
ANL/MCS-TM-ANL-96/6 Rev D

User’s Guide for mpich,

a Portable Implementation of MPI

Version 1.2.2

by

William Gropp and Ewing Lusk

A

� R

� G

� O

� N

� N

� E

�
N

�
A

� T
	

I

O

�
N� A

L� L� A� B� O� R� A�

T� O�

R�

Y�

U�

N�

I� V� E� R� S� I T! Y" O# F
$

 C
% H

& I
' C

(A

) G

* O

+•

•

MATHEMATICS AND
COMPUTER SCIENCE

DIVISION

Contents

Abstract 1

1 Introduction 2

2 Linking and running programs 3
2.1 Scripts to Compile and Link Applications 3

2.1.1 Using Shared Libraries . 4
2.1.2 Fortran 90 and the MPI module . 6

2.2 Compiling and Linking without the Scripts 6
2.3 Running with mpirun . 6

3 Special features of different systems 7
3.1 MPMD Programs . 7
3.2 Workstation clusters and the ch p4 device 7

3.2.1 Checking your machines list . 8
3.2.2 Using the Secure Shell . 9
3.2.3 Using the Secure Server . 9
3.2.4 SMP Clusters . 9
3.2.5 Heterogeneous networks and the ch p4 device 10
3.2.6 The P4 Procgroup File . 11
3.2.7 Tuning P4 Performance . 12
3.2.8 Using special interconnects . 13
3.2.9 Using Shared Libraries with the ch p4 device 13

3.3 Fast Startup with the Multipurpose Daemon and the ch p4mpd Device . . . 14
3.3.1 Goals . 14
3.3.2 Introduction . 14
3.3.3 Examples . 16
3.3.4 How the Daemons Work . 18
3.3.5 Running MPICH Jobs under MPD 19

3.4 Debugging MPI Programs . 20
3.4.1 The printf Approach. 20
3.4.2 Using a Commercial Debugger. 20
3.4.3 Using mpigdb. 20

3.5 Symmetric Multiprocessors (SMPs) and the ch shmem device 21
3.6 Computational Grids: the globus2 device 22
3.7 MPPs . 22

4 Sample MPI programs 23

5 The MPE library of useful extensions 23
5.1 Logfile Creation . 24
5.2 Logfile Format . 24
5.3 Parallel X Graphics . 24
5.4 Other MPE Routines . 24
5.5 Profiling Libraries . 25

5.5.1 Accumulation of Time Spent in MPI routines 25
5.5.2 Automatic Logging . 26

iii

5.5.3 Customized Logging . 26
5.5.4 Real-Time Animation . 27

5.6 Logfile Viewers . 27
5.6.1 Upshot and Nupshot . 27
5.6.2 Jumpshot-2 and Jumpshot-3 . 27

5.7 Automatic generation of profiling libraries 28
5.8 Tools for Profiling Library Management . 29

6 Debugging MPI programs with built-in tools 31
6.1 Error handlers . 31
6.2 Command-line arguments for mpirun . 31
6.3 MPI arguments for the application program 31
6.4 Debugging with the ch p4 Device . 32

6.4.1 p4 Debugging . 32
6.4.2 Setting the Working Directory for the p4 Device 33

6.5 Command-line arguments for the application program 33
6.6 Starting jobs with a debugger . 33
6.7 Starting the debugger when an error occurs 34
6.8 Attaching a debugger to a running program 34
6.9 Signals . 34
6.10 Related tools . 35

7 Debugging MPI programs with TotalView 35
7.1 Preparing mpich for TotalView debugging 35
7.2 Starting an mpich program under TotalView control 35
7.3 Attaching to a running program . 36
7.4 Debugging with TotalView . 36

8 Other MPI Documentation 36

9 In Case of Trouble 37
9.1 Problems compiling or linking Fortran programs 38

9.1.1 General . 38
9.2 Problems Linking C Programs . 39

9.2.1 General . 39
9.2.2 Sun Solaris . 40
9.2.3 HPUX . 40
9.2.4 LINUX . 40

9.3 Problems starting programs . 41
9.3.1 General . 41
9.3.2 Workstation Networks . 42
9.3.3 IBM RS6000 . 49
9.3.4 IBM SP . 49

9.4 Programs fail at startup . 51
9.4.1 General . 51
9.4.2 Workstation Networks . 51

9.5 Programs fail after starting . 52
9.5.1 General . 52

iv

9.5.2 HPUX . 54
9.5.3 ch shmem device . 54
9.5.4 LINUX . 54
9.5.5 Workstation Networks . 54

9.6 Trouble with Input and Output . 55
9.6.1 General . 55
9.6.2 IBM SP . 55
9.6.3 Workstation Networks . 56

9.7 Upshot and Nupshot . 56
9.7.1 General . 56
9.7.2 HP-UX . 57

A Automatic generation of profiling libraries 58
A.1 Writing wrapper definitions . 58

B Options for mpirun 62

C mpirun and Globus 65
C.1 Using mpirun To Construct An RSL Script For You 66

C.1.1 Using mpirun By Supplying Your Own RSL Script 67

Acknowledgments 68

D Deprecated Features 69
D.1 More detailed control over compiling and linking 69

This User’s Guide corresponds to Version 1.2.2 of mpich.

v

Abstract

MPI (Message-Passing Interface) is a standard specification for message-passing li-
braries. mpich is a portable implementation of the full MPI specification for a wide
variety of parallel and distributed computing environments. This paper describes how
to build and run MPI programs using the mpich implementation of MPI.

This document describes how to use mpich [9], the portable implementation of the MPI
Message-Passing Standard. Details on acquiring and installing the mpich implementation
are presented in a separate Installation Guide for mpich [6]. Version 1.2.2 of mpich is
primarily a bug fix and increased portability release, particularly for LINUX-based clusters.

New and improved in 1.2.2:

† A greatly improved ch_p4mpd device.

† Improved support for assorted Fortran 77 and Fortran 90 compilers, including compile-
time evaluation of Fortran constants used in the mpich implementation.

† An improved globus2 device, providing better performance.

† A new bproc mode for the ch_p4 device supports Scyld Beowulfs.

† Many TCP performance improvements for the ch_p4 and ch_p4mpd devices, as well
as

† Many bug fixes and code improvements. See www.mcs.anl.gov/mpi/mpich/r1 2 2changes.html

for a complete list of changes.

Features that were new in 1.2.1 included:

† Improved support for assorted Fortran and Fortran 90 compilers. In particular, a
single version of mpich can now be built to use several different Fortran compilers;
see the installation manual (in doc/install.ps.gz) for details.

† Using a C compiler for MPI programs that use mpich that is different from the one
that mpich was built with is also easier now; see the installation manual.

† Known problems and bugs with this release are documented in the file
‘mpich/KnownBugs’ .

† There is an FAQ at http://www.mcs.anl.gov/mpi/mpich/faq.html . See this if
you get “permission denied”, “connection reset by peer”, or “poll: protocol failure in
circuit setup” when trying to run mpich.

† There is a paper on jumpshot available at ftp://ftp.mcs.anl.gov/pub/mpi/jumpshot.ps.gz

. A paper on MPD is available at ftp://ftp.mcs.anl.gov/pub/mpd.ps.gz.

1

1 Introduction

Mpich is a freely available implementation of the MPI standard that runs on a wide variety
of systems. The details of the mpich implementation are described in [9]; related papers
include [7] and [8]. This document assumes that mpich has already been installed; if not,
you should first read Installation Guide to mpich, a Portable Implementation of MPI [6].
For concreteness, this document assumes that the mpich implementation is installed into
‘/usr/local/mpich’ and that you have added ‘/usr/local/mpich/bin’ to your path. If
mpich is installed somewhere else, you should make the appropriate changes. If mpich has
been built for several different architectures and/or communiation mechanisms (called de-
vices in mpich), you must choose the directories appropriately; check with whoever installed
mpich at your site.

Major Features of mpich:

† Full MPI 1.2 compliance, including cancel of sends.

† The MPI-2 standard C++ bindings are available for the MPI-1 functions.

† Both Fortran 77 and Fortran 90 bindings, including both ‘mpif.h’ and an MPI module.

† A Windows NT version is available as open source. The installation and use for this
version is different; this manual covers only the Unix version of mpich.

† Supports a wide variety of environments, including clusters of SMPs and massively
parallel computers.

† Follows many (but not yet all) of GNU-recommended build and install targets, in-
cluding VPATH.

† Parts of MPI-2 are also supported:

– Most of MPI-IO is supported through the ROMIO implementation (See
‘romio/README’ for details).

– Support for MPI_INIT_THREAD (but only for MPI_THREAD_SINGLE).

– Miscellaneous new MPI_Info and MPI_Datatype routines.

† Mpich also includes components of a parallel programming environment, including

– Tracing and logfile tools based on the MPI profiling interface, including a scalable
logfile format (SLOG).

– Parallel performance visualization tools (upshot and jumpshot).

– Extensive correctness and performance tests.

This document assumes that mpich has already been built and installed according to
the instructions in the Installation Guide to mpich.

2

2 Linking and running programs

Mpich provides tools that simplify creating MPI executables. Because mpich programs may
require special libraries and compile options, you should use the commands that mpich

provides for compiling and linking programs. However, for special needs, Section 2.2 shows
how to determine what libraries and options are needed when not using the mpich scripts.

2.1 Scripts to Compile and Link Applications

The mpich implementation provides four commands for compiling and linking C (mpicc),
C++ (mpiCC), Fortran 77 (mpif77), and Fortran 90 (mpif90) programs.

In addition, the following special options are supported:

-mpilog Build version that generates MPE log files.

-mpitrace Build version that generates traces.

-mpianim Build version that generates real-time animation.

-show Show the commands that would be used without actually running them.

Use these commands just like the usual C, Fortran 77, C++, or Fortran compilers. For
example,

mpicc -c foo.c

mpif77 -c foo.f

mpiCC -c foo.C

mpif90 -c foo.f

and

mpicc -o foo foo.o

mpif77 -o foo foo.o

mpiCC -o foo foo.o

mpif90 -o foo foo.o

Commands for the linker may include additional libraries. For example, to use routines
from the C math library library, use

mpicc -o foo foo.o -lm

Combining compilation and linking in a single command, as shown here,

mpicc -o foo foo.c

mpif77 -o foo foo.f

mpiCC -o foo foo.C

mpif90 -o foo foo.f

3

may also be used.

Note that while the suffixes .c for C programs and .f for Fortran-77 programs are
standard, there is no consensus for the suffixes for C++ and Fortran-90 programs. The
ones shown here are accepted by many but not all systems. Mpich tries to determine the
accepted suffixes, but may not always be able to.

You can override the choice of compiler by specifying the environment variable MPICH_CC,
MPICH_F77, MPICH_CCC, or MPICH_F90. However, be warned that this will work only if the
alternate compiler is compatible with the default one (by compatible, we mean that is uses
the same sizes for all datatypes and layouts, and generates object code that can be used
with the mpich libraries). If you wish to override the linker, use the environment variables
MPICH_CLINKER, MPICH_F77LINKER, MPICH_CCLINKER, or MPICH_F90LINKER.

2.1.1 Using Shared Libraries

Shared libraries can help reduce the size of an executable. This is particularly valuable on
clusters of workstations, where the executable must normally be copied over a network to
each machine that is to execute the parallel program. However, there are some practical
problems in using shared libraries; this section discusses some of them and how to solve
most of those problems. Currently, shared libraries are not supported from C++.

In order to build shared libraries for mpich, you must have configured and built mpich

with the --enable-sharedlib option. Because each Unix system and in fact each com-
piler uses a different and often incompatible set of options for creating shared objects and
libraries, mpich may not be able to determine the correct options. Currently, mpich un-
derstands Solaris, GNU gcc (on most platforms, including LINUX and Solaris), and IRIX.
Information on building shared libraries on other platforms should be sent to
mpi-bugs@mcs.anl.gov.

Once the shared libraries are built, you must tell the mpich compilation and linking
commands to use shared libraries (the reason that shared libraries are not the default will
become clear below). You can do this either with the command line option -shlib or by
setting the environment variable MPICH_USE_SHLIB to yes. For example,

mpicc -o cpi -shlib cpi.c

or

setenv MPICH_USE_SHLIB yes

mpicc -o cpi cpi.c

Using the environment variable MPICH_USE_SHLIB allows you to control whether shared
libraries are used without changing the compilation commands; this can be very useful for
projects that use makefiles.

Running a program built with shared libraries can be tricky. Some (most?) systems do
not remember where the shared library was found when the executable was linked! Instead,
they depend on finding the shared library in either a default location (such as ‘/lib’) or in a

4

directory specified by an environment variable such as LD_LIBRARY_PATH or by a command
line argument such as -R or -rpath (more on this below). The mpich configure tests for this
and will report whether an executable built with shared libraries remembers the location
of the libraries. It also attemps to use a compiler command line argument to force the
executable to remember the location of the shared library.

If you need to set an environment variable to indicate where the mpich shared libraries
are, you need to ensure that both the process that you run mpirun from and any processes
that mpirun starts gets the enviroment variable. The easiest way to do this is to set the
environment variable within your ‘.cshrc’ (for csh or tcsh users) or ‘.profile’ (for sh and
ksh users) file.

However, setting the environment variable within your startup scripts can cause prob-
lems if you use several different systems. For example, you may have a single ‘.cshrc’ file
that you use with both an SGI (IRIX) and Solaris system. You do not want to set the
LD_LIBRARY_PATH to point the SGI at the Solaris version of the mpich shared libraries1.
Instead, you would like to set the environment variable before running mpirun:

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/usr/local/mpich/lib/shared

mpirun -np 4 cpi

Unfortunately, this won’t always work. Depending on the method that mpirun and mpich

use to start the processes, the environment variable may not be sent to the new process.
This will cause the program to fail with a message like

ld.so.1: /home/me/cpi: fatal: libpmpich.so.1.0: open failed: No such

file or directory

Killed

There are various solutions to this problem; each of them depends on the particular
mpich device (e.g., ch_p4) that you are using, and those solutions are discussed in the
appropriate section within Section 3.

An alternative to using LD_LIBRARY_PATH and the secure server is to add an option to the
link command that provides the path to use in searching for shared libraries. Unfortunately,
the option that you would like is “append this directory to the search path” (such as you get
with -L). Instead, many compilers provide only “replace the search path with this path.”2

For example, some compilers allow -Rpath:path:...:path to specify a replacement path.
Thus, if both mpich and the user provide library search paths with -R, one of the search
paths will be lost. Eventually, mpicc and friends can check for -R options and create a
unified version, but they currently do not do this. You can, however, provide a complete
search path yourself if your compiler supports an option such as -R.

The preceeding may sound like a lot of effort to go to, and in some ways it is. For large
clusters, however, the effort will be worth it: programs will start faster and more reliably,
because there is less network and file system traffic.

1You can make ‘.cshrc’ check for the kind of system that you are running on and pick the paths
appropriately. This isn’t as flexible as the approach of setting the environment variable from the running
shell.

2Even though the linker may provide the “append to search path” form.

5

2.1.2 Fortran 90 and the MPI module

When mpich was configured, the installation process normally looks for a Fortran 90 com-
piler, and if it finds one, builds two different versions of an MPI module. One module
includes only the MPI routines that do not take “choice” arguments; the other includes all
MPI routines. A choice argument is an argument that can take any datatype; typically,
these are the buffers in MPI communication routines such as MPI_Send and MPI_Recv.
The two different modules can be accessed with the -nochoice and -choice option to
mpif90 respectively. The choice version of the module supports a limited set of datatypes
(numeric scalars and numeric one- and two-dimensional arrays). This is an experimental
feature; please send mail to mpi-bugs@mcs.anl.gov if you have any trouble. Neither of
these modules offer full “extended Fortran support” as defined in the MPI-2 standard.

2.2 Compiling and Linking without the Scripts

In some cases, it is not possible to use the scripts supplied by mpich for compiling and
linking programs. For example, another tool may have its own compilation scripts. In this
case, you can use -compile info and -link info to have the mpich compilation scripts
indicate the compiler flags and linking libraries that are required for correct operation of
the mpich routines. For example, when using the ch_shmem device on Solaris systems, the
library thread (-lthread) must be linked with the application. If the thread library is not
provided, the application will still link, but essential routines will be replaced with dummy
versions contained within the Solaris C library, causing the application to fail.

For example, to determine the flags used to compile and link C programs, you can use
these commands, whose output for the ch_p4 device on a Linux workstation is shown.

% mpicc -compile_info

cc -DUSE_STDARG -DHAVE_STDLIB_H=1 -DHAVE_STRING_H=1 -DHAVE_UNISTD_H=1

-DHAVE_STDARG_H=1 -DUSE_STDARG=1 -DMALLOC_RET_VOID=1

-I/usr/local/mpich/include -c

% mpicc -link_info

cc -DUSE_STDARG -DHAVE_STDLIB_H=1 -DHAVE_STRING_H=1 -DHAVE_UNISTD_H=1

-DHAVE_STDARG_H=1 -DUSE_STDARG=1 -DMALLOC_RET_VOID=1

-L/usr/local/mpich/lib -lmpich

2.3 Running with mpirun

To run an MPI program, use the mpirun command, which is located in
‘/usr/local/mpich/bin’. For almost all systems, you can use the command

mpirun -np 4 a.out

to run the program ‘a.out’ on four processors. The command mpirun -help gives you a
complete list of options, which may also be found in Appendix B.

6

On exit, mpirun returns the status of one of the processes, usually the process with rank
zero in MPI_COMM_WORLD.

3 Special features of different systems

MPI makes it relatively easy to write portable parallel programs. However, one thing that
MPI does not standardize is the environment within which the parallel program is run-
ning. There are three basic types of parallel environments: parallel computers, clusters of
workstations, and integrated distributed environments, which we will call “computational
grids,” that include parallel computers and workstations and that may span multiple sites.
Naturally, a parallel computer (usually) provides an integrated, relatively easy way of run-
ning parallel programs. Clusters of workstations and grid environments, on the other hand,
usually have no standard way of running a parallel program and will require some addi-
tional setup. The mpich implementation is designed to hide these differences behind the
mpirun script; however, if you need special features or options or if you are having problems
running your programs, you will need to understand the differences between these systems.
In the following, we describe the special features that apply for workstation clusters, grids
(as supported by the globus2 device), and certain parallel computers.

When coupling multiple multicomputers, the globus2 device, described in Section 3.6,
may be a better choice than the ch_p4 device.

3.1 MPMD Programs

It is possible to run a parallel program with different executables with several of the device
including the ch_p4, ch_mpl, and globus2 devices. This style of parallel programming is
often called MPMD for “multiple program multiple data”. In many cases, it is easy to
convert a MPMD program into a single program that uses the rank of the process to invoke
a different routine; doing so makes it easier to start parallel programs and often to debug
them. If converting a MPMD program to a SPMD (single program multiple data, not to be
confused with single instruction multiple data, or SIMD) is not feasible, then you can run
MPMD programs using mpich. However, you will not be able to use mpirun to start the
programs; instead, you will need to follow the instructions for each device. For the globus2

device, see Section 3.6. For the ch_p4 device, see Section 3.2.6 and look for a discussion of
procgroup files. For the ch_mpl device, you will need to check the POE documentation for
your site for details on running MPMD programs.

3.2 Workstation clusters and the ch p4 device

Most massively parallel processors (MPPs) provide a way to start a program on a requested
number of processors; mpirun makes use of the appropriate command whenever possible.
In contrast, workstation clusters require that each process in a parallel job be started
individually, though programs to help start these processes exist (see Section 3.2.3 below).
Because workstation clusters are not already organized as an MPP, additional information
is required to make use of them. Mpich should be installed with a list of participating

7

workstations in the file ‘machines.<arch>’ in the directory ‘/usr/local/mpich/share’.
This file is used by mpirun to choose processors to run on (using heterogeneous clusters
is discussed in Section 3.2.6). The rest of this section discusses some of the details of this
process, and how you can check for problems.

3.2.1 Checking your machines list

Use the script ‘tstmachines’ in ‘/usr/local/mpich/sbin’ to ensure that you can use all
of the machines that you have listed. This script performs an rsh and a short directory
listing; this tests that you both have access to the node and that a program in the current
directory is visible on the remote node. If there are any problems, they will be listed. These
problems must be fixed before proceeding.

The only argument to tstmachines is the name of the architecture; this is the same
name as the extension on the machines file. For example,

/usr/local/mpich/sbin/tstmachines sun4

tests that a program in the current directory can be executed by all of the machines in the
sun4 machines list. This program is silent if all is well; if you want to see what it is doing,
use the -v (for verbose) argument:

/usr/local/mpich/sbin/tstmachines -v sun4

The output from this command might look like

Trying true on host1.uoffoo.edu ...

Trying true on host2.uoffoo.edu ...

Trying ls on host1.uoffoo.edu ...

Trying ls on host2.uoffoo.edu ...

Trying user program on host1.uoffoo.edu ...

Trying user program on host2.uoffoo.edu ...

If tstmachines finds a problem, it will suggest possible reasons and solutions. In brief,
there are three tests:

1. Can processes be started on remote machines? tstmachines attempts to run the
shell command true on each machine in the ‘machines’ files by using the remote shell
command. Note that the ch_p4 devices does not require a remote shell command and
can use alternative methods (see Section 3.2.3 and 3.2.2).

2. Is current working directory available to all machines? This attempts to ls a file
that tstmachines creates by running ls using the remote shell command. Note that
ch_p4 does not require that all processors have access to the same file system (see
Section 3.2.6), but the mpirun command does require this.

3. Can user programs be run on remote systems? This checks that shared libraries and
other components have been properly installed on all machines.

8

3.2.2 Using the Secure Shell

The Installation Guide explains how to set up your environment so that the ch p4 device
on networks will use the secure shell ssh instead of rsh. This is useful on networks where
for security reasons the use of rsh is discouraged or disallowed.

3.2.3 Using the Secure Server

Because each workstation in a cluster (usually) requires that a new user log into it, and
because this process can be very time-consuming, mpich provides a program that may be
used to speed this process. This is the secure server, and is located in ‘serv_p4’ in the
directory ‘/usr/local/mpich/bin’. The script ‘chp4_servs’ in the same directory may
be used to start ‘serv_p4’ on those workstations that you can rsh programs on. You can
also start the server by hand and allow it to run in the background; this is appropriate on
machines that do not accept rsh connections but on which you have accounts.

Before you start this server, check to see if the secure server has been installed for general
use; if so, the same server can be used by everyone. In this mode, root access is required to
install the server. If the server has not been installed, then you can install it for your own
use without needing any special privileges with

chp4_servs -port=1234

This starts the secure server on all of the machines listed in the file
‘/usr/local/mpich/share/machines.<arch>’.

The port number, provided with the option -port=, must be different from any other
port in use on the workstations.

To make use of the secure server for the ch_p4 device, add the following definitions to
your environment:

setenv MPI_USEP4SSPORT yes

setenv MPI_P4SSPORT 1234

The value of MPI_P4SSPORT must be the port with which you started the secure server.
When these environment variables are set, mpirun attempts to use the secure server to
start programs that use the ch_p4 device. (The command line argument -p4ssport to
mpirun may be used instead of these environment variables; mpirun -help will give you
more information.)

3.2.4 SMP Clusters

When using a cluster of symmetric multiprocessors (SMPs) (with the
ch_p4 device configured with -comm=shared), you can control the number of processes
that communicate with shared memory on each SMP node. First, you need to modify the
machines file (see Section 3.2) to indicate the number of processes that should be started on

9

each host. Normally this number should be no greater than the number of processors; on
SMPs with large numbers of processors, the number should be one less than the number of
processors in order to leave one processor for the operating system. The format is simple:
each line of the machines file specifies a hostname, optionally followed by a colon (:) and
the number of processes to allow. For example, the file containing the lines

mercury

venus

earth

mars:2

jupiter:15

specifies three single processor machines (mercury, venus, and earth), a 2 processor ma-
chine (mars), and a 15 processor machine (jupiter).

By default, mpirun will use at most the number of processors specified in the ma-
chines list for each node, upto 16 processes on each machine. By setting the environ-
ment variable MPI_MAX_CLUSTER_SIZE to a positive integer value, mpirun will use upto
that many processes, sharing memory for communication, on a host. For example, if
MPI_MAX_CLUSTER_SIZE had the value 4, then mpirun -np 9 with the above machine file
create one process on each of mercury, venus, and earth, 2 on mars (2 because the ma-
chines file specifies that mars may have 2 processes sharing memory) and 4 on jupiter

(because jupiter may have 15 processes and only 4 more are needed). If 10 processes
were needed, mpirun would start over from the beginning of the machines file, creating an
additional process on mercury; the value of MPI_MAX_CLUSTER_SIZE prevents mpirun from
starting a fifth process sharing memory on jupiter.

3.2.5 Heterogeneous networks and the ch p4 device

A heterogeneous network of workstations is one in which the machines connected by the
network have different architectures and/or operating systems. For example, a network
may contain 3 Sun SPARC (sun4) workstations and 3 SGI IRIX workstations, all of which
communicate via the TCP/IP protocol. The mpirun command may be told to use all of
these by using multiple -arch and -np arguments. For example, to run a program on 3
sun4s and 2 SGI IRIX workstations, use

mpirun -arch sun4 -np 3 -arch IRIX -np 2 program.%a

The special program name program.%a allows you to specify the different executables
for the program, since a Sun executable won’t run on an SGI workstation and vice versa.
The %a is replaced with the architecture name; in this example, program.sun4 runs on the
Suns and program.IRIX runs on the SGI IRIX workstations. You can also put the programs
into different directories; for example,

mpirun -arch sun4 -np 3 -arch IRIX -np 2 /tmp/%a/program

It is important to specify the architecture with -arch before specifying the number of
processors. Also, the first arch command must refer to the processor on which the job will

10

be started. Specifically, if -nolocal is not specified, then the first -arch must refer to the
processor from which mpirun is running.

3.2.6 The P4 Procgroup File

For even more control over how jobs get started, we need to look at how mpirun starts a
parallel program on a workstation cluster. Each time mpirun runs, it constructs and uses
a new file of machine names for just that run, using the machines file as input. (The new
file is called PIyyyy, where yyyy is the process identifier.) If you specify -keep_pg on your
mpirun invocation, you can use this information to see where mpirun ran your last few jobs.
You can construct this file yourself and specify it as an argument to mpirun. To do this for
ch_p4, use

mpirun -p4pg pgfile myprog

where pfile is the name of the file. The file format is defined below.

This is necessary when you want closer control over the hosts you run on, or when
mpirun cannot construct it automatically. Such is the case when

† You want to run different executables on different hosts (your program is not SPMD).

† You want to run on a network of shared-memory multiprocessors and need to specify
the number of processes that will share memory on each machine.

The format of a ch_p4 procgroup file is a set of lines of the form

<hostname> <#procs> <progname> [<login>]

An example of such a file, where the command is being issued from host sun1, might be

sun1 0 /users/jones/myprog

sun2 1 /users/jones/myprog

sun3 1 /users/jones/myprog

hp1 1 /home/mbj/myprog mbj

The above file specifies four processes, one on each of three suns and one on another work-
station where the user’s account name is different. Note the 0 in the first line. It is there
to indicate that no other processes are to be started on host sun1 than the one started by
the user by his command.

You might want to run all the processes on your own machine, as a test. You can do
this by repeating its name in the file:

sun1 0 /users/jones/myprog

sun1 1 /users/jones/myprog

sun1 1 /users/jones/myprog

11

This will run three processes on sun1, communicating via sockets.

To run on a shared-memory multiprocessor, with 10 processes, you would use a file like:

sgimp 9 /u/me/prog

Note that this is for 10 processes, one of them started by the user directly, and the other nine
specified in this file. This requires that mpich was configured with the option -comm=shared;
see the installation manual for more information.

If you are logged into host gyrfalcon and want to start a job with one process on
gyrfalcon and three processes on alaska, where the alaska processes communicate through
shared memory, you would use

local 0 /home/jbg/main

alaska 3 /afs/u/graphics

It is not possible to provide different command line argument to different MPI processes.

3.2.7 Tuning P4 Performance

There are several enviroment variables and command line options that can be used to tune
the performance of the ch_p4 device. Note that these environment variables must be defined
for all processes that are created, not just the process that you are launching MPI programs
from (i.e., setting these variables should be part of your ‘.login’ or ‘.cshrc’ startup files).
The environment variables are:

P4 SOCKBUFSIZE. Specifies the socket buffer size in bytes. Increasing this value can improve
performance on some system.

P4 WINSHIFT. This is another socket parameter that is supported on only a few platforms.
We recommend leaving it alone.

P4 GLOBMEMSIZE. This is the amount of memory in bytes reserved for communication with
shared memory (when mpich is configured with -comm=shared). Increase this if you
get error messages about p4_shmalloc returning NULL.

TCP Tuning. The command line option -p4sctrl takes a parameter that specifies var-
ious socket options. These are in the form of name=value, separated by colons. With the
exception of bufsize, users should normally not change the defaults for these. The names
and their meanings are

bufsize Socket buffer size, in 1K (1024) bytes. E.g., bufsize=32 requests 32K byte socket
buffers. The default is 16.

winsize Winshift size. Available only on systems that define TCP_WINSHFT and is ignored
otherwise.

12

netsendw Use select to wait for write to proceed. Values are y (default) or n.

netreadw Use select to wait for read to proceed. Values are y (default) or n.

writev Use writev to send the header (MPI envelope) and data in a single message. Values
are y (default) or n.

readb Switch a socket to blocking mode while wait to read instead of busy-waiting or using
select. Values are y or n (default).

stat Print out statistics on write and read operations. Useful only for experts!

For example, to use 64K socket buffers and turn off the use of writev, you could use

mpirun -np 2 mpptest -p4sctrl bufsize=64:writev=n

3.2.8 Using special interconnects

In some installations, certain hosts can be connected in multiple ways. For example, the
“normal” Ethernet may be supplemented by a high-speed FDDI ring. Usually, alternate
host names are used to identify the high-speed connection. All you need to do is put these
alternate names in your ‘machines.xxxx’ file. In this case, it is important not to use the
form local 0 but to use the name of the local host. For example, if hosts host1 and
host2 have ATM connected to host1-atm and host2-atm respectively, the correct ch_p4

procgroup file to connect them (running the program ‘/home/me/a.out’) is

host1-atm 0 /home/me/a.out

host2-atm 1 /home/me/a.out

3.2.9 Using Shared Libraries with the ch p4 device

As described at the end of Section 2.1.1, it is sometime necessary to ensure that environment
variables have been communicated to the remote machines before the program that makes
use of shared libraries starts. The various remote shell commands (e.g., rsh and ssh) do not
do this. Fortunately, the secure server (Section 3.2.3) does communicate the environment
variables. This server is built and installed as part of the ch_p4 device, and can be installed
on all machines in the machines file for the current architecture (assuming that there is a
working remote shell command) with

chp4_servs -port=1234

The secure server propagates all environment variables to the remote process, and ensures
that the environment in which that process (containing your MPI program) contains all
environment variables that start with LD_ (just in case the system uses LD_SEARCH_PATH or
some other name for finding shared libraries).

13

3.3 Fast Startup with the Multipurpose Daemon and the ch p4mpd Device

This device is experimental, and its version of mpirun is a little different from that for the
other devices. In this section we describe how the mpd system of daemons works and how
to run MPI programs using it. To use this system, mpich must have been configured with
the ch p4mpd device, and the daemons must have been started on the machines where you
will be running. This section describes how to do these things.

3.3.1 Goals

The goal of the multipurpose daemon (mpd and the associated ch p4mpd device) is to make
mpirun behave like a single program even as it starts multiple processes to execute an MPI
job. We will refer to the mpirun process and the MPI processes. Such behavior includes

† fast, scalable startup of MPI (and even non-MPI) processes. For those accustomed to
using the ch p4 device on TCP networks, this will be the most immediately noticeable
change. Job startup is now much faster.

† collection of stdout and stderr from the MPI processes to the stdout and stderr

of the mpirun process.

† delivery of mpirun’s stdin to the stdin of MPI process 0.

† delivery of signals from the mpirun process to the MPI processes. This means that it
is easy to kill, suspend, and resume your parallel job just as if it were a single process,
with cntl-C, cntl-Z, and bg and fg commands.

† delivery of command-line arguments to all MPI processes.

† copying of the PATH environment from the environment in which mpirun is executed
to the environments in which the MPI processes are executed.

† use of an optional argument to provide other environment variables.

† use of a further optional argument to specify where the MPI processes will run (see
below).

3.3.2 Introduction

The ch p4 device relies by default on rsh for process startup on remote machines. The need
for authentication at job startup time, combined with the sequential process by which con-
tact information is collected from each remote machine and broadcast back to all machines,
makes job startup unscalably slow, especially for large numbers of processes.

With version 1.2.0 of mpich, we introduced a new method of process startup based on
daemons. This mechanism, which requires configuration with a new device, has not yet been
widely enough tested to become the default for clusters, but we anticipate that it eventually
will become so. In the current version of mpich, it has been significantly enhanced, and

14

will now be installed when mpich is installed with make install. On systems with gdb, it
supports a simple parallel debugger we call mpigdb.

The basic idea is to establish, ahead of job-startup time, a network of daemons on the
machines where MPI processes will run, and also on the machine on which mpirun will be
executed. Then job startup commands (and other commands) will contact the local daemon
and use the pre-existing daemons to start processes. Much of the initial synchronization
done by the ch p4 device is eliminated, since the daemons can be used at run time to aid
in establishing communication between processes.

To use the new startup mechanism, you must

† configure with the new device:

configure --with-device=ch_p4mpd

† make as usual:

make

† go to the ‘mpich/mpid/mpd’ directory, where the daemons code is located and the
daemons are built, or else put this directory in your PATH.

† start the daemons:

The daemons can be started by hand on the remote machines using the port numbers
advertised by the daemons as they come up:

– On fire:

fire% mpd &

[2] 23792

[fire_55681]: MPD starting

fire%

– On soot:

soot% mpd -h fire -p 55681 &

[1] 6629

[soot_35836]: MPD starting

soot%

The mpd’s are identified by a host and port number.

If the daemons do not advertise themselves, one can find the host and port by using
the mpdtrace command:

– On fire:

fire% mpd &

fire% mpdtrace

mpdtrace: fire_55681: lhs=fire_55681 rhs=fire_55681 rhs2=fire_55681

fire%

– On soot:

15

soot% mpd -h fire -p 55681 &

soot% mpdtrace

mpdtrace: fire_55681: lhs=soot_33239 rhs=soot_33239 rhs2=fire_55681

mpdtrace: soot_33239: lhs=fire_55681 rhs=fire_55681 rhs2=soot_33239

soot%

What mpidtrace is showing is the ring of mpd’s, by hostname and port that
can be used to introduce another mpd into the ring. The left and right neighbor
of each mpd in the ring is shown as lhs and rhs respectively. rhs2 shows the
daemon two steps away to the right (which in this case is the daemon itself).

You can also use mpd -b to start the daemons as real daemons, disconnected
from any terminal. This has advantages and disadvantages.

There is also a pair of scripts in the ‘mpich/mpid/mpd’ directory that can help:

localmpds <number>

will start <number> mpds on the local machine. This is only really useful for testing.
Usually you would do

mpd &

to start one mpd on the local machine. Then other mpd’s can be started on remote
machines via rsh, if that is available:

remotempds <hostfile>

where <hostfile> contains the names of the other machines to start the mpd’s on.
It is a simple list of hostnames only, unlike the format of the MACHINES files used by
the ch p4 device, which can contain comments and other symbols.

See also the startdaemons script, which will be installed when mpich is installed.

† Finally, start jobs with the mpirun command as usual:

mpirun -np 4 a.out

You can kill the daemons with the mpichstop command.

3.3.3 Examples

Here are a few examples of usage of the mpirun that is built when the mpich is configured
and built with the ch p4mpd device.

† Run the cpi example

mpirun -np 16 cpi

† You can get line labels on stdout and stderr from your program by including the
-l option. Output lines will be labeled by process rank.

16

† Run the fpi program, which prompts for a number of intervals to use.

mpirun -np 32 fpi

The streams stdin, stdout, and stderr will be mapped back to your mpirun process,
even if the MPI process with rank 0 is executed on a remote machine.

† Use arguments and environment variables.

mpirun -np 32 myprog arg1 arg2 -MPDENV- MPE_LOG_FORMAT=SLOG \

GLOBMEMSIZE=16000000

The argument -MPDENV- is a fence. All arguments after it are handled by mpirun

rather than the application program.

† Specify where the first process is to run. By default, MPI processes are spawned by
by consecutive mpd’s in the rung, starting with the one after the local one (the one
running on the same machine as the mpirun process. Thus if you are logged into dion

and there are mpd’s running dion and on belmont1, belmont2, . . . , belmont64, and
you type

mpirun -np 32 cpi

your processes will run on belmont1, belmont2, . . . , belmont32. You can force your
MPI processes to start elsewhere by giving mpirun optional location arguments. If
you type

mpirun -np 32 cpi -MPDLOC- belmont33 belmont34 ... belmont64

then your job will run on belmont33, belmont34, . . . , belmont64. In general, pro-
cesses will only be run on machines in the list of machines after -MPDLOC-.

This provides an extremely preliminary and crude way for mpirun to choose locations
for MPI processes. In the long run we intend to use the mpd project as an envi-
ronment for exploring the interfaces among job schedules, process managers, parallel
application programs (particularly in the dynamic environment of MPI-2), and user
commands.

† Find out what hosts your mpd’s are running on:

mpirun -np 32 hostname | sort | uniq

This will run 32 instances of hostname assuming ‘/bin’ is in your path, regardless of
how many mpd’s there are. The other processes will be wrapped around the ring of
mpd’s.

17

3.3.4 How the Daemons Work

Once the daemons are started they are connected in a ring: A “console” process (mpirun,
mpdtrace, mpdallexit, etc.) can connect to any mpd, which it does by using a Unix
named socket set up in ‘/tmp’ by the local mpd. If it is an mpirun process, it requests that
a number of processes be started, starting at the machine given by -MPDLOC- as described
above. The location defaults to the mpd next in the ring after the one contacted by the
console. Then the following events take place.

† The mpd’s fork that number of manager processes (the executable is called mpdman and
is located in the ‘mpich/mpid/mpd’ directory). The managers are forked consecutively
by the mpd’s around the ring, wrapping around if necessary.

† The managers form themselves into a ring, and fork the application processes, called
clients.

† The console disconnects from the mpd and reconnects to the first manager. stdin

from mpirun is delivered to the client of manager 0.

† The managers intercept standard I/O fro the clients, and deliver command-line ar-
guments and the environment variables that were specified on the mpirun command.
The sockets carrying stdout and sdterr form a tree with manager 0 at the root.

At this point the situation looks something like Figure 1. When the clients need to contact
each other, they use the managers to find the appropriate process on the destination host.
The mpirun process can be suspended, in which case it and the clients are suspended, but
the mpd’s and managers remain executing, so that they can unsuspend the clients when
mpirun is unsuspended. Killing the mpirun process kills the clients and managers.

The same ring of mpd’s can be used to run multiple jobs from multiple consoles at the
same time. Under ordinary circumstances, there still needs to be a separate ring of mpd’s
for each user. For security purposes, each user needs to have a ‘.mpdpasswd’ file in the
user’s home directory, readable only by the user, containing a password. This file is read
when the mpd is started. Only mpd’s that know this password can enter a ring of existing
mpd’s.

A new feature is the ability to configure the mpd system so that the daemons can be
run as root. To do this, after configuring mpich you need to reconfigure in the ‘mpid/mpd’

18

Figure 1: Mpds with console, managers, and clients

directory with --enable-root and remake. Then mpirun should be installed as a setuid

program. Multiple users can use the same set of mpd’s, which are run as root, although
their mpirun, managers, and clients will be run as the user who invoked mpirun.

3.3.5 Running MPICH Jobs under MPD

Because the MPD daemons are already in communication with one another before the job
starts, job startup is much faster than with the ch_p4 device. The mpirun command for
the ch_p4mpd device has a number of special command-line arguments. If you type mpirun

with no arguments, they are displayed:

% mpirun

Usage: mpirun <args> executable <args_to_executable>

Arguments are:

-np num_processes_to_run (required as first two args)

[-s] (close stdin; can run in bkgd w/o tty input problems)

[-g group_size] (start group_size processes per mpd)

[-m machine_file] (filename for allowed machines)

[-l] (line labels; unique id for each process’ output

[-1] (do NOT start first process locally)

[-y] (run as Myrinet job)

The -1 option allows you, for example, to run mpirun on a “login” or “development” node
on your cluster but to start all the application processes on “computation” nodes.

The program mpirun runs in a separate (non-MPI) process that starts the MPI processes
running the specified executable. It serves as a single-process representative of the parallel
MPI processes in that signals sent to it, such as ^Z and ^C are conveyed by the MPD system
to all the processes. The output streams stdout and stderr from the MPI processes are
routed back to the stdout and stderr of mpirun. As in most MPI implementations,

19

mpirun’s stdin is routed to the stdin of the MPI process with rank 0.

3.4 Debugging MPI Programs

Debugging parallel programs is notoriously difficult. Parallel programs are subject not only
to the usual kinds of bugs but also to new kinds having to do with timing and synchro-
nization errors. Often, the program “hangs,” for example when a process is waiting for
a message to arrive that is never sent or is sent with the wrong tag. Parallel bugs often
disappear precisely when you adds code to try to identify the bug, which is particularly
frustrating. In this section we discuss three approaches to parallel debugging.

3.4.1 The printf Approach.

Just as in sequential debugging, you often wish to trace interesting events in the program by
printing trace messages. Usually you wish to identify a message by the rank of the process
emitting it. This can be done explicitly by putting the rank in the trace message. As noted
above, using the “line labels” option (-l) with mpirun in the ch p4mpd device in MPICH
adds the rank automatically.

3.4.2 Using a Commercial Debugger.

The TotalView c° debugger from Etnus, Ltd. [1] runs on a variety of platforms and interacts
with many vendor implementations of MPI, including MPICH on Linux clusters. For the
ch_p4 device you invoke TotalView with

mpirun -tv <other arguments>

and with the ch_p4mpd device you use

totalview mpirun <other arguments>

That is, again mpirun represents the parallel job as a whole. TotalView has special com-
mands to display the message queues of an MPI process. It is possible to attach TotalView
to a collection of processes that are already running in parallel; it is also possible to attach
to just one of those processes.

3.4.3 Using mpigdb.

The ch_p4mpd device version of MPICH features a “parallel debugger” that consists simply
of multiple copies of the gdb debugger, together with a mechanism for redirecting stdin.
The mpigdb command is a version of mpirun that runs each user process under the control
of gdb and also takes control of stdin for gdb. The ‘z’ command allows you to direct
terminal input to any specified process or to broadcast it to all processes. We demonstrate
this by running the … example under this simple debugger.

20

donner% mpigdb -np 5 cpi # default is stdin bcast

(mpigdb) b 29 # set breakpoint for all

0-4: Breakpoint 1 at 0x8049e93: file cpi.c, line 29.

(mpigdb) r # run all

0-4: Starting program: /home/lusk/mpich/examples/basic/cpi

0: Breakpoint 1, main (argc=1, argv=0xbffffa84) at cpi.c:29

1-4: Breakpoint 1, main (argc=1, argv=0xbffffa74) at cpi.c:29

0-4: 29 n = 0; # all reach breakpoint

(mpigdb) n # single step all

0: 38 if (n==0) n=100; else n=0;

1-4: 42 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

(mpigdb) z 0 # limit stdin to rank 0

(mpigdb) n # single step process 0

0: 40 startwtime = MPI_Wtime();

(mpigdb) n # until caught up

0: 42 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

(mpigdb) z # go back to bcast stdin

(mpigdb) n # single step all

... # until interesting spot

(mpigdb) n

0-4: 52 x = h * ((double)i - 0.5);

(mpigdb) p x # bcast print command

0: $1 = 0.0050000000000000001 # 0’s value of x

1: $1 = 0.014999999999999999 # 1’s value of x

2: $1 = 0.025000000000000001 # 2’s value of x

3: $1 = 0.035000000000000003 # 3’s value of x

4: $1 = 0.044999999999999998 # 4’s value of x

(mpigdb) c # continue all

0: pi is approximately 3.141600986923, Error is 0.000008333333

0-4: Program exited normally.

(mpigdb) q # quit

donner%

If the debugging process hangs (no mpigdb prompt) because the current process is waiting for
action by another process, ctl-C will bring up a menu that allows you to switch processes.
The mpigdb is not nearly as advanced as TotalView, but it is often useful, and it is freely
distributed with MPICH.

3.5 Symmetric Multiprocessors (SMPs) and the ch shmem device

On many of the shared-memory implementations, mpich reserves some shared memory in
which messages are transferred back and forth. By default, mpich reserves roughly four
MBytes of shared memory. You can change this with the environment variable
MPI_GLOBMEMSIZE. For example, to make it 8 MB, enter

setenv MPI_GLOBMEMSIZE 8388608

21

Large messages are transfered in fragments, so MPI_GLOBMEMSIZE does not limit the maxi-
mum message size but increasing it may improve performance. Also note that systems may
limit the amount of shared memory available.

By default, mpich limits the number of processes for the ch_shmem device to 32, unless
it determines at configure time that the machine has more processors. You can override
this limit by setting the environment variable PROCESSOR_COUNT to the maximum number
of processes that you will want to run, and then reconfigure and remake mpich.

3.6 Computational Grids: the globus2 device

The globus2 device3 supports the execution of MPI programs on “computational grids”
that may include parallel computers and workstations, and that may span multiple sites.
In such grid environments, different sites may support different security mechanisms and
different process creation mechanisms. The globus2 device hides these low-level details from
you, allowing you to start programs with mpirun as on MPPs and workstation clusters. The
globus2 device also provides other convenient features, such as remote access to files and
executable staging. These features are provided by using services supplied by the Globus
toolkit: see http://www.globus.org for details.

The globus2 device requires that special servers be running on the computers where
processes are to be created. In our discussion of how to use the globus2 device, we assume
that we are using the globus2 device on a collection of machines on which various Globus
servers are installed and running. Such a collection is often referred to as a computational
grid, for example, NASA’s Information Power Grid (IPG). If possible, we recommend that
you use the globus2 device in this environment. If you wish to use the globus2 device
in other situations, please send email to developers@globus.org. Details of how to run
MPI programs using the globus2 device on Globus-enabled computational grids are in
Appendix C.

3.7 MPPs

Each MPP is slightly different, and even systems from the same vendor may have different
ways for running jobs at different installations. The mpirun program attempts to adapt to
this, but you may find that it does not handle your installation. One step that you can
take is to use the -show or -t (for test) option to mpirun. This shows how mpirun would
start your MPI program without actually doing so. Often, you can use this information,
along with the instructions for starting programs at your site, to discover how to start the
program. Please let us know (mpi-bugs@mcs.anl.gov) about any special needs.

IBM SP. Using mpirun with the IBM SP computers can be tricky, because there are
so many different (and often mutually exclusive) ways of running programs on them. The
mpirun distributed with mpich works on systems using the Argonne scheduler (sometimes
called EASY) and with systems using the default resource manager values (i.e., those not
requiring the user to choose an RMPOOL). If you have trouble running an mpich program,

3globus2 replaces the globus device distributed in previous releases of mpich.

22

try following the rules at your installation for running an MPL or POE program (if using
the ch_mpl device) or for running p4 (if using the ch_p4 device).

4 Sample MPI programs

The mpich distribution contains a variety of sample programs, which are located in the
mpich source tree. Most of these will work with any MPI implementation, not just mpich.

examples/basic contains a few short programs in Fortran, C, and C++ for testing the
simplest features of MPI.

examples/test contains multiple test directories for the various parts of MPI. Enter “make
testing” in this directory to run our suite of function tests.

examples/perftest Performance benchmarking programs. See the script runmpptest for
information on how to run the benchmarks. These are relatively sophisticated.

mpe/contrib/mandel A Mandelbrot program that uses the MPE graphics package that
comes with mpich. It should work with any other MPI implementation as well, but
we have not tested it. This is a good demo program if you have a fast X server and
not too many processes.

mpe/contrib/mastermind A program for solving the Mastermind puzzle in parallel. It
can use graphics (gmm) or not (mm).

Additional examples from the book Using MPI [10] are available at www.mcs.anl.gov/

mpi/using. Tutorial material on MPI can also be found at www.mcs.anl.gov/mpi.

5 The MPE library of useful extensions

A more up to date version of this material can be found in the User’s Guide for MPE and
in the file ‘mpe/README’.

It is anticipated that mpich will continue to accumulate extension routines of various
kinds. We keep them in a library we call mpe, for MultiProcessing Environment.

Currently the main components of the MPE are

† A set of routines for creating logfiles for examination by various graphical visualization
tools : upshot, nupshot, Jumpshot-2 or Jumpshot-3.

† A shared-display parallel X graphics library.

† Routines for sequentializing a section of code being executed in parallel.

† Debugger setup routines.

23

5.1 Logfile Creation

MPE provides several ways to generate logfiles that describe the progress of a computation.
These logfiles can be viewed with one of the graphical tools distributed with MPE. In
addition, you can customize these logfiles to add application-specific information.

The easiest way to generate logfiles is to link your program with a special MPE library
that uses the profiling feature of MPI to intercept all MPI calls in an application.

You can create customized logfiles for viewing by calls to the various MPE logging routines.
For details, see the MPE man pages. An example is shown in Section 5.5.3.

5.2 Logfile Format

MPE currently provides three different logfile formats: ALOG, CLOG and SLOG. ALOG is
provided for backward compatibility purposes only, and stores events as ASCII text. CLOG
is similar to ALOG, but stores data in a binary format (essentially “external32”). SLOG is
an abbreviation for Scalable LOGfile format and stores data as states (essentially an event
with a duration) in a special binary format chosen to help visualization programs handle
very large (multi-Gigabyte) log files.

Each of these log file formats has one or more visualization programs associated with
it. The ALOG format is understood by nupshot. The CLOG format is understood by
nupshot and jumpshot, a Java-based visualization tool. SLOG and Jumpshot-3 are capable
of handling logfiles containing gigabytes of data.

5.3 Parallel X Graphics

MPE provides a set of routines that allows you to display simple graphics with the X
Window System. In addition, there are routines for input, such as getting a region defined
by using the mouse. A sample of the available graphics routines are shown in Table 1. For
arguments, see the man pages.

You can find an example of the use of the MPE graphics library in the directory
mpich/mpe/contrib/mandel. Enter

make

mpirun -np 4 pmandel

to see a parallel Mandelbrot calculation algorithm that exploits several features of the MPE

graphics library.

5.4 Other MPE Routines

Sometimes during the execution of a parallel program, you need to ensure that only a few
(often just one) processor at a time is doing something. The routines MPE_Seq_begin and
MPE_Seq_end allow you to create a “sequential section” in a parallel program.

24

Control Routines

MPE Open graphics (collectively) opens an X display
MPE Close graphics Closes a X11 graphics device
MPE Update Updates an X11 display

Output Routines

MPE Draw point Draws a point on an X display
MPE Draw points Draws points on an X display
MPE Draw line Draws a line on an X11 display
MPE Draw circle Draws a circle
MPE Fill rectangle Draws a filled rectangle on an X11 display
MPE Draw logic Sets logical operation for new pixels
MPE Line thickness Sets thickness of lines
MPE Make color array Makes an array of color indices
MPE Num colors Gets the number of available colors
MPE Add RGB color Add a new color

Input Routines

MPE Get mouse press Get current coordinates of the mouse
MPE Get drag region Get a rectangular region

Table 1: MPE graphics routines.

The MPI standard makes it easy for users to define the routine to be called when an
error is detected by MPI. Often, what you’d like to happen is to have the program start
a debugger so that you can diagnose the problem immediately. In some environments, the
error handler in MPE_Errors_call_dbx_in_xterm allows you to do just that. In addition,
you can compile the MPE library with debugging code included. (See the -mpedbg configure
option.)

5.5 Profiling Libraries

The MPI profiling interface provides a convenient way for you to add performance analysis
tools to any MPI implementation. We demonstrate this mechanism in mpich, and give you
a running start, by supplying three profiling libraries with the mpich distribution. MPE
users may build and use these libraries with any MPI implementation.

5.5.1 Accumulation of Time Spent in MPI routines

The first profiling library is simple. The profiling version of each MPI Xxx routine calls
PMPI Wtime (which delivers a time stamp) before and after each call to the corresponding
PMPI Xxx routine. Times are accumulated in each process and written out, one file per
process, in the profiling version of MPI Finalize. The files are then available for use in
either a global or process-by-process report. This version does not take into account nested
calls, which occur when MPI Bcast, for instance, is implemented in terms of MPI Send and
MPI Recv. The file ‘mpe/src/trc_wrappers.c’ implements this interface, and the option

25

-mpitrace to any of the compilation scripts (e.g., mpicc) will automatically include this
library.

5.5.2 Automatic Logging

The second profiling library is called MPE logging libraries which generate logfiles, they
are files of timestamped events for CLOG and timestamped states for SLOG. During ex-
ecution, calls to MPE Log event are made to store events of certain types in memory, and
these memory buffers are collected and merged in parallel during MPI Finalize. During
execution, MPI Pcontrol can be used to suspend and restart logging operations. (By de-
fault, logging is on. Invoking MPI Pcontrol(0) turns logging off; MPI Pcontrol(1) turns
it back on again.) The calls to MPE Log event are made automatically for each MPI call.
You can analyze the logfile produced at the end with a variety of tools; these are described
in Sections 5.6.1 and 5.6.2.

5.5.3 Customized Logging

In addition to using the predefined MPE logging libraries to log all MPI calls, MPE logging
calls can be inserted into user’s MPI program to define and log states. These states are called
user defined states. States may be nested, allowing one to define a state describing a user
routine that contains several MPI calls, and display both the user-defined state and the MPI
operations contained within it. The routine MPE_Log_get_event_number should be used
to get unique event numbers4 from the MPE system. The routines MPE_Describe_state

and MPE_Log_event are then used to describe user-defined states. The following example
illustrates the use of these routines.

int eventID_begin, eventID_end;

...

eventID_begin = MPE_Log_get_event_number();

eventID_end = MPE_Log_get_event_number();

...

MPE_Describe_state(eventID_begin, eventID_end, "Amult", "bluegreen");

...

MyAmult(Matrix m, Vector v)

{

/* Log the start event along with the size of the matrix */

MPE_Log_event(eventID_begin, m->n, (char *)0);

... Amult code, including MPI calls ...

MPE_Log_event(eventID_end, 0, (char *)0);

}

The logfile generated by this code will have the MPI routines within the routine MyAmult

indicated by a containing bluegreen rectangle. The color used in the code is chosen from
the file, rgb.txt, provided by X server installation, e.g. ‘rgb.txt’ is located in
‘/usr/X11R6/lib/X11’ on Linux.

4This is important if you are writing a library that uses the MPE logging routines.

26

If the MPE logging library, ‘liblmpe.a’, is not linked with the user program,
MPE_Init_log and MPE_Finish_log must be called before and after all the MPE calls. The
sample programs ‘cpilog.c’ and ‘fpi.f’, available in MPE source directory ‘contrib/test’
or the installed directory ‘share/examples’, illustrate the use of these MPE routines.

5.5.4 Real-Time Animation

The third library does a simple form of real-time program animation. The MPE graphics
library contains routines that allow a set of processes to share an X display that is not
associated with any one specific process. Our prototype uses this capability to draw arrows
that represent message traffic as the program runs.

5.6 Logfile Viewers

There are 4 graphical visualization tools distributed with MPE, they are upshot, nupshot,
Jumpshot-2 and Jumpshot-3. Out of these 4 Logfile Viewers, only 3 viewers are built by
MPE. They are upshot, Jumpshot-2 and Jumpshot-3.

5.6.1 Upshot and Nupshot

One tool that we use is called upshot, which is a derivative of Upshot [13], written in
Tcl/Tk. A screen dump of Upshot in use is shown in Figure 2. It shows parallel time lines
with process states, like one of the paraGraph [12]. The view can be zoomed in or out,
horizontally or vertically, centered on any point in the display chosen with the mouse. In
Figure 2, the middle window has resulted from zooming in on the upper window at a chosen
point to show more detail. The window at the bottom of the screen show a histogram of
state durations, with several adjustable parameters.

Nupshot is a version of upshot that is faster but requires an older version of Tcl/Tk.
Because of this limitation, Nupshot is not built by default in current MPE.

5.6.2 Jumpshot-2 and Jumpshot-3

There are 2 versions of Jumpshot distributed with the MPE. They are Jumpshot-2 and
Jumpshot-3, which have evolved from Upshot and Nupshot. Both are written in Java and
are graphical visualization tools for interpreting binary tracefiles which displays them onto
the display, as shown in Figure 3. For Jumpshot-2, see [17] for more screenshots and details.
For Jumpshot-3, See file ‘mpe/viewers/jumpshot-3/doc/TourStepByStep.pdf’ for a brief
introduction of the tool.

As the size of the logfile increases, Jumpshot-2’s performance decreases, and can ulti-
mately result in Jumpshot-2 hanging while it is reading in the logfile. It is hard to determine
at what point Jumpshot-2 will hang, but we have seen it with files as small as 10MB. When
CLOG file is about 4MB in size, the performance of Jumpshot-2 starts to deterioate sig-
nificantly. There is a current research effort that will result in the ability to make the
Java based display program significantly more scalable. The results of the first iteration of

27

Figure 2: A screendump from upshot

this effort are SLOG which supports scalable logging of data and Jumpshot-3 which reads
SLOG.

5.7 Automatic generation of profiling libraries

For each of these libraries, the process of building the library was very similar. First,
profiling versions of MPI Init and MPI Finalize must be written. The profiling versions
of the other MPI routines are similar in style. The code in each looks like

int MPI_Xxx(. . .)

{

do something for profiling library

retcode = PMPI_Xxx(. . .);

do something else for profiling library

return retcode;

28

Figure 3: Jumpshot-1 Display

}

We generate these routines by writing the “do something” parts only once, in schematic
form, and then wrapping them around the PMPI calls automatically. It is thus easy to
generate profiling libraries. See the ‘README’ file in ‘mpe/profiling/wrappergen’ or Ap-
pendix A.

Examples of how to write wrapper templates are located in the ‘mpe/profiling/lib’
subdirectory. There you will find the source code (the .w files) for creating the three
profiling libraries described above. An example ‘Makefile’ for trying these out is located
in the ‘mpe/profiling/examples’ directory.

5.8 Tools for Profiling Library Management

The sample profiling wrappers for mpich are distributed as wrapper definition code. The
wrapper definition code is run through the wrappergen utility to generate C code (see
Section 5.7). Any number of wrapper definitions can be used together, so any level of
profiling wrapper nesting is possible when using wrappergen.

A few sample wrapper definitions are provided with mpich:

timing Use MPI_Wtime() to keep track of the total number of calls to each MPI function,
and the time spent within that function. This simply checks the timer before and
after the function call. It does not subtract time spent in calls to other functions.

logging Create logfile of all pt2pt function calls.

vismess Pop up an X window that gives a simple visualization of all messages that are
passed.

allprof All of the above. This shows how several profiling libraries may be combined.

29

Note: These wrappers do not use any mpich-specific features besides the MPE graphics
and logging used by ‘vismess’ and ‘logging’, respectively. They should work on any MPI
implementation.

You can incorporate them manually into your application, which involves three changes
to the building of your application:

† Generate the source code for the desired wrapper(s) with wrappergen. This can be a
one-time task.

† Compile the code for the wrapper(s). Be sure to supply the needed compile-line
parameters. ‘vismess’ and ‘logging’ require the MPE library (-lmpe), and the ‘vismess’
wrapper definition requires that -DMPE_GRAPHICS be included in the flags to the C
compiler.

† Link the compiled wrapper code, the profiling version of the mpi library, and any
other necessary libraries (‘vismess’ requires X) into your application. The required
order is:

$(CLINKER) <application object files...> \

<wrapper object code> \

<other necessary libraries (-lmpe)> \

<profiling mpi library (-lpmpich)> \

<standard mpi library (-lmpich)>

To simplify it, some sample makefile sections have been created in ‘mpe/profiling/lib’:

Makefile.timing - timing wrappers

Makefile.logging - logging wrappers

Makefile.vismess - animated messages wrappers

Makefile.allprof - timing, logging, and vismess

To use these Makefile fragments:

1. (optional) Add $(PROF_OBJ) to your application’s dependency list:

myapp: myapp.o $(PROF_OBJ)

2. Add $(PROF_FLG) to your compile line CFLAGS:

CFLAGS = -O $(PROF_FLG)

3. Add $(PROF_LIB) to your link line, after your application’s object code, but before
the main MPI library:

$(CLINKER) myapp.o -L$(MPIR_HOME)/lib $(PROF_LIB) -lmpich

4. (optional) Add $(PROF_CLN) to your clean target:

30

rm -f *.o *~ myapp $(PROF_CLN)

5. Include the desired Makefile fragment in your makefile:

include $(MPIR_HOME)/mpe/profiling/lib/Makefile.logging

6 Debugging MPI programs with built-in tools

Debugging of parallel programs is notoriously difficult, and we do not have a magical solution
to this problem. Nonetheless, we have built into mpich a few features that may be of use
in debugging MPI programs.

6.1 Error handlers

The MPI Standard specifies a mechanism for installing one’s own error handler, and specifies
the behavior of two predefined ones, MPI_ERRORS_RETURN and MPI_ERRORS_ARE_FATAL. As
part of the MPE library, we include two other error handlers to facilitate the use of command-
line debuggers such as dbx in debugging MPI programs.

MPE_Errors_call_dbx_in_xterm

MPE_Signals_call_debugger

These error handlers are located in the MPE directory. A configure option (-mpedbg) includes
these error handlers into the regular MPI libraries, and allows the command-line argument
-mpedbg to make MPE_Errors_call_dbx_in_xterm the default error handler (instead of
MPI_ERRORS_ARE_FATAL).

6.2 Command-line arguments for mpirun

mpirun provides some help in starting programs with a debugger.

mpirun -dbg=<name of debugger> -np 2 program

starts program on two machines, with the local one running under the chosen debugger.
There are 5 debugger scripts included with mpich which will be located in the ‘mpich/bin’
directory after executing make. They are named mpirun_dbg.%d where %d can be replaced
with dbx, ddd, gdb, totalview, and xxgdb. The appropriate script is invoked when the
-dbg option is used with mpirun

6.3 MPI arguments for the application program

These are currently undocumented, and some require configure options to have been spec-
ified (like -mpipktsize and -chmemdebug). The -mpiversion option is useful for finding
out how your installation of mpich was configured and exactly what version it is.

31

-mpedbg If an error occurs, start xterms attached to the process that generated the error.
Requires the mpich be configured with -mpedbg and works on only some workstations
systems.

-mpiversion Print out the version and configuration arguements for the mpich implemen-
tation being used.

These arguments are provided to the program, not to mpirun. For example,

mpirun -np 2 a.out -mpiversion

6.4 Debugging with the ch p4 Device

When using the ch_p4 device, a number of command-line arguments may be used to control
the behavior of the program.

6.4.1 p4 Debugging

If your configuration of mpich used -device=ch_p4, then some of the
p4 debugging capabilities are available to you. The most useful of these are the command
line arguments to the application program. Thus

mpirun -np 10 myprog -p4dbg 20 -p4rdbg 20

results in program tracing information at a level of 20 being written to stdout during
execution. For more information about what is printed at what levels, see the p4 Users’
Guide [2].

If one specifies -p4norem on the command line, mpirun will not actually start the pro-
cesses. The master process prints a message suggesting how the user can do it. The point of
this option is to enable the user to start the remote processes under his favorite debugger,
for instance. The option only makes sense when processes are being started remotely, such
as on a workstation network. Note that this is an argument to the program, not to mpirun.
For example, to run myprog this way, use

mpirun -np 4 myprog -p4norem

For example, to run cpi with 2 processes, where the second process is run under the
debugger, the session would look something like

mpirun -np 2 cpi -p4norem

waiting for process on host shakey.mcs.anl.gov:

/home/me/mpich/examples/basic/cpi sys2.foo.edu 38357 -p4amslave

on the first machine and

32

% gdb cpi

GNU gdb 5.0

Copyright 2000 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "i586-mandrake-linux"...

(gdb) run sys2.foo.edu 38357 -p4amslave

Starting program: /home/me/mpich/examples/basic/cpi sys2.foo.edu 38357 -p4amslave

6.4.2 Setting the Working Directory for the p4 Device

By default, the working directory for processes running remotely with ch_p4 device is the
same as that of the executable. To specify a different working directory, use -p4wdir as
follows:

mpirun -np 4 myprog -p4wdir myrundir

6.5 Command-line arguments for the application program

Arguments on the command line that follow the application program name and are not
directed to the mpich system (don’t begin with -mpi or -p4) are passed through to all
processes of the application program. For example, if you execute

mpirun -echo -np 4 myprog -mpiversion -p4dbg 10 x y z

then -echo -np 4 is interpreted by mpirun (echo actions of mpirun and run four pro-
cesses), -mpiversion is interpreted by mpich (each process prints configuration infor-
mation), -p4dbg 10 is interpreted by the p4 device if your version was configured with
-device=ch_p4 (sets p4 debugging level to 10), and x y z are passed through to the appli-
cation program. In addition, MPI Init strips out non-application arguments, so that after
the call to MPI Init in your C program, the argument vector argv contains only

myprog x y z

and your program can process its own command-line arguments in the normal way. Note
that the argument vector for Fortran and Fortran 77 programs will contain the mpich

commands because there is no standard mechanism defined by Fortran for accessing or
modifying the command line.

It is not possible to provide different command-line arguments for the different processes.

6.6 Starting jobs with a debugger

The -dbg=<name of debugger> option to mpirun causes processes to be run under the
control of the chosen debugger. For example, enter

33

mpirun -dbg=gdb or mpirun -dbg=gdb a.out

invokes the mpirun_dbg.gdb script located in the ‘mpich/bin’ directory. This script cap-
tures the correct arguments, invokes the gdb debugger, and starts the first process under
gdb where possible. There are 4 debugger scripts; gdb, xxgdb, ddd, and totalview. These
may need to be edited depending on your system. There is another debugger script for dbx,
but this one will always need to be edited as the debugger commands for dbx varies between
versions. You can also use this option to call another debugger; for example, -dbg=mydebug.
All you need to do is write a script file, ‘mpirun_dbg.mydebug’, which follows the format of
the included debugger scripts, and place it in the ‘mpich/bin’ directory. More information
on using the Totalview debugger with mpich can be found in Section 7.

6.7 Starting the debugger when an error occurs

It is often convenient to have a debugger start when a program detects an error. If mpich

was configured with the option --enable-mpedbg, then adding the command-line option
-mpedbg to the program will cause mpich to attempt to start a debugger (usually dbx or
gdb) when an error that generates a signal (such as SIGSEGV) occurs. For example,

mpirun -np 4 a.out -mpedbg

If you are not sure if your mpich provides this service, you can use -mpiversion to see if
mpich was built with the --enable-mpedbg option.

6.8 Attaching a debugger to a running program

On workstation clusters, you can often attach a debugger to a running process. For example,
the debugger dbx often accepts a process id (pid) which you can get by using the ps

command. The form is either

dbx a.out 1234

or

dbx -pid 1234 a.out

where 1234 is the process id. One can also attach the TotalView debugger to a running
program (See Section 7.3 below).

6.9 Signals

In general, users should avoid using signals with MPI programs. The manual page for
MPI_Init describes the signals that are used by the MPI implementation; these should not
be changed by the user.

34

Because Unix does not chain signals, there is the possibility that several packages will
attempt to use the same signal, causing the program to fail. For example, by default, the
ch_p4 device uses SIGUSR1; some thread packages also use SIGUSR1. If you have such a
situation, see the Installation Manual for mpich for information on how to select a different
signal for use by mpich.

In a few cases, you can change the signal before calling MPI_Init. In those cases, your
signal handler will be called after the mpich implementation acts on the signal. For example,
if you want to change the behavior of SIGSEGV to print a message, you can establish such a
signal handler before calling MPI_Init. With devices such as the ch_p4 device that handle
SIGSEGV, this will cause your signal handler to be called after mpich processes it.

6.10 Related tools

The Scalable Unix Tools (SUT) is a collection for managing workstation networks as a
MPP. These include programs for looking at all of the processes in a cluster and performing
operations on them (such as attaching the debugger to every process you own that is running
a particular program). This is not part of MPI but can be very useful in working with
workstation clusters. An MPI version of these tools is available at www.mcs.anl.gov/sut;
this implementation works well with the ch_p4mpd device of mpich.

7 Debugging MPI programs with TotalView

TotalView c° is a powerful, commercial-grade, portable debugger for parallel and multi-
threaded programs, available from Etnus (http://www.etnus.com/). TotalView under-
stands multiple MPI implementations, including mpich. By “understand” is meant that
if you have TotalView installed on your system, it is easy to start your mpich program
under the control of TotalView, even if you are running on multiple machines, manage your
processes both collectively and individually through TotalView’s convenient GUI, and even
examine internal mpich data structures to look at message queues [3]. The general opera-
tion model of TotalView will be familiar to users of command-line-based debuggers such as
gdb or dbx.

7.1 Preparing mpich for TotalView debugging

See the Installation Guide for instructions on configuring mpich so that TotalView can
display message queues.

7.2 Starting an mpich program under TotalView control

To start a parallel program under TotalView control, simply add ‘-dbg=totalview’ to your
mpirun arguments:

mpirun -dbg=totalview -np 4 cpi

35

TotalView will come up and you can start the program by typing ‘G’. A window will come
up asking whether you want to stop processes as they execute MPI Init. You may find it
more convenient to say “no” and instead to set your own breakpoint after MPI Init (see
Section 7.4). This way when the process stops it will be on a line in your program instead
of somewhere inside MPI Init.

7.3 Attaching to a running program

TotalView can attach to a running MPI program, which is particularly useful if you suspect
that your code has deadlocked. To do this start TotalView with no arguments, and then
press ‘N’ in the root window. This will bring up a list of the processes that you can attach
to. When you dive through the initial mpich process in this window TotalView will also
acquire all of the other mpich processes (even if they are not local). See the TotalView
manual for more details of this process.

7.4 Debugging with TotalView

You can set breakpoints by clicking in the left margin on a line number. Most of the
TotalView GUI is self-explanatory. You select things with the left mouse button, bring up
an action menu with the middle button, and “dive” into functions, variables, structures,
processes, etc., with the right button. Pressing cntl-? in any TotalView window brings
up help relevant to that window. In the initial TotalView window it brings up general help.
The full documentation (The TotalView User’s Guide) is available from the Etnus web site.

You switch from viewing one process to the next with the arrow buttons at the top-
right corner of the main window, or by explicitly selecting (left button) a process in the
root window to re-focus an existing window onto that process, or by diving (right button)
through a process in the root window to open a new window for the selected process. All
the keyboard shortcuts for commands are listed in the menu that is attached to the middle
button. The commands are mostly the familiar ones. The special one for MPI is the ‘m’
command, which displays message queues associated with the process.

Note also that if you use the MPI-2 function MPI Comm set name on a communicator,
TotalView will display this name whenever showing information about the communicator,
making it easier to understand which communicator is which.

8 Other MPI Documentation

Information about MPI is available from a variety of sources. Some of these, particularly
WWW pages, include pointers to other resources.

† The Standard itself:

– As a Technical report [4]

– As Postscript and HTML at www.mpi-forum.org

36

– As a journal article in the Fall 1994 issue of the Journal of Supercomputing
Applications [14]

† MPI Forum discussions

– The MPI Forum email discussions and both current and earlier versions of the
Standard are available from www.netlib.org. MPI-2 discussions are available
at www.mpi-forum.org.

† Books:

– Using MPI: Portable Parallel Programming with the Message-Passing Interface,
Second Edition, by Gropp, Lusk, and Skjellum [10].

– Using MPI-2: Advanced Features of the Message-Passing Interface, by Gropp,
Lusk, and Thakur [11]

– MPI—The Complete Reference: Volume 1, The MPI Core, by Snir, et al. [16].

– MPI—The Complete Reference: Volume 2, The MPI-2 Extensions, by Gropp, et
al. [5].

– Parallel Programming with MPI, by Peter S. Pacheco. [15]

† Newsgroup:

– comp.parallel.mpi

† Mailing lists:

– mpi-comments@mpi-forum.org: The MPI Forum discussion list.

– mpi-impl@mcs.anl.gov: The implementors’ discussion list.

– mpi-bugs@mcs.anl.govis the address to report problems with mpich to.

† Implementations available from the web:

– mpich is available from http://www.mcs.anl.gov/mpi/mpich or by anonymous
ftp from ftp.mcs.anl.gov in the directory ‘pub/mpi/mpich’, file
‘mpich.tar.gz’.

– LAM is available from http://www.lam-mpi.org.

† Test code repository:

– ftp://ftp.mcs.anl.gov/pub/mpi/mpi-test

9 In Case of Trouble

This section describes some commonly encountered problems and their solutions. It also
describes machine-dependent considerations. Send any problem that you can not solve by
checking this section to mpi-bugs@mcs.anl.gov.

Please include:

37

† The version of mpich (e.g., 1.2.2)

† The output of running your program with the -mpiversion argument (e.g., mpirun

-np 1 a.out -mpiversion)

† The output of

uname -a

for your system. If you are on an SGI system, also

hinv

† If the problem is with a script such as configure or mpirun, run the script with the
-echo argument (e.g., mpirun -echo -np 4 a.out).

† If you are using the ch_p4 device, also send the output of sbin/tstmachines.

Each section is organized in question and answer format, with questions that relate
to more than one environment (workstation, operating system, etc.) first, followed by
questions that are specific to a particular environment. Problems with workstation clusters
are collected together as well.

9.1 Problems compiling or linking Fortran programs

9.1.1 General

1. Q: When linking the test program, the following message is generated:

f77 -g -o secondf secondf.o -L/usr/local/mpich/lib/sun4/ch_p4 -lmpich

invalid option -L/usr/local/mpich/lib/sun4/ch_p4

ld: -lmpich: No such file or directory

A: This f77 program does not accept the -L command to set the library search path.
Some systems provide a shell script for f77 that is very limited in its abilities. To
work around this, use the full library path instead of the -L option:

f77 -g -o secondf secondf.o /usr/local/mpich/lib/sun4/ch_p4/libmpich.a

As of the mpich 1.2.0 release, the mpich configure attempts to find the correct option
for indicating library paths to the Fortran compiler. If you find that the mpich

configure has made an error, please submit a bug report to mpi-bugs@mcs.anl.gov.

2. Q: When linking Fortran programs, I get undefined symbols such as

f77 -c secondf.f

secondf.f:

MAIN main:

f77 -o secondf secondf.o -L/home/mpich/lib/solaris/ch_shmem -lmpich

38

Undefined first referenced

symbol in file

getdomainname

/home/mpich/lib/solaris/ch_shmem/libmpi .a(shmempriv.o)

ld: fatal: Symbol referencing errors. No output written to secondf

There is no problem with C programs.

A: This means that your C compiler is providing libraries for you that your Fortran
compiler is not providing. Find the option for the C compiler and for the Fortran
compilers that indicate which library files are being used (alternately, you may find an
option such as -dryrun that shows what commands are being used by the compiler).
Build a simple C and Fortran program and compare the libraries used (usually on the
ld command line). Try the ones that are present for the C compiler and missing for
the Fortran compiler.

3. Q: When trying to compile Fortran code with a Fortran 90 or Fortran 95 compiler, I
get error messages like

Error: foo.f, line 30: Inconsistent datatype for argument 1 in MPI_SEND

A: The Fortran language requires that in two calls to the same subroutine, the types
of arguments must be the same. That is, if you called MPI_SEND with a REAL buffer as
the first argument and then called it with an INTEGER buffer as the first argument, a
Fortran compiler can consider this an error. Few Fortran 77 compilers would complain
about this; more Fortran 90 and Fortran 95 compilers check for this. There are two
solutions. One is to use the MPI module (in the “choice” version: use the -choicemod

option for mpif90); the other is to use an option to tell the Fortran 90 compiler to
allow argument mismatches. For example, the argument -mismatch will cause the
NAG Fortran compilers to allow mismatched arguments. Using the MPI module is
the preferred approach.

Fortran 77 users may sometimes see a similar message, particularly with later versions
of g77. The option -Wno-globals will supress these warning messages.

9.2 Problems Linking C Programs

9.2.1 General

1. Q: When linking programs, I get messages about __builtin_saveregs being unde-
fined.

A: You may have a system on which C and Fortran compilers are incompatible (for
example, using gcc and the vendor’s Fortran compiler). If you do not plan to use
Fortran, the easiest fix is to rebuild with the -nof77 option to configure.

You should also look into making your C compiler compatible with your Fortran
compiler.

The easiest but ugliest possibility is use f2c to convert Fortran to C, then use the C
compiler to compile everything. If you take this route, remember that every Fortran
routine has to be compiled using f2c and the C compiler.

39

Alternatively, you can use various options (check the man pages for your compilers)
to see what libraries that add when they link. Add those libraries to the link line for
the other compiler. If you find a workable set of libraries, edit the appropriate scripts
(e.g., mpicc) to include the necessary libraries. Mpich attempts to find all the libaries
that you need but is not always successful.

9.2.2 Sun Solaris

1. Q: When linking on Solaris, I get an error like this:

cc -g -o testtypes testtypes.o -L/usr/local/mpich/lib/solaris/ch_p4 -lmpich

-lsocket -lnsl -lthread

ld: warning: symbol ‘_defaultstkcache’ has differing sizes:

(file /usr/lib/libthread.so value=0x20; file /usr/lib/libaio.so

value=0x8);

/usr/lib/libthread.so definition taken

A: This is a bug in Solaris 2.3 that is fixed in Solaris 2.4. There may be a patch for
Solaris 2.3; contact Sun for more information.

9.2.3 HPUX

1. Q: When linking on HPUX, I get an error like this:

cc -o pgm pgm.o -L/usr/local/mpich/lib/hpux/ch_p4 -lmpich -lm

/bin/ld: Unsatisfied symbols:

sigrelse (code)

sigset (code)

sighold (code)

*** Error code 1

A: You need to add the link option -lV3. The p4 device uses the System V signals
on the HP; these are provided in the ‘V3’ library.

9.2.4 LINUX

1. Q: When linking a Fortran program, I get

Linking:

foo.o(.data+0x0): undefined reference to ‘pmpi_wtime_’

A: This is a bug in the pgf77 compiler (which is itself a workaround for a bug in
the LINUX ld command). You can fix it by either adding -lpmpich to the link
line or modifying the ‘mpif.h’ to remove the external pmpi_wtime, pmpi_wtick

statement.

The mpich configure attempts to determine if pmpi_wtime and pmpi_wtick can be
declared in ‘mpif.h’ and removes them if there is a problem. If this happens and you use
pmpi_wtime or pmpi_wtick in your program, you will need to declare them as functions
returning double precision values.

40

9.3 Problems starting programs

9.3.1 General

1. Q: When trying to start a program with

mpirun -np 2 cpi

either I get an error message or the program hangs.

A: On some systems such as IBM SPs, there are many mutually exclusive ways to
run parallel programs; each site can pick the approach(es) that it allows. The script
mpirun tries one of the more common methods, but may make the wrong choice. Use
the -v or -t option to mpirun to see how it is trying to run the program, and then
compare this with the site-specific instructions for using your system. You may need
to adapt the code in mpirun to meet your needs. See also the next question.

2. Q: When trying to run a program with, e.g., mpirun -np 4 cpi, I get

usage : mpirun [options] <executable> [<dstnodes>] [-- <args>]

or

mpirun [options] <schema>

A: You have a command named mpirun in your path ahead of the mpich version.
Execute the command

which mpirun

to see which command named mpirun was actually found. The fix is to either change
the order of directories in your path to put the mpich version of mpirun first, or to
define an alias for mpirun that uses an absolute path. For example, in the csh shell,
you might do

alias mpirun /usr/local/mpich/bin/mpirun

to set mpirun to the mpich version.

3. Q: When trying to start a large number of processes on a workstation network, I get
the message

p4_error: latest msg from perror: Too many open files

A: There is a limitation on the number of open file descriptors. On some systems
you can increase this limit yourself; on others you must have help from your system
administrator. You could experiment with the secure server, but it is not a complete
solution. We are working now on a more scalable startup mechanism for the next
release.

41

4. Q: When attempting to run cpilog I get the following message:

ld.so.1: cpilog: fatal: libX11.so.4: can’t open file: errno 2

A: The X11 version that configure found isn’t properly installed. This is a common
problem with Sun/Solaris systems. One possibility is that your Solaris machines are
running slightly different versions. You can try forcing static linking (-Bstatic on
Solaris).

Alternately, consider adding these lines to your ‘.login’ (assuming C shell):

setenv OPENWINHOME /usr/openwin

setenv LD_LIBRARY_PATH /opt/SUNWspro/lib:/usr/openwin/lib

(you may want to check with your system administrator first to make sure that the
paths are correct for your system). Make sure that you add them before any line like

if ($?USER == 0 || $?prompt == 0) exit

5. Q: My program fails when it tries to write to a file.

A: If you opened the file before calling MPI_INIT, the behavior of MPI (not just the
mpich implementation of MPI) is undefined. In the ch_p4 device, only process zero
(in MPI_COMM_WORLD) will have the file open; the other processes will not have opened
the file. Move the operations that open files and interact with the outside world to
after MPI_INIT (and before MPI_FINALIZE).

6. Q: Programs seem to take forever to start.

A: This can be caused by any of several problems. On systems with dynamically-
linked executables, this can be caused by problems with the file system suddenly
getting requests from many processors for the dynamically-linked parts of the exe-
cutable (this has been measured as a problem with some DFS implementations). You
can try statically linking your application.

On workstation networks, long startup times can be due to the time used to start
remote processes; see the discussion on the secure server in Section 3.2.3 for the
ch_p4 device or consider using the ch_p4mpd device.

9.3.2 Workstation Networks

1. Q: When I use mpirun, I get the message Permission denied.

A: If you see something like this

% mpirun -np 2 cpi

Permission denied.

or

% mpirun -np 2 cpi

socket: protocol failure in circuit setup

42

when using the ch_p4 device, it probably means that you do not have permission to
use rsh to start processes. The script tstmachines can be used to test this. Try

tstmachines

If this fails, then you may need a ‘.rhosts’ or ‘/etc/hosts.equiv’ file (you may
need to see your system administrator) or you may need to use the p4 server (see
Section 3.2.3). Another possible problem is the choice of the remote shell program;
some systems have several. Check with your systems administrator about which
version of rsh or remsh you should be using. If you must use ssh, see the section on
using ssh in the Installation Manual.

If your system policy allows a ‘.rhosts’ file, do the following:

(a) Create a file ‘.rhosts’ in your home directory

(b) Change the protection on it to user read/write only: chmod og-rwx .rhosts.

(c) Add one line to the ‘.rhosts’ file for each processor that you want to use. The
format is

host username

For example, if your username is doe and you want to user machines a.our.org

and b.our.org, your ‘.rhosts’ file should contain

a.our.org doe

b.our.org doe

Note the use of fully qualified host names (some systems require this).

On networks where the use of ‘.rhosts’ files is not allowed, you should use the
secure server to run on machines that are not trusted by the machine that you
are initiating the job from.

Finally, you may need to use a non-standard rsh command within mpich. mpich

must be reconfigured with -rsh=command_name, and perhaps also with -rshnol

if the remote shell command does not support the -l argument. Systems using
Kerberos and/or AFS may need this. See the section in the Installation Guide
on using the secure shell ssh.

An alternate source of the “Permission denied.” message is that you have used
the su command to change your effective user id. On some systems the ch_p4

device will not work in this situation. Log in normally and try again.

2. Q: When I use mpirun, I get the message Try again.

A: If you see something like this

% mpirun -np 2 cpi

Try again.

it means that you were unable to start a remote job with the remote shell command
on some machine, even though you would normally be able to. This may mean that
the destination machine is very busy, out of memory, or out of processes. The man
page for rshd may give you more information.

The only fix for this is to have your system administrator look into the machine that
is generating this message.

43

3. Q: When running the ch_p4 device, I get error messages of the form

stty: TCGETS: Operation not supported on socket

or

stty: tcgetattr: Permission denied

or

stty: Can’t assign requested address

A: This means that one of your login startup scripts (i.e., ‘.login’ and ‘.cshrc’ or
‘.profile’) contains an unguarded use of the stty or tset program. For C shell
users, one typical fix is to check for the variables TERM or PROMPT to be initialized. For
example,

if ($?TERM) then

eval ‘tset -s -e^\? -k^U -Q -I $TERM‘

endif

Another solution is to see if it is appropriate to add

if ($?USER == 0 || $?prompt == 0) exit

near the top of your ‘.cshrc’ file (but after any code that sets up the runtime envi-
ronment, such as library paths (e.g., LD_LIBRARY_PATH)).

4. Q: When running the ch_p4 device and running either the tstmachines script to
check the machines file or the mpich tests, I get messages about unexpected output or
differences from the expected output. I also get extra output when I run programs.
MPI programs do seem to work, however.

A: This means that one your login startup scripts (i.e., ‘.login’ and ‘.cshrc’ or
‘.profile’ or ‘.bashrc’) contains an unguarded use of some program that generates
output, such as fortune or even echo. For C shell users, one typical fix is to check
for the variables TERM or PROMPT to be initialized. For example,

if ($?TERM) then

fortune

endif

Another solution is to see if it is appropriate to add

if ($?USER == 0 || $?prompt == 0) exit

near the top of your ‘.cshrc’ file (but after any code that sets up the runtime envi-
ronment, such as library paths (e.g., LD_LIBRARY_PATH)).

5. Q: Occasionally, programs fail with the message

44

poll: protocol failure during circuit creation

A:

You may see this message if you attempt to run too many MPI programs in a short
period of time. For example, in Linux and when using the ch_p4 device (without the
secure server or ssh), mpich may use rsh to start the MPI processes. Depending on
the particular Linux distribution and verison, there may be a limit of as few as 40
processes per minute. When running the mpich test suite or starting short parallel
jobs from a script, it is possible to exceed this limit.

To fix this, you can do one of the following:

(a) Wait a few seconds between running parallel jobs. You may need to wait up to
a minute.

(b) Modify ‘/etc/inetd.conf’ to allow more processes per minute for rsh. For
example, change

shell stream tcp nowait root /etc/tcpd2 in.rshd

to

shell stream tcp nowait.200 root /etc/tcpd2 in.rshd

(c) Use the ch_p4mpd device or the secure server option of the ch_p4 device instead.
Neither of these relies on inetd.

6. Q: When using mpirun I get strange output like

arch: No such file or directory

A: This is usually a problem in your ‘.cshrc’ file. Try the shell command

which hostname

If you see the same strange output, then your problem is in your ‘.cshrc’ file. You
may have some code in your ‘.cshrc’ file that assumes that your shell is connected
to a terminal.

7. Q: When I try to run my program, I get

p0_4652: p4_error: open error on procgroup file (procgroup): 0

A: This indicates that the mpirun program did not create the expected input file
needed to run the program. The most likely reason is that the mpirun command is
trying to run a program built with device ch_p4 as a shared memory (ch_shmem) or
other device.

Try the following:

Run the program using mpirun and the -t argument:

mpirun -t -np 1 foo

45

This should show what mpirun would do (-t is for testing). Or you can use the -echo

argument to see exactly what mpirun is doing:

mpirun -echo -np 1 foo

Depending on the choice made by the installer of mpich, you should select the device-
specific version of mpirun over a “generic” version. We recommend that the installa-
tion prefix include the device name, for example, ‘/usr/local/mpich/solaris/ch_p4’.

8. Q: When trying to run a program I get this message:

icy% mpirun -np 2 cpi -mpiversion

icy: icy: No such file or directory

A: Your problem is that ‘/usr/lib/rsh’ is not the remote shell program. Try the
following:

which rsh

ls /usr/*/rsh

You probably have ‘/usr/lib’ in your path ahead of ‘/usr/ucb’ or ‘/usr/bin’. This
picks the ‘restricted’ shell instead of the ‘remote’ shell. The easiest fix is to just remove
‘/usr/lib’ from your path (few people need it); alternately, you can move it to after
the directory that contains the ‘remote’ shell rsh.

Another choice would be to add a link in a directory earlier in the search path to the
remote shell. For example, I have ‘/home/gropp/bin/solaris’ early in my search
path; I could use

cd /home/gropp/bin/solaris

ln -s /usr/bin/rsh rsh

there (assuming that ‘/usr/bin/rsh’ is the remote shell).

9. Q: When trying to run a program I get this message:

trying normal rsh

A: You are using a version of the remote shell program that does not support the -l

argument. Reconfigure mpich with -rshnol and rebuild mpich. You may suffer some
loss of functionality if you try to run on systems where you have different user names.
You might also try using ssh.

10. Q: When I run my program, I get messages like

| ld.so: warning: /usr/lib/libc.so.1.8 has older revision than expected 9

46

A: You are trying to run on another machine with an out-dated version of the basic
C library. Unfortunately, some manufacturers do not make the shared libraries com-
patible between minor (or even maintenance) releases of their software. You need to
have you system administrator bring the machines to the same software level.

One temporary fix that you can use is to add the link-time option to force static
linking instead of dynamic linking for system libraries. For some Sun workstations,
the option is -Bstatic.

11. Q: Programs never get started. Even tstmachines hangs.

A: Check first that rsh works at all. For example, if you have workstations w1 and
w2, and you are running on w1, try

rsh w2 true

This should complete quickly. If it does not, try

rsh w1 true

(that is, use rsh to run true on the system that you are running on). If you get
Permission denied, see the help on that. If you get

krcmd: No ticket file (tf_util)

rsh: warning, using standard rsh: can’t provide Kerberos auth data.

then your system has a faulty installation of rsh. Some FreeBSD systems have been
observed with this problem. Have your system administrator correct the problem
(often one of an inconsistent set of rsh/rshd programs).

12. Q: When running ch_p4 device, I get error messages of the form

more slaves than message queues

A: This means that you are trying to run mpich in one mode when it was configured
for another. In particular, you are specifying in your p4 procgroup file that several
processes are to shared memory on a particular machine by either putting a number
greater than 0 on the first line (where it signifies number of local processes besides
the original one), or a number greater than 1 on any of the succeeding lines (where it
indicates the total number of processes sharing memory on that machine). You should
either change your procgroup file to specify only one process on line, or reconfigure
mpich with

configure --with-device=ch_p4 -comm=shared

which will reconfigure the p4 device so that multiple processes can share memory on
each host. The reason this is not the default is that with this configuration you will see
busy waiting on each workstation, as the device goes back and forth between selecting
on a socket and checking the internal shared-memory queue.

47

13. Q: My programs seem to hang in MPI_Init.

A: There are a number of ways that this can happen:

(a) One of the workstations you selected to run on is dead (try ‘tstmachines’ if you
are using the ch_p4 device)

(b) You linked with the FSU pthreads package; this has been reported to cause
problems, particularly with the system select call that is part of Unix and is
used by mpich.

Another is if you use the library ‘-ldxml’ (extended math library) on Com-
paq Alpha systems. This has been observed to cause MPI_Init to hang. No
workaround is known at this time; contact Compaq for a fix if you need to use
MPI and ‘-ldxml’ together.

The root of this problem is that the ch p4 device uses SIG USR1, and so any
library that also uses this signal can interfere with the operation of mpich if it is
using ch p4. You can rebuild mpich to use a different signal by using the configure
argument --with-device=ch_p4:-listener_sig=SIGNAL_NAME and remaking
mpich.

14. Q: My program (using device ch_p4) fails with

p0_2005: p4_error: fork_p4: fork failed: -1

p4_error: latest msg from perror: Error 0

A: The executable size of your program may be too large. When a ch_p4 or ch_tcp

device program starts, it may create a copy of itself to handle certain communication
tasks. Because of the way in which the code is organized, this (at least temporarily)
is a full copy of your original program and occupies the same amount of space. Thus,
if your program is over half as large as the maximum space available, you wil get
this error. On SGI systems, you can use the command size to get the size of the
executable and swap -l to get the available space. Note that size gives you the size
in bytes and swap -l gives you the size in 512-byte blocks. Other systems may offer
similar commands.

A similar problem can happen on IBM SPs using the ch_mpl device; the cause is the
same but it originates within the IBM MPL library.

15. Q: Sometimes, I get the error

Exec format error. Wrong Architecture.

A: You are probably using NFS (Network File System). NFS can fail to keep files
updated in a timely way; this problem can be caused by creating an executable on one
machine and then attempting to use it from another. Usually, NFS catches up with
the existence of the new file within a few minutes. You can also try using the sync

command. mpirun in fact tries to run the sync command, but on many systems, sync

is only advisory and will not guarentee that the file system has been made consistent.

16. Q: There seem to be two copies of my program running on each node. This doubles
the memory requirement of my application. Is this normal?

48

A: Yes, this is normal. In the ch_p4 implementation, the second process is used to
dynamically establish connections to other processes. With Version 1.1.1 of mpich,
this functionality can be placed in a separate thread on many architectures, and this
second process will not be seen. To enable this, use the option
-p4_opts=-threaded_listener on the configure command line for mpich.

17. Q: MPI_Abort sometimes doesn’t work in the ch_p4 device. Why?

A: Currently (Version 1.2.2) a process detects that another process has aborted only
when it tries to send or receive a message, and the aborting process is one that it
has communicated with in the past. Thus it is porssible for a process busy with
computation not to notice that one of its peers has issued an MPI_Abort, although for
many common communication patterns this does not present a problem. This will be
fixed in a future release.

9.3.3 IBM RS6000

1. Q: When trying to run on an IBM RS6000 with the ch_p4 device, I got

% mpirun -np 2 cpi

Could not load program /home/me/mpich/examples/basic/cpi

Could not load library libC.a[shr.o]

Error was: No such file or directory

A: This means that mpich was built with the xlC compiler but that some of the
machines in your ‘util/machines/machines.rs6000’ file do not have xlC installed.
Either install xlC or rebuild mpich to use another compiler (either xlc or gcc; gcc

has the advantage of never having any licensing restrictions).

9.3.4 IBM SP

1. Q: When starting my program on an IBM SP, I get this:

$ mpirun -np 2 hello

ERROR: 0031-124 Couldn’t allocate nodes for parallel execution. Exiting ...

ERROR: 0031-603 Resource Manager allocation for task: 0, node:

me1.myuniv

.edu, rc = JM_PARTIONCREATIONFAILURE

ERROR: 0031-635 Non-zero status -1 returned from pm_mgr_init

A: This means that either mpirun is trying to start jobs on your SP in a way different
than your installation supports or that there has been a failure in the IBM software
that manages the parallel jobs (all of these error messages are from the IBM poe

command that mpirun uses to start the MPI job). Contact your system administrator
for help in fixing this situation. You system administrator can use

dsh -av "ps aux | egrep -i ’poe|pmd|jmd’"

49

from the control workstation to search for stray IBM POE jobs that can cause this
behavior. The files /tmp/jmd_err on the individual nodes may also contain useful
diagnostic information.

2. Q: When trying to run on an IBM SP, I get the message from mpirun:

ERROR: 0031-214 pmd: chdir </a/user/gamma/home/mpich/examples/basic>

ERROR: 0031-214 pmd: chdir </a/user/gamma/home/mpich/examples/basic>

A: These are messages from tbe IBM system, not from mpirun. They may be caused
by an incompatibility between POE, the automounter (especially the AMD auto-
mounter) and the shell, especially if you are using a shell other than ksh. There is no
good solution; IBM often recommends changing your shell to ksh!

3. Q: When I tried to run my program on an IBM SP, I got

ERROR : Cannot locate message catalog (pepoe.cat) using current NLSPATH

INFO : If NLSPATH is set correctly and catalog exists, check LANG or

LC_MESSAGES variables

(C) Opening of "pepoe.cat" message catalog failed

(and other variations that mention NLSPATH and “message catalog”).

A: This is a problem in your system; contact your support staff. Have them look
at (a) value of NLSPATH, (b) links from ‘/usr/lib/nls/msg/prime’ to the appro-
priate language directory. The messages are not from mpich; they are from the IBM
POE/MPL code that the mpich implementation is using.

4. Q: When trying to run on an IBM SP, I get this message:

ERROR: 0031-124 Less than 2 nodes available from pool 0

A: This means that the IBM POE/MPL system could not allocate the requested
nodes when you tried to run your program; most likely, someone else was using the
system. You can try to use the environment variables MP_RETRY and MP_RETRYCOUNT

to cause the job to wait until the nodes become available. Use man poe to get more
information.

5. Q: When running on an IBM SP, my job generates the message

Message number 0031-254 not found in Message Catalog.

and then dies.

A: If your user name is eight characters long, you may be experiencing a bug in the
IBM POE environment. The only fix at the time this was written was to use an
account whose user name was seven characters or less. Ask your IBM representative
about PMR 4017X (poe with userids of length eight fails) and the associated APAR
IX56566.

50

9.4 Programs fail at startup

9.4.1 General

1. Q: With some systems, you might see

/lib/dld.sl: Bind-on-reference call failed

/lib/dld.sl: Invalid argument

(This example is from HP-UX), or

ld.so: libc.so.2: not found

(This example is from SunOS 4.1; similar things happen on other systems).

A: The problem here is that your program is using shared libraries, and the libraries
are not available on some of the machines that you are running on. To fix this, relink
your program without the shared libraries. To do this, add the appropriate command-
line options to the link step. For example, for the HP system that produced the errors
above, the fix is to use -Wl,-Bimmediate to the link step. For Solaris, the appropriate
option is -Bstatic.

9.4.2 Workstation Networks

1. Q: I can run programs using a small number of processes, but once I ask for more
than 4–8 processes, I do not get output from all of my processes, and the programs
never finish.

A:We have seen this problem with installations using AFS. The remote shell program,
rsh, supplied with some AFS systems limits the number of jobs that can use standard
output. This seems to prevent some of the processes from exiting as well, causing the
job to hang. There are four possible fixes:

(a) Use a different rsh command. You can probably do this by putting the direc-
tory containing the non-AFS version first in your PATH. This option may not be
available to you, depending on your system. At one site, the non-AFS version
was in ‘/bin/rsh’.

(b) Use the secure server (serv_p4). See the discussion in the Users Guide.

(c) Redirect all standard output to a file. The MPE routine
MPE_IO_Stdout_to_file may be used to do this.

(d) Get a fixed rsh command. The likely source of the problem is an incorrect usage
of the select system call in the rsh command. If the code is doing something
like

int mask;

mask |= 1 << fd;

select(fd+1, &mask, ...);

instead of

51

fd_set mask;

FD_SET(fd,&mask);

select(fd+1, &mask, ...);

then the code is incorrect (the select call changed to allow more than 32 file de-
scriptors many years ago, and the rsh program (or programmer!) hasn’t changed
with the times).

A fourth possiblity is to get an AFS version of rsh that fixes this bug. As we are not
running AFS ourselves, we do not know whether such a fix is available.

2. Q: Not all processes start.

A: This can happen when using the ch_p4 device and a system that has extremely
small limits on the number of remote shells you can have. Some systems using “Ker-
beros” (a network security package) allow only three or four remote shells; on these
systems, the size of MPI_COMM_WORLD will be limited to the same number (plus one if
you are using the local host).

The only way around this is to try the secure server; this is documented in the mpich

installation guide. Note that you will have to start the servers “by hand” since the
chp4_servs script uses remote shell to start the servers.

9.5 Programs fail after starting

9.5.1 General

1. Q: I use MPI_Allreduce, and I get different answers depending on the number of
processes I’m using.

A: The MPI collective routines may make use of associativity to achieve better par-
allelism. For example, an

MPI_Allreduce(&in, &out, MPI_DOUBLE, 1, ...);

might compute
(((((((a+ b) + c) + d) + e) + f) + g) + h)

or it might compute

((a+ b) + (c+ d)) + ((e+ f) + (g + h));

where a; b; : : : are the values of in on each of eight processes. These expressions are
equivalent for integers, reals, and other familar objects from mathematics but are not
equivalent for datatypes, such as floating point, used in computers. The association
that MPI uses will depend on the number of processes, thus, you may not get exactly
the same result when you use different numbers of processes. Note that you are not
getting a wrong result, just a different one (most programs assume the arithmetic
operations are associative).

52

2. Q: My Fortran program fails with a BUS error.

A: The C compiler that mpich was built with and the Fortran compiler that you are
using have different alignment rules for things like DOUBLE PRECISION. For example,
the GNU C compiler gcc may assume that all doubles are aligned on eight-byte
boundaries, but the Fortran language requires only that DOUBLE PRECISION align
with INTEGERs, which may be four-byte aligned.

There is no good fix. Consider rebuilding mpich with a C compiler that supports
weaker data alignment rules. Some Fortran compilers will allow you to force eight-
byte alignment for DOUBLE PRECISION (for example, -dalign or -f on some Sun
Fortran compilers); note though that this may break some correct Fortran programs
that exploit Fortran’s storage association rules.

Some versions of gcc may support -munaligned-doubles; mpich should be rebuilt
with this option if you are using gcc, version 2.7 or later. Mpich attemps to detect
and use this option where available.

3. Q: I’m using fork to create a new process, or I’m creating a new thread, and my code
fails.

A: The mpich implementation is not thread safe and does not support either fork
or the creation of new processes. Note that the MPI specification is thread safe, but
implementations are not required to be thread safe. At this writing, few implemen-
tations are thread-safe, primarily because this reduces the performance of the MPI
implementation (you at least need to check to see if you need a thread lock, actually
getting and releasing the lock is even more expensive).

The mpich implementation supports the MPI_Init_thread call; with this call, new in
MPI-2, you can find out what level of thread support the MPI implementation sup-
ports. As of version 1.2.0 of mpich, only MPI_THREAD_SINGLE is supported. We believe
that version 1.2.0 and later support MPI_THREAD_FUNNELED, and some users have used
mpich in this mode (particularly with OpenMP), but we have not rigourously tested
mpich for this mode. Future versions of mpich will support MPI_THREAD_MULTIPLE.

Q: C++ programs execute global destructors (or constructors) more times than ex-
pected. For example:

class Z {

public:

Z() { cerr << "*Z" << endl; }

~Z() { cerr << "+Z" << endl; }

};

Z z;

int main(int argc, char **argv) {

MPI_Init(&argc, &argv);

MPI_Finalize();

}

when running with the ch_p4 device on two processes executes the destructor twice
for each process.

53

A: The number of processes running before MPI_Init or after MPI_Finalize is not
defined by the MPI standard; you can not rely on any specific behavior. In the ch_p4

case, a new process is forked to handle connection requests; it terminates with the
end of the program.

You can use the threaded listener with the ch_p4 device, or use the ch_p4mpd device
instead. Note, however, that this code is not portable because it relies on behavior
that the MPI standard does not specify.

9.5.2 HPUX

1. Q: My Fortran programs seem to fail with SIGSEGV when running on HP workstations.

A: Try compiling and linking the Fortran programs with the option +T. This may be
necessary to make the Fortran environment correctly handle interrupts used by mpich

to create connections to other processes.

9.5.3 ch shmem device

1. Q: My program sometimes hangs when using the ch_shmem device.

A: Make sure that you are linking with all of the correct libraries. If you are not using
mpicc, try using mpicc to link your application. The reason for this is that correct
operation of the shared-memory version may depend on additional, system-provided
libraries. For example, under Solaris, the thread library must used, otherwise, non-
functional versions of the mutex routines critical to the correct functioning of the MPI
implementation are taken from ‘libc’ instead.

9.5.4 LINUX

1. Q: Processes fail with messages like

p0_1835: p4_error: Found a dead connection while looking for messages: 1

A: What is happening is that the TCP implementation on this platform is deciding
that the connection has “failed” when it really hasn’t. The current mpich implemen-
tation assumes that the TCP implementation will not close connections and has no
code to reanimate failed connections. Future versions of mpich will work around this
problem.

In addition, some users have found that the single processor Linux kernel is more
stable than the SMP kernel.

9.5.5 Workstation Networks

1. Q: My job runs to completion but exits with the message

54

Timeout in waiting for processes to exit. This may be due to a defective

rsh program (Some versions of Kerberos rsh have been observed to have this

problem).

This is not a problem with P4 or \mpich\ but a problem with the operating

environment. For many applications, this problem will only slow down

process termination.

What does this mean?

A:

If anything causes the rundown in MPI_Finalize to take more than about 5 minutes,
it becomes suspicious of the rsh implementation. The rsh used with some Kerberos
installations assumed that sizeof(FD_SET) == sizeof(int). This meant that the
rsh program assumed that the largest FD value was 31. When a program uses fork

to create processes that launch rsh, while maintaining the stdin, stdout, and stderr
to the forked process, this assumption is no longer true, since the FD that rsh creates
for the socket may be > 31 if there are enough processes running. When using such a
broken implementation of rsh, the symptom is that jobs never terminate because the
rsh jobs are waiting (with select) for the socket to close.

The ch_p4mpd device eliminates this problem.

9.6 Trouble with Input and Output

9.6.1 General

1. Q: I want output from printf to appear immediately.

A: This is really a feature of your C and/or Fortran runtime system. For C, consider

setbuf(stdout, (char *)0);

or

setvbuf(stdout, NULL, _IONBF, 0);

9.6.2 IBM SP

1. Q: I have code that prompts the user and then reads from standard input. On IBM
SPx systems, the prompt does not appear until after the user answers the prompt!

A: This is a feature of the IBM POE system. There is a POE routine,
mpc_flush(1), that you can use to flush the output. Read the man page on this
routine; it is synchronizing over the entire job and cannot be used unless all processes
in MPI_COMM_WORLD call it. Alternately, you can always end output with the newline
character (\n); this will cause the output to be flushed but will also put the user’s
input on the next line.

55

9.6.3 Workstation Networks

1. Q: I want standard output (stdout) from each process to go to a different file.

A: mpich has no built-in way to do this. In fact, it prides itself on gathering the
stdouts for you. You can do one of the following:

(a) Use Unix built-in commands for redirecting stdout from inside your program (
dup2, etc.). The MPE routine MPE_IO_Stdout_to_file, in ‘mpe/src/mpe_io.c’,
shows one way to do this. Note that in Fortran, the approach of using dup2 will
work only if the Fortran PRINT writes to stdout. This is common but by no
means universal.

(b) Write explicitly to files instead of to stdout (use fprintf instead of printf,
etc.). You can create the file name from the process’s rank. This is the most
portable way.

9.7 Upshot and Nupshot

The upshot and nupshot programs require specific versions of the tcl and tk languages.
This section describes only problems that may occur once these tools have been successfully
built.

9.7.1 General

1. Q: When I try to run upshot or nupshot, I get

No display name and no $DISPLAY environment variables

A: Your problem is with your X environment. Upshot is an X program. If your
workstation name is ‘foobar.kscg.gov.tw’, then before running any X program, you
need to do

setenv DISPLAY foobar.kscg.gov.tw:0

If you are running on some other system and displaying on foobar, you might need
to do

xhost +othermachine

on foobar; this gives othermachine permission to write on foobar’s display.

If you do not have an X display (you are logged in from a Windows machine without
an X capability) then you cannot use upshot.

2. Q: When trying to run upshot, I get

upshot: Command not found.

A: First, check that upshot is in your path. You can use the command

56

which upshot

to do this.

If it is in your path, the problem may be that the name of the wish interpreter (used
by upshot) is too long for your Unix system. Look at the first line of the ‘upshot’
file. It should be something like

#! /usr/local/bin/wish -f

If it is something like

#! /usr/local/tcl7.4-tk4.2/bin/wish -f

this may be too long of a name (some Unix systems restrict this first line to a mere
32 characters). To fix this, you’ll need to put a link to ‘wish’ somewhere where the
name will be short enough. Alternately, you can start upshot with

/usr/local/tcl7.4-tk4.2/bin/wish -f /usr/local/mpich/bin/upshot

9.7.2 HP-UX

1. Q: When trying to run upshot under HP-UX, I get error messages like

set: Variable name must begin with a letter.

or

upshot: syntax error at line 35: ‘(’ unexpected

A: Your version of HP-UX limits the shell names to very short strings. Upshot is
a program that is executed by the wish shell, and for some reason HP-UX is both
refusing to execute in this shell and then trying to execute the upshot program using
your current shell (e.g., ‘sh’ or ‘csh’), instead of issuing a sensible error message about
the command name being too long. There are two possible fixes:

(a) Add a link with a much shorter name, for example

ln -s /usr/local/tk3.6/bin/wish /usr/local/bin/wish

Then edit the upshot script to use this shorter name instead. This may require
root access, depending on where you put the link.

(b) Create a regular shell program containing the lines

#! /bin/sh

/usr/local/tk3.6/bin/wish -f /usr/local/mpi/bin/upshot

(with the appropriate names for both the ‘wish’ and ‘upshot’ executables).

Also, file a bug report with HP. At the very least, the error message here is wrong;
also, there is no reason to restrict general shell choices (as opposed to login shells).

57

Appendices

A Automatic generation of profiling libraries

The profiling wrapper generator (wrappergen) has been designed to complement the MPI
profiling interface. It allows the user to write any number of ‘meta’ wrappers which can be
applied to any number of MPI functions. Wrappers can be in separate files, and can nest
properly, so that more than one layer of profiling may exist on indiividual functions.

Wrappergen needs three sources of input:

1. A list of functions for which to generate wrappers.

2. Declarations for the functions that are to be profiled. For speed and parsing simplicity,
a special format has been used. See the file ‘proto’. The MPI-1 functions are in
‘mpi_proto’. The I/O functions from MPI-2 are in ‘mpiio_proto’.

3. Wrapper definitions.

The list of functions is simply a file of whitespace-separated function names. If omitted,
any forallfn or fnall macros will expand for every function in the declaration file.

If no function declarations are provided, the ones in ‘mpi_proto’ are used (this is set
with the PROTO_FILE definition in the ‘Makefile’).

The options to wrappergen are:

-w file Add file to the list of wrapper files to use.

-f file file contains a whitespace separated list of function names to profile.

-p file file contains the special function prototype declarations.

-o file Send output to file.

For example, to time each of the I/O routines, use

cd mpe/profiling/lib

../wrappergen/wrappergen -p ../wrappergen/mpiio_proto \

-w time_wrappers.w > time_io.c

The resulting code need only a version of MPI_Finalize to output the time values. That
can be written either by adding MPI_Finalize and MPI_Init to ‘mpiio_proto’ or through a
fairly simple edit of the version produced when using ‘mpi_proto’ instead of ‘mpiio_proto’.

A.1 Writing wrapper definitions

Wrapper definitions themselves consist of C code with special macros. Each macro is
surrounded by the ff gg escape sequence. The following macros are recognized by
wrappergen:

58

{{fileno}}

An integral index representing which wrapper file the macro came from. This
is useful when declaring file-global variables to prevent name collisions. It is
suggested that all identifiers declared outside functions end with _{{fileno}}.
For example:

static double overhead_time_{{fileno}};

might expand to:

static double overhead_time_0;

(end of example).

{{forallfn <function name escape> <function A> <function B> ... }}

...

{{endforallfn}}

The code between {{forallfn}} and {{endforallfn}} is copied once for every
function profiled, except for the functions listed, replacing the escape string
specified by <function name escape> with the name of each function. For
example:

{{forallfn fn_name}}static int {{fn_name}}_ncalls_{{fileno}};

{{endforallfn}}

might expand to:

static int MPI_Send_ncalls_1;

static int MPI_Recv_ncalls_1;

static int MPI_Bcast_ncalls_1;

(end of example)

{{foreachfn <function name escape> <function A> <function B> ... }}

...

{{endforeachfn}}

{{foreachfn}} is the same as {{forallfn}} except that wrappers are written
only the functions named explicitly. For example:

{{forallfn fn_name mpi_send mpi_recv}}

static int {{fn_name}}_ncalls_{{fileno}};

{{endforallfn}}

might expand to:

static int MPI_Send_ncalls_2;

static int MPI_Recv_ncalls_2;

59

(end of example)

{{fnall <function name escape> <function A> <function B> ... }}

...

{{callfn}}

...

{{endfnall}}

{{fnall}} defines a wrapper to be used on all functions except the functions
named. Wrappergen will expand into a full function definition in traditional
C format. The {{callfn}} macro tells wrappergen where to insert the call
to the function that is being profiled. There must be exactly one instance
of the {{callfn}} macro in each wrapper definition. The macro specified by
<function name escape> will be replaced by the name of each function.
Within a wrapper definition, extra macros are recognized.

{{vardecl <type> <arg> <arg> ... }}

Use vardecl to declare variables within a wrapper definition. If
nested macros request variables through vardecl with the same names,
wrappergen will create unique names by adding consecutive integers
to the end of the requested name (var, var1, var2, ...) until a unique
name is created. It is unwise to declare variables manually in a wrap-
per definition, as variable names may clash with other wrappers, and
the variable declarations may occur later in the code than statements
from other wrappers, which is illegal in classical and ANSI C.

{{<varname>}}

If a variable is declared through vardecl, the requested name for
that variable (which may be different from the uniquified form that
will appear in the final code) becomes a temporary macro that will
expand to the uniquified form. For example,

{{vardecl int i d}}

may expand to:

int i, d3;

(end of example)

{{<argname>}}

Suggested but not neccessary, a macro consisting of the name of one
of the arguments to the function being profiled will be expanded to
the name of the corresponding argument. This macro option serves
little purpose other than asserting that the function being profilied
does indeed have an argument with the given name.

{{<argnum>}}

60

Arguments to the function being profiled may also be referenced by
number, starting with 0 and increasing.

{{returnVal}}

ReturnVal expands to the variable that is used to hold the return
value of the function being profiled.

{{callfn}}

callfn expands to the call of the function being profiled. With nested wrapper
definitions, this also represents the point at which to insert the code for any
inner nested functions. The nesting order is determined by the order in which
the wrappers are encountered by wrappergen. For example, if the two files
‘prof1.w’ and ‘prof2.w’ each contain two wrappers for MPI Send, the profiling
code produced when using both files will be of the form:

int MPI_Send(args...)

arg declarations...

{

/*pre-callfn code from wrapper 1 from prof1.w */

/*pre-callfn code from wrapper 2 from prof1.w */

/*pre-callfn code from wrapper 1 from prof2.w */

/*pre-callfn code from wrapper 2 from prof2.w */

returnVal = MPI_Send(args...);

/*post-callfn code from wrapper 2 from prof2.w */

/*post-callfn code from wrapper 1 from prof2.w */

/*post-callfn code from wrapper 2 from prof1.w */

/*post-callfn code from wrapper 1 from prof1.w */

return returnVal;

}

{{fn <function name escape> <function A> <function B> ... }}

...

{{callfn}}

...

{{endfnall}}

fn is identical to fnall except that it only generates wrappers for functions
named explicitly. For example:

{{fn this_fn MPI_Send}}

{{vardecl int i}}

{{callfn}}

61

printf("Call to {{this_fn}}.\n");

printf("{{i}} was not used.\n");

printf("The first argument to {{this_fn}} is {{0}}\n");

{{endfn}}

will expand to:

int MPI_Send(buf, count, datatype, dest, tag, comm)

void * buf;

int count;

MPI_Datatype datatype;

int dest;

int tag;

MPI_Comm comm;

{

int returnVal;

int i;

returnVal = PMPI_Send(buf, count, datatype, dest, tag, comm);

printf("Call to MPI_Send.\n");

printf("i was not used.\n");

printf("The first argument to MPI_Send is buf\n");

return returnVal;

}

{{fn_num}}

This is a number, starting from zero. It is incremented every time it is used.

A sample wrapper file is in ‘sample.w’ and the corresponding output file is in
‘sample.out’.

B Options for mpirun

The options for mpirun as shown by mpirun -help, are (note that not all options are
supported by all devices). Depending on the specific device, the output of mpirun -help

may differ; the following is for the globus2 device.

mpirun [mpirun_options...] <progname> [options...]

mpirun_options:

-arch <architecture>

specify the architecture (must have matching machines.<arch>

file in /usr/local/mpich/bin/machines) if using the execer

-h This help

-machine <machine name>

use startup procedure for <machine name>

mpirun [mpirun_options...] <progname> [options...]

62

mpirun_options:

-arch <architecture>

specify the architecture (must have matching machines.<arch>

file in /usr/local/mpich/bin/machines) if using the execer

-h This help

-machine <machine name>

use startup procedure for <machine name>

Currently supported:

paragon

p4

sp1

ibmspx

anlspx

sgi_mp

ipsc860

inteldelta

cray_t3d

execer

smp

symm_ptx

-machinefile <machine-file name>

Take the list of possible machines to run on from the

file <machine-file name>. This is a list of all available

machines; use -np <np> to request a specific number of machines.

-np <np>

specify the number of processors to run on

-nodes <nodes>

specify the number of nodes to run on (for SMP systems,

currently only ch_mpl device supports this)

-nolocal

don’t run on the local machine (only works for ch_p4 jobs)

-all-cpus, -allcpus

Use all available CPUs on all the nodes.

-all-local

Run all processes on the master node.

-exclude <list>

Exclude nodes in a colon delimited list.

-map <list>

Use the colon delimited list to specify which rank

runs on which nodes.

-stdin filename

Use filename as the standard input for the program. This

is needed for programs that must be run as batch jobs, such

as some IBM SP systems and Intel Paragons using NQS (see

-paragontype below).

use

-stdin /dev/null

if there is no input and you intend to run the program in the

background. An alternate is to redirect standard input from

/dev/null, as in

mpirun -np 4 a.out < /dev/null

-t Testing - do not actually run, just print what would be

executed

63

-v Verbose - throw in some comments

-dbg The option ’-dbg’ may be used to select a debugger. For example,

-dbg=gdb invokes the mpirun_dbg.gdb script located in the

’mpich/bin’ directory. This script captures the correct arguments,

invokes the gdb debugger, and starts the first process under gdb

where possible. There are 4 debugger scripts; gdb, xxgdb, ddd,

totalview. These may need to be edited depending on your system.

There is another debugger script for dbx, but this one will always

need to be edited as the debugger commands for dbx varies between

versions. You can also use this option to call another debugger;

for example, -dbg=mydebug. All you need to do is write a script

file, ’mpirun_dbg.mydebug’, which follows the format of the

included debugger scripts, and place it in the mpich/bin directory.

-ksq Keep the send queue. This is useful if you expect later

to attach totalview to the running (or deadlocked) job, and

want to see the send queues. (Normally they are not maintained

in a way which is visible to the debugger).

Options for the globus2 device:

With the exception of -h, these are the only mpirun options supported

by the globus device.

-machinefile <machine-file name>

Take the list of possible machines to run on from the

file <machine-file name>

-np <np>

specify the number of processors to run on

-dumprsl - display the RSL string that would have been

used to submit the job. using this option

does not run the job.

-globusrsl <globus-rsl-file name>

<globus-rsl-file name> must contain a Globus RSL

string. When using this option all other mpirun options

are ignored.

Special Options for Batch Environments:

-mvhome Move the executable to the home directory. This

is needed when all file systems are not cross-mounted

Currently only used by anlspx

-mvback files

Move the indicated files back to the current directory.

Needed only when using -mvhome; has no effect otherwise.

-maxtime min

Maximum job run time in minutes. Currently used only

by anlspx. Default value is $max_time minutes.

-nopoll Do not use a polling-mode communication.

64

Available only on IBM SPs.

Special Options for IBM SP2:

-cac name

CAC for ANL scheduler. Currently used only by anlspx.

If not provided will choose some valid CAC.

On exit, mpirun returns a status of zero unless mpirun detected a problem, in which
case it returns a non-zero status.

When using the ch_p4 device, multiple architectures may be handled by giving multiple
-arch and -np arguments. For example, to run a program on 2 sun4s and 3 rs6000s, with
the local machine being a sun4, use

mpirun -arch sun4 -np 2 -arch rs6000 -np 3 program

This assumes that program will run on both architectures. If different executables are
needed, the string ’%a’ will be replaced with the arch name. For example, if the programs
are program.sun4 and program.rs6000, then the command is

mpirun -arch sun4 -np 2 -arch rs6000 -np 3 program.%a

If instead the executables are in different directories; for example, ‘/tmp/me/sun4’ and
‘/tmp/me/rs6000’, then the command is

mpirun -arch sun4 -np 2 -arch rs6000 -np 3 /tmp/me/%a/program

It is important to specify the architecture with -arch before specifying the number of
processors. Also, the first arch command must refer to the processor on which the job will
be started. Specifically, if -nolocal is not specified, then the first -arch must refer to the
processor from which mpirun is running.

C mpirun and Globus

In the section we describe how to run MPI programs using the mpich globus2 device in
a Globus-enabled distributed computing environment. It is assumed that (a) Globus has
been installed and the appropriate Globus daemons are running on the machines you wish
to launch your MPI application, (b) you have already acquired your Globus ID and security
credentials, (c) your Globus ID has been registered on all machines, and (d) you have a valid
(unexpired) Globus proxy. See http://www.globus.org for information on those topics.

Every mpirun command under the globus2 device submits a Globus Resource Specifi-
cation Language Script, or simply RSL script, to a Globus-enabled grid of computers. Each
RSL script is composed of one or more RSL subjobs, typically one subjob for each machine

65

in the computation. You may supply your own RSL script5 explicitly to mpirun (using
the -globusrsl <rslfilename> option) in which case you would not specify any other
options to mpirun, or you may have mpirun construct an RSL script for you based on the
arguments you pass to mpirun and the contents of your machines file (discussed below). In
either case it is important to remember communication between nodes in different subjobs
is always facilitated over TCP/IP and the more efficient vendor-supplied MPI is used only
among nodes within the same subjob.

C.1 Using mpirun To Construct An RSL Script For You

You would use this method if you wanted to launch a single executable file, which implies a
set of one or more binary-compatible machines that all share the same filesystem (i.e., they
can all access the executable file).

Using mpirun to construct an RSL script for you requires a machines file. The mpirun

command determines which machines file to use as follows:

1. If a -machinefile <machinefilename> argument is specified on the
mpirun command, it uses that; otherwise,

2. it looks for a file ‘machines’ in the directory in which you typed mpirun; and finally,

3. it looks for ‘/usr/local/mpich/bin/machines’ where ‘/usr/local/mpich’ is the
mpich installation directory.

If it cannot find a machines file from any of those places then mpirun fails.

The machines file is used to list the computers upon which you wish to run your ap-
plication. Computers are listed by naming the Globus “service” on that machine. For
most applications the default service can be used, which requires specifying only the fully
qualified domain name. Consult your local Globus administrator or the Globus web site
www.globus.org for more information regarding special Globus services. For example,
consider the following pair of binary-compatible machines, fm1,m2g.utech.edu, that have
access to the same filesystem. Here is what a machines file that uses default Globus services
might look like.

"m1.utech.edu" 10

"m2.utech.edu" 5

The number appearing at the end of each line is optional (default=1). It specifies the
maximum number of nodes that can be created in a single RSL subjob on each machine.
mpirun uses the -np specification by “wrapping around” the machines file. For example,
using the machines file above mpirun -np 8 creates an RSL with a single subjob with 8
nodes on m1.utech.edu, while mpirun -np 12 creates two subjobs where the first subjob
has 10 nodes on m1.utech.edu and the second has 2 nodes on m2.utech.edu, and finally
mpirun -np 17 creates three subjobs with 10 nodes on m1.utech.edu followed by 5 nodes

5See www.globus.org for the syntax and semantics of the Globus Resource Specification Language.

66

on m2.utech.edu ending with the third a final subjob having two nodes on m1.utech.edu

again. Note that inter-subjob messaging is always communicated over TCP, even if the two
separate subjobs are the same machine.

C.1.1 Using mpirun By Supplying Your Own RSL Script

You would use mpirun supplying your own RSL script if you were submitting to a set of
machines that could not run or access the same executable file (e.g., machines that are not
binary compatible and/or do not share a file system). In this situation, we must currently
use something called a Resource Specification Language (RSL) request to specify the exe-
cutable filename for each machine. This technique is very flexible, but rather complex; work
is currently underway to simplify the manner in which these issues are addressed.

The easiest way to learn how to write your own RSL request is to study the one generated
for you by mpirun. Consider the example where we wanted to run an application on a cluster
of workstations. Recall our machines file looked like this:

"m1.utech.edu" 10

"m2.utech.edu" 5

To view the RSL request generated in this situation, without actually launching the program,
we type the following mpirun command:

% mpirun -dumprsl -np 12 myapp 123 456

which produces the following output:

+

(&(resourceManagerContact="m1.utech.edu")

(count=10)

(jobtype=mpi)

(label="subjob 0")

(environment=(GLOBUS_DUROC_SUBJOB_INDEX 0))

(arguments=" 123 456")

(directory=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus)

(executable=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus/myapp)

)

(&(resourceManagerContact="m2.utech.edu")

(count=2)

(jobtype=mpi)

(label="subjob 1")

(environment=(GLOBUS_DUROC_SUBJOB_INDEX 1))

(arguments=" 123 456")

(directory=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus)

(executable=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus/myapp)

)

Note that (jobtype=mpi) may appear only in those subjobs whose machines have vendor-
supplied implementations of MPI. Additional environment variables may be added as in the
example below:

67

+

(&(resourceManagerContact="m1.utech.edu")

(count=10)

(jobtype=mpi)

(label="subjob 0")

(environment=(GLOBUS_DUROC_SUBJOB_INDEX 0)

(MY_ENV 246))

(arguments=" 123 456")

(directory=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus)

(executable=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus/myapp)

)

(&(resourceManagerContact="m2.utech.edu")

(count=2)

(jobtype=mpi)

(label="subjob 1")

(environment=(GLOBUS_DUROC_SUBJOB_INDEX 1))

(arguments=" 123 456")

(directory=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus)

(executable=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus/myapp)

)

After editing your own RSL file you may submit that directly to mpirun as follows:

% mpirun -globusrsl <myrslrequestfile>

Note that when supplying your own RSL it should be the only argument you specify to
mpirun.

RSL is a flexible language capable of doing much more than has been presented here. For
example, it can be used to stage executables and to set environment variables on remote
computers before starting execution. A full description of the language can be found at
http://www.globus.org.

Acknowledgments

The work described in this report has benefited from conversations with and use by a large
number of people. We also thank those that have helped in the implementation of mpich,
particularly Patrick Bridges and Edward Karrels. Particular thanks goes to Nathan Doss
and Anthony Skjellum for valuable help in the implementation and development of mpich.
Debbie Swider, who worked with the mpich group for several years, helped support and
enrich the mpich implementation. David Ashton has provided the Windows NT imple-
mentation of mpich, supported by a grant from the Microsoft coroporation. The Globus2
device was implemented by Nick Karonis of Northern Illinois University and Brian Toonen
of Argonne National Laboratory. The C++ bindings were implemented by Andrew Lums-
daine and Jeff Squyres of the University of Notre Dame. The ROMIO MPI-2 parallel I/O
subsystem was implemented by Rajeev Thakur of Argonne.

68

D Deprecated Features

During the development of mpich, various features were developed for the installation and
use of mpich. Some of these have been superceeded by newer features that are described
above. This section archives the documentation on the deprecated features.

D.1 More detailed control over compiling and linking

For more control over the process of compiling and linking programs for mpich, you should
use a ‘Makefile’. Rather than modify your ‘Makefile’ for each system, you can use a
makefile template and use the command ‘mpireconfig’ to convert the makefile template
into a valid ‘Makefile’. To do this, start with the file ‘Makefile.in’ in
‘/usr/local/mpich/examples’. Modify this ‘Makefile.in’ for your program and then
enter

mpireconfig Makefile

(not mpireconfig Makefile.in). This creates a ‘Makefile’ from ‘Makefile.in’. Then
enter:

make

References

[1] TotalView Multiprocess Debugger/Analyzer, 2000.
http://www.etnus.com/Products/TotalView.

[2] Ralph Butler and Ewing Lusk. User’s guide to the p4 parallel programming system.
Technical Report ANL-92/17, Argonne National Laboratory, Argonne, IL, 1992.

[3] James Cownie and William Gropp. A standard interface for debugger access to message
queue information in MPI. In Jack Dongarra, Emilio Luque, and Tomàs Margalef,
editors, Recent Advances in Parallel Virtual Machine and Message Passing Interface,
volume 1697 of Lecture Notes in Computer Science, pages 51–58. Springer Verlag, 1999.
6th European PVM/MPI Users’ Group Meeting, Barcelona, Spain, September 1999.

[4] Message Passing Interface Forum. MPI: A message-passing interface standard. Com-
puter Science Dept. Technical Report CS-94-230, University of Tennessee, Knoxville,
TN, 1994.

[5] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill
Nitzberg, William Saphir, and Marc Snir. MPI—The Complete Reference: Volume
2, The MPI-2 Extensions. MIT Press, Cambridge, MA, 1998.

[6] William Gropp and Ewing Lusk. Installation guide for mpich, a portable implementa-
tion of MPI. Technical Report ANL-96/5, Argonne National Laboratory, 1996.

69

[7] William Gropp and Ewing Lusk. A high-performance MPI implementation on a shared-
memory vector supercomputer. Parallel Computing, 22(11):1513–1526, January 1997.

[8] William Gropp and Ewing Lusk. Sowing MPICH: A case study in the dissemination of
a portable environment for parallel scientific computing. IJSA, 11(2):103–114, Summer
1997.

[9] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-
performance, portable implementation of the MPI Message-Passing Interface standard.
Parallel Computing, 22(6):789–828, 1996.

[10] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel
Programming with the Message Passing Interface, 2nd edition. MIT Press, Cambridge,
MA, 1999.

[11] William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Features of
the Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

[12] M. T. Heath. Recent developments and case studies in performance visualization us-
ing ParaGraph. In G. Haring and G. Kotsis, editors, Performance Measurement and
Visualization of Parallel Systems, pages 175–200. Elsevier Science Publishers, 1993.

[13] Virginia Herrarte and Ewing Lusk. Studying parallel program behavior with upshot.
Technical Report ANL–91/15, Argonne National Laboratory, 1991.

[14] Message Passing Interface Forum. MPI: A Message-Passing Interface standard. Inter-
national Journal of Supercomputer Applications, 8(3/4):165–414, 1994.

[15] Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufman, 1997.

[16] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Don-
garra. MPI—The Complete Reference: Volume 1, The MPI Core, 2nd edition. MIT
Press, Cambridge, MA, 1998.

[17] Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. Toward scalable per-
formance visualization with Jumpshot. High Performance Computing Applications,
13(2):277–288, Fall 1999.

70

