
Using the PersonalJava emulation environment
Version 3.0

January 6, 1999

January 6, 1999

Copyright © 1998 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA
All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or document may be reproduced in any
form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun Logo, Java and all Java-based marks, are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open
Company, Ltd.

The OPEN LOOK and Sun(TM) Graphical User Interface was developed by Sun Microsystems, Inc. for
its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing
the concept of visual or graphical user interfaces for the computer industry. Sun holds a non -exclusive
license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Govt is subject to restrictions of FAR
52.227-14(g) (2)(6/87) and FAR 52.227 -19(6/87), or DFAR 252.227-7015 (b)(6/95) and DFAR 227.7202
-3(a).

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON -INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

January 6, 1999

Using the PersonalJava emulation environment

Table of Contents
........... 1Using the PersonalJava emulation environment
..................... 1Preface
.................... 1Audience
.................. 1Additional Reading
.................. 1Technical Support
.................... 2Introduction
....... 2PJEE and the PersonalJava Application Environment Specification
................... 2What’s New
.................. 3Software Contents
.................. 5Installing the PJEE
................ 5Microsoft Windows 95/NT
................ 5Hardware Requirements
................ 5Software Requirements
................... 5Installation
.................... 6PATH
.................. 7CLASSPATH
.................. 7Background
............... 8Modifying CLASSPATH
............... 8Native Method Search Path
................. 9Removing the PJEE
.................... 9Solaris
................ 9Hardware Requirements
................ 9Software Requirements
................... 9Installation
.................... 10PATH
.................. 11CLASSPATH
.................. 11Background
............... 12Modifying CLASSPATH
............... 13Native Method Search Path
................. 13Removing the PJEE
................. 14Running Java Programs
................ 14Microsoft Windows 95/NT
.................... 14pjava
................... 15pjavaw
................. 15pappletviewer
.................... 15Solaris
.................... 15pjava
................. 16pappletviewer
.................. 16System Properties
............... 16Standard System Properties
.............. 18PJEE-Specific System Properties
................ 18System Property Example

iJanuary 6, 1999

Using the PersonalJava emulation environmentVersion 3.0

.................. 19Troubleshooting

................ 20Debugging Java Programs

.................... 20Using jdb

................ 21Dumping a Thread Stack

............... 21Generating Diagnostic Output

................ 22Native Method Debugging

................ 22Native Debugger Notes

.............. 22Using the PJES Build Environment

................ 22A gdb -based Example

................. 24Profiling Java Programs

........... 25pjava - The PersonalJava Application Launcher

........... 25pjava - The PersonalJava Application Launcher

................... 25Synopsis

................... 25Description

................... 25Example

.................... 25Options

................ 28Environment Variables

................... 29See Also

........... 30pappletviewer - The PersonalJava Applet Viewer

........... 30pappletviewer - The PersonalJava Applet Viewer

................... 30Synopsis

................... 30Description

.................... 30Options

................... 30See Also

January 6, 1999ii

Version 3.0Using the PersonalJava emulation environment

Preface

This user guide describes how to install and use the PersonalJava emulation environment (PJEE).

Audience
The primary reader is a Java software developer who is responsible for writing or testing Java software for
the PersonalJava application environment (PJAE).

Additional Reading
The following documents provide important related information:

The PersonalJava Product Page provides the latest information about PersonalJava technology.

The PersonalJava Application Environment Specification describes the API relationship between
the PJAE and JDK 1.1.

Using the PersonalJava Compatibility Classes describes the PJCC which allows developers to use
JDK-based tools to compile and execute Java programs that use PersonalJava-specific classes.

Using JavaCheck describes a developer tool for performing static analysis of Java software to
determine whether it is compatible with a specific Java application environment.

The Java Language Specification (Addison-Wesley, 1996) is the standard reference for the Java
programming language.

The Java Virtual Machine Specification (Addison-Wesley, 1996) is the standard reference for the
Java virtual machine.

The JDK 1.1.x API reference documentation describes the API of the Java class library.

Technical Support
For technical comments or questions, please send e-mail to:
personaljava-comments@java.sun.com .

1January 6, 1999

Using the PersonalJava emulation environmentVersion 3.0

http://java.sun.com/products/jdk/1.1/docs/api/packages.html
http://java.sun.com/docs/books/vmspec/index.html
http://java.sun.com/docs/books/jls/index.html
http://java.sun.com/products/personaljava/javacheck.html
http://java.sun.com/products/personaljava/pj-cc.html
http://java.sun.com/products/personaljava/spec-1-1/pJavaSpec.html
http://java.sun.com/products/personaljava

Introduction

The PersonalJava emulation environment (PJEE) is a standalone software test tool. It allows developers to
test their Java software against a desktop-based implementation of the PersonalJava application
environment (PJAE). The PJEE is delivered in binary form as a software application for Microsoft
Windows 95/NT and Solaris.

Note: The PJEE serves a different purpose than the Java Runtime Environment (JRE). The JRE is a
reference implementation of the Java application environment for desktop platforms like Microsoft
Windows 95/NT and Solaris. The PJEE is not a target application environment for running Java software;
it is a developer tool for testing Java software.

This user guide describes how to install and use the PJEE for testing Java software.

PJEE and the PersonalJava Application Environment
Specification
The PersonalJava Application Environment Specification states that different parts of the PJAE API
are optional. For example, since file system support for the PJAE is optional, the part of java.io
related to file I/O is also optional. Therefore, an implementation of the PJAE may omit this part of
java.io and still conform to the PersonalJava Application Environment Specification.

Every optional feature of the PersonalJava Application Environment Specification has been omitted
from the PJEE except for the optional parts of java.io and java.util.zip . In addition, the PJEE
provides support for only a single locale: en_US.

Because it is a software test tool, the PJEE has not been fully optimized for performance. This allows the
PJEE to be used with Java debugging tools like jdb .

What’s New
Here is a list of new features in this version of the PJEE:

This user guide.

Truffle and the Touchable look & feel.

January 6, 19992

Version 3.0Using the PersonalJava emulation environment

http://java.sun.com/products/personaljava/spec-1-1/pJavaSpec.html
http://java.sun.com/products/personaljava/spec-1-1/pJavaSpec.html
http://java.sun.com/products/personaljava/spec-1-1/pJavaSpec.html

Software Contents
The PJEE installation program contains the software necessary to run the PJEE on either Microsoft
Windows 95/NT or Solaris. Note: The PJEE does not include a web browser.

The table below describes the software contents of the PJEE.

Component Description

COPYRIGHT Copyright notice for the PJEE.

LICENSE License agreement for the PJEE.

bin/pjava Optimized version.
The
PersonalJava
application
launcher loads
and executes Java
applications.

bin/pjava_g Debug version.

bin/pjavaw Optimized version.

(Microsoft
Windows 95/NT
only). A special
version of the
PersonalJava
application
launcher that
does not create a
console window.

bin/pjavaw_g Debug version.

bin/pappletviewer Optimized version.
The
PersonalJava
applet viewer
loads HTML
pages that
contain Java
applets.

bin/pappletviewer_g Debug version.

bin/*.dll
(Microsoft Windows 95/NT only). Dynamic link libraries
(DLLs) for the virtual machine and native methods of the
PersonalJava class library.

bin/sparc
(Solaris only). Binary executables for the invocation tools
called by the a front-end shell scripts in bin .

doc/* This user guide.

3January 6, 1999

Using the PersonalJava emulation environmentVersion 3.0

lib/appletviewer.properties
Status message strings and security policy
for sun.applet.AppletViewer . Java property

files for the
PJEE.

See System
Properties for a
description of
Java system
properties that
are available
through the -D
command line
option for
pjava .

lib/awt.properties
Key and modifier name strings used by
java.awt.event.KeyEvent .

lib/content-types.properties

MIME content type description file used
by sun.net.www . Each entry maps a
MIME content type to a native application
that can handle it. Files are associated
with a MIME content type by either the
MIME content type returned by an HTTP
header or their file name extension.

lib/font.properties
Platform-dependent font description file.
See Adding Fonts to the Java Runtime
for more information.

lib/jvm.hprof.txt
Header text for reports generated by the Java heap profiler.
See Profiling Java Programs and pjava .

lib/touchable.palettes
Database containing RGB values for named color palettes for
the Touchable look & feel design.

lib/classes.zip Optimized version. Zip archive
containing the
PersonalJava
class library.lib/classes_g.zip Debug version.

lib/sparc
(Solaris only). Shared libraries for the virtual machine and
native methods of the PersonalJava class library.

January 6, 19994

Version 3.0Using the PersonalJava emulation environment

http://java.sun.com/products/jdk/1.1/docs/guide/intl/fontprop.html
http://java.sun.com/products/jdk/1.1/docs/api/java.awt.event.KeyEvent.html

Installing the PJEE

The PJEE can be installed on either Microsoft Windows 95/NT or Solaris. The PJEE download page
contains the following platform-specific PJEE installation programs:

Platform Installation Program Description

Microsoft Windows
95/NT

pjee3-win32.exe
A self-extracting application for installing the
PJEE.

Solaris 2.5 or greater pjee3-solaris.sh
A self-extracting shell script for installing the
PJEE.

Microsoft Windows 95/NT

Hardware Requirements
Pentium-based PC.

32 MB memory.

20 MB free disk space.

Software Requirements
Microsoft Windows 95
or
Microsoft Windows NT Workstation , version 4.0.

WinSock 2 Library .

System locale based on the ISO 8859-1 (Latin-1) character set.

Installation
The following steps describe how to install the PJEE on a Microsoft Windows 95/NT-based system.

1. (Optional.) Remove any previous versions of the PJEE or JRE. This step helps to avoid software
conflicts with this version of the PJEE.

5January 6, 1999

Using the PersonalJava emulation environmentVersion 3.0

http://www.sockets.com/
http://www.microsoft.com/products/prodref/428_ov.htm
http://www.microsoft.com/windows95/default.asp
http://java.sun.com/products/personaljava/pj-emulation.html

2. Download the PJEE installation program for Microsoft Windows 95/NT from the PJEE
download page.

3. Drag the PJEE installation program’s icon to the target installation directory.

4. Run the PJEE installation program. The PJEE installation program will perform some tests and
present a few dialogs during the installation process. These include a dialog that prompts the user to
agree to a binary license before installing the PJEE and a dialog that selects a destination directory.

5. Select a system locale based on the ISO 8859-1 (Latin-1) character set.

a) Choose Control Panel->Regional setting->Region

b) Select English (United States).

The PJEE can now be used. Additional steps may be necessary to correctly define the PATH and
CLASSPATH environment variables. This is important in cases where a system has another version of a
Java application environment, like the JDK, or additional Java class files that have been installed
separately from the PJEE. In these cases, the PATH and CLASSPATH environment variables may need
modification to avoid conflicts.

PATH

The PATH environment variable defines a list of directories that the DOS shell uses as a search path for
finding executable programs like the PJEE invocation tools (pjava and pappletviewer).

Here’s how to add a directory to the PATH environment variable:

1. Use a text editor to edit C:\autoexec.bat, the DOS shell startup file.

2. Find the PATH environment variable definition. For example,

PATH=C:\windows;C:\tools\bin

3. Add the absolute path of the PJEE-dir\bin directory to the list of directories in the PATH
definition. For example, if the PJEE has been installed in a directory named C:\ PJEE-dir, then
the absolute path of the directory containing the invocation tools is:

C:\ PJEE-dir\bin

The above string would then be inserted into the list of directories in the PATH definition. For
example,

PATH=C:\ PJEE-dir\bin;C:\windows;C:\tools\bin

If the PATH environment variable definition contains more than one directory, a semi-colon (;) is
used as a name separator.

January 6, 19996

Version 3.0Using the PersonalJava emulation environment

http://java.sun.com/products/personaljava/pj-emulation.html
http://java.sun.com/products/personaljava/pj-emulation.html

4. Save the changes to the DOS shell startup file.

5. Quit the text editor.

6. Restart Microsoft Windows 95/NT.

CLASSPATH

Many of the problems users have with getting a Java application to run properly on a specific Java
application environment can be traced to a misdefined CLASSPATH environment variable. In principle,
all that is required is that each of the application’s class and resource files be stored in one of the locations
in the CLASSPATH environment variable. But in practice, the CLASSPATH environment variable can
have many different kinds of name conflicts.

The following two sub-sections provide background material on the CLASSPATH environment variable
and a set of steps for modifying the CLASSPATH environment variable.

Background

Java applications are collections of class and resource files that are built on one system and then installed
on potentially many different target platforms. The file system on a target platform may be very different
than the development platform. For example, target platforms may organize class files in different ways or
they may have multiple Java applications or class libraries. Therefore, Java application environments like
the PJEE use the CLASSPATH environment variable as a flexible mechanism for balancing the needs of
platform-independence and the realities of file systems on different target platforms.

The CLASSPATH environment variable defines a list of locations that the Java virtual machine uses as a
search path for finding class and resource files. A location can be either a directory in a file system or a
Zip archive file that contains class or resource files. Locations in the CLASSPATH environment variable
are delimited by a platform-dependent name separator (e.g. a semi-colon "; " on Microsoft Windows
95/NT). For example,

CLASSPATH=C:\java\MyClasses;\java\MoreClasses.zip

Java packages organize classes into hierarchical namespaces. For example, java.awt.image is a
package that contains a number of image-related classes. When the virtual machine searches the locations
in the CLASSPATH environment variable, it uses each location as a root for performing a search. In the
case of java.awt.image.BufferedImageOp the virtual machine would start with each location in
the CLASSPATH environment variable and then try to find a subdirectory named java\awt\image
that contains a class file named BufferedImageOp.class . This search method is applied to both file
system directories and virtual directories in Zip files.

The CLASSPATH environment variable allows the Java virtual machine to load classes that depend on
other Java classes which are not part of the default platform class library. When the virtual machine
attempts to load a class file it searches through each location in the CLASSPATH environment variable. If
the virtual machine finds a file with the correct file name, it attempts to load it. Otherwise, it generates a
NoClassDefFoundError error.

7January 6, 1999

Using the PersonalJava emulation environmentVersion 3.0

http://java.sun.com/products/jdk/1.1/docs/api/java.lang.NoClassDefFoundError.html

Since the CLASSPATH environment variable is not required by the default PJEE installation, the DOS
shell startup file may not have a definition statement for it. The CLASSPATH environment variable can be
removed if no extra directories are needed beyond the default set described above. By default, the
CLASSPATH definition used internally by pjava is

CLASSPATH=PJEE-dir\lib\classes.zip;.

The -classpath comand line option for pjava overrides the CLASSPATH environment variable
definition.

Modifying CLASSPATH

Here’s how to modify the CLASSPATH environment variable definition:

1. Use a text editor to edit C:\autoexec.bat, the DOS shell startup file.

2. Find the CLASSPATH environment variable definition. For example,

CLASSPATH=C:\java\MyClasses

3. Modify the CLASSPATH definition to add or remove directories. The example directory below
contains class files for a Java application.

C:\java\OtherClasses

The above string would then be inserted into the list of directories in the CLASSPATH definition. For
example,

CLASSPATH=C:\java\MyClasses;C:\java\OtherClasses

If the CLASSPATH environment variable definition contains more than one location, a semi-colon
(;) is used as a name separator.

4. Save the changes to the DOS shell startup file.

5. Quit the text editor.

6. Restart Microsoft Windows 95/NT.

Native Method Search Path

The PJEE installation program manages the task of installing DLLs that contain implementations of native
methods used by the PersonalJava class library.

If additional native method DLLs are needed, then they should either be placed in the PJEE-dir\bin
directory or in one of the directories in the PATH environment variable which is used by the Microsoft
Windows 95/NT runtime as a search path for finding DLLs.

January 6, 19998

Version 3.0Using the PersonalJava emulation environment

Removing the PJEE
The following steps describe how to remove the PJEE from a Microsoft Windows 95/NT system.

1. Run the removal utility. When the PJEE installation program for Microsoft Windows 95/NT installs
the PJEE, it adds a removal utility with the Windows Registry.

a) Open the Control Panel folder by choosing Settings->Control Panel from the
Start menu in the Task Bar

b) Launch the Add/Remove Programs utility.

c) Select the PJEE from the software list.

d) Press the Add/Remove button.

2. Restore the PATH or CLASSPATH environment variables to their original values. If these
environment variables have been modified during the PJEE installation procedure, their original
definitions should be restored.

Solaris

Hardware Requirements
SPARC-based workstation.

32 MB memory.

20 MB free disk space.

Software Requirements
Solaris operating environment, release 2.5 or greater, SPARC version.

System locale based on the ISO 8859-1 (Latin-1) character set.

Installation
The following steps describe how to install the PJEE on a Solaris-based system.

Note: The procedures below describe how to set various environment variables. There are many different
mechanisms for defining environment variables because there are several different UNIX shell programs
(e.g. csh (1), sh (1) and ksh (1)), each with one or more mechanisms for defining environment variables.
The actual method used in the procedures below is based on the setenv command for the csh (1) shell.

9January 6, 1999

Using the PersonalJava emulation environmentVersion 3.0

http://www.sun.com/solaris/

1. (Optional.) Remove any previous versions of the PJEE or JRE. This step helps to avoid software
conflicts with this version of the PJEE.

2. Change the shell’s current directory to the target installation directory.

% cd install-directory

The PJEE installation program will unpack the PJEE software into the shell’s current directory, even
if the PJEE installation program is in a different directory.

3. Download the PJEE installation program for Solaris from the PJEE download page.

4. Run the PJEE installation program.

% ./pjee3-solaris.sh

The PJEE installation program will prompt the user to agree to a binary license before installing the
PJEE.

5. Select a system locale based on the ISO 8859-1 (Latin-1) character set. This is controlled by the
LANG environment variable. For example,

% setenv LANG en_US

The PJEE can now be used. Additional steps may be necessary to correctly define the PATH,
CLASSPATH and LD_LIBRARY_PATH environment variables. This is important in cases where a system
has another version of a Java application environment, like the JDK, or additional Java class files that
have been installed separately from the PJEE. In these cases, the PATH and CLASSPATH environment
variables may need modification to avoid conflicts.

PATH

The PATH environment variable defines a list of directories that the UNIX shell uses as a search path for
finding executable programs like the PJEE invocation tools (pjava and pappletviewer).

Here’s how to add a directory to the PATH environment variable:

1. Use a text editor to edit ~/.cshrc, the csh(1) shell startup file.

2. Find the PATH environment variable definition. For example,

setenv PATH .:/bin:/usr/bin:/usr/sbin

3. Add the absolute path of the PJEE-dir\bin directory to the list of directories in the PATH
definition. For example, if the PJEE has been installed in a directory named /java/ PJEE-dir
then the absolute path of the directory containing the invocation tools is:

January 6, 199910

Version 3.0Using the PersonalJava emulation environment

http://java.sun.com/products/personaljava/pj-emulation.html

/java/ PJEE-dir/bin

The above string would then be inserted into the list of directories in the PATH definition. For
example,

setenv PATH .:/java/ PJEE-dir/bin:/bin:/usr/bin:/usr/sbin

If the PATH environment variable definition contains more than one directory, a colon (:) is used as
a name separator.

4. Save the changes to the shell startup file.

5. Quit the text editor.

6. Restart the shell.

CLASSPATH

Many of the problems users have with getting a Java application to run properly on a specific Java
application environment can be traced to a misdefined CLASSPATH environment variable. In principle,
all that is required is that each of the application’s class and resource files be stored in one of the locations
in the CLASSPATH environment variable. But in practice, the CLASSPATH environment variable can
have many different kinds of name conflicts.

The following two sub-sections provide background material on the CLASSPATH environment variable
and a set of steps for modifying the CLASSPATH environment variable.

Background

Java applications are collections of class and resource files that are built on one system and then installed
on potentially many different target platforms. The file system on a target platform may be very different
than the development platform. For example, target platforms may organize class files in different ways or
they may have multiple Java applications or class libraries. Therefore, Java application environments like
the PJEE use the CLASSPATH environment variable as a flexible mechanism for balancing the needs of
platform-independence and the realities of file systems on different target platforms.

The CLASSPATH environment variable defines a list of locations that the Java virtual machine uses as a
search path for finding class and resource files. A location can be either a directory in a file system or a
Zip archive file that contains class or resource files. Locations in the CLASSPATH environment variable
are delimited by a platform-dependent name separator (e.g. a colon ": " on Solaris). For example,

setenv CLASSPATH /java/MyClasses:/java/MoreClasses.zip

Java packages organize classes into hierarchical namespaces. For example, java.awt.image is a
package that contains a number of image-related classes. When the virtual machine searches the locations
in the CLASSPATH environment variable, it uses each location as a root for performing a search. In the
case of java.awt.image.BufferedImageOp the virtual machine would start with each location in
the CLASSPATH environment variable and then try to find a subdirectory named java/awt/image

11January 6, 1999

Using the PersonalJava emulation environmentVersion 3.0

that contains a class file named BufferedImageOp.class . This search method is applied to both file
system directories and virtual directories in Zip files.

The CLASSPATH environment variable allows the Java virtual machine to load classes that depend on
other Java classes which are not part of the default platform class library. When the virtual machine
attempts to load a class file it searches through each location in the CLASSPATH environment variable. If
the virtual machine finds a file with the correct file name, it attempts to load it. Otherwise, it generates a
NoClassDefFoundError error.

Since the CLASSPATH environment variable is not required by the default PJEE installation, the shell
startup file may not have a definition statement for it. The CLASSPATH environment variable can be
removed if no extra directories are needed beyond the default set described above. By default, the
CLASSPATH definition used internally by pjava is

setenv CLASSPATH= PJEE-dir/lib/classes.zip:.

The -classpath comand line option for pjava overrides the CLASSPATH environment variable
definition.

Modifying CLASSPATH

Here’s how to modify the CLASSPATH environment variable definition:

1. Use a text editor to edit ~/.cshrc, the csh(1) shell startup file.

2. Find the CLASSPATH environment variable definition. For example,

setenv CLASSPATH /java/MyClasses

3. Modify the CLASSPATH definition to add or remove directories. The example directory below
contains class files for a Java application.

/java/OtherClasses

The above string would then be inserted into the list of directories in the CLASSPATH definition. For
example,

setenv CLASSPATH /java/MyClasses:/java/OtherClasses

If the CLASSPATH environment variable definition contains more than one location, a colon (:) is
used as a name separator.

4. Save the changes to the shell startup file.

5. Quit the text editor.

6. Restart the shell.

January 6, 199912

Version 3.0Using the PersonalJava emulation environment

http://java.sun.com/products/jdk/1.1/docs/api/java.lang.NoClassDefFoundError.html

Native Method Search Path

The PJEE installation program manages the task of installing shared libraries that contain implementations
of native methods used by the PersonalJava class library.

If additional native method shared libraries are needed, then they should either be placed in the
PJEE-dir/lib/sparc directory or in one of the directories in the LD_LIBRARY_PATH environment
variable which is used by the Solaris runtime as a search path for finding shared libraries.

Removing the PJEE
The following steps describe how to remove the PJEE from a Solaris system.

1. Remove the PJEE-dir directory and all its contents.

% rm -rf PJEE-dir

2. Restore the PATH or CLASSPATH environment variables to their original values. If these
environment variables have been modified during the PJEE installation procedure, their original
definitions should be restored.

13January 6, 1999

Using the PersonalJava emulation environmentVersion 3.0

Running Java
Programs

Java programs can run on the PJEE on either Microsoft Windows 95/NT or Solaris. Each implementation
has a set of invocation tools for running Java software:

Invocation Tool Description

pjava
pjavaw

Optimized
version. The PersonalJava application launcher loads and excutes

Java applications.pjava_g
pjavaw_g

Debug version.

pappletviewer
Optimized
version. The PersonalJava applet viewer loads HTML pages that

contain Java applets.
pappletviewer_g Debug version.

pjava_g and pappletviewer_g include symbol tables for debugging.

Microsoft Windows 95/NT
The PJEE includes a set of invocation tools for launching Java applications and loading HTML files that
contain Java applets. Running Java software on the PJEE is based on using one of these invocation tools
with command line options that identify the Java software and control various runtime options.

pjava

Here is an example of how to use pjava to launch a Java application and run it on the PJEE:

C:\> pjava HelloWorld

Note: The PJEE-dir\bin directory must be in the PATH environment variable. See PATH for a
description of how to modify the PATH environment variable.

This example loads a class file named HelloWorld.class in the current directory. Note that the
.class suffix is omitted from the command line. The PersonalJava application launcher locates and
executes the main method in the HelloWorld class which then runs the application. If HelloWorld
has a GUI, the PJEE creates a window for displaying it.

January 6, 199914

Version 3.0Using the PersonalJava emulation environment

pjavaw

The pjavaw command is identical to pjava , except that pjavaw does not create a console window for
displaying a standard output stream. Here’s how to launch a Java application with pjavaw :

1. Choose the Run command from the Start menu.

2. Enter the full path name of the pjavaw executable or use the Browse button to find the executable.

3. Enter the file name for the main application class and any other command line arguments.

4. Press the Ok button.

The PJEE will then launch the application. The behaviour is identical to the pjava command with the
exception that it does not create or use a console window.

pappletviewer

pappletviewer is a test program for loading Java applets. It read an HTML file, parses the first
<APPLET> tag while ignoring all other HTML tags, and then loads and executes the corresponding
applet.

Here is an example,

C:\> pappletviewer HelloWorldApplet.html

Note: The PJEE-dir\bin directory must be in the PATH environment variable. See PATH for a
description of how to modify the PATH environment variable.

Solaris
The PJEE includes a set of invocation tools for launching Java applications and loading HTML files that
contain Java applets. Running Java software on the PJEE is based on using one of these invocation tools
with command line options that identify the Java software and control various runtime options.

pjava

Here is an example of how to use pjava to launch a Java application and run it on the PJEE:

% pjava HelloWorld

Note: The PJEE-dir/bin directory must be in the PATH environment variable. See PATH for a
description of how to modify the PATH environment variable.

15January 6, 1999

Using the PersonalJava emulation environmentVersion 3.0

This example loads a class file in the current directory named HelloWorld.class . Note that the
.class suffix is omitted from the command line. The PersonalJava application launcher locates and
executes the main method in the HelloWorld class which then runs the application. If HelloWorld
has a GUI, the PJEE creates a window for displaying it.

pappletviewer

pappletviewer is a test program for loading Java applets. It read an HTML file, parses the first
<APPLET> tag while ignoring all other HTML tags, and then loads and executes the corresponding
applet.

Here is an example,

% pappletviewer HelloWorldApplet.html

Note: The PJEE-dir/bin directory must be in the PATH environment variable. See PATH for a
description of how to modify the PATH environment variable.

System Properties
The PJEE uses two standard mechanisms for specifying system options:

Java system properties contain information about the system and environment in which a Java
program is running. The following sections contain tables that describe standard Java system
properties and PJEE-specific system properties. See System Property Example for an example of
how to use pjava with a command line option that specifies a system property value.

Java property files are text files located in PJEE-dir/lib that control platform-specific features
like fonts and MIME content-type handlers. See Software Contents for a description of these Java
property files.

Java application software can also provide user-level options that are based on Java properties and Java
property files.

Standard System Properties
The table below describes standard Java system properties that are part of the JDK 1.1.x API .

January 6, 199916

Version 3.0Using the PersonalJava emulation environment

http://java.sun.com/products/jdk/1.1/docs/api/packages.html

Property Type Description

file.encoding string
The system locale’s character encoding. See Supported Encodings
in JDK 1.1 Internationalization Overview.

file.encoding.pkg string
The package that contains the classes for converting between the
system locale’s character encoding and Unicode.

file.separator string

Microsoft Windows
95/NT

 \

Solaris /

Platform-dependent name
separator used in path names.

java.class.path string Java class path in platform-dependent form.

java.compiler string Specifies a JIT compiler to use.

java.class.version string Java class file version number.

java.home string PJEE installation directory.

java.vendor string PJEE vendor-specific string.

java.vendor.url string PJEE vendor URL.

java.version string Version number of PJAE specification.

line.separator string

Microsoft
Windows

95/NT
 \r\n

Solaris \n

Platform-dependent line
separator used in text files.

os.arch string Host OS architecture.

os.name string Host OS name.

os.version string Host OS version.

path.separator string

Microsoft Windows
95/NT

 ;

Solaris :

Platform-dependent name
separator used in search paths.

user.dir string User’s current working directory.

user.home string User’s home directory.

user.language string ISO 639 language code of the system locale.

user.name string User’s account name.

user.region string ISO 3166 country code of the system locale.

user.timezone string The POSIX.1 time zone name.

17January 6, 1999

Using the PersonalJava emulation environmentVersion 3.0

http://java.sun.com/products/jdk/1.1/docs/guide/intl/intl.doc.html
http://java.sun.com/products/jdk/1.1/docs/guide/intl/intl.doc.html#25296

PJEE-Specific System Properties
The table below describes PJEE-specific system properties.

Note: These PJEE-specific system properties are for diagnostic purposes only. They should not be used in
production versions of Java programs.

Property Type Default Description

awt.toolkit referencesun.awt.touchable.TouchableToolkit
Use an alternate implementation of the
AWT toolkit.

sun.awt. platform.pixelType string color:8 Set the color model and depth.

sun.awt.aw.DefaultCursor referencesun.awt.aw.Touchable.FingerPrint
Specify the class used for the cursor. A
value of "blank " disables the cursor.

sun.awt.im.InputMethod referencenull
Enable the named input method. A value of
"default " expands to
sun.awt.otk.SampleInputMethod .

sun.awt.im.Japanese boolean false
If true, then use a Japanese Kana keyboard
instead of a QWERTY keyboard.

sun.awt.im.NoVirtualKeyboard boolean false
If true, then specify that a physical
keyboard is present and disable the virtual
keyboard.

sun.awt.otk.noRandomSelectionMode boolean true
If true, then disable text cursor behaviour
when the user makes a selection away from
a text component.

sun.awt.otk.ObjectToolkit referencesun.awt.otk.ObjectToolkit
Use an alternate implementation of the
Truffle Object Toolkit.

sun.awt.otk.textWordSelectionOff boolean false
If true, then disable word selection mode
for mousePressed with text
components.

sun.awt.palette string Orange
Specify the name of the selected palette in
the palette database.

sun.awt.palette.definitions string PJEE-dir/lib/touchable.palettes
Specify the path name of the palette
database.

sun.awt.touchable.doNotDrawFocusRectangle boolean false If true, then disable the focus rectangle.

sun.awt.touchable.paletteClass referencesun.awt.otk.ColorPalette Spcify the name of color palette hashtable.

sun.awt.touchable.sound boolean false If true, then enable sound.

sun.graphicssystem referencesun.awt.aw.GraphicsSystem
Use an alternate implementation of the
Truffle graphics system.

sun.graphicssystem.height integer 480
Set the height of the window containing the
graphics system.

sun.graphicssystem.width integer 640
Set the width of the window containing the
graphics system.

sun.windowsystem referencesun.awt.aw.WindowSystem
Use an alternate implementation of the
Truffle window system.

System Property Example
The pjava command uses the -D command line option to specify the value of a system property. For
example,

% pjava -Dsun.awt.palette=Sand HelloWorld

January 6, 199918

Version 3.0Using the PersonalJava emulation environment

Troubleshooting
Here are some troubleshooting tips for running the PJEE.

The PJEE operates with memory limits that are set at runtime. If an application requests more
memory than the PJEE has available, the PJEE will throw an exception and the application will exit.
The PersonalJava application launcher has command line options for specifying memory limits on
an application and thread basis.

If pappletviewer does not correctly load applets, then try using the pjava command directly:

% pjava -verbose sun.applet.AppletViewer URL

This generates a list of classes the AppletViewer tries to load and where it’s trying to load them from.
Check to make sure that the class files exists and are uncorrupted.

If the PJEE generates one of the following fatal error messages:

Exception in thread NULL
Unable to initialize threads: cannot find class java/lang/Thread

then check the CLASSPATH environment variable. It may contain a directory from an older release
of the PJAE or a different Java application environment.

(Microsoft Windows 95/NT) If the PJEE generates one of the following error messages:

net.socketException: errno = 10047
Unsupported version of Windows Socket API

then check which TCP/IP drivers are installed. Third-party TCP/IP drivers may not work correctly
because the PJEE supports only the Microsoft TCP/IP drivers included with Microsoft Windows
95/NT.

(Microsoft Windows 95/NT) If you cannot close the AppletViewer copyright window because the
launch bar partially covers the copyright notice window’s Accept and Reject buttons, then move the
Task Bar to the side of the desktop to allow access to the copyright window Accept and Reject
buttons.

19January 6, 1999

Using the PersonalJava emulation environmentVersion 3.0

Debugging Java
Programs

The PJEE is a developer tool for testing Java software. This includes running Java software to observe its
behavior and debugging Java software to explore the relationships between the source code’s structure,
the compiled code’s behavior and the PJEE’s capabilities.

Some of the debugging techniques described here can be used to debug Java software on a PersonalJava
device as well as on the PJEE. But for most debugging tasks the PJEE will be more convenient and have
more debugging resources (e.g. symbol tables) than a PersonalJava device.

Note: The debugging support in the PJEE is based on the Java Virtual Machine Debugger Interface
(JVMDI). To support compatibility with the PJEE, third-party developer tools should support this
interface.

The following sections describe the debugging resources available for PersonalJava software development
and introduce their basic usage.

Using jdb
The JDK 1.1.x includes the jdb command-line debugger which can be used to debug Java programs
running on the PJEE. The JDK must be installed on either the same system as the PJEE or on a system
connected over an IP network.

The following steps describe how to use jdb to debug a Java applet running on the PJEE.

1. Run the debug version of the PersonalJava application launcher. Use the pjava_g version with
the -debug option to enable full debugging support.

% pjava_g -ss1024k -debug sun.tools.agent.EmptyApp

Note: The default Java stack size may be too small for debugging purposes. So it may be necessary
to increase the stack size with the -ss num option.

2. Record the session password identifier:

% Agent password: identifier

January 6, 199920

Version 3.0Using the PersonalJava emulation environment

http://java.sun.com/products/jdk/1.1/docs/tooldocs/solaris/jdb.html
http://java.sun.com/products/jdk/1.1/docs/tooldocs/solaris/jdb.html
http://java.sun.com/products/jdk/1.2/docs/guide/jvmdi/jvmdi.html
http://java.sun.com/products/jdk/1.2/docs/guide/jvmdi/jvmdi.html

3. Run jdb with the session password identifier string and an optional remote host address.

% jdb -host pjava_host -password identifier

pjava_host is the host name or IP address of the system running the PJEE. identifier is the session
password identifier displayed by the PersonalJava application launcher in the previous step.

4. Load the AppletViewer class:

> load sun.applet.AppletViewer

5. Set a break point in the applet:

> stop in HelloWorldApplet.paint

6. Run the AppletViewer class with an additional URL argument that indicates an HTML page
that contains the applet:

> run sun.applet.AppletViewer HelloWorldApplet.html

At this point, jdb should be connected to the PJEE for debugging. See jdb for a list of debugging
commands or type help at the jdb command line prompt.

Dumping a Thread Stack
During a jdb session, the currently executing thread stack can be dumped with a platform-specific key
sequence:

Platform Key Sequence

Microsoft Windows 95/NT CONTROL-break

Solaris CONTROL-\

Generating Diagnostic Output
The most basic method for generating useful data from a Java application at runtime is to use the
println method. This technique displays a text stream on the standard output. If the PJAE
implementation is running on a device, then the device must be attached to a development system with a
serial cable so that the standard output stream can be captured with a communications terminal program.

Similarly, the best way to get runtime information about a native method is to use the printf()
function to format data for display on a terminal window or through a serial port.

21January 6, 1999

Using the PersonalJava emulation environmentVersion 3.0

http://java.sun.com/products/jdk/1.1/docs/api/java.io.PrintStream.html#println()
http://java.sun.com/products/jdk/1.1/docs/tooldocs/solaris/jdb.html
http://java.sun.com/products/jdk/1.1/docs/tooldocs/solaris/jdb.html
http://java.sun.com/products/jdk/1.1/docs/tooldocs/solaris/jdb.html
http://java.sun.com/products/jdk/1.1/docs/tooldocs/solaris/jdb.html

Native Method Debugging
Debugging native methods involves using a native debugger to track the execution of native code that is
being called from Java classes. The integration of a native debugger into a PersonalJava development
environment can be complicated by shared library and symbol table issues. The sections that follow give
some hints for using native debugging tools with the PJEE.

Native Debugger Notes
In principle, a source level debugger can be used with the PJEE to debug native methods at runtime. The
following guidelines describe an approach to this task that is not based on a specific native debugger.

Use the debug versions of the invocation tools, e.g. pjava_g .

(Solaris only.) Be sure to use the binary executable files of the invocation tools in bin/sparc and
not one of the front-end scripts.

A native debugger used with the PJEE should be compatible with the symbol tables generated by the
compiler used to build the PJEE. The Solaris version of the PJEE was built with the GNU C Compiler and
the Microsoft Windows 95/NT version was built with Microsoft Visual C++, version 5.0.

Using the PJES Build Environment
The PersonalJava Environment Software (PJES) includes a build environment for building binary
executable versions of the PJAE. The PJEE is an example of a binary executable built with the PJES build
environment.

The PJES build environment has a mechanism for including native libraries in the list of object files that
are linked with the PJAE binary executable. This can be used to include native methods for applications
that will be bundled with an implementation of the PJAE. See the section Adding Object Files in the
PersonalJava Porting Guide for a description of how to include object files in the PJES build
environment.

A gdb-based Example
The PJEE includes versions of the invocation tools that include symbol tables for debugging with native
debuggers like gdb The following procedure outlines the steps involved with using a gdb to debug a
simple Java application with a native method.

1. Define the CLASSPATH and LD_LIBRARY_PATH environment variables.

% setenv CLASSPATH PJEE-dir/pjee/lib/classes_g.zip:.
% setenv LD_LIBRARY_PATH PJEE-dir/pjee/lib/ platform:.

January 6, 199922

Version 3.0Using the PersonalJava emulation environment

2. Launch the gdb debugger.

% gdb PJEE-dir/bin/ platform/pjava_g

Use the binary executable versions of the invocation tools instead of the front-end shell scripts. Using
one of the front-end shell scripts in PJEE-dir/bin will not work because gdb loads an invocation
tool indicated by a file name from a command line argument. Therefore the CLASSPATH and
LD_LIBRARY_PATH environment variables must be defined explicitly, as in the previous step.

3. Set a break point.

(gdb) break HelloWorldImpl.c:Java_HelloWorld_greet

4. Launch the Java application inside the gdb debugger.

(gdb) run HelloWorld

The Java application will then execute until it reaches a break point.

gdb has several other commands that display source code, show a stack trace and continue from a break
point. These are described in Debugging with GDB.

23January 6, 1999

Using the PersonalJava emulation environmentVersion 3.0

ftp://ftp.gnu.ai.mit.edu/pub/gnu

Profiling Java
Programs

Profiling is the measurement of runtime data for a specific application on a specific runtime system. The
PJEE includes profiling support as a command-line option for the pjava application launcher.

Note: The profiling support in the PJEE is based on the Java Virtual Machine Profiler Interface
(JVMPI). To support compatibility with the PJEE, third-party developer tools should support this
interface.

The mechanics for using the profiler in the PJEE are very simple:

1. Select an application for profiling.

2. Choose a set of -Xhprof command line options for the profiler. See the pjava manual page for
a list of command line options for the profiler.

3. Run the application with pjavag and the profiler options. For example,

% pjava_g -Xhprof:monitor=y HelloWorld

4. Examine the data in the profile report file. By default, the profiler generates an ASCII report file
named java.hprof.txt .

January 6, 199924

Version 3.0Using the PersonalJava emulation environment

http://java.sun.com/products/jdk/1.2/docs/guide/jvmpi/jvmpi.html
http://java.sun.com/products/jdk/1.2/docs/guide/jvmpi/jvmpi.html

pjava - The PersonalJava Application Launcher

Synopsis
 pjava [options] class_name [argument ...]
 pjavaw [options] class_name [argument ...]
 pjava_g [options] class_name [argument ...]
 pjavaw_g [options] class_name [argument ...]

Description
The pjava invocation tool launches a Java application on the PJEE. It does this by starting the
PersonalJava virtual machine, loading class_name, and invoking that class’s main method which
must have the following signature:

public static void main(String[])

By default, the first non-option argument is the name of the class to be loaded. A fully-qualified class
name should be used. The PersonalJava virtual machine searches for the startup class, and other
classes used, in three sets of locations: the bootstrap class path, the installed extensions, and the user
class path.

Non-option arguments after the class name are passed to the main function.

pjava_g is a non-optimized version of pjava suitable for use with debuggers like jdb . If a Java
application has native methods that are contained in shared libraries, then the debug version of the
PersonalJava application launcher The naming convention for identifying debug shared libraries is to
append _g to library file name. if the library was libhello. ext, the debug version would be
libhello_g. ext.

(Microsoft Windows 95/NT only). The pjavaw command is identical to pjava, except that pjavaw
does not create a console window for displaying a standard output stream. To launch a Java
application with pjavaw, use the Run command on the Start menu and give it the full path name of
the pjavaw executable along with the main application class and any command line arguments.

Example
% pjava com.yournamehere.HelloWorld

Options
-debug

Allows the Java debugger, jdb , to attach itself to a pjava session. When -debug is specified
on the command line pjava displays a password which must be used when starting the
debugging session.

25January 6, 1999

Using the PersonalJava emulation environmentVersion 3.0

-classpath path
Specifies the search path the virtual machine uses to look up class files. Directories are
separated by colons. Thus the general format for path is:

 .:<your_path>

For example:

 .:/home/xyz/classes:/usr/local/java/classes

This command line option overrides the CLASSPATH environment variable if it is set.

-mxnum
Sets the maximum size of the memory allocation pool (the garbage collected heap) to num. The
default is 16 megabytes of memory. num must be greater than or equal to 1000 bytes. The
maximum memory size must be greater than or equal to the startup memory size (specified with
the -ms option, default 16 megabytes).

By default, num is measured in bytes. The meaning of num can be modified by appending either
the letter "k" for kilobytes or the letter "m" for megabytes.

-msnum
Sets the startup size of the memory allocation pool (the garbage collected heap) to num. The
default is 1 megabyte of memory. num must be > 1000 bytes. The startup memory size must be
less than or equal to the maximum memory size (specified with the -mx option, default 16
megabytes).

By default, num is measured in bytes. The meaning of num can be modified by appending either
the letter "k" for kilobytes or the letter "m" for megabytes.

-noasyncgc
Turns off asynchronous garbage collection. When activated no garbage collection takes place
unless it is explicitly called or the program runs out of memory. Normally garbage collection
runs as an asynchronous thread in parallel with other threads.

-noclassgc
Turns off garbage collection of Java classes. By default, the Java interpreter reclaims space for
unused Java classes during garbage collection.

-Xhprof [:keyword=value]
Enables heap profiling. Optional parameters can be specified with one or more keyword/value
pairs, separated with commas. Valid parameters are:

January 6, 199926

Version 3.0Using the PersonalJava emulation environment

Option Range Default Description

help prints a help message for the profiler

heap dump|sites|all all heap profiling

cpu samples|times|oldoff CPU usage

monitor y|n n monitor contention

format a|b a ASCII or binary output

file <file> java.hprof[.txt] write data to file

net <host>:<port> write to file send data over a socket

cutoff <value> 0.0001 output cutoff point

lineno y|n y line number in traces

thread y|n n thread in traces

doe y|n y dump on exit

-version
Print the build version information.

-help
Print a usage message.

-ssnum
Each Java thread has two stacks: one for Java code and one for C code. The -ss option sets the
maximum stack size that can be used by C code in a thread to num. Every thread that is spawned
during the execution of the program passed to pjava has x as its C stack size. The default units
for num are bytes. The value of num must be greater than or equal to 1000 bytes.

By default, num is measured in bytes. The meaning of num can be modified by appending either
the letter "k" for kilobytes or the letter "m" for megabytes. The default stack size is 128
kilobytes ("-ss128k").

-ossnum
Each Java thread has two stacks: one for Java code and one for C code. The -oss option sets
the maximum stack size that can be used by Java code in a thread to num. Every thread that is
spawned during the execution of the program passed to pjava has num as its Java stack size.
The default units for num are bytes. The value of num must be greater than or equal to 1000
bytes.

By default, num is measured in bytes. The meaning of num can be modified by appending either
the letter "k" for kilobytes or the letter "m" for megabytes. The default stack size is 400
kilobytes ("-oss400k").

27January 6, 1999

Using the PersonalJava emulation environmentVersion 3.0

-t
Prints a trace of the instructions executed (pjava_g and pjavaw_g only).

-v, -verbose
Causes pjava to print a message to stdout each time a class file is loaded.

-verify
Performs bytecode verification on the class file. Beware however, that pjava -verify does not
perform a full verification in all situations. Any code path that is not actually executed by the
interpreter is not verified. Therefore, pjava -verify cannot be relied upon to verify class files
unless all code paths in the class file are actually run.

-verifyremote
Runs the verifier on all code that is loaded into the system via a classloader. verifyremote is the
default for the interpreter.

-noverify
Turns verification off.

-verbosegc
Causes the garbage collector to print out messages whenever it frees memory.

-DpropertyName=newValue
Redefines a property value. propertyName is the name of the property whose value will be
changed to newValue. For example, this command line

 % pjava -Dawt.button.color=green ...

sets the value of the property awt.button.color to "green". pjava accepts any number of -D
options on the command line.

-version
Version number of the PJES used to build the PJEE.

-fullversion
String describing the PJES build parameters.

Environment Variables
CLASSPATH

Provides a search path for finding user-defined classes. Directory names are separated by a
platform-specific path separator character. Here is a Solaris example,

 .:/home/xyz/classes:/java/classes

And here is a Microsoft Windows 95/NT example,

January 6, 199928

Version 3.0Using the PersonalJava emulation environment

 C:\home\xyz\classes;C:\java\classes

LD_LIBRARY_PATH
(Solaris only). Provides a search path for finding shared libraries that contain native method
implementations. Directory names are separated by a platform-specific path separator character.
Here is a Solaris example,

 .:/usr/local/lib

Microsoft Windows NT/95 uses the PATH environment variable as a search path for both binary
executables and dynamic link libraries (DLLs) that contain native method implemenations.

See Also
pappletviewer

Using the PersonalJava emulation environment

29January 6, 1999

Using the PersonalJava emulation environmentVersion 3.0

http://java.sun.com/products/personaljava/pj-emulation.html

pappletviewer - The PersonalJava Applet Viewer

Synopsis
pappletviewer [options] URL ...
pappletviewer_g [options] URL ...

Description
pappletviewer is a test program for loading applets. It reads the input HTML file URL, parses the
first <APPLET> tag while ignoring all other HTML tags, and then loads and executes the
corresponding applet.

Options
-debug

Starts the applet viewer in the Java debugger, jdb , for debugging applets.

-encoding encoding_name
Specify the character encoding to be used for parsing the HTML file. The applet itself will use
the character encoding of the locale of the environment.

See Also
pjava

Using the PersonalJava emulation environment

January 6, 199930

Version 3.0Using the PersonalJava emulation environment

http://java.sun.com/products/personaljava/pj-emulation.html

	Audience
	Additional Reading
	Technical Support
	PJEE and the PersonalJava Application Environment Specification
	What's New
	Software Contents
	Microsoft Windows 95/NT
	Hardware Requirements
	Software Requirements
	Installation
	PATH
	CLASSPATH
	Background
	Modifying CLASSPATH

	Native Method Search Path

	Removing the PJEE

	Solaris
	Hardware Requirements
	Software Requirements
	Installation
	PATH
	CLASSPATH
	Background
	Modifying CLASSPATH

	Native Method Search Path

	Removing the PJEE

	Microsoft Windows 95/NT
	pjava
	pjavaw
	pappletviewer

	Solaris
	pjava
	pappletviewer

	System Properties
	Standard System Properties
	PJEE-Specific System Properties
	System Property Example

	Troubleshooting
	Using jdb
	Dumping a Thread Stack

	Generating Diagnostic Output
	Native Method Debugging
	Native Debugger Notes
	Using the PJES Build Environment
	A gdb-based Example

	pjava - The PersonalJava Application Launcher
	Synopsis
	Description
	Example
	Options
	Environment Variables
	See Also

	pappletviewer - The PersonalJava Applet Viewer
	Synopsis
	Description
	Options
	See Also

