
How to use C code in Free Pascal projects

G. Marcou, E. Engler, A. Varnek

Université de Strasbourg,
Faculté de Chimie de Strasbourg,

4 rue Blaise Pascal,
67000 Strasbourg,

FRANCE

July 23, 2009

Contents

1 Introduction 2

2 Dangers of mixing code 2

3 Hello in C 2
3.1 Hello object . 2
3.2 Free Pascal wrapping . 3
3.3 Free Pascal program . 5

4 Hello in C++ 5
4.1 Hello object, again... 5
4.2 C wrapping: first solution . 6
4.3 C/C++ wrapping: second solution 9
4.4 linking . 11
4.5 Free Pascal wrapping . 11
4.6 Free Pascal program . 13

5 A practical example: a Free Pascal unit to call GSL functions 14
5.1 The headers . 14
5.2 gsl_sf_result . 18
5.3 gsl_sf_legendre . 20

6 Conclusion 22

7 Thanks 23

1

1 Introduction

Free Pascal provides a robust, portable and powerful compiler[5]. On the other hand,
the C language benefits of a very long life time and therefore of millions of lines of
codes. Hopefully, the Free Pascal compiler supports linking with objects and shared
objects compiled in C. Reusing this material is therefore often desirable in Free Pascal
projects.

Furthermore, the C++ provides also a very large number of very useful libraries.
But it is not possible yet to access them from Free Pascal directly[5, 4]. Therefore,
it is necessary to write in C code, procedures and functions to access the C++ ones.
Linking Free Pascal to C code is therefore even more important since C will act as a
“glue” between Free Pascal code and C++ -or other languages.

This article summarizes our experience about this field It will be extended, I hope,
by ourself as we continue to gain experience with this problem, and by others. Here,
we focus on GNU/Linux systems. For Windows users, we hope this will help too. But,
certainly, the Delphi community will be of great help.

2 Dangers of mixing code

The support of other languages is not a characteristic of anylanguage. It is a property of
compilers. Therefore, instructions for doing so are dependent of the runtime environ-
ment. This includes the system and, sometimes, the compilerchosen. Characteristics
of the definitions of the languages also plays a role [10].

In the following, the environment used is the Free Pascal Compiler (fpc 2.0.4) [5]
and the GNU Compiler Collection (gcc 4.1.2) [7] on Linux.

Incompatibilities will play a role at nearly every stage of the -executable- binary
generation. The less dangerous are those that will prevent compilation or linking. The
most delicate ones will generate unpredictable behaviour.For example, it is up to the
user to correctly convert from C or C++ types to Free Pascal. An error in this conversion
will not necessarily generate compilation or linking errors, neither the executable will
crash immediately. Such bug can become extremely difficult to spot.

Free Pascal compiler is meant to produce as straight as possible, binaries and ex-
ecutable code [5]. This leads to some differences compared to GCC compilers suite.
The main difference is that Free Pascal users should not haveto deal with a Makefile.
Therefore, they should not have to compile the program by modules and then design a
linking section.

This explains why the pre-compiler will have to deal with commands dedicated to
the linker and it helps understand the logic with theUnit key word of Free Pascal.

3 Hello in C

This section is a tutorial showing, in a simple case, how it ispossible to use C written
objects in a Free Pascal project.

3.1 Hello object

The first thing to do is to produce an C written library to be compiled as a static object.
Static objects, for the Linux world, are a legacy of thea.out binary format. Objects

2

are pieces of code already compiled that can be reused in other programs. Linking with
a program which calls a function or procedure in an object filemust be complete before
execution time [3].

Here is proposed a small C code as a classical “hello” example. First a small header
(file chello.h) defines what is the library composed of.

#ifndef CHELLO_H
#define CHELLO_H
#include <stdio.h>
void PrintHello();
void PrintHelloS(int);
#endif

This is not compulsory for C, but header files are highly encouraged since they
simplify interface and helps linking the objects. Here are defined two procedures that
write a “hello” message the second passing an integer to be written. The body of the
program follows (file verb|chello.c|).

#include "chello.h"
void PrintHello(){

printf("Hello\n");
return;

};
void PrintHelloS(int nme){

printf("Hello\n");
printf("%i",nme);
return;

};

This library is compiled using the commandgcc -c chello.c. The result of
the compilation is a binary filechello.o.

3.2 Free Pascal wrapping

In a C compatible world, it should be possible to pass the C header and let the compiler
link the library definition of the procedures in the object files to the main program.
Free Pascal does not understand C, so the header has to be rewritten in standard Free
Pascal [5, 4]. This is the purpose of the following Free Pascal unit (file helloU.pas),
wrapping the C written object in a standard Free Pascal code:

unit helloU;

{$link chello.o}
{$linklib c}

interface

uses CTypes;

procedure PrintHello; cdecl; external;

3

procedure PrintHelloS(nme : ctypes.cint32); cdecl; external;

implementation

end.

Several parts shall be noted. First there is only definition of the procedures. The
implementation is empty. Even more, the definition is followed by theexternal
keyword. This means the Free Pascal compiler should not waitfor the body of the
procedure since it shall find it at linking time [5, 4].

Second, the CTypes unit is called by the commanduses CTypes. This unit is
poorly documented, but its purpose is precisely to help for correct conversion between
Free Pascal native types and C native types. In fact, it is quite difficult: the numerical
limits of types like integers or floats are not defined by a language but by the compilers.
As pointed by D. Mantione1, with GCC, anint is $80000000..$7fffffff (32 bits), while
a Pascal integer is defined as $8000..$7fff (16 bits). Thus, it would be required to use
longint Free Pascal type to match it. Here we call thectypes.cint32 type
converter. This method shall be preferred.

For type conversion of C types it is usefull to take a look at the C/C++ header
limits.h. On Linux systems it is usually located in/lib/include/. For Free
Pascal conversion, it shall be safer to take a look to the documentation [5, 4].

Then, there is two instructions for the linker. The first one{$link chello.o}
means that the linker should link the program with thechello.o file [5, 4]. So the
Free Pascal compiler will never know about what are truly those procedures, it will be
the job of the linker to find them in the object file.

Doing so, a lot of references will appear to some functions typical of C. For exam-
ple, it will find references to theprint function and others defined in the<stdio.h>
included. Those are defined in a shared library file,libc.so.

Shared libraries are libraries that are not linked at linking time. So the linking of
the program is not complete. The program will not run until itwill have found the
definition of, at least, the standard C functions. In fact, atexecution time, a special
program,ld-linux.so is called to charge in memory the binary definition of the
missing procedures [3].

The linker needs to know at compile time, where to find not yet defined functions
and procedure. First, to be able to build in the program binary instructions relative
to which shared library has to be charged in memory. Second totest that at least, at
linking time, every single procedure and function will be defined.

Here we tell the linker to search in the filelibc.so for missing definitions. It
is the purpose of the instruction{$link c}.The linker will add a prefixlib and a
suffix .so, in the Linux world to find the correct shared object file [5, 4].

It is usually necessary to use also the{$link gcc}to link with libgcc.so if
the C objects were created with GCC. Nonetheless this library might not have been
produced during GCC compilation and therefore can be missing. Therefore, linking
errors might occurs if this linking statement is present as well as if this statement is
missing.

One last thing, is that the Free Pascal definition has a different protocol as how to
pass arguments in functions and procedures compared to C. This is what the keyword

1a regular contributor to Free Pascal

4

cdecl does. Thecdecl warns the compiler and the linker that the arguments are to
be understood as if they were in C[5, 4]. If this keyword is omitted it is possible that
the program will compile and link but as soon as procedure will be called, it will crash.
It might as well not compile any more if one of the wrapped procedures or function is
called.

3.3 Free Pascal program

Now it is time to get a program that will call our C written functions. This is done in
the filehello.pas:

uses
helloU;

begin
PrintHello;

end.

It is compiled using the commandfpc hello.pas. This Free Pascal code only
knows about the Free Pascal wrapper of the C object. So the compiler will compile
first thehelloU unit, then the main program. This part will produce.ppu and.o
files. The first ones are Free Pascal binaries and the second ones, a translation in the
a.out Linux binary format.

The linker is called that will link statically the.o it knows the existence of. It will
then generate an executable binary with all informations about the shared libraries to
be dynamically loaded in memory at execution time.

4 Hello in C++

This section is a tutorial showing how, in a simple case, it ispossible to use C++ written
objects in a Free Pascal project.

4.1 Hello object, again...

In this hello project in C++, a class hello is defined. This class contains a private
structure and several public methods to access it or to perform some actions. Here is
the header, in the filehello.hpp:

#ifndef HELLO_HPP
#define HELLO_HPP
#include<iostream>
#include<string>
using namespace std;
class hello{
public:

hello(){
string vide="";
hello::SetName(vide);

};

5

hello(string &name){
hello::SetName(name);

};
void HelloPrint();
void SetName(string&);
string GetName();

private:
string name;

};
#endif

The private structure is a C++ string containing a name. There is a constructor to
initialise this string to the null string and an overloaded constructor to initialise it to an
arbitrary value.

The other public methods include setting or retrieving the value of the private struc-
ture. The last method just prints in the current console a friendly message.

The body of the methods defined in the header is in the following file,hello.cpp:

#include "hello.hpp"
void hello::HelloPrint(){

cout << "Hello " << GetName() << endl;
return;

};
void hello::SetName(string &str){

hello::name=str;
return;

};
string hello::GetName(){

return(hello::name);
};

This set of file, the header and the body of the methods, is written in pure C++.
It is compiled using the commandg++ -c hello.cpp. The compilation provide
an object filehello.o in which there is many references to C and C++ libraries, in
particular standard template libraries -for the C++ string.

As stated before, Free Pascal cannot handle C++ objects [5, 4]. They have a very
particular structure since they are linked to C++ shared libraries and here, have class
structure. It is therefore necessary to build a C interface between this C++ code and
Free Pascal.

4.2 C wrapping: first solution

As the C language does not know about C++ object oriented structure it is not possible
to keep it. This means that the main job of the C wrapper will beto flatten the C++
class structure to a set of C functions [11].

Another important point is that C does not know about C++ standard template li-
braries and evolved structures like C++ strings, vectors, maps, etc. So another function
of the wrapper will be to cast those C++ classes in standard C types [1].

To do this, it is useful to create a special header, as shown inthe filechello.h:

6

#ifndef CHELLO_H
#define CHELLO_H
#ifdef __cplusplus
#include "hello.hpp"
#define EXPORTCALL __attribute__((stdcall))
typedef hello *helloHandle;
#else
typedef struct hello *helloHandle;
#define EXPORTCALL
#endif

#ifdef __cplusplus
extern "C"
{
#endif

extern helloHandle EXPORTCALL NewHello();
extern helloHandle EXPORTCALL NewHelloC(char*);
extern void EXPORTCALL DeleteHello(helloHandle);
extern void EXPORTCALL HelloPrint(helloHandle);
extern void EXPORTCALL SetName(helloHandle, char*);
extern const char* EXPORTCALL GetName(helloHandle);
//
extern helloHandle EXPORTCALL cNewHello();
extern helloHandle EXPORTCALL cNewHelloC(char*);
extern void EXPORTCALL cDeleteHello(helloHandle);
extern void EXPORTCALL cHelloPrint(helloHandle);
extern void EXPORTCALL cSetName(helloHandle, char*);
extern const char* EXPORTCALL cGetName(helloHandle);

#ifdef __cplusplus
}
#endif
#endif/*CHELLO_H*/

This header can be interpreted both by a C and a C++ compiler. And two body files
will be implemented, one in C++ code and the other one in standard C code.

There is several instruction to help to deal with this. The first one is to use the
macro definition#ifdef __cplusplus and the corresponding#endif. It is true
if the compiler analysing the code is a C++ compiler and falseotherwise [10, 7]. This
macro definition is widely spread among compilers but it is not part of any standard.
Therefore, it might be necessary to define it manually through an option of the com-
piler.

This macro definition first protects the C++ header that needsto be included to
define the hello object. If it is not protected, a C compiler will refuse the code since it
would try to analyse the C++ code of thehello.hpp header.

The second statement that is protected so that only a C++ compiler can see it, is the
definition of theEXPORTCALL to __attribute__((stdcall)). This value is
interpreted by GCC and ensures the argument passing of the function to be compatible
with C definition. This is why it is not set for the C compiler [7, 11].

The third protected statement only to be processed by the C++compiler just defines
a new typehelloHandle as a pointer to thehello class.

7

For the C compiler,helloHandlewill still be a pointer to a structurehello that
is not yet defined. This definition is of course protected so that only the C compiler can
see it. In such a way it does not interfere with the C++ instructions [11].

Another important difference of behaviour whether the header has to be processed
by the C or the C++ compiler comes form the instructionextern ’’C’’{}. This is
a C++ instruction and as such needs to be hidden for the C compiler. This instruction
specifies a linking convention: how to access memory, integrated type formats, etc.
This command does not target specifically the C language: it is also used to link Fortran
to C++ for example [10].

In the following, it shall be noted that each method of thehello class is replaced
by a function. To allow the function to call a method of the class for a given instance
of the class, at least a pointer to this instance shall be passed. Constructors are an
exception since they only receive this pointer.

The last unusual point of this header is the double definitionof all the methods. It
is so to cast C++ types in C standard types. In our example, themethods of thehello
class uses C++ strings that cannot be understood by a C compiler. As the functions
definitions has to be understood by both C and C++ compiler, wehad to pass only C
types as argument of the functions -achar*.

Functions written with ac prefix will be fully written in C. Therefore, they can
only make calls to C functions. Functions that has not the prefix will have a body in a
separate file, written in C++.

The C body of the functions is the filechello.c:

#include "chello.h"
helloHandle cNewHello(){

return(NewHello());
};
helloHandle cNewHelloC(char* nme){

return(NewHelloC(nme));
};
void cDeleteHello(helloHandle h){

return(DeleteHello(h));
};
void cHelloPrint(helloHandle h){

return(HelloPrint(h));
};
void cSetName(helloHandle h, char* nme){

return(SetName(h,nme));
};
const char* cGetName(helloHandle h){

return(GetName(h));
};

It can be compiled with the commandgcc -c chello.c -o chello_c.o.
The C++ body of the functions is in the filechello.cc:

#include "chello.h"
extern "C"{
helloHandle EXPORTCALL NewHello(){

8

return new hello;
};
helloHandle EXPORTCALL NewHelloC(char *nme){

string str(nme);
return new hello(str);

};
void EXPORTCALL DeleteHello(helloHandle handle){

delete handle;
};
void EXPORTCALL HelloPrint(helloHandle handle){

handle->HelloPrint();
};
void EXPORTCALL SetName(helloHandle handle, char *nme){

string str(nme);
handle->SetName(str);

};
const char* EXPORTCALL GetName(helloHandle handle){

return handle->GetName().c_str();
};
}

Here again theextern "C"{} statement specifies the linking convention [10].
The body of the functions is obviously C++: this convention cast C++ types and classes
into standard C types. In this example, there are commands likestring str(nme)
or string.c_str() for string andchar* interconvertions.

This code can be compiled using the command
g++ -c chello.cc -o chello_cc.o.

Following this procedure, it shall be noted that on contraryto what is sometime
said [1], it is not necessary to compile the C wrapper with theC++ compiler. The final
program can be linked using the two separate objects created.

4.3 C/C++ wrapping: second solution

The above described strategy is overly complicated. In fact, it is not necessary to define
two times each flatten methods. To do so, the idea is to define wrapper function is a C
compatible way and to write the body of the functions in C++.

First, the headerchello.h is simplified:

#ifndef CHELLO_H
#define CHELLO_H
#ifdef __cplusplus
#include "hello.hpp"
#define EXPORTCALL __attribute__((stdcall))
typedef hello *helloHandle;
#else
typedef struct hello *helloHandle;
#define EXPORTCALL
#endif

#ifdef __cplusplus

9

extern "C"
{
#endif

extern helloHandle EXPORTCALL NewHello();
extern helloHandle EXPORTCALL NewHelloC(char*);
extern void EXPORTCALL DeleteHello(helloHandle);
extern void EXPORTCALL HelloPrint(helloHandle);
extern void EXPORTCALL SetName(helloHandle, char*);
extern const char* EXPORTCALL GetName(helloHandle);

#ifdef __cplusplus
}
#endif
#endif/*CHELLO_H*/

This time, each flattening function is defined once. Yet, the header is still written
in a way such that it can be compiled by both the C++ and the C compiler. As above,
the bodychello.cc of the functions is written in C++. It is reproduced here:

#include "chello.h"
extern "C"{
helloHandle EXPORTCALL NewHello(){

return new hello;
};
helloHandle EXPORTCALL NewHelloC(char *nme){

string str(nme);
return new hello(str);

};
void EXPORTCALL DeleteHello(helloHandle handle){

delete handle;
};
void EXPORTCALL HelloPrint(helloHandle handle){

handle->HelloPrint();
};
void EXPORTCALL SetName(helloHandle handle, char *nme){

string str(nme);
handle->SetName(str);

};
const char* EXPORTCALL GetName(helloHandle handle){

return handle->GetName().c_str();
};
}

Again, this file is compiled using the command:
g++ -c chello.cc -o chello_cc.o.

As above, the goal is to use a C written interface to link Free Pascal code with
flattened C++ methods. This is why the header alone will be compiled now. Because
this file is a header -the name of the file ends by a.h- the default behaviour of the
GCC compiler will change. It will not produce an object file but a precompiled header
[7]. Yet, the C code in this header is enough to call the flattened C++ methods in a
Free Pascal software. To produce an object file from the header, the compiler has to be

10

forced to compile the file as C source code using the-x c switch:
gcc -x c -c chello.h -o chello_c.o.

The following steps depend slightly of the above flattening strategies.

4.4 linking

The task of integrating those methods in Free Pascal is not over yet. Compilation
of C++ objects is another compiler dependent task. In this tutorial, gcc is used as
compiler. During compilation of this set of compiler, a shared version of thelibgcc
might not be compiled [7]. Therefore, it might not be possible to find such version to
link the Free Pascal code with the C++ object. In brief, this task might be possible but
can be more difficult than linking with pure C written objects.

Another solution is to link the C++ and the C objects in advance into a shared li-
brary. This can be done with the command
gcc -shared -o libhello.so hello.o chello_cc.o. Here, it is the
gcc compiler tools that will find and set the correct dependencies of the libraries.

The shared library can be used as before in the Free Pascal Code.

4.5 Free Pascal wrapping

The Free Pascal wrapper is a Free Pascal unit defining the functions and procedures to
be called in a Free Pascal project. If the first strategy was used, then, the Free Pascal
wrapper should be:

unit helloFLAT;

interface

uses
sysutils;

type
helloHandle = type pointer;

function cNewHello:helloHandle; cdecl;
function cNewHelloC(nme :PChar):helloHandle; cdecl;
procedure cDeleteHello(handle : helloHandle); cdecl;
procedure cHelloPrint(handle : helloHandle); cdecl;
procedure cSetName(handle : helloHandle;

nme : PChar); cdecl;
function cGetName(handle : helloHandle):PChar ; cdecl;

implementation

{$link chello_c.o}
{$linklib hello.so}
{$linklib c}
{$linklib stdc++}

function cNewHello:helloHandle; cdecl; external;

11

function cNewHelloC(
nme :PChar):helloHandle; cdecl; external;

procedure cDeleteHello(
handle : helloHandle); cdecl; external;

procedure cHelloPrint(
handle : helloHandle); cdecl; external;

procedure cSetName(
handle : helloHandle;
nme : PChar); cdecl; external;

function cGetName(
handle : helloHandle):PChar ; cdecl; external;

end.

Using the second strategy, functions call are done without ac prefix:

unit helloFLAT;

interface

uses
sysutils;

type
helloHandle = type pointer;

function NewHello:helloHandle; cdecl;
function NewHelloC(nme :PChar):helloHandle; cdecl;
procedure DeleteHello(handle : helloHandle); cdecl;
procedure HelloPrint(handle : helloHandle); cdecl;
procedure SetName(handle : helloHandle;

nme : PChar); cdecl;
function GetName(handle : helloHandle):PChar ; cdecl;

implementation

{$link chello_c.o}
{$linklib hello.so}
{$linklib c}
{$linklib stdc++}

function NewHello:helloHandle; cdecl; external;
function NewHelloC(

nme :PChar):helloHandle; cdecl; external;
procedure DeleteHello(

handle : helloHandle); cdecl; external;
procedure HelloPrint(

handle : helloHandle); cdecl; external;
procedure SetName(

12

handle : helloHandle;
nme : PChar); cdecl; external;

function GetName(
handle : helloHandle):PChar ; cdecl; external;

end.

It shall be noted that the functions and procedures have to bedeclared with the
cdecl key word. It ensures compatibility between C and Free Pascaldeclarations of
functions and procedures arguments [5, 4]. Only the C functions are defined.

Those declarations need also a new type to be defined:helloHandle. Free
Pascal does not really need to know about the true nature of this type: it will be linked
to the C pointer [11]. As stated by D. Mantione, with this definition, helloHandle
is not compatible to a pointer, but still is a pointer, which is exactly what we want.
This definition makeshelloHandle incompatible to a pointer because of the=type
construction.

Implementation of the functions and procedures are referred asexternal. This
means that the Free Pascal compiler knows it has to wait to findthem: they will be
defined only at linking time or later [5, 4].

Thecdecl instruction guarantees the argument passing protocol to becompatible
with C style. It should also be noted that to correctly map theC stylechar* type,
the Free PascalPChar type was used. Failing to map correctly the C type can be not
detected at compilation or linking time, leading the generated binary to crash.

At last, as explained before, two sets of pre-processor instructions are defined. The
first {$link fhello_c.o},links the C definition and the Free Pascal definition of
the procedures and functions [5, 4].

The second set of pre-processor instructions,{$linklib hello.so},
{$linklib c},{$linklib stdc++},pass instructions to the linker so that it can
link the C functions with the C++ implementations of functions and classes [4, 5]. It
also performs the link to the standardlibc andlibc++ libraries.

4.6 Free Pascal program

An application resulting of this work can be found in the filehelloP.pas:

uses
helloFLAT;

var
h : helloHandle;

begin
h:=cNewHelloC(’Gilles’);
cHelloPrint(h);
cDeleteHello(h);

end.

It uses thehelloFLAT unit. Thus it uses the newly defined typehelloHandle.
It will use it to construct an instance of thehello class for which the private string

13

structure is immediately set. It will use it to print a message and clean the memory
before leaving.

During compilation, the linker might return an error sayingthat it cannot find
-lstdc++. This is because depending on the version of the C++ compiler, several
versions of this library might exist. They are namedlibstdc++.so.x, wherex
stands for the version number of the library; there might notexist a file without such
version number. Therefore, a symbolic link namedlibstdc++.so shall be created
to point to the desired version of the library. Ideally, thislink shall be located in a
directory searched by the linker.

5 A practical example: a Free Pascal unit to call GSL
functions

The GNU Scientific Library (GSL) is a powerfull library written in C and readily
usable in C++ code [6]. It includes complex numbers, specialfunctions, permuta-
tions, linear algebra (based on BLAS), statistics, random distributions, interpolation,
least square fitting, minimisation, root finding, differential equations, functional trans-
formation (Fourier, Hankel, wavelets), and much more. Thislibrary is available for
GNU/Linux and Windows system.

In this section, only the Legendre special functions will bediscussed. Legendre
polynomials are easily defined by the following relation:

P0(x) = 1 (1)

P1(x) = x (2)

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x) (3)

They constitute an important family of orthogonal polynomial because they appear
naturally in multipole expansions. They appear also in the definition of associated
Legendre polynomial, spherical harmonics and many others which are included into
the GSL and covered by the Legendre polynomial section of thelibrary.

5.1 The headers

The Legendre polynomial functions are defined in the filegsl_sf_legendre.h.
The following is an excerpt of this file:

#ifndef __GSL_SF_LEGENDRE_H__
#define __GSL_SF_LEGENDRE_H__

#include <gsl/gsl_sf_result.h>

#undef __BEGIN_DECLS
#undef __END_DECLS
#ifdef __cplusplus
define __BEGIN_DECLS extern "C" {
define __END_DECLS }
#else

14

define __BEGIN_DECLS /* empty */
define __END_DECLS /* empty */
#endif

__BEGIN_DECLS

int gsl_sf_legendre_Pl_e(const int l, const double x,
gsl_sf_result * result);

double gsl_sf_legendre_Pl(const int l, const double x);
int gsl_sf_legendre_Pl_array(

const int lmax, const double x,
double * result_array
);

int gsl_sf_legendre_Pl_deriv_array(
const int lmax, const double x,
double * result_array,
double * result_deriv_array
);

int gsl_sf_legendre_P1_e(double x,
gsl_sf_result * result);

int gsl_sf_legendre_P2_e(double x,
gsl_sf_result * result);

int gsl_sf_legendre_P3_e(double x,
gsl_sf_result * result);

double gsl_sf_legendre_P1(const double x);
double gsl_sf_legendre_P2(const double x);
double gsl_sf_legendre_P3(const double x);
int gsl_sf_legendre_Q0_e(const double x,

gsl_sf_result * result);
double gsl_sf_legendre_Q0(const double x);
int gsl_sf_legendre_Q1_e(const double x,

gsl_sf_result * result);
double gsl_sf_legendre_Q1(const double x);
int gsl_sf_legendre_Ql_e(const int l, const double x,

gsl_sf_result * result);
double gsl_sf_legendre_Ql(const int l, const double x);
int gsl_sf_legendre_Plm_e(const int l, const int m,

const double x,
gsl_sf_result * result);

double gsl_sf_legendre_Plm(const int l, const int m,
const double x);

int gsl_sf_legendre_Plm_array(
const int lmax, const int m, const double x,
double * result_array
);

int gsl_sf_legendre_Plm_deriv_array(
const int lmax, const int m, const double x,
double * result_array,
double * result_deriv_array
);

15

int gsl_sf_legendre_sphPlm_e(const int l, int m,
const double x,
gsl_sf_result * result);

double gsl_sf_legendre_sphPlm(const int l, const int m,
const double x);

int gsl_sf_legendre_sphPlm_array(
const int lmax, int m, const double x,
double * result_array
);

int gsl_sf_legendre_sphPlm_deriv_array(
const int lmax, const int m, const double x,
double * result_array,
double * result_deriv_array
);

int gsl_sf_legendre_array_size(const int lmax,
const int m);

int gsl_sf_conicalP_half_e(const double lambda,
const double x,
gsl_sf_result * result);

double gsl_sf_conicalP_half(const double lambda,
const double x);

int gsl_sf_conicalP_mhalf_e(const double lambda,
const double x,
gsl_sf_result * result);

double gsl_sf_conicalP_mhalf(const double lambda,
const double x);

int gsl_sf_conicalP_0_e(const double lambda,
const double x,
gsl_sf_result * result);

double gsl_sf_conicalP_0(const double lambda,
const double x);

int gsl_sf_conicalP_1_e(const double lambda,
const double x,
gsl_sf_result * result);

double gsl_sf_conicalP_1(const double lambda,
const double x);

int gsl_sf_conicalP_sph_reg_e(const int l,
const double lambda,
const double x,
gsl_sf_result * result);

double gsl_sf_conicalP_sph_reg(const int l,
const double lambda,
const double x);

int gsl_sf_conicalP_cyl_reg_e(const int m,
const double lambda,
const double x,
gsl_sf_result * result);

double gsl_sf_conicalP_cyl_reg(const int m,
const double lambda,
const double x);

16

int gsl_sf_legendre_H3d_0_e(const double lambda,
const double eta,
gsl_sf_result * result);

double gsl_sf_legendre_H3d_0(const double lambda,
const double eta);

int gsl_sf_legendre_H3d_1_e(const double lambda,
const double eta,
gsl_sf_result * result);

double gsl_sf_legendre_H3d_1(const double lambda,
const double eta);

int gsl_sf_legendre_H3d_e(const int l, const double lambda,
const double eta,
gsl_sf_result * result);

double gsl_sf_legendre_H3d(const int l, const double lambda,
const double eta);

int gsl_sf_legendre_H3d_array(const int lmax,
const double lambda,
const double eta,
double * result_array);

#ifdef HAVE_INLINE
extern inline
int
gsl_sf_legendre_array_size(const int lmax, const int m)
{

return lmax-m+1;
}
#endif /* HAVE_INLINE */

__END_DECLS

#endif /* __GSL_SF_LEGENDRE_H__ */

The beginning of the header is designed for C++ compatibility as described earlier.
Then another header is includedgsl_sf_result.h, which is required to define
data structures that are usefull for all special functions in the GSL. It is reproduced
hereafter:

#ifndef __GSL_SF_RESULT_H__
#define __GSL_SF_RESULT_H__

#undef __BEGIN_DECLS
#undef __END_DECLS
#ifdef __cplusplus
define __BEGIN_DECLS extern "C" {
define __END_DECLS }
#else
define __BEGIN_DECLS /* empty */

17

define __END_DECLS /* empty */
#endif

__BEGIN_DECLS

struct gsl_sf_result_struct {
double val;
double err;

};
typedef struct gsl_sf_result_struct gsl_sf_result;

#define GSL_SF_RESULT_SET(r,v,e) do { (r)->val=(v);
(r)->err=(e); } while(0)

struct gsl_sf_result_e10_struct {
double val;
double err;
int e10;

};
typedef struct gsl_sf_result_e10_struct gsl_sf_result_e10;

int gsl_sf_result_smash_e(const gsl_sf_result_e10 * re,
gsl_sf_result * r);

__END_DECLS

#endif /* __GSL_SF_RESULT_H__ */

Fortunately, this header is short and does not call for any other include file.
Calling GSL functions in Free Pascal projects will therefore need two Free Pascal

wrappers, one forgsl_sf_result.h and the othergsl_sf_legendre.h.

5.2 gsl_sf_result

First, the key words__BEGIN_DECLS and__END_DECLS are conventions keyword
for C++ compilers only. They must be read asextern ‘‘C’’{ and} respectively
[8]. Therefore, It is not a concern for the development of thewrapper.

The main difficulty here, compared to the previous cases of the tutorial, is the pres-
ence of C structures. The Free Pascal unit wrapping C headerswill have a systematic
name composed of the original name of the header with the prefix pas_. The Free Pas-
cal wrapper of thegsl_sf_result.hheader is namedpas_gsl_sf_result.pas:

unit pas_gsl_sf_result;

{$mode objfpc}{$H+}

interface

uses

18

CTypes;

{$linklib gsl}
{$linklib gslcblas}
{$linklib m}

Type
{$IFDEF FPC}
{$PACKRECORDS C}
{$ENDIF}

Ppas_gsl_sf_reslt = ^pas_gsl_sf_reslt;
pas_gsl_sf_reslt = record

val: ctypes.cdouble;
err: ctypes.cdouble;

end;
Ppas_gsl_sf_reslt_e10 = ^pas_gsl_sf_reslt_e10;
pas_gsl_sf_reslt_e10 = record

val: ctypes.cdouble;
err: ctypes.cdouble;
e10: ctypes.cint32;

end;

function gsl_sf_result_smash_e(re: Ppas_gsl_sf_reslt_e10;
r: Ppas_gsl_sf_reslt):ctypes.cint32; cdecl; external;

implementation

end.

Note the usage of theCType unit. This unit is not documented in Free Pascal but
proposes robust type conversion rules between C types and Free Pascal types. The
required library to link with a Free Pascal project using theGSL are also present:
{$linklib gsl},{$linklib gslcblas}, and{$linklib m}. They are
the GSL library of course and the CBLAS and the mathematical library. The CBLAS
library can be replaced by better optimised libraries when efficiency becomes crucial
-such as computer-intensive applications.

Then the header defines several structures such asgsl_sf_result_struct,
which are then translated as types, such asgsl_sf_result. For the wrapper, the
important point is to mimic the data structure. A solution isto use records (using the
keywordrecord), which are native data structures of Free Pascal that lookslike C
structures. The problem is that the byte alignment of data inthese structures can be
different in Free Pascal and in C -it seems to be also compilerdependant. It affects the
byte position of each element of the record and the total sizeof the record. The directive
{$PACKRECORDS C} forces byte alignment to be similar to GCC compilers [5].

Since many functions might call for pointers to these structures, they are defined
here too. For instance, the wrapper of the functiongsl_sf_result_smash_ecalls
this function in the library and pass as input pointers to Free Pascal records that are,
hopefully, perfectly mimicking the C structures. Any differences in the management
of these memory space between the Free Pascal code and the C code might result in

19

uncontrolled behaviour of the software.
To resume, Free Pascal translation of a C structure can be a record if each element

type of the record is compatible with each element type of theC record and if the byte
packing is the same. When this cannot be achieved, a solutionis to write another set of
C functions for read/write access to such structures...

5.3 gsl_sf_legendre

Once the problem C structures is solved, the wrapper for Legrendre becomes straight-
forward.

unit pas_gsl_sf_legendre;

{$mode objfpc}{$H+}

interface

uses
CTypes,pas_gsl_sf_result;

{$linklib gsl}
{$linklib gslcblas}
{$linklib m}

function gsl_sf_legendre_Pl_e(l: cint32; x: cdouble;
reslt: Ppas_gsl_sf_reslt): cint32;cdecl;external;

function gsl_sf_legendre_Pl(l: cint32;
x: cdouble): cdouble; cdecl; external;

function gsl_sf_legendre_Pl_array(lmax: cint32;
x: cdouble; reslt: pcdouble): cint32;cdecl;external;

function gsl_sf_legendre_Pl_deriv_array(lmax: cint32;
x: cdouble; result_array: pcdouble;
result_deriv_array: pcdouble): cint32;cdecl;external;

function gsl_sf_legendre_P1_e(x: cdouble;
reslt: Ppas_gsl_sf_reslt): cint32;cdecl;external;

function gsl_sf_legendre_P2_e(x: cdouble;
reslt: Ppas_gsl_sf_reslt): cint32;cdecl;external;

function gsl_sf_legendre_P3_e(x: cdouble;
reslt: Ppas_gsl_sf_reslt): cint32;cdecl;external;

function gsl_sf_legendre_P1(
x: cdouble): cdouble;cdecl;external;

function gsl_sf_legendre_P2(
x: cdouble): cdouble;cdecl;external;

function gsl_sf_legendre_P3(
x: cdouble): cdouble;cdecl;external;

function gsl_sf_legendre_Q0_e(
x: cdouble;
reslt: Ppas_gsl_sf_reslt): cint32;cdecl;external;

function gsl_sf_legendre_Q0(

20

x: cdouble): cdouble;cdecl;external;
function gsl_sf_legendre_Q1_e(x: cdouble;

reslt: Ppas_gsl_sf_reslt): cint32;cdecl;external;
function gsl_sf_legendre_Q1(

x: cdouble): cdouble;cdecl;external;
function gsl_sf_legendre_Ql_e(l: cint32; x: cdouble;

reslt: Ppas_gsl_sf_reslt): cint32;cdecl;external;
function gsl_sf_legendre_Ql(l: cint32;

x: cdouble): cdouble;cdecl;external;
function gsl_sf_legendre_Plm_e(l: cint32; m: cint32;

x: cdouble;
reslt: Ppas_gsl_sf_reslt): cint32;cdecl;external;

function gsl_sf_legendre_Plm(l: cint32; m: cint32;
x: cdouble): cdouble;cdecl;external;

function gsl_sf_legendre_Plm_array(lmax: cint32;
m: cint32; x: cdouble;
reslt_array: pcdouble): cint32;cdecl;external;

function gsl_sf_legendre_Plm_deriv_array(lmax: cint32;
m: cint32; x: cdouble; reslt_array: pcdouble;
reslt_deriv_array: pcdouble): cint32;cdecl;external;

function gsl_sf_legendre_sphPlm_e(l: cint32; m: cint32;
x: cdouble;
reslt: Ppas_gsl_sf_reslt): cint32;cdecl;external;

function gsl_sf_legendre_sphPlm(l: cint32; m: cint32;
x: cdouble): cdouble;cdecl;external;

function gsl_sf_legendre_sphPlm_array(lmax: cint32;
m: cint32; x: cdouble;
reslt_array: pcdouble): cint32;cdecl;external;

function gsl_sf_legendre_sphPlm_deriv_array(lmax: cint32;
m: cint32; x: cdouble; reslt_array: pcdouble;
reslt_deriv_array: pcdouble): cint32;cdecl;external;

function gsl_sf_legendre_array_size(lmax: cint32;
m: cint32): cint32;cdecl;external;

function gsl_sf_conicalP_half_e(lambda: cdouble;
x: cdouble;
reslt: Ppas_gsl_sf_reslt): cint32;cdecl;external;

function gsl_sf_conicalP_half(lambda: cdouble;
x: cdouble): cdouble;cdecl;external;

function gsl_sf_conicalP_mhalf_e(lambda: cdouble;
x: cdouble;
reslt: Ppas_gsl_sf_reslt): cint32;cdecl;external;

function gsl_sf_conicalP_mhalf(lambda: cdouble;
x: cdouble): cdouble;cdecl;external;

function gsl_sf_conicalP_0_e(lambda: cdouble;
x: cdouble;
reslt: Ppas_gsl_sf_reslt): cint32;cdecl;external;

function gsl_sf_conicalP_0(lambda: cdouble;
x: cdouble): cdouble;cdecl;external;

function gsl_sf_conicalP_1_e(lambda: cdouble;
x: cdouble;

21

reslt: Ppas_gsl_sf_reslt): cint32;cdecl;external;
function gsl_sf_conicalP_1(lambda: cdouble;

x: cdouble): cdouble;cdecl;external;
function gsl_sf_conicalP_sph_reg_e(l: cint32;

lambda: cdouble; x: cdouble;
reslt: Ppas_gsl_sf_reslt): cint32;cdecl;external;

function gsl_sf_conicalP_sph_reg(l: cint32;
lambda: cdouble; x: cdouble): cdouble;cdecl;external;

function gsl_sf_conicalP_cyl_reg_e(m: cint32;
lambda: cdouble; x: cdouble;
reslt: Ppas_gsl_sf_reslt): cint32;cdecl;external;

function gsl_sf_conicalP_cyl_reg(m: cint32;
lambda: cdouble; x: cdouble): cdouble;cdecl;external;

function gsl_sf_legendre_H3d_0_e(lambda: cdouble;
eta: cdouble;
reslt: Ppas_gsl_sf_reslt): cint32;cdecl;external;

function gsl_sf_legendre_H3d_0(lambda: cdouble;
eta: cdouble): cdouble;cdecl;external;

function gsl_sf_legendre_H3d_1_e(lambda: cdouble;
eta: cdouble;
reslt: Ppas_gsl_sf_reslt): cint32;cdecl;external;

function gsl_sf_legendre_H3d_1(lambda: cdouble;
eta: cdouble): cdouble;cdecl;external;

function gsl_sf_legendre_H3d_e(l: cint32;
lambda: cdouble; eta: cdouble;
reslt: Ppas_gsl_sf_reslt): cint32;cdecl;external;

function gsl_sf_legendre_H3d(l: cint32;
lambda: cdouble;
eta: cdouble): cdouble;cdecl;external;

function gsl_sf_legendre_H3d_array(lmax: cint32;
lambda: cdouble; eta: cdouble;
reslt_array: pcdouble): cint32;cdecl;external;

implementation

end.

Again, the GSL, CBLAS and mathematical libraries are calledat link and execution
time. The unitpas_gsl_sf_result is also called. Then the remaining calls to the
C functions is systematic. Yet, attention must be paid to thevariables types that are
passed to the functions. They should match as close as possible those used by the C
functions and the C structures must be replaced by their record counterpart.

6 Conclusion

This small tutorial will hopefully help new comers to Free Pascal to build applications
that are able to take advantage of the huge libraries available in C and C++. This shall
help saving time as first not having to write again what was already written in a quite

22

optimal manner. Besides, reusing code prevent the need of testing it. For instance, the
Borland’s Kylix project (that is by now, cold dead) was buildon the TrollTech’s QT
libraries [2]. Those libraries were originally written in Cfor use in C++ code.

There exists some Free Pascal utilities developed for helping designing correct
wrappers. This is precisely the goal of the utilityh2pas [5, 4]. It is nonetheless
essential to get knowledge of the details of the protocol to be able to use it correctly.
Beside, it is wise to look at the Free Pascal code generated.

This tutorial is not complete. For instance, linking C++ library through a layer of C
is still a rather complicated task. It might be possible to dobetter than what is proposed
here. Also, there shall be a way to use the C++ class structureinto Free Pascal without
flattening it. It has been reported previously for Delphi7 and Windows [11]. Finally,
this tutorial focus essentially on GNU/Linux systems. For Windows users, this might
require the use of Cygwin [9]. Again, the Delphi community had to deal with the same
kind of problems. Such resources as [11] can provide very good tips. Some work also
has to be done to check how exceptions can be handled through those mixed code.

7 Thanks

We want to thanks D. Mantione and F. Lombardi for their interest on this text. They
have reviewed this text and added essential contributions to it.

References

[1] M. Cline. How to mix c and c++, 2006.

[2] O. Dahan and P. Toth, editors.Delphi7 Studio. Eyrolles, 2004.

[3] U. Drepper. How to write shared libraries, 2006.

[4] freepascal project, http://community.freepascal.org. freepascal community forum,
2006.

[5] freepascal project, http://community.freepascal.org. freepascal programmers
guide, 2006.

[6] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and F. Rossi.
GNU Scientific Library Reference Manual. B. Gough, 2nd edition version 1.8
edition, 2006.

[7] GNU is Not Unix. Using the gnu compiler collection (gcc),2006.

[8] G. Lehey. Porting UNIX Software: From Download to Debug. G. Lehey, 2005.
http://www.lemis.com/grog/Documentation/PUS/.

[9] Red Hat Cygwin Product, http://www.cygwin.com/.Cygwin.

[10] B. Stroustrup, editor.The C++ programming language, special edition. Pearson
Education, 2003.

[11] R. Velthuis. Using c++ objects in delphi, 2006.

23

