
Java Card 2.0
Programming Concepts

October 15, 1997

Revision 1.0 Final

©1997 Sun Microsystems, Inc.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

ii

©1997 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A.

This document is protected by copyright.

Sun Microsystems, Inc. ("SUN") hereby grants to you a fully-paid, nonexclusive, nontransferable, perpetual,
worldwide, limited license (without the right to sublicense), under Sun’s intellectual property rights that are essential
to use this specification ("Specification"), to use the Specification for the sole purpose of developing applications or
applets that may interoperate with implementations of the Specification developed pursuant to a separate license
agreement with SUN.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

This specification contains the proprietary information of Sun and may only be used in accordance with the license
terms set forth above. SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY
OF THE SPECIFICATION, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A
RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SPECIFICATION OR ITS DERIVATIVES.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JDK, Java, HotJava, HotJava Views, Java Card, Java
WorkShop, the Java Coffee Cup logo, and Visual Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

__

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY
TIME.

__

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

iii

Document Revision History
Revision 1.0

This document was previously called the “Java Card 2.0 Programmer’s Guide”. Since the information
contained in this document explains the concepts behind Java Card 2.0, it has been renamed to “Java Card
2.0 Programming Concepts.”

Changes include:

• Addition of a Preface.

• Additional information on all topics.

• “File System” and “Cryptography” sections added.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
 October 15, 1997

iv

Contents

Document Revision History..iii

Preface...vi

Who Should Use This Manual ..vi

References..vi

How This Manual Is Organized..vii

Terminology..vii

1. The Java Card Framework.. 1

2. Applet Design Concepts... 2

2.1 Multiple Applets...2

2.2 Packages ..2

2.3 Objects...3

2.4 Lifetime of the Virtual Machine..3

2.5 Transient Objects ...4

2.6 Atomicity ...5

2.7 Applet Isolation and Object Sharing ...7

2.8 Exception Handling..8

2.9 Applet Lifetime and Runtime Environment...9

3. APDU Handling.. 12

3.1 Methods ...13

3.2 APDU Cases ..17

4. File System.. 18

4.1 File System Structure ...19

4.2 Class Structure ...20

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
 October 15, 1997

v

4.3 Elementary Files...20

4.4 Dedicated Files...21

4.5 File Referencing...22

4.6 File Access Control ..23

4.7 Interface with Native OS File System ...24

5. Cryptography .. 24

5.1 Class Structure ...24

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
 October 15, 1997

vi

Preface
The Java Card 2.0 Programming Concepts manual contains information on the Java Card
2.0 classes and how they can be used in your applet or framework. The concepts in this
manual include:

• An explanation of the Java Card framework

• How to implement the Java Card 2.0 classes in your applet

• Applet lifetime and runtime environment

• How applets share objects securely

• How transactional atomicity works in Java Card

• How the ISO file system is implemented in an object-oriented Java Card

Note: The process of developing, distributing, and installing applets is beyond the scope
of this document.

Java Card Runtime Environment implementations, such as programming and configuring
an ATR, are also beyond the scope of this document.

Who Should Use This Manual
The Java Card 2.0 Programming Concepts manual is targeted at developers who are
creating applets using the Java Card 2.0 API and also at developers who are considering
creating a vendor-specific framework based on the Java Card 2.0 API.

Java Card 2.0 assumes a particular model (ISO 7816 or EMV) and supports a framework
designed for that model. This guide describes how a developer can implement the Java
Card 2.0 API to write applets for smart cards using this model and framework.

For developers considering creating a vendor-specific framework, this guide provides
additional information on the required behavior of the classes in the Java Card 2.0 API.

A knowledge of the Java programming language, object-oriented design, and smart cards
is assumed.

References
References to various documents are made in this manual. You should have the following
documents available:

• The Java Card 2.0 API

• The Java Card 2.0 Language Subset and Virtual Machine

• The ISO 7816 Specification Parts 1-6

• The EMV ’96 (Europay, MasterCard, Visa) Integrated Circuit Card Specifications
for Payment Systems.

• The Java Language Specification by James Gosling, Bill Joy, and Guy Steele.
Addison-Wesley, 1996, ISBN 0-201-63451-1.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
 October 15, 1997

vii

• The Java Virtual Machine Specification by Tim Lindholm, and Frank Yellin.
Addison-Wesley, 1996, ISBN 0-201-63452-X.

How This Manual Is Organized
This manual is organized into five main sections.

Section 1, “The Java Card Framework,” describes the Java Card framework and how it
affects you as an applet developer.

Section 2, “Applet Design Concepts,” this section describes how you can implement the
classes defined in the Java Card 2.0 API in your vendor-specific applet. This section
includes programming considerations for your applet.

Section 3, “APDU Handling,” explains the methods in the ISO-compliant APDU class
and also describes how a typical applet might handle the various cases of APDU's.

Section 4, “Java Card File System,” describes how an ISO-compatible file system is
implemented in the object-oriented Java Card.

Section 5, “Cryptography,” describes the API for cryptography methods.

Terminology
The following terms are used throughout the manual:

AID is an acronym for Application IDentifier as defined in ISO 7816-5.

APDU is an acronym for Application Protocol Data Unit as defined in ISO 7816-4.

Applet the basic unit of selection, context, functionality, and security in a Java Card.

Applet developer refers to a person creating an applet using the Java Card 2.0 API.

Applet execution context. The JCRE keeps track of the currently selected applet as well as
the currently active applet. The currently active applet value is referred to as the applet
execution context. When a virtual method is invoked on an object, the applet execution
context is changed to correspond to the applet that owns that object. When that method
returns, the previous context is restored. Invocations of static methods have no effect on
the applet execution context. The applet execution context and sharing status of an object
together determine if access to an object is permissible.

Atomic Operation is an operation that either completes in its entirety (if the operation
succeeds) or no part of the operation completes at all (if the operation fails).

Atomicity refers to whether a particular operation is atomic or not and is necessary for
proper data recovery in cases where power is lost or the card is unexpectedly removed
from the CAD.

CAD is an acronym for Card Acceptance Device. The CAD is the device in which the
card is inserted.

Java Card Runtime Environment (JCRE) consists of the Java Card Virtual Machine and
the core classes in the Java Card API.

JCRE Implementer refers to a person creating a vendor-specific framework using the Java
Card 2.0 API.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
 October 15, 1997

viii

Persistent Object. Persistent objects and their values persist from one CAD session to the
next, indefinitely. Objects are persistent by default. Persistent object values are updated
atomically using transactions. The term persistent does not mean there is an object-
oriented database on the card or that objects are serialized/deserialized, just that the
objects are not lost when the card loses power.

Transaction is an atomic operation where the programmer defines the extent of the
operation by indicating in the program code the beginning and end of the transaction.

Transient Object. The values of transient objects do not persist from one CAD session to
the next, and are reset to a default state at specified intervals. Updates to the values of
transient objects are not atomic and are not effected by transactions.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

1

1. The Java Card Framework
Java Card 2.0 assumes a particular model (ISO 7816 or EMV) and supports a framework
designed for that model. The following section describes this Java Card framework.

Note: Java Card 2.0 does not preclude vendors from including on their cards additional
frameworks and /or applications designed for different models as long as the standard
framework is supported. In such cases, however, it is the vendor’s responsibility to solve
the issues related to the coexistence of different frameworks.

ISO 7816 contains standards for ICCs (Integrated Circuit Cards with contacts), also
known as smart cards. These standards cover the various aspects of smart cards, such as:

• Physical characteristics (Part 1)

• Dimensions and location of the contacts (Part 2)

• Electronic signals (Part 3, initial sections)

• Transmission protocols (Part 3, later sections)

• Inter-industry commands for interchange (Part 4)

• Application identifiers (Part 5)

• Inter-industry data elements (Part 6)

• Inter-industry commands for SCQL (Part 7)

Smart cards can be used in a wide variety of applications. Since most smart cards have
very limited hardware resources, few smart card systems are designed to support all the
features of all the parts of ISO 7816. Typically, vendors of smart card implementations
and applications will identify a subset of ISO 7816 with which to be compatible. They
may also support proprietary features as required for their targeted industries.

For example, a smart card system might be compatible with Parts 1 and 2 and half of Part
3 (Electronic Signals) but might require proprietary transmission protocols and
commands, and so not be compatible with the latter half of Part 3 or the remaining Parts.

The EMV1 standard, defined by members of the international financial community,
combines a subset of ISO 7816 Parts 1-6 with additional proprietary features into a
design tailored to meet the specific needs of their industry.

The Java Card 2.0 API is designed to easily support those smart card systems and
applications which are generally compatible with ISO 7816 Parts 1-6 and/or EMV. Java
Card 2.0 defines a framework within which applications can be written. The framework
automatically takes care of most of the low-level details specified in ISO 7816 Parts 1-3.
The framework also provides classes and methods that assist applications in being
compatible with Parts 4-6 and/or EMV.

1 EMV ’96 (Europay, MasterCard, Visa) Integrated Circuit Card Specifications for Payment Systems.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

2

The major advantage of this framework is that it is relatively easy to create an applet that
fits into the model assumed by the framework. The applet developer can concentrate most
of his/her effort on the details of the application, rather than on the details of the smart
card system infrastructure.

The rest of this document explains how an applet developer can implement the Java Card
2.0 API using the model and framework described above. The concepts described in this
manual can also be used by the JCRE implementer in creating a compatible
implementation.

2. Applet Design Concepts
According to ISO 7816-4, an ICC (Integrated Circuit Card with contacts), or smart card,
contains one or more applications. In place of the ISO term application, Java Card uses
the term applet.

Applets are the basic unit of selection, context, functionality, and security. When a smart
card is inserted into a CAD, the CAD selects an applet on the card and sends it
commands to perform. Applets are identified and selected by an AID (Application
IDentifier) as defined in ISO 7816-5. The selection and other commands are formatted
and transmitted as APDUs (Application Protocol Data Units) as defined in ISO 7816-4.
Applets reply to each APDU command with optional data and indicate result of the
operation using a status word (SW) as defined in ISO 7816-4.

Applets are objects that are instances of classes defining the specific behavior of that
applet. Applet classes are subclasses of the javacard.system.Applet class, which
defines the common behavior of all applets.

2.1 Multiple Applets
A CAD can interact with a single applet. Or it can interact with several applets by
selecting each in turn and sending them individual APDU commands to perform. For
example, first the CAD selects applet1. After it completes a transaction and is finished
with applet1, the CAD then selects applet2 and processes transactions using applet2.

Each applet is an independent entity with its own state and functionality. Under normal
circumstances, the existence and operation of one applet has no effect upon the other
applets on the card. However, Java Card provides facilities to support more sophisticated
scenarios in which multiple applets can discover each other, communicate, and share data
in a limited manner, while still maintaining protection from each other in the form of a
firewall between applets.

2.2 Packages
As in standard Java, Java Card supports packages. Packages, like applets, are named with
Application Identifiers. You, the applet developer, do not assign an AID in your applet or
package source code. The AIDs are associated with your applet and packages when they
are prepared for installation onto the card. This process is beyond the scope of this
document.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

3

An applet can be delivered as one or more packages that are installed on the card and
linked to each other and to other packages already on the card. A minimal applet is a
package with a single class derived from the javacard.framework.Applet class. A
package containing the applet class must be linked with the framework package.
Packages not containing an applet class can also be loaded onto the card.

The AID of the package must be different than the AID of the applet.

As an applet developer, you can create a package with one applet. This package can then
be installed onto the card. Or you can create a package that contains classes that can be
shared by multiple applets.

2.3 Objects
In Java Card, applets are written in the Java language and thus use Java objects to
represent, store, and manipulate data.

Every object (class instance or array) on the card is owned by the applet which
instantiated it. The owning applet always has full privileges to use and modify the object.
Unless an object is explicitly shared, it is only accessible to the applet that created it. The
standard Java rules apply:

• An object continues to exist as long as a valid reference to that object exists on the
stack, in a local or parameter variable, or in a field of another existing object.

• All fields in a new object are set to their default values.

Because smart card resources are limited, you, the JCRE implementer, are free to decide
whether or not to implement garbage collection of persistent objects. However, if garbage
collection is not implemented, then you must be careful when allocating “temporary”
objects so as to avoid wasting memory.

2.4 Lifetime of the Virtual Machine
In a PC or Workstation, the Java Virtual Machine runs as an operating system process.
When the OS process is terminated the Java applications and their objects are
automatically destroyed.

By contrast, in Java Card the execution lifetime of the Virtual Machine is the lifetime of
the card. Most of the information stored on a card must be preserved even when power is
removed from the card. Persistent memory technology (such as EEPROM) enables a
smart card to store information even when power is removed. Since the Virtual Machine
and the objects created on the card are used to represent application information that is
persistent, the Java Card Virtual Machine runs forever.

The JCRE is initialized and the framework is created and initialized at card initialization.
The framework exists for the lifetime of the Virtual Machine. Because the execution
lifetime of the Virtual Machine and the framework span CAD sessions of the card, the
lifetimes of objects created by applets will also span CAD sessions. Objects that have this
property are called persistent objects. The JCRE implementer must make an object
persistent when:

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

4

• The Applet.register method is called the JCRE stores a reference to the instance
of the applet object. The JCRE implementer must ensure that instances of class applet
object are persistent.

• A reference to an object is stored in a field of any other persistent object. This
requirement stems from the need to preserve the integrity of the JCRE’s internal data
structures.

If an object is not referenced by other persistent objects, it can be discarded or garbage
collected.

2.5 Transient Objects
Applets sometimes have objects that contain temporary, or transient, data that need not be
persistent across CAD sessions. Java Card supports designating objects as transient.

Transient objects are different from persistent objects in the following ways:

• The contents of the fields of a transient object are reset by the JCRE to the default
state (zero, null, or false) during power loss or termination of CAD sessions.
Transient object’s values will not persist from one CAD session to the next and
shorter lifetimes are possible.

• Updates to the fields of a transient object are not transacted. Atomicity does not apply
to transient objects. If the contents of a transient object are changed during a
transaction, the new value is permanent. If the transaction is aborted, the modified
value remains.

These properties make transient objects ideal for small amounts of applet temporary data
that are frequently modified but that need not be preserved across sessions or shorter time
periods.

A transient object can be persistent. But the contents of the object’s fields are not. This
means that other objects can have references to transient objects, and those references can
be stored persistently.

You can make an object transient using the API call:

System.makeTransient(Object anObject, byte duration)

The duration may be one of the following values:

System.TRANSIENT_SESSION - contents of the object are reset at the end of
each CAD session, or when the card is removed from the CAD.

System.TRANSIENT_SELECTION - contents of the object are reset when the
object’s owning applet is deselected (or some other applet is selected).

System.TRANSIENT_APDU - contents of the object are reset when the method
Applet.process() returns.

When you use makeTransient to make an object transient, all the object’s fields are
reset to their default values (zero, null, or false). In addition, every time the card is reset,
all the fields of all transient objects are reset to their default values. Transient objects with
a shorter duration will also have their contents reset to default values at the specified
times.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

5

You can only make an object transient once. After makeTransient has been called with
an object once, any successive calls with that object will throw a SystemException
with a reason code of ALREADY_TRANSIENT.

You can determine if an object is transient by using the following API call in your applet:

byte System.isTransient(Object anObject)

This method will return one of the above duration constants, or the constant
System.TRANSIENT_NONE to indicate the object is not transient.

2.6 Atomicity
Atomicity defines how the card handles the contents of persistent storage after a stop,
failure, or fatal exception during an update of a single object or class field. If power is
lost during the update of a field in a persistent object, the applet developer must know
what the field contains when power is restored.

The Java Card platform guarantees that any update to a single persistent object or class
field will be atomic. That is, if the smart card loses power during the update of a field in
an object that must be preserved across CAD sessions, the contents of the field will be
restored to their previous value. Some Java Card methods also guarantee atomicity for
block updates of multiple data elements. For example, the atomicity of the
Util.arrayCopy method guarantees that either all bytes are correctly copied or else the
destination array is restored to its previous byte values.

Your applet might not require atomicity for array updates. The
Util.arrayCopyNonAtomic method is provided for this purpose.

2.6.1 Transactions

Your applet might need to atomically update several different fields in several different
objects. That is, either all updates take place correctly and consistently or else all fields
are restored to their previous values.

Java Card supports a transactional model in which an applet can designate the beginning
of an atomic set of updates with a call to the method System.beginTransaction.
Each object update after this point is conditionally updated. This means that the field
appears to be updated – reading the field back yields its latest conditional value but the
update is not yet committed.

When the applet calls System.commitTransaction, all conditional updates are
committed to persistent storage.

If power is lost or if some other system failure occurs prior to the completion of
System.commitTransaction, all conditionally updated fields are restored to their
previous values. If the applet encounters an internal problem or decides to cancel the
transaction, it can programmatically undo conditional updates by calling
System.abortTransaction.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

6

2.6.2 Nested Transactions

The model currently assumes that nested transactions are not possible. There can be only
one transaction in progress at a time. If System.beginTransaction is called while a
transaction is already in progress, then a TransactionException is thrown.

The System.transactionDepth method is provided to allow you to determine if a
transaction is in progress.

2.6.3 Transaction Failure

If power is lost or the card is reset or some other system failure occurs while a transaction
is in progress, then all conditionally updated fields since the original
System.beginTransaction are restored to their previous values.

This action is performed automatically by the JCRE when it reinitializes the card after
recovering from the power loss, reset, or failure. The JCRE determines those objects (if
any) which were conditionally updated and restores them. For example, a JCRE
implementer might choose to do this during card initialization before the ATR is sent to
the CAD.

2.6.4 Aborting a Transaction

If the applet encounters an internal problem or decides to cancel the transaction, you can
programmatically undo conditional updates by calling System.abortTransaction. If
this method is called, all conditionally updated fields since the original
System.beginTransaction are restored to their previous values and the
System.transactionDepth value is reset to 0.

2.6.5 Transaction Duration

If an applet returns from the methods select, deselect, or process with a
transaction in progress, the JCRE will automatically abort the transaction.

2.6.6 Transient Objects

Note that only updates to persistent objects participate in the transaction. Updates to
transient objects are never undone, regardless of whether or not they were “inside a
transaction.”

2.6.7 Commit Capacity

Since platform resources are limited, the number of bytes of conditionally updated data
that can be accumulated during a transaction is limited. Java Card provides methods to
determine how much “commit capacity” is available on the current platform. An
exception is thrown if the commit capacity is exceeded.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

7

2.6.8 TransactionException

A TransactionException a subclass of RuntimeException is thrown when certain
kinds of problems are detected within the transaction subsystem. The possible reason
codes are as follows:

1 TRANS_IN_PROGRESS — beginTransaction was called while a
transaction was already in progress. This is a programming error.

2 TRANS_NOT_IN_PROGRESS — commitTransaction or
abortTransaction was called while a transaction was not in progress. This
is a programming error.

3 TRANS_BUFFER_FULL — During a transaction, an update to persistent
memory was attempted which would have caused the commit buffer to
overflow. The update was not performed and the transaction is still in progress
(it is neither aborted nor committed). This is generally a fatal programming
error. You must alter the code to use shorter transactions that do not cause the
commit buffer to overflow.

4 TRANS_INTERNAL_FAILURE — Some kind of internal fatal problem
occurred within the transaction subsystem. This exception indicates that there
is a problem in the transaction subsystem.

2.7 Applet Isolation and Object Sharing
To create a secure and trusted environment, applets are isolated from each other. An
applet firewall prevents one applet from accessing the contents or behavior of objects
owned by other applets.

Every object (class instance or array) on the card is owned by the applet which
instantiated it, that is, the applet which was active at the time the object was created. The
owning applet always has full privileges to use and modify the object.

The applet firewall ensures that no other applet may use, access, or modify the contents
of an object owned by another applet except as described in this section. This does not
restrict another applet from having a reference to such an object, but that applet cannot
invoke methods on the object or get or set its field contents.

However, it is necessary to allow exceptions to this restriction. The JCRE must be able to
invoke methods on applets, applets must be able to use objects owned by the JCRE, and
applets must be able to interoperate for cooperative applications such as loyalty
programs.

If an applet does not have sharing privileges for an object, any attempt to invoke an
instance method or access the object’s contents will throw a SecurityException. This
exception is thrown on illegal attempts to invoke a virtual method, access a field value,
check an array length, cast the object to a different type, or use the instanceof
operator. The JCRE implementation can choose to mute the card instead of throwing the
exception.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

8

When the JCRE checks an object’s owner against the current applet execution context, it
allows the exceptions listed in the following sections to pass the check. For most
operations, there is no special action needed. For method invocation operations, the JCRE
remembers the old context, and performs an applet context switch to allow the code in the
object’s applet to function correctly and with expected security restrictions. When the
method returns, the old applet context is restored.

2.7.1 JCRE Privileges

The JCRE is allowed to use and modify any object on the card. For instance, the JCRE
might invoke methods on applet instances without the instances having to be shared.

2.7.2 Unrestricted Sharing

An applet may permit unrestricted sharing of any of its objects. The applet shares an
object by making the call:

System.share(anObject);

Note: Only the applet that owns the object may make this call. Sharing privileges may not
be revoked. That is, once an object is shared, it is shared for its remaining lifetime.

2.7.3 Restricted Sharing

An applet may permit restricted sharing of any of its objects by making the call:

System.share(anObject, AID);

Note: Only the applet that owns the object may make this call. Sharing privileges may not
be revoked. That is, once an object is shared, it is shared for its remaining lifetime.

An applet can make a restricted sharing call multiple times with the same object to allow
the object to be shared with multiple applets, but not with all applets.

2.8 Exception Handling
Java Card supports exception handling as defined in the Java language. Exceptions are
thrown by the Virtual Machine when internal runtime problems are detected. In addition,
exceptions can be thrown programmatically by the code in applets and shared packages.
Exceptions are caught in the standard Java way.

Checked exceptions (see The Java™ Language Specification) are subclasses of
Exception and must either be caught in the throwing method or declared in a throws
clause of the method header. These exceptions are typically an important part of the
interface to a method and must be eventually caught by the applet code in order to ensure
correct usage of the Java Card API.

Unchecked exceptions are subclasses of RuntimeException and need not be caught nor
declared in a throws clause. These exceptions are typically indicative of unexpected
runtime problems, programming errors or error processing states, and are caught by the
outmost levels of the JCRE. However, you can have your applet catch unchecked
exceptions if you choose to do so.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

9

ISOException is a special unchecked exception. It is raised during runtime to denote
the warning or error processing state in the card. ISOException holds a status word
(SW). The status word values are defined in the ISO 7816-4 specification. When an
applet or the underlying JCRE code encounters a problem and decides to terminate the
process, it simply throws an ISOException with the appropriate status word. The JCRE
catches an ISOException and returns the SW as a part of the Response APDU to the
CAD.

An exception that is not caught by an applet is caught by the JCRE. All exceptions other
than ISOException indicate a fatal error in a card. The JCRE implementer may handle
these fatal errors individually in one of the following ways:

1. Reply to the current APDU command (if any) with a Status Word of
ISO.SW_UNKNOWN (0x6F00).

2. Put the card into a mute state. A muted card will not respond to any APDU
commands, including the currently executing command.

Option 1 is preferred for debugging environments. Since an uncaught exception might
indicate a security attack on the card, option 2 may be preferred for production cards.

2.8.1 Exception Objects

Since garbage collection is not required by the Java Card standard, when a Java Card
exception object is created, it may continue to occupy precious memory space, even if
there is no longer a reference to it. To optimize your memory usage, you can pre-create
all exception objects at some initialization time and save their references permanently in
some well-known location. When the exception event occurs, rather than create a new
exception object, you can have your code retrieve and reuse the reference for the desired
exception object from the well-known location, fill in the reason code in the object, and
throw the object.

The JCRE pre-creates an instance of each kind of specific exception defined in the Java
Card API. Most of these are unchecked exceptions. When these exception objects are
needed, use the static method throwIt.

You can define your own exceptions by creating subclasses of class Exception. These
are always checked exceptions. These exceptions can be thrown and caught as desired by
the applet. However, during initialization you should have your applet create a single
instance of each such exception, save the reference in some persistent object field, and
reuse that instance whenever it is necessary to throw that exception.

2.9 Applet Lifetime and Runtime Environment
Because applet objects exist for the life of the card, once installed an applet lives on the
card forever. Each applet is a subclass of the Applet class. As defined by this template,
the JCRE interacts with the applet via its public methods install, select, deselect
and process. Your applet must implement the install method. If the install
method is not implemented, the applet’s objects cannot be created or initialized.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

10

For the purposes of this document, an applet’s lifetime begins at the point where it has
been correctly loaded into card memory, linked, and otherwise prepared for execution.
The last phase of this installation process is when the JCRE calls the install static
method of the Applet’s class.

2.9.1 install()

When install is called, no applet objects exist. The main task of the install method
within the applet is to create and initialize the objects that the applet will need during its
lifetime and otherwise prepare itself to be selected and accessed by a CAD.

It is not necessary to set up a transaction in the install method, as the JCRE will
ensure that the install method is called from within a beginTransaction /
endTransaction block.

Typically, an applet will create various objects, initialize them with predefined values, set
some internal state variables, and call the Applet.register method to inform the
JCRE that the applet is available for selection.

If the applet encounters a problem with installation, it may throw an ISOException
with the appropriate status word. The JCRE will abort the applet installation and return
the status word to the CAD.

Simple applets might be fully ready to function in their normal role after a successful
return from install . More complex applets may need further configuration,
initialization, or personalization information before they are ready to function normally.
The applet developer is responsible for setting internal state variables in his/her applet to
track these state transitions.

2.9.2 select()

Applets remain in a suspended state until they are explicitly selected. Selection occurs
when the JCRE receives a SELECT APDU in which the name data matches the AID of
the applet. Selection causes an applet to become active, and the applet execution context
is adjusted so that only objects belonging to this applet (or appropriately shared to this
applet) can be accessed.

The JCRE informs the applet of selection by invoking its select method. The applet
may decline to be selected by returning false from the call to the select method or
by throwing an exception. If the applet returns true, the actual select APDU command
is supplied to the applet in the subsequent call to its process method, so that the applet
may respond with selection response data such as an FCI, as defined by ISO 7816-4.

The actual select APDU command is supplied as a select parameter, so that your applet
can examine the APDU contents. The applet may respond to the select APDU with data
(see the process method for details) and flag errors within select by throwing an
ISOException with the appropriate SW. The SW and optional response data are sent to
the CAD. If the applet throws an exception, it indicates that the applet cannot be selected,
and the applet will no longer be selected.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

11

A JCRE implementer might want to support a feature by which a default applet is always
selected when the card is reset. If so, then the applet’s select method must still be
called.

After successful selection, all subsequent APDUs, including the original select APDU,
are delivered to this applet via the process method. If a select APDU contains the name
of another applet, or even this same applet, the previously selected applet becomes
deselected. The JCRE indicates the condition of becoming inactive to the applet by
invoking its deselect method. The newly identified applet then becomes active and its
select method is called.

If a select APDU contains a name that is not recognized by the JCRE as the AID of an
applet, then the process method of the active applet is called. Normally, this should
cause the applet to select a different DF within its file system hierarchy (if the applet has
a file system).

Note: Although the Java Card framework is designed to support applets which
are generally compatible with EMV and/or ISO 7816 Parts 1-6, other kinds of
applets supported by other kinds of frameworks may co-exist on the card. When
this is the case, it is the responsibility of the JCRE implementer to define how
selection works for applets that are not identified by an AID.

2.9.3 process()

Any APDU received causes the process method of the active applet to be invoked. The
APDU is supplied as a parameter. The applet may optionally respond to the APDU with
data. On normal return, the JCRE automatically appends 0x9000 as the completion
response SW.

At any time during process, the applet may throw an ISOException with an
appropriate SW. This optional response data and SW are sent to the CAD.

APDU processing is described in more detail in the “APDU Handling” section.

2.9.4 deselect()

Whenever a select APDU command causes an applet to become deselected, the JCRE
calls the deselect method of that applet. This allows the applet to perform any cleanup
operations that may be required to allow some other applet to execute.

Upon select, your applet implementation might need to know whether a card reset has
occurred. The deselect method can be used to track the difference. Note that the
deselect is never invoked upon reset.

2.9.5 Applet Internal State

After installation, an applet is completely responsible for its own state and may decide
how to respond to each invocation of its select,deselect, or process methods.

Some smart card application specifications call for applets to block themselves or
otherwise maintain state indicating what the applet can and cannot do at any point in
time. Your applets must manage this state themselves.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

12

Any select APDU with this applet’s AID will cause this applet’s select method to be
invoked. When this applet is selected, and another select APDU containing an AID that
matches that of an installed applet is received, the JCRE will invoke this applet’s
deselect method. Any other APDU will cause this applet’s process method to be
invoked.

2.9.6 Applet Processing

Once selected, an applet is selected until platform power is lost, the card is reset, or until
another applet is selected. During this time, the applet receives, processes, and responds
to APDU commands from the CAD. As part of this processing an applet may:

• Maintain its own state (including states like blocked or expired).

• Reference (read and write) its own objects.

• Reference objects which have been appropriately shared.

• Share its objects with other applets.

• Enclose multiple updates in a transaction.

• Create new objects (if the issuer policy allows this).

• Invoke services provided by the Java Card API, such as PIN, crypto, and FileSystem.

2.9.7 Power loss

Power loss occurs when the card is withdrawn from the CAD or if there is some other
mechanical or electrical failure. When power is reapplied to the card the JCRE ensures
that:

• All transient object fields are reset to their default state.

• The transaction in progress, if any, is aborted.

• The applet becomes deselected. Note that the deselect method is not called.

3. APDU Handling
The Java Card APDU class provides a powerful and flexible mechanism to handle
APDUs whose command and response structure conform to the ISO 7816-4 specification.
The APDU class is optimized for small Java Card platforms.

It is also carefully designed so that the intricacies of and differences between the T=0 and
T=1 protocols are hidden from the applet developer. In other words, using the APDU
class, applets can be written so that they will work correctly regardless of whether the
platform is using the T=0 or T=1 transport protocol.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

13

3.1 Methods
This section describes the methods in the APDU class in the order that they will typically
appear in applet code. A later section, “APDU Cases,” describes how a typical applet
might handle the various “cases” of APDUs.

3.1.1 process()

Even though the process method is in the Applet class, it is the beginning of APDU
handling. All APDU commands (except for install) are delivered to the active applet
via its process method.

For security reasons, the unused bytes in the APDU buffer are cleared to zero prior to
invoking the applet’s process method.

3.1.2 Returning error response in process()

At any point in time, the applet may throw an ISOException with the appropriate status
word (SW) in process. The SW contained in ISOException object is returned to the
CAD.

The JCRE ensures that the underlying transport protocols are properly managed so that
the CAD and card do not become unsynchronized. This might require the reading and
discarding of unread command data bytes. If the JCRE is implemented in this manner,
when the applet encounters a problem, it can simply throw an ISOException with the
SW code and the JCRE will take care of all other details.

On normal return the JCRE will send the normal completion status bytes (0x9000) to the
CAD on behalf of the applet.

3.1.3 getBuffer()

The command data bytes received and the response bytes to be sent are stored in the
APDU object’s buffer. getBuffer obtains the reference to the buffer so that the applet
can examine the command bytes and store the response bytes using normal Java syntax
for array access.

The size of this buffer is platform dependent. The minimum buffer size is 37 bytes (5
bytes of header plus the default size of IFSC (as defined by ISO 7816-3)). Platforms with
larger RAM capacity will usually have a larger APDU buffer. Because the buffer is
declared as a byte array, its size can be obtained using normal Java syntax.

The APDU buffer object belongs to the JCRE, but it is shared with all applets. Applets
should not store data in this buffer between invocations of process because the JCRE is
not guaranteed to preserve such data. Furthermore, the contents of the buffer are cleared
for each select APDU so that any private data from one applet cannot be seen by another
applet.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

14

To reduce protocol overhead, the setOutgoingAndSend method can rely on the buffer
being unaltered after its invocation. Again, to reduce protocol overhead, when
sendBytes or sendBytesLong is called to send the last of the response, you, the
JCRE implementer, can choose to transmit the data at a later time. The buffer must not be
altered after the last send invocation.

3.1.4 getInBlockSize()

ISO 7681-3 defines the T=1 IFSC value as “the maximum length of information field of
blocks which can be received by the card.” For the T=1 protocol, this value is platform
dependent and is specified in the ATR.

T=0 protocol has no such maximum length requirements and need only receive 1 byte at
a time. Thus, this method returns 1 if the underlying protocol is T=0.

In the APDU class, the InBlockSize is used in a protocol-independent way to indicate
“the maximum number of bytes which can be received into the APDU buffer in a single
I/O operation.” The I/O operations are the receiveBytes, setIncomingAndReceive
methods.

The InBlockSize plus the header bytes (5) can be as large as the APDU buffer, but will
typically be somewhat smaller. This allows an applet to preserve a few bytes of data in
the APDU buffer and still receive subsequent command data bytes without the risk of
overflow. For example, a platform might have an APDU buffer size of 69 bytes and an
InBlockSize of 64 bytes.

3.1.5 Reading the APDU Header

When an applet’s process method is invoked, the first 5 bytes of the APDU buffer
contain the APDU header bytes. The remaining bytes in the buffer are undefined and
should not be read or written by the applet. At this time, the applet should only examine
the following values:

• Buffer[0] = CLA, the APDU class byte.

• Buffer[1] = INS, the APDU instruction byte.

• Buffer[2] = P1, the APDU parameter 1 byte.

• Buffer[3] = P2, the APDU parameter 2 byte.

• Buffer[4] = P3, the APDU fifth byte, which is:

� For case 1, P3 = 0.

� For case 2, P3 = Le, the length of expected response data.

� For cases 3 and 4, P3 = Lc, the length of command data.

You should have your applet examine these values in order to determine what to do next.

Remember that the applet may throw an ISOException with the appropriate SW in
process at any time, regardless of the “case” of the APDU, and The applet need not
know which protocol (T=0 or T=1) is actually being used. The JCRE and API will handle
all protocol details.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

15

3.1.6 setIncomingAndReceive()

If the applet determines (usually via INS) that the APDU has command data (case 3 or 4),
it should call setIncomingAndReceive. This informs the underlying protocol
handler that the fifth byte of the header is Lc and to receive a group of incoming
command data bytes starting at offset 5 in the buffer. The actual number of received data
bytes is returned by setIncomingAndReceive.

3.1.7 receiveBytes()

After processing each group of incoming command data bytes, the applet can get
additional groups of command bytes (if any) by calling receiveBytes specifying the
offset into the APDU buffer where the group of bytes is to be placed. This allows the
applet to control how the APDU buffer is used in the processing of incoming data. For
example, the applet may have processed a group of data except for a few bytes. The
applet can move these bytes to the beginning of the buffer, and then receive the next
group such that it is appended to the bytes still in the buffer. This feature is important in
instances where some command data is split across a group of bytes that needs to be
processed as a whole.

The actual number of received bytes is returned by receiveBytes. Because of the
operation of the T=1 protocol, the applet has no control over how many bytes are
received. Typically, the number of bytes will be the minimum of InBlockSize and the
total number of command bytes remaining to be received. However, this cannot be
guaranteed. Depending on the implementation of the CAD’s protocol handling, a call to
receiveBytes could receive less than that amount.

3.1.8 setOutgoing()

After processing incoming bytes (if any) the applet can send response bytes. If the APDU
command is case 2 or 4, the applet calls setOutgoing to indicate that it wishes to send
response data. setOutgoing switches the internal APDU state to “send.” It also returns
the Le as follows:

• For case 2, Le = P3, the fifth byte of the APDU header.

• For T=1 case 4, Le = the actual Le from the end of the command bytes.

• For T=0 case 4, Le = 256 because the actual Le cannot be determined. So the
maximum Le allowed for T=0 is assumed.

Note: Even though the above text refers to the transport protocols for clarity of
explanation, it is not necessary for the applet to know which protocol is being used.

3.1.9 setOutgoingLength()

After examining Le, the applet must indicate by calling setOutgoingLength how
many total response data bytes (not including SW) it will actually send. The default value
is 0, so this method need not be called if the applet will not be sending response bytes.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

16

If the underlying protocol is T=0, and the total response data bytes to be sent is not
exactly equal to Le, this method will prompt the terminal for a GET RESPONSE
command with the indicated total response length. This ensures that the applet need not
do any special processing based on the underlying protocol.

The total number of response bytes might be too large to fit in the APDU buffer. In this
case, you must have the applet break the response up into groups of bytes and send one
group at a time.

Tip: If the data is in a byte array, this can be done most conveniently using the
sendBytesLong method.

3.1.10 sendBytes()

The sendBytes method sends a group of response bytes from the APDU buffer. If the
applet needs to send multiple groups, it must call this method repeatedly until all bytes
are sent.

To reduce protocol overhead, the implementation may choose to defer the transmitting of
the data in the last sendBytes until return from process. Therefore, the buffer must
not be altered after the last sendBytes invocation.

3.1.11 setOutgoingAndSend()

When the entire response fits within the buffer, the setOutgoingAndSend method can be
very useful. For efficiency, it combines setOutgoing, setOutgoingLength, and
sendBytes into one call. In addition, since the entire message fits in the buffer, the
response bytes and the status bytes can be sent at the same time to reduce protocol
overhead. If you use this method, you must make sure that the entire message fits in the
buffer and then the buffer must not be modified after this call.

3.1.12 sendBytesLong()

The sendBytesLong method is similar to sendBytes. However, it allows the applet to
send a group of bytes from any byte array (except from the APDU buffer byte array).
This is useful in cases where the data to be sent is in a file or in some other data
structure’s byte array.

sendBytesLong simply copies smaller groups of bytes into the APDU buffer and sends
them one at a time. For this reason, the applet should not expect the contents of the
APDU buffer to be preserved after a call to sendBytesLong.

3.1.13 wait()

Both the T=0 and T=1 protocol have a mechanism by which the card can request
additional time from the CAD, so that the protocol does not time out while the card is
performing a long computation. This is invoked by the wait method, which can be called
at any time during APDU processing when the applet must do something else for an
extended period of time.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

17

wait is necessary because many smart cards do not have hardware timers and/or do not
support multithreaded code. In these cases, only the applet itself knows for sure how
much processing is required for each command, and whether that amount of processing is
likely to exceed CAD timeout values.

wait is intended to be implemented as follows (see ISO 7816-3 for additional details):

• For T=0, wait causes a NULL procedure byte (0x60) to be sent to the CAD.
This resets the work waiting time.

• For T=1, wait causes an S(WTX request) to be sent to the CAD to request
the same T=0 work waiting time quantum. This S-block requests additional
block waiting time (BWT) units (see ISO 7816-3 for details).

3.1.14 getNAD()

The T=1 protocol supports the idea of context which allows an application to maintain
logically multiple channels of communication with the terminal simultaneously. To allow
for that possibility, the applet can use getNAD method to access the ISO 7816-3 defined
node address and switch internal contexts if applicable. If the underlying protocol is T=0,
getNAD will return 0.

The applet developer need not know what transport layer is in use, since node address
switching in T=1 can only be initiated by the terminal.

3.1.15 getInBytesRemaining()

The getInBytesRemaining method is designed to be used in the select and
install methods of Applet. In these Applet methods, a preread APDU is presented to
the Applet. This method provides the Applet access to information about how many
unread bytes remain to be received from the APDU. By subtracting this count from the
data in the header Lc field (buffer[4]) the Applet can determine the number of pre-read
data bytes available in the APDU buffer.

3.2 APDU Cases
This section gives an example of how each of the APDU cases can be handled by the
Java Card APDU API. In all cases, the Applet can throw an ISOException with the
appropriate error status bytes to flag errors.

3.2.1 Case 1 – No command data, no response data

1. The applet’s process method is called. The applet examines the first 4 bytes of
APDU buffer and determines that this is a case 1 command (P3 = 0).

2. The applet performs the request.

3. The applet returns from the process method.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

18

3.2.2 Case 2 - No command data, send response data

The applet’s process method is called. The applet examines the first 5 bytes of APDU
buffer and determines that this is a case 2 command. Le is in P3 of the header. The
response can be short or long and is handled differently based on the size.

3.2.2.1 Short Response (entire response fits in buffer)

1. If it is a short response, the applet calls setOutgoingAndSend.

2. The applet returns from the process method.

3.2.2.2 Long Response (entire response does not fit in buffer)

1. If it is a long response, the applet calls setOutgoing and obtains Le.

2. If the response length is greater than Le, an error is flagged. Otherwise, the
applet calls setOutgoingLength.

3. The applet calls sendBytes or sendBytesLong (repeatedly if necessary) to
send groups of response bytes.

4. The applet returns from the process method.

3.2.3 Case 3 – Receive command data, no response data

1. The applet’s process method is called. The applet examines the first 5 bytes of
APDU buffer and determines that this is a case 3 command. Lc is in P3 of the header.

2. The applet calls setIncomingAndReceive, followed by repeated calls (if
necessary) to receiveBytes. Each group of command data bytes is processed as it
is received.

3. The applet returns from the process method.

3.2.4 Case 4 – Receive command data, send response data

Case 4 is simply a combination of cases 3 and 2. First, the handles the command bytes as
described for case 3. Then the applet handles the response bytes as described for case 2.

4. File System
The Java Card File System is a standard extension to the Java Card framework classes. It
is not necessary for your applet to have a file system. Even if an applet accepts APDU
commands like READ RECORD, you might have the applet contain its own private data
structures for records, and respond to the READ RECORD command in any way that you
choose.

However, since so many APDU commands assume a file system structure, Java Card 2.0
provides classes to allow you to easily implement an ISO-compatible file system in the
applet.

The Java Card File System provides an object-oriented design for an ISO 7816-4
compatible file system. There are two ways to view the File System organization:

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

19

1. By file system structure – the way the objects are organized into a hierarchical file
system for a typical applet.

2. By class structure – the way the classes are organized into an inheritance tree in the
Java language.

4.1 File System Structure
In the file system structure, objects are organized into a hierarchical file system.

FileSystem object

DedicatedFile objects …ElementaryFile objects …

DedicatedFile objects …ElementaryFile objects …

DedicatedFile objects …ElementaryFile objects …

The root of an applet’s file system is a FileSystem object. Under this parent object are
zero or more child objects called files. There are two kinds of file objects:

1. ElementaryFile (EF) objects – contain only data.

2. DedicatedFile (DF) objects – contain other file objects (DFs and/or EFs)

A FileSystem object is a special kind of DedicatedFile that, as the root, has
additional features that ordinary DFs do not have. Normally, an applet will have one
FileSystem (although there is nothing preventing an applet from having multiple
FileSystem objects).

A DedicatedFile can contain zero or more child objects.

A DedicatedFile or an ElementaryFile can be an orphan (with no parent) or have
at most exactly one parent. Therefore, a DF or an EF can be either under one
FileSystem or not attached to any FileSystem.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

20

4.2 Class Structure
This is the inheritance tree in the Java language using OMT notation.

Class: File

Class: Dedicated
File(DF)

Class: Elementary
File(EF)

Class: FileSystem

Class: Cyclic File(EF)

Class:
TransparentFile(EF)

Class:
LinearFixedFile(EF)

Class:
LinearVariableFile(EF)

The File class is the superclass of all classes in file system. It is an abstract class and thus
can not be instantiated.

4.3 Elementary Files
Data is stored mainly in elementary files. An elementary file is organized as either a
transparent data structure or as a record data structure.

• Transparent structure – The file is seen at the interface as a sequence of data units.
The data in the file can be referenced by an offset.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

21

• Record structure – The file is seen at the interface as a sequence of individually
identifiable records. The records in the file can be referenced by record number or by
record identifier.

Record structured elementary files can be further categorized as:

• Linear variable – Records are organized as an ordered sequence of records with
various record sizes. The records in the file are kept in the order they were inserted,
that is, the first inserted record is the record number one.

• Linear fixed – Similar to Linear variable, but all records are of the same length.

• Cyclic – Records are organized as a ring (cyclic structure), with fixed and equal
record size. The number of records in a CyclicFile is assigned at the file creation time
and can not be changed. Records are in the reverse order as they were inserted into
the file. Thus the last inserted record is identified as record number one. Once the file
is full, the next append instruction overwrites the oldest record in the file and it
becomes the record number one.

The following diagram shows the record order of a cyclic file before an append
command:

After the append record command, the new record overwrites the oldest record which is
RecNum4 before the append. And the newly inserted recorded becomes RecNum1.

4.4 Dedicated Files
Dedicated files are directories in the hierarchical file structure in an applet. A dedicated
file keeps references to its child objects and provides methods to search for particular
DFs or EFs.

4.4.1 Class FileSystem

Class FileSystem is a subclass of DedicatedFile, and it is the root DF within an
applet. Besides inheriting all the features from DedicatedFile, Filesystem defines
additional methods to maintain internal state values, handle file-oriented APDUs, and
provide file’s selection and search mechanism.

• Internal state values: FileSystem maintains pointers to the current selected
DedicatedFile, ElementaryFile and current record as well as two
authorization flags as described below in the section “File Access Control.” These
state values are initialized as:

RecNum 1 RecNum 2RecNum 3RecNum 4

RecNum 4 RecNum 3 RecNum 1RecNum 2

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

22

• currentDedicateFile = this (FileSystem object itself)

• currentElementaryFile = null

• currentRecordNumber = 0 (has no meaning under the context)

• authorizationFlags = false

Current DF, EF and record are updated through their set value methods and explicit
and implicit file selection commands as defined in ISO 7816.

• File-oriented APDU handling: FileSystem defines protected methods to handle
ISO 7816-4 specified APDUs. Those methods are interfaced with applets through the
FileSystem public method process. The process method is passed an APDU
object as a parameter, and based on the instruction byte in the APDU, it dispatches
the APDU handling to the following methods.

• Select method is used to select an EF or DF.

• readBinary, writeBinary, updateBinary and eraseBinary methods are
used to access transparent structured files.

• readRecord, writeRecord, appendRecord and updateRecord are used to
access record structured files.

• getData and putData are used to access data objects within the current
application specific environment.

In the applet’s process method, you may choose first to call the FileSystem’s
process method to handle ISO file-related APDUs. There is nothing to prevent you
from working around the FileSystem and allow the applet to handle file-oriented
APDUs, and, therefore, directly access the specific type of file object. However,
security checks are only enforced through the FileSystem interface.

• File selection: Class FileSystem provides public methods to allow an applet to
explicitly find or select a file by FID, SFI or name. Selecting a file updates the
current DedicatedFile, ElementaryFile or record in FileSystem. For
example, If the current DF is updated, the current EF and current record number are
reset to null and 0 respectively. If the current EF is updated, the current record
number is reset to 0 and the current DF points to the parent of the current EF. If the
current EF is null or a TransparentFile, the current record has no meaning in the
context, and its value is set to 0. Finding a file searches through the file system and
returns the appropriate file reference.

Calling the new method on the specific file subclass creates a file object. The object can
then be inserted into the FileSystem using the addChild method in the
DedicatedFile.

Refer to the Java Card API document for more detailed explanation on each file related
class defined in javacardx.framework.

4.5 File Referencing
Any file (including directory files) can be referenced by a 16-bit file identifier (FID).

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

23

An elementary file can also be referenced by a short EF identifier (SFI) coded on 5 bits
valued in the range from 1 to 30. For simplicity, a SFI is defined as the lowest 5 bits in
the FID.

A dedicated file can possess a name with 1 to 16 bytes. When no name is provided, this
field is null. To avoid ambiguously referencing a file, the following rules are defined:

• Rule 1: All EFs and DFs (Dedicated Files) immediately under a given DF should
have a different file identifier.

• Rule 2: Each DF name should be unique under a given DF.

4.6 File Access Control
Since an explicit file access security model is not defined in ISO 7816-4, the Java Card
2.0 API provides a simple yet extensible scheme. Each file has two attributes; one for
external read access and one for external write access. For each attribute, you can set one
of the ALLOW_xxx values to specify what conditions must be true in order to allow that
type of access (see the table below).

Table – Allow Types

Constant Description

ALLOW_ANY Any external access allowed

ALLOW_AUTH1 External access allowed only if Auth1 flag is
true

ALLOW_AUTH2 External access allowed only if Auth2 flag is
true

ALLOW_NONE No external access allowed

For example, ALLOW_ANY for the read attribute means that this file can be read
externally at any time. ALLOW_NONE for the write attribute means that this file can
never be written externally.

By default, the read and write attributes in a file are set to “no external access allowed.”

The two Auth flags are defined in the class FileSystem and allow for a certain amount
of applet customization. When a security attribute is set to ALLOW_AUTH1 or
ALLOW_AUTH2, the access is allowed only if the appropriate Auth flag maintained by
the FileSystem is true. For example, an applet may set Auth1 when a valid PIN is
presented. After that point, all files with ALLOW_AUTH1 in the read attribute can now
be read externally.

Note that this security checking is done in class FileSystem’s File-oriented APDU
handling routines and is not enforced by the Virtual Machine. That is, the
FileSystem.readRecord method will perform read access checking on the accessed
file. But internal applet access to a data or directory file is not checked unless your applet
specifically does so using the isAllowed method in the class File.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

24

4.7 Interface with Native OS File System
To support JCRE implementers’ native Operating System (OS) file systems, you may
choose not to include any of the file system related classes defined in
javacardx.framework. In such a case, portability might be compromised since applet
developers must then dispatch to JCRE implementer specific native OS file system
methods within the Applet.process method.

5. Cryptography
The packages javacardx.crypto and javacardx.cryptoEnc support cryptographic
functionality. The javacardx.crypto package contains classes for performing
standard cryptographic operations required in smart cards. Support for both symmetric
and asymmetric cryptography is provided in a class structure that is organized to allow
for easy extension and to support the subsetting required to meet import/export
restrictions.

5.1 Class Structure
The Java Card cryptographic classes provide methods for:

• Encrypting and decrypting data.

• Signing data and verifying signed data

• Computing a message digest

• Generating (pseudo) random numbers

The Key class serves as a base for symmetric and asymmetric algorithms.

5.1.1 Symmetric Cryptography

The SymKey class is an abstract class defining symmetric key decryption in both ECB
and CBC modes and Message Authentication Code (MAC) generation and verification.
MAC operations are performed in CBC mode. Two subclasses of SymKey are provided:
DES_Key (single DES) and DES3_Key (triple DES).

The subclasses DES_EncKey and DES3_EncKey are in the javacardx.cryptoEnc
package; these add encryption implementations. For example, the SymKey class contains
methods for encryption, decryption, and MAC-ing; its encryption method, however,
throws a CryptoException with the reason ENC_NOT_SUPPORTED. Hence, a class like
DES3_Key, which is intended for export, implements all of these methods except the
encryption method. The class DES3_EncKey, not intended for export, extends DES3_Key
and provides a full implementation the encryption method.

Java Card 2.0 Programming Concepts

© 1997 Sun Microsystems Inc. Document Revision 1.0 Final
October 15, 1997

25

5.1.2 Asymmetric Cryptography

The AsymKey class is the base for asymmetric algorithms. The subclass Private_Key
serves as the base class for classes supporting verification. The subclass Public_Key
serves as the base class for classes supporting signature generation. Separate subclasses
of Private_Key are provided for implementations of the RSA algorithm in standard
modulus/exponent form and in chinese remainder theorem form.

Java Card 2.0 does not support encryption using asymmetric cryptography but the class
structure is organized so that it is easily extended.

5.1.3 Message Digest

The MessageDigest class provides a base class for hashing algorithms. The subclass
Sha1MessageDigest supports the SHA1 algorithm assuming a block size of 64 bytes
and computing a hash value of 20 bytes.

5.1.4 Random Number Generation

The RandomData class is a pseudo-random number generator for use in
challenge/response protocols. The quality of the randomness depends on the
implementation.

