple threads
create multiple sequences using the same database handle that handle must have been
opened specifying this flag.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 613); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 605); otherwise NULL. If no transaction handle is specified,
but the operation occurs in a transactional database, the operation will be implicitly
transaction protected. Transactionally protected operations on a DbSequence handle require
the DbSequence handle itself be transactionally protected during its open if the open creates
the sequence.

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 593

Class

DbSequence

See Also

Sequences and Related Methods (page 580)

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 594

DbSequence::remove()
#include <db_cxx.h>

int
DbSequence::remove(u_int32_t flags);

The DbSequence::remove() method removes the sequence from the database. This method
should not be called if there are other open handles on this sequence.

The DbSequence handle may not be accessed again after DbSequence::remove() is called,
regardless of its return.

The DbSequence::remove() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 613); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 605); otherwise NULL. If no transaction handle is specified,
but the operation occurs in a transactional database, the operation will be implicitly
transaction protected.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_TXN_NOSYNC

If the operation is implicitly transaction protected (the txnid argument is NULL but the
operation occurs to a transactional database), do not synchronously flush the log when the
transaction commits.

Errors

The DbSequence::remove() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbSequence

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 595

See Also

Sequences and Related Methods (page 580)

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 596

DbSequence::set_cachesize()
#include <db_cxx.h>

int
DbSequence::set_cachesize(int32_t size);

Configure the number of elements cached by a sequence handle.

The DbSequence::set_cachesize() method may not be called after the
DbSequence::open() (page 592) method is called.

The DbSequence::set_cachesize() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

size

The number of elements in the cache.

Errors

The DbSequence::set_cachesize() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbSequence

See Also

Sequences and Related Methods (page 580)

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 597

DbSequence::set_flags()
#include <db_cxx.h>

int
DbSequence::set_flags(u_int32_t flags);

Configure a sequence. The flags are only effective when creating a sequence. Calling
DbSequence::set_flags() is additive; there is no way to clear flags.

The DbSequence::set_flags() method may not be called after the
DbSequence::open() (page 592) method is called.

The DbSequence::set_flags() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_SEQ_DEC

Specify that the sequence should be decremented.

• DB_SEQ_INC

Specify that the sequence should be incremented. This is the default.

• DB_SEQ_WRAP

Specify that the sequence should wrap around when it is incremented (decremented) past
the specified maximum (minimum) value.

Errors

The DbSequence::set_flags() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbSequence

See Also

Sequences and Related Methods (page 580)

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 598

DbSequence::set_range()
#include <db_cxx.h>

int
DbSequence::set_range(db_seq_t min, db_seq_t max);

Configure a sequence range. This call is only effective when the sequence is being created.
The range is limited to a signed 64 bit integer.

The DbSequence::set_range() method may not be called after the
DbSequence::open() (page 592) method is called.

The DbSequence::set_range() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

min

Specifies the minimum value for the sequence.

max

Specifies the maximum value for the sequence.

Errors

The DbSequence::set_range() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbSequence

See Also

Sequences and Related Methods (page 580)

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 599

DbSequence::stat()
#include <db_cxx.h>

int
DbSequence::stat(DB_SEQUENCE_STAT **spp, u_int32_t flags);

The DbSequence::stat() method creates a statistical structure and copies a pointer to
it into user-specified memory locations. Specifically, if spp is non-NULL, a pointer to the
statistics for the database are copied into the memory location to which it refers.

Statistical structures are stored in allocated memory. If application-specific allocation routines
have been declared (see DbEnv::set_alloc() (page 260) for more information), they are used
to allocate the memory; otherwise, the standard C library malloc(3) is used. The caller
is responsible for deallocating the memory. To deallocate the memory, free the memory
reference; references inside the returned memory need not be individually freed.

In the presence of multiple threads or processes accessing an active sequence, the
information returned by DbSequence::stat() may be out-of-date.

The DbSequence::stat() method cannot be transaction-protected. For this reason, it should
be called in a thread of control that has no open cursors or active transactions.

The DbSequence::stat() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

The statistics are stored in a structure of type DB_SEQUENCE_STAT. The following fields will be
filled in:

• int32_t st_cache_size;

The number of values that will be cached in this handle.

• db_seq_t st_current;

The current value of the sequence in the database.

• u_int32_t st_flags;

The flags value for the sequence.

• db_seq_t st_last_value;

The last cached value of the sequence.

• db_seq_t st_min;

The minimum permitted value of the sequence.

• db_seq_t st_max;

The maximum permitted value of the sequence.

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 600

• uintmax_t st_nowait;

The number of times that a thread of control was able to obtain handle mutex without
waiting.

• db_seq_t st_value;

The current cached value of the sequence.

• uintmax_t st_wait;

The number of times a thread of control was forced to wait on the handle mutex.

Parameters

flags

The flags parameter must be set by bitwise inclusively OR'ing together one or more of the
following values:

• DB_STAT_ALL

Display all available information.

• DB_STAT_CLEAR

Reset statistics after printing their values.

Class

DbSequence

See Also

Sequences and Related Methods (page 580)

Library Version 11.2.5.2 The DbSequence Handle

6/10/2011 DB C++ API Page 601

DbSequence::stat_print()
#include <db_cxx>

int
DbSequence::stat_print(u_int32_t flags);

The DbSequence::stat_print() method prints diagnostic information to the output channel
described by the DbEnv::set_msgfile() (page 301) method.

The DbSequence::stat_print() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set by bitwise inclusively OR'ing together one or more of the
following values:

• DB_STAT_CLEAR

Reset statistics after printing their values.

Class

DbSequence

See Also

Sequences and Related Methods (page 580)

6/10/2011 DB C++ API Page 602

Chapter 13. The DbTxn Handle
#include <db_cxx.h>

class DbTxn {
public:
 DB_TXN *DbTxn::get_DB_TXN();
 const DB_TXN *DbTxn::get_const_DB_TXN() const;
 static DbTxn *DbTxn::get_DbTxn(DB_TXN *txn);
 static const DbTxn *DbTxn::get_const_DbTxn(const DB_TXN *txn);
 ...

};

The DbTxn object is the handle for a transaction. Methods of the DbTxn handle are used to
configure, abort and commit the transaction. DbTxn handles are provided to Db methods in
order to transactionally protect those database operations.

DbTxn handles are not free-threaded; transactions handles may be used by multiple threads,
but only serially, that is, the application must serialize access to the DbTxn handle. Once
the DbTxn::abort() (page 624) or DbTxn::commit() (page 625) methods are called,
the handle may not be accessed again, regardless of the method's return. In addition,
parent transactions may not issue any Berkeley DB operations while they have active child
transactions (child transactions that have not yet been committed or aborted) except for
DbEnv::txn_begin() (page 613), DbTxn::abort() (page 624) and DbTxn::commit() (page
625).

Each DbTxn object has an associated DB_TXN struct, which is used by the underlying
implementation of Berkeley DB and its C++ language API. The DbTxn::get_DB_TXN() method
returns a pointer to this struct. Given a const DbTxn object, txnMget_const_DB_TXN()
returns a const pointer to the same struct.

Given a DB_TXN struct, the DbTxn::get_DbTxn() method returns the corresponding DbTxn
object, if there is one. If the DB_TXN object was not associated with a DbTxn (that is, it was
not returned from a call to DbTxn::get_DB_TXN()), then the result of DbTxn::get_DbTxn is
undefined. Given a const DB_TXN struct, DbTxn::get_const_DbTxn() returns the associated
const DbTxn object, if there is one.

These methods may be useful for Berkeley DB applications including both C and C++ language
software. It should not be necessary to use these calls in a purely C++ application.

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 603

Transaction Subsystem and Related Methods

Transaction Subsystem and
Related Methods

Description

DbEnv::txn_recover() Distributed transaction recovery

DbEnv::txn_checkpoint() Checkpoint the transaction subsystem

DbEnv::txn_stat() Return transaction subsystem statistics

DbEnv::txn_stat_print() Print transaction subsystem statistics

DbTxn::set_timeout() Set transaction timeout

Transaction Subsystem Configuration

DbEnv::set_timeout(), DbEnv::get_timeout() Set/get lock and transaction timeout

Db::get_transactional() Does the Db have transaction support

DbEnv::cdsgroup_begin() Get a locker ID in Berkeley DB Concurrent
Data Store

DbEnv::set_tx_max(), DbEnv::get_tx_max() Set/get maximum number of transactions

DbEnv::set_tx_timestamp(),
DbEnv::get_tx_timestamp()

Set/get recovery timestamp

Transaction Operations

DbEnv::txn_begin() Begin a transaction

DbTxn::abort() Abort a transaction

DbTxn::commit() Commit a transaction

DbTxn::discard() Discard a prepared but not resolved
transaction handle

DbTxn::id() Return a transaction's ID

DbTxn::prepare() Prepare a transaction for commit

DbTxn::set_name(), DbTxn::get_name() Associate a string with a transaction

DbTxn::set_priority(), DbTxn::get_priority() Set/get transaction's priority

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 604

Db::get_transactional()
#include <db_cxx.h>

int
Db::get_transactional()

The Db::get_transactional() method returns non-zero if the Db handle has been opened in
a transactional mode, otherwise it returns 0.

The Db::get_transactional() method may be called at any time during the life of the
application.

Class

Db

See Also

Transaction Subsystem and Related Methods (page 603)

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 605

DbEnv::cdsgroup_begin()
#include <db_cxx.h>

int
DbEnv::cdsgroup_begin(DbTxn **tid);

The DbEnv::cdsgroup_begin() method allocates a locker ID in an environment configured
for Berkeley DB Concurrent Data Store applications. It copies a pointer to a DbTxn
that uniquely identifies the locker ID into the memory to which tid refers. Calling the
DbTxn::commit() (page 625) method will discard the allocated locker ID.

See Berkeley DB Concurrent Data Store applications for more information about when this is
required.

The DbEnv::cdsgroup_begin() method may be called at any time during the life of the
application.

The DbEnv::cdsgroup_begin() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Errors

The DbEnv::cdsgroup_begin() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

ENOMEM

The maximum number of lockers has been reached.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603)

../../programmer_reference/cam.html#cam_intro

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 606

DbEnv::get_tx_max()
#include <db_cxx.h>

int
DbEnv::get_tx_max(u_int32_t *tx_maxp);

The DbEnv::get_tx_max() method returns the maximum number of active transactions
currently configured for the environment. You can manage this value using the
DbEnv::set_tx_max() (page 608) method.

The DbEnv::get_tx_max() method may be called at any time during the life of the
application.

The DbEnv::get_tx_max() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

tx_maxp

The DbEnv::get_tx_max() method returns the number of active transactions in tx_maxp.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603), DbEnv::set_tx_max() (page 608)

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 607

DbEnv::get_tx_timestamp()
#include <db_cxx.h>

int
DbEnv::get_tx_timestamp(time_t *timestampp);

The DbEnv::get_tx_timestamp() method returns the recovery timestamp. This value can be
modified using the DbEnv::set_tx_timestamp() (page 610) method.

The DbEnv::get_tx_timestamp() method may be called at any time during the life of the
application.

The DbEnv::get_tx_timestamp() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

timestampp

The DbEnv::get_tx_timestamp() method returns the recovery timestamp in timestampp.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603), DbEnv::set_tx_timestamp() (page
610)

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 608

DbEnv::set_tx_max()
#include <db_cxx.h>

int
DbEnv::set_tx_max(u_int32_t max);

Configure the Berkeley DB database environment to support at least max active transactions.
This value bounds the size of the memory allocated for transactions. Child transactions are
counted as active until they either commit or abort.

Transactions that update multiversion databases are not freed until the last page version
that the transaction created is flushed from cache. This means that applications using multi-
version concurrency control may need a transaction for each page in cache, in the extreme
case.

When all of the memory available in the database environment for transactions is in use,
calls to DbEnv::txn_begin() (page 613) will fail (until some active transactions complete). If
DbEnv::set_tx_max() is never called, the database environment is configured to support at
least 100 active transactions.

The database environment's number of active transactions may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "set_tx_max", one or more whitespace characters, and the number of transactions.
Because the DB_CONFIG file is read when the database environment is opened, it will silently
overrule configuration done before that time.

The DbEnv::set_tx_max() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv::set_tx_max() method may not be called after the DbEnv::open() (page 252)
method is called. If the database environment already exists when DbEnv::open() (page 252) is
called, the information specified to DbEnv::set_tx_max() will be ignored.

The DbEnv::set_tx_max() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

max

The max parameter configures the minimum number of simultaneously active transactions
supported by Berkeley DB database environment.

Errors

The DbEnv::set_tx_max() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 609

EINVAL

If the method was called after DbEnv::open() (page 252) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603)

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 610

DbEnv::set_tx_timestamp()
#include <db_cxx.h>

int
DbEnv::set_tx_timestamp(time_t *timestamp);

Recover to the time specified by timestamp rather than to the most current possible date.

Once a database environment has been upgraded to a new version of Berkeley DB involving a
log format change (see Upgrading Berkeley DB installations), it is no longer possible to recover
to a specific time before that upgrade.

The DbEnv::set_tx_timestamp() method configures operations performed using
the specified DbEnv handle, not all operations performed on the underlying database
environment.

The DbEnv::set_tx_timestamp() method may not be called after the DbEnv::open() (page
252) method is called.

The DbEnv::set_tx_timestamp() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

timestamp

The timestamp parameter references the memory location where the recovery timestamp is
located.

The timestamp parameter should be the number of seconds since 0 hours, 0 minutes, 0
seconds, January 1, 1970, Coordinated Universal Time; that is, the Epoch.

Errors

The DbEnv::set_tx_timestamp() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If it is not possible to recover to the specified time using the log files currently present in the
environment; or if an invalid flag value or parameter was specified.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603)

../../upgrading/upgrade_process.html

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 611

DbEnv::txn_recover()
#include <db_cxx.h>

int
DbEnv::txn_recover(DB_PREPLIST preplist[],
 long count, long *retp, u_int32_t flags);

Database environment recovery restores transactions that were prepared, but not yet resolved
at the time of the system shut down or crash, to their state prior to the shut down or crash,
including any locks previously held. The DbEnv::txn_recover() method returns a list of
those prepared transactions.

The DbEnv::txn_recover() method should only be called after the environment has been
recovered.

Multiple threads of control may call DbEnv::txn_recover(), but only one thread of
control may resolve each returned transaction, that is, only one thread of control may call
DbTxn::commit() (page 625) or DbTxn::abort() (page 624) on each returned transaction.
Callers of DbEnv::txn_recover() must call DbTxn::discard() (page 627) to discard each
transaction they do not resolve.

On return from DbEnv::txn_recover(), the preplist parameter will be filled in with a list of
transactions that must be resolved by the application (committed, aborted or discarded). The
preplist parameter is a structure of type DB_PREPLIST; the following DB_PREPLIST fields will
be filled in:

• DB_TXN * txn;

The transaction handle for the transaction.

• u_int8_t gid[DB_GID_SIZE];

The global transaction ID for the transaction. The global transaction ID is the one specified
when the transaction was prepared. The application is responsible for ensuring uniqueness
among global transaction IDs.

The DbEnv::txn_recover() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

preplist

The preplist parameter references memory into which the list of transactions to be resolved
by the application is copied.

count

The count parameter specifies the number of available entries in the passed-in preplist array.
The retp parameter returns the number of entries DbEnv::txn_recover() has filled in, in the
array.

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 612

flags

The flags parameter must be set to one of the following values:

• DB_FIRST

Begin returning a list of prepared, but not yet resolved transactions. Specifying this flag
begins a new pass over all prepared, but not yet completed transactions, regardless of
whether they have already been returned in previous calls to DbEnv::txn_recover.() Calls
to DbEnv::txn_recover() from different threads of control should not be intermixed in
the same environment.

• DB_NEXT

Continue returning a list of prepared, but not yet resolved transactions, starting where the
last call to DbEnv::txn_recover() left off.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603)

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 613

DbEnv::txn_begin()
#include <db_cxx.h>

int
DbEnv::txn_begin(DbTxn *parent, DbTxn **tid, u_int32_t flags);

The DbEnv::txn_begin() method creates a new transaction in the environment and copies
a pointer to a DbTxn that uniquely identifies it into the memory to which tid refers. Calling
the DbTxn::abort() (page 624), DbTxn::commit() (page 625) or DbTxn::discard() (page 627)
methods will discard the returned handle.

Note

Transactions may only span threads if they do so serially; that is, each transaction
must be active in only a single thread of control at a time. This restriction holds for
parents of nested transactions as well; no two children may be concurrently active in
more than one thread of control at any one time.

Note

Cursors may not span transactions; that is, each cursor must be opened and closed
within a single transaction.

Note

A parent transaction may not issue any Berkeley DB operations — except for
DbEnv::txn_begin(), DbTxn::abort() (page 624) and DbTxn::commit() (page 625)
— while it has active child transactions (child transactions that have not yet been
committed or aborted).

The DbEnv::txn_begin() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

parent

If the parent parameter is non-NULL, the new transaction will be a nested transaction, with
the transaction indicated by parent as its parent. Transactions may be nested to any level. In
the presence of distributed transactions and two-phase commit, only the parental transaction,
that is a transaction without a parent specified, should be passed as an parameter to
DbTxn::prepare() (page 632).

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_READ_COMMITTED

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 614

This transaction will have degree 2 isolation. This provides for cursor stability but not
repeatable reads. Data items which have been previously read by this transaction may be
deleted or modified by other transactions before this transaction completes.

• DB_READ_UNCOMMITTED

This transaction will have degree 1 isolation. Read operations performed by the
transaction may read modified but not yet committed data. Silently ignored if the
DB_READ_UNCOMMITTED flag was not specified when the underlying database was opened.

• DB_TXN_BULK

Enable transactional bulk insert optimization. When this flag is set, the transaction avoids
logging the contents of insertions on newly allocated database pages. In a transaction
that inserts a large number of new records, the I/O savings of choosing this option can be
significant.

Users of this option should be aware of several issues. When the optimization is in effect,
page allocations that extend the database file are logged as usual; this allows transaction
aborts to work correctly, both online and during recovery. At commit time, the database's
pages are flushed to disk, eliminating the need to roll-forward the transaction during normal
recovery. However, there are other recovery operations that depend on roll-forward, and
care must be taken when DB_TXN_BULK transactions interact with them.

In particular, DB_TXN_BULK is incompatible with replication, and is simply ignored when
replication is enabled. Also, hot backup procedures must follow a particular protocol,
introduced in Berkeley DB 11gR2.5.1, which is to set the DB_HOTBACKUP_IN_PROGRESS
 (page 284) flag in the environment before starting to copy files. It is important to note
that incremental hot backups can be invalidated by use of the bulk insert optimization. For
more information, see the section on Hot Backup in the Getting Started With Transaction
Processing Guide and the description of the flag DB_HOTBACKUP_IN_PROGRESS (page 284)
in DB_ENV->set_flags.

The bulk insert optimization is effective only for top-level transactions. The DB_TXN_BULK
flag is ignored when parent is non-null.

• DB_TXN_NOSYNC

Do not synchronously flush the log when this transaction commits or prepares. This means
the transaction will exhibit the ACI (atomicity, consistency, and isolation) properties, but
not D (durability); that is, database integrity will be maintained but it is possible that this
transaction may be undone during recovery.

This behavior may be set for a Berkeley DB environment using the DbEnv::set_flags() (page
283) method. Any value specified to this method overrides that setting.

• DB_TXN_NOWAIT

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 615

If a lock is unavailable for any Berkeley DB operation performed in the context of this
transaction, cause the operation to return DB_LOCK_DEADLOCK (or DB_LOCK_NOTGRANTED
if the database environment has been configured using the DB_TIME_NOTGRANTED flag).

This behavior may be set for a Berkeley DB environment using the DbEnv::set_flags() (page
283) method. Any value specified to this method overrides that setting.

• DB_TXN_SNAPSHOT

This transaction will execute with snapshot isolation. For databases with the
DB_MULTIVERSION flag set, data values will be read as they are when the transaction
begins, without taking read locks. Silently ignored for operations on databases with
DB_MULTIVERSION not set on the underlying database (read locks are acquired).

The error DB_LOCK_DEADLOCK will be returned from update operations if a snapshot
transaction attempts to update data which was modified after the snapshot transaction read
it.

• DB_TXN_SYNC

Synchronously flush the log when this transaction commits or prepares. This means the
transaction will exhibit all of the ACID (atomicity, consistency, isolation, and durability)
properties.

This behavior is the default for Berkeley DB environments unless the DB_TXN_NOSYNC flag
was specified to the DbEnv::set_flags() (page 283) method. Any value specified to this
method overrides that setting.

• DB_TXN_WAIT

If a lock is unavailable for any Berkeley DB operation performed in the context of this
transaction, wait for the lock.

This behavior is the default for Berkeley DB environments unless the DB_TXN_NOWAIT flag
was specified to the DbEnv::set_flags() (page 283) method. Any value specified to this
method overrides that setting.

• DB_TXN_WRITE_NOSYNC

Write, but do not synchronously flush, the log when this transaction commits. This means
the transaction will exhibit the ACI (atomicity, consistency, and isolation) properties, but
not D (durability); that is, database integrity will be maintained, but if the system fails, it
is possible some number of the most recently committed transactions may be undone during
recovery. The number of transactions at risk is governed by how often the system flushes
dirty buffers to disk and how often the log is flushed or checkpointed.

This behavior may be set for a Berkeley DB environment using the DbEnv::set_flags() (page
283) method. Any value specified to this method overrides that setting.

../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK
../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED
../../programmer_reference/transapp_read.html

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 616

Errors

The DbEnv::txn_begin() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

DbMemoryException or ENOMEM

The maximum number of concurrent transactions has been reached.

DbMemoryException (page 325) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, ENOMEM is returned.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603)

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 617

DbEnv::txn_checkpoint()
#include <db_cxx.h>

int
DbEnv::txn_checkpoint(u_int32_t kbyte, u_int32_t min,
 u_int32_t flags) const;

If there has been any logging activity in the database environment since the last checkpoint,
the DbEnv::txn_checkpoint() method flushes the underlying memory pool, writes a
checkpoint record to the log, and then flushes the log.

The DbEnv::txn_checkpoint() method returns a non-zero error value on failure and 0 on
success.

The DbEnv::txn_checkpoint() method is the underlying method used by the
db_checkpoint utility. See the db_checkpoint utility source code for an example of using
DbEnv::txn_checkpoint() in a IEEE/ANSI Std 1003.1 (POSIX) environment.

Parameters

kbyte

If the kbyte parameter is non-zero, a checkpoint will be done if more than kbyte kilobytes of
log data have been written since the last checkpoint.

min

If the min parameter is non-zero, a checkpoint will be done if more than min minutes have
passed since the last checkpoint.

flags

The flags parameter must be set to 0 or the following value:

• DB_FORCE

Force a checkpoint record, even if there has been no activity since the last checkpoint.

Errors

The DbEnv::txn_checkpoint() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbTxn

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 618

See Also

Transaction Subsystem and Related Methods (page 603)

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 619

DbEnv::txn_stat()
#include <db_cxx.h>

int
DbEnv::txn_stat(DB_TXN_STAT **statp, u_int32_t flags);

The DbEnv::txn_stat() method returns the transaction subsystem statistics.

The DbEnv::txn_stat() method creates a statistical structure of type DB_TXN_STAT and
copies a pointer to it into a user-specified memory location.

Statistical structures are stored in allocated memory. If application-specific allocation routines
have been declared (see DbEnv::set_alloc() (page 260) for more information), they are used
to allocate the memory; otherwise, the standard C library malloc(3) is used. The caller
is responsible for deallocating the memory. To deallocate the memory, free the memory
reference; references inside the returned memory need not be individually freed.

The following DB_TXN_STAT fields will be filled in:

• u_int32_t st_inittxns;

The initial number of transactions configured.

• DB_LSN st_last_ckp;

The LSN of the last checkpoint.

• u_int32_t st_last_txnid;

The last transaction ID allocated.

• u_int32_t st_maxnactive;

The maximum number of active transactions at any one time.

• u_int32_t st_maxnsnapshot;

The maximum number of transactions on the snapshot list at any one time.

• u_int32_t st_maxtxns;

The maximum number of active transactions configured.

• uintmax_t st_naborts;

The number of transactions that have aborted.

• u_int32_t st_nactive;

The number of transactions that are currently active.

• uintmax_t st_nbegins;

The number of transactions that have begun.

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 620

• uintmax_t st_ncommits;

The number of transactions that have committed.

• u_int32_t st_nrestores;

The number of transactions that have been restored.

• u_int32_t st_nsnapshot;

The number of transactions on the snapshot list. These are transactions which modified a
database opened with DB_MULTIVERSION, and which have committed or aborted, but the
copies of pages they created are still in the cache.

• uintmax_t st_region_nowait;

The number of times that a thread of control was able to obtain the transaction region
mutex without waiting.

• uintmax_t st_region_wait;

The number of times that a thread of control was forced to wait before obtaining the
transaction region mutex.

• roff_t st_regsize;

The region size, in bytes.

• time_t st_time_ckp;

The time the last completed checkpoint finished (as the number of seconds since the Epoch,
returned by the IEEE/ANSI Std 1003.1 (POSIX) time function).

• DB_TXN_ACTIVE *st_txnarray;

A pointer to an array of st_nactive DB_TXN_ACTIVE structures, describing the currently
active transactions. The following fields of the DB_TXN_ACTIVE structure will be filled in:

• u_int32_t txnid;

The transaction ID of the transaction.

• u_int32_t parentid;

The transaction ID of the parent transaction (or 0, if no parent).

• pid_t pid;

The process ID of the originator of the transaction.

• db_threadid_t tid;

The thread of control ID of the originator of the transaction.

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 621

• DB_LSN lsn;

The current log sequence number when the transaction was begun.

• DB_LSN read_lsn;

The log sequence number of reads for snapshot transactions.

• u_int32_t mvcc_ref;

The number of buffer copies created by this transaction that remain in cache.

• u_int32_t priority;

This transaction's deadlock resolution priority.

• u_int32_t status;

Provides one of the following constants, indicating the transaction status:

TXN_ABORTED
TXN_COMMITTED
TXN_NEED_ABORT
TXN_PREPARED
TXN_RUNNING

• u_int32_t xa_status;

Provides one of the following constants, which indicate the XA status:

TXN_XA_ACTIVE
TXN_XA_DEADLOCKED
TXN_XA_IDLE
TXN_XA_PREPARED
TXN_XA_ROLLEDBACK

• u_int8_t gid[DB_GID_SIZE];

If the transaction was prepared using DbTxn::prepare() (page 632), then gid contains the
transaction's Global ID. Otherwise, gid's contents are undefined.

• char name[];

If a name was specified for the transaction, up to the first 50 bytes of that name,
followed by a nul termination byte.

The DbEnv::txn_stat() method may not be called before the DbEnv::open() (page 252)
method is called.

The DbEnv::txn_stat() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 622

Parameters

statp

The statp parameter references memory into which a pointer to the allocated statistics
structure is copied.

flags

The flags parameter must be set to 0 or the following value:

• DB_STAT_CLEAR

Reset statistics after returning their values.

Errors

The DbEnv::txn_stat() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603)

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 623

DbEnv::txn_stat_print()
#include <db_cxx.h>

int
DbEnv::txn_stat_print(u_int32_t flags);

The DbEnv::txn_stat_print() method displays the transaction subsystem statistical
information, as described for the DbEnv::txn_stat() method. The information
is printed to a specified output channel (see the DbEnv::set_msgfile() (page 301)
method for more information), or passed to an application callback function (see the
DbEnv::set_msgcall() (page 299) method for more information).

The DbEnv::txn_stat_print() method may not be called before the DbEnv::open() (page
252) method is called.

The DbEnv::txn_stat_print() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

• DB_STAT_ALL

Display all available information.

• DB_STAT_CLEAR

Reset statistics after displaying their values.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603)

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 624

DbTxn::abort()
#include <db_cxx.h>

int
DbTxn::abort();

The DbTxn::abort() method causes an abnormal termination of the transaction. The log
is played backward, and any necessary undo operations are done through the tx_recover
function specified to DbEnv::set_app_dispatch() (page 262). Before DbTxn::abort() returns,
any locks held by the transaction will have been released.

In the case of nested transactions, aborting a parent transaction causes all children
(unresolved or not) of the parent transaction to be aborted.

All cursors opened within the transaction must be closed before the transaction is aborted. If
they are not closed, they will be closed by this function. If a close operation fails, the rest of
the cursors are closed, and the database environment is set to the panic state.

After DbTxn::abort() has been called, regardless of its return, the DbTxn handle may not be
accessed again.

The DbTxn::abort() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603)

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 625

DbTxn::commit()
#include <db_cxx.h>

int
DbTxn::commit(u_int32_t flags);

The DbTxn::commit() method ends the transaction.

In the case of nested transactions, if the transaction is a parent transaction, committing the
parent transaction causes all unresolved children of the parent to be committed. In the case
of nested transactions, if the transaction is a child transaction, its locks are not released,
but are acquired by its parent. Although the commit of the child transaction will succeed,
the actual resolution of the child transaction is postponed until the parent transaction is
committed or aborted; that is, if its parent transaction commits, it will be committed; and if
its parent transaction aborts, it will be aborted.

All cursors opened within the transaction must be closed before the transaction is committed.
If they are not closed, they will be closed by this function. When the close operation for a
cursor fails, the method returns a non-zero error value for the first instance of such an error,
closes the rest of the cursors, and then aborts the transaction.

After DbTxn::commit() has been called, regardless of its return, the DbTxn handle may not
be accessed again. If DbTxn::commit() encounters an error, the transaction and all child
transactions of the transaction are aborted.

The DbTxn::commit() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success. The errors
values that this method returns include the error values of the Dbc::close() method and the
following:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DB_REP_LEASE_EXPIRED

The operation failed because the site's replication master lease has expired.

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 626

Parameters

flags

The flags parameter must be set to 0 or one of the following values:

• DB_TXN_NOSYNC

Do not synchronously flush the log. This means the transaction will exhibit the ACI
(atomicity, consistency, and isolation) properties, but not D (durability); that is, database
integrity will be maintained, but it is possible that this transaction may be undone during
recovery.

This behavior may be set for a Berkeley DB environment using the DbEnv::set_flags() (page
283) method or for a single transaction using the DbEnv::txn_begin() (page 613) method.
Any value specified to this method overrides both of those settings.

• DB_TXN_SYNC

Synchronously flush the log. This means the transaction will exhibit all of the ACID
(atomicity, consistency, isolation, and durability) properties.

This behavior is the default for Berkeley DB environments unless the DB_TXN_NOSYNC flag
was specified to the DbEnv::set_flags() (page 283) method. This behavior may also be set
for a single transaction using the DbEnv::txn_begin() (page 613) method. Any value specified
to this method overrides both of those settings.

• DB_TXN_WRITE_NOSYNC

Write but do not synchronously flush the log on transaction commit. This means that
transactions exhibit the ACI (atomicity, consistency, and isolation) properties, but not D
(durability); that is, database integrity will be maintained, but if the system fails, it is
possible some number of the most recently committed transactions may be undone during
recovery. The number of transactions at risk is governed by how often the system flushes
dirty buffers to disk and how often the log is checkpointed.

This form of commit protects you against application crashes, but not against OS crashes.
This method offers less room for the possiblity of data loss than does DB_TXN_NOSYNC.

This behavior may be set for a Berkeley DB environment using the DbEnv::set_flags() (page
283) method or for a single transaction using the DbEnv::txn_begin() (page 613) method.
Any value specified to this method overrides both of those settings.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603)

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 627

DbTxn::discard()
#include <db_cxx.h>

int
DbTxn::discard(u_int32_t flags);

The DbTxn::discard() method frees up all the per-process resources associated with the
specified DbTxn handle, neither committing nor aborting the transaction. This call may be
used only after calls to DbEnv::txn_recover() (page 611) when there are multiple global
transaction managers recovering transactions in a single Berkeley DB environment. Any
transactions returned by DbEnv::txn_recover() (page 611) that are not handled by the current
global transaction manager should be discarded using DbTxn::discard().

All open cursors in the transaction are closed and the first cursor close error, if any, is
returned.

The DbTxn::discard() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success. The errors
values that this method returns include the error values of Dbc::close() and the following:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.

After DbTxn::discard() has been called, regardless of its return, the DbTxn handle may not
be accessed again.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DbTxn::discard() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 628

EINVAL

If the transaction handle does not refer to a transaction that was recovered into a prepared
but not yet completed state; or if an invalid flag value or parameter was specified.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603)

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 629

DbTxn::get_name()
#include <db_cxx.h>

int
DbTxn::get_name(const char **namep);

The DbTxn::get_name() method returns the string associated with the transaction.

The DbTxn::get_name() method may be called at any time during the life of the application.

The DbTxn::get_name() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

namep

The DbTxn::get_name() method returns a reference to the string associated with the
transaction in namep.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603)

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 630

DbTxn::get_priority()
#include <db_cxx.h>

int
DbTxn::get_priority(u_int32_t *priority);

The DbTxn::get_priority() method gets the priority value of the specified transaction.

The DbTxn::get_priority() method may be called at any time during the life of the
transaction.

The DbTxn::get_priority() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priority

Upon return, the priority parameter will point to a value between 0 and 2^32-1.

Errors

The DbTxn::get_priority() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603)

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 631

DbTxn::id()
#include <db_cxx.h>

u_int32_t
DbTxn::id();

The DbTxn::id() method returns the unique transaction id associated with the specified
transaction. Locking calls made on behalf of this transaction should use the value returned
from DbTxn::id() as the locker parameter to the DbEnv::lock_get() (page 355) or
DbEnv::lock_vec() (page 368) calls.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603)

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 632

DbTxn::prepare()
#include <db_cxx.h>

int
DbTxn::prepare(u_int8_t gid[DB_GID_SIZE]);

The DbTxn::prepare() method initiates the beginning of a two-phase commit.

In a distributed transaction environment, Berkeley DB can be used as a local transaction
manager. In this case, the distributed transaction manager must send prepare messages to
each local manager. The local manager must then issue a DbTxn::prepare() and await its
successful return before responding to the distributed transaction manager. Only after the
distributed transaction manager receives successful responses from all of its prepare messages
should it issue any commit messages.

In the case of nested transactions, preparing the parent causes all unresolved children of the
parent transaction to be committed. Child transactions should never be explicitly prepared.
Their fate will be resolved along with their parent's during global recovery.

All open cursors in the transaction are closed and the first cursor close error will be returned.

The DbTxn::prepare() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success. The errors that
this method returns include the error values of Dbc::close() and the following:

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 322) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

DbLockNotGrantedException (page 323) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.

Parameters

gid

The gid parameter specifies the global transaction ID by which this transaction will be known.
This global transaction ID will be returned in calls to DbEnv::txn_recover() (page 611) telling
the application which global transactions must be resolved.

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 633

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603)

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 634

DbTxn::set_name()
#include <db_cxx.h>

int
DbTxn::set_name(const char *name);

The DbTxn::set_name() method associates the specified string with the
transaction. The string is returned by DbEnv::txn_stat() (page 619) and displayed by
DbEnv::txn_stat_print() (page 623).

If the database environment has been configured for logging and the Berkeley DB library
was configured with --enable-diagnostic, a debugging log record is written including the
transaction ID and the name.

The DbTxn::set_name() method may be called at any time during the life of the application.

The DbTxn::set_name() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

name

The name parameter is the string to associate with the transaction.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603)

../../installation/build_unix_conf.html

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 635

DbTxn::set_priority()
#include <db_cxx.h>

int
DbTxn::set_priority(u_int32_t priority);

The DbTxn::set_priority() method sets the priority for the transaction. The deadlock
detector will reject lock requests from lower priority transactions before those from higher
priority transactions.

By default, all transactions are created with a priority of 100.

The DbTxn::set_priority() method may be called at any time during the life of the
transaction.

The DbTxn::set_priority() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priority

The priority parameter must be a value between 0 and 2^32-1.

Errors

The DbTxn::set_priority() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603)

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 636

DbTxn::set_timeout()
#include <db_cxx.h>

u_int32_t
DbTxn::set_timeout(db_timeout_t timeout, u_int32_t flags);

The DbTxn::set_timeout() method sets timeout values for locks or transactions for the
specified transaction.

Timeouts are checked whenever a thread of control blocks on a lock or when deadlock
detection is performed. In the case of DB_SET_LOCK_TIMEOUT, the timeout is for any
single lock request. In the case of DB_SET_TXN_TIMEOUT, the timeout is for the life of the
transaction. As timeouts are only checked when the lock request first blocks or when deadlock
detection is performed, the accuracy of the timeout depends on how often deadlock detection
is performed.

Timeout values may be specified for the database environment as a whole. Also, the database
environment must enable the locking subsystem before timeout values can be specified. See
DbEnv::set_timeout() (page 310) for more information.

The DbTxn::set_timeout() method configures operations performed on the underlying
transaction, not only operations performed using the specified DbTxn handle.

The DbTxn::set_timeout() method may be called at any time during the life of the
application.

The DbTxn::set_timeout() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

timeout

The timeout parameter is specified as an unsigned 32-bit number of microseconds, limiting
the maximum timeout to roughly 71 minutes. A value of 0 disables timeouts for the
transaction.

flags

The flags parameter must be set to one of the following values:

• DB_SET_LOCK_TIMEOUT

Set the timeout value for locks in this transaction.

• DB_SET_TXN_TIMEOUT

Set the timeout value for this transaction.

Library Version 11.2.5.2 The DbTxn Handle

6/10/2011 DB C++ API Page 637

Errors

The DbTxn::set_timeout() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DbEnv, DbTxn

See Also

Transaction Subsystem and Related Methods (page 603)

6/10/2011 DB C++ API Page 638

Appendix A. Berkeley DB Command
Line Utilities

The following describes the command line utilities that are available for Berkeley DB.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 639

Utilities

Utility Description

db_archive Archival utility

db_checkpoint Transaction checkpoint utility

db_deadlock Deadlock detection utility

db_dump Database dump utility

db_hotbackup Hot backup utility

db_load Database load utility

db_log_verify Log verification utility

db_printlog Transaction log display utility

db_recover Recovery utility

db_replicate Replication utility

db_sql_codegen SQL schema to Berkeley DB code in C

dbsql Command line interface to libdb_sql

db_stat Statistics utility

db_tuner Suggest a page size for optimal operation in a
btree database

db_upgrade Database upgrade utility

db_verify Verification utility

sqlite3 Command line tool for wrapper library
libsqlite3

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 640

db_archive
db_archive [-adlsVv] [-h home] [-P password]

The db_archive utility writes the pathnames of log files that are no longer in use (for
example, no longer involved in active transactions), to the standard output, one pathname per
line. These log files should be written to backup media to provide for recovery in the case of
catastrophic failure (which also requires a snapshot of the database files), but they may then
be deleted from the system to reclaim disk space.

Note

If the application(s) that use the environment make use of any of the following
methods:

DbEnv::add_data_dir() (page 211)
DbEnv::set_data_dir() (page 264)
DbEnv::set_lg_dir() (page 399)

then in order for this utility to run correctly, you need a DB_CONFIG file which sets
the proper paths using the add_data_dir (page 688), or set_lg_dir (page 709)
configuration parameters.

The options are as follows:

• -a

Write all pathnames as absolute pathnames, instead of relative to the database home
directory.

• -d

Remove log files that are no longer needed; no filenames are written. This automatic log
file removal is likely to make catastrophic recovery impossible.

• -h

Specify a home directory for the database environment; by default, the current working
directory is used.

• -l

Write out the pathnames of all the database log files, whether or not they are involved in
active transactions.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings
as soon as possible, be aware there may be a window of vulnerability on systems where
unprivileged users can see command-line arguments or where utilities are not able to
overwrite the memory containing the command-line arguments.

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 641

• -s

Write the pathnames of all the database files that need to be archived in order to recover
the database from catastrophic failure. If any of the database files have not been accessed
during the lifetime of the current log files, db_archive will not include them in this output.

It is possible that some of the files to which the log refers have since been deleted from the
system. In this case, db_archive will ignore them. When db_recover (page 662) is run, any
files to which the log refers that are not present during recovery are assumed to have been
deleted and will not be recovered.

• -V

Write the library version number to the standard output, and exit.

• -v

Run in verbose mode.

Log cursor handles (returned by the DbEnv::log_cursor() (page 381) method) may have open
file descriptors for log files in the database environment. Also, the Berkeley DB interfaces to
the database environment logging subsystem (for example, DbEnv::log_put() (page 387) and
DbTxn::abort() (page 624) may allocate log cursors and have open file descriptors for log files
as well. On operating systems where filesystem related system calls (for example, rename
and unlink on Windows/NT) can fail if a process has an open file descriptor for the affected
file, attempting to move or remove the log files listed by db_archive may fail. All Berkeley
DB internal use of log cursors operates on active log files only and furthermore, is short-lived
in nature. So, an application seeing such a failure should be restructured to close any open
log cursors it may have, and otherwise to retry the operation until it succeeds. (Although the
latter is not likely to be necessary; it is hard to imagine a reason to move or rename a log file
in which transactions are being logged or aborted.)

The db_archive utility uses a Berkeley DB environment (as described for the -h option, the
environment variable DB_HOME, or because the utility was run in a directory containing a
Berkeley DB environment). In order to avoid environment corruption when using a Berkeley DB
environment, db_archive should always be given the chance to detach from the environment
and exit gracefully. To cause db_archive to release all environment resources and exit cleanly,
send it an interrupt signal (SIGINT).

The db_archive utility exits 0 on success, and >0 if an error occurs.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the
path of the database home, as described in the DbEnv::open() (page 252) method.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 642

db_checkpoint
db_checkpoint [-1Vv] [-h home]
 [-k kbytes] [-L file] [-P password] [-p min]

The db_checkpoint utility is a daemon process that monitors the database log, and
periodically calls DbEnv::txn_checkpoint() (page 617) to checkpoint it.

The options are as follows:

• -1

Force a single checkpoint of the log (regardless of whether or not there has been activity
since the last checkpoint), and then exit.

When the -1 flag is specified, the db_checkpoint utility will checkpoint the log even if
unable to find an existing database environment. This functionality is useful when upgrading
database environments from one version of Berkeley DB to another.

• -h

Specify a home directory for the database environment; by default, the current working
directory is used.

• -k

Checkpoint the database at least as often as every kbytes of log file are written.

• -L

Log the execution of the db_checkpoint utility to the specified file in the following format,
where ### is the process ID, and the date is the time the utility was started.
 db_checkpoint: ### Wed Jun 15 01:23:45 EDT 1995

This file will be removed if the db_checkpoint utility exits gracefully.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings
as soon as possible, be aware there may be a window of vulnerability on systems where
unprivileged users can see command-line arguments or where utilities are not able to
overwrite the memory containing the command-line arguments.

• -p

Checkpoint the database at least every min minutes if there has been any activity since the
last checkpoint.

• -V

Write the library version number to the standard output, and exit.

• -v

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 643

Write the time of each checkpoint attempt to the standard output.

At least one of the -1, -k, and -p options must be specified.

The db_checkpoint utility uses a Berkeley DB environment (as described for the -h option,
the environment variable DB_HOME, or because the utility was run in a directory containing
a Berkeley DB environment). In order to avoid environment corruption when using a Berkeley
DB environment, db_checkpoint should always be given the chance to detach from the
environment and exit gracefully. To cause db_checkpoint to release all environment resources
and exit cleanly, send it an interrupt signal (SIGINT).

The db_checkpoint utility does not attempt to create the Berkeley DB shared memory regions
if they do not already exist. The application that creates the region should be started first,
and once the region is created, the db_checkpoint utility should be started.

The db_checkpoint utility exits 0 on success, and >0 if an error occurs.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the
path of the database home, as described in the DbEnv::open() (page 252) method.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 644

db_deadlock
db_deadlock [-Vv]
 [-a e | m | n | o | W | w | y] [-h home] [-L file] [-t sec.usec]

The db_deadlock utility traverses the database environment lock region, and aborts a lock
request each time it detects a deadlock or a lock request that has timed out. By default, in
the case of a deadlock, a random lock request is chosen to be aborted.

This utility should be run as a background daemon, or the underlying Berkeley DB deadlock
detection interfaces should be called in some other way, whenever there are multiple threads
or processes accessing a database and at least one of them is modifying it.

The options are as follows:

• -a

When a deadlock is detected, abort the locker:

• m

with the most locks

• n

with the fewest locks

• o

with the oldest locks

• W

with the most write locks

• w

with the fewest write locks

• y

with the youngest locks

• e

When lock or transaction timeouts have been specified, abort any lock request that
has timed out. Note that this option does not perform the entire deadlock detection
algorithm, but instead only checks for timeouts.

• -h

Specify a home directory for the database environment; by default, the current working
directory is used.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 645

• -L

Log the execution of the db_deadlock utility to the specified file in the following format,
where ### is the process ID, and the date is the time the utility was started.

 db_deadlock: ### Wed Jun 15 01:23:45 EDT 1995

This file will be removed if the db_deadlock utility exits gracefully.

• -t

Check the database environment every sec seconds plus usec microseconds to see if a
process has been forced to wait for a lock; if one has, review the database environment lock
structures.

• -V

Write the library version number to the standard output, and exit.

• -v

Run in verbose mode, generating messages each time the detector runs.

If the -t option is not specified, db_deadlock will run once and exit.

The db_deadlock utility uses a Berkeley DB environment (as described for the -h option, the
environment variable DB_HOME, or because the utility was run in a directory containing a
Berkeley DB environment). In order to avoid environment corruption when using a Berkeley
DB environment, db_deadlock should always be given the chance to detach from the
environment and exit gracefully. To cause db_deadlock to release all environment resources
and exit cleanly, send it an interrupt signal (SIGINT).

The db_deadlock utility does not attempt to create the Berkeley DB shared memory regions
if they do not already exist. The application which creates the region should be started first,
and then, once the region is created, the db_deadlock utility should be started.

The db_deadlock utility exits 0 on success, and >0 if an error occurs.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the
path of the database home, as described in the DbEnv::open() (page 252) method.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 646

db_dump
db_dump [-klNpRrV] [-d ahr]
 [-f output] [-h home] [-P password] [-s database] file

db_dump [-kNpV] [-d ahr] [-f output] [-h home] -m database

db_dump185 [-p] [-f output] file

The db_dump utility reads the database file file and writes it to the standard output using
a portable flat-text format understood by the db_load (page 653) utility. The file argument
must be a file produced using the Berkeley DB library functions.

The db_dump185 utility is similar to the db_dump utility, except that it reads databases in
the format used by Berkeley DB versions 1.85 and 1.86.

The options are as follows:

• -d

Dump the specified database in a format helpful for debugging the Berkeley DB library
routines.

• a

Display all information.

• h

Display only page headers.

• r

Do not display the free-list or pages on the free list. This mode is used by the recovery
tests.

The output format of the -d option is not standard and may change, without notice,
between releases of the Berkeley DB library.

• -f

Write to the specified file instead of to the standard output.

• -h

Specify a home directory for the database environment; by default, the current working
directory is used.

• -k

Dump record numbers from Queue and Recno databases as keys.

• -l

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 647

List the databases stored in the file.

• -m

Specify a named in-memory database to dump. In this case the file argument must be
omitted.

• -N

Do not acquire shared region mutexes while running. Other problems, such as potentially
fatal errors in Berkeley DB, will be ignored as well. This option is intended only for
debugging errors, and should not be used under any other circumstances.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings
as soon as possible, be aware there may be a window of vulnerability on systems where
unprivileged users can see command-line arguments or where utilities are not able to
overwrite the memory containing the command-line arguments.

• -p

If characters in either the key or data items are printing characters (as defined by
isprint(3)), use printing characters in file to represent them. This option permits users to
use standard text editors and tools to modify the contents of databases.

Note: different systems may have different notions about what characters are considered
printing characters, and databases dumped in this manner may be less portable to external
systems.

• -R

Aggressively salvage data from a possibly corrupt file. The -R flag differs from the -r option
in that it will return all possible data from the file at the risk of also returning already
deleted or otherwise nonsensical items. Data dumped in this fashion will almost certainly
have to be edited by hand or other means before the data is ready for reload into another
database

Note that this option causes the utility to verify the integrity of the database before
performing the database dump. If this verification fails, the utility will exit with error
return DB_VERIFY_BAD even though the database is successfully dumped. If you are dumping
a database known to be corrupt, you can safely ignore a DB_VERIFY_BAD error return.

• -r

Salvage data from a possibly corrupt file. When used on a uncorrupted database, this option
should return equivalent data to a normal dump, but most likely in a different order.

Note that this option causes the utility to verify the integrity of the database before
performing the database dump. If this verification fails, the utility will exit with error

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 648

return DB_VERIFY_BAD even though the database is successfully dumped. If you are dumping
a database known to be corrupt, you can safely ignore a DB_VERIFY_BAD error return.

• -s

Specify a single database to dump. If no database is specified, all databases in the database
file are dumped.

• -V

Write the library version number to the standard output, and exit.

Dumping and reloading Hash databases that use user-defined hash functions will result in new
databases that use the default hash function. Although using the default hash function may
not be optimal for the new database, it will continue to work correctly.

Dumping and reloading Btree databases that use user-defined prefix or comparison functions
will result in new databases that use the default prefix and comparison functions. In this
case, it is quite likely that the database will be damaged beyond repair permitting neither
record storage or retrieval.

The only available workaround for either case is to modify the sources for the db_load (page
653) utility to load the database using the correct hash, prefix, and comparison functions.

The db_dump185 utility may not be available on your system because it is not always built
when the Berkeley DB libraries and utilities are installed. If you are unable to find it, see your
system administrator for further information.

The db_dump and db_dump185 utility output formats are documented in the Dump Output
Formats section of the Berkeley DB Reference Guide.

The db_dump utility may be used with a Berkeley DB environment (as described for the -
h option, the environment variable DB_HOME, or because the utility was run in a directory
containing a Berkeley DB environment). In order to avoid environment corruption when using
a Berkeley DB environment, db_dump should always be given the chance to detach from the
environment and exit gracefully. To cause db_dump to release all environment resources and
exit cleanly, send it an interrupt signal (SIGINT).

Even when using a Berkeley DB database environment, the db_dump utility does not use any
kind of database locking if it is invoked with the -d, -R, or -r arguments. If used with one of
these arguments, the db_dump utility may only be safely run on databases that are not being
modified by any other process; otherwise, the output may be corrupt.

The db_dump utility exits 0 on success, and >0 if an error occurs. Note that this utility might
return DB_VERIFY_BAD if the -R or -r command line options are used. This indicates a corrupt
database. However, the dump may still have been successful.

The db_dump185 utility exits 0 on success, and >0 if an error occurs.

../../programmer_reference/dumpload_format.html
../../programmer_reference/dumpload_format.html

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 649

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the
path of the database home, as described in the DbEnv::open() (page 252) method.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 650

db_hotbackup
db_hotbackup [-cDEguVv] [-d data_dir ...] [-h home]
 [-l log_dir] [-P password] -b backup_dir

The db_hotbackup utility creates "hot backup" or "hot failover" snapshots of Berkeley DB
database environments.

The db_hotbackup utility performs the following steps:

1. Sets the DB_HOTBACKUP_IN_PROGRESS (page 284) flag in the home database
environment.

2. If the -c option is specified, checkpoint the source home database environment, and
remove any unnecessary log files.

3. If the target directory for the backup does not exist, it is created with mode read-write-
execute for the owner.

If the target directory for the backup does exist and the -u option was specified, all log
files in the target directory are removed; if the -u option was not specified, all files in
the target directory are removed.

4. If the -u option was not specified, copy application-specific files found in the database
environment home directory, and any directories specified using the -d option, into the
target directory for the backup.

5. Copy all log files found in the directory specified by the -l option (or in the database
environment home directory, if no -l option was specified), into the target directory for
the backup.

6. Perform catastrophic recovery in the target directory for the backup.

7. Remove any unnecessary log files from the target directory for the backup.

8. Reset the DB_HOTBACKUP_IN_PROGRESS (page 284) flag in the environment.

The db_hotbackup utility does not resolve pending transactions that are in the prepared
state. Applications that use DbTxn::prepare() (page 632) must specify DB_RECOVER_FATAL
when opening the environment, and run DbEnv::txn_recover() (page 611) to resolve any
pending transactions, when failing over to the backup.

The options are as follows:

• -b

Specify the target directory for the backup.

• -c

Before performing the backup, checkpoint the source database environment and remove
any log files that are no longer required in that environment. To avoid making catastrophic
recovery impossible, log file removal must be integrated with log file archival.

• -D

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 651

Use the data and log directories listed in a DB_CONFIG configuration file in the source
directory. This option has four effects:

• The specified data and log directories will be created relative to the target directory,
with mode read-write-execute owner, if they do not already exist.

• In step #3 above, all files in any source data directories specified in the DB_CONFIG file
will be copied to the target data directories.

• In step #4 above, log files will be copied from any log directory specified in the
DB_CONFIG file, instead of from the default locations.

• The DB_CONFIG configuration file will be copied from the source directory to the
target directory, and subsequently used for configuration if recovery is run in the target
directory.

Care should be taken with the -D option where data and log directories are named relative
to the source directory but are not subdirectories (that is, the name includes the element
"..") Specifically, the constructed target directory names must be meaningful and distinct
from the source directory names, otherwise running recovery in the target directory might
corrupt the source data files.

It is an error to use absolute pathnames for data or log directories in this mode, as the
DB_CONFIG configuration file copied into the target directory would then point at the
source directories and running recovery would corrupt the source data files.

• -d

Specify one or more directories that contain data files to be copied to the target directory.

As all database files are copied into a single target directory, files named the same,
stored in different source directories, would overwrite each other when copied to the
target directory.

Please note the database environment recovery log references database files as they are
named by the application program. If the application uses absolute or relative pathnames
to name database files, (rather than filenames and the DbEnv::set_data_dir() (page 264)
method or the DB_CONFIG configuration file to specify filenames), running recovery in
the target directory may not properly find the copies of the files or might even find the
source files, potentially resulting in corruption.

• -F

Directly copy from the filesystem. This option can CORRUPT the backup if used while the
environment is active and the operating system does not support atomic file system reads.
This option is known to be safe only on UNIX systems, not Linux or Windows systems.

• -g

Turn on debugging options. In particular this will leave the log files in the backup directory
after running recovery.

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 652

• -h

Specify the source directory for the backup. That is, the database environment home
directory.

• -l

Specify a source directory that contains log files; if none is specified, the database
environment home directory will be searched for log files. If a relative path is specified, the
path is evaluated relative to the home directory.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings
as soon as possible, be aware there may be a window of vulnerability on systems where
unprivileged users can see command-line arguments or where utilities are not able to
overwrite the memory containing the command-line arguments.

• -u

Update a pre-existing hot backup snapshot by copying in new log files. If the -u option is
specified, no databases will be copied into the target directory. If applications that update
the environment are using the transactional bulk insert optimization, this option must be
used with special care. For more information, see the section on Hot Backup in the Getting
Started With Transaction Processing Guide.

• -V

Write the library version number to the standard output, and exit.

• -v

Run in verbose mode, listing operations as they are done.

The db_hotbackup utility uses a Berkeley DB environment (as described for the -h option,
the environment variable DB_HOME, or because the utility was run in a directory containing
a Berkeley DB environment). In order to avoid environment corruption when using a Berkeley
DB environment, db_hotbackup should always be given the chance to detach from the
environment and exit gracefully. To cause db_hotbackup to release all environment resources
and exit cleanly, send it an interrupt signal (SIGINT).

The db_hotbackup utility exits 0 on success, and >0 if an error occurs.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the
path of the database home, as described in the DbEnv::open() (page 252) method.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 653

db_load
db_load [-nTV] [-c name=value] [-f file]
 [-h home] [-P password] [-t btree | hash | queue | recno] file

db_load [-r lsn | fileid] [-h home] [-P password] file

The db_load utility reads from the standard input and loads it into the database file. The
database file is created if it does not already exist.

The input to db_load must be in the output format specified by the db_dump (page 646)
utility or as specified by the -T option below.

The options are as follows:

• -c

Specify configuration options ignoring any value they may have based on the input. The
command-line format is name=value. See the Supported Keywords section below for a list
of keywords supported by the -c option.

• -f

Read from the specified input file instead of from the standard input.

• -h

Specify a home directory for the database environment.

If a home directory is specified, the database environment is opened using the
DB_INIT_LOCK, DB_INIT_LOG, DB_INIT_MPOOL, DB_INIT_TXN, and DB_USE_ENVIRON flags to
DbEnv::open() (page 252) (This means that db_load can be used to load data into databases
while they are in use by other processes.) If the DbEnv::open() (page 252) call fails, or if no
home directory is specified, the database is still updated, but the environment is ignored;
for example, no locking is done.

• -n

Do not overwrite existing keys in the database when loading into an already existing
database. If a key/data pair cannot be loaded into the database for this reason, a warning
message is displayed on the standard error output, and the key/data pair are skipped.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings
as soon as possible, be aware there may be a window of vulnerability on systems where
unprivileged users can see command-line arguments or where utilities are not able to
overwrite the memory containing the command-line arguments.

• -r

Reset the database's file ID or log sequence numbers (LSNs).

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 654

All database pages in transactional environments contain references to the environment's
log records. In order to copy a database into a different database environment, database
page references to the old environment's log records must be reset, otherwise data
corruption can occur when the database is modified in the new environment. The -r lsn
option resets a database's log sequence numbers.

All databases contain an ID string used to identify the database in the database environment
cache. If a database is copied, and used in the same environment as another file with the
same ID string, corruption can occur. The -r fileid option resets a database's file ID to a new
value.

In both cases, the physical file specified by the file argument is modified in-place.

• -T

The -T option allows non-Berkeley DB applications to easily load text files into databases.

If the database to be created is of type Btree or Hash, or the keyword keys is specified as
set, the input must be paired lines of text, where the first line of the pair is the key item,
and the second line of the pair is its corresponding data item. If the database to be created
is of type Queue or Recno and the keyword keys is not set, the input must be lines of text,
where each line is a new data item for the database.

A simple escape mechanism, where newline and backslash (\) characters are special,
is applied to the text input. Newline characters are interpreted as record separators.
Backslash characters in the text will be interpreted in one of two ways: If the backslash
character precedes another backslash character, the pair will be interpreted as a literal
backslash. If the backslash character precedes any other character, the two characters
following the backslash will be interpreted as a hexadecimal specification of a single
character; for example, \0a is a newline character in the ASCII character set.

For this reason, any backslash or newline characters that naturally occur in the text input
must be escaped to avoid misinterpretation by db_load.

If the -T option is specified, the underlying access method type must be specified using the
-t option.

• -t

Specify the underlying access method. If no -t option is specified, the database will be
loaded into a database of the same type as was dumped; for example, a Hash database will
be created if a Hash database was dumped.

Btree and Hash databases may be converted from one to the other. Queue and Recno
databases may be converted from one to the other. If the -k option was specified on the
call to db_dump (page 646) then Queue and Recno databases may be converted to Btree or
Hash, with the key being the integer record number.

• -V

Write the library version number to the standard output, and exit.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 655

The db_load utility may be used with a Berkeley DB environment (as described for the -h
option, the environment variable DB_HOME, or because the utility was run in a directory
containing a Berkeley DB environment). In order to avoid environment corruption when using
a Berkeley DB environment, db_load should always be given the chance to detach from the
environment and exit gracefully. To cause db_load to release all environment resources and
exit cleanly, send it an interrupt signal (SIGINT).

The db_load utility exits 0 on success, 1 if one or more key/data pairs were not loaded into
the database because the key already existed, and >1 if an error occurs.

Examples

The db_load utility can be used to load text files into databases. For example, the following
command loads the standard UNIX /etc/passwd file into a database, with the login name as
the key item and the entire password entry as the data item:

 awk -F: '{print $1; print $0}' < /etc/passwd |
 sed 's/\\/\\\\/g' | db_load -T -t hash passwd.db

Note that backslash characters naturally occurring in the text are escaped to avoid
interpretation as escape characters by db_load.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the
path of the database home, as described in the DbEnv::open() (page 252) method.

Supported Keywords

The following keywords are supported for the -c command-line option to the db_load utility.
See the DbEnv::open() (page 252) method for further discussion of these keywords and what
values should be specified.

The parenthetical listing specifies how the value part of the name=value pair is interpreted.
Items listed as (boolean) expect value to be 1 (set) or 0 (unset). Items listed as (number)
convert value to a number. Items listed as (string) use the string value without modification.

• bt_minkey (number)

The minimum number of keys per page.

• chksum (boolean)

Enable page checksums.

• database (string)

The database to load.

• db_lorder (number)

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 656

The byte order for integers in the stored database metadata. For big endian systems, the
order should be 4,321 while for little endian systems is should be 1,234.

• db_pagesize (number)

The size of database pages, in bytes.

• duplicates (boolean)

The value of the DB_DUP flag.

• dupsort (boolean)

The value of the DB_DUPSORT flag.

• extentsize (number)

The size of database extents, in pages, for Queue databases configured to use extents.

• h_ffactor (number)

The density within the Hash database.

• h_nelem (number)

The size of the Hash database.

• keys (boolean)

Specify whether keys are present for Queue or Recno databases.

• re_len (number)

Specify the length for fixed-length records. This number represents different things,
depending on the access method the database is using. See the Db::set_re_len() (page 134)
method for details on what this number represents.

• re_pad (string)

Specify the fixed-length record pad character.

• recnum (boolean)

The value of the DB_RECNUM flag.

• renumber (boolean)

The value of the DB_RENUMBER flag.

• subdatabase (string)

The subdatabase to load.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 657

db_log_verify

 db_log_verify [-cNvV] [-h home to verify] [-H temporary home]
 [-P password] [-C cache size]
 [-b start lsn] [-e end lsn] [-s start time] [-z end time]
 [-d database file name] [-D database name]

The db_log_verify utility verifies the log files of a specific database environment. This utility
verifies a specific range of log records, or changed log records of a specific database.

Note

If the application(s) that use the environment make use of any of the following
methods:

DbEnv::add_data_dir() (page 211)
DbEnv::set_data_dir() (page 264)
DbEnv::set_lg_dir() (page 399)

then in order for this utility to run correctly, you need a DB_CONFIG file which sets
the proper paths using the add_data_dir (page 688), or set_lg_dir (page 709)
configuration parameters.

The options are as follows:

• -C

Specify the cache size (in megabytes) of the temporary database environment internally
used during the log verification.

• -b

Specify the starting log record (by lsn) to verify.

• -c

Specify whether to continue the verification after an error is detected. If not specified, the
verification stops when the first error is detected.

• -D

Specify a database name. Only log records related to this database are verified.

• -d

Specify a database file name. Only log records related this database file are verified.

• -e

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 658

Specify the ending log record by lsn.

• -h

Specify a home directory of the database environment whose log is to be verified.

• -H

Specify a home directory for this utility to create a temporarily database environment to
store runtime data during the verification.

It is an error to specify the same directory as the -h option. If this directory is not specified,
all temporary databases created during the verification will be in-memory, which is not a
problem if the log files to verify are not huge.

• -N

Do not acquire shared region mutexes while running. Other problems, such as potentially
fatal errors in Berkeley DB, are ignored as well. This option is intended only for debugging
errors, and should not be used under any other circumstances.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings
as soon as possible, there may be a window of vulnerability on systems where unprivileged
users can see command-line arguments or where utilities are not able to overwrite the
memory containing the command-line arguments.

• -s

Specify the starting log record by time. The time range specified is not precise because the
lsn of the most recent time point is used as the starting lsn.

• -V

Write the library version number to the standard output and exit.

• -v

Enable verbose mode to display verbose output during the verification process.

• -z

Specify the ending log record by time. The time range specified is not precise because the
lsn of the most recent time point is used as the ending lsn.

To specify a range of log records, you must provide either an lsn range or a time range. You
can neither specify both nor specify an lsn and a time as a range.

If the log footprint is over several megabytes, specify a home directory and a big cache size
for log verification internal use. Else, the process' private memory may be exhausted before
the verification completes.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 659

The db_log_verify utility does not perform the locking function, even in Berkeley DB
environments that are configured with a locking subsystem. All errors are written to stderr,
and all normal and verbose messages are written to stdout.

The db_log_verify utility can be used with a Berkeley DB environment (as described for the -
h option, the environment variable DB_HOME). To avoid environment corruption when using
a Berkeley DB environment, db_log_verify must be given the chance to detach from the
environment and exit gracefully. For the db_log_verify utility to release all environment
resources and exit, send an interrupt signal (SIGINT) to it.

The db_log_verify utility returns a non-zero error value on failure and 0 on success.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the
path of the database home, as described in the DbEnv::open() (page 252) method.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 660

db_printlog
db_printlog [-NrV] [-b start-LSN] [-e stop-LSN] [-h home] [-P password]

The db_printlog utility is a debugging utility that dumps Berkeley DB log files in a human-
readable format.

Note

If the application(s) that use the environment make use of any of the following
methods:

DbEnv::add_data_dir() (page 211)
DbEnv::set_data_dir() (page 264)
DbEnv::set_lg_dir() (page 399)

then in order for this utility to run correctly, you need a DB_CONFIG file which sets
the proper paths using the add_data_dir (page 688), or set_lg_dir (page 709)
configuration parameters.

The options are as follows:

• -b

Display log records starting at log sequence number (LSN) start-LSN; start-LSN is specified
as a file number, followed by a slash (/) character, followed by an offset number, with no
intervening whitespace.

• -e

Stop displaying log records at log sequence number (LSN) stop-LSN; stop-LSN is specified
as a file number, followed by a slash (/) character, followed by an offset number, with no
intervening whitespace.

• -h

Specify a home directory for the database environment; by default, the current working
directory is used.

• -N

Do not acquire shared region mutexes while running. Other problems, such as potentially
fatal errors in Berkeley DB, will be ignored as well. This option is intended only for
debugging errors, and should not be used under any other circumstances.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings
as soon as possible, be aware there may be a window of vulnerability on systems where
unprivileged users can see command-line arguments or where utilities are not able to
overwrite the memory containing the command-line arguments.

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 661

• -r

Read the log files in reverse order.

• -V

Write the library version number to the standard output, and exit.

For more information on the db_printlog output and using it to debug applications, see
Reviewing Berkeley DB log files.

The db_printlog utility uses a Berkeley DB environment (as described for the -h option, the
environment variable DB_HOME, or because the utility was run in a directory containing a
Berkeley DB environment). In order to avoid environment corruption when using a Berkeley DB
environment, db_printlog should always be given the chance to detach from the environment
and exit gracefully. To cause db_printlog to release all environment resources and exit
cleanly, send it an interrupt signal (SIGINT).

The db_printlog utility exits 0 on success, and >0 if an error occurs.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the
path of the database home, as described in the DbEnv::open() (page 252) method.

../../installation/debug_printlog.html

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 662

db_recover
db_recover [-cefVv] [-h home] [-P password] [-t [[CC]YY]MMDDhhmm[.SS]]]

The db_recover utility must be run after an unexpected application, Berkeley DB, or
system failure to restore the database to a consistent state. All committed transactions are
guaranteed to appear after db_recover has run, and all uncommitted transactions will be
completely undone.

Note that this utility performs the same action as if the environment is opened with the
DB_RECOVER flag. If DB_RECOVER is specified on environment open, then use of this utility is
not necessary.

Note

If the application(s) that use the environment make use of any of the following
methods:

DbEnv::add_data_dir() (page 211)
DbEnv::set_data_dir() (page 264)
DbEnv::set_lg_dir() (page 399)

then in order for this utility to run correctly, you need a DB_CONFIG file which sets
the proper paths using the add_data_dir (page 688), or set_lg_dir (page 709)
configuration parameters.

The options are as follows:

• -c

Perform catastrophic recovery instead of normal recovery.

• -e

Retain the environment after running recovery. This option will rarely be used unless a
DB_CONFIG file is present in the home directory. If a DB_CONFIG file is not present, then
the regions will be created with default parameter values.

• -f

Display a message on the standard output showing the percent of recovery completed.

• -h

Specify a home directory for the database environment; by default, the current working
directory is used.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings
as soon as possible, be aware there may be a window of vulnerability on systems where

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 663

unprivileged users can see command-line arguments or where utilities are not able to
overwrite the memory containing the command-line arguments.

• -t

Recover to the time specified rather than to the most current possible date. The timestamp
argument should be in the form [[CC]YY]MMDDhhmm[.SS] where each pair of letters
represents the following:

• CC

The first two digits of the year (the century).

• YY

The second two digits of the year. If "YY" is specified, but "CC" is not, a value for "YY"
between 69 and 99 results in a "CC" value of 19. Otherwise, a "CC" value of 20 is used.

• MM

The month of the year, from 1 to 12.

• DD

The day of the month, from 1 to 31.

• hh

The hour of the day, from 0 to 23.

• mm

The minute of the hour, from 0 to 59.

• SS

The second of the minute, from 0 to 61.

If the "CC" and "YY" letter pairs are not specified, the values default to the current year. If
the "SS" letter pair is not specified, the value defaults to 0.

• -V

Write the library version number to the standard output, and exit.

• -v

Run in verbose mode.

In the case of catastrophic recovery, an archival copy — or snapshot — of all database files
must be restored along with all of the log files written since the database file snapshot was
made. (If disk space is a problem, log files may be referenced by symbolic links). For further

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 664

information on creating a database snapshot, see Archival Procedures. For further information
on performing recovery, see Recovery Procedures.

If the failure was not catastrophic, the files present on the system at the time of failure are
sufficient to perform recovery.

If log files are missing, db_recover will identify the missing log file(s) and fail, in which case
the missing log files need to be restored and recovery performed again.

The db_recover utility uses a Berkeley DB environment (as described for the -h option, the
environment variable DB_HOME, or because the utility was run in a directory containing a
Berkeley DB environment). In order to avoid environment corruption when using a Berkeley DB
environment, db_recover should always be given the chance to detach from the environment
and exit gracefully. To cause db_recover to release all environment resources and exit
cleanly, send it an interrupt signal (SIGINT).

The db_recover utility exits 0 on success, and >0 if an error occurs.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the
path of the database home, as described in the DbEnv::open() (page 252) method.

../../programmer_reference/transapp_archival.html
../../programmer_reference/transapp_recovery.html

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 665

db_replicate
db_replicate [-MVv] [-h home]
 [-L file] [-P password] [-T num_threads] [-t secs]

The db_replicate utility is a daemon process that provides replication/HA services on a
transactional environment. This utility enables you to upgrade an existing Transactional Data
Store application to an HA application with minor modifications. For more information on the
db_replicate utility, see the Running Replication Using the db_replicate Utility section in the
Berkeley DB Programmer's Reference Guide.

Note

This utility is not supported for use with the DB SQL APIs.

The options are as follows:

• -h

Specify a home directory for the database environment; by default, the current working
directory is used.

• -L

Log the execution of the db_replicate utility to the specified file in the following format,
where ### is the process ID, and the date is the time the utility was started.

 db_replicate: ### Wed Jun 15 01:23:45 EDT 1995

Additionally, events such as site role changes will be noted in the log file. This file will be
removed if the db_replicate utility exits gracefully.

• -M

Start the db_replicate utility to be the master site of the replication group. Otherwise, the
site will be started as a client replica.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings
as soon as possible, be aware there may be a window of vulnerability on systems where
unprivileged users can see command-line arguments or where utilities are not able to
overwrite the memory containing the command-line arguments.

• -T

Specify the number of replication message processing threads.

• -t

Specify how often (in seconds) the utility will check for program interruption and resend the
last log record.

../../programmer_reference/rep_replicate.html

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 666

• -V

Write the library version number to the standard output, and exit.

• -v

Turn on replication verbose messages. These messages will be written to the standard
output and will be quite voluminous.

The db_replicate utility uses a Berkeley DB environment (as described for the -h option, the
environment variable DB_HOME, or because the utility was run in a directory containing a
Berkeley DB environment). In order to avoid environment corruption when using a Berkeley
DB environment, db_replicate should always be given the chance to detach from the
environment and exit gracefully. To cause db_replicate to release all environment resources
and exit cleanly, send it an interrupt signal (SIGINT).

The db_replicate utility does not attempt to create the Berkeley DB shared memory regions
if they do not already exist. The application that creates the region should be started first,
and once the region is created, the db_replicate utility should be started. The application
must use the DB_INIT_REP (page 253) and DB_THREAD (page 256) flags when creating the
environment.

The db_replicate utility exits 0 on success, and >0 if an error occurs.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the
path of the database home, as described in the DbEnv::open() (page 252) method.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 667

db_sql_codegen
db_sql_codegen [-i <ddl input file>] [-o <output C code file>]
 [-h <output header file>] [-t <test output file>]

Db_sql_codegen is a utility program that translates a schema description written in a SQL
Data Definition Language dialect into C code that implements the schema using Berkeley
DB. It is intended to provide a quick and easy means of getting started with Berkeley DB for
users who are already conversant with SQL. It also introduces a convenient way to express
a Berkeley DB schema in a format that is both external to the program that uses it and
compatible with relational databases.

The db_sql_codegen command reads DDL from an input stream, and writes C code to an
output stream. With no command line options, it will read from stdin and write to stdout. A
more common usage mode would be to supply the DDL in a named input file (-i option). With
only the -i option, db_sql_codegen will produce two files: a C-language source code (.c) file
and a C-language header (.h) file, with names that are derived from the name of the input
file. You can also control the names of these output files with the -o and -h options. The -x
option causes the generated code to be transaction-aware. Finally, the -t option will produce
a simple application that invokes the generated function API. This is a C-language source file
that includes a main function, and serves the dual purposes of providing a simple test for the
generated C code, and of being an example of how to use the generated API.

The options are as follows:

• -i<ddl input file>

Names the input file containing SQL DDL.

• -o <output C code file>

Names the output C-language source code file.

• -h <output header file>

Names the output C-language header file.

• -t <test output file>

Names the output C-langage test file.

• -x

Sets the default transaction mode to TRANSACTIONAL.

The db_sql_codegen utility exits 0 on success, and >0 if an error occurs.

Note that the db_sql_codegen utility is built only when --enable-sql_codegen option is passed
as an argument when you are configuring Berkeley DB. For more information, see "Configuring
Berkeley DB"

Input Syntax

The input file can contain the following SQL DDL statements.

../../installation/build_unix_conf.html
../../installation/build_unix_conf.html

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 668

• CREATE DATABASE

The DDL must contain a CREATE DATABASE statement. The syntax is simply

CREATE DATABASE name;

. The name given here is used as the name of the Berkeley DB environment in which the
Berkeley DB databases are created.

• CREATE TABLE

Each CREATE TABLE statement produces functions to create and delete a primary Berkeley
DB database. Also produced are functions to perform record insertion, retrieval and deletion
on this database.

CREATE TABLE establishes the field set of records that can be stored in the Berkeley DB
database. Every CREATE TABLE statement must identify a primary key to be used as the
lookup key in the Berkeley DB database.

Here is an example to illustrate the syntax of CREATE TABLE that is accepted by
db_sql_codegen:

CREATE TABLE person (person_id INTEGER PRIMARY KEY,
 name VARCHAR(64),
 age INTEGER);

This results in the creation of functions to manage a database in which every record is an
instance of the following C language data structure:

typedef struct _person_data {
 int person_id;
 char name[PERSON_DATA_NAME_LENGTH];
 int age;
} person_data;

• CREATE INDEX You can create secondary Berkeley DB databases to be used as indexes into a
primary database. For example, to make an index on the "name" field of the "person" table
mentioned above, the SQL DDL would be:

CREATE INDEX name_index ON person(name);

This causes db_sql_codegen to emit functions to manage creation and deletion of a
secondary database called "name_index," which is associated with the "person" database and
is set up to perform lookups on the "name" field.

Hint Comments

The SQL DDL input may contain comments. Two types of comments are recognized. C-style
comments begin with "/*" and end with "*/". These comments may extend over multiple lines.

Single line comments begin with "--" and run to the end of the line.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 669

If the first character of a comment is "+" then the comment is interpreted as a "hint
comment." Hint comments can be used to configure Berkeley DB features that cannot be
represented in SQL DDL.

Hint comments are comma-separated lists of property assignments of the form
"property=value." Hint comments apply to the SQL DDL statement that immediately precedes
their appearance in the input. For example:

CREATE DATABASE peopledb; /*+ CACHESIZE = 16m */

This causes the generated environment creation function to set the cache size to sixteen
megabytes.

In addition to the CACHESIZE example above, two other hint comment keywords are
recognized: DBTYPE and MODE.

After a CREATE TABLE or CREATE INDEX statement, you may set the database type by assigning
the DBTYPE property in a hint comment. Possible values for DBTYPE are BTREE and HASH.

After a CREATE DATABASE or CREATE TABLE statement, you may tell db_sql_codegen
whether to generate transaction-aware code by assigning the MODE property in a hint
comment. The possible values for MODE are TRANSACTIONAL and NONTRANSACTIONAL. By
default, generated code is not transaction-aware. If MODE=TRANSACTIONAL appears on a
CREATE DATABASE statement, then the default for every CREATE TABLE statement becomes
TRANSACTIONAL. Individual CREATE TABLE statements may have MODE=TRANSACTIONAL
or MODE=NONTRANSACTIONAL, to control whether the code generated for accessing and
updating the associated Berkeley DB database is transaction aware.

Transactions

By default, the code generated by db_sql_codegen is not transaction-aware. This means
that the generated API for reading and updating BDB databases operates in nontransactional
mode. When transactional mode is enabled, either through the command-line option -x
or by the inclusion of MODE-setting hint comments in the DDL source, the generated data
access functions take an extra argument which is a pointer to DB_TXN. To use transactions,
application code must acquire a DB_TXN from a call to DB_ENV->txn_begin, and supply a
pointer to this object when invoking the db_sql_codegen-generated functions that requre such
an argument.

Transaction-aware APIs that were generated by db_sql_codegen can be used in
nontransactional mode by passing NULL for the DB_TXN pointer arguments.

For more information about using BDB transactions, please consult the documentation for
Transaction Subsystem and Related Methods (page 603) .

Type Mapping

db_sql_codegen must map the schema expressed as SQL types into C language types. It
implements the following mappings:

BIN char[]
VARBIN char[]

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 670

CHAR char[]
VARCHAR char[]
VARCHAR2 char[]
BIT char
TINYINT char
SMALLINT short
INTEGER int
INT int
BIGINT long
REAL float
DOUBLE double
FLOAT double
DECIMAL double
NUMERIC double
NUMBER(p,s) int, long, float, or double

While BIN/VARBIN and CHAR/VARCHAR are both represented as char arrays, the latter are
treated as null-terminated C strings, while the former are treated as binary data.

The Oracle type NUMBER is mapped to different C types, depending on its precision and scale
values. If scale is 0, then it is mapped to an integer type (long if precision is greater than 9).
Otherwise it is mapped to a floating point type (float if precision is less than 7, otherwise
double).

Output

Depending on the options given on the command line, db_sql_codegen can produce three
separate files: a .c file containing function definitions that implement the generated API;
a .h file containing constants, data structures and prototypes of the generated functions; and
a second .c file that contains a sample program that invokes the generated API. The latter
program is usually referred to as a smoke test.

Given the following sample input in a file named "people.sql":

CREATE DATABASE peopledb;
CREATE TABLE person (person_id INTEGER PRIMARY KEY,
 name VARCHAR(64),
 age INTEGER);
CREATE INDEX name_index ON person(name);

The command

db_sql_codegen -i people.sql -t test_people.c

Will produce files named people.h, people.c, and test_people.c.

The file people.h will contain the information needed to use the generated API. Among other
things, an examination of the generated .h file will reveal:

#define PERSON_DATA_NAME_LENGTH 63

This is just a constant for the length of the string mapped from the VARCHAR field.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 671

typedef struct _person_data {
 int person_id;
 char name[PERSON_DATA_NAME_LENGTH];
 int age;
} person_data;

This is the data structure that represents the record type that is stored in the person
database. There's that constant being used.

int create_peopledb_env(DB_ENV **envpp);
int create_person_database(DB_ENV *envp, DB **dbpp);
int create_name_index_secondary(DB_ENV *envp, DB *primary_dbp,
 DB **secondary_dbpp);

These functions must be invoked to initialize the Berkeley DB environment. However, see the
next bit:

extern DB_ENV * peopledb_envp;
extern DB *person_dbp;
extern DB *name_index_dbp;

int initialize_peopledb_environment();

For convenience, db_sql_codegen provides global variables for the environment and
database, and a single initialization function that sets up the environment for you. You may
choose to use the globals and the single initialization function, or you may declare your own
DB_ENV and DB pointers, and invoke the individual create_* functions yourself.

The word "create" in these function names might be confusing. It means "create the
environment/database if it doesn't already exist; otherwise open it."

All of the functions in the generated API return Berkeley DB error codes. If the return value
is non-zero, there was an error of some kind, and an explanatory message should have been
printed on stderr.

int person_insert_struct(DB *dbp, person_data *personp);
int person_insert_fields(DB * dbp,
 int person_id,
 char *name,
 int age);

These are the functions that you'd use to store a record in the database. The first form takes a
pointer to the data structure that represents this record. The second form takes each field as
a separate argument.

If two records with the same primary key value are stored, the first one is lost.

int get_person_data(DB *dbp, int person_key, person_data *data);

This function retrieves a record from the database. It seeks the record with the supplied key,
and populates the supplied structure with the contents of the record. If no matching record is
found, the function returns DB_NOTFOUND.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 672

int delete_person_key(DB *dbp, int person_key);

This function removes the record matching the given key.

typedef void (*person_iteration_callback)(void *user_data,
 person_data *personp);

int person_full_iteration(DB *dbp,
 person_iteration_callback user_func,
 void *user_data);

This function performs a complete iteration over every record in the person table.
The user must provide a callback function which is invoked once for every record
found. The user's callback function must match the prototype provided in the typedef
"person_iteration_callback." In the callback, the "user_data" argument is passed unchanged
from the "user_data" argument given to person_full_iteration. This is provided so that the
caller of person_full_iteration can communicate some context information to the callback
function. The "personp" argument to the callback is a pointer to the record that was retrieved
from the database. Personp points to data that is valid only for the duration of the callback
invocation.

int name_index_query_iteration(DB *secondary_dbp,
 char *name_index_key,
 person_iteration_callback user_func,
 void *user_data);

This function performs lookups through the secondary index database. Because duplicate keys
are allowed in secondary indexes, this query might return multiple instances. This function
takes as an argument a pointer to a user-written callback function, which must match the
function prototype typedef mentioned above (person_iteration_callback). The callback is
invoked once for each record that matches the secondary key.

Test output

The test output file is useful as an example of how to invoke the generated API. It will contain
calls to the functions mentioned above, to store a single record and retrieve it by primary key
and through the secondary index.

To compile the test, you would issue a command such as

 cc -I$BDB_INSTALL/include -L$BDB_INSTALL/lib -o test_people people.c \
 test_people.c -ldb-4.8

This will produce the executable file test_people, which can be run to exercise the generated
API. The program generated from people.sql will create a database environment in a directory
named "peopledb." This directory must be created before the program is run.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 673

dbsql
dbsql [OPTIONS] FILENAME SQL

dbsql is a command line tool that provides access to the Berkeley DB SQL interface.

To build this tool, run the configure script with the --enable-sql option when you are
building the Berkeley DB SQL interface. For more information on building this tool, see
"Building for UNIX/POSIX".

FILENAME is the name of a Berkeley DB database file created with the SQL interface. A new
database is created if the file does not exist. The options are as follows:

• -init filename

Reads/processes named file.

• -echo

Prints commands before execution.

• -[no]header

Turns headers on or off.

• -bail

Stops after hitting an error.

• -interactive

Forces interactive I/O.

• -batch

Forces batch I/O.

• -column

Sets output mode to column.

• -csv

Sets output mode to csv.

• -html

Sets output mode to HTML.

• -line

Sets output mode to line.

• -list

../../installation/build_unix.html#build_unix_intro

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 674

Sets output mode to list.

• -separator 'x'

Sets output field separator (|).

• -nullvalue 'text'

Sets text string for NULL values.

• -version

Shows SQLite version.

The dbsql executable provides the same interface as the sqlite3 executable that is part of
SQLite. For more information on how to use dbsql see the SQLite Documentation page.

Command Line Features Unique to dbsql

This section describes pre-defined query statements that can be executed from the dbsql
command line. These queries take the form of:

 .stat ITEM

where ITEM is an optional parameter that indicates what statistics to print. If ITEM is not
specified, then this command prints statistics for the Berkeley DB environment, followed by
statistics for all tables and indexes within the database.

If ITEM is the name of a table or index, then this command prints statistics for the table or
index using the Db::stat_print() (page 147) method.

Otherwise, ITEM can be one of several keywords. They are:

• :env:

dbsql> .stat :env:

Causes this command to print statistics for the Berkeley DB environment using the
DbEnv::stat_print() (page 317). method.

• :rep:

dbsql> .stat :rep:

Causes this command to print a summary of replication statistics.

http://www.sqlite.org/sqlite.html

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 675

db_stat
db_stat -d file [-fN] [-h home] [-P password] [-s database]

db_stat [-cEelmNrtVxZ] [-C Aclop] [-h home] [-L A] [-M Ah] [-R A]
 [-P password]

The db_stat utility displays statistics for Berkeley DB environments.

The options are as follows:

• -C

Display detailed information about the locking subsystem.

• A

Display all information.

• c

Display lock conflict matrix.

• l

Display lockers within hash chains.

• o

Display lock objects within hash chains.

• p

Display locking subsystem parameters.

• -c

Display locking subsystem statistics, as described in the DbEnv::lock_stat() (page 361)
method.

• -d

Display database statistics for the specified file, as described in the Db::stat() (page 139)
method.

If the database contains multiple databases and the -s flag is not specified, the statistics are
for the internal database that describes the other databases the file contains, and not for
the file as a whole.

• -E

Display detailed information about the database environment.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 676

• -e

Display information about the database environment, including all configured subsystems of
the database environment.

• -f

Display only those database statistics that can be acquired without traversing the database.

• -h

Specify a home directory for the database environment; by default, the current working
directory is used.

• -l

Display logging subsystem statistics, as described in the DbEnv::log_stat() (page 392)
method.

• -L

Display all logging subsystem statistics.

• A

Display all information.

• -M

Display detailed information about the cache.

• A

Display all information.

• h

Display buffers within hash chains.

• -m

Display cache statistics, as described in the DbEnv::memp_stat() (page 426) method.

• -N

Do not acquire shared region mutexes while running. Other problems, such as potentially
fatal errors in Berkeley DB, will be ignored as well. This option is intended only for
debugging errors, and should not be used under any other circumstances.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings
as soon as possible, be aware there may be a window of vulnerability on systems where

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 677

unprivileged users can see command-line arguments or where utilities are not able to
overwrite the memory containing the command-line arguments.

• -R

Display detailed information about the replication subsystem.

• A

Display all information.

• -r

Display replication statistics, as described in in the DbEnv::rep_stat() (page 549) method.

• -s

Display statistics for the specified database contained in the file specified with the -d flag.

• -t

Display transaction subsystem statistics, as described in the DbEnv::txn_stat() (page 619)
method.

• -V

Write the library version number to the standard output, and exit.

• -x

Display mutex subsystem statistics, as described in the DbEnv::mutex_stat() (page 494)
method.

• -Z

Reset the statistics after reporting them; valid only with the -C, -c, -E, -e, -L, -l, -M, -m, -
R, -r, and -t options.

Values normally displayed in quantities of bytes are displayed as a combination of gigabytes
(GB), megabytes (MB), kilobytes (KB), and bytes (B). Otherwise, values smaller than 10 million
are displayed without any special notation, and values larger than 10 million are displayed as
a number followed by "M".

The db_stat utility may be used with a Berkeley DB environment (as described for the -h
option, the environment variable DB_HOME, or because the utility was run in a directory
containing a Berkeley DB environment). In order to avoid environment corruption when using
a Berkeley DB environment, db_stat should always be given the chance to detach from the
environment and exit gracefully. To cause db_stat to release all environment resources and
exit cleanly, send it an interrupt signal (SIGINT).

The db_stat utility exits 0 on success, and >0 if an error occurs.

For information on the statistics feature for Berkeley DB SQL interface, see Command Line
Features Unique to dbsql (page 674).

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 678

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the
path of the database home, as described in the DbEnv::open() (page 252) method.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 679

db_tuner
db_tuner [-c cachesize] -d file [-h home] [-s database] [-v]

The db_tuner utility analyzes the data in a btree database, and suggests a page size that is
likely to deliver optimal operation.

Note

The db_tuner utility assumes that databases are compacted when analysing the data.
The analysis is based on a static view of the data and the data access and update
patterns are not take into account.

The options are as follows:

• -c

Specify a value of the cachesize, otherwise, the default value will be set.

• -d

Display database statistics for the specified file. If the database contains multiple databases
and the -s flag is not specified, the statistics are for the internal database that describes
the other databases the file contains, and not for the file as a whole.

• -h

Specify a home directory for the database environment.

• -s

Display page size recommendation for the specified database contained in the file specified
with the -d flag.

• -v

Display verbose information.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 680

db_upgrade
db_upgrade [-NsVv] [-h home] [-P password] file ...

The db_upgrade utility upgrades the Berkeley DB version of one or more files and the
databases they contain to the current release version.

The options are as follows:

• -h

Specify a home directory for the database environment; by default, the current working
directory is used.

• -N

Do not acquire shared region mutexes while running. Other problems, such as potentially
fatal errors in Berkeley DB, will be ignored as well. This option is intended only for
debugging errors, and should not be used under any other circumstances.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings
as soon as possible, be aware there may be a window of vulnerability on systems where
unprivileged users can see command-line arguments or where utilities are not able to
overwrite the memory containing the command-line arguments.

• -s

This flag is only meaningful when upgrading databases from releases before the Berkeley DB
3.1 release.

As part of the upgrade from the Berkeley DB 3.0 release to the 3.1 release, the on-disk
format of duplicate data items changed. To correctly upgrade the format requires that
applications specify whether duplicate data items in the database are sorted or not.
Specifying the -s flag means that the duplicates are sorted; otherwise, they are assumed to
be unsorted. Incorrectly specifying the value of this flag may lead to database corruption.

Because the db_upgrade utility upgrades a physical file (including all the databases it
contains), it is not possible to use db_upgrade to upgrade files where some of the databases
it includes have sorted duplicate data items, and some of the databases it includes have
unsorted duplicate data items. If the file does not have more than a single database, if the
databases do not support duplicate data items, or if all the databases that support duplicate
data items support the same style of duplicates (either sorted or unsorted), db_upgrade
will work correctly as long as the -s flag is correctly specified. Otherwise, the file cannot be
upgraded using db_upgrade, and must be upgraded manually using the db_dump (page 646)
and db_load (page 653) utilities.

• -V

Write the library version number to the standard output, and exit.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 681

• -v

Run in verbose mode, displaying a message for each successful upgrade.

It is important to realize that Berkeley DB database upgrades are done in place, and
so are potentially destructive. This means that if the system crashes during the upgrade
procedure, or if the upgrade procedure runs out of disk space, the databases may be left in an
inconsistent and unrecoverable state. See Upgrading databases for more information.

The db_upgrade utility may be used with a Berkeley DB environment (as described for the -
h option, the environment variable DB_HOME, or because the utility was run in a directory
containing a Berkeley DB environment). In order to avoid environment corruption when using a
Berkeley DB environment, db_upgrade should always be given the chance to detach from the
environment and exit gracefully. To cause db_upgrade to release all environment resources
and exit cleanly, send it an interrupt signal (SIGINT).

The db_upgrade utility exits 0 on success, and >0 if an error occurs.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the
path of the database home, as described in the DbEnv::open() (page 252) method.

../../programmer_reference/am_upgrade.html

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 682

db_verify
db_verify [-NoqV] [-h home] [-P password] file ...

The db_verify utility verifies the structure of one or more files and the databases they
contain.

The options are as follows:

• -h

Specify a home directory for the database environment; by default, the current working
directory is used.

• -o

Skip the database checks for btree and duplicate sort order and for hashing.

If the file being verified contains databases with non-default comparison or hashing
configurations, calling the db_verify utility without the -o flag will usually return failure.
The -o flag causes db_verify to ignore database sort or hash ordering and allows db_verify
to be used on these files. To fully verify these files, verify them explicitly using the
Db::verify() (page 154) method, after configuring the correct comparison or hashing
functions.

• -N

Do not acquire shared region mutexes while running. Other problems, such as potentially
fatal errors in Berkeley DB, will be ignored as well. This option is intended only for
debugging errors, and should not be used under any other circumstances.

• -P

Specify an environment password. Although Berkeley DB utilities overwrite password strings
as soon as possible, be aware there may be a window of vulnerability on systems where
unprivileged users can see command-line arguments or where utilities are not able to
overwrite the memory containing the command-line arguments.

• -q

Suppress the printing of any error descriptions, simply exit success or failure.

• -V

Write the library version number to the standard output, and exit.

The db_verify utility does not perform any locking, even in Berkeley DB environments that
are configured with a locking subsystem. As such, it should only be used on files that are
not being modified by another thread of control.

The db_verify utility may be used with a Berkeley DB environment (as described for the -
h option, the environment variable DB_HOME, or because the utility was run in a directory

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 683

containing a Berkeley DB environment). In order to avoid environment corruption when using
a Berkeley DB environment, db_verify should always be given the chance to detach from the
environment and exit gracefully. To cause db_verify to release all environment resources and
exit cleanly, send it an interrupt signal (SIGINT).

The db_verify utility exits 0 on success, and >0 if an error occurs.

Environment Variables

DB_HOME

If the -h option is not specified and the environment variable DB_HOME is set, it is used as the
path of the database home, as described in the DbEnv::open() (page 252) method.

Library Version 11.2.5.2 Berkeley DB Command Line Utilities

6/10/2011 DB C++ API Page 684

sqlite3

Sqlite3 is a command line tool that enables you to manually enter and execute SQL
commands. It is identical to the dbsql executable but named so that existing scripts for SQLite
can easily work with Berkeley DB. To build this tool, run the configure script with the --
enable-sql_compat option when you are building the Berkeley DB SQL interface.

For more information on building this tool, see the "Building for UNIX/POSIX"

For more information on how to use Sqlite3 see the SQLite Documentation page.

../../installation/build_unix.html#build_unix_intro
http://www.sqlite.org/sqlite.html

6/10/2011 DB C++ API Page 685

Appendix B. DB_CONFIG Parameter
Reference

The following DB_CONFIG parameters can be used to manage various aspects of your
application's database environment.

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 686

DB_CONFIG Parameters

DB_CONFIG Parameters Description

add_data_dir Sets the mutex alignment.

mutex_set_align Sets the mutex alignment.

mutex_set_increment Configures the number of additional mutexes
to allocate.

mutex_set_max Configures the total number of mutexes to
allocate.

mutex_set_tas_spins Specifies the number of times the test-and-
set mutexes should spin without blocking.

rep_set_clockskew Sets the clock skew ratio.

rep_set_config Configures the Berkeley DB replication
subsystem.

rep_set_limit Sets record transmission throttling.

rep_set_nsites Specifies the total number of sites in a
replication group.

rep_set_priority Specifies the database environment's priority.

rep_set_request Sets a threshold before requesting
retransmission of a missing message.

rep_set_timeout Specifies a variety of replication timeout
values.

repmgr_set_ack_policy Specifies how master and client sites will
handle acknowledgment.

repmgr_site Identifies a Replication Manager host.

set_cachesize Sets the size of the shared memory buffer
pool.

set_cache_max Sets the maximum size for set_cachesize
parameter.

set_create_dir Sets the directory path to create the access
method database files.

set_flags Configures a database environment.

set_intermediate_dir_mode Configures the directory permissions.

set_lg_bsize Sets the size of the in-memory log buffer.

set_lg_dir Sets the path of the directory for logging
files.

set_lg_filemode Sets the absolute file mode for created log
files.

set_lg_max Sets the maximum size of a single file in the
log.

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 687

DB_CONFIG Parameters Description

set_lg_regionmax Sets the size of the underlying logging area.

set_lk_detect Sets the maximum number of locking entities.

set_lk_max_lockers Sets the maximum number of locking entities.

set_lk_max_locks Sets the maximum number of locks supported
by the Berkeley DB environment.

set_lk_max_objects Sets the maximum number of locked objects.

set_lk_partitions Sets the number of lock table partitions in the
Berkeley DB environment.

log_set_config Configures the Berkeley DB logging subsystem.

set_mp_max_openfd Limits the number of file descriptors the
library will open concurrently when flushing
dirty pages from the cache.

set_mp_max_write Limits the number of sequential write
operations

set_mp_mmapsize Sets the maximum file size.

set_open_flags Initializes specific subsystems of the Berkeley
DB environment.

set_shm_key Configures the database environment's base
segment ID.

set_thread_count Declares an approximate number of threads in
the database environment.

set_timeout Sets timeout values for locks or transactions.

set_tmp_dir Specifies the directory path of temporary
files.

set_tx_max Configures support of simultaneously active
transactions.

set_verbose Enables/disables the Berkeley DB message
output.

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 688

add_data_dir

Add the path of a directory to be used as the location of the access method database files.
Paths specified to the Db::open() (page 69) function will be searched relative to this path.
Paths set using this method are additive, and specifying more than one will result in each
specified directory being searched for database files.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
add_data_dir, one or more whitespace characters, and the directory name.

For more information, see DbEnv::add_data_dir() (page 211).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 689

mutex_set_align

Sets the mutex alignment, in bytes. It is sometimes advantageous to align mutexes on specific
byte boundaries in order to minimize cache line collisions. This parameter specifies an
alignment for mutexes allocated by Berkeley DB.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
mutex_set_align, one or more whitespace characters, and the mutex alignment in bytes.
Because the DB_CONFIG file is read when the database environment is opened, it will silently
overrule configuration done before that time.

For more information, see DbEnv::mutex_set_align() (page 486).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 690

mutex_set_increment

Configures the number of additional mutexes to allocate. If an application will allocate
mutexes for its own use, this parameter is used to add a number of mutexes to the default
allocation.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
mutex_set_increment, one or more whitespace characters, and the number of additional
mutexes. Because the DB_CONFIG file is read when the database environment is opened, it
will silently overrule configuration done before that time.

For more information, see DbEnv::mutex_set_increment() (page 488).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 691

mutex_set_max

Configures the total number of mutexes to allocate. Berkeley DB allocates a default number
of mutexes based on the initial configuration of the database environment. That default
calculation may be too small if the application has an unusual need for mutexes. This
parameter is used to specify an absolute number of mutexes to allocate.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
mutex_set_max, one or more whitespace characters, and the total number of mutexes.
Because the DB_CONFIG file is read when the database environment is opened, it will silently
overrule configuration done before that time.

For more information, see DbEnv::mutex_set_max() (page 491).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 692

mutex_set_tas_spins

Specifies the number of times the test-and-set mutexes should spin without blocking. The
value defaults to 1 time on uniprocessor systems and to 50 times the number of processors on
multiprocessor systems.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_tas_spins, one or more whitespace characters, and the number of spins.

For more information, see DbEnv::mutex_set_tas_spins() (page 493).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 693

rep_set_clockskew

Sets the clock skew ratio among replication group members based on the fastest and slowest
measurements among the group for use with master leases.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
rep_set_clockskew, one or more whitespace characters, and the clockskew specified in two
parts: the fast_clock and the slow_clock.

For example:

rep_set_clockskew 102 100

Sets the fast_clock to 102 and the slow_clock to 100 if a group of sites has a 2% variance.

For more information, see DbEnv::rep_set_clockskew() (page 529).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 694

rep_set_config

Configures the Berkeley DB replication subsystem.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
rep_set_config, one or more whitespace characters, and the method parameter as a string
and optionally one or more whitespace characters, and the string on or off. If the optional
string is omitted, the default is on. For example:

rep_set_config DB_REP_CONF_NOWAIT on

or

rep_set_config DB_REP_CONF_NOWAIT

Configures the Berkeley DB replication subsystem such that the method calls that would
normally block while clients are in recovery will return errors immediately.

The method parameters are:

• DB_REP_CONF_AUTOINIT

• DB_REP_CONF_BULK

• DB_REP_CONF_DELAYCLIENT

• DB_REP_CONF_INMEM

• DB_REP_CONF_LEASE

• DB_REP_CONF_NOWAIT

• DB_REPMGR_CONF_ELECTIONS

• DB_REPMGR_CONF_2SITE_STRICT

For more information, see DbEnv::rep_set_config() (page 531).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 695

rep_set_limit

Sets record transmission throttling. This is a bytecount limit on the amount of data that
will be transmitted from a site in response to a single message processed by the DB_ENV-
>rep_process_message method.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
rep_set_limit, one or more whitespace characters, and the limit specified in two parts: the
gigabytes and the bytes values. For example:

rep_set_limit 0 1048576

Sets a 1 megabyte limit.

For more information, see DbEnv::rep_set_limit() (page 534).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 696

rep_set_nsites

Specifies the total number of sites in a replication group. This parameter is ignored for
Replication Manager applications.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
rep_set_nsites, one or more whitespace characters, and the number of sites specified. For
example:

rep_set_nsites 5

Sets the number of sites to 5.

For more information, see DbEnv::rep_set_nsites() (page 536).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 697

rep_set_priority

Specifies the database environment's priority in replication group elections. A special value of
0 indicates that this environment cannot be a replication group master.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
rep_set_priority, one or more whitespace characters, and the priority of this site. For
example:

rep_set_priority 1

Sets the priority of this site to 1.

For more information, see DbEnv::rep_set_priority() (page 538).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 698

rep_set_request

Sets a threshold for the minimum and maximum time that a client waits before requesting
retransmission of a missing message.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
rep_set_request, one or more whitespace characters, and the request time specified in
two parts: the min and the max. Specifically, if the client detects a gap in the sequence of
incoming log records or database pages, Berkeley DB will wait for at least min microseconds
before requesting retransmission of the missing record. Berkeley DB will double that amount
before requesting the same missing record again, and so on, up to a maximum threshold of
max microseconds.

By default the minimum is 40000 and the maximum is 1280000 (1.28 seconds). These defaults
are fairly arbitrary and the application likely needs to adjust these. The values should be
based on expected load and performance characteristics of the master and client host
platforms and transport infrastructure as well as round-trip message time.

For more information, see DbEnv::rep_set_request() (page 539).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 699

rep_set_timeout

Specifies a variety of replication timeout values.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
rep_set_timeout, one or more whitespace characters, and the flag specified as a string and
the timeout specified as two parts. For example:

rep_set_timeout DB_REP_CONNECTION_RETRY 15000000

Specifies the connection retry timeout as 15 seconds.

The flag value can be any one of the following:

• DB_REP_ACK_TIMEOUT

• DB_REP_CHECKPOINT_DELAY

• DB_REP_CONNECTION_RETRY

• DB_REP_ELECTION_TIMEOUT

• DB_REP_ELECTION_RETRY

• DB_REP_FULL_ELECTION_TIMEOUT

• DB_REP_HEARTBEAT_MONITOR

• DB_REP_HEARTBEAT_SEND

• DB_REP_LEASE_TIMEOUT

For more information, see DbEnv::rep_set_timeout() (page 541).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 700

repmgr_set_ack_policy

Specifies how master and client sites will handle acknowledgment of replication messages
which are necessary for "permanent" records.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
repmgr_set_ack_policy, one or more whitespace characters, and the ack_policy parameter
specified as a string. For example:

repmgr_set_ack_policy DB_REPMGR_ACKS_ALL

Specifies that the master should wait until all replication clients have acknowledged each
permanent replication message.

The ack_policy parameters are:

• DB_REPMGR_ACKS_ALL

• DB_REPMGR_ACKS_ALL_AVAILABLE

• DB_REPMGR_ACKS_ALL_PEERS

• DB_REPMGR_ACKS_NONE

• DB_REPMGR_ACKS_ONE

• DB_REPMGR_ACKS_ONE_PEER

• DB_REPMGR_ACKS_QUORUM

For more information, see DbEnv::repmgr_set_ack_policy() (page 564).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 701

repmgr_site

Identifies a Replication Manager host site.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
repmgr_site, one or more whitespace characters, the host and port parameters specified as
a string and an integer respectively. This can optionally be followed by one or more space-
delimited keywords and on/off. For example:

repmgr_site example.com 49200 db_local_site on db_legacy off

Available keywords are:

• db_bootstrap_helper

If turned on, the identified site may be used as a "helper" when the local site is first joining
the replication group. Once the local site has been established as a member of the group,
this setting is ignored.

• db_group_creator

If turned on, this site should create the initial membership database contents, defining a
"group" of just the one site, rather than trying to join an existing group when it starts for
the first time.

• db_legacy

If turned on, specifies that the site is already part of an existing group. This setting causes
the site to be upgraded from a previous version of BDB. All sites in the legacy group must
specify this setting for themselves (the local site) and for all other sites currently existing in
the group. Once the upgrade has been completed, this setting is no longer required.

• db_local_site

If turned on, specifies that this site is the local site within the replication group. The
application must identify exactly one site as the local site before replication is started.

• db_repmgr_peer

If turned on, specifies that the site may be used as a target for "client-to-client"
synchronization messages. This setting is ignored if it is turned on for the local site.

For more information, see DbSite::set_config() (page 514).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 702

set_cachesize

Sets the size of the shared memory buffer pool — that is, the cache. The cache should be the
size of the normal working data set of the application, with some small amount of additional
memory for unusual situations. (Note: the working set is not the same as the number of pages
accessed simultaneously, and is usually much larger.)

The value specified for this parameter is the maximum value that your application will be able
to use for your in-memory cache. If your application does not have enough data to fill up the
amount of space specified here, then your application will only use the amount of memory
required by the data that your application does have.

For the DB, the default cache size is 8MB. You cannot specify a cache size value of less than
100KB.

Any cache size less than 500MB is automatically increased by 25% to account for cache
overhead; cache sizes larger than 500MB are used as specified. The maximum size of a single
cache is 4GB on 32-bit systems and 10TB on 64-bit systems. (All sizes are in powers-of-two,
that is, 256KB is 2^18 not 256,000.)

It is possible to specify cache sizes large enough they cannot be allocated contiguously on
some architectures. For example, some releases of Solaris limit the amount of memory that
may be allocated contiguously by a process. If ncache is 0 or 1, the cache will be allocated
contiguously in memory. If it is greater than 1, the cache will be split across ncache separate
regions, where the region size is equal to the initial cache size divided by ncache.

The cache size supplied to this parameter will be rounded to the nearest multiple of the
region size and may not be larger than the maximum possible cache size configured for your
application (use the set_cache_max (page 703) to do this). The ncache parameter is ignored
when resizing the cache.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_cachesize, one or more whitespace characters, and the initial cache size specified in
three parts: the gigabytes of cache, the additional bytes of cache, and the number of caches,
also separated by whitespace characters. For example:

set_cachesize 2 524288000 1

Creates a single 2.5GB physical cache.

Note that this parameter is ignored unless it is specified before you initially create your
environment, or you re-create your environment after changing it.

For more information, see DbEnv::set_cachesize() (page 437).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 703

set_cache_max

Sets the maximum size that the set_cachesize parameter is allowed to set. The specified
size is rounded to the nearest multiple of the cache region size, which is the initial cache size
divided by the number of regions specified to the set_cachesize parameter. If no value is
specified, it defaults to the initial cache size.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_cache_max, one or more whitespace characters, and the maximum cache size in bytes,
specified in two parts: the gigabytes of cache and the additional bytes of cache. For example:

set_cache_max 2 524288000

Sets the maximum cache size to 2.5GB.

This parameter can be changed with a simple restart of your application; you do not need to
re-create your environment for it to be changed.

For more information, see DbEnv::set_cache_max() (page 435).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 704

set_create_dir

Sets the path of a directory to be used as the location to create the access method database
files.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_create_dir, one or more whitespace characters, and the directory name.

For example:

set_create_dir /b/data2

Sets data2 as the location to create the access method database files. When the
Db::open() (page 69) function is used to create a file, it will be created relative to this path.

For more information, see DbEnv::set_create_dir() (page 266).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 705

set_flags

Configures a database environment.

The syntax of the entry in the DB_CONFIG file is a single line with the string set_flags, one
or more whitespace characters, the method flag parameter as a string, optionally one or more
whitespace characters, and the string on or off. If the optional string is omitted, the default
is on; for example, set_flags DB_TXN_NOSYNC or set_flags DB_TXN_NOSYNC on. Because
the DB_CONFIG file is read when the database environment is opened, it will silently overrule
configuration done before that time.

The method flag parameters are as follows:

• DB_AUTO_COMMIT
Enables/disables to automatically enclose those DB handle operations for which no explicit
transaction handle was specified, and which modify databases in the database environment,
within a transaction.

• DB_CDB_ALLDB
Enables/disables Berkeley DB Concurrent Data Store applications to perform locking on an
environment-wide basis rather than on a per-database basis.

• DB_DIRECT_DB
Enables/disables turning off system buffering of Berkeley DB database files to avoid double
caching.

• DB_DSYNC_DB
Enables/disables configuring Berkeley DB to flush database writes to the backing disk before
returning from the write system call, rather than flushing database writes explicitly in a
separate system call, as necessary.

• DB_MULTIVERSION
Enables/disables all databases in the environment from being opened as if
DB_MULTIVERSION is passed to the DB->open method. This flag will be ignored for queue
databases for which DB_MULTIVERSION is not supported.

• DB_NOMMAP
Enables/disables Berkeley DB from copying read-only database files into the local cache
instead of potentially mapping them into process memory.

• DB_REGION_INIT
Enables/disables Berkeley DB to page-fault shared regions into memory when initially
creating or joining a Berkeley DB environment. In addition, Berkeley DB will write the
shared regions when creating an environment, forcing the underlying virtual memory and
filesystems to instantiate both the necessary memory and the necessary disk space.

• DB_TIME_NOTGRANTED
Enables/disables those database calls timing out based on lock or transaction timeout values
to return DB_LOCK_NOTGRANTED instead of DB_LOCK_DEADLOCK. This allows applications
to distinguish between operations which have deadlocked and operations which have
exceeded their time limits.

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 706

• DB_TXN_NOSYNC
Enables/disables Berkeley DB to not write or synchronously flush the log on transaction
commit.

• DB_TXN_NOWAIT
Enables/disables the operation to return DB_LOCK_DEADLOCK if a lock is unavailable for any
Berkeley DB operation performed in the context of a transaction.

• DB_TXN_SNAPSHOT
Enables/disables all transactions in the environment to be started as if DB_TXN_SNAPSHOT
were passed to the DB_ENV->txn_begin method, and all non-transactional cursors to be
opened as if DB_TXN_SNAPSHOT were passed to the DB->cursor method.

• DB_TXN_WRITE_NOSYNC
Enables/disables Berkeley DB to write, but not synchronously flush, the log on transaction
commit.

• DB_YIELDCPU
Enables/disables Berkeley DB to yield the processor immediately after each page or mutex
acquisition.

For more information, see DbEnv::set_flags() (page 283).

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 707

set_intermediate_dir_mode

Configures the database environment's intermediate directory permissions.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_intermediate_dir_mode, one or more whitespace characters, and the directory
permissions.

Directory permissions are interpreted as a string of nine characters, using the character
set r (read), w (write), x (execute or search), and - (none). The first character is the read
permissions for the directory owner (set to either r or -). The second character is the write
permissions for the directory owner (set to either w or -). The third character is the execute
permissions for the directory owner (set to either x or -).

Similarly, the second set of three characters are the read, write and execute/search
permissions for the directory group, and the third set of three characters are the read,
write and execute/search permissions for all others. For example, the string rwx------ would
configure read, write and execute/search access for the owner only. The string rwxrwx---
would configure read, write and execute/search access for both the owner and the group.
The string rwxr----- would configure read, write and execute/search access for the directory
owner and read-only access for the directory group.

For more information, see DbEnv::set_intermediate_dir_mode() (page 290).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 708

set_lg_bsize

Sets the size of the in-memory log buffer, in bytes.

For the DB, when the logging subsystem is configured for on-disk logging, the default size of
the in-memory log buffer is approximately 32KB. For the BDB SQL interface, when the logging
subsystem is configured for on-disk logging, the default size of the in-memory log buffer is
approximately 64KB. Log information is stored in-memory until the storage space fills up or a
transaction commit forces the information to be flushed to stable storage. In the presence of
long-running transactions or transactions producing large amounts of data, larger buffer sizes
can increase throughput.

When the logging subsystem is configured for in-memory logging, the default size of the in-
memory log buffer is 1MB. Log information is stored in-memory until the storage space fills
up or transaction abort or commit frees up the memory for new transactions. In the presence
of long-running transactions or transactions producing large amounts of data, the buffer size
must be sufficient to hold all log information that can accumulate during the longest running
transaction. When choosing log buffer and file sizes for in-memory logs, applications should
ensure the in-memory log buffer size is large enough that no transaction will ever span the
entire buffer, and avoid a state where the in-memory buffer is full and no space can be freed
because a transaction that started in the first log "file" is still active.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_lg_bsize, one or more whitespace characters, and the log buffer size in bytes.

If the database environment already exists when this parameter is changed, it is ignored. To
change this value after the environment has been created, re-create your environment.

For more information, see DbEnv::set_lg_bsize() (page 397).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 709

set_lg_dir

Sets the path of the directory to be used as the location of logging files. Log files created
by the Log Manager subsystem will be created in this directory. If no logging directory is
specified, log files are created in the environment home directory.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_lg_dir, one or more whitespace characters, and the directory name.

For more information, see DbEnv::set_lg_dir() (page 399).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 710

set_lg_filemode

Sets the absolute file mode for created log files. This method is only useful for the rare
Berkeley DB application that does not control its umask value.

Normally, if Berkeley DB applications set their umask appropriately, all processes in the
application suite will have read permission on the log files created by any process in the
application suite. However, if the Berkeley DB application is a library, a process using the
library might set its umask to a value preventing other processes in the application suite from
reading the log files it creates. In this rare case, use the set_lg_filemode parameter to set the
mode of created log files to an absolute value.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_lg_filemode, one or more whitespace characters, and the absolute mode of created log
files.

For more information, see DbEnv::set_lg_filemode() (page 401).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 711

set_lg_max

Sets the maximum size of a single file in the log, in bytes. The value set for this parameter
may not be larger than the maximum unsigned four-byte value.

When the logging subsystem is configured for on-disk logging, the default size of a log file is
10MB.

When the logging subsystem is configured for in-memory logging, the default size of a log
file is 256KB. In addition, the configured log buffer size must be larger than the log file size.
(The logging subsystem divides memory configured for in-memory log records into "files", as
database environments configured for in-memory log records may exchange log records with
other members of a replication group, and those members may be configured to store log
records on-disk.) When choosing log buffer and file sizes for in-memory logs, applications
should ensure the in-memory log buffer size is large enough that no transaction will ever span
the entire buffer, and avoid a state where the in-memory buffer is full and no space can be
freed because a transaction that started in the first log "file" is still active.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_lg_max, one or more whitespace characters, and the maximum log file size in bytes.

If the database environment already exists when this parameter is changed, it is ignored. To
change this value after the environment has been created, re-create your environment.

For more information, see DbEnv::set_lg_max() (page 402).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 712

set_lg_regionmax

Sets the size of the underlying logging area of the Berkeley DB environment, in bytes. By
default, or if the value is set to 0, the minimum region size is used, approximately 128KB.
The log region is used to store filenames, and so may need to be increased in size if a large
number of files will be opened and registered with the specified Berkeley DB environment's log
manager.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_lg_regionmax, one or more whitespace characters, and the log region size in bytes.

If the database environment already exists when this parameter is changed, it is ignored. To
change this value after the environment has been created, re-create your environment.

For more information, see DbEnv::get_lg_regionmax() (page 378).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 713

set_lk_detect

Sets the maximum number of locking entities supported by the Berkeley DB environment. This
value is used by Berkeley DB to estimate how much space to allocate for various lock-table
data structures. When using the DB, the default value is 2,000 lockers.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_lk_detect, one or more whitespace characters, and the method detect parameter as
a string. The detect parameter configures the deadlock detector. The deadlock detector will
reject the lock request with the lowest priority. If multiple lock requests have the lowest
priority, then the detect parameter is used to select which of those lock requests to reject.

For example:

set_lk_detect DB_LOCK_OLDEST

Sets the deadlock detector such that the lock request for the locker ID with the oldest lock is
rejected.

The detect parameter values are:

• DB_LOCK_DEFAULT

• DB_LOCK_EXPIRE

• DB_LOCK_MAXLOCKS

• DB_LOCK_MAXWRITE

• DB_LOCK_MINLOCKS

• DB_LOCK_MINWRITE

• DB_LOCK_OLDEST

• DB_LOCK_RANDOM

• DB_LOCK_YOUNGEST

For more information, see DbEnv::set_lk_detect() (page 340).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 714

set_lk_max_lockers

Sets the maximum number of locking entities supported by the Berkeley DB environment. This
value is used by Berkeley DB to estimate how much space to allocate for various lock-table
data structures. When using the DB, the default value is 1,000 lockers. When using the BDB
SQL interface, the default value is 2,000 lockers.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_lk_max_lockers, one or more whitespace characters, and the number of lockers.

If the database environment already exists when this parameter is changed, it is ignored. To
change this value after the environment has been created, re-create your environment.

For more information, see DbEnv::set_lk_max_lockers() (page 342).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 715

set_lk_max_locks

Sets the maximum number of locks supported by the Berkeley DB environment. This value is
used to estimate how much space to allocate for various lock-table data structures. When
using the DB, the default value is 1000 locks. When using the BDB SQL interface, the default
value is 10,000 locks.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_lk_max_locks, one or more whitespace characters, and the number of locks.

If the database environment already exists when this parameter is changed, it is ignored. To
change this value after the environment has been created, re-create your environment.

For more information, see DbEnv::set_lk_max_locks() (page 344).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 716

set_lk_max_objects

Sets the maximum number of locked objects supported by the Berkeley DB environment. This
value is used to estimate how much space to allocate for various lock-table data structures.
When using the DB, the default value is 1000 objects. When using the BDB SQL interface, the
default value is 10,000 objects.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_lk_max_objects, one or more whitespace characters, and the number of objects.

If the database environment already exists when this parameter is changed, it is ignored. To
change this value after the environment has been created, re-create your environment.

For more information, see DbEnv::set_lk_max_objects() (page 346).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 717

set_lk_partitions

Sets the number of lock table partitions in the Berkeley DB environment. The default value is
10 times the number of CPUs on the system if there is more than one CPU.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_lk_partitions, one or more whitespace characters, and the number of partitions.

If the database environment already exists when this parameter is changed, it is ignored. To
change this value after the environment has been created, re-create your environment.

For more information, see DbEnv::set_lk_partitions() (page 348).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 718

log_set_config

Configures the Berkeley DB logging subsystem.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
log_set_config, one or more whitespace characters, method flag parameter as a string,
optionally one or more whitespace characters, and the string on or off. If the optional string
is omitted, the default is on.

The method flag parameters are:

• DB_LOG_DIRECT
Turns off system buffering of Berkeley DB log files to avoid double caching.

• DB_LOG_DSYNC
Configures Berkeley DB to flush log writes to the backing disk before returning from the
write system call, rather than flushing log writes explicitly in a separate system call, as
necessary.

For more information, see DbEnv::log_set_config() (page 389).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 719

set_mp_max_openfd

Limits the number of file descriptors the library will open concurrently when flushing dirty
pages from the cache.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_max_openfd, one or more whitespace characters, and the number of open file
descriptors.

For more information, see DbEnv::get_mp_max_openfd() (page 417).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 720

set_mp_max_write

Limits the number of sequential write operations scheduled by the library when flushing dirty
pages from the cache.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_mp_max_write, one or more whitespace characters, and the maximum number of
sequential writes and the number of microseconds to sleep, also separated by whitespace
characters.

For more information, see DbEnv::set_mp_max_write() (page 440).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 721

set_mp_mmapsize

Sets the maximum file size, in bytes, for a file to be mapped into the process address space. If
no value is specified, it defaults to 10MB.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_mp_mmapsize, one or more whitespace characters, and the size in bytes.

For more information, see DbEnv::set_mp_mmapsize() (page 442).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 722

set_open_flags

Initializes specific subsystems of the Berkeley DB environment.

The syntax of the entry in the DB_CONFIG is a single line with the string set_open_flags, one
or more whitespace characters, the method flag parameter as a string, optionally one or more
whitespace characters, and the string on or off. If the optional string is omitted, the default
is on; for example, set_open_flags DB_INIT_REP or set_open_flags DB_INIT_REP on.
Because the DB_CONFIG file is read when the database environment is opened, it will silently
overrule configuration done before that time.

The method flag parameters are as follows:

• DB_INIT_REP
Enables/disables DB_INIT_REP in the DB_ENV->open method. For example:

set_open_flags DB_INIT_REP on

This enables initializing the replication subsystem. This subsystem should be used whenever
an application plans on using replication. This setting overwrites the DB_INIT_REP flag
passed from the application's DB_ENV->open method.

• DB_PRIVATE
Enables/disables DB_PRIVATE in the DB_ENV->open method. For example:

set_open_flags DB_PRIVATE on

This enables region memory allocation from the heap instead of from memory backed by the
filesystem or system shared memory. This flag implies the environment will only be accessed
by a single process (although that process may be multithreaded). This flag has two effects
on the Berkeley DB environment. First, all underlying data structures are allocated from
per-process memory instead of from shared memory that is accessible to more than a
single process. Second, mutexes are only configured to work between threads. This setting
overwrites the DB_PRIVATE flag passed from the application's DB_ENV->open method.

• DB_THREAD
Enables/disables DB_THREAD in the DB_ENV->open method. For example:

set_open_flags DB_THREAD on

This enables the DB_ENV handle returned by the DB_ENV->open method to be free-
threaded; that is, concurrently usable by multiple threads in the address space. This setting
overwrites the DB_THREAD flag passed from the application's DB_ENV->open method.

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 723

set_shm_key

Configures the database environment's base segment ID. This base segment ID will be used
when Berkeley DB shared memory regions are first created. It will be incremented a small
integer value each time a new shared memory region is created; that is, if the base ID is 35,
the first shared memory region created will have a segment ID of 35, and the next one will
have a segment ID between 36 and 40 or so.

See Shared Memory Regions for more information.

The syntax of the entry in the DB_CONFIG file is a single line with the string set_shm_key one
or more whitespace characters, and the ID.

For more information, see DbEnv::set_shm_key() (page 302).

../../programmer_reference/env_region.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 724

set_thread_count

Declares an approximate number of threads in the database environment.

The syntax of the entry in in the DB_CONFIG file is a single line with the string
set_thread_count, one or more whitespace characters, and the thread count. The
DB_CONFIG file is read when the database environment is opened, and hence it silently
overrules configuration done before that time.

For more information, see DbEnv::set_thread_count() (page 304).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 725

set_timeout

Sets timeout values for locks or transactions in the database environment, and the wait time
for a process to exit the environment when DB_REGISTER recovery is needed.

The syntax for setting timeout value for database environment's lock, before recovery is
started, and transaction is as follows:

• DB_SET_LOCK_TIMEOUT
Configures the database environment's lock timeout value. The syntax of the entry in the
DB_CONFIG file is a single line with the string set_lock_timeout, one or more whitespace
characters, and the lock timeout value.

• DB_SET_REG_TIMEOUT
Sets the timeout value on how long to wait for processes to exit the environment before
recovery is started. The syntax of the entry in the DB_CONFIG file is a single line with the
string set_reg_timeout, one or more whitespace characters, and the wait timeout value.

• DB_SET_TXN_TIMEOUT
Sets the timeout value for transactions in this database environment. The syntax of the
entry in the DB_CONFIG file is a single line with the string set_txn_timeout, one or more
whitespace characters, and the transaction timeout value

For more information, see DbEnv::set_timeout() (page 310).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 726

set_tmp_dir

Specifies the path of a directory to be used as the location of temporary files. The files
created to back in-memory access method databases will be created relative to this path.
These temporary files can be quite large, depending on the size of the database.

The syntax of the entry in the DB_CONFIG file with the string set_tmp_dir, one or more
whitespace characters, and the directory name.

For more information, see DbEnv::set_tmp_dir() (page 312).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 727

set_tx_max

Configures the Berkeley DB database environment to support at least the minimum number of
simultaneously active transactions supported by Berkeley DB database environment. This value
bounds the size of the memory allocated for transactions. Child transactions are counted as
active until they either commit or abort.

The syntax of this parameter in the DB_CONFIG file is a single line with the string
set_tx_max, one or more whitespace characters, and the number of transactions.

For more information, see DbEnv::set_tx_max() (page 608).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.2 DB_CONFIG Parameter Reference

6/10/2011 DB C++ API Page 728

set_verbose

Enables/disables specific additional informational and debugging messages in the Berkeley DB
message output.

The syntax of the entry in the DB_CONFIG file is a single line with the string set_verbose,
one or more whitespace characters, the method flag parameter as a string, optionally one or
more whitespace characters and the string on or off. If the optional string is omitted, the
default is on.

For example:

set_verbose DB_VERB_RECOVERY

or

set_verbose DB_VERB_RECOVERY on

Enables display of additional information when performing recovery.

The method flag parameters are as follows:

• DB_VERB_DEADLOCK

• DB_VERB_FILEOPS

• DB_VERB_FILEOPS_ALL

• DB_VERB_RECOVERY

• DB_VERB_REGISTER

• DB_VERB_REPLICATION

• DB_VERB_REP_ELECT

• DB_VERB_REP_LEASE

• DB_VERB_REP_MISC

• DB_VERB_REP_MSGS

• DB_VERB_REP_SYNC

• DB_VERB_REP_SYSTEM

• DB_VERB_REPMGR_CONNFAIL

• DB_VERB_REPMGR_MISC

• DB_VERB_WAITSFOR

For more information, see DbEnv::set_verbose() (page 314).

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

	Berkeley DB C++ API Reference
	Table of Contents
	Preface
	Conventions Used in this Book
	For More Information
	Contact Us

	Chapter 1. Introduction to Berkeley DB APIs
	Chapter 2. The Db Handle
	Database and Related Methods
	Db::associate()
	Parameters
	txnid
	secondary
	callback
	flags

	Errors
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EINVAL

	Class
	See Also

	Db::associate_foreign()
	Parameters
	secondary
	callback
	flags

	Errors
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EINVAL

	Class
	See Also

	Db::close()
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	EINVAL
	Parameters
	flags

	Errors
	EINVAL
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	EINVAL

	Class
	See Also

	Db::compact()
	Parameters
	txnid
	start
	stop
	c_data
	flags
	end

	Errors
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EACCES
	EINVAL

	Class
	See Also

	db_copy
	Parameters
	dbenv
	dbfile
	target
	password

	Db
	Parameters
	dbenv
	flags

	Class
	See Also

	Db::del()
	Parameters
	txnid
	key
	flags

	Errors
	DB_FOREIGN_CONFLICT
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	DB_SECONDARY_BAD
	EACCES
	EINVAL

	Class
	See Also

	Db::err()
	Parameters
	error
	fmt

	Class
	See Also

	Db::exists()
	Parameters
	txnid
	key
	flags

	Class
	See Also

	Db::fd()
	Parameters
	fdp

	Class
	See Also

	Db::get()
	Parameters
	txnid
	key
	pkey
	data
	flags

	Errors
	DbMemoryException or DB_BUFFER_SMALL
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DB_REP_LEASE_EXPIRED
	DbDeadlockException or DB_REP_LOCKOUT
	DB_SECONDARY_BAD
	EINVAL

	Class
	See Also

	Db::get_bt_minkey()
	Parameters
	bt_minkeyp

	Class
	See Also

	Db::get_byteswapped()
	Parameters
	isswapped

	Errors
	EINVAL

	Class
	See Also

	Db::get_cachesize()
	Parameters
	gbytesp
	bytesp
	ncachep

	Class
	See Also

	Db::get_create_dir()
	Parameters
	dirp

	Errors
	EINVAL

	Class
	See Also

	Db::get_dbname()
	Parameters
	filenamep
	dbnamep

	Class
	See Also

	Db::get_encrypt_flags()
	Parameters
	flagsp

	Class
	See Also

	Db::get_errfile()
	Parameters
	errfilep

	Class
	See Also

	Db::get_errpfx()
	Parameters
	errpfxp

	Class
	See Also

	Db::get_flags()
	Parameters
	flagsp

	Class
	See Also

	Db::get_h_ffactor()
	Parameters
	h_ffactorp

	Class
	See Also

	Db::get_h_nelem()
	Parameters
	h_nelemp

	Class
	See Also

	Db::get_heapsize()
	Parameters
	gbytesp
	bytesp

	Class
	See Also

	Db::get_lorder()
	Parameters
	lorderp

	Class
	See Also

	Db::get_msgfile()
	Parameters
	msgfilep

	Class
	See Also

	Db::get_multiple()
	Class
	See Also

	Db::get_open_flags()
	Parameters
	flagsp

	Class
	See Also

	Db::get_partition_callback()
	Parameters
	partsp
	callback_fcn

	Class
	See Also

	Db::get_partition_dirs()
	Parameters
	dirsp

	Errors
	EINVAL

	Class
	See Also

	Db::get_partition_keys()
	Parameters
	partsp
	keysp

	Class
	See Also

	Db::get_pagesize()
	Parameters
	pagesizep

	Class
	See Also

	Db::get_priority()
	Parameters
	priorityp

	Class
	See Also

	Db::get_q_extentsize()
	Parameters
	extentsizep

	Class
	See Also

	Db::get_re_delim()
	Parameters
	delimp

	Class
	See Also

	Db::get_re_len()
	Parameters
	re_lenp

	Class
	See Also

	Db::get_re_pad()
	Parameters
	re_padp

	Class
	See Also

	Db::get_re_source()
	Parameters
	sourcep

	Class
	See Also

	Db::get_type()
	Parameters
	type

	Errors
	EINVAL

	Class
	See Also

	Db::join()
	Parameters
	curslist
	dbcp
	flags

	Errors
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	DB_SECONDARY_BAD
	EINVAL

	Class
	See Also

	Db::key_range()
	Parameters
	txnid
	key
	key_range
	flags

	Errors
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EINVAL

	Class
	See Also

	Db::open()
	Parameters
	txnid
	file
	database
	type
	flags
	mode

	Environment Variables
	Errors
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	ENOENT
	ENOENT
	DB_OLD_VERSION
	EEXIST
	EINVAL
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT

	Class
	See Also

	Db::put()
	Parameters
	txnid
	key
	data
	flags

	Errors
	DB_FOREIGN_CONFLICT
	DB_HEAP_FULL
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EACCES
	EINVAL
	ENOSPC

	Class
	See Also

	Db::remove()
	Parameters
	file
	database
	flags

	Environment Variables
	Errors
	EINVAL
	ENOENT

	Class
	See Also

	Db::rename()
	Parameters
	file
	database
	newname
	flags

	Environment Variables
	Errors
	EINVAL
	ENOENT

	Class
	See Also

	Db::set_alloc()
	Errors
	EINVAL

	Class
	See Also

	Db::set_append_recno()
	Parameters
	db_append_recno_fcn

	Errors
	EINVAL

	Class
	See Also

	Db::set_bt_compare()
	Parameters
	bt_compare_fcn

	Errors
	EINVAL

	Class
	See Also

	Db::set_bt_compress()
	Parameters
	bt_compress_fcn
	bt_decompress_fcn

	Errors
	EINVAL

	Class
	See Also

	Db::set_bt_minkey()
	Parameters
	bt_minkey

	Errors
	EINVAL

	Class
	See Also

	Db::set_bt_prefix()
	Parameters
	bt_prefix_fcn

	Errors
	EINVAL

	Class
	See Also

	Db::set_cachesize()
	Parameters
	gbytes
	bytes
	ncache

	Errors
	EINVAL

	Class
	See Also

	Db::set_create_dir()
	Parameters
	dir

	Errors
	EINVAL

	Class
	See Also

	Db::set_dup_compare()
	Parameters
	dup_compare_fcn

	Errors
	EINVAL

	Class
	See Also

	Db::set_encrypt()
	Parameters
	passwd
	flags

	Errors
	EINVAL
	EOPNOTSUPP

	Class
	See Also

	Db::set_errcall()
	Parameters
	db_errcall_fcn

	Class
	See Also

	Db::set_errfile()
	Parameters
	errfile

	Class
	See Also

	Db::set_error_stream()
	Parameters
	stream

	Class
	See Also

	Db::set_errpfx()
	Parameters
	errpfx

	Class
	See Also

	Db::set_feedback()
	Parameters
	db_feedback_fcn

	Class
	See Also

	Db::set_flags()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	Db::set_h_compare()
	Parameters
	compare_fcn

	Errors
	EINVAL

	Class
	See Also

	Db::set_h_ffactor()
	Parameters
	h_ffactor

	Errors
	EINVAL

	Class
	See Also

	Db::set_h_hash()
	Parameters
	h_hash_fcn

	Errors
	EINVAL

	Class
	See Also

	Db::set_h_nelem()
	Parameters
	h_nelem

	Errors
	EINVAL

	Class
	See Also

	Db::set_heapsize()
	Parameters
	gbytes
	bytes

	Errors
	EINVAL

	Class
	See Also

	Db::set_lorder()
	Parameters
	lorder

	Errors
	EINVAL

	Class
	See Also

	Db::set_message_stream()
	Parameters
	stream

	Class
	See Also

	Db::set_msgcall()
	Parameters
	db_msgcall_fcn

	Class
	See Also

	Db::set_msgfile()
	Parameters
	msgfile

	Class
	See Also

	Db::set_pagesize()
	Parameters
	pagesize

	Errors
	EINVAL

	Class
	See Also

	Db::set_partition()
	Parameters
	parts
	keys
	db_partition_fcn

	Class
	See Also

	Db::set_partition_dirs()
	Parameters
	dirs

	Errors
	EINVAL

	Class
	See Also

	Db::set_priority()
	Parameters
	priority

	Class
	See Also

	Db::set_q_extentsize()
	Parameters
	extentsize

	Errors
	EINVAL

	Class
	See Also

	Db::set_re_delim()
	Parameters
	re_delim

	Errors
	EINVAL

	Class
	See Also

	Db::set_re_len()
	Parameters
	re_len

	Errors
	EINVAL

	Class
	See Also

	Db::set_re_pad()
	Parameters
	re_pad

	Errors
	EINVAL

	Class
	See Also

	Db::set_re_source()
	Parameters
	source

	Errors
	EINVAL

	Class
	See Also

	Db::stat()
	Parameters
	txnid
	flags

	Statistical Structure
	Hash Statistics
	Heap Statistics
	Btree and Recno Statistics
	Queue Statistics

	Errors
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EINVAL

	Class
	See Also

	Db::stat_print()
	Parameters
	flags

	Class
	See Also

	Db::sync()
	Parameters
	flags

	Errors
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EINVAL

	Class
	See Also

	Db::truncate()
	Parameters
	txnid
	countp
	flags

	Errors
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	EINVAL

	Class
	See Also

	Db::upgrade()
	Parameters
	file
	flags

	Environment Variables
	Errors
	DB_OLD_VERSION

	Class
	See Also

	Db::verify()
	Parameters
	file
	database
	outfile
	flags

	Environment Variables
	Errors
	EINVAL
	ENOENT

	Class
	See Also

	DbHeapRecordId
	Class Methods
	get_pgno()
	get_indx()
	get_DB_HEAP_RID()
	set_pgno()
	set_indx()

	See Also

	Chapter 3. The Dbc Handle
	Database Cursors and Related Methods
	Db::cursor()
	Parameters
	txnid
	cursorp
	flags

	Errors
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EINVAL

	Class
	See Also

	Dbc::close()
	Errors
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	EINVAL

	Class
	See Also

	Dbc::cmp()
	Parameters
	other_cursor
	result
	flags

	Errors
	EINVAL

	Class
	See Also

	Dbc::count()
	Parameters
	countp
	flags

	Errors
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EINVAL

	Class
	See Also

	Dbc::del()
	Parameters
	flags

	Errors
	DB_FOREIGN_CONFLICT
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	DB_SECONDARY_BAD
	EACCES
	EINVAL
	EPERM

	Class
	See Also

	Dbc::dup()
	Parameters
	cursorp
	flags

	Errors
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EINVAL

	Class
	See Also

	Dbc::get()
	Parameters
	key
	pkey
	data
	flags

	Errors
	DbMemoryException or DB_BUFFER_SMALL
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DB_REP_LEASE_EXPIRED
	DbDeadlockException or DB_REP_LOCKOUT
	DB_SECONDARY_BAD
	EINVAL

	Class
	See Also

	Dbc::get_priority()
	Parameters
	priorityp

	Class
	See Also

	Dbc::put()
	Parameters
	key
	data
	flags

	Errors
	DB_KEYEXIST
	DB_FOREIGN_CONFLICT
	DB_HEAP_FULL
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbRepHandleDeadException or DB_REP_HANDLE_DEAD
	DbDeadlockException or DB_REP_LOCKOUT
	EACCES
	EINVAL
	EPERM

	Class
	See Also

	Dbc::set_priority()
	Parameters
	priority

	Class
	See Also

	Chapter 4. The Dbt Handle
	DBT and Bulk Operations
	DbMultipleIterator
	Class
	See Also

	DbMultipleDataIterator
	DbMultipleDataIterator.next()
	Class
	See Also

	DbMultipleKeyDataIterator
	DbMultipleKeyDataIterator.next()
	Class
	See Also

	DbMultipleRecnoDataIterator
	DbMultipleRecnoDataIterator.next()
	Class
	See Also

	DbMultipleBuilder
	Class
	See Also

	DbMultipleDataBuilder
	DbMultipleDataBuilder.append()
	DbMultipleDataBuilder.reserve()
	Class
	See Also

	DbMultipleKeyDataBuilder
	DbMultipleKeyDataBuilder.append()
	DbMultipleKeyDataBuilder.reserve()
	Class
	See Also

	DbMultipleRecnoDataBuilder
	DbMultipleRecnoDataBuilder.append()
	DbMultipleRecnoDataBuilder.reserve()
	Class
	See Also

	Chapter 5. The DbEnv Handle
	Database Environments and Related Methods
	Db::get_env()
	Class
	See Also

	DbEnv::add_data_dir()
	Parameters
	dir

	Errors
	EINVAL

	Class
	See Also

	DbEnv::close()
	Parameters
	flags

	Class
	See Also

	DbEnv
	Class
	See Also

	DbEnv::dbremove()
	Parameters
	txnid
	file
	database
	flags

	Environment Variables
	Errors
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	EINVAL
	ENOENT

	Class
	See Also

	DbEnv::dbrename()
	Parameters
	txnid
	file
	database
	newname
	flags

	Environment Variables
	Errors
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	EINVAL
	ENOENT

	Class
	See Also

	DbEnv::err()
	Parameters
	error
	fmt

	Class
	See Also

	DbEnv::failchk()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::fileid_reset()
	Parameters
	file
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::full_version()
	Parameters
	family
	release
	major
	minor
	patch

	Class
	See Also

	DbEnv::get_create_dir()
	Parameters
	dirp

	Class
	See Also

	DbEnv::get_data_dirs()
	Parameters
	dirpp

	Class
	See Also

	DbEnv::get_encrypt_flags()
	Parameters
	flagsp

	Class
	See Also

	DbEnv::get_errfile()
	Parameters
	errfilep

	Class
	See Also

	DbEnv::get_errpfx()
	Parameters
	errpfxp

	Class
	See Also

	DbEnv::get_flags()
	Parameters
	flagsp

	Class
	See Also

	DbEnv::get_home()
	Class
	See Also

	DbEnv::get_intermediate_dir_mode()
	Parameters
	modep

	Class
	See Also

	DbEnv::get_memory_init()
	Parameters
	struct
	countp

	Class
	See Also

	DbEnv::get_memory_max()
	Parameters
	gbytesp
	bytesp
	sizep

	Class
	See Also

	DbEnv::get_msgfile()
	Parameters
	msgfilep

	Class
	See Also

	DbEnv::get_open_flags()
	Parameters
	flagsp

	Class
	See Also

	DbEnv::get_shm_key()
	Parameters
	shm_keyp

	Class
	See Also

	DbEnv::get_thread_count()
	Parameters
	countp

	Class
	See Also

	DbEnv::get_timeout()
	Parameters
	timeoutp
	flag

	Class
	See Also

	DbEnv::get_tmp_dir()
	Parameters
	dirp

	Class
	See Also

	DbEnv::get_verbose()
	Parameters
	which
	onoffp

	Class
	See Also

	DbEnv::log_verify()
	Parameters
	config

	DB_LOG_VERIFY_CONFIG members
	continue_after_fail
	verbose
	cachesize
	temp_envhome
	dbfile
	dbname
	start_lsn and end_lsn
	start_time and end_time

	Environment Variables
	Errors
	Class
	See Also

	DbEnv::lsn_reset()
	Parameters
	file
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::open()
	Parameters
	db_home
	flags
	mode

	Errors
	DB_RUNRECOVERY
	DB_VERSION_MISMATCH
	EAGAIN
	EINVAL
	ENOENT

	Class
	See Also

	DbEnv::remove()
	Parameters
	db_home
	flags

	Errors
	EBUSY

	Class
	See Also

	DbEnv::set_alloc()
	Parameters
	app_malloc
	app_realloc
	app_free

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_app_dispatch()
	Parameters
	tx_recover

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_data_dir()
	Parameters
	dir

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_create_dir()
	Parameters
	dir

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_encrypt()
	Parameters
	passwd
	flags

	Errors
	EINVAL
	EOPNOTSUPP

	Class
	See Also

	DbEnv::set_event_notify()
	Parameters
	db_event_fcn

	Class
	See Also

	DbEnv::set_errcall()
	Parameters
	db_errcall_fcn

	Class
	See Also

	DbEnv::set_errfile()
	Parameters
	errfile

	Class
	See Also

	DbEnv::set_error_stream()
	Parameters
	stream

	Class
	See Also

	DbEnv::set_errpfx()
	Parameters
	errpfx

	Class
	See Also

	DbEnv::set_feedback()
	Parameters
	db_feedback_fcn

	Class
	See Also

	DbEnv::set_flags()
	Parameters
	flags
	onoff

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_intermediate_dir_mode()
	Parameters
	mode

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_isalive()
	Parameters
	is_alive

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_memory_init()
	Parameters
	struct
	count

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_memory_max()
	Parameters
	size

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_message_stream()
	Parameters
	stream

	Class
	See Also

	DbEnv::set_msgcall()
	Parameters
	db_msgcall_fcn

	Class
	See Also

	DbEnv::set_msgfile()
	Parameters
	msgfile

	Class
	See Also

	DbEnv::set_shm_key()
	Parameters
	shm_key

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_thread_count()
	Parameters
	count

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_thread_id()
	Parameters
	thread_id

	Errors
	EINVAL

	Assigning Thread IDs
	Class
	See Also

	DbEnv::set_thread_id_string()
	Parameters
	thread_id_string

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_timeout()
	Parameters
	timeout
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_tmp_dir()
	Parameters
	dir

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_verbose()
	Parameters
	which
	onoff

	Errors
	EINVAL

	Class
	See Also

	DbEnv::stat_print()
	Parameters
	flags

	Class
	See Also

	DbEnv::strerror()
	Parameters
	error

	Class
	See Also

	DbEnv::version()
	Parameters
	major
	minor
	patch

	Class
	See Also

	Chapter 6. The DbException Class
	DB C++ Exceptions
	DbDeadlockException
	DbLockNotGrantedException
	DbMemoryException
	DbRepHandleDeadException
	DbRunRecoveryException

	Chapter 7. The DbLock Handle
	Locking Subsystem and Related Methods
	DbEnv::get_lk_conflicts()
	Parameters
	lk_conflictsp
	lk_modesp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::get_lk_detect()
	Parameters
	lk_detectp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::get_lk_max_lockers()
	Parameters
	lk_maxp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::get_lk_max_locks()
	Parameters
	lk_maxp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::get_lk_max_objects()
	Parameters
	lk_maxp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::get_lk_partitions()
	Parameters
	lk_partitions

	Errors
	EINVAL

	Class
	See Also

	DbEnv::get_lk_priority()
	Parameters
	lockerid
	priority

	Errors
	EINVAL

	Class
	See Also

	DbEnv::get_lk_tablesize()
	Parameters
	tablesizep

	Class
	See Also

	DbEnv::set_lk_conflicts()
	Parameters
	conflicts
	nmodes

	Errors
	EINVAL
	ENOMEM

	Class
	See Also

	DbEnv::set_lk_detect()
	Parameters
	detect

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_lk_max_lockers()
	Parameters
	max

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_lk_max_locks()
	Parameters
	max

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_lk_max_objects()
	Parameters
	max

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_lk_partitions()
	Parameters
	partitions

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_lk_priority()
	Parameters
	lockerid
	priority

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_lk_tablesize()
	Parameters
	tablesize

	Errors
	EINVAL

	Class
	See Also

	DbEnv::lock_detect()
	Parameters
	flags
	atype
	rejected

	Errors
	EINVAL

	Class
	See Also

	DbEnv::lock_get()
	Parameters
	locker
	flags
	object
	lock_mode
	lock

	Errors
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	EINVAL
	EINVAL
	ENOMEM

	Class
	See Also

	DbEnv::lock_id()
	Parameters
	idp

	Class
	See Also

	DbEnv::lock_id_free()
	Parameters
	id

	Errors
	EINVAL

	Class
	See Also

	DbEnv::lock_put()
	Parameters
	lock

	Errors
	EINVAL

	Class
	See Also

	DbEnv::lock_stat()
	Parameters
	statp
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::lock_stat_print()
	Parameters
	flags

	Class
	See Also

	DbEnv::lock_vec()
	Parameters
	locker
	flags
	list
	nlist
	elistp

	Errors
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	EINVAL
	ENOMEM

	Class
	See Also

	Chapter 8. The DbLsn Handle
	Logging Subsystem and Related Methods
	DbEnv::get_lg_bsize()
	Parameters
	lg_bsizep

	Class
	See Also

	DbEnv::get_lg_dir()
	Parameters
	dirp

	Class
	See Also

	DbEnv::get_lg_filemode()
	Parameters
	lg_modep

	Class
	See Also

	DbEnv::get_lg_max()
	Parameters
	lg_maxp

	Class
	See Also

	DbEnv::get_lg_regionmax()
	Parameters
	lg_regionmaxp

	Class
	See Also

	DbEnv::log_archive()
	Parameters
	listp
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::log_cursor()
	Parameters
	cursorp
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::log_file()
	Parameters
	lsn
	namep
	len

	Errors
	EINVAL

	Class
	See Also

	DbEnv::log_flush()
	Parameters
	lsn

	Errors
	EINVAL

	Class
	See Also

	DbEnv::log_get_config()
	Parameters
	which
	onoffp

	Class
	See Also

	DbEnv::log_printf()
	Parameters
	txnid
	fmt

	Errors
	EINVAL

	Class
	See Also

	DbEnv::log_put()
	Parameters
	lsn
	data
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::log_set_config()
	Parameters
	flags
	onoff

	Errors
	EINVAL

	Class
	See Also

	DbEnv::log_stat()
	Parameters
	statp
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::log_stat_print()
	Parameters
	flags

	Class
	See Also

	DbEnv::set_lg_bsize()
	Parameters
	lg_bsize

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_lg_dir()
	Parameters
	dir

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_lg_filemode()
	Parameters
	lg_filemode

	Class
	See Also

	DbEnv::set_lg_max()
	Parameters
	lg_max

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_lg_regionmax()
	Parameters
	lg_regionmax

	Errors
	EINVAL

	Class
	See Also

	The DbLogc Handle
	DbLogc::close()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	DbLogc::get()
	Parameters
	lsn
	data
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::log_compare()
	Parameters
	lsn0
	lsn1

	Class
	See Also

	Chapter 9. The DbMpoolFile Handle
	Memory Pools and Related Methods
	Db::get_mpf()
	Class
	See Also

	DbEnv::get_cache_max()
	Parameters
	gbytesp
	bytesp

	Class
	See Also

	DbEnv::get_cachesize()
	Parameters
	gbytesp
	bytesp
	ncachep

	Class
	See Also

	DbEnv::get_mp_max_openfd()
	Parameters
	maxopenfdp

	Class
	See Also

	DbEnv::get_mp_max_write()
	Parameters
	maxwritep
	maxwrite_sleepp

	Class
	See Also

	DbEnv::get_mp_mmapsize()
	Parameters
	mp_mmapsizep

	Class
	See Also

	DbEnv::get_mp_mtxcount()
	Parameters
	mtxcount

	Class
	See Also

	DbEnv::get_mp_pagesize()
	Parameters
	pagesizep

	Class
	See Also

	DbEnv::get_mp_tablesize()
	Parameters
	tablesize

	Class
	See Also

	DbEnv::memp_fcreate()
	Parameters
	dbmfp
	flags

	Class
	See Also

	DbEnv::memp_register()
	Parameters
	ftype
	pgin_fcn, pgout_fcn

	Class
	See Also

	DbEnv::memp_stat()
	Parameters
	gsp
	fsp
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::memp_stat_print()
	Parameters
	flags

	Class
	See Also

	DbEnv::memp_sync()
	Parameters
	lsn

	Class
	See Also

	DbEnv::memp_trickle()
	Parameters
	percent
	nwrotep

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_cache_max()
	Parameters
	gbytes
	bytes

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_cachesize()
	Parameters
	gbytes
	bytes
	ncache

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_mp_max_openfd()
	Parameters
	maxopenfd

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_mp_max_write()
	Parameters
	maxwrite
	maxwrite_sleep

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_mp_mmapsize()
	Parameters
	mp_mmapsize

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_mp_mtxcount()
	Parameters
	mtxcount

	Class
	See Also

	DbEnv::set_mp_pagesize()
	Parameters
	pagesize

	Class
	See Also

	DbEnv::set_mp_tablesize()
	Parameters
	tablesize

	Class
	See Also

	DbMpoolFile::close()
	Parameters
	flags

	Class
	See Also

	DbMpoolFile::get()
	Parameters
	flags
	pagep
	pgnoaddr
	txnid

	Errors
	EACCES
	EAGAIN
	EINVAL
	DB_LOCK_DEADLOCK
	ENOMEM

	Class
	See Also

	DbMpoolFile::open()
	Parameters
	file
	flags
	mode
	pagesize

	Errors
	EINVAL
	ENOMEM

	Class
	See Also

	DbMpoolFile::put()
	Parameters
	pgaddr
	priority
	flags

	Errors
	EINVAL

	Class
	See Also

	DbMpoolFile::sync()
	Class
	See Also

	DbMpoolFile::get_clear_len()
	Parameters
	lenp

	Class
	See Also

	DbMpoolFile::get_fileid()
	Class
	See Also

	DbMpoolFile::get_flags()
	Parameters
	flagsp

	Class
	See Also

	DbMpoolFile::get_ftype()
	Parameters
	ftypep

	Class
	See Also

	DbMpoolFile::get_lsn_offset()
	Parameters
	lsn_offsetp

	Class
	See Also

	DbMpoolFile::get_maxsize()
	Parameters
	gbytesp
	bytesp

	Class
	See Also

	DbMpoolFile::get_pgcookie()
	Parameters
	dbt

	Class
	See Also

	DbMpoolFile::get_priority()
	Parameters
	priorityp

	Class
	See Also

	DbMpoolFile::set_clear_len()
	Parameters
	len

	Class
	See Also

	DbMpoolFile::set_fileid()
	Parameters
	fileid

	Class
	See Also

	DbMpoolFile::set_flags()
	Parameters
	flags
	onoff

	Class
	See Also

	DbMpoolFile::set_ftype()
	Parameters
	ftype

	Class
	See Also

	DbMpoolFile::set_lsn_offset()
	Parameters
	lsn_offset

	Class
	See Also

	DbMpoolFile::set_maxsize()
	Parameters
	bytes
	gbytes

	Class
	See Also

	DbMpoolFile::set_pgcookie()
	Parameters
	pgcookie

	Class
	See Also

	DbMpoolFile::set_priority()
	Parameters
	priority

	Class
	See Also

	Chapter 10. Mutex Methods
	Mutex Methods
	DbEnv::mutex_alloc()
	Parameters
	flags
	mutexp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::mutex_free()
	Parameters
	mutex

	Errors
	EINVAL

	Class
	See Also

	DbEnv::mutex_get_align()
	Parameters
	alignp

	Class
	See Also

	DbEnv::mutex_get_increment()
	Parameters
	incrementp

	Class
	See Also

	DbEnv::mutex_get_init()
	Parameters
	init

	Class
	See Also

	DbEnv::mutex_get_max()
	Parameters
	maxp

	Class
	See Also

	DbEnv::mutex_get_tas_spins()
	Parameters
	tas_spinsp

	Class
	See Also

	DbEnv::mutex_lock()
	Parameters
	mutex

	Errors
	EINVAL

	Class
	See Also

	DbEnv::mutex_set_align()
	Parameters
	align

	Errors
	EINVAL

	Class
	See Also

	DbEnv::mutex_set_increment()
	Parameters
	increment

	Errors
	EINVAL

	Class
	See Also

	DbEnv::mutex_set_init()
	Parameters
	init

	Errors
	EINVAL

	Class
	See Also

	DbEnv::mutex_set_max()
	Parameters
	max

	Errors
	EINVAL

	Class
	See Also

	DbEnv::mutex_set_tas_spins()
	Parameters
	tas_spins

	Errors
	EINVAL

	Class
	See Also

	DbEnv::mutex_stat()
	Parameters
	statp
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::mutex_stat_print()
	Parameters
	flags

	Class
	See Also

	DbEnv::mutex_unlock()
	Parameters
	mutex

	Errors
	EINVAL

	Class
	See Also

	Chapter 11. Replication Methods
	Replication and Related Methods
	The DbSite Handle
	DbChannel::close()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	DbChannel::send_msg()
	Parameters
	msg
	nmsg
	flags

	Errors
	DB_NOSERVER
	EINVAL

	Class
	See Also

	DbChannel::send_request()
	Parameters
	request
	nrequest
	response
	timeout
	flags

	Errors
	DB_BUFFER_SMALL
	DB_NOSERVER
	EINVAL

	Class
	See Also

	DbChannel::set_timeout()
	Parameters
	timeout

	Errors
	EINVAL

	Class
	See Also

	DbSite::close()
	Errors
	Class
	See Also

	DbSite::get_config()
	Parameters
	which
	valuep

	Class
	See Also

	DbSite::get_address()
	Parameters
	hostp
	portp

	Class
	See Also

	DbSite::get_eid()
	Parameters
	eidp

	Errors
	EINVAL

	Class
	See Also

	DbSite::remove()
	Errors
	DB_REP_UNAVAIL

	Class
	See Also

	DbSite::set_config()
	Parameters
	which
	value

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_elect()
	How Elections are Held
	Parameters
	nsites
	nvotes
	flags

	Errors
	DB_REP_UNAVAIL
	EINVAL

	Class
	See Also

	DbEnv::rep_get_clockskew()
	Parameters
	fast_clockp
	slow_clockp

	Class
	See Also

	DbEnv::rep_get_config()
	Parameters
	which
	onoffp

	Class
	See Also

	DbEnv::rep_get_limit()
	Parameters
	gbytesp
	bytesp

	Class
	See Also

	DbEnv::rep_get_nsites()
	Parameters
	nsitesp

	Class
	See Also

	DbEnv::rep_get_priority()
	Parameters
	priorityp

	Class
	See Also

	DbEnv::rep_get_request()
	Parameters
	minp
	maxp

	Class
	See Also

	DbEnv::rep_get_timeout()
	Parameters
	which
	timeoutp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_process_message()
	Parameters
	control
	rec
	envid
	ret_lsnp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_set_clockskew()
	Parameters
	fast_clock
	slow_clock

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_set_config()
	Parameters
	which
	onoff

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_set_limit()
	Parameters
	gbytes
	bytes

	Class
	See Also

	DbEnv::rep_set_nsites()
	Parameters
	nsites

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_set_priority()
	Parameters
	priority

	Class
	See Also

	DbEnv::rep_set_request()
	Parameters
	min
	max

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_set_timeout()
	Parameters
	timeout
	which

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_set_transport()
	Parameters
	envid
	send

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_start()
	Parameters
	cdata
	flags

	Errors
	DB_REP_UNAVAIL
	EINVAL

	Class
	See Also

	DbEnv::rep_stat()
	Parameters
	statp
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_stat_print()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::rep_sync()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::repmgr_channel()
	Parameters
	eid
	channelp
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::repmgr_local_site()
	Parameters
	sitep

	Errors
	EINVAL

	Class
	See Also

	DbEnv::repmgr_get_ack_policy()
	Parameters
	ack_policyp

	Class
	See Also

	DbEnv::repmgr_msg_dispatch()
	Parameters
	msg_dispatch_fcn
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::repmgr_set_ack_policy()
	Parameters
	ack_policy

	Errors
	EINVAL

	Class
	See Also

	DbEnv::repmgr_site()
	Parameters
	host
	port
	sitep
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::repmgr_site_by_eid()
	Parameters
	eid
	sitep

	Errors
	EINVAL

	Class
	See Also

	DbEnv::repmgr_site_list()
	Parameters
	countp
	listp

	Class
	See Also

	DbEnv::repmgr_start()
	Parameters
	nthreads
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::repmgr_stat()
	Parameters
	statp
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::repmgr_stat_print()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::txn_applied()
	Parameters
	flags
	token
	timeout

	Errors
	DB_KEYEMPTY
	DbDeadlockException or DB_LOCK_DEADLOCK
	EINVAL

	Class
	See Also

	DbTxn::set_commit_token()
	Parameters
	buffer

	Errors
	EINVAL

	Class
	See Also

	Chapter 12. The DbSequence Handle
	Sequences and Related Methods
	DbSequence
	Parameters
	db
	flags

	Errors
	EINVAL

	Class
	See Also

	DbSequence::close()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	DbSequence::get()
	Parameters
	txnid
	delta
	retp
	flags

	Class
	See Also

	DbSequence::get_cachesize()
	Parameters
	sizep

	Class
	See Also

	DbSequence::get_dbp()
	Parameters
	dbp

	Class
	See Also

	DbSequence::get_flags()
	Parameters
	flagsp

	Class
	See Also

	DbSequence::get_key()
	Parameters
	key

	Class
	See Also

	DbSequence::get_range()
	Parameters
	minp
	maxp

	Class
	See Also

	DbSequence::initial_value()
	Parameters
	value

	Errors
	EINVAL

	Class
	See Also

	DbSequence::open()
	Parameters
	key
	flags
	txnid

	Class
	See Also

	DbSequence::remove()
	Parameters
	txnid
	flags

	Errors
	EINVAL

	Class
	See Also

	DbSequence::set_cachesize()
	Parameters
	size

	Errors
	EINVAL

	Class
	See Also

	DbSequence::set_flags()
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	DbSequence::set_range()
	Parameters
	min
	max

	Errors
	EINVAL

	Class
	See Also

	DbSequence::stat()
	Parameters
	flags

	Class
	See Also

	DbSequence::stat_print()
	Parameters
	flags

	Class
	See Also

	Chapter 13. The DbTxn Handle
	Transaction Subsystem and Related Methods
	Db::get_transactional()
	Class
	See Also

	DbEnv::cdsgroup_begin()
	Errors
	ENOMEM

	Class
	See Also

	DbEnv::get_tx_max()
	Parameters
	tx_maxp

	Class
	See Also

	DbEnv::get_tx_timestamp()
	Parameters
	timestampp

	Class
	See Also

	DbEnv::set_tx_max()
	Parameters
	max

	Errors
	EINVAL

	Class
	See Also

	DbEnv::set_tx_timestamp()
	Parameters
	timestamp

	Errors
	EINVAL

	Class
	See Also

	DbEnv::txn_recover()
	Parameters
	preplist
	count
	flags

	Class
	See Also

	DbEnv::txn_begin()
	Parameters
	parent
	flags

	Errors
	DbMemoryException or ENOMEM

	Class
	See Also

	DbEnv::txn_checkpoint()
	Parameters
	kbyte
	min
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::txn_stat()
	Parameters
	statp
	flags

	Errors
	EINVAL

	Class
	See Also

	DbEnv::txn_stat_print()
	Parameters
	flags

	Class
	See Also

	DbTxn::abort()
	Class
	See Also

	DbTxn::commit()
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	DB_REP_LEASE_EXPIRED
	EINVAL
	Parameters
	flags

	Class
	See Also

	DbTxn::discard()
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	EINVAL
	Parameters
	flags

	Errors
	EINVAL

	Class
	See Also

	DbTxn::get_name()
	Parameters
	namep

	Class
	See Also

	DbTxn::get_priority()
	Parameters
	priority

	Errors
	EINVAL

	Class
	See Also

	DbTxn::id()
	Class
	See Also

	DbTxn::prepare()
	DbDeadlockException or DB_LOCK_DEADLOCK
	DbLockNotGrantedException or DB_LOCK_NOTGRANTED
	EINVAL
	Parameters
	gid

	Class
	See Also

	DbTxn::set_name()
	Parameters
	name

	Class
	See Also

	DbTxn::set_priority()
	Parameters
	priority

	Errors
	EINVAL

	Class
	See Also

	DbTxn::set_timeout()
	Parameters
	timeout
	flags

	Errors
	EINVAL

	Class
	See Also

	Appendix A. Berkeley DB Command Line Utilities
	Utilities
	db_archive
	Environment Variables
	DB_HOME

	db_checkpoint
	Environment Variables
	DB_HOME

	db_deadlock
	Environment Variables
	DB_HOME

	db_dump
	Environment Variables
	DB_HOME

	db_hotbackup
	Environment Variables
	DB_HOME

	db_load
	Examples
	Environment Variables
	DB_HOME

	Supported Keywords

	db_log_verify
	Environment Variables
	DB_HOME

	db_printlog
	Environment Variables
	DB_HOME

	db_recover
	Environment Variables
	DB_HOME

	db_replicate
	Environment Variables
	DB_HOME

	db_sql_codegen
	Input Syntax
	Hint Comments
	Transactions
	Type Mapping
	Output
	Test output

	dbsql
	Command Line Features Unique to dbsql

	db_stat
	Environment Variables
	DB_HOME

	db_tuner
	db_upgrade
	Environment Variables
	DB_HOME

	db_verify
	Environment Variables
	DB_HOME

	sqlite3

	Appendix B. DB_CONFIG Parameter Reference
	DB_CONFIG Parameters
	add_data_dir
	mutex_set_align
	mutex_set_increment
	mutex_set_max
	mutex_set_tas_spins
	rep_set_clockskew
	rep_set_config
	rep_set_limit
	rep_set_nsites
	rep_set_priority
	rep_set_request
	rep_set_timeout
	repmgr_set_ack_policy
	repmgr_site
	set_cachesize
	set_cache_max
	set_create_dir
	set_flags
	set_intermediate_dir_mode
	set_lg_bsize
	set_lg_dir
	set_lg_filemode
	set_lg_max
	set_lg_regionmax
	set_lk_detect
	set_lk_max_lockers
	set_lk_max_locks
	set_lk_max_objects
	set_lk_partitions
	log_set_config
	set_mp_max_openfd
	set_mp_max_write
	set_mp_mmapsize
	set_open_flags
	set_shm_key
	set_thread_count
	set_timeout
	set_tmp_dir
	set_tx_max
	set_verbose

