
Java™ Object Serialization Specification
 with

om
ble
Object serialization in the Java™ system is the process of creating a serialized
representation of objects or a graph of objects. Object values and types are serialized
sufficient information to insure that the equivalent typed object can be recreated.
Deserialization is the symmetric process of recreating the object or graph of objects fr
the serialized representation. Different versions of a class can write and read compati
streams.

Revision 1.4.1, October 8, 1997

 Contents

1. System Architecture 1

Overview 1

Writing to an Object Stream 2

Reading from an Object Stream 3

Object Streams as Containers 4

Specifying Serializable Persistent Fields and Data for a Class 5

Defining Serializable Persistent Fields for a Class 6

Accessing Serializable Fields of a Class 7

The ObjectOutput Interface 7

The ObjectInput Interface 8

The Serializable Interface 9

The Externalizable Interface 9

The Replaceable & Resolvable Interfaces 10

Protecting Sensitive Information 11

2. Object Output Classes 13

The ObjectOutputStream Class 13

The ObjectOutputStream.PutField Class 20

The writeObject Method 20

The writeExternal Method 20
Contents iii

3. Object Input Classes 21

The ObjectInputStream Class 21

The ObjectInputStream.GetField Class 28

The ObjectInputValidation Interface 29

The readObject Method 29

The readExternal Method 30

4. Class Descriptors 31

The ObjectStreamClass Class 31

The ObjectStreamField Class 33

Inspecting Serializable Classes 34

Stream Unique Identifiers 34

5. Versioning of Serializable Objects 37

Overview 37

Goals 38

Assumptions 38

Who’s Responsible for Versioning of Streams 39

Compatible Java Type Evolution 40

Type Changes Affecting Serialization 42

6. Object Serialization Stream Protocol 45

Overview 45

Stream Elements 45

Grammar for the Stream Format 47

A. Security in Object Serialization 55

Overview 56

Design Goals 56

Using transient to Protect Important System Resources 57

Writing Class-Specific Serializing Methods 57
iv Book Title • Month 1996

Encrypting a Bytestream 57

B. Exceptions In Object Serialization 59

C. Example of Serializable Fields 61

Example Alternate Implementation of java.lang.File 61
Contents v

vi Book Title • Month 1996

Change History
July 3, 1997 Updates for JDK 1.2

• Documents the requirements for specifing the serializable persistent state of

classes. See Section 1.5, “Specifying Serializable Persistent Fields and Data

for a Class”.

• Added the Serializable Fields API to allow classes more flexibility in

accessing the serialized fields of a class. The stream protocol is unchanged.

See Section 1.7, “Accessing Serializable Fields of a Class, Section 2.2, “The

ObjectOutputStream.PutField Class”, Section 3.2, “The

ObjectInputStream.GetField Class”.

• Clarified that field descriptors and data are written to and read from the

stream in canonical order. See Section 4.1, “The ObjectStreamClass Class”

Sept. 4, 1997 Updates for JDK 1.2

• Separate Replaceable interface into two interfaces, Replaceable and

Resolvable. The Replaceable interface allows a class to nominate its own

replacement just before serializing the object to the stream. The Resolvable

interface allows a class to nominate its own replacement when reading an

object from the stream. See Section 1.12, “The Replaceable & Resolvable

Interfaces”.

• Updated serialization to use JDK 1.2 security model. Rather than require

that a class be loaded by the null classloader, the requirement is that the

calling sequences to methods, ObjectInputStream.enableReplace and
Page vii

ObjectOutputStream.enableResolve, has SerializablePermission

“enableSubstitution”. See Section 2.1, “The ObjectOutputStream Class “and

Section 3.1, “The ObjectInputStream Class”.

• Updated writeObject’s exception handler to write handled IOExceptions

into the stream. See Section 2.1, “The ObjectOutputStream Class”.
Page viii Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

System Architecture 1
Topics:
• Overview

• Writing to an Object Stream

• Reading from an Object Stream

• Object Streams as Containers

• Specifying Serializable Persistent Fields and Data for a Class

• Defining Serializable Persistent Fields for a Class

• Accessing Serializable Fields of a Class

• The ObjectOutput Interface

• The ObjectInput Interface

• The Serializable Interface

• The Externalizable Interface

• The Replaceable & Resolvable Interfaces

• Protecting Sensitive Information
Page 1

1

1.1 Overview
The capability to store and retrieve Java objects is essential to building all but

the most transient applications. The key to storing and retrieving objects in a

serialized form is representing the state of objects sufficient to reconstruct the

object(s). Objects to be saved in the stream may support either the

Serializable or the Externalizable interface. For Java objects, the

serialized form must be able to identify and verify the Java class from which

the object’s contents were saved and to restore the contents to a new instance.

For serializable objects, the stream includes sufficient information to restore the

fields in the stream to a compatible version of the class. For Externalizable

objects, the class is solely responsible for the external format of its contents.

Objects to be stored and retrieved frequently refer to other objects. Those other

objects must be stored and retrieved at the same time to maintain the

relationships between the objects. When an object is stored, all of the objects

that are reachable from that object are stored as well.

The goals for serializing Java objects are to:

• Have a simple yet extensible mechanism.

• Maintain the Java object type and safety properties in the serialized form.

• Be extensible to support marshaling and unmarshaling as needed for remote

objects.

• Be extensible to support simple persistence of Java objects.

• Require per class implementation only for customization.

• Allow the object to define its external format.

1.2 Writing to an Object Stream
Writing objects and primitives to a stream is a straight-forward process. For

example:

// Serialize today’s date to a file.
FileOutputStream f = new FileOutputStream("tmp");
ObjectOutpu t s = new ObjectOutputStream(f);
s.writeObject("Today");
s.writeObject(new Date());
s.flush();
Page 2 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

1

First an OutputStream , in this case a FileOutputStream , is needed to receive

the bytes. Then an ObjectOutputStream is created that writes to the

FileOutputStream . Next, the string “Today” and a Date object are written to

the stream. More generally, objects are written with the writeObject method

and primitives are written to the stream with the methods of DataOutput .

The writeObject method (see Section 2.3, “The writeObject Method)

serializes the specified object and traverses its references to other objects in the

object graph recursively to create a complete serialized representation of the

graph. Within a stream, the first reference to any object results in the object

being serialized or externalized and the assignment of a handle for that object.

Subsequent references to that object are encoded as the handle. Using object

handles preserves sharing and circular references that occur naturally in object

graphs. Subsequent references to an object use only the handle allowing a very

compact representation.

Special handling is required for objects of type Class , ObjectStreamClass ,

strings, and arrays. Other objects must implement either the Serializable or

the Externalizable interface to be saved in or restored from a stream.

Primitive data types are written to the stream with the methods in the

DataOutput interface, such as writeInt , writeFloat , or writeUTF .

Individual bytes and arrays of bytes are written with the methods of

OutputStream . Primitive data, excluding serializable fields and externalizable

data, is written to the stream in block-data records prefixed by a marker and

the number of bytes in the record.

ObjectOutputStream can be extended to customize the information about

classes in the stream or to replace objects to be serialized. Refer to the

annotateClass and replaceObject method descriptions for details.

1.3 Reading from an Object Stream
Reading an object from a stream, like writing, is straight-forward:

// Deserialize a string and date from a file.
FileInputStream in = new FileInputStream(“tmp”);
ObjectInputStream s = new ObjectInputStream(in);
String today = (String)s.readObject();
Date date = (Date)s.readObject();
Chapter 1: System Architecture Page 3

1

First an InputStream , in this case a FileInputStream , is needed as the

source stream. Then an ObjectInputStream is created that reads from the

InputStream . Next, the string “Today” and a Date object are read from the

stream. Generally, objects are read with the readObject method and

primitives are read from the stream with the methods of DataInput .

The readObject method deserializes the next object in the stream and

traverses its references to other objects recursively to create the complete graph

of objects serialized.

Primitive data types are read from the stream with the methods in the

DataInput interface, such as readInt , readFloat , or readUTF . Individual

bytes and arrays of bytes are read with the methods of InputStream .

Primitive data, excluding serializable fields and externalizable data, is read

from block-data records.

ObjectInputStream can be extended to utilize customized information in the

stream about classes or to replace objects that have been deserialized. Refer to

the resolveClass and resolveObject method descriptions for details.

1.4 Object Streams as Containers
Object Serialization produces and consumes a stream of bytes that contain one

or more primitives and objects. The objects written to the stream, in turn, refer

to other objects which are also represented in the stream. Object Serialization

produces just one stream format that encodes and stores the contained objects.

Object Serialization has been designed to provide a rich set of features for Java

classes.

Each object acting as a container implements an interface that allows primitives

and objects to be stored in or retrieved from it. These are the ObjectOutput
and ObjectInput interfaces which:

• Provide a stream to write to and read from

• Handle requests to write primitive types and objects to the stream,

Each object which is to be stored in a stream must explicitly allow itself to be

stored and must implement the protocols needed to save and restore its state.

Object Serialization defines two such protocols. The protocols allow the

container to ask the object to write and read its state. To be stored in an Object

Stream, each object must implement either the Serializable or the

Externalizable interface.
Page 4 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

1

For a serializable class, Object Serialization can automatically save and restore

fields of each class of an object and automatically handle classes that evolve by

adding fields or supertypes. A serializable class can declare which of its fields

are saved or restored, and write and read optional values and objects.

Optional primitive values are written and read from block-data records.

Putting the optional data in records allows it to be skipped if necessary.

For an Externalizable class, Object Serialization delegates to the class complete

control over its external format and how the state of the supertype(s) is saved

and restored.

1.5 Specifying Serializable Persistent Fields and Data for a Class
When objects are declared to be serializable so that they can be written to or

read from a stream, the class designer must take care that the information

saved for the class is appropriate for persistence and follows serialization’s

rules for evolution and interoperability. Serialized streams of objects must

interoperate over time and across versions of the classes that are written to and

read from them. The specification of the classes serializable persistent fields

makes it possible for classes to evolve and still be able to communicate with

previous and future versions of the class. This is an essential feature and

benefit of using serialization for persistence or for communication. “Versioning

of Serializable Objects“ covers class evolution in greater detail.

For classes that are declared Serializable, the serializable state of the object is

defined by fields (by name and type) plus optional data. Optional data may be

written to and read from the stream explicitly by the class itself. By default, the

non-transient and non-static fields of the class define the set of serializable

fields. This default set of fields can be overridden by declaring the set of

serializable persistent fields. See Section 1.6, “Defining Serializable Persistent

Fields for a Class”.

For classes that are declared Externalizable, the persistent state is defined by

the data written to the stream by the class itself. It is up to the class to specify

the order, types, and meaning of each datum written to the stream. It is up to

the class to handle its own evolution so that it can continue to read data

written by previous versions and that it writes data that can be read by

previous versions. The class must coordinate with the superclass when saving

and restoring data. The location of the superclasses data in the stream must be

specified.
Chapter 1: System Architecture Page 5

1

Regardless of the serialization mechanism chosen, the specification must define

the fields as if they were fields of the object using the Java specifications for

names and types. Optional data written to the stream must be specified by

sequence and type. The meaning associated with persistent fields and data

must be defined. For example, a class Window has a field named

“background” that refers to a Color object that is to be used to fill the part of

the window not otherwise covered. These persistent fields may correspond

directly to declarations in the class or may only be accessible via get and set

methods described below. Independent of the mechanism used to make the

persistent field visible to the client the semantics of the object are expressed in

terms of these values. The initial or default value must be specified for each

value. Classes may or may not have other fields which are not part of the

persistent state of the object.

1.6 Defining Serializable Persistent Fields for a Class
By default, the serializable fields of a class are defined to be the non-transient

and non-static fields. These declarations can be overridden by declaring a

special field in the class. For example, the declaration below duplicates the

default behavior.

class List implements Serializable {
List next;

public final static ObjectStreamFields[] serialPersistentFields
= {new ObjectStreamField(“next”, List.class)};

}

The serialPersistentFields field must be initialized with an array of

ObjectStreamField objects that list the names and types of the serializable

fields. The field must be static and final so it does not change during operation.

When an ObjectStreamClass is created for a class it examines the class to

determine the serializable fields. It looks for the definition of the

serialPersistentFields and if it is not found then the list of serializable

fields is created from the non-transient and non-static fields of the class.
Page 6 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

1

1.7 Accessing Serializable Fields of a Class
Serialization provides two mechanisms for accessing the serializable fields in a

stream. The default mechanism requires no customization while the alternative

allows the class to explicitly access the fields by name and type.

The default mechanism is used automatically when reading or writing objects

that implement the Serializable interface and do no further customization. The

serializable persistent fields are mapped to the corresponding fields of the class

and values are written to the stream from those fields or read in and assigned

respectively. If the class provides writeObject and readObject methods the

default mechanism can be invoked by calling defaultWriteObject and

defaultReadObject . When implementing these methods the class has an

opportunity to modify the data values before they are written or after they are

read.

When the default mechanism cannot be used, the serializable class can use the

putFields of ObjectOutputStream to put the values for the serializable

fields into the stream. The writeFields method of ObjectOutputStream
puts the values in the in the correct order and writes them to the stream using

the existing protocol for serialization. Correspondingly, the readFields
method of ObjectInputStream reads the values from the stream and makes

them available to the class by name in any order.

1.8 The ObjectOutput Interface
The ObjectOutput interface provides an abstract, stream-based interface to

object storage. It extends DataOutput so those methods may be used for

writing primitive data types. Objects implementing this interface can be used

to store primitives and objects.

package java.io;

public interface ObjectOutput extends DataOutput
{

public void writeObject(Object obj) throws IOException;

public void write(int b) throws IOException;

public void write(byte b[]) throws IOException;

public void write(byte b[], int off, int len) throws IOException;
Chapter 1: System Architecture Page 7

1

public void flush() throws IOException;

public void close() throws IOException;
}

The writeObject method is used to write an object. The exceptions thrown

reflect errors while accessing the object or its fields, or exceptions that occur in

writing to storage. If any exception is thrown, the underlying storage may be

corrupted, and you should refer to the object implementing this interface for

details.

1.9 The ObjectInput Interface
The ObjectInput interface provides an abstract stream based interface to

object retrieval. It extends DataInput so those methods for reading primitive

data types are accessible in this interface.

package java.io;

public interface ObjectInput extends DataInput
{

public Object readObject()
throws ClassNotFoundException, IOException;

 public int read() throws IOException;

public int read(byte b[]) throws IOException;

 public int read(byte b[], int off, int len) throws IOException;

 public long skip(long n) throws IOException;

public int available() throws IOException;

 public void close() throws IOException;
}

The readObject method is used to read and return an object. The exceptions

thrown reflect errors while accessing the objects or its fields or exceptions that

occur in reading from the storage. If any exception is thrown, the underlying

storage may be corrupted, refer to the object implementing this interface for

details.
Page 8 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

1

1.10 The Serializable Interface
Object Serialization produces a stream with information about the Java classes

for the objects that are being saved. For serializable objects, sufficient

information is kept to restore those objects even if a different (but compatible)

version of the class’s implementation is present. The interface Serializable
is defined to identify classes that implement the serializable protocol:

package java.io;

public interface Serializable {};

A serializable object:

• Must implement the java.io.Serializable interface.

• Must mark its fields that are not to be persistent with the transient keyword

or use the serialPersistentFields to specify the serializable fields.

• Can implement a writeObject method to control what information is

saved, or to append additional information to the stream.

• Can implement a readObject method so it can read the information

written by the corresponding writeObject method, or to update the state

of the object after it has been restored.

• The first non-Serializable superclass must have a public or protected no-arg

constructor.

ObjectOutputStream and ObjectInputStream are designed and

implemented to allow the serializable classes they operate on to evolve. Evolve

in this context means to allow changes to the classes that are compatible with

the earlier versions of the classes. Details of the mechanism to allow

compatible changes can be found in Section 5.5, “Compatible Java Type

Evolution.

1.11 The Externalizable Interface
For Externalizable objects only the identity of class of the object is saved by the

container and it is the responsibility of the class to save and restore the

contents. The interface Externalizable is defined as:

package java.io;

public interface Externalizable extends Serializable
Chapter 1: System Architecture Page 9

1

{
public void writeExternal(ObjectOutput out)

throws IOException;

public void readExternal(ObjectInput in)
throws IOException, java.lang.ClassNotFoundException;

}

An externalizable object:

• Must implement the java.io.Externalizable interface.

• Must implement a writeExternal method to save the state of the object. It

must explicitly coordinate with its supertype to save its state.

• Must implement a readExternal method to read the data written by the

writeExternal method from the stream and restore the state of the object.

It must explicitly coordinate with the supertype to save its state.

• If writing an externally defined format, the writeExternal and

readExternal methods are solely responsible for that format.

• Must have a public or protected no-arg constructor.

Note – The writeExternal and readExternal methods are public and raise

the risk that a client may be able to write or read information in the object

other than by using its methods and fields. These methods must be used only

when the information held by the object is not sensitive or when exposing it

would not present a security risk.

1.12 The Replaceable & Resolvable Interfaces
The Replaceable interface allows an object to nominate its own replacement in

the stream before the object is written. The Resolvable interface allows a class

to replace/resolve the object read from the stream before it is returned to the

caller. The interfaces are defined as:

package java.io;

public interface Replaceable extends Serializable {
 public Object writeReplace(Object obj);
}

Page 10 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

1

public interface Resolvable extends Serializable {
 public Object readResolve(Object obj);
}

By implementing the Replaceable interface the class itself can directly control

the types and instances of its own instances being serialized. By implementing

the Resolvable interface the class itself can directly control the types and

instances of its own instances being deserialized

For example, a Symbol class could be created for which only a single instance

of each symbol binding existed within a virtual machine. The readResolve
method would be implemented to determine if that symbol was already

defined and substitute the preexisting equivalent Symbol object to maintain the

identity constraint. In this way the uniqueness of Symbol objects can be

maintained across serialization.

The writeReplace method is called when ObjectOutputStream is preparing to

write the object to the stream. The ObjectOutputStream checks to see if the

class implements the Replaceable interface. If so, it calls the writeReplace
method to allow the object to designate its replacement in the stream. The object

returned either should be of the same type as the object passed in or an object that

when read and resolved will result in an object of a type that is compatible with

all references to the object, otherwise a ClassCastException will occur when

the type mismatch is discovered.

The readResolve method is called when ObjectInputStream has read an

object from the stream and is preparing to return it to the caller.

ObjectInputStream checks if the object implements the Resolvable
interface. If so, it calls the readResolve method to allow the object in the

stream to designate the object to be returned. The object returned should be of

a type that is compatible with all uses or a ClassCastException will be

thrown when the type mismatch is discovered.

1.13 Protecting Sensitive Information
When developing a class that provides controlled access to resources, care

must be taken to protect sensitive information and functions. During

deserialization, the private state of the object is restored. For example, a file

descriptor contains a handle that provides access to an operating system

resource. Being able to forge a file descriptor would allow some forms of illegal

access, since restoring state is done from a stream. Therefore, the serializing

runtime must take the conservative approach and not trust the stream to
Chapter 1: System Architecture Page 11

1

contain only valid representations of objects. To avoid compromising a class,

the sensitive state of an object must not be restored from the stream, or it must

be reverified by the class. Several techniques are available to protect sensitive

data in classes.

The easiest technique is to mark fields that contain sensitive data as private
transient . Transient fields are not persistent and will not be saved by any

persistence mechanism. Marking the field will prevent the state from

appearing in the stream and from being restored during deserialization. Since

writing and reading (of private fields) cannot be superseded outside of the

class, the class’s transient fields are safe.

Particularly sensitive classes should not be serialized at all. To accomplish this,

the object should not implement either the Serializable or the

Externalizable interface.

Some classes may find it beneficial to allow writing and reading but

specifically handle and revalidate the state as it is deserialized. The class

should implement writeObject and readObject methods to save and restore

only the appropriate state. If access should be denied, throwing a

NotSerializableException will prevent further access.
Page 12 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

Object Output Classes 2
Topics:
• The ObjectOutputStream Class

• The ObjectOutputStream.PutField Class

• The writeObject Method

• The writeExternal Method

2.1 The ObjectOutputStream Class
Class ObjectOutputStream implements object serialization. It maintains the

state of the stream including the set of objects already serialized. Its methods

control the traversal of objects to be serialized to save the specified objects and

the objects to which they refer.

package java.io;

public class ObjectOutputStream
extends OutputStream
implements ObjectOutput, ObjectStreamConstants

{
public ObjectOutputStream(OutputStream out)

throws IOException;

public final void writeObject(Object obj)
throws IOException;
Page 13

2

public final void defaultWriteObject();
throws IOException, NotActiveException;

public PutField putFields()
throws IOException;

public writeFields()
throws IOException;

public void reset() throws IOException;

protected void annotateClass(Class cl) throws IOException;

protected Object replaceObject(Object obj) throws IOException;

protected final boolean enableReplaceObject(boolean enable)
throws SecurityException;

protected void writeStreamHeader() throws IOException;

public void write(int data) throws IOException;

public void write(byte b[]) throws IOException;

public void write(byte b[], int off, int len) throws IOException;

public void flush() throws IOException;

protected void drain() throws IOException;

public void close() throws IOException;

public void writeBoolean(boolean data) throws IOException;

public void writeByte(int data) throws IOException;

public void writeShort(int data) throws IOException;

public void writeChar(int data) throws IOException;

public void writeInt(int data) throws IOException;

public void writeLong(long data) throws IOException;

public void writeFloat(float data) throws IOException;

public void writeDouble(double data) throws IOException;
Page 14 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

2

public void writeBytes(String data) throws IOException;

public void writeChars(String data) throws IOException;

public void writeUTF(String data) throws IOException;

// Inner class to provide access to serializable fields.
public class PutField
{

public void put(String name, boolean value)
throws IOException, IllegalArgumentException;

public void put(String name, char data)
throws IOException, IllegalArgumentException;

public void put(String name, byte data)
throws IOException, IllegalArgumentException;

public void put(String name, short data)
throws IOException, IllegalArgumentException;

public void put(String name, int data)
throws IOException, IllegalArgumentException;

public void put(String name, long data)
throws IOException, IllegalArgumentException;

public void put(String name, float data)
throws IOException, IllegalArgumentException;

public void put(String name, double data)
throws IOException, IllegalArgumentException;

public void put(String name, Object data)
throws IOException, IllegalArgumentException;

}
}

}

The ObjectOutputStream constructor requires an OutputStream. The

constructor calls writeStreamHeader to write a magic number and version to

the stream, that will be read and verified by the corresponding

readStreamHeader in the ObjectInputStream constructor.
Chapter 2: Object Output Classes Page 15

2

The writeObject method is used to serialize an object to the stream. Objects

are serialized as follows:

1. If there is data in the block-data buffer, it is written to the stream and the

buffer is reset.

2. If the object is null, null is put in the stream and writeObject returns.

3. If the object has already been written to the stream, its handle is written to

the stream and writeObject returns. If the object has been already been

replaced, the handle for the previously-written replacement object is written

to the stream.

4. If the object is a Class, the corresponding ObjectStreamClass is written to the

stream, a handle is assigned for the class, and writeObject returns.

5. If the object is an ObjectStreamClass, a descriptor for the class is written to

the stream including its name, serialVersionUID, and the list of fields by

name and type. A handle is assigned for the descriptor. The annotateClass

subclass method is called before writeObject returns.

6. If the object is a java.lang.String, the string is written in Universal

Transfer Format (UTF) format, a handle is assigned to the string, and

writeObject returns.

7. If the object is an array, writeObject is called recursively to write the

ObjectStreamClass of the array. The handle for the array is assigned. It is

followed by the length of the array. Each element of the array is then written

to the stream, after which writeObject returns.

8. Process potential substitutions by the class of the object and/or by a

subclass of ObjectInputStream ..

• If the object implements the Replaceable interface, its writeReplace
method is called and the method can optionally return a substitute object

to be serialized.

• Then if enabled by calling enableReplaceObject method, the

replaceObject method is called to allow subclasses of

ObjectOutputStream to substitute for the object being serialized.
Page 16 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

2

If the original object was replaced by either one or both steps above, the

mapping from the original object to the replacement is recorded for later use

in step 3, and steps 2 through 7 are repeated on the new object. If the

replacement object is not one of the types covered by steps 2 through 7,

processing resumes using the replacement object at step 9.

9. For regular objects, the ObjectStreamClass for the object’s class is written

by recursively calling writeObject. It will appear in the stream only the first

time it is referenced. A handle is assigned for this object.

10. The contents of the object is written to the stream.

• If the object is serializable, the highest serializable class is located. For that

class, and each derived class, that class’s fields are written. If the class

does not have a writeObject method, the defaultWriteObject method

is called to write the serializable fields to the stream. If the class does have

a writeObject method, it is called. It may call defaultWriteObject or

putFields and writeFields to save the state of the object, and then it

can write other information to the stream.

• If the object is externalizable, the writeExternal method of the object is

called.

• If the object is neither serializable or externalizable, the

NotSerializableException is thrown.

Exceptions may occur during the traversal or may occur in the underlying

stream. For any subclass of IOException , the exception is written to the

stream using the exception protocol and the stream state is discarded. If a

second IOException is thrown while attempting to write the first exception

into the stream, the stream is left in an unknown state and

StreamCorruptedException is thrown from writeObject . For other

exceptions , the stream is aborted and left in an unknown and unusable state.

The defaultWriteObject method implements the default serialization

mechanism for the current class. This method may be called only from a class’s

writeObject method. The method writes all of the nonstatic and nontransient

fields of the current class to the stream. If called from outside the writeObject
method, the NotActiveException is thrown.

The putFields method returns a PutField object the caller uses to set the

values of the serializable fields in the stream. The fields may be set in any

order. After all of the fields have been set, writeFields must be called to

write the field values in the canonical order to the stream. If a field is not set,

the default value appropriate for its type will be written to the stream. This
Chapter 2: Object Output Classes Page 17

2

method may only called from within the writeObject method of a

serializable class. It may not be called more than once or if

defaultWriteObject has been called. Only after writeFields has been

called can other data may be written to the stream.

The reset method resets the stream state to be the same as if it had just been

constructed. Reset will discard the state of any objects already written to the

stream. The current point in the stream is marked as reset, so the

corresponding ObjectInputStream will reset at the same point. Objects

previously written to the stream will not be remembered as already having

been written to the stream. They will be written to the stream again. This is

useful when the contents of an object or objects must be sent again. Reset may

not be called while objects are being serialized. If called inappropriately, an

IOException is thrown.

The annotateClass method is called while a Class is being serialized, and

after the class descriptor has been written to the stream. Subclasses may extend

this method and write other information to the stream about the class. This

information must be read by the resolveClass method in a corresponding

ObjectInputStream subclass.

An ObjectOutputStream subclass can implement the replaceObject
method to monitor or replace objects during serialization. Replacing objects

must be enabled explicitly by calling enableReplaceObject before calling

writeObject with the first object to be replaced. Once enabled,

replaceObject is called for each object just prior to serializing the object for

the first time. Note that the replaceObject method is not called for objects of

the specially handled classes, Class , ObjectStreamClass , String , and

arrays. A subclass’s implementation may return a substitute object that will be

serialized instead of the original. The substitute object must be serializable. All

references in the stream to the original object will be replaced by the substitute

object.

When objects are being replaced, the subclass must ensure that the substituted

object is compatible with every field where the reference will be stored, or that

a complementary substitution will be made during deserialization. Objects,

whose type is not a subclass of the type of the field or array element, will later

abort the deserialization by raising a ClassCastException and the reference

will not be stored.
Page 18 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

2

The enableReplaceObject method can be called by trusted subclasses of

ObjectOutputStream to enable the substitution of one object for another

during serialization. Replacing objects is disabled until enableReplaceObject
is called with a true value. It may thereafter be disabled by setting it to false .

The previous setting is returned. The enableReplaceObject method checks

that the stream requesting the replacement can be trusted. To ensure that the

private state of objects is not unintentionally exposed, only trusted stream

subclasses may use replaceObject . Trusted classes are those classes that

belong to a security protection domain with permission to enable Serializable

substitution.

If the subclass of ObjectOutputStream is not considered part of the system

domain, the following line has to be added to the security policy file to provide

a subclass of ObjectOutputStream permission to call

enableReplaceObject .

permission SerializablePermission “enableSubstitution”
[, CodeBase “URL”] [, SignedBy “signer_name”];

AccessControlException is thrown if the protection domain of the subclass

of ObjectInputStream does not have permission to “enableSubstitution” by

calling enableReplaceObject . See “The Java Security Architecture(JDK1.2)”

document for further details on the security model.

The writeStreamHeader method writes the magic number and version to the

stream. This information must be read by the readStreamHeader method of

ObjectInputStream . Subclasses may need to implement this method to

identify the stream’s unique format.

The flush method is used to empty any buffers being held by the stream and

to forward the flush to the underlying stream. The drain method may be used

by subclassers to empty only the ObjectOutputStream ’s buffers without

forcing the underlying stream to be flushed.

All of the write methods for primitive types encode their values using a

DataOutputStream to put them in the standard stream format. The bytes are

buffered into block data records so they can be distinguished from the

encoding of objects. This buffering allows primitive data to be skipped if

necessary for class versioning. It also allows the stream to be parsed without

invoking class-specific methods.
Chapter 2: Object Output Classes Page 19

2

2.2 The ObjectOutputStream.PutField Class
Class PutField provides the API for setting values of the serializable fields for

a class when the class does not use default serialization. Each method puts the

specified named value into the stream. I/O exceptions will be thrown if the

underlying stream throws an exception. An IllegalArgumentException is

thrown if the name does not match the name of a field declared for this object’s

ObjectStreamClass or if the type of the value does not match the declared type

of the serializable field.

2.3 The writeObject Method
For serializable objects, the writeObject method allows a class to control the

serialization of its own fields. Here is its signature:

private void writeObject(ObjectOutputStream stream)
throws IOException;

Each subclass of a serializable object may define its own writeObject method.

If a class does not implement the method, the default serialization provided by

defaultWriteObject will be used. When implemented, the class is only

responsible for having its own fields, not those of its supertypes or subtypes.

The class’s writeObject method, if implemented, is responsible for saving the

state of the class. The defaultWriteObject method should be called before

writing any optional data that will be needed by the corresponding

readObject method to restore the state of the object. The responsibility for the

format, structure, and versioning of the optional data lies completely with the

class.

2.4 The writeExternal Method
Objects implementing java.io.Externalizable must implement the

writeExternal method to save the entire state of the object. It must

coordinate with its superclasses to save their state. All of the methods of

ObjectOutput are available to save the object’s primitive typed fields and

object fields.

public void writeExternal(ObjectOutput stream)
throws IOException;
Page 20 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

Object Input Classes 3
Topics:
• The ObjectInputStream Class

• The ObjectInputStream.GetField Class

• The ObjectInputValidation Interface

• The readObject Method

• The readExternal Method

3.1 The ObjectInputStream Class
Class ObjectInputStream implements object deserialization. It maintains the

state of the stream including the set of objects already deserialized. Its methods

allow primitive types and objects to be read from a stream written by

ObjectOutputStream. It manages restoration of the object and the objects that it

refers to from the stream.

package java.io;

public class ObjectInputStream
extends InputStream
implements ObjectInput, ObjectStreamConstants

{
public ObjectInputStream(InputStream in)

throws StreamCorruptedException, IOException;
Page 21

3

public final Object readObject()
throws OptionalDataException, ClassNotFoundException,

IOException;

public final void defaultReadObject()
throws IOException, ClassNotFoundException,

NotActiveException;

public GetField readFields()
throws IOException;

public synchronized void registerValidation(
ObjectInputValidation obj, int prio)
throws NotActiveException, InvalidObjectException;

protected Class resolveClass(ObjectStreamClass v)
throws IOException, ClassNotFoundException;

protected Object resolveObject(Object obj)
throws IOException;

protected final boolean enableResolveObject(boolean enable)
throws SecurityException;

protected void readStreamHeader()
throws IOException, StreamCorruptedException;

public int read() throws IOException;

public int read(byte[] data, int offset, int length)
throws IOException

public int available() throws IOException;

public void close() throws IOException;

public boolean readBoolean() throws IOException;

public byte readByte() throws IOException;

public int readUnsignedByte() throws IOException;

public short readShort() throws IOException;

public int readUnsignedShort() throws IOException;
Page 22 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

3

public char readChar() throws IOException;

public int readInt() throws IOException;

public long readLong() throws IOException;

public float readFloat() throws IOException;

public double readDouble() throws IOException;

public void readFully(byte[] data) throws IOException;

public void readFully(byte[] data, int offset, int size)
throws IOException;

public int skipBytes(int len) throws IOException;

public String readLine() throws IOException;

public String readUTF() throws IOException;

// Inner class to provide access to serializable fields.
public class GetField
{

public getObjectStreamClass();

public boolean defaulted(String name)
throws IOException, IllegalArgumentException;

public char get(String name, char defalt)
throws IOException, IllegalArgumentException;

public boolean get(String name, boolean defalt)
throws IOException, IllegalArgumentException;

public byte get(String name, byte defalt)
throws IOException, IllegalArgumentException;

public short get(String name, short defalt)
throws IOException, IllegalArgumentException;

public int get(String name, int defalt)
throws IOException, IllegalArgumentException;

public long get(String name, long defalt)
throws IOException, IllegalArgumentException;
Chapter 3: Object Input Classes Page 23

3

public float get(String name, float defalt)
throws IOException, IllegalArgumentException;

public double get(String name, double defalt)
throws IOException, IllegalArgumentException;

public Object get(String name, Object defalt)
throws IOException, IllegalArgumentException;

}
}

The ObjectInputStream constructor requires an InputStream. The constructor

calls readStreamHeader to read and verifies the header and version written

by the corresponding ObjectOutputStream .writeStreamHeader method.

The readObject method is used to deserialize an object from the stream. It

reads from the stream to reconstruct an object.

1. If a block data record occurs in the stream, throw a BlockDataException

with the number of available bytes.

2. If the object in the stream is null, return null.

3. If the object in the stream is a handle to a previous object, return the object.

4. If the object in the stream is a String, read its UTF encoding, add it and its

handle to the set of known objects, and return the String.

5. If the object in the stream is a Class, read its ObjectStreamClass descriptor,

add it and its handle to the set of known objects, and return the

corresponding Class object.

6. If the object in the stream is an ObjectStreamClass, read its name,

serialVersionUID, and fields. Add it and its handle to the set of known

objects. Call the resolveClass method on the stream to get the local class for

this descriptor, and throw an exception if the class cannot be found. Return

the ObjectStreamClass object.

7. If the object in the stream is an array, read its ObjectStreamClass and the

length of the array. Allocate the array, and add it and its handle in the set of

known objects. Read each element using the appropriate method for its

type, assign it to the array, and return the array.
Page 24 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

3

8. For all other objects, the ObjectStreamClass of the object is read from the

stream. The local class for that ObjectStreamClass is retrieved. The class

must be serializable or externalizable.

9. An instance of the class is allocated. The instance and its handle are added

to the set of known objects. The contents restored appropriately:

• For serializable objects, the no-arg constructor for the first non-serializable

supertype is run. For serializable classes, the fields are initialized to the

default value appropriate for its type. Then each class’s fields are restored

by calling class-specific readObject methods, or if these are not defined,

by calling the defaultReadObject method. Note that field initializers

and constructors are not executed for serializable classes during

deserialization. In the normal case, the version of the class that wrote the

stream will be the same as the class reading the stream. In this case, all of

the supertypes of the object in the stream will match the supertypes in the

currently-loaded class. If the version of the class that wrote the stream had

different supertypes than the loaded class, the ObjectInputStream must be

more careful about restoring or initializing the state of the differing

classes. It must step through the classes, matching the available data in the

stream with the classes of the object being restored. Data for classes that

occur in the stream, but do not occur in the object, is discarded. For classes

that occur in the object, but not in the stream, the class fields are set to

default values by default serialization.

• For externalizable objects, the no-arg constructor for the class is run and

then the readExternal method is called to restore the contents of the

object.

10. Process potential substitutions by the class of the object and/or by a

subclass of ObjectInputStream ..

• If the object implements the Resolvable interface, it’s readResolve
method is called to allow the object to replace itself.

• Then if previously enabled by enableResolveObject, the

resolveObject method is called to allow subclasses of the stream to

examine and replace the object. If the previous step did replace the

original object, the resolveObject method is called with the replacement

object.

If a replacement took place, the table of known objects is updated so the

replaced object is associated with the handle. This object is then returned

from readObject .
Chapter 3: Object Input Classes Page 25

3

All of the methods for reading primitives types only consume bytes from the

block data records in the stream. If a read for primitive data occurs when the

next item in the stream is an object, the read methods return -1 or the

EOFException as appropriate. The value of a primitive type is read by a

DataInputStream from the block data record.

The exceptions thrown reflect errors during the traversal or exceptions that

occur on the underlying stream. If any exception is thrown, the underlying

stream is left in an unknown and unusable state.

When the reset token occurs in the stream, all of the state of the stream is

discarded. The set of known objects is cleared.

When the exception token occurs in the stream, the exception is read and a

new WriteAbortedException is thrown with the terminating exception as an

argument. The stream context is reset as described earlier.

The defaultReadObject method is used to read the fields and object from the

stream. It uses the class descriptor in the stream to read the fields in the

canonical order by name and type from the stream. The values are assigned to

the matching fields by name in the current class. Details of the versioning

mechanism can be found in Section 5.5, “Compatible Java Type Evolution. Any

field of the object that does not appear in the stream is set to its default value.

Values that appear in the stream, but not in the object, are discarded. This

occurs primarily when a later version of a class has written additional fields

that do not occur in the earlier version. This method may only be called from

the readObject method while restoring the fields of a class. When called at

any other time, the NotActiveException is thrown.

The readFields method reads the values of the serializable fields from the

stream and makes them available via the GetField class. The readFields
method is only callable from within the readObject method of a serializable

class. It cannot be called more than once or if defaultReadObject has been

called. The GetFields object uses the current object’s ObjectStreamClass to

verify the fields that can be retrieved for this class. The GetFields object

returned by readFields is only valid during this call to the classes

readObject method. The fields may be retrieved in any order. Additional data

may only be read directly from stream after readFields has been called.

The registerValidation method can be called to request a callback when

the entire graph has been restored but before the object is returned to the

original caller of readObject . The order of validate callbacks can be controlled
Page 26 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

3

using the priority. Callbacks registered with higher values are called before

those with lower values. The object to be validated must support the

ObjectInputValidation interface and implement the validateObject
method. It is only correct to register validations during a call to a class’s

readObject method. Otherwise, a NotActiveException is thrown. If the

callback object supplied to registerValidation is null, an InvalidObjectException

is thrown.

The resolveClass method is called while a class is being deserialized, and

after the class descriptor has been read. Subclasses may extend this method to

read other information about the class written by the corresponding subclass of

ObjectOutputStream . The method must find and return the class with the

given name and serialVersionUID. The default implementation locates the class

by calling the class loader of the closest caller of readObject that has a class

loader. If the class cannot be found ClassNotFoundException should be

thrown.

The resolveObject method is used by trusted subclasses to monitor or

substitute one object for another during deserialization. Resolving objects must

be enabled explicitly by calling enableResolveObject before calling

readObject for the first object to be resolved. Once enabled resolveObject is

called once for each serializable object just prior to the first time it is being

returned from readObject . Note that the resolveObject method is not

called for objects of the specially handled classes, Class ,

ObjectStreamClass , String , and arrays. A subclass’s implementation of

resolveObject may return a substitute object that will be assigned or

returned instead of the original. The object returned must be of a type that is

consistent and assignable to every reference of the original object or else a

ClassCastException will be thrown. All assignments are type-checked. All

references in the stream to the original object will be replaced by references to

the substitute object.

The enableResolveObject method is called by trusted subclasses of

ObjectOutputStream to enable the monitoring or substitution of one object

for another during deserialization. Replacing objects is disabled until

enableResolveObject is called with a true value. It may thereafter be

disabled by setting it to false . The previous setting is returned. The

enableResolveObject method checks if the stream has permission to request

substitution during serialization. To ensure that the private state of objects is
Chapter 3: Object Input Classes Page 27

3

not unintentionally exposed, only trusted streams may use resolveObject .

Trusted classes are those classes with a class loader equal to null or belong to a

security protection domain that provides permission to enable substitution.

If the subclass of ObjectInputStream is not considered part of the system

domain, the following line has to be added to the security policy file to provide

a subclass of ObjectInputStream permission to call enableResolveObject .

permission SerializablePermission “enableSubstitution”
[, CodeBase “URL”] [, SignedBy “signer_name”];

AccessControlException is thrown if the protection domain of the subclass

of ObjectStreamClass does not have permission to “enableSubstitution” by

calling enableResolveObject . See “The Java Security Architecture(JDK1.2)”

document for further details on the security model.

The readStreamHeader method reads and verifies the magic number and

version of the stream. If they do not match, the StreamCorruptedMismatch is

thrown.

3.2 The ObjectInputStream.GetField Class
The class ObjectInputStream.GetField provides the API for getting the

values of serializable fields. The protocol of the stream is the same as used by

defaultReadObject. Using readFields to access the serializable fields does

not change the format of the stream. It only provides an alternate API to

access the values which does not require the class to have the corresponding

non-transient fields for each named serializable field. The serializable fields are

those declared using serialPersistentFields or if it is not declared the

non-transient and non-static fields of the object. When the stream is read the

available serializable fields are those written to the stream when the object was

serialized. If the class that wrote the stream is a different version not all fields

will correspond to the serializable fields of the current class. The available

fields can be retrieved from the ObjectStreamClass of the GetField object.

The getObjectStreamClass method returns an ObjectStreamClass object

representing the class in the stream. It contains the list of serializable fields.

The defaulted method returns true if the field is not present in the stream. An

IllegalArgumentException is thrown if the requested field is not a

serializable field of the current class.
Page 28 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

3

Each get method returns the specified serializable field from the stream. I/O

exceptions will be thrown if the underlying stream throws an exception. An

IllegalArgumentException is thrown if the name or type does not match

the name and type of an field serializable field of the current class. The default

value is returned if the stream does not contain an explicit value for the field.

3.3 The ObjectInputValidation Interface
This interface allows an object to be called when a complete graph of objects

has been deserialized. If the object cannot be made valid, it should throw the

ObjectInvalidException . Any exception that occurs during a call to

validateObject will terminate the validation process, and the

InvalidObjectException will be thrown.

package java.io;

public interface ObjectInputValidation
{

public void validateObject()
throws InvalidObjectException;

}

3.4 The readObject Method
For serializable objects, the readObject method allows a class to control the

deserialization of its own fields. Here is its signature:

private void readObject(ObjectInputStream stream)
throws IOException, ClassNotFoundException;

Each subclass of a serializable object may define its own readObject method. If

a class does not implement the method, the default serialization provided by

defaultReadObject will be used. When implemented, the class is only

responsible for restoring its own fields, not those of its supertypes or subtypes.

The class’s readObject method, if implemented, is responsible for restoring the

state of the class. The values of every field of the object whether transient or

not, static or not are set to the default value for the fields type. The

defaultReadObject method should be called before reading any optional

data written by the corresponding writeObject method. If the classes

readObject method attempts to read more data than is present in the optional
Chapter 3: Object Input Classes Page 29

3

part of the stream for this class, the stream will throw an EOFException. The

responsibility for the format, structure, and versioning of the optional data lies

completely with the class.

If the class being restored is not present in the stream being read, its fields are

initialized to the appropriate default values.

Reading an object from the ObjectInputStream is analagous to creating a new

object. Just as a new object’s constructors are invoked in the order from the

superclass to the subclass, an object being read from a stream is deserialized

from superclass to subclass. The readObject , or defaultReadObject ,

method is called instead of the constructor for each Serializable subclass

during deserialization.

One last similarity between a constructor and a readObject method is that

both provide the opportunity to invoke a method on an object that is not fully

constructed. Any non-final method called while an object is being constructed

can potentially be overridden by a subclass. Methods called during the

construction phase of an object are resolved by the actual type of the object, not

the type currently being initialized by either its constructor or readObject
method. This situation results in the overriding method being invoked on an

object that is not fully constructed yet.

3.5 The readExternal Method
Objects implementing java.io.Externalizable must implement the

readExternal method to restore the entire state of the object. It must

coordinate with its superclasses to restore their state. All of the methods of

ObjectInput are available to restore the object’s primitive typed fields and

object fields.

public void readExternal(ObjectInput stream)
throws IOException;

Note – The readExternal method is public, and it raises the risk of a client

being able to overwrite an existing object from a stream. The class may add it

own checks to insure that this is only called when appropriate.
Page 30 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

Class Descriptors 4
Topics:
• The ObjectStreamClass Class

• The ObjectStreamField Class

• Inspecting Serializable Classes

• Stream Unique Identifiers

4.1 The ObjectStreamClass Class
The ObjectStreamClass provides information about classes that are saved in

a Serialization stream. The descriptor provides the fully-qualified name of the

class and its serialization version UID. A SerialVersionUID identifies the

unique original class version for which this class is capable of writing streams

and from which it can read.

package java.io;

public class ObjectStreamClass
{

public static ObjectStreamClass lookup(Class cl);

public String getName();

public Class forClass();

public ObjectStreamField[] getFields();
Page 31

4

public long getSerialVersionUID();

public String toString();
}

The lookup method returns the ObjectStreamClass descriptor for the

specified class in the Java VM. If the class has defined serialVersionUID it is

retrieved from the class. If not defined by the class it is computed from the

class’s definition in the Java Virtual Machine. null is returned if the specified

class is not serializable or externalizable. Only class descriptions for classes

that implement either java.io.Serializable or java.io.Externalizable
interfaces can be written to a stream.

The getName method returns the fully-qualified name of the class. The class

name is saved in the stream and is used when the class must be loaded.

The forClass method returns the Class in the local Virtual Machine if one is

known. Otherwise, it returns null.

The getFields method returns an array of ObjectStreamField objects that

represent the persistent fields of this class.

The getSerialVersionUID method returns the serialVersionUID of this

class. Refer to Section 4.4, “Stream Unique Identifiers. If not specified by the

class, the value returned is a hash computed from the class’s name, interfaces,

methods, and fields using the Secure Hash Algorithm (SHA) as defined by the

National Institute of Standard.

The toString method returns a printable representation of the class descriptor

including the class’s name and serialVersionUID.

When an ObjectStreamClass instance is written to the stream it writes the

class name and serialVersionUID, flags and the number of fields. Depending

on the class additional information may be written:

• For non-serializable classes number of fields is always zero. Neither of the

serializable or externalizable flag bits are set.

• For serializable classes,the serializable flag is set, the number of fields

counts the number of serializable fields and is followed by a descriptor for

each serializable field. The descriptors are written in canonical order. The
Page 32 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

4

descriptors for primitive typed fields are written first sorted by field name

followed by descriptors for the object typed fields sorted by field name. The

names are sorted using String.compareTo. The protocol describes the format.

• For externalizable classes, flags includes the externalizable flag and the

number of fields is always zero.

4.2 The ObjectStreamField Class
ObjectStreamField objects represent serializable fields of serializable classes.

The serializable fields of a class can be retrieved from the ObjectStreamClass.

An array of ObjectStreamFields is used to override the default of serializable

fields.

package java.io;

public class ObjectStreamField {

public ObjectStreamField(String name, Class clazz);

public String getName();

public Class getType() throws ClassNotFoundException;

public String toString();
}

The ObjectStreamField constructor is used to create a new instance of an

ObjectStreamField. The argument is the type of the serializable field. For

example, Integer.TYPE or java.lang.Hashtable.class. ObjectStreamField objects

are used to specify the serializable fields of a class or to describe the fields

present in a stream.

The getName method returns the name of the serializable field.

The getType method returns the type of the field.

The toString method returns a printable representation with name and type.
Chapter 4: Class Descriptors Page 33

4

4.3 Inspecting Serializable Classes
The program serialver can be used to find out if a class is serializable and to

get its serialVersionUID . When invoked with -show it puts up a simple user

interface. To find out if a class is serializable and to find out its

serialVersionUID, enter its full class name and press either the Enter or the

Show button. The string printed can be copied and pasted into the evolved

class.

When invoked on the command line with one or more class names, serialver

prints the serialVersionUID for each class in a form suitable for copying into an

evolving class. When invoked with no arguments, it prints a usage line.

4.4 Stream Unique Identifiers
Each versioned class must identify the original class version for which it is

capable of writing streams and from which it can read. For example, a

versioned class must declare:

static final long SerialVersionUID = 3487495895819393L;

The stream-unique identifier is a 64-bit hash of the class name, interface class

names, methods, and fields. The value must be declared in all versions of a

class except the first. It may be declared in the original class but is not

required. The value is fixed for all compatible classes. If the SUID is not

declared for a class, the value defaults to the hash for that class. Serializable

classes do not need to anticipate versioning; however, Externalizable classes

do. The initial version of an Externalizable class must output a stream data

format that is extensible in the future. The intial version of the method

readExternal has to be able to read the output format of all future versions of

the method writeExternal .

The serialVersionUID is computed using the signature of a stream of bytes that

reflect the class definition. The National Institute of Standards and Technology

(NIST) Secure Hash Algorithm (SHA-1) is used to compute a signature for the
Page 34 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

4

stream. The first two 32-bit quantities are used to form a 64-bit hash. A

java.lang.DataOutputStream is used to convert primitive data types to a

sequence of bytes. The values input to the stream are defined by the Java

virtual machine (VM) specification for classes. The sequence of items in the

stream is as follows:

1. The class name written using UTF encoding.

2. The class modifiers written as a 32-bit integer.

3. The name of each interface sorted by name written using UTF encoding.

4. For each field of the class sorted by field name (except private static and

private transient fields):

• The name of the field in UTF encoding.

• The modifiers of the field written as an 32-bit integer.

• The descriptor of the field in UTF encoding.

5. For each method including the class initiaizer method and each constructor

sorted by method name and signature, except private methods and

constructors:

• The name of the method in UTF encoding.

• The modifiers of the method written as an 32-bit integer.

• The descriptor of the method in UTF encoding.

6. The SHA-1 algorithm is executed on the stream of bytes produced by

DataOutputStream and produces five 32-bit values sha[0..4].

7. The hash value is assembled from the first and second 32-bit values.

 long hash = sha[1] << 32 + sha[0].
Chapter 4: Class Descriptors Page 35

4

Page 36 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

Versioning of Serializable Objects 5
Topics:
• Overview

• Goals

• Assumptions

• Who’s Responsible for Versioning of Streams

• Compatible Java Type Evolution

• Type Changes Affecting Serialization

5.1 Overview
When Java objects use serialization to save state in files, or as blobs in

databases, the potential arises that the version of a class reading the data is

different than the version that wrote the data.

Versioning raises some fundamental questions about the identity of a class,

including what constitutes a compatible change. A compatible change is a change

that does not affect the contract between the class and its callers.
Page 37

5

This section describes the goals, assumptions, and a solution that attempts to

address this problem by restricting the kinds of changes allowed and by

carefully choosing the mechanisms.

The proposed solution provides a mechanism for “automatic” handling of

classes that evolve by adding fields and adding classes. Serialization will

handle versioning without class-specific methods to be implemented for each

version. The stream format can be traversed without invoking class-specific

methods.

5.2 Goals
The goals are to:

• Support bidirectional communication between different versions of a class

operating in different virtual machines by:

• Defining a mechanism that allows Java classes to read streams written by

older versions of the same class.

• Defining a mechanism that allows Java classes to write streams intended

to be read by older versions of the same class.

• Provide default serialization for persistence and for RMI.

• Perform well and produce compact streams in simple cases, so that RMI can

use serialization.

• Be able to identify and load classes that match the exact class used to write

the stream.

• Keep the overhead low for nonversioned classes.

• Use a stream format that allows the traversal of the stream without having

to invoke methods specific to the objects saved in the stream.

5.3 Assumptions
The assumptions are that:

• Versioning will only apply to serializable classes since it must control the

stream format to achieve it goals. Externalizable classes will be responsible

for their own versioning which is tied to the external format.

• All data and objects must be read from, or skipped in, the stream in the

same order as they were written.
Page 38 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

5

• Classes evolve individually as well as in concert with supertypes and

subtypes.

• Classes are identified by name. Two classes with the same name may be

different versions or completely different classes that can be distinguished

only by comparing their interfaces or by comparing hashes of the interfaces.

• Default serialization will not perform any type conversions.

• The stream format only needs to support a linear sequence of type changes,

not arbitrary branching of a type.

5.4 Who’s Responsible for Versioning of Streams
In the evolution of classes, it is the responsibility of the evolved (later version)

class to maintain the contract established by the nonevolved class. This takes

two forms. First, the evolved class must not break the existing assumptions

about the interface provided by the original version, so that the evolved class

can be used in place of the original. Secondly, when communicating with the

original (or previous) versions, the evolved class must provide sufficient and

equivalent information to allow the earlier version to continue to satisfy the

nonevolved contract.
Chapter 5: Versioning of Serializable Objects Page 39

5

For the purposes of the discussion here, each class implements and extends the

interface or contract defined by its supertype. New versions of a class, for

example foo’, must continue to satisfy the contract for foo and may extend the

interface or modify its implementation.

Communication between objects via serialization is not part of the contract

defined by these interfaces. Serialization is a private protocol between the

implementations. It is the responsibility of the implementations to

communicate sufficiently to allow each implementation to continue to satisfy

the contract expected by its clients.

5.5 Compatible Java Type Evolution
In the Java Language Specification, Chapter 13 discusses binary compatibility of

Java classes as those classes evolve. Most of the flexibility of binary

compatibility comes from the use of late binding of symbolic references for the

names of classes, interfaces, fields, methods, and so on.

java.lang.Object

 foo

 bar

java.lang.Object’

 foo’

 bar’

Private serialization protocol

Contract with supertype
Page 40 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

5

The following are the principle aspects of the design for versioning of

serialized object streams.

• The default serialization mechanism will use a symbolic model for binding

the fields in the stream to the fields in the corresponding class in the virtual

machine.

• Each class referenced in the stream will uniquely identify itself, its

supertype, and the types and names of each nonstatic and nontransient field

written to the stream. The fields are ordered with the primitive types first

sorted by field name, followed by the object fields sorted by field name.

• Two types of data may occur in the stream for each class: required data

(corresponding directly to the nonstatic and nontransient fields of the

object); and optional data (consisting of an arbitrary sequence of primitives

and objects). The stream format defines how the required and optional data

occur in the stream so that the whole class, the required, or the optional

parts can be skipped if necessary.

• The required data consists of the fields of the object in the order defined

by the class descriptor.

• The optional data is written to the stream and does not correspond

directly to fields of the class. The class itself is responsible for the length,

types, and versioning of this optional information.

• If defined for a class, the writeObject/readObject methods supersede the

default mechanism to write/read the state of the class. These methods write

and read the optional data for a class. The required data is written by calling

defaultWriteObject and read by calling defaultReadObject .

• The stream format of each class is identified by the use of a Stream Unique

Identifier (SUID). By default, this is the hash of the class. All later versions

of the class must declare the Stream Unique Identifier (SUID) that they are

compatible with. This guards against classes with the same name that might

inadvertently be identified as being versions of a single class.

• Subtypes of ObjectOutputStream and ObjectInputStream may include their

own information identifying the class using the annotateClass method; for

example, MarshalOutputStream embeds the URL of the class.
Chapter 5: Versioning of Serializable Objects Page 41

5

5.6 Type Changes Affecting Serialization
With these concepts, we can now describe how the design will cope with the

different cases of an evolving class. The cases are described in terms of a

stream written by some version of a class. When the stream is read back by the

same version of the class, there is no loss of information or functionality. The

stream is the only source of information about the original class. Its class

descriptions, while a subset of the original class description, are sufficient to

match up the data in the stream with the version of the class being

reconstituted.

The descriptions are from the perspective of the stream being read in order to

reconstitute either an earlier or later version of the class. In the parlance of RPC

systems, this is a “receiver makes right” system. The writer writes its data in

the most suitable form and the receiver must interpret that information to

extract the parts it needs and to fill in the parts that are not available.

5.6.1 Incompatible Changes

Incompatible changes to classes are those changes for which the guarantee of

interoperability cannot be maintained. The incompatible changes that may

occur while evolving a class are:

• Deleting fields - If a field is deleted in a class, the stream written will not

contain its value. When the stream is read by an earlier class, the value of

the field will be set to the default value because no value is available in the

stream. However, this default value may adversely impair the ability of the

earlier version to fulfill its contract.

• Moving classes up or down the hierarchy - This cannot be allowed since the

data in the stream appears in the wrong sequence.

• Changing a nonstatic field to static or a nontransient field to transient - This

is equivalent to deleting a field from the class. This version of the class will

not write that data to the stream, so it will not be available to be read by

earlier versions of the class. As when deleting a field, the field of the earlier

version will be initialized to the default value, which can cause the class to

fail in unexpected ways.
Page 42 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

5

• Changing the declared type of a primitive field - Each version of the class

writes the data with its declared type. Earlier versions of the class

attempting to read the field will fail because the type of the data in the

stream does not match the type of the field.

• Changing the writeObject or readObject method so that it no longer

writes or reads the default field data or changing it so that it attempts to

write it or read it when the previous version did not. The default field data

must consistently either appear or not appear in the stream.

• Changing a class from Serializable to Externalizable or visa-versa is

an incompatible change since the stream will contain data that is

incompatible with the implementation in the available class.

• Removing either Serializable or Externalizable is an incompatible

change since when written it will not longer supply the fields needed by

older versions of the class.

• Adding the Replaceable interface to a class is incompatible if the behavior

of writeReplace would produce an object that is incompatible with any

older version of the class.

5.6.2 Compatible Changes

The compatible changes to a class are handled as follows:

• Adding fields - When the class being reconstituted has a field that does not

occur in the stream, that field in the object will be initialized to the default

value for its type. If class-specific initialization is needed, the class may

provide a readObject method that can initialize the field to nondefault

values.

• Adding classes - The stream will contain the type hierarchy of each object in

the stream. Comparing this hierarchy in the stream with the current class

can detect additional classes. Since there is no information in the stream

from which to initialize the object, the class’s fields will be initialized to the

default values.

• Removing classes - Comparing the class hierarchy in the stream with that of

the current class can detect that a class has been deleted. In this case, the

fields and objects corresponding to that class are read from the stream.

Primitive fields are discarded, but the objects referenced by the deleted class

are created, since they may be referred to later in the stream. They will be

garbage-collected when the stream is garbage-collected or reset.
Chapter 5: Versioning of Serializable Objects Page 43

5

• Adding writeObject/readObject methods - If the version reading the stream

has these methods then readObject is expected, as usual, to read the

required data written to the stream by the default serialization. It should call

defaultReadObject first before reading any optional data. The

writeObject method is expected as usual to call defaultWriteObject to

write the required data and then may write optional data.

• Removing writeObject/readObject methods - If the class reading the stream

does not have these methods, the required data will be read by default

serialization, and the optional data will be discarded.

• Adding java.io.Serializable - This is equivalent to adding types. There

will be no values in the stream for this class so its fields will be initialized to

default values. The support for subclassing nonserializable classes requires

that the class’s supertype have a no-arg constructor and the class itself will

be initialized to default values. If the no-arg constructor is not available, the

InvalidClassException is thrown.

• Changing the access to a field - The access modifiers public, package,

protected, and private have no effect on the ability of serialization to assign

values to the fields.

• Changing a field from static to nonstatic or transient to nontransient - This is

equivalent to adding a field to the class. The new field will be written to the

stream but earlier classes will ignore the value since serialization will not

assign values to static or transient fields.
Page 44 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

Object Serialization Stream Protocol 6
Topics:

• Overview

• Stream Elements

• Grammar for the Stream Format

• Example

6.1 Overview
The stream format is designed to satisfy the following goals:

• Be compact and structured for efficient reading.

• Allow skipping through the stream using only the knowledge of the

structure and format of the stream. Do not require any per class code to be

invoked.

• Require only stream access to the data.

6.2 Stream Elements
A basic structure is needed to represent objects in a stream. Each attribute of

the object needs to be represented: its classes, its fields, and data written and

later read by class-specific methods. The representation of objects in the stream

can be described with a grammar. There are special representations for null
Page 45

6

objects, new objects, classes, arrays, strings, and back references to any object

already in the stream. Each object written to the stream is assigned a handle

that is used to refer back to the object. Handles are assigned sequentially

starting from 0x7E0000. The handles restart at 0x7E0000 when the stream is

reset.

A class object is represented by:

• Its ObjectStreamClass object.

An ObjectStreamClass object is represented by:

• The Stream Unique Identifier (SUID) of compatible classes.

• A flag indicating if the class had writeObject/readObject methods.

• The number of nonstatic and nontransient fields.

• The array of fields of the class that are serialized by the default mechanism.

For arrays and object fields, the type of the field is included as a string.

• Optional block-data records or objects written by the annotateClass method.

• The ObjectStreamClass of its supertype (null if the superclass is not

serializable).

Strings are represented by their UTF encoding. Note, the current specification

and implementation of the modified UTF restricts the total length of the

encoded string to 65535 characters.

Arrays are represented by:

• Their ObjectStreamClass object.

• The number of elements.

• The sequence of values. The type of the values is implicit in the type of the

array. for example the values of a byte array are of type byte.

New objects in the stream are represented by:

• The most derived class of the object.

• Data for each serializable class of the object, with the highest superclass

first. For each class the stream contains:

- The default serialized fields (those fields not marked static or transient as

described in the corresponding ObjectStreamClass).

- If the class has writeObject /readObject methods, there may be

optional objects and/or block-data records of primitive types written by

the writeObject method followed by an endBlockData code.
Page 46 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

6

All primitive data written by classes is buffered and wrapped in block-data

records whether the data is written to the stream within a writeObject
method or written directly to the stream from outside a writeObject method.

This data may only be read by the corresponding readObject methods or

directly from the stream. Objects written by writeObject terminate any

previous block-data record and are written as regular objects, or null or back

references as appropriate. The block-data records allow error recovery to

discard any optional data. When called from within a class, the stream can

discard any data or objects until the endBlockData.

6.3 Grammar for the Stream Format

The table below contains the grammar. Nonterminal symbols are shown in

italics. Terminal symbols in a fixed width font. Definitions of nonterminals are

followed by a “:”. The definition is followed by one or more alternatives, each

on a separate line. The following table describes the notation:

6.3.1 Rules of the Grammar

A Serialized stream is represented by any stream satisfying the stream rule.

stream:
magic version contents

Notation Meaning

(datatype) This token has the data type specified,

such as byte.

token[n] A predefined number of occurrences of

the token, that is an array.

x0001 A literal value expressed in hexadecimal.

The number of hex digits reflects the size

of the value.

<xxx> A value read from the stream used to

indicate the length of an array.
Chapter 6: Object Serialization Stream Protocol Page 47

6

sc

fo

ts
contents:
content
contents content

content:
object
blockdata

object:
newObject
newClass
newArray
newString
newClassDesc
prevObject
nullReference
exception
TC_RESET

newClass:
TC_CLASS classDesc newHandle

classDesc:
newClassDesc
nullReference
(ClassDesc)prevObject // an object required to be of type ClassDe

superClassDesc:
classDesc

newClassDesc:
TC_CLASSDESC className serialVersionUIDnewHandle classDescIn

classDescInfo:
classDescFlags fields classAnnotation superClassDesc

className:
(utf)

serialVersionUID:
(long)

classDescFlags:
(byte) // Defined in Terminal Symbols and Constan
Page 48 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

6

fields:
(short)<count> fieldDesc[count]

fieldDesc:
primitiveDesc
objectDesc

primitiveDesc:
prim_typecode fieldName

objectDesc:
obj_typecode fieldName className1

fieldName:
(utf)

className1:
(String)object // String containing the field’s type

classAnnotation:
endBlockData
contents endBlockData // contents written by annotateClass

prim_typecode:
‘B’ // byte
‘C’ // char
‘D’ // double
‘F’ // float
‘I’ // integer
‘J’ // long
‘S’ // short
‘Z’ // boolean

obj_typecode:
‘[‘ // array
‘L’ // object

newArray:
TC_ARRAY classDesc newHandle (int)<size> values[size]

newObject:
TC_OBJECT classDesc newHandle classdata[]// data for each class
Chapter 6: Object Serialization Stream Protocol Page 49

6

classdata:
nowrclass // SC_WRRD_METHOD & !classDescFlags
wrclass objectAnnotation // SC_WRRD_METHOD & classDescFlags

nowrclass:
values // fields in order of class descriptor

wrclass:
nowrclass

objectAnnotation:
endBlockData
contents endBlockData // contents written by writeObject

blockdata:
TC_BLOCKDATA (unsigned byte)<size> (byte)[size]

blockdatalong:
TC_BLOCKDATALONG (int)<size> (byte)[size]

endBlockData:
TC_ENDBLOCKDATA

newString:
TC_STRING (utf)

prevObject:
TC_REFERENCE (int)handle

nullReference:
TC_NULL

exception:
TC_EXCEPTION reset (Throwable)object reset

magic:
STREAM_MAGIC

version:
STREAM_VERSION

values: // The size and types are described by the
// classDesc for the current object
Page 50 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

6

d

newHandle: // The next number in sequence is assigned

// to the object being serialized or deserialize

reset: // The set of known objects is discarded
// so the objects of the exception do not
// overlap with the previously sent objects or
// with objects that may be sent after the
// exception

6.3.2 Terminal Symbols and Constants

The following symbols in java.io.ObjectStreamConstants define the terminal

and constant values expected in a stream.

final static short STREAM_MAGIC = (short)0xaced;
final static short STREAM_VERSION = 5;
final static byte TC_NULL = (byte)0x70;
final static byte TC_REFERENCE = (byte)0x71;
final static byte TC_CLASSDESC = (byte)0x72;
final static byte TC_OBJECT = (byte)0x73;
final static byte TC_STRING = (byte)0x74;
final static byte TC_ARRAY = (byte)0x75;
final static byte TC_CLASS = (byte)0x76;
final static byte TC_BLOCKDATA = (byte)0x77;
final static byte TC_ENDBLOCKDATA = (byte)0x78;
final static byte TC_RESET = (byte)0x79;
final static byte TC_BLOCKDATALONG = (byte)0x7A;
final static byte TC_EXCEPTION = (byte)0x7B;
final static intbaseWireHandle = 0x7E0000;

The flag byte classDescFlags may include values of

final static byte SC_WRITE_METHOD = 0x01;
final static byte SC_SERIALIZABLE = 0x02;
final static byte SC_EXTERNALIZABLE = 0x04;

The flag SC_WRITE_METHOD is set if the class writing the stream had a

writeObject method that may have written additional data to the stream. In

this case a TC_ENDBLOCKDATA marker is always expected to terminate the

data for that class.
Chapter 6: Object Serialization Stream Protocol Page 51

6

The flag SC_SERIALIZABLE is set if the class that wrote the stream extended

java.io.Serializable but not java.io.Externalizable , the class

reading the stream must also extend java.io.Serializabl and the default

serialization mechanism is to be used.

The flag SC_EXTERNALIZABLE is set if the class that wrote the stream

extended java.io.Externalizable , the class reading the data must also

extend Externalizable and the data will be read using it’s writeExternal and

readExternal methods.

Example

Consider the case of an original class and two instances in a linked list:

class List implements java.io.Serializable {
int value;
List next;
public static void main(String[] args) {

try {
List list1 = new List();
List list2 = new List();
list1.value = 17;
list1.next = list2;
list2.value = 19;
list2.next = null;

ByteArrayOutputStream o = new ByteArrayOutputStream();
ObjectOutputStream out = new ObjectOutputStream(o);
out.writeObject(list1);
out.writeObject(list2);
out.flush();
...

} catch (Exception ex) {
ex.printStackTrace();

}
}

}

The resulting stream contains:

00: ac ed 00 05 73 72 00 04 4c 69 73 74 69 c8 8a 15 >....sr..Listi...<

10: 40 16 ae 68 02 00 02 49 00 05 76 61 6c 75 65 4c >Z......I..valueL<

20: 00 04 6e 65 78 74 74 00 06 4c 4c 69 73 74 3b 78 >..nextt..LList;x<

30: 70 00 00 00 11 73 71 00 7e 00 00 00 00 00 13 70 >p....sq.~......p<

40: 71 00 7e 00 03 >q.~..<
Page 52 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

6

Chapter 6: Object Serialization Stream Protocol Page 53

6

Page 54 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

Security in Object Serialization A
Topics:
• Overview

• Design Goals

• Using transient to Protect Important System Resources

• Writing Class-Specific Serializing Methods

• Encrypting a Bytestream
Page 55

A.1 Overview
The object serialization system allows a bytestream to be produced from a

graph of objects, sent out of the Java environment (either saved to disk or sent

over the network) and then used to recreate an equivalent set of new objects

with the same state.

What happens to the state of the objects outside of the environment is outside

of the control of the Java system (by definition), and therefore is outside the

control of the security provided by the system. The question then arises, once

an object has been serialized, can the resulting byte array be examined and

changed, perhaps injecting viruses into Java programs? The intent of this

section is to address these security concerns.

A.2 Design Goals
The goal for object serialization is to be as simple as possible and yet still be

consistent with known security restrictions; the simpler the system is, the more

likely it is to be secure. The following points summarize how security in object

serialization has been implemented:

• Only objects implementing the java.io.Serializable or java.io.Externalizable

interfaces can be serialized. there are mechanisms for not serializing certain

fields and certain classes.

• The serialization package cannot be used to recreate the same object, and no

object is ever overwritten by a deserialize operation. All that can be done

with the serialization package is to create new objects, initialized in a

particular fashion.

• While deserializing an object might cause code for the class of the object to

be loaded, that code loading is protected by all of the usual Java code

verification and security management guarantees. Classes loaded because of

deserialization are no more or less secure than those loaded in any other

fashion.

• Externalizable objects expose themselves to being overwritten because the

readExternal method is public.
Page 56 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

A.3 Using transient to Protect Important System Resources
Direct handles to system resources, such as file handles, are the kind of

information that is relative to an address space and should not be written out

as part of an object's persistent state. Therefore, fields that contain this kind of

information should be declared transient , which prevents them from being

serialized. Note that this is not a new or overloaded meaning for the

transient keyword.

If a resource, like a file handle, was not declared transient , the object could

be altered while in its serialized state, enabling it to have improper access to

resources after it is deserialized.

A.4 Writing Class-Specific Serializing Methods
To guarantee that a deserialized object does not have state which violates some

set of invariants that need to be guaranteed, a class can define its own

serializing and deserializing methods. If there is some set of invariants that

need to be maintained between the data members of a class, only the class can

know about these invariants, and it is up to the class writer to provide a

deserialization method that checks these invariants.

This is important even if you are not worried about security; it is possible that

disk files can be corrupted and serialized data be invalid. So checking such

invariants is more than just a security measure; it is a validity measure.

However, the only place it can be done is in the code for the particular class,

since there is no way the serialization package can determine what invariants

should be maintained or checked.

A.5 Encrypting a Bytestream
Another way of protecting a bytestream outside the Java virtual machine is to

encrypt the stream produced by the serialization package. Encrypting the

bytestream prevents the decoding and the reading of a serialized object’s

private state.

The implementation allows encryption, both by allowing the classes to have

their own special methods for serialization/deserialization and by using the

stream abstraction for serialization, so the output can be fed into some other

stream or filter.
Appendix : Security in Object Serialization Page 57

Page 58 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

Exceptions In Object Serialization B
All exceptions thrown by serialization classes are subclasses of

ObjectStreamException which is a subclass of IOException .

Exception Description

ObjectStreamException Superclass of all serialization exceptions.

InvalidClassException Thrown when a class cannot be used to restore

objects for any of these reasons:

• The class does not match the serial version of
the class in the stream.

• The class contains fields with invalid
primitive data types.

• The class is not public; the class does not
have an accessible no-arg constructor.

NotSerializableException Thrown by a readObject or writeObject
method to terminate serialization or

deserialization.

StreamCorruptedException Thrown when the stream header is invalid or

when control information in the stream is not

found or found to be invalid.

NotActiveException Thrown if registerValidation is not called

during readObject .
Page 59

InvalidObjectException Thrown when a restored object cannot be made

valid.

OptionalDataException Thrown by readObject when there is primitive

data in the stream and an object is expected.

The length field of the exception indicates the

number of bytes that are available in the current

block.

WriteAbortedException Thrown when reading a stream terminated by

an exception that occurred while the stream

was being written.

Exception Description
Page 60 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

Example of Serializable Fields C
Topics:
• Example Alternate Implementation of java.lang.File

C.1 Example Alternate Implementation of java.lang.File
Here’s a brief example of how an existing class could be specified and

implemented to inter-operate with the existing implementation but without

requiring the same assumptions about the representation of the file name as a

String.

The system class java.lang.File represents a filename and has methods for

parsing, manipulating files and directories by name. It has a single private field

that contains the current file name. The semantics of the methods that parse

paths depend on the current path separator which is held in a static field. This

path separator is part of the persistent state of a file so that file name can be

adjusted when read.

The persistent state of a File object is defined as the persistent fields and the

sequence of data values for the file. In this case there is one of each.

Serializable Fields:

String path; // path name with embedded separators

Serializable Data:

char // path name separator for path name
Page 61

An alternate implementation might be defined as follows:

class File implements java.io.Serializable {
...
private String[] pathcomponents;
...
private void writeObject(ObjectOutputStream s)

throws IOException
{

ObjectOutputStream.PutField fields = s.putFields();
StringBuffer str = new StringBuffer();
for(int i = 0; i < pathcomponents; i++) {

str.append(separator);
str.append(pathcomponents[i]);

}
fields.put(“path”, str.toString());
s.writeFields();
s.writeChar(separatorChar); // Add the separator character

}
...

private void readObject(ObjectInputStream s)
throws IOException

{
ObjectInputStream.GetField fields = s.readFields();
String path = (String)fields.get(“path”, null);
...
char sep = s.readChar(); // read the previous separator char

// parse path into components using the separator
// and store into pathcomponents array.

}

// Define persistent fields with the ObjectStreamClass
static final ObjectStreamField[] serialPersistentFields = {

new ObjectStreamField(“path”, String.class)

};

}

Page 62 Java™ Object Serialization Specification—JDK Playground Alpha, July 3, 1997

	Java™ Object Serialization Specification
	Change History
	System Architecture
	1.1 Overview
	1.2 Writing to an Object Stream
	1.3 Reading from an Object Stream
	1.4 Object Streams as Containers
	1.5 Specifying Serializable Persistent Fields and ...
	1.6 Defining Serializable Persistent Fields for a ...
	1.7 Accessing Serializable Fields of a Class
	1.8 The ObjectOutput Interface
	1.9 The ObjectInput Interface
	1.10 The Serializable Interface
	1.11 The Externalizable Interface
	1.12 The Replaceable & Resolvable Interfaces
	1.13 Protecting Sensitive Information

	Object Output Classes
	2.1 The ObjectOutputStream Class
	2.2 The ObjectOutputStream.PutField Class
	2.3 The writeObject Method
	2.4 The writeExternal Method

	Object Input Classes
	3.1 The ObjectInputStream Class
	3.2 The ObjectInputStream.GetField Class
	3.3 The ObjectInputValidation Interface
	3.4 The readObject Method
	3.5 The readExternal Method

	Class Descriptors
	4.1 The ObjectStreamClass Class
	4.2 The ObjectStreamField Class
	4.3 Inspecting Serializable Classes
	4.4 Stream Unique Identifiers

	Versioning of Serializable Objects
	5.1 Overview
	5.2 Goals
	5.3 Assumptions
	5.4 Who’s Responsible for Versioning of Streams
	5.5 Compatible Java Type Evolution

	Object Serialization Stream Protocol
	6.1 Overview
	6.2 Stream Elements

	Security in Object Serialization
	A.1 Overview
	A.2 Design Goals
	A.3 Using transient to Protect Important System Re...
	A.4 Writing Class-Specific Serializing Methods
	A.5 Encrypting a Bytestream

	Exceptions In Object Serialization
	Example of Serializable Fields
	C.1 Example Alternate Implementation of java.lang....

