
A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 1

A Draft Proposal to define an Extensible
Runtime Containment and Services Protocol

for JavaBeans (Version 0.97)

Laurence Cable and Graham Hamilton.

THIS IS A DRAFT SPECIFICATION, IT IS THEREFORE SUBJECT TO CHANGE,
AND FURTHERMORE IMPLIES NO INTENT ON BEHALF OF JavaSoft TO
DELIVER SUCH BEHAVIOR

Send comments to java-beans@java.sun.com.

1.0 Introduction.

Currently the JavaBeans specification (Version 1.0) contains neither conventions describ-
ing a hierarchy or logical structure of JavaBeans, nor conventions for those JavaBeans to
rendezvous with, or obtain arbitrary services or facilities from, the execution environment
within which the JavaBean was instantiated.

It is desirable to both provide a logical, traversable, hierarchy of JavaBeans, and further to
provide a general mechanism whereby an object instantiating an arbitrary JavaBean can
offer that JavaBean a variety of services, or interpose itself between the underlying system
service and the JavaBean, in a conventional fashion.

In other component models there exists the concept of a relationship between a Compo-
nent and its environment, or Container, wherein a newly instantiated Component is pro-
vided with a reference to its Container or Embedding Context.

The Container, or Embedding Context not only establishes the hierarchy or logical struc-
ture, but its also acts as a service provider that Components may interrogate in order to
determine, and subsequently employ, the services provided by their Context.

This proposal defines such a protocol that supports extensible mechanisms that:

• Introduce an abstraction for the environment, or context, in which a JavaBean logically
functions during its lifecycle, that is a hierarchy or structure of JavaBeans.

• Enable the dynamic addition of arbitrary services to a JavaBean’s environment.

• Provide a single service discovery mechanism through which JavaBeans may interro-
gate their environment in order both to ascertain the availability of particular services
and to subsequently employ those services.

• Provide a simple mechanism to propagate an Environment to a JavaBean.

• Provide better support for JavaBeans that are also Applets.

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 2

2.0 API Proposal

2.1 interface java.beans.BeanContext

Since the primary roles of a JavaBean’s environment, orBeanContext1, is to:

1. Provide a hierarchy, or logical structure for nested JavaBeans andBeanContexts.

2. Provide a mechanism for rendezvous between a JavaBean, and a variety of services and
information available from the rest of the execution environment.

ThisBeanContext may be best modeled by an interface that defines the structure or hierar-
chy primitives, including an Aggregation interface, as proposed elsewhere, to provide for a
generic service discovery and provider facility, therefore:

public interfacejava.beans.BeanContext

 extends java.beans.BeanContextChild,

 java.util.Collection {

Object instantiateChild(String beanName)

1. Existing Component architectures use the term “Container” to refer to the entity that provides a “Compo-
nent” with services etc. from the execution environment, and “Containment” as the relationship between
the “Container” and “Component”. These terms are greatly overloaded in the industry, and in particular
are already used in the context of Java. Additionally the intended usage of this facility is far broader than
is implied by the general usage of the term “Container”, therefore this proposal uses a new term “Bean-
Context” to describe the “Container” entity.

BeanContext

JavaBean
JavaBean

JavaBean

serviceservice
service

JVM

BeanContext

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 3

 throws IOException, ClassNotFoundException;

Object getService(Class serviceClass,

 BeanContextChild requestor

);

boolean hasService(Class serviceClass,

 BeanContextChild requestor

);

public InputStream

getResourceAsStream(String name,

 BeanContextChild requestor

);

public java.net.URL

getResource(String name,

 BeanContextChild requestor

);

 void addPropertyChangeListener

(String name,PropertyChangeListener pcl);

 void removePropertyChangeListener

(String name, PropertyChangeListener pcl);

void removeBeanContextListener

(BeanContextListener bcl);

void addBeanContextListener(BeanContextListener bcl);

}

2.1.1 java.beans.BeanContextListener & BeanContextEvent

public interface BeanContextListener

 extends java.util.EventListener {

void beanContextChanged(BeanContextEvent bce);

}

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 4

public abstract class BeanContextEvent

 extends java.util.EventObject {

public BeanContext getBeanContext();

public synchronized void

setPropagatedFrom(BeanContext bc);

public synchronized BeanContext getPropagatedFrom();

public synchronized boolean isPropagated()

}

public abstract class BeanContextMembershipEvent

 extends BeanContextEvent {

public boolean isDeltaMember(Object o);

public Object[] getDeltas();

public boolean isChildrenAddedEvent();

public boolean isChildrenRemovedEvent()

}

public BeanContextAddedEvent

 extends BeanContextMembershipEvent {

BeanContextAddedEvent(BeanContext bc, Object[] bccs);

}

public BeanContextRemovedEvent

 extends BeanContextMembershipEvent {

BeanContextRemovedEvent(BeanContext bc, Object[] bccs);

}

The java.beans.BeanContextListener interface is intended to provide a mechanism to
allow entities in the system to monitor changes in a particular context instance. As
detailed in the following section, abeanContextChanged() method notification is fired
whenever a state change occurs in a particularBeanContext instance that theBeanContext
implementation wishes to expose to its Listeners. The associatedBeanContextEvent
instance describes the nature of the change.

Instances ofjava.beans.BeanContextListener are registered and unregistered with a partic-
ularBeanContext instance via itsaddBeanContextListener() andremoveBeanContextLis-
tener() methods.

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 5

Note that theBeanContextEvent provides a mechanism whereby an entity receiving such
an event can determine if it has been propagated from aBeanContext nested with the
BeanContext upon which the entity registered its associatedBeanContextListener inter-
face, via theisPropagatedFrom() andgetPropagatedFrom() methods.

Note that aBeanContext is not required to propagateBeanContextListener notifications it
receives to itsBeanContextListeners, since there are performance implications in doing so,
however the protocol is provided for those applications that require knowledge of mem-
bership changes throughout the hierarchy.

TheBeanContextMembershipEvent describes changes that occur in the membership of a
particularBeanContext instance. This event encapsulates the list of children either added
to, or removed from, the membership of a particularBeanContext instance, i.e the delta in
the membership set.

whenever a successfuladd(), remove(), addAll(), orclear() is invoked upon a particular
BeanContext instance, aBeanContextMembershipEventis fired describing the children
effected by the operation.

2.1.2 The BeanContext as a participant in nested structure

One of the roles of theBeanContext is to introduce the notion of a hierarchical nesting or
structure ofBeanContext and JavaBean instances. In order to model this structure the
BeanContext must expose API that define the relationships in the structure or hierarchy.

TheBeanContext exposes its superstructure through implementation of the
java.beans.BeanContextChild interface. This interface allows the discovery and manipula-
tion of aBeanContext’s nestingBeanContext, and thus introduces a facility to create a
hierarchy ofBeanContexts.

TheBeanContextexposes its substructure through a number of interface methods mod-
elled by thejava.util.Collection interface:

Theadd() method may be invoked in order to nest a new JavaBean orBeanContext within
the targetBeanContext. A conformantadd() implementation is required to adhere to the
following semantics:

• Each child object shall appear only once in the set of children for a givenBeanContext.
If the instance is already a member of theBeanContext then the method shall throw
IllegalArgumentException.

• Each valid child shall be added to the set of children of a given sourceBeanContext,
and thus shall appear in the set of children, obtained through either the toArray(),or
iterator() methods, until such time as that child is deleted from the nestingBeanCon-
text via an invocation ofremove().

• As the child is added to the set of nested children, and where that child implements the
java.beans.beancontext.BeanContextChild interface, theBeanContext shall invoke the
setBeanContext() method upon that child, with a reference to itself. Upon invocation, a

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 6

child may, if it is for some reason unable or unprepared to function in thatBeanContext,
throw aPropertyVetoException to notify the nestingBeanContext. If the child throws
such an exception theBeanContext shall revoke the addition of the child to the set of
nested children and throw anIllegalArgumentException.

• Once thetargetChild has been successfully processed, theBeanContext shall fire a
java.beans.beancontext.BeanContextAddedEvent, containing a reference to the newly
addedtargetChild, to the Listeners currently registered to receiveBeanContextListener
notifications.

• JavaBeans that implement thejava.beans.Visibility interface shall be notified via the
appropriate method, eitherdontUseGui() or okToUseGui(), of their current ability to
render GUI as defined the policy of theBeanContext.

• If the newly added child implementsBeanContextChild, theBeanContext shall register
itself with the child on both itsVetoableChangeListener andPropertyChangeListener
interfaces to monitor, at least, thatBeanContextChild’s “beanContext” property.

By doing so theBeanContext can monitor its child and can detect when such children
are removed from their Context by a 3rd party invokingsetBeanContext(). A BeanCon-
text may veto such a change by a 3rd party if it determines that the child is not in a state
to depart membership of that Context at that time.

• If the JavaBean(s) added, implement Listener interfaces that theBeanContext is a
source for, then theBeanContext may register the newly added objects via the appropri-
ate Listener registration methods as a permissable side effect of nesting.

• The method shall returntrue when complete.

Theremove() method may be invoked in order to remove an existing child JavaBean or
BeanContext from within the targetBeanContext. A conformantremove() implementation
is required to adhere to the following semantics:

• If a particular child is not present in the set of children for the sourceBeanContext, the
method shall throwIllegalArgumentException.

• Remove the validtargetChild from the set of children for the sourceBeanContext,also
removing that child from any other Listener interfaces that it was implicitly registered
on, for thatBeanContext.

Subsequently, if thetargetChild implements the java.beans.beancontext.BeanContext-
Child interface, theBeanContextshall invoke the setBeanContext() with anull 1

BeanContext value, in order to notify that child that it is no longer nested within the
BeanContext.

1. Note, if theremove() was invoked as a result of theBeanContext receiving an unexpectedPropertyChan-
geEvent notification as a result of a 3rd party invokingsetBeanContext() then the remove implementation
shall not invokesetBeanContext(null) on that child as part of theremove() semantics, since to do so
would overwrite the value previously set by the 3rd party..

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 7

If a particularBeanContextChild is in a state where it is not able to be unnested from its
nestingBeanContext it may throw aPropertyVetoException, upon receipt of this the
BeanContextshall revoke the remove operation for this instance. To avoid infinite
recursion children are not permitted to veto subsequent remove notifications.

Once thetargetChild has been removed from the set of children, theBeanContext shall
fire a java.beans.BeanContextRemovedEvent,containing a reference to thetargetChild
just removed, to the Listeners currently registered to receiveBeanContextListener
notifications.

• If the targetChild implementsjava.beans.BeanContextChild then theBeanContext shall
deregister itself from that child’sPropertyChangeListener andVetoableChangeListener
sources.

• If the BeanContext had previously registered the object(s) removed, as Listeners on
events sources implemented by theBeanContext, as a side effect of nesting those
objects, then theBeanContext shall de-register the newly removed object from the
applicable source(s) via the appropriate Listener de-registration method(s)

• Finally the method shall return the valuetrue .

Note that the lifetime of any child of a nestingBeanContext, is at least for the duration of
that child’s containment within a givenBeanContext. For simple JavaBeans that are not
aware of their containment within aBeanContext, this usually implies that the JavaBean
shall exist for the lifetime of the nestingBeanContext.

ThetoArray(), method shall return a copy of the current set of JavaBean orBeanContext
instances nested within the targetBeanContext, and theiterator() method shall supply a
java.util.Iteratorobject over the same set of children.

Thecontains() method shall returntrue if the object specified is currently a child of the
BeanContext.

Thesize() method returns the current number of children nested.

The isEmpty() method returns true iff theBeanContext has no children.

BeanContext’s are not required to implement eitheraddAll(Collection c) or clear() meth-
ods defined byjava.util.Collection, however if they do they must implement the seman-
tics defined, per object, for bothadd() andremove(). In the failure cases these methods
should revoke any partially applied changes to return theBeanContext to the state it was in
prior to the composite operation being invoked, no BeanContextEvents shall be fired in the
failure case..

Note thatall the Collectionmethods all require proper synchronization in order to func-
tion correctly in a multi-threaded environment.

The instantiateChild() method is a convenience method that may be invoked to instantiate
a new JavaBean instance as a child of the targetBeanContext. The implementation of the

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 8

JavaBean is derived from the value of thebeanNameactual parameter, and is defined by
the java.beans.Beans.instantiate() method.

Typically, this shall be implemented by calling the appropriatejava.beans.Beans.instanti-
ate()method, using theClassLoader of the targetBeanContext.

2.1.3 Resources.

TheBeanContext defines two methods;getResourceAsStream() andgetResource() which
are analogous to those methods found onjava.lang.ClassLoader. BeanContextChild
instances nested within aBeanContext shall invoke the methods on their nesting Context
in preference for those onClassLoader, to allow aBeanContext implementation to aug-
ment the semantics by interposing behavior between the child and the underlyingClass-
Loader semantics

2.1.4 The BeanContext as a Service Provider

Using thehasService() andgetService() methods of theBeanContext, JavaBeans can inter-
rogate for the existence of, and subsequently obtain references to, a variety of dynamic
services from its environment, See “Standard/Suggested Conventions for BeanContext
Delegates” on page 13.

In the case when a nestedBeanContext is requested for a particular Delegate that it has no
implementation for, then theBeanContext may delegate the delegation requested to its
own nestingBeanContext in order to be satisfied. Thus Delegation requests can propagate
from the leaf JavaBeans to the rootBeanContext.This is strongly recommended since it
has a significant impact upon interoperability.

Using this mechanism to dynamically discover and utilize services, decouples JavaBeans
andBeanContexts, enabling both greater independence of JavaBeans from their environ-
ment and significant improvements in portability.

The set of Delegate types of aBeanContext is variable over the lifetime of theBeanCon-
text.

For any arbitrary Delegate, it is valid a valid reference at least until the last child referenc-
ing it maintains that reference.

WhenBeanContextChild instances are removed from a particularBeanContext instance,
they shall discard all references to any Delegates they obtained from thatBeanContext.
Futhermore,BeanContexts are not permitted to expose Delegates, obtained by defering the
request to their nestingBeanContext, to their children where the nature of the Delegate
obtained is such that its function depends upon some aspect of the nesting relationship
between the initial referring BeanContext, and the nesting ancestor that satisfies that Dele-
gation.

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 9

2.1.5 The role of a BeanContext in Persistence

Since one of the primary roles of aBeanContext is to represent a logical nested structure
of JavaBean andBeanContextinstance hierarchies, it is natural to expect that in many sce-
narios that hierarchy should be persistent, i.e that theBeanContext should participate in
persistence mechanisms, in particular, eitherjava.io.serializableor java.io.externalizable.

In particularBeanContexts shall persist and restore their current children that implement
the appropriate persistence interfaces when they themselves are made persistent or subse-
quently restored.

As a result of the above requirement, persistentBeanContextChild implementations are
required tonot persist any references to either their nestingBeanContext, or to any Dele-
gates obtained via its nestingBeanContext.

BeanContexts shall, when restoring an instance ofBeanContextChild from its persistence
state, be required to invokesetBeanContext() on the newly instantiatedBeanCon-
textChild, with the actual parameterbeanContext = to a reference to itself, the nesting
BeanContext, in order to notify the newly restored instance of its nestingBeanContext,
thus allowing thatBeanContextChild to fully reestablish its dependencies on its environ-
ment.

Also note that sinceBeanContext implementsjava.beans.BeanContextChild it shall obey
the persistence requirements defined below for implementors of that interface.

2.2 interface java.beans.BeanContextChild1

Simple JavaBeans that do not require any support or knowledge of their environment shall
continue to function as they do today. However both JavaBeans that wish to utilize their
containingBeanContext, andBeanContexts that may be nested, require to implement a
mechanism that enables the propagation of the reference to the enclosingBeanContext
through to cognizant JavaBeans and nestedBeanContexts, the interface proposed is:

public interface java.beans.BeanContextChild

 extends BeanContextListener {

void setBeanContext(BeanContext bc)

throws PropertyVetoException;

BeanContext getBeanContext();

void addPropertyChangeListener

(String name, PropertyChangeListener pcl);

1. I don’t like this name much but I am struggling for a better alternative!

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 10

 void removePropertyChangeListener

(String name, PropertyChangeListener pcl);

void addVetoableChangeListener

(String name, VetoableChangeListener pcl);

 void removeVetoableChangeListener

(String name, VetoableChangeListener pcl);

}

When thechildStateChanged()event is delivered to a JavaBean orBeanContext, the Java-
Bean orBeanContextmay typically, as a side effect of this invocation, initialize, update, or
invalidate any attributes or dependencies that it may have on its nestingBeanContext’s
environment, or as accessed via Delegation through thatBeanContext.

A BeanContextChild object may throw aChildVetoException, to notify the nestingBean-
Context that it is unable to function/be nested within that particularBeanContext. Such a
veto shall be interpreted by aBeanContext as an indication that theBeanContextChild has
determined that it is unable to function in that particularBeanContext and is final.

During the unnesting of aBeanContextChild from itsBeanContext, it is possible for the
child to throw aPropertyVetoException to notify the caller that it is not in a state to be
unnested. In order to bound this interaction aBeanContextChild may veto the initial
unnesting notification, but may not veto any subsequent notifications, and must, upon
receipt of such notifications, amend its state accordingly.

 Note that classes that implement this interface, also act as an Event Source for (sub)inter-
face(s) ofjava.beans.PropertyChangeListener, and are required to update their state
accordingly and subsequently fire the appropriatejava.beans.PropertyChangeEvent with
propertyName = “beanContext”,oldValue = the reference to the previous nestingBean-
Context, andnewValue = the reference to the new nestingBeanContext, to notify any Lis-
teners that its nestingBeanContext has changed value.

JavaBeans, or nestedBeanContexts in the process of terminating themselves, shall invoke
theremoveChildren()method on their nestingBeanContext in order to withdraw them-
selves from the hierarchy prior to termination.

2.2.1 Important Persistence considerations

Instances ofBeanContextChild nested within anBeanContext, will typically define fields
or instance variables that will contain references to their nestingBeanContext instance,
and possibly Delegates obtained from thatBeanContext instance via itsgetContextSer-
vices() interface.

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 11

In order to ensure that the act of making such an instance persistent does not erroneously
persist objects from the instances nesting environment, such instances shall be required to
define such fields, or instance variables astransient .

This requirement is crucial since operations such as cutting and pasting object instances
through a clipboard via object serialization will not function correctly if the act of serializ-
ing the target object also serializes the entire source environment it is nested within.

3.0 Overloading java.beans.instantiate() static method

Sincejava.beans.instantiate() is the current mechanism for (re)instantiating JavaBeans we
need to extend or overload the syntax and semantics of this method in order to accommo-
date the introduction of theBeanContext abstraction. The extension proposed is:

public static Object instantiate(ClassLoader cl,

String beanName,

BeanContext beanContext);

This method behaves has it is currently defined in the JavaBeans specification except in
the case when the JavaBean instantiated implements thejava.beans.BeanContextChild
interface, in this case, the method invokes theaddChild()method on thebeanContext
actual parameter with the value of thetargetChild actual parameter = a reference to the
newly instantiated JavaBean.1

4.0 Providing better support for Beans that are also Applets

The current implementation ofjava.beans.instantiate() contains minimal support for
instantiating JavaBeans that are also Applets. In particular, this method will currently con-
struct anAppletContext andAppletStub for the newly instantiated JavaBean, set the stub
on the newly instantiatedApplet, andinit() theApplet if it has not already been invoked.

Unfortunately this does not provide sufficient support in order to allow most Applets to be
fully functional, since theAppletContext andAppletStub created byjava.beans.instanti-
ate(), are noops. This is a direct consequence of the lack of sufficient specification of how
to constructAppletContext andAppletStubimplementations in the existingApplet API’s.
Furthermore, even if such specifications existed we would require an API that propagated
a number ofApplet attributes such as itsCodebase, Parameters,AppletContext, andDocu-
mentbase into java.beans.instantiate() in order for it to subsequently instantiate the
appropriately initialized objects.

1. Note: Since simple JavaBeans have no knowledge of a BeanContext, it is not advisable to introduce such
instances into the hierarchy since there is no mechanism for these simple JavaBeans to remove them-
selves from the hierarchy and thus subsequently be garbage collected.

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 12

Since key to supporting fully functional Applets is to provide them with fully functional
AppletContext andAppletStubinstances, the design goal is to provide a mechanism to pro-
vide this state toinstantiate() so that it may carry out the appropriate initialization and
binding1, therefore the proposed interface is:

public static Object

instantiate(ClassLoader cl,

 String beanName,

 BeanContext bCtxt,

 AppletInitializer ai

);

public interface AppletInitializer {

void initialize(Applet newApplet, BeanContext bCtxt);

void activate(Applet newApplet);

}

If the newly instantiated JavaBean is an instance ofjava.applet.Applet then the new con-
structedApplet, (Bean) will be passed to theAppletInitializer via a call toinitialize().

Compliant implementations ofAppletInitializer.initialize() shall:

1. Associate the newly instantiatedApplet with the appropriateAppletContext.

2. Instantiate anAppletStub() and associate thatAppletStub with theApplet via

an invocation ofsetStub().

3. If BeanContext parameter isnull , then it shall associate theApplet with its appropri-
ateContainer by adding thatApplet to itsContainer via an invocation ofadd(). If the
BeanContext parameter is non-null , then it is the responsibility of theBeanContext to
associate theApplet with itsContainer during the subsequent invocation of itsaddChil-
dren() method.

Compliant implementations ofAppletInitializer.activate() shall mark theApplet as active,
and may optionally also invoke theApplet’s start() method.

Note that if the newly instantiated JavaBean is not an instance ofApplet, then theApple-
tInitializer interface is ignored.

1. AppletContext objects expose a list ofApplet objects they “contain”, unfortunately the currentApplet or
AppletStub API’s as defined, provide no mechanism for theAppletContext to discover itsApplets from its
AppletStubs,or for anAppletStub to inform itsAppletContext of itsApplet.Therefore we will have to
assume that this binding/discovery can occur in order for this mechanism to be worthwhile in
java.beans.instantiate().

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 13

5.0 Standard/Suggested Conventions for BeanContext
Delegates

5.0.1 BeanContexts that support InfoBus.

The InfoBus technology is a standard extension package that is intended to facilitate the
rendezvous and exchange of dynamic self describing data, based upon a publish and sub-
scribe abstraction, between JavaBean Components within a single Java Virtual Machine.

A BeanContext that that exposes anInfoBus to its nestedBeanContextChild shall do so by
exposing a service via thehasService() andgetService() methods of typejavax.info-
bus.InfoBus.

ThusBeanContextChild implementations may locate a commonInfoBus implementation
for their currentBeanContext by using this mechanism to rendezvous with thatInfoBus
instance.

5.0.2 BeanContexts that support printing

A BeanContext that wishes to expose printing facilities to its descendants may delegate a
reference of (sub)typejava.awt.PrintJob.

5.0.3 BeanContext Design/Runtime mode support.

JavaBeans support the concepts of “design”-mode, when JavaBeans are being manipu-
lated and composed by a developer in an Application Builder or IDE, and “Run”-mode,
when the resulting JavaBeans are instantiated at runtime as part of anApplet, Application
or some other executable abstraction.

In the first version of the specification, the “mode” or state, that is “design”-time or “run”-
time was a JVM global attribute. This is insufficient since, for example, in an Application
Builder environment, there may be JavaBeans that function, in “run”-mode, as part of the
Application Builder environment itself, as well as the JavaBeans that function, in
“design”-mode, under construction by the developer using the Application Builder to
compose an application.

Therefore we require the ability to scope this “mode” at a granularity below that of JVM
global.

TheBeanContextabstraction, as a “Container” or “Context” for one or more JavaBeans
provides appropriate mechanism to better scope this “mode”.

ThusBeanContext’s that wish to expose and propagate this “mode” to its descendants may
delegate a reference of typejava.beans.BeanContextMode:

public interface java.beans.DesignMode {

void setDesignTime(boolean isDesignTime);

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 14

boolean isDesignTime();

}

Additionally, BeanContexts delegating such a reference shall be required to fire the appro-
priatejava.beans.propertyChangeEvent, with propertyName = “designTime”, with the
appropriate values foroldValue andnewValue, when the “mode” changes value.

Note that it is illegal for instances ofBeanContextChild to callsetDesignTime() on
instances ofBeanContextthat they are nested within.

5.0.4 BeanContext Visibility support.

JavaBeans with associated presentation, or GUI, may be instantiated in environments
where the ability to present that GUI is either not physically possible (when the hardware
is not present), or is not appropriate under the current conditions (running in a server con-
text instead of a client).

The first version of the JavaBeans Specification introduced thejava.beans.Visibility inter-
face in order to provide a mechanism for JavaBeans to have their “visible” state, or ability
to render a GUI, controlled from their environment.

BeanContexts that wish to enforce a particular policy regarding the ability of their children
to present GUI, should use thejava.beans.Visibility interface to control their children,
however this mechanism in of itself may be insufficient.

ThereforeBeanContexts that implement visibility policy shall delegate a reference of type
java.beans.visibilityState1:

public interface java.beans.VisibilityState {

boolean isOkToUseGui();

}

Additionally, BeanContexts delegating such a reference shall be required to fire the appro-
priatejava.beans.propertyChangeEvent, with propertyName= “okToUseGui”, with the
appropriate values foroldValue andnewValue, when the “state” changes value.

Children of aBeanContext instance that does not delegate such an interface shall assume
that it is permitted to render their associated GUI, if any, at any time.

The mechanism for setting the value of the “state”, is implementation dependent, but
would typically be implemented or delegated through ajava.beans.visibility interface.

5.0.5 Determining Locale from a BeanContext

BeanContexts may have a locale associated with them, in order to associate and propagate
this important attribute across the JavaBeans nested therein.

1. Reusing java.beans.visibility here, instead of defining a new interface, would be nice but since it com-
bines setters and getters it seems unsuitable as a mechanism for propagating state down the hierarchy
since it would also (theoretically) allow it to propagate up also.

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 15

Therefore,BeanContexts, shall be required to fire the appropriate java.beans.Property-
ChangeEvent, with propertyName = “locale”,oldValue = the reference to the previous
value of theLocale delegate, andnewValue = the reference to the new value of theLocale
delegate, in order to notify its Listeners of any change inLocale.

Setting and getting the value of theLocale on theBeanContext is implementation depen-
dent.

5.0.6 BeanContexts or JavaBeans that have associated presentation.

JavaBeans andBeanContexts that are associated with the presentation of a GUI shall
either directly implement, or delegate a reference to,java.awt.Componentand/or
java.awt.Container.

During the invocation ofadd() the nestingBeanContextimplementation may determine
the java.awt.Component (if any) of the child it is adding and perform the necessary steps
to cause its ownContainer and the child’sComponent to be associated as defined by the
Container’s add() semantics.

Similarly, duringremove() the nestingBeanContext shall disassociate the child’sCompo-
nent (if any) from its ownContainer.

6.0 java.beans.beancontext.BeanContextSupport

In order to ease the implementation of this relatively complex protocol a “helper” class is
provided;java.beans.beancontext.BeanContextSupport. This class is designed to either be
subclassed, or delegated (either explicitly or implicitly) by another object, and provides a
fully compliant (extensible) implementation of the protocols embodied herein.

