
Early Experiments with the
OpenMP/MPI Hybrid Programming Model

Ewing Lusk1? and Anthony Chan2

1 Mathematics and Computer Science Division
Argonne National Laboratory

2 ASCI FLASH Center
University of Chicago

Abstract. The paper describes some very early experiments on new ar-
chitectures that support the hybrid programming model. Our results are
promising in that OpenMP threads interact with MPI as desired, allow-
ing OpenMP-agnostic tools to be used. We explore three environments:
a “typical” Linux cluster, a new large-scale machine from SiCortex, and
the new IBM BG/P, which have quite different compilers and runtime
systems for both OpenMP and MPI. We look at a few simple, diagnostic
programs, and one “application-like” test program. We demonstrate the
use of a tool that can examine the detailed sequence of events in a hy-
brid program and illustrate that a hybrid computation might not always
proceed as expected.

1 Introduction

Combining shared-memory and distributed-memory programming models is an
old idea [21]. One wants to exploit the strengths of both models: the efficiency,
memory savings, and ease of programming of the shared-memory model and the
scalability of the distributed-memory model. Until recently, the relevant models,
languages, and libraries for shared-memory and distributed-memory architec-
tures have evolved separately, with MPI [7] becoming the dominant approach for
the distributed-memory, or message-passing, model, and OpenMP [9, 15] emerg-
ing as the dominant “high-level” approach for shared memory with threads. We
say “high-level” since it is higher level than the POSIX pthread specification [8].
We use quotation marks around the expression because OpenMP is not as high
level as some other proposed languages that use models with a global view of
data [1, 19].

? This work was supported in part by the U.S. Department of Energy Contract
#B523820 to the ASC/Alliance Center for Astrophysical Thermonuclear Flashes
at the University of Chicago and in part by the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Departent of Energy, under Contract
DE-AC02-06CH11357.

2 Ewing Lusk and Anthony Chan

Recently, the hybrid model has begun to attract more attention, for at least
two reasons. The first is that it is relatively easy to pick a language/library in-
stantiation of the hybrid model: OpenMP plus MPI. While there may be other
approaches, they remain research and development projects, whereas OpenMP
compilers and MPI libraries are now solid commercial products, with imple-
mentations from multiple vendors. Moreover, we demonstrate in this paper that
OpenMP and MPI implementations on significant platforms work together as
they should (see Section 2.) The second reason is that scalable parallel comput-
ers now appear to encourage this model. The fastest machines now virtually all
consist of multi-core nodes connected by a high speed network. The idea of using
OpenMP threads to exploit the multiple cores per node (with one multithreaded
process per node) while using MPI to communicate among the nodes appears
obvious. Yet one can also use an “MPI everywhere” approach on these architec-
tures, and the data on which approach is better is confusing and inconclusive.
It appears to be heavily dependent on the hardware, the OpenMP and MPI im-
plementations, and above all on the application and the skill of the application
writer.

We do not intend to settle here the question of whether the hybrid approach
is good or bad. Postings to assorted discussion lists claim to have proven both
positions. Instead we describe three interesting environments in which this ques-
tion can be studied, and present some preliminary experiments.

Considerable work has gone into studying the hybrid model. Some examples
can be found in [12, 18, 20]. What is new in this paper is 1) a discussion of the
relationship between the MPI standard and the OpenMP standard, 2) presenta-
tion of early results on two brand-new machines that support the hybrid model
in an efficient way, and 3) depiction of a particular performance visualization
tool looking at hybrid codes.

The rest of the paper is organized as follows. In Section 2 we describe aspects
of MPI and OpenMP that pertain to their use with each other. In Section 3
we describe a performance visualization tool and recent enhancements to it that
enable it to be used to study the behavior of hybrid programs. Section 4 describes
the three environments that we used for our experiments, and early results from
our experiments are in Section 5. We present some conclusions and plans for
future work in Section 6.

2 What the Standards Say

Hybrid programming with two portable APIs would be impossible unless each
made certain commitments to the other on how they would behave. In the case
of OpenMP, the important commitment is that if a single thread is blocked by an
operating system call (such as file or network I/O) then the remaining threads in
that process will remain runnable. In our situation, this means that an MPI call
that may block, such as MPI Recv or MPI Wait, will only block the calling thread
and not the entire process. This is a significant commitment, since it involves

Early Experiments with Hybrid Programming 3

the thread scheduler in the compiler’s runtime system and interaction with the
operating system.

The commitments made by the MPI standard are more complex. The MPI-
2 standard defines four levels of thread safety. These are in the form of what
commitments the application makes to the MPI implementation.

MPI THREAD SINGLE There is only one thread in the application.
MPI THREAD FUNNELED There is only one thread that makes MPI calls.
MPI THREAD SERIALIZED Multiple threads make MPI calls, but only one at a

time.
MPI THREAD MULTIPLE Any thread may make MPI calls at any time.

An application can find out at run time which level is supported by the MPI
library it is linked with by means of the MPI Init thread function call.

These levels correspond to the use of MPI in an OpenMP program in the
following way:

MPI THREAD SINGLE There is no OpenMP multithreading in the program.
MPI THREAD FUNNELED All of the MPI calls are made by the master thread. This

will happen if all MPI calls are outside OpenMP parallel regions or are in
master regions. A thread can determine if it is the master thread with the
MPI Is thread main call. More precisely, it determines whether it is the
same thread that called MPI Init or MPI Init thread.

MPI THREAD SERIALIZED The MPI calls are made by only one thread at a time.
This can be enforced in OpenMP by a construction like:

#pragma omp parallel
...
#pragma omp single
{

...MPI calls allowed here...
}

(as long as nested parallelism is not used.)
MPI THREAD MULTIPLE MPI calls can be made anywhere, by any thread.

All MPI implementations of course support MPI THREAD SINGLE. The na-
ture of typical MPI implementations is such that they probably also support
MPI THREAD FUNNELED, even if they don’t admit it by returning this value from
MPI Init thread, presuming they use a thread-safe malloc and other system
calls, likely in any OpenMP application. Usually when people refer to an MPI im-
plementation as “thread safe” they mean at the level of MPI THREAD MULTIPLE.
It is worth noting that OpenMP encourages a style of programming that only
requires MPI THREAD FUNNELED, so hybrid programming does not necessarily re-
quire a fully “thread safe” MPI.

4 Ewing Lusk and Anthony Chan

3 Visualizing the Behavior of Hybrid Programs

Over the years we have found it surprisingly difficult to predict the behavior of
complex MPI programs, and have developed a number of tools to assist in the
process of understanding them as an important step in tuning them for perfor-
mance. Understanding complex hybrid programs will be even more difficult. We
describe here an extension to an existing tool to the hybrid case.

3.1 Jumpshot

Jumpshot [5, 22] is a parallel program visualization program that we have long
used to examine the detailed behavior of MPI programs. It provides a “Gantt
chart” view of time lines of parallel processes, with colored rectangles to indicate
the state of a process over a particular time interval. It also uses arrows from one
line to another to indicate messages. While not scalable to very large numbers of
processes (say, greater than 512), Jumpshot’s panning and zooming capabilities,
coupled with its summary views allowing a wide range of time scales to be
viewed, have made it a valuable tool for studying the detailed behavior of parallel
programs.

Jumpshot displays data from SLOG2 [14] files, which are written in an ef-
ficient way during the course of a parallel program execution. The library for
logging events is provided by the MPE package [4] distributed with MPICH2 [6].
Both automatic logging of MPI calls via the MPI profiling interface and user-
defined states and events are provided.

3.2 Jumpshot and Threads

Recently MPE, SLOG2 and Jumpshot have been extended to allow visualization
of multi-threaded, and hence hybrid, programs. We made the assumption that
the threads calling the MPI function or the MPE logging routines directly were
POSIX pthreads, so that we could use the pthread library for the mutexes
required as multiple threads wrote to the same memory buffer containing the
logging records. MPE and SLOG2 were modified to include thread ID’s in the
log records.

Jumpshot needed to be augmented so that separate time lines for separate
threads would be shown. Controls were added to the Jumpshot display to allow
threads to be 1) collapsed into their parent processes, 2) grouped with their
parent processes, or 3) grouped into separate communicators. (A common ap-
plication structure in a program requiring MPI THREAD MULTIPLE is for separate
threads in a process to use separate communicators.) The rest of the figures in
this paper are screenshots of Jumpshot viewing SLOG2 files created by MPE
logging of hybrid programs.

The first step in determining whether Jumpshot could be used with OpenMP
was to determine whether the threads created by OpenMP compilers really were
POSIX pthreads, which MPE, SLOG2, and Jumpshot had already been modified
to handle. Fortunately, in all three of the environments described here, a simple

Early Experiments with Hybrid Programming 5

diagnostic program, in which OpenMP threads created by #pragma omp parallel
used the POSIX interface to request their pthread id’s, was able to prove that
this was the case, and that thread id’s were reused in multiple parallel regions.
This meant that no additional work was needed to adapt the MPE-SLOG2-
Jumpshot pipeline to OpenMP. While most OpenMP implementations “park”
threads like this, the situation could change for some emerging architectures that
support fast thread creation.

Figure 1 is a Jumpshot view of a program with simultaneously communicat-
ing threads that demonstrates that MPICH2 is thread safe at the level of
MPI THREAD MULTIPLE.

Fig. 1. Jumpshot’s Communicator-Thread view of an MPI/pthreads program that
forms a send and receive ring in the subcommunicator created from one single thread
of each process.

Other tools, such as Paraver [13, 17], Vampir [11], and TAU [3] are also avail-
able for visualizing hybrid programs. We focus here on the use of Jumpshot
because of its ability to show extreme detail and its wide availability, in par-
ticularly on the platforms presented here. Jumpshot is included as an optional
viewer in recent releases of TAU.

4 The Hybrid Environments

The three machine/compiler environments that we tested were different in both
hardware and software. All are quite new. The first is a “standard” Linux cluster

6 Ewing Lusk and Anthony Chan

based on AMD dual dual-core nodes. The latter two are examples of low-power,
highly scalable computers. Our intention was not to explicitly compare the per-
formance of these machines, but rather to demonstrate the viability of the hybrid
programming model consisting of OpenMP and MPI on them, and to demon-
strate the Jumpshot tool in these environments.

The details on the three platforms are as follows:

Linux cluster Each node is dual Opteron dual-core 2.8Ghz, i.e. four 2.8 Ghz
cores. The Intel 9.1 fortran compiler, ifort, is used with MPICH2-1.0.6p1
nemesis channel, which uses shared memory for intranode MPI communi-
cation and provides MPI THREAD MULTIPLE support. This is a typical Linux
cluster. Ours has multiple networks, but the experiments were done on Gi-
gabit Ethernet.

IBM BG/P In IBM’s BlueGene/P system [2], each compute node consists
of four PowerPC 850 Mhz cores. IBM’s XLF 11.1 fortran cross-compiler,
bgxlf r, is used with BlueGene MPI version V1R1M2 which provides
MPI THREAD MULTIPLE support. The BlueGene system has a high-performance
3-D torus network for point-to-point communication.

SiCortex SC5832 The SiCortex SC5832[10] consists of 972 six-way SMP com-
pute nodes, i.e six MIPS 500 Mhz cores per node. The Pathscale 3.0.99 for-
tran cross-compiler, scpathf95, is used with the SiCortex MPI implementa-
tion, which provides MPI THREAD FUNNELED support. The SiCortex machine
has a high-performance Kautz network.

All the Fortran compilers mentioned above provide OpenMP support for Fortran.
In addition, the companion C compilers provide OpenMP support for C.

5 Experiments

We did two sorts of experiments: first, a basic exploration of how things work,
and then two of the NAS parallel benchmarks, in order to investigate programs
amenable to the hybrid model for improving performance. The BG/P and SiCor-
tex machines that we used are so new that they are still being tuned by the
vendors, so we focused on behavior rather than scalability of performance. Even
on the large machines we used a small number of nodes.

5.1 Basic tests

We wrote a simple hybrid Fortran program and instrumented it with MPE. The
core of the program looks like this:

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(ii, jj, sum, ierr)

!$OMP DO

do ii = 1, imax

ierr = MPE_Log_event(blkA_startevt, 0, ’’)

sum = 0.0

Early Experiments with Hybrid Programming 7

call random_number(frands)

do jj = 1, jmax

sum = sum + frands(jj) * jj

enddo

ierr = MPE_Log_event(blkA_finalevt, 0, ’’)

enddo

!$OMP END DO nowait

!$OMP END PARALLEL

This loop is repeated three times, to check consistency of thread ids, with
three different event ids in the MPI Log event calls. The MPI calls are outside
the parallel regions, so MPI THREAD FUNNELED is sufficient. Also, no MPI calls
are made in the MPE Log event calls, so while pthread locks are used there,
MPI THREAD MULTIPLE is not needed.

5.2 NAS Benchmarks

To initiate our study of hybrid programs, we choose a family of parallel bench-
marks that have been written to take advantage of the hybrid style, the NAS
parallel multi-zone benchmarks, NPB-MZ-MPI, version 3.1 [16], as the base code
for our experiments. Two application benchmarks in NPB-MZ, namely BT and
SP, were compiled with the respective OpenMP Fortran compiler on the AMD
Linux cluster, the IBM Blue Gene P, and the SiCortex SC5832. We ran the codes
in two different sizes (W and B) and different “modes” i.e., 16 MPI processes on
four multi-core nodes and with four processes on four nodes, with each process
having four threads (and with six each on the SiCortex). Note that the structure
of NPB-MZ-MPI is such that it does not require MPI THREAD MULTIPLE.

From the outset it was clear that a tool capable of showing considerable detail
would be useful in understanding what these programs were actually doing. For
example, Figure 2 shows a short interval of execution on the Linux cluster. It is
clear that although process 1 has 4 threads (actually 6, in this case) active at one
time or another, something is preventing complete 4-way parallelism. (We would
expect the red and green states to be stacked 4 deep, instead of offset in pairs
the way they are.) This turned out to be a consequence of the way we had set the
environment variables OMP NUM THREADS and NPB MAX THREADS, which had the
side effect of deactivating the thread load-balancing algorithm in BT. Without
Jumpshot we might not have realized that something was wrong. Note that we
can see that MPI communication is being done only by the first thread in each
process. The “extra” threads that appear here are created by the load-balancing
code in the BT benchmark, which overrides the OMP NUM THREADS environment
variable set by the user. In later runs we controlled this with NPB MAX THREADS.
Jumpshot alerted us to this anomaly. Results of our experiments are shown in
Table 1.

The benchmarks were compiled with maximum optimization level known on
each platform, i.e. -O3 with ifort on AMD Linux cluster, -O5 with bgxlf r
on BG/P and -O3 with scpathf95 on SiCortex. All these experiments are per-
formed on 4 nodes on each chosen platform with either one process per core

8 Ewing Lusk and Anthony Chan

Fig. 2. Blocked Parallelism captured by Jumpshot

or one thread per core. For instance 16x1 refers to 16 processes running with
1 thread per process on 4 nodes, and 4x4 refers to 4 processes running with 4
threads per process on 4 nodes.

Here are a few general observations.

– The hybrid approach provides higher performance on small (size W) version
of BT on all three of these machines, as message-passing time dominated.

– For SP, even at size W, “MPI everywhere” was better.
– On the size B problems, the “MPI everywhere” model was better than the

hybrid approach.
– On the Sicortex only, we also ran 6 processes or threads per node, on 4

nodes, since each has 6 cores. The overall time dropped, showing the effect
of applying more CPUs, but the machine still preferred the MPI everywhere
model to the hybrid model.

Figure 3 shows the difference on BG/P between processes and threads. Sub-
figures a) and b) show similar time intervals.

Figure 4 shows the effects of running various numbers of threads in processes
on the SiCortex nodes, including more threads than cores, on our basic threading
test program (not NPB). As the number of threads increases over the number of
physical cores, the speed improvement due to parallelization of OpenMP threads
does not seem to be diminishing yet. The reason could be because the SiCortex
machine has yet to be fully optimized, so that extra CPU cycles are available
for extra work, letting it appear to have more physical cores than there are.

Early Experiments with Hybrid Programming 9

(a) np16x1, ViewDuration=0.7825s

(b) np4x4, ViewDuration=0.8000s

Fig. 3. Jumpshot pictures of BT class B running on 4 BG/P nodes with either 1
process or 1 thread per core. (a) np16x1, ViewDuration=0.7825s. (b) np4x4, ViewDu-
ration=0.8000s.

10 Ewing Lusk and Anthony Chan

AMD cluster BG/P SiCortex

bt-mz.W.16x1 1.84 9.46 20.60

bt-mz.W.4x4 0.82 3.74 11.26

sp-mz.W.16x1 0.42 1.79 3.72

sp-mz.W.4x4 0.78 3.00 7.98

bt-mz.B.16x1 24.87 113.31 257.67

bt-mz.B.4x4 27.96 124.60 399.23

sp-mz.B.16x1 21.19 70.69 165.82

sp-mz.B.4x4 24.03 81.47 246.76

bt-mz.B.24x1 241.85

bt-mz.B.4x6 337.86

sp-mz.B.24x1 127.28

sp-mz.B.4x6 211.78
Table 1. NPB-MZ benchmark results are shown in seconds. The row labels are written
in the form of <benchmark name>.<class name> .<process count> x <thread count>.
Where benchmark name is either bt-mz or sp-mz, and class name is either W or B.

(a) np4x1 (b) np4x4

(c) np4x6 (d) np4x8

Fig. 4. Jumpshot pictures of the basic fortran program with OMP NUM THREADS=1, 4, 6,
and 8 on 4 SiCortex nodes.

Early Experiments with Hybrid Programming 11

6 Conclusions and Future Work

Our principal conclusion is that the hybrid programming model represented by
the OpenMP and MPI standards is now available on the newest entries in the
list of scalable high-performance computers as well as on traditional clusters.
Jumpshot is no doubt only one of the tools available for inspecting the detailed
behavior of hybrid programs, but so far few are both portable and freely avail-
able. Thus the pieces are in place, even on some of the largest and newest com-
puters in the high performance computing complex, for application developers
to create applications using this approach.

We have already begun extending the work presented here to other bench-
marks at larger scale and to begin developing useful benchmarks specialized for
the hybrid approach. Lack of space has limited us to the preliminary experiments
presented here, but these show a promising beginning to a more thorough study.

References

1. http://crd.lbl.gov/∼parry/hpcs resources.html.
2. http://www-03.ibm.com/servers/deepcomputing/bluegene.html.
3. http://www.cs.uorigon.edu/research/tau.
4. http://www.mcs.anl.gov/perfvis/download/index.htm#MPE.
5. http://www.mcs.anl.gov/perfvis/software/viewers/index.htm#Jumpshot-4.
6. http://www.mcs.anl.gov/research/projects/mpich2.
7. http://www.mpi-forum.org/docs/docs.html.
8. http://www.opengroup.org/onlinepubs/007908799/xsh/threads.html.
9. http://www.openmp.org/blog/specifications.

10. http://www.sicortex.com/products/sc5832.
11. http://www.vampir.eu.
12. Freack Cappello and Daniel Etiemble. MPI versus MPI+OpenMP on the IBM SP

for the NAS benchmarks. In Proceedings of SuperComputing 2000. IEEE Computer
Society, 2000.

13. Jordi Caubet, Judit Gemenez, Jes Labarta, Luiz DeRose, and Jeffrey Vetter. A
dynamic tracing mechanism for performance analysis of (openmp applications. In
Proceedings of WOMPAT’01, 2001.

14. Anthony Chan, Ewing Lusk, and William Gropp. An efficient format for nearly
constant-time access to arbitrary time intervals in large trace files. 2008, in press.

15. Barbara Chapman, Gabrielle Jost, and Ruud van der Pas. Using OpenMP. MIT
Press, 2007.

16. R. F. Van der Wijingaart and H. Jin. the NAS parallel benchmarks, multi-zone
versions. NAS Technical Report NAS-03-010, NASA Ames Research Center, 2003.
http://www.nas.nasa.gov/Resources/Software/npb.html.

17. F. Freitag, J. Caubet, and J. Labarta. A trace-scaling agent for parallel application
tracing. In IEEE International Converence on Tools with Artivficial Intelligence
(ICTAI), pages 494–499, 2002.

18. Gabriele Jost, Haoquiang Jin, Dieter an Mey, and Ferhat F.
Hatay. Comparing the openmp, mpi and hybrid programming
paradigms on an SMP cluster. In Proceedings of EWOMP’03, 2003.
http://www.nas.nasa.gov/News/Techreports/2003/PDF/nas-030019.pdf.

12 Ewing Lusk and Anthony Chan

19. E. Lusk and K. Yelick. Languages for high-productivity computing: the DARPA
HPCS language project. Parallel Processing Letters, 17(1):89–102, 2001.

20. Rolf Rabenseifner. Hybrid parallel programming on
HPC platforms. In Proceedings of EWOMP’03, 2003.
http://www.compunity.org/events/ewomp03/omptalks/Tuesday/Session7/T01.pdf.

21. Thomas Sterling, Paul Messina, and Paul H. Smith. Enabing Technologies for
Petaflops Computing. MIT Press, 1995.

22. Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. Toward scalable
performance visualization with Jumpshot. High Performance Computing Applica-
tions, 13(2):277–288, Fall 1999.

