| Class TSorArray (unit mwSArray) |
TObject
TSorArray class
| Constructors |
| Functions |
function Add(Item: Pointer): Integer;
procedure Clear;
procedure CombSortW(SorCompare: TSortArrayCompare);
destructor Destroy;
function Last: Pointer;
procedure MergeSort(SorCompare: TSortArrayCompare);
procedure QuickSort(SorCompare: TSortArrayCompare);
function Comb(jumpsize0: Integer; SorCompare: TSortArrayCompare): boolean;
function Get(Index: Integer): Pointer;
procedure Merge(SorCompare: TSortArrayCompare);
procedure Put(Index: Integer; Item: Pointer);
procedure Expand;
procedure SetCapacity(NewCapacity:Integer);| Properties |
property Capacity : Integer
property Count : Integer
property Items : Pointer
property SorArray : PDynArray| Events |
| Variables |
fCapacity : Integer;
FCount : Integer;
FLeftArray : TSubArray;
FRightArray : TSubArray;
FSorArray : PDynArray;
SwapArray : PDynArray;
TempArray : PDynArray;| Constructors |
| Functions |
function Add(Item: Pointer): Integer;
procedure Clear;
procedure CombSortW(SorCompare: TSortArrayCompare);Driver for the " Comb " routine. Based on routines from the SWAG-Archive. Very fast, for a smaller number of items with large keys " Comb " may outperform Quicksort. ( Only a few thousends
destructor Destroy;Create } { TSorArray
function Last: Pointer;
procedure MergeSort(SorCompare: TSortArrayCompare);Non-recursive Mergesort. Very fast, if enough memory available. The number of comparisions used is nearly optimal, about 3/4 of QuickSort. If comparision plays a very more important role than exchangement, it outperforms QuickSort in any case. ( Large keys in pointer arrays, for example text with few short lines. ) From all Algoritms with O(N lg N) it's the only stable, meaning it lefts equal keys in the order of input. This may be important in some cases.
procedure QuickSort(SorCompare: TSortArrayCompare);Based on a non-recursive QuickSort from the SWAG-Archive. ( TV Sorting Unit by Brad Williams )
function Comb(jumpsize0: Integer; SorCompare: TSortArrayCompare): boolean;Multipication by 0.76 gives a slightly better result than division by 1.3. Because of the FOR loop it runs faster on arrays starting with one
function Get(Index: Integer): Pointer;
procedure Merge(SorCompare: TSortArrayCompare);Unfortunately the " Merge " routine needs additional memory An Algorithm to perform merging in linear time without extra space is described in: B. Huang and M. Langston, " Practical In-place Merging ", Communications of the ACM 31(1988), 348-352.
procedure Put(Index: Integer; Item: Pointer);
procedure Expand;
procedure SetCapacity(NewCapacity:Integer);| Properties |
property Capacity : Integer
property Count : Integer
property Items : Pointer
property SorArray : PDynArray| Events |
| Variables |
fCapacity : Integer;
FCount : Integer;
FLeftArray : TSubArray;
FRightArray : TSubArray;
FSorArray : PDynArray;
SwapArray : PDynArray;
TempArray : PDynArray;