
9.3 Nonlinear Least-Squares

A. Purpose

The subroutines in this package estimate parameters in
a nonlinear model using the criterion of least-squares.
Eight different user-callable subroutines are provided to
support different combinations of three options: (1) the
method of obtaining derivative values, (2) bounds on
parameters, and (3) use of a special algorithm for the
separable problem.

On July 8, 2015 this code was getting a divide by 0 with
compiler optimization, but not with just the debug flag.
Krogh has made a very minor change to work around
that problem, but has no confidence that all is o.k. here.

We urge you not to be put off by the length and com-
plexity of this documentation. The length is primarily
due to the large number of internal parameters that are
made accessible via the IV() and V() arrays. For sim-
plest usage you can just set IV(1) = 0 and not store any-
thing into the V() array. Then most of the information
needed to use the package will be found in Section B.1
for the nonseparable subroutines or in Section B.2 for
the separable subroutines. Two sample main programs
are described in Section C and listed following Section
F.

A typical application of this software would be the iden-
tification of parameters in a nonlinear model to provide
the best fit to measured data in the sense of minimizing
the sum of squares of differences between values of the
model function and the observed data. For example one
could define a residual function as

ri(c) = f(ti; c)− yi, i = 1, ..., NDATA, (1)

where yi is an item of measured data associated with an
independent variable value ti, and f is a model function
depending nonlinearly on the NC-dimensional parameter
vector c. The objective function that will be minimized
by subroutines of this package is

ψ(c) =
1

2

NDATA∑
i=1

ri(c)2. (2)

The function ri could be defined in ways other than the
expression in Eq. (1). The package does assume that
ri(c) is a continuously differentiable function of c, [1,
p. 369].

It is not uncommon for some parameters in a nonlin-
ear least-squares problem to occur linearly. When this
is the case we shall say the problem is separable. Algo-
rithms specialized for the separable problem have been

developed. By reducing the dimension of the parameter
space in which the nonlinear search must be executed,
such an algorithm generally has better efficiency and ro-
bustness than an algorithm that does not take advantage
of the separability.

A problem is separable if there is a way the coefficient
vector, c, can be partitioned into two subsets, say α and
β, such that, with the α coefficients held at fixed values,
the model function is a linear function of the β coeffi-
cients. With such a partition we will refer to α as the
nonlinear coefficients, and β as the linear coefficients.
Suppose α has NA components and β has NB compo-
nents. The residual function will be regarded as having
one of the forms

ri(α, β) = β1ϕi,1(α) + · · ·+ βNBϕi,NB(α)− yi, or (3)

ri(α, β) = β1ϕi,1(α) + · · ·
+ βNBϕi,NB(α) + ϕi,NB+1(α)− yi, (4)

where the ϕi,j ’s are assumed to be continuously differ-
entiable functions of α. Typically one will have ϕi,j =
ϕj(ti) where ti is a value of the independent variable in
the data set. Examples of the formulation of problems
as separable are given in Section C, page 12.

Where the symbols x and nx are used here they should
be interpreted as denoting c and NC respectively in the
nonseparable algorithms, and α and NA respectively in
the separable algorithms. The notation ‖ · ‖ will denote
the Euclidean vector norm throughout.

To denote subsets of the eight subroutines defined in Sec-
tions B.1 and B.2 we will use a “wild-card” notation. For
example DNLAxx will denote any of the four subroutines
of Section B.1.

B. Usage

Described below under B.1 through B.5 are:
B.1 Subroutines not Specialized for the Separable Prob-

lem: DNLAFB, DNLAFU, DNLAGB, DNLAGU .1
B.2 Subroutines Specialized for the Separable Problem:

DNLSFB, DNLSFU, DNLSGB, DNLSGU 3
B.3 Setting Options and Using Subroutine DIVSET . . 5
B.4 The Contents of IV() and V() .6
B.5 Modifications for Single Precision 12

B.1 Subroutines not Specialized for the Sep-
arable Problem: DNLAFB, DNLAFU,
DNLAGB, DNLAGU

These subroutines are

DNLAFB Requires function values only. Applies
bounds.

c©1997 Calif. Inst. of Technology, 2015 Math à la Carte, Inc.

July 11, 2015 Nonlinear Least-Squares 9.3–1

DNLAFU Requires function values only. No bounds.

DNLAGB Requires function and derivative values.
Applies bounds.

DNLAGU Requires function and derivative values. No
bounds.

For these subroutines the residual functions, ri, are as-
sumed to be continuously differentiable functions of the
NC-vector c. Although the ri’s are not assumed to have
any particular form, the form shown in Eq. (1) would be
typical.

To conserve space the descriptions of these four subrou-
tines are merged. Note that the argument BND() is
only used by DNLAFB and DNLAGB, and the argument
DCALCJ is only used by DNLAGU and DNLAGB.

B.1.a Program Prototype, Double Precision

INTEGER NDATA, NC, IV(LIV), LIV, LV

DOUBLE PRECISION COEF(≥NC),
BND(2,≥NC), V(LV)

EXTERNAL DCALCR, DCALCJ

Assign values to NDATA, NC, COEF(), BND(), IV(),
LIV, LV, and optionally to V().

CALL DNLAFU (NDATA, NC, COEF,
DCALCR, IV, LIV, LV, V)

CALL DNLAGU (NDATA, NC, COEF,
DCALCR, DCALCJ, IV, LIV, LV, V)

CALL DNLAFB (NDATA, NC, COEF, BND,
DCALCR, IV, LIV, LV, V)

CALL DNLAGB (NDATA, NC, COEF, BND,
DCALCR, DCALCJ, IV, LIV, LV, V)

Results are returned in COEF(), IV(), and V().

B.1.b Argument Definitions

NDATA [in] Number of observations (equations) in
the problem. Require NDATA ≥ 1.

NC [in] Number of coefficients. Require NC ≥ 1. Gen-
erally one would have NC ≤ NDATA; however, NC
> NDATA is permitted. In the latter case the so-
lution will be nonunique, and if the computation is
successful the return value of IV(1) is likely to be 7.

COEF() [inout] On entry, COEF(1:NC) must con-
tain an initial estimate of the solution coefficients,
denoted by c in Eqs. (1) and (2). On return
COEF(1:NC) will contain the subroutine’s best es-
timate of the solution coefficients.

BND() [in] Specifies bounds to be satisfied by the so-
lution coefficients. The bounds are

BND(1, j) ≤ COEF(j) ≤ BND(2, j), j = 1,..., NC

Require BND(1, j) ≤ BND(2,j) for j = 1, ..., NC. If
a coefficient is to be unbounded in one or both direc-
tions, set the appropriate bound very small or very
large, but not to such large magnitudes that the dif-
ference BND(2, j)−BND(1, j) would overflow. If the
initial values for COEF() do not satisfy these bounds
the coefficient values will be immediately altered so
they are within the bounds.

DCALCR [in] The name of a subroutine provided by
the user to compute the residual values, ri, i = 1, ...,
NDATA, using the current COEF() values. It must
have an interface of the form

SUBROUTINE DCALCR(NDATA, NC, COEF, ICOUNT,

RES)

INTEGER NDATA, NC, ICOUNT

DOUBLE PRECISION COEF(NC), RES(NDATA)

DCALCR must store the residual values in RES(i),
i = 1, ..., NDATA. DCALCR must not change the
values of NDATA, NC, or COEF().

In some applications DCALCR may need additional
data, such as the ti’s or yi’s of Eq. (1), that may have
been input by the user’s main program. One way to
handle this in Fortran 77 is by use of named COM-
MON blocks.

ICOUNT is a count of calls to DCALCR maintained
by DNLAxx. DCALCR can reset ICOUNT to zero
as a signal that it cannot evaluate the residual using
the current COEF() values. This will cause DNLAxx
to change the values in COEF() and try again.

DCALCJ [in] The name of a subroutine provided by
the user to compute the Jacobian matrix of partial
derivatives of the residual vector with respect to the
coefficients using the current COEF() values. It must
have an interface of the form

SUBROUTINE DCALCJ(NDATA, NC, COEF, ICOUNT,

AJAC)

INTEGER NDATA, NC, ICOUNT

DOUBLE PRECISION COEF(NC), AJAC(NDATA, NC)

DCALCJ must store the value of the ∂ri/∂cj in
AJAC(i, j), for i = 1, ..., NDATA, and j = 1, ..., NC.
DCALCJ must not change the values of NDATA, NC,
or COEF().

If DCALCJ needs additional data, that may have
been input by the user’s main program, such data
can be made available to DCALCJ via named COM-
MON blocks.

9.3–2 Nonlinear Least-Squares July 11, 2015

ICOUNT is a count of calls to DCALCR maintained
by DNLAxx. DCALCJ can reset ICOUNT to zero as
a signal that it cannot evaluate the partial derivatives
using the current COEF() values. This will cause
DNLAxx to return to the calling program with IV(1)
set to 65.

Generally the computation of the Jacobian matrix in-
volves subexpressions that also appear in computing
the residual vector. If efficiency is particularly im-
portant, the subroutines DCALCR and DCALCJ can
be designed to avoid recalculation of such subexpres-
sions. DCALCR can store values of common subex-
pressions into a COMMON block and copy ICOUNT
into a COMMON variable, say KTAG, each time it
is invoked. When DCALCJ is called it can compare
KTAG from COMMON with ICOUNT from its ar-
gument list. When they are the same, which they
will be most of the time, it means COEF() still has
the same value it had when the subexpressions were
computed, and thus DCALCJ can use these subex-
pression values without recomputing them.

For greatest efficiency DCALCR should save the two
most recent evaluations, along with their ICOUNT
values, say in KTAG1 and KTAG2 in a COMMON
block. DCALCJ should then test ICOUNT against
KTAG1 and KTAG2 and will usually find a match
with one of them.

IV() [inout] An integer array of length LIV. Used as
work space. Also used to input option selections and
to output auxiliary results, including a beginning and
ending status flag in IV(1). For simplest usage the
user should set IV(1) = 0 before calling DNLAxx.
This signals DNLAxx to set all options to default
values by calling DIVSET. See Sections B.3 and B.4
for further information on setting options and inter-
preting output in IV().

LIV [in] The dimension of IV(). The minimum value
allowed for LIV is for

DNLAFU, DNLAGU: 82 + NC,

and for

DNLAFB, DNLAGB: 82 + 4 × NC.

If LIV is set too small, DNLAxx will return with
IV(1) = 15 and will store the minimal acceptable
value for LIV in IV(lastiv) = IV(44), provided LIV ≥
44.

LV [in] The dimension of V(). The minimum value
allowed for LV is for

DNLAFU, DNLAGU: 105 + NC × (NDATA + 2 ×
NC + 17) + 2 × NDATA

and for

DNLAFB, DNLAGB: 105 + NC × (NDATA + 2 ×
NC + 21) + 2 × NDATA.

If LV is set too small, DNLAxx will return with IV(1)
= 16 and will store the minimal acceptable value for
LV in IV(lastv) = IV(45), provided LIV ≥ 45.

V() [inout] A floating point array of length LV. Used
as work space. Also used to input option selections
and to output auxiliary results. For simplest usage
the user does not need to set any values in V() before
calling DNLAxx. See Sections B.3 and B.4 for infor-
mation on setting options and interpreting output in
V().

B.2 Subroutines Specialized for the Separable
Problem: DNLSFB, DNLSFU, DNLSGB,
DNLSGU

These subroutines are

DNLSFB Requires function values only. Applies
bounds to the nonlinear coefficients.

DNLSFU Requires function values only. No bounds.

DNLSGB Requires function and derivative values.
Applies bounds to the nonlinear coefficients.

DNLSGU Requires function and derivative values. No
bounds.

For these subroutines the residual functions, ri, are as-
sumed to be of the form shown in Eqs. (3) or (4), and
the ϕi,j ’s are assumed to be continuously differentiable
functions of the NA-vector α.

To conserve space the descriptions of these four subrou-
tines are merged. Note that the argument BND() is
only used by DNLSFB and DNLSGB, and the argument
DCALCB is only used by DNLSGU and DNLSGB.

B.2.a Program Prototype, Double Precision

INTEGER NDATA, NA, NB, IND(LIND,≥NA),
LIND, IV(LIV), LIV, LV

DOUBLE PRECISION ALF(≥NA), BND(2,≥NC),
BET(≥NB), YDATA(≥NDATA), V(LV)

EXTERNAL DCALCA, DCALCB

Assign values to NDATA, NA, NB, ALF(), BND(),
YDATA(), IND(,), LIND, IV(), LIV, LV, and optionally
to V().

July 11, 2015 Nonlinear Least-Squares 9.3–3

CALL DNLSFU (NDATA, NA, NB, ALF,
BET, YDATA, DCALCA,
IND, LIND, IV, LIV, LV, V)

CALL DNLSGU (NDATA, NA, NB, ALF,
BET, YDATA, DCALCA, DCALCB,
IND, LIND, IV, LIV, LV, V)

CALL DNLSFB (NDATA, NA, NB, ALF,
BND, BET, YDATA, DCALCA,

IND, LIND, IV, LIV, LV, V)

CALL DNLSGB (NDATA, NA, NB, ALF,
BND, BET, YDATA, DCALCA,
DCALCB, IND, LIND, IV, LIV, LV, V)

Results are returned in ALF(), BET(), IV(), and V().

B.2.b Argument Definitions

NDATA [in] Number of observations (equations) in
the problem. Require NDATA ≥ 1.

NA [in] Number of nonlinear coefficients. Require NA
≥ 1.

NB [in] Number of linear coefficients. Require NB ≥ 0.
Generally one would have NA + NB ≤ NDATA; how-
ever, NA + NB > NDATA is permitted. In the latter
case the solution will be nonunique, and if the compu-
tation is successful the return value of IV(1) is likely
to be 7.

ALF() [inout] On entry, ALF(1:NA) must contain an
initial estimate of the nonlinear coefficients, denoted
by α in Eqs. (3) and (4). On return ALF(1:NA) will
contain the subroutine’s best estimate of the α vec-
tor.

BND() [in] Specifies bounds to be satisfied by the non-
linear coefficients. The bounds are

BND(1, j) ≤ ALF(j) ≤ BND(2, j), j = 1, ..., NA

Require BND(1, j) ≤ BND(2,j) for j = 1, ..., NA. If
a coefficient is to be unbounded in one or both direc-
tions, set the appropriate bound very small or very
large, but not to such large magnitudes that the dif-
ference BND(2, j)−BND(1, j) would overflow. If the
initial values for ALF() do not satisfy these bounds
the coefficient values will be immediately altered so
they are within the bounds.

BET() [out] On return BET(1:NB) will contain the
values of the linear coefficients, denoted by β in
Eqs. (3) and (4).

YDATA() [in] On entry YDATA(1:NDATA) must
contain the data values denoted by yi in Eqs. (3) and
(4).

DCALCA [in] The name of a subroutine provided by
the user to compute values of the functions ϕi,j of
Eqs. (3) or (4), using the current ALF() values. It
must have an interface of the form

SUBROUTINE DCALCA(NDATA, NA, NB, ALF,

ICOUNT, PHI)

INTEGER NDATA, NA, NB, ICOUNT

DOUBLE PRECISION ALF(NA), PHI(NDATA, NB or

NB+1)

DCALCA must store the value of ϕi,j in PHI(i, j),
for i = 1, ..., NDATA, and j = 1, ... NB or NB+1.
The array PHI() must have NB columns if the model
is Eq. (3), and NB+1 columns if it is Eq. (4).

DCALCA must not change the values of NDATA,
NA, NB, or ALF().

If DCALCA needs additional data, which may have
been input by the user’s main program, such data
can be made available to DCALCA via named COM-
MON blocks.

ICOUNT is a count of calls to DCALCA maintained
by DNLSxx. DCALCA can reset ICOUNT to zero
as a signal that it cannot compute PHI() using the
current ALF() values. This will cause DNLSxx to
change the values in ALF() and try again.

DCALCB [in] The name of a subroutine provided by
the user to compute partial derivatives of the func-
tions ϕi,j with respect to the components of the co-
efficient vector α. It must have an interface of the
form

SUBROUTINE DCALCB(NDATA, NA, NB, ALF,

ICOUNT, DER)

INTEGER NDATA, NA, NB, ICOUNT

DOUBLE PRECISION ALF(NA), DER(NDATA, nzero)

where nzero is the number of nonzeros in the array
IND(,). See the specification of IND(,) below.

Let the nonzeros in IND(,) be indexed from 1 to nzero
as they occur in traversing down the first column,
then the second column, etc. If the mth nonzero in
this ordering is at IND(j, k), then DCALCB must
store the value of ∂ϕi,j/∂αk in DER(i,m) for i = 1,
..., NDATA, and m = 1, ..., nzero.

Equivalently we may describe DER() by saying that
row i of DER() must contain values of ∂ϕi,j/∂αk
for all index pairs (j, k) for which αk appears in the
formula defining ϕ`,j for at least some `, and these
values must be ordered across row i of DER() with
major sort on k and minor sort on j.

DCALCB must not change the values of NDATA,
NA, NB, or ALF().

If DCALCB needs additional data, which may have
been input by the user’s main program, such data

9.3–4 Nonlinear Least-Squares July 11, 2015

can be made available to DCALCB via named COM-
MON blocks.

ICOUNT is a count of calls to DCALCA maintained
by DNLSxx. DCALCB can reset ICOUNT to zero
as a signal that it cannot evaluate the partial deriva-
tives using the current ALF() values. This will cause
DNLSxx to return to the calling program with IV(1)
set to 65.

Generally the computation of the derivatives involves
subexpressions that also appear in computing the
ϕi,j ’s. If efficiency is important, the subroutines
DCALCA and DCALCB can be designed to avoid
recalculation of such subexpressions. DCALCA can
store values of common subexpressions into a COM-
MON block and copy ICOUNT into a COMMON
variable, say KTAG, each time it is invoked. When
DCALCB is called it can compare KTAG from COM-
MON with ICOUNT from its argument list. When
they are the same, which they will be most of the
time, it means ALF() still has the same value it had
when the subexpressions were computed, and thus
DCALCB can use these subexpression values with-
out recomputing them.

For greatest efficiency DCALCA should save the two
most recent evaluations, along with their ICOUNT
values, say in KTAG1 and KTAG2 in a COMMON
block. DCALCB should then test ICOUNT against
KTAG1 and KTAG2 and will usually find a match
with one of them.

IND(,) [in] An integer array containing an
(NB+1)×NA matrix of zeros and ones. The user
must set IND(j, k) = 1 if the coefficient αk appears
in the formula defining ϕi,j , for some i, and set
IND(j, k) = 0 otherwise. If the model of Eq. (3) is
used, all elements of IND(NB+1, 1:NA) must be set
to zero. The condition of IND(NB+1, 1:NA) be-
ing all zero signals DNLSxx that Eq. (3) rather than
Eq. (4) is being used.

If any column of IND(,) were entirely zero it would
mean the corresponding component of α would not
affect the model function. This is regarded as an er-
ror condition and will cause a return with IV(1) =
66.

LIND [in] The first dimensioning parameter for IND(,).
Require LIND ≥ NB + 1.

IV() [inout] An integer array of length LIV. Used as
work space. Also used to input option selections and
to output auxiliary results, including a beginning and
ending status flag in IV(1). For simplest usage the
user should set IV(1) = 0 before calling DNLSxx.
This signals DNLSxx to set all options to default val-
ues by calling DIVSET. See Sections B.3 and B.4 for

further information on setting options and interpret-
ing output in IV().

LIV [in] The dimension of IV(). Let nzero
denote the number of nonzeros in IND(,).
Program Minimum value allowed for LIV
DNLSFU 122 + 2× nzero+ 4×NA + 2×NB

+ max(NB + 1, 6×NA)
DNLSGU 115 + NA + NB + 2× nzero
DNLSFB 122 + 2× nzero+ 7×NA + 2×NB

+ max(NB + 1, 6×NA)
DNLSGB 115 + 4×NA + NB + 2× nzero
If LIV is set too small, DNLSxx will return with
IV(1) = 15 and will store the minimal accept-
able value for LIV in IV(lastiv) = IV(44), provided
LIV ≥ 44.

LV [in] The dimension of V(). Define:

nzero = the number of nonzeros in IND(,),

bterm = (NB × (NB+3))/2, nc = NA + NB, and

jlen = NA × NDATA if neither the covariance ma-
trix nor regression diagnostics are requested,
otherwise jlen = (NB + NA) × (NDATA + NB
+ NA + 1).

Program Minimum value allowed for LV
DNLSFU 105 + 2×NDATA× (NB + 3)

+jlen+ bterm+ NA× (2×NA + 18)
DNLSGU 105 + NDATA× (NB + nzero+ 3)

+jlen+ bterm+ NA× (2×NA + 17)
DNLSFB 105 + NDATA× (2×NB + 6 + NA)

+bterm+ NA× (2×NA + 22)
DNLSGB 105 + NDATA× (NA + NB + nzero

+3) + bterm+ NA× (2×NA + 21)

If the problem is of the form of Eq. (3) rather than
Eq. (4), LV can be less than indicated above by 4 ×
NDATA for DNLSFU or DNLSFB, and by NDATA
for DNLSGU or DNLSGB.

If LV is set too small, DNLSxx will return with IV(1)
= 16 and will store the minimal acceptable value for
LV in IV(lastv) = IV(45), provided LIV ≥ 45.

V() [inout] A floating point array of length LV. Used
as work space. Also used to input option selections
and to output auxiliary results. For simplest usage
the user does not need to set any values in V() before
calling DNLSxx. See Sections B.3 and B.4 for infor-
mation on setting options and interpreting output in
V().

B.3 Setting Options and Using Subroutine
DIVSET

Options are selected by storing values into IV() and V().
To set options to nondefault values you should first call
DIVSET which will store default values into IV() and

July 11, 2015 Nonlinear Least-Squares 9.3–5

V(), then individually reset particular elements of IV()
and V() to desired nondefault values, and then call the
desired DNLxxx subroutine.

We describe here the call to DIVSET. The contents of
IV() and V() are described in Section B.4.

B.3.a Program Prototype, Double Precision

INTEGER MODE, IV(LIV), LIV, LV

DOUBLE PRECISION V(LV)

Set MODE = 1, and assign values to LIV and LV.

CALL DIVSET (MODE, IV, LIV, LV, V)

Results are returned in IV() and V().

B.3.b Argument Definitions

MODE [in] Always set MODE = 1.

IV() [out] Integer array into which DIVSET will store
default values. On return will have IV(1) = 12.

LIV [in] Dimension of IV(). DIVSET requires LIV
≥ 82, but a larger value will be needed for DNLxxx.

LV [in] Dimension of V(). DIVSET requires LV ≥ 98,
but a larger value will be needed for DNLxxx.

V() [out] Floating point array into which DIVSET will
store default values.

B.4 The Contents of IV() and V()

The following Sections, B.4.a to B.4.j, give the interpre-
tation of the elements of IV() and V() that are most
likely to be of interest to the user of this package.

The values that will be assigned by DIVSET are indi-
cated by “Default = ...”. See Section D for discussion of
objects such as the d vector, the S matrix, the Gauss-
Newton and augmented models, etc.

The name machep will be used in the following descrip-
tions to denote the unit round-off of the host arithmetic.
It is obtained in the code by calling D1MACH(4) (or
R1MACH(4) for single precision); see Chapter 19.1.

Internally this package uses symbolic names for certain
fixed index values used in IV() or V(). These associa-
tions will be indicated in the following descriptions by
the notation: IV(covprt) ≡ IV(14). If the user wishes
to use such an association in his/her program the For-
tran 77 syntax would be

INTEGER covprt

PARAMETER(covprt = 14)

The contents of IV() and V() will be described in func-
tional groupings in Sections B.4.a through B.4.j.

The following table summarizes the indices used.

Indices used in IV() Indices used in V()
Name Value Ref. Name Value Ref.

1 B.4.a afctol 31 B.4.d
covmat 26 B.4.f d0init 40 B.4.h
covprt 14 B.4.c delta0 44 B.4.g
covreq 14 B.4.c dfac 44 B.4.g
d 27 B.4.h dgnorm 1 B.4.j
dtype 16 B.4.h dinit 38 B.4.h
g 28 B.4.b dltfdc 42 B.4.g
inits 25 B.4.i dltfdj 43 B.4.g
jtol 59 B.4.h dstnrm 2 B.4.j
lastiv 44 B.4.j dtinit 39 B.4.h
lastv 45 B.4.j f 10 B.4.b
mxfcal 17 B.4.e f0 13 B.4.j
mxiter 18 B.4.e lmaxs 36 B.4.d
nfcall 6 B.4.j nreduc 6 B.4.j
nfcov 52 B.4.j preduc 7 B.4.j
ngcall 30 B.4.j rcond 53 B.4.j
ngcov 53 B.4.j reldx 17 B.4.j
niter 31 B.4.j rfctol 32 B.4.d
outlev 19 B.4.c sctol 37 B.4.d
parprt 20 B.4.c stppar 5 B.4.j
prunit 21 B.4.c xctol 33 B.4.d
rdreq 57 B.4.f xftol 34 B.4.d
regd 67 B.4.f
s 62 B.4.i
solprt 22 B.4.c
statpr 23 B.4.c
x0prt 24 B.4.c

B.4.a Primary entry mode and termination status flag:
IV(1).

B.4.b Primary output objects: Objective function
value, Gradient vector: V(f), IV(g).

B.4.c Print options: IV(prunit), IV(covprt), IV(outlev),
IV(parprt), IV(solprt), IV(statpr), IV(x0prt).

B.4.d Convergence tolerances: V(afctol), V(lmaxs),
V(rfctol), V(sctol), V(xctol), V(xftol).

B.4.e Operation count limits: IV(mxfcal), IV(mxiter).

B.4.f The covariance matrix and regression diagnostics:
IV(rdreq), IV(covreq), IV(covmat), IV(regd).

B.4.g Parameters used in approximating derivatives by
differences: V(delta0), V(dltfdc), V(dltfdj).

B.4.h The scaling vector d: IV(dtype), V(dfac),
V(dinit), V(d0init), V(dtinit), IV(d), IV(jtol).

B.4.i The S matrix: IV(inits), IV(s)

B.4.j Additional output quantities: IV(lastiv),
IV(lastv), IV(nfcall), IV(nfcov), IV(ngcall),
IV(ngcov), IV(niter), V(dgnorm), V(dstnrm), V(f0),
V(nreduc), V(preduc), V(rcond), V(reldx), V(stppar).

9.3–6 Nonlinear Least-Squares July 11, 2015

B.4.a Primary entry mode and termination sta-
tus flag: IV(1).

On entry to DNLxxx, IV(1) specifies the entry mode.
Require 0 ≤ IV(1) ≤ 14.

Zero means the user is not setting any options and
DNLxxx is to call DIVSET to set all options to default
values and proceed to execute the problem-solving algo-
rithm.

A value from 1 to 11 means DNLxxx has returned to the
user with this value in IV(1), and the user’s program has
changed some tolerance(s) and wishes to resume compu-
tation without starting over from scratch.

12 means all options have already been set in IV() and
V() and DNLxxx is not to call DIVSET. Typically the
user will have called DIVSET to set default values into
IV() and V() and then may have altered some from the
default settings. DIVSET sets IV(1) = 12.

13 means the user has set all options, as described above
for 12, but also wishes to set one or more of the vectors
d, d0, or dtol or the matrix, S. DNLxxx will set IV(d),
IV(jtol), and IV(s) that depend on the problem size, and
then return, setting IV(1) = 14. The user can then set
one or more of

d in V() starting at V(IV(d)),

d0 in V() starting at V(IV(jtol)+nx), where nx denotes
NC or NA,

dtol in V() starting at V(IV(jtol)), and

S stored in V() by rows of the lower triangle, starting
at V(IV(s)),

and then reenter DNLxxx with IV(1) = 14. See
IV(dtype) and IV(inits) for additional information.

14 means the process described above for IV(1) = 13 has
been done. DNLxxx will assume all options have been
set and will proceed to execute the problem-solving al-
gorithm.

On return, IV(1) indicates the reason for the return.
Values 3–6 indicate successful termination. Values 7–14
permit continuation after changing some input values in
IV() or V(). Values exceeding 14 do not permit contin-
uation.

3 Coefficient convergence. The scaled relative difference
(See Eq. (5), page 9) between the current c or α and
a locally optimal parameter vector is very likely at
most V(xctol).

4 Relative function convergence. The relative difference
between the current objective function value and its
locally optimal value is very likely at most V(rfctol).

5 Both coefficient and relative function convergence
(i.e., the conditions for IV(1) = 3 and IV(1) = 4
both hold).

6 Absolute function convergence. The current objective
function value is at most V(afctol) in absolute value.

7 Singular convergence. The Hessian near the current
iterate appears to be singular or nearly so, and a
step of length at most V(lmaxs) is unlikely to yield
a relative function decrease of more than V(sctol).
This could be a successful termination when NC >
NDATA or NA + NB > NDATA. Otherwise check
for errors in the problem formulation, or consider re-
ducing the number of coefficients to be determined.

8 False convergence. The iterates appear to be con-
verging to a noncritical point. This may mean
that the convergence tolerances (V(afctol), V(rfctol),
V(xctol)) are too small for the accuracy to which the
function and gradient are being computed, that there
is an error in computing the gradient, or that the
function or gradient is discontinuous near the cur-
rent c or α.

9 Function evaluation count limit reached without other
convergence. See IV(mxfcal).

10 Iteration count limit reached without other conver-
gence. See IV(mxiter).

11 External interrupt via subprogram STOPX. This is
not activated in the MATH77 version.

14 DNLxxx was entered with IV(1) = 13.

15 LIV is too small. An acceptable value is given in
IV(lastiv) if LIV ≥ lastiv (=44).

16 LV is too small. An acceptable value is given in
IV(lastv) if LIV ≥ lastv (=45).

17 Restart attempted with NDATA, NC, NA, or NB
changed. This is not permitted.

18 Bad initialization of the scaling vector d. Check
IV(dtype), IV(dinit), and V(IV(d):IV(d)+nx−1)
where nx denotes NC for DNLAxx and NA for
DNLSxx.

19. . . 44 V(IV(1)−18) is out of range.

63 r(c) or r(α, β) cannot be computed at the initial c
or α.

64 Bad parameters on an internal call. Should not hap-
pen.

65 The derivatives could not be computed at the current
c or α (see DCALCJ or DCALCB).

66 Some column of IND(,) is all zero, or some array
dimensions are inconsistent.

67 Call to DIVSET with argument MODE not set to 1.

July 11, 2015 Nonlinear Least-Squares 9.3–7

68, 69 Internal errors. Should not happen.

70 Inconsistent bounds. Require BND(1, j)≤BND(2, j)
for j = 1, ..., nx, where nx = NC or NA.

80 IV(1) exceeds 14 on entry.

81 NDATA, NC, NA, or NB out of range. Require
NDATA > 0, NC > 0, NA > 0, and NB ≥ 0.

87. . . (86 + nx) Bad initialization of dtol. Check
V(dtinit) and V(IV(jtol):IV(jtol) +nx− 1), where nx
denotes NC or NA.

B.4.b Primary output objects: Objective func-
tion value, Gradient vector: V(f), IV(g).

V(f) ≡ V(10) is the current value of the objective
function ψ defined by Eq. (2), i.e., half the sum of
squares of residuals.

IV(g) ≡ IV(28) is the starting subscript in V() of the
current gradient vector g = J tr.

B.4.c Print options: IV(prunit), IV(covprt),
IV(outlev), IV(parprt), IV(solprt),
IV(statpr), IV(x0prt).

IV(prunit) ≡ IV(21) = 0 or the output unit number
on which all printing is done. The default is the stan-
dard output unit number obtained from I1MACH(2)
(See Chapter 19.1.), which will be 6 on most systems.
0 means suppress all printing.

IV(covprt) ≡ IV(14) Selects printing of the covari-
ance matrix and/or the regression diagnostics when
the solution process is successfully completed, i.e., on
a return with IV(1) = 3, 4, 5, or 6. Relevant only
for DNLxxU for the reasons given in the description
of IV(rdreq). Allowed values are 0, 1, 2, or 3 and the
default is 0.

0 means neither is to be printed.

1 means print the covariance matrix.

2 means print the regression diagnostics.

3 means print both.

Selection of printing also causes the selected object to
be computed even if it was not selected by IV(rdreq).
In such a case the method of computing the covari-
ance matrix is that of IV(covreq) = 1.

IV(outlev) ≡ IV(19) controls printing of iteration
summary lines. Default = 0.

IV(outlev) = 0 means do not print any summary
lines. Otherwise, print a summary line after each
abs(IV(outlev)) iterations.

If IV(outlev) is positive, then summary lines of
length 117 (plus carriage control) are printed.

If IV(outlev) is negative, lines of maximum length 79
(or 55 if IV(covprt) = 0) are printed, including only
the first 6 items listed below (through V(reldx)).

The items printed will be:

The iteration and function evaluation counts:
IV(niter) and IV(nfcall).

Current value of ψ: V(f).

Relative change in ψ achieved by the latest step, i.e.,
RELDF = (V(f0)−V(f))/V(f0),

The relative objective function reduction pre-
dicted for the step just taken, i.e., PRELDF =
V(preduc)/V(f0),

The scaled relative change in c or α: V(reldx),

The model used in the current iteration (G = Gauss-
Newton, S = augmented),

The Marquardt parameter V(stppar) used in comput-
ing the last step,

The sizing factor used in updating S (see [1]),

The 2-norm of the scale vector d times the step just
taken (see [1]), and

NPRELDF = V(nreduc)/V(f0).

If NPRELDF is positive, then it is the relative func-
tion reduction predicted for a Newton step (one with
stppar = 0).

If NPRELDF is zero, either the gradient vanishes (as
does PRELDF) or else the augmented model is be-
ing used and its Hessian is indefinite (with PRELDF
positive).

If NPRELDF is negative, then it is the negative of
the relative function reduction predicted for a step
computed with step bound V(lmaxs) for use in test-
ing for singular convergence.

IV(parprt) ≡ IV(20) = 0 or 1. Default = 0. 1 means
print any nondefault V() values on a fresh start or
any changed V() values on a restart. 0 means skip
this printing.

IV(solprt) ≡ IV(22) = 0 or 1. Default = 0. 1 means
print the solution, c for DNLAxx or α and β for
DNLSxx, as well as the gradient vector, g, and final
scaling vector, d. 0 means skip this printing.

IV(statpr) ≡ IV(23) = 0 or 1. Default = 0. 1 means
print summary statistics upon returning. 0 means
skip this printing. The items printed are:

The final value of ψ:V(f).

V(reldx).

FUNC. EVALS: Number of calls to DCALCR or
DCALCA for function evaluations.

9.3–8 Nonlinear Least-Squares July 11, 2015

GRAD. EVALS: In DNLxGx this is the number of
calls to DCALCJ or DCALCB. In DNLxFX this is
the number of calls to DCALCR or DCALCA for
computation of finite-difference approximations to
the gradient.

The relative function reductions predicted for the
last step taken and for a Newton step, or perhaps
a step bounded by V(lmaxs). See the descriptions of
PRELDF and NPRELDF under IV(outlev) above.

The number of calls to DCALCR and DCALCJ or
DCALCA and DCALCB used in trying to compute
the covariance matrix, if an attempt was made to
compute it.

IV(x0prt) ≡ IV(24) = 0 or 1. Default = 0. 1 means
print the initial c or α and scale vector d (on a fresh
start only). 0 means skip this printing.

B.4.d Convergence tolerances: V(afctol),
V(lmaxs), V(rfctol), V(sctol), V(xctol),
V(xftol).

V(afctol) ≡ V(31) is the absolute function conver-
gence tolerance. If DNLxxx finds a point where ψ is
less than V(afctol), and if DNLxxx does not return
with IV(1) = 3, 4, or 5, then it returns with 8(?).

V(lmaxs) ≡ V(36) Default = 1.0. Used with
V(sctol), see below.

V(rfctol) ≡ V(32) is the relative function conver-
gence tolerance. If the current model predicts a max-
imum possible function reduction (see V(nreduc)) of
at most V(rfctol) × ψ0 at the start of the current
iteration, where ψ0 is the current function value,
and if the last step attempted achieved no more
than twice the predicted function decrease, then
DNLxxx returns with IV(1) = 4 (or 5). Default
= max(10−10,machep2/3).

V(sctol) ≡ V(37) is the singular convergence toler-
ance. Default = max(10−10, machep2/3). Singular
convergence occurs if the tests for returns with IV(1)
= 3, 4, 5, or 6 are not satisfied but it appears that no
step with scaled step length less than V(lmaxs) can
make a change of more than V(sctol)×ψ in the value
of ψ.

V(xctol) ≡ V(33) is the coefficient convergence toler-
ance. Default =

√
machep. Coefficient convergence

occurs if the algorithm thinks the scaled relative dis-
tance from the current c or α to the solution is at
most V(xctol), where the scaled relative distance be-
tween two vectors x and y is computed as

maxj {dj |xj − yj |}
maxj {dj (|xj |+ |yj |)}

(5)

This distance function is computed by subprogram
DRLDST. One could replace this subprogram to use
a different distance function. DRLDST has an inter-
face of the form

DOUBLE PRECISION FUNCTION DRLDST(NX,D,X,Y)

INTEGER NX

DOUBLE PRECISION D(NX), X(NX), Y(NX)

V(xftol) ≡ V(34) is the false convergence tolerance.
Default = 100 × machep. False convergence occurs
if the tests for returns with IV(1) = 3, 4, 5, 6, or 7
are not satisfied and a step of scaled relative length
(measured using Eq. (5)) at most V(xftol) is tried but
not accepted. See remarks for IV(1) = 8.

B.4.e Operation count limits: IV(mxfcal),
IV(mxiter).

IV(mxfcal) ≡ IV(17) gives the maximum number of
function evaluations (calls to DCALCR or DCALCA,
excluding those used to compute the covariance
matrix) allowed. If this number does not suffice,
DNLxxx returns with IV(1) = 9. Default = 200.

IV(mxiter) ≡ IV(18) gives the maximum number of
iterations allowed. It also indirectly limits the num-
ber of gradient evaluations (calls to DCALCJ or
DCALCB, excluding those used to compute the co-
variance matrix) to IV(mxiter) + 1. If IV(mxiter)
iterations do not suffice, then DNLxxx returns with
IV(1) = 10. Default = 150.

B.4.f The covariance matrix and regres-
sion diagnostics: IV(rdreq), IV(covreq),
IV(covmat), IV(regd).

IV(rdreq) requests computation of the covariance matrix
and/or regression diagnostics. IV(covreq) specifies how
the covariance matrix is to be computed. The storage
locations of these objects are indicated by IV(covmat)
and IV(regd). Printing of these objects is selected by
IV(covprt) described in Section B.4.c.

IV(rdreq) ≡ IV(57) Selects computation of the co-
variance matrix and/or the regression diagnostics de-
scribed in Section D.

IV(rdreq), IV(covprt) and IV(covreq) are relevant
only with DNLxxU, and have no effect when using
DNLxxB, since the concepts of a covariance matrix
and regression diagnostics are less well-defined when
variables are bounded. See, e.g., [2, pp 180–183] for
a discussion of this issue.

Possible values are 0, 1, 2, and 3 and the default is 3.

0 means do not compute these.

1 means compute just the covariance matrix.

July 11, 2015 Nonlinear Least-Squares 9.3–9

2 means compute just the regression diagnostics.

3 means compute both the covariance matrix and
the regression diagnostics.

The covariance matrix is a symmetric matrix of or-
der NC for the DNLAxU, and of order NA + NB for
DNLSxU. In the latter case the first NA indices in
the covariance matrix are associated with the α vec-
tor while the last NB indices are associated with the
β vector. See IV(covmat) and IV(regd) for specifica-
tion of the storage methods for these objects.

IV(covreq) ≡ IV(15) Specifies how the covariance
matrix is to be computed if its computation is re-
quested by IV(rdreq) or by IV(covprt). Relevant only
for DNLxxU for the reasons given in the description
of IV(rdreq). For DNLxGU this should be set to 1, 2,
or 3 and the default is 1. For DNLxFU it should be
set to −1, −2, or −3, and the default is −1. If it is
set positive for DNLxFU it will be reset to negative.

Let K = |IV(covreq)| and let

VARFAC = 2ψ/DOF,

where ψ is defined by Eq. (2), and DOF = NDATA
− NC for DNLAxU and NDATA − NA − NB for
DNLSxU.

If K = 1 or 2, then a finite-difference Hessian approx-
imation H is obtained. If H is positive definite (or,
for K = 3, if the Jacobian matrix J is of full rank),
one of the following is computed:

K = 1⇒ VARFAC×H−1J tJH−1.

K = 2⇒ VARFAC×H−1.

K = 3⇒ VARFAC× (J tJ)−1.

If IV(covreq) > 0, H will be computed using first
differences of derivative values with step sizes deter-
mined using V(delta0). This requires a user-provided
DCALCJ or DCALCB subroutine.

If IV(covreq) < 0, H will be computed using second
differences of function values with step sizes deter-
mined using V(dltfdc).

(IV(covreq) = 0 will act the same as IV(covreq) = 1,
but this is not recommended.)

IV(covmat) ≡ IV(26) tells whether a covariance ma-
trix was computed. If (IV(covmat) is positive, the
lower triangle of the covariance matrix is stored com-
pactly by rows in V() starting at V(IV(covmat)).
If IV(covmat) = 0, no attempt was made to com-
pute the covariance. If IV(covmat) = −1, the finite-
difference Hessian was indefinite. If IV(covmat) =
−2, a successful finite-differencing step could not be
found for some component of c or α (i.e., DCALCR
or DCALCA set ICOUNT to 0 for each of two trial
steps).

IV(regd) ≡ IV(67) If nonzero, this is the starting
subscript in V() of the NDATA regression diagnos-
tics. 0 means the regression diagnostics were not
computed (either not requested or the computation
failed.)

B.4.g Parameters used in approximating
derivatives by differences: V(delta0),
V(dltfdc), V(dltfdj).

V(delta0) ≡ V(44) Used in choosing the step size for
computing the Hessian matrix by differencing gradi-
ent values. Used when IV(inits) = 3 or IV(covreq) =
1 or 2. For component j, the step size

V(delta0)×max(|xj |, 1/dj)× sign(xj)

is used. If this step results in DCALCR or DCALCA
setting ICOUNT to 0, then −0.5 times this step is
also tried. Default =

√
machep.

V(dltfdc) ≡ V(42) Used in choosing the step size
for computing the Hessian matrix by second differ-
ences of function values. Used when IV(inits) = 3 or
IV(covreq) = −1 or −2. For differences involving xj ,
the step size first tried is

V(dltfdc)×max(|xj |, 1/dj)

If this step is too big the first time it is tried, i.e., if
DCALCR or DCALCA sets ICOUNT to 0, then −0.5
times this step is also tried. Default = machep1/3.

V(dltfdj) ≡ V(43) Used in choosing the step size for
computing the Jacobian matrix by differencing func-
tion values. Default =

√
machep. The first step tried

when differencing in the xj coordinate will be

V(dltfdj)×max(|xj |, 1/dj)

If this step causes DCALCR or DCALCA to set
ICOUNT = 0, smaller steps will be tried.

B.4.h The scaling vector d: IV(dtype), V(dfac),
V(dinit), V(d0init), V(dtinit), IV(d),
IV(jtol).

IV(dtype) ≡ IV(16) = 0, 1, or 2. Default = 1. Spec-
ifies if and when the scaling vector d, discussed in
Section D, is to be updated. The vector d is of di-
mension nx where nx = NC for DNLAxx and NA for
DNLSxx.

0 means d is not to be updated. In this case
the user must either store a positive value in
V(dinit), which will be assigned as the value of
all components of d, or must set V(dinit) to a
negative value, say −1.0, and store the complete
d vector in V() beginning at V(IV(d)). To give

9.3–10 Nonlinear Least-Squares July 11, 2015

the complete d vector the user must use the pro-
cess described above for IV(1) = 13 in order to
have the package set IV(d).

1 means d is to be updated at every iteration.

2 means d is to be updated only at the first itera-
tion and left at that setting throughout the rest
of the solution procedure.

The updating procedure uses the number V(dfac)
and two nx-dimensional vectors d0 and dtol. This
updating is done in subroutine DD7UPD. The up-
dating algorithm is

dj = max(V(dfac)× dj , jcnormj)

if dj < dtolj then dj = d0j

Here jcnormj denotes the computed Euclidean norm

of the jth column of the current Jacobian matrix.

If V(dinit) ≥ 0, all components of d will initially be
set to this value. Otherwise the user must supply the
complete d vector, beginning in V(IV(d)), using the
process described for IV(1) = 13.

If V(d0init) > 0, all components of d0 will be set to
this value. Otherwise the user must supply the com-
plete d0 vector, beginning in V(IV(jtol) +nx), using
the process described for IV(1) = 13.

If V(dtinit) > 0, all components of dtol will be set to
this value. Otherwise the user must supply the com-
plete dtol vector, beginning in V(IV(jtol)), using the
process described for IV(1) = 13.

V(dfac) ≡ V(41) Default = 0.6. See IV(dtype).

V(dinit) ≡ V(38) Default = 0. See IV(dtype).

V(d0init) ≡ V(40) Default = 1.0. See IV(dtype)

V(dtinit) ≡ V(39) Default = 10−6. See IV(dtype).

IV(d) ≡ IV(27) is the starting subscript in V() of the
current scale vector d. See IV(dtype).

IV(jtol) ≡ IV(59) is the starting subscript in V() of
the vector dtol, and IV(jtol)+nx is the starting sub-
script in V() of the vector d0. See IV(dtype).

B.4.i The S matrix: IV(inits), IV(s)

IV(inits) ≡ IV(25) = 0, 1, 2, 3, or 4. Default = 0.
Chooses how the S matrix discussed in Section D
should be initialized.

0 means initialize S to 0 and start with the Gauss-
Newton model.

1 means the user is providing the initial S and
start with the Gauss-Newton model.

2 means the user is providing the initial S and
start with the augmented model.

3 or 4 mean the package is to compute a finite differ-
ence approximation to the initial S and start
with the augmented model. 3 means the pack-
age will compute second differences of function
values using the parameter V(dltfdc).

4 which can only be used with DNLxGx, means
the package will compute first differences of gra-
dient values using the parameter V(delta0).

In cases 1 or 2 the caller must store the lower triangle
of the initial S, compactly by rows, in V() starting at
V(IV(s)). To do this the user must use the procedure
described above for IV(1) = 13.

IV(s) ≡ IV(62) is the starting subscript in V() of the
S matrix. It is stored by rows of the lower triangle.

B.4.j Additional output quantities: IV(lastiv),
IV(lastv), IV(nfcall), IV(nfcov),
IV(ngcall), IV(ngcov), IV(niter),
V(dgnorm), V(dstnrm), V(f0),
V(nreduc), V(preduc), V(rcond),
V(reldx), V(stppar).

IV(lastiv) ≡ IV(44) is the minimal acceptable value
for LIV. Set only on a return with IV(1) = 15.

IV(lastv) ≡ IV(45) is the minimal acceptable value
for LV. Set only on a return with IV(1) = 16.

IV(nfcall) ≡ IV(6) is the number of calls made to
DCALCR or DCALCA, i.e., function evaluations, in-
cluding those used in computing the covariance.

IV(nfcov) ≡ IV(52) is the number of calls made to
DCALCR or DCALCA when computing the covari-
ance matrix.

IV(ngcall) ≡ IV(30) is the number of gradient evalu-
ations, i.e., calls to DCALCJ or DCALCB, including
those used for computing the covariance.

IV(ngcov) ≡ IV(53) is the number of calls made to
DCALCJ or DCALCB when computing the covari-
ance matrix.

IV(niter) ≡ IV(31) is the number of iterations per-
formed.

V(dgnorm) ≡ V(1) = ‖D−1g‖ where g is the gradi-
ent vector.

V(dstnrm) ≡ V(2) = ‖D × (x − xprev)‖, i.e., the
scaled length of the most recent step. Here x denotes
c or α.

V(f0) ≡ V(13) is the value of ψ at the end of the
previous iteration.

V(nreduc) ≡ V(6) if positive, or zero with V(stppar)
= 0, is the maximum objective function reduction
possible according to the current model. V(nreduc)

July 11, 2015 Nonlinear Least-Squares 9.3–11

= 0 with V(stppar) > 0 means H is not positive def-
inite.

If V(nreduc) < 0, then −V(nreduc) / V(f0) is the
quantity with which V(sctol) is compared in the sin-
gular convergence test.

V(preduc) ≡ V(7) is the function reduction pre-
dicted for the last step taken, or attempted.
V(preduc)/max(V(f),V(f0)) is used in testing for
relative function convergence.

V(rcond) ≡ V(53) If |IV(covreq)| = 1 or 2 this
is an approximate reciprocal condition number of
the finite-difference Hessian approximation. If
|IV(covreq)| = 3 this is an approximate reciprocal
condition number of the current Jacobian matrix.

V(reldx) ≡ V(17) is the scaled relative change in c or
α due to the last step taken or attempted, computed
using Eq. (5).

V(stppar) ≡ V(5) If nonnegative, this is the
Levenberg-Marquardt parameter, λ, of Eq. (19)
Thus, a zero value indicates an undamped Newton
step. A negative value indicates a special case de-
scribed in [3].

B.5 Modifications for Single Precision

For single precision usage change all subroutine names
beginning with D to begin with S. Change all DOUBLE
PRECISION type statements to REAL.

The authors of [1] recommend that the double precision
version of this package should be used, except on ma-
chines such as the Cray, where single precision arithmetic
has precision of about 14.4 decimal places.

C. Examples and Remarks

Example

Define

f(t; c) = c3 + c4 cos c1t+ c5 sin c1t

+ c6 cos c2t + c7 sin c2t (6)

Let NDATA = 30. Generate a data set (ti, yi) for i = 1,
..., NDATA, by setting ti = (i− 1)/29,

ĉ = (6, 9, 1, 0.5, 0.4, 0.2, 0.1),

and yi = f(ti; ĉ) + νi, where νi is Gaussian noise with
mean zero and sample standard deviation 0.001.

The program DRDNLAFU illustrates the use of
DNLAFU to find a coefficient vector c that best fits this
data in the least-squares sense, using the model func-
tion of Eq. (6) The computation is started with an initial
guess of

c0 = (5, 10, 0.5, 0.5, 0.5, 0.5, 0.5).

The output is shown in ODDNLAFU. The solution vec-
tor is

c = (5.99, 9.00, 1.00, 0.502, 0.397, 0.199, 0.100),

and the standard deviation of the noise in the data is
estimated to be SIGFAC = 0.000986.

Program DRDNLSGU illustrates the solution of this
problem treating it as a separable problem and using
DNLSGU. To treat this as a separable problem, we re-
label the coefficients in Eq. (6) obtaining

f(t, α, β) = β1 + β2 cosα1t+ β3 sinα1t

+ β4 cosα2t + β5 sinα2t (7)

This is in the form of Eq. (3) with

ϕi,1 = 1, ϕi,2 = cosα1t, ϕi,3 = sinα1t,
ϕi,4 = cosα2t, ϕi,5 = sinα2t

(8)

Note the setting of the IND(,) array in DRDNLSGU:
The 1’s in rows 2 and 3 of column 1 indicate that α1 ap-
pears only in ϕi,2 and ϕi,3, while the 1’s in rows 4 and 5
of column 2 indicate that α2 appears only in ϕi,4 and
ϕi,5. The zeros in row 6 indicate that there is no ϕi,6
term in the problem, i.e., the problem is of the form of
Eq. (3) and not Eq. (4).

Initial comments in subroutine DCALCB explain the
storage of partial derivatives in the array DER().

Comparing the results from the DNLAFU and DNLSGU
it is seen that the two solutions are of similar accuracy.

These two sample drivers also illustrate the setting of
print options by first calling DIVSET to set nominal val-
ues into IV() and V(), and then resetting some elements
of IV().

As another example of a separable problem, suppose one
has data (ti, yi), and wishes to fit the y data by a ratio-
nal function of t, say with the residual function defined
as

ri(α, β) =
β1 + β2ti

1 + α1ti + α2t2i
− yi. (9)

This can be put into the form of Eq. (3) by defining

ϕi,1(α) =
1

1 + α1ti + α2t2i
, (10)

and

ϕi,2(α) =
ti

1 + α1ti + α2t2i
. (11)

9.3–12 Nonlinear Least-Squares July 11, 2015

Remarks

1. It is important for success of DNLxxx that the initial
guess be as good as possible.

2. DNLxxx only finds a local minimum. Problems may
have more than one local minimum, so caution in ac-
cepting results is suggested. It may be useful to solve
the problem several times using significantly different
starting points.

3. Solution of nonlinear least-squares problems is in-
herently difficult in many cases, and sometimes may
require interaction with the user. The internal out-
put available from the subroutine may be useful if
one has questions about the performance of the sub-
routine. It is not uncommon to make mistakes in
writing the code for computing partial derivatives.
This mistake is likely to cause a return with IV(1)
= 8. The subroutine DCKDER of Chapter 8.3 can
be used to check the mutual consistency of code for
function and Jacobian evaluation.

4. If the different data points have significantly differ-
ent a priori uncertainties then appropriate row scal-
ing should be used. In the user supplied subroutines
(DCALCR, DCALCJ, DCALCA, DCALCB) the ith

component of the residual vector and the ith row of
the Jacobian matrix should be divided by the a priori
standard deviation of the error in yi.
To see if the standard deviations introduced in this
way are reasonable, one can, after the fit, compute
SIGFAC =

√
2× ψ/DOF where ψ is obtained from

V(f), and DOF = NDATA − NC for DNLAxx and
NDATA − NA − NB for DNLSxx. SIGFAC is a
quantity that could be multiplied times each of the
a priori standard deviation values to obtain values
that are more consistent with the fit. If SIGFAC is
near one it is an indication that the a priori standard
deviations were not uniformly unreasonably small or
large.

5. If the final residual vector is desired, the user must
add code to compute it using the final solution coef-
ficients. If using DNLAxx, this can be done just by
calling DCALCR. If using DLNSxx, the user can call
DCALCA to evaluate the functions ϕi,j(α), and then
execute code that uses these values, along with the
final β’s, to compute the residuals using the formulas
of Equations 3 or 4 of Section A.

6. With default settings the package generates and up-
dates a scaling vector, d, to avoid difficulties that can
arise if components of the solution vector are of sig-
nificantly different magnitudes. In [1] it is reported
that in problems where the solution vector compo-
nents are of about the same order of magnitude the
program works better if the vector d is held con-

stant. This can be done by setting IV(dtype) = 0
and V(d0init) = 1.0.

7. To compute the covariance matrix of the solution
coefficients see Section B.4.f and IV(covprt) of B.4.c.
This is only relevant with DNLxxU.

8. We are not describing a reverse communication us-
age for this package; however, one level below the
described user-callable subroutines this package does
use reverse communication. If a user needs to embed
this package into a larger package and feels reverse
communication would be important, he/she could
study the way the top level subroutines call the sec-
ond level ones and mimic this protocol. Specifically
DNLAFU and DNLAGU call DRN2G; DNLSGU
and DNLSFU call DRNSG; DNLAFB and DNLAGB
call DRN2GB; and DNLSFB and DNLSGB call
DRNSGB.

D. Functional Description

D.1 Fundamental notation for nonlinear least-
squares

The problem is to minimize the function ψ(c) of Eq. (2).
Let J denote the NDATA × NC Jacobian matrix of the
NDATA-dimensional vector valued function r(c). Thus
the (i, j) element of J is ∂ri/∂cj .

The NC-dimensional gradient vector of ψ with respect
to the components of c is

g = J tr

Let hi denote the NC × NC Hessian matrix of second
partial derivatives of the ith component of r with respect
to the components of c. Then the NC × NC Hessian ma-
trix of second partial derivatives of ψ with respect to the
components of c can be written as

H = J tJ +

NDATA∑
i=1

rihi (12)

A necessary condition for ψ to attain a local minimum
is that the gradient vector g must be zero. Linearizing
g about a nominal value of c gives

g(c + δc) = g(c) +Hδc +O(‖δc‖2). (13)

Thus a correction, δc, to a current parameter vector, c,
that tends to move the gradient toward zero is given as
the solution of

Hδc = −g (14)

Eq. (14) is called the full Newton iteration for solving
a nonlinear least-squares problem. A different iteration
formula, called the Gauss-Newton method can be de-
rived by linearizing r(c), writing:

r(c + δc) = r(c) + Jδc +O(‖δc‖2). (15)

July 11, 2015 Nonlinear Least-Squares 9.3–13

The correction δc that must be added to a current pa-
rameter vector, c, to make the linearized expression in
Eq. (15) close to the zero vector in the least-squares sense
is the solution of the linear least-squares problem

Jδc ' −r. (16)

By forming normal equations, we can express this cor-
rection vector, δc, as the solution of

J tJδc = −J tr ≡ −g. (17)

Note that both of the Eqs. (14) and (17) can be expressed
in the general form

(J tJ + S)δc = −g, (18)

where S is
∑
rihi for the full Newton method and S =

0 for the Gauss-Newton method.

It is known that the correction vector, δc, obtained from
Eq. (18) with either of the two definitions of S so far men-
tioned will frequently be too long, especially when the
current c is not close to the solution. Logic can be added
to try shorter correction vectors in the same direction;
however, a different approach that has been found more
effective is to add a term of the form λP to the matrix
in Eq. (18), where λ is a nonnegative scalar and P is a
positive definite symmetric matrix, sometimes taken as
diagonal or the identity matrix. Increasing λ not only
decreases the Euclidean norm of δc, but also turns δc
closer to the direction of local steepest descent. This use
of a matrix of the form λP is associated with the names
of Levenberg and Marquardt.

In the original Marquardt approach λ was the pri-
mary control parameter. Subsequent “trust-region” al-
gorithms have set target values for ‖δc‖, or more pre-
cisely for ‖Dδc‖ using a scaling matrix D, and deter-
mined λ to achieve that target value.

D.2 The NL2SOL algorithm

The present package has evolved from the NL2SOL pack-
age of [1]. Additional details of the underlying tech-
niques are given in [4]. A trust-region method is used
with P = D2, where D is a diagonal matrix with posi-
tive diagonal elements. Thus Eq. (18) is replaced by

(J tJ + S + λD2)δc = −g. (19)

The full Newton method has the advantage over the
Gauss-Newton method of providing a more complete
model of the nonlinear problem and ultimately hav-
ing a quadratic rate of convergence when close enough
to the solution. It has the disadvantage of requir-
ing computation of a large number of second derivative

terms. The authors of [1] developed a reasonably in-
expensive method of sequentially constructing a matrix,
S, that has properties in common with the true S ma-
trix of the full Newton method in some directions of
NC-dimensional parameter space. They found that us-
ing this approximate S in Eq. (19) was sometimes better
and sometimes worse than using S = 0, the latter being
a Gauss-Newton-Marquardt method.

The complete algorithm developed in [1] updates the ap-
proximate S matrix at each iteration and then does tests
to decide whether to use this S or S = 0 in Eq. (19) to
determine the next δc. The authors found that their
strategy of choosing between the approximate S and S =
0 at each iteration led to better performance over many
test cases than the exclusive use of either the approx-
imate S or S = 0. In the detailed output selected by
IV(outlev) the method used is indicated by “S” when
the approximate S matrix is used and “G” (for Gauss-
Newton-Marquardt) when S = 0 is used.

D.3 Specializing for the separable problem

Refer to Eqs. (2), (3), and (4). Let Φ denote the NDATA
× NB matrix with components ϕi,j . Let z denote an
NDATA dimensional vector equal to y in Eq. (3), and
with components zi = yi−ϕi,NB+1 in Eq. (4). Note that
Φ is a function of α, and so also is z when using Eq. (4).

The objective function of Eq. (2) can be expressed as

ψ(α, β) =
1

2
min
α,β
‖r(α, β)‖2

=
1

2
min
α

{
min
β
‖Φβ − z‖2

}
.

(20)

For fixed α the minimizing vector β can be expressed
as β = Φ+z, where Φ+ denotes the pseudoinverse of Φ.
Thus, the optimal residual vector associated with a fixed
α can be expressed as

r(α) =ΦΦ+z− z = (ΦΦ+ − I)z (21)

Then Eq. (20) can be rewritten as

ψ(α) =
1

2
min
α
‖r(α)‖2, (22)

where r(α) is defined by Eq. (21)

Thus a problem that appeared to depend on an NA-
vector α and an NB-vector β has been reformulated to
depend only on α. The vector β can be computed from
α as needed.

Reference [5] may have been the first paper to explicitly
present this idea for reducing the effective dimensionality
of a nonlinear least-squares problem. More algorithmic

9.3–14 Nonlinear Least-Squares July 11, 2015

details, particularly the transformations needed to com-
pute partial derivatives of ψ with respect to α from the
given partial derivatives of the ϕi,j ’s with respect to α,
are given in [6] and [7]. The approach of this package
is based particularly on [7], with the transformed NA-
dimensional problem being solved using the NL2SOL al-
gorithm of [1].

D.4 D, d, and parameter scaling

The algorithm uses a vector, d, of positive scaling values
to compensate for possible disparate scaling of the so-
lution parameters at various points in the computation,
particularly in convergence tests and in constructing the
D matrix of Eq. (19). Thus, D is defined to be the diag-
onal matrix with the components of the vector d on its
diagonal.

For DNLAxx the dimension of d and the order of D
is NC, and the scaled coefficient vector is Dc. For
DNLSxx the dimension of d and the order of D is NA,
and the scaled (nonlinear) coefficient vector is Dα. The
scaled relative distance between two vectors is defined
by Eq. (5), page 9.

If the magnitudes of the individual solution components,
i.e., the cj ’s or αj ’s, are fairly well known a priori, it is
suggested that the components of d be set to the recip-
rocal of these magnitudes and held constant throughout
the solution process. Otherwise it is suggested that the
algorithm be permitted to control d. See the specifica-
tion of IV(dtype), page 10 for specifications on how to
exercise this option.

D.5 Covariance Matrix

Reference [1] refers to [2] for discussion of three differ-
ent matrices that might be regarded as the covariance
matrix for the solution parameters of a nonlinear least-
squares problem. See the specification of IV(covreq)
in Section B.4.f for further information. The default
choice, |IV(covreq)| = 1, is recommended in [1], whereas
|IV(covreq)| = 3 is recommended in [8]. When the Hes-
sian matrix, H, is needed for computing the covariance
matrix, H is approximated by finite differences.

D.6 Influence Coefficients (Regression Diagnos-
tics)

A method treated in the statistical literature for judg-
ing the relative influence of different data points on a fit
is the leave one out analysis. The idea is to repeat the
fit NDATA times, with the ith fit done using all except
the ith data point. Approaches to producing this type
of information without repeating the fit NDATA times
are presented in pp. 996–997 of [9]. This feature was
not in NL2SOL ([1]) but one of the methods of [9] is
implemented in the present package.

Let x denote the solution vector (c or α), and let ψ0

be the value of the objective function at x. For i in
[1, NDATA] let g(i) and H(i) denote the gradient vec-
tor and Hessian matrix, respectively, computed using x
and omitting the contribution due to the ith data point.
Define

γi =
(
g(i)tH(i)−1g(i)

)1/2
. (23)

Note that γ2i is a first order estimate of the amount by
which the objective function ψ would be reduced from ψ0

if the problem were solved omitting the ith data point. In
tests of this feature the values of γi have been found to be
from 0.6 to 1.2 times the true value. For a more reliable
leave one out analysis we suggest actually computing the
NDATA different solutions, starting each solution from
the solution of the full problem.

If requested by the setting of IV(rdreq) = 2 or 3, the
package computes γi, for i = 1, ..., NDATA, and stores
these values in V() starting at V(IV(regd)). Printing of
the γ’s is controlled by IV(covprt).

If H is indefinite, the γ’s will not be computed and
IV(regd) will be set to −1. If the γ’s are not computed
for any other reason, IV(regd) will be set to zero. If an
individual H(i) is indefinite the corresponding γi will be
set to −1.0.

References

1. John E. Dennis, Jr., David M. Gay, and Roy E.
Welsch, An adaptive nonlinear least-squares algorithm,
ACM Trans. on Math. Software 7, 3 (Sept. 1981)
348–368. Also, Algorithm 573, NL2SOL, pp. 369–383.

2. Y. Bard, Nonlinear Parameter Estimation, Aca-
demic Press, New York (1974) 341 pages.

3. David M. Gay, Computing optimal locally constrained
steps, SIAM J. on Scientific Computing 2 (1981)
186–197.

4. John E. Dennis Jr. and Robert B. Schnabel, Nu-
merical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations, Prentice-Hall, En-
glewood Cliffs, N. J. (1983) 378 pages.

5. William H. Lawton and Edward A. Sylvestre, Elim-
ination of linear parameters in nonlinear regression,
Technometrics 13, 3 (Aug. 1971) 461–467.

6. Gene H. Golub and Victor Pereyra, The differentia-
tion of pseudo-inverse and nonlinear least-squares prob-
lems whose variables separate, SIAM J. on Numer.
Anal. 10 (1973) 413–432.

7. Linda C. Kaufman, A variable projection method for
solving separable nonlinear least squares problems, BIT
15 (1975) 49–57.

July 11, 2015 Nonlinear Least-Squares 9.3–15

8. J. R. Donaldson and R. B. Schnabel, Computational
experience with confidence regions and confidence in-
tervals for nonlinear least squares, Technometrics 29
(1987) 67–82.

9. David M. Gay and Roy E. Welsh, Maximum likelihood
and quasi-likelihood for nonlinear exponential family re-
gression models, J. Amer. Stat. Assn. 83, 404 (Dec.
1988) 990–998.

10. Thomas F. Coleman, Burton S. Garbow, and
Jorge J. Moré, Software for estimating sparse Jacobian
matrices, ACM Trans. on Math. Software 10, 3
(Sept. 1984) 329–345. Also, Algorithm 618, pp. 346–
347.

11. David M. Gay, Usage Summary for Selected
Optimization Routines. Internal Bell Laboratory
Document, AT&T (May 1984).

E. Error Procedures and Restrictions

On all returns, successful or not, the reason for the re-
turn is indicated by IV(1). See Section B.4.a for the
interpretation of these values.

After a return with IV(1) ≤ 11, it is possible to restart,
i.e., to change some of the IV() and V() input values
described in Sections B.4.c through B.4.i, and continue
the algorithm from the point where it was interrupted.
IV(1) should not be changed.

This package does not use the MATH77 error print-
ing subroutines. Error conditions are reported by di-
rect printing to the I/O unit selected by IV(prunit) if
IV(prunit) > 0. A message will be printed for successful
returns if IV(prunit) > 0 and at least one option to print
results has been selected. If IV(prunit) = 0, all printing
of both results and error messages is suppressed.

Subroutines containing WRITE statements, and the
number of WRITE statements in each, are DITSUM,32;
DN2CVP,11; DN2RDP,1; DPARCK,16; and DS7CPR,1.

F. Supporting Information

The source language is ANSI Fortran 77.

The original code corresponding to DNLAGU/DNLAFU
was NL2SOL/NL2SNO, developed in 1976–1980,
partially supported by NSF grants MCS–7600324,
DCR75–10143, 76–14311DSS, MCS76–11989, and MCS–
7906671, and published in [1]. A precursor of the sep-
arable code, DNLSGU, was written by Linda Kaufman
in 1977; see [7]. The code in the file IDSM is from [10].

Additional development, resulting in the eight main
user-callable subroutines described here was done by
David Gay and Linda Kaufman at AT&T Bell Labora-
tories, Murray Hill N.J., from 1980 through 1990. This
code was developed for use in the PORT library that
is used internally at AT&T and is also leased to other
organizations. In addition the code was placed in the
/netlib/port directory of netlib.att.com on the In-
ternet to make it publicly available. The code was down-
loaded from there to JPL by C. L. Lawson in Febru-
ary 1990. Changes were made to this code to make
it more consistent with the style of codes in the JPL
MATH77 library.

This writeup by C. L. Lawson, JPL, is based on [1], [11],
comment lines in the codes, and very helpful personal
communication with David Gay.

Entry Required Files

DIVSET AMACH, DIVSET

DNLAFB AMACH, DIVSET, DNLAFB, DRN2GB,
I7COPY

DNLAFU AMACH, DIVSET, DNLAFU, DRN2G

DNLAGB AMACH, DIVSET, DNLAGB, DRN2GB,
I7COPY

DNLAGU AMACH, DIVSET, DNLAGU, DRN2G

DNLSFB AMACH, DIVSET, DNLSFB, DQ7RFH,
DRN2GB, DRNSGB, I7COPY, IDSM

DNLSFU AMACH, DIVSET, DNLSFU, DQ7RFH,
DRN2G, DRNSG, IDSM

DNLSGB AMACH, DIVSET, DNLSGB, DQ7RFH,
DRN2GB, DRNSGB, I7COPY

DNLSGU AMACH, DIVSET, DNLSGU, DQ7RFH,
DRN2G, DRNSG

SIVSET AMACH, SIVSET

SNLAFB AMACH, I7COPY, SIVSET, SNLAFB,
SRN2GB

SNLAFU AMACH, SIVSET, SNLAFU, SRN2G

SNLAGB AMACH, I7COPY, SIVSET, SNLAGB,
SRN2GB

SNLAGU AMACH, SIVSET, SNLAGU, SRN2G

SNLSFB AMACH, I7COPY, IDSM, SIVSET,
SNLSFB, SQ7RFH, SRN2GB, SRNSGB

SNLSFU AMACH, IDSM, SIVSET, SNLSFU,
SQ7RFH, SRN2G, SRNSG

SNLSGB AMACH, I7COPY, SIVSET, SNLSGB,
SQ7RFH, SRN2GB, SRNSGB

SNLSGU AMACH, SIVSET, SNLSGU, SQ7RFH,
SRN2G, SRNSG

9.3–16 Nonlinear Least-Squares July 11, 2015

DRDNLAFU

c program DRDNLAFU
c>> 1994−11−02 DRDNLAFU Krogh Changes to use M77CON
c>> 1994−09−14 DRDNLAFU CLL Set IV(OUTLEV) = 0 fo r comparing output .
c>> 1992−02−03 CLL @ JPL
c>> 1990−07−02 CLL @ JPL
c>> 1990−06−27 CLL @ JPL
c>> 1990−06−14 CLL @ JPL
c>> 1990−03−28 CLL @ JPL
c Demo dr i v e r f o r DNLAFU. A var i an t o f the non l inear LS code NL2SOL.
c DNLAFU re qu i r e s f unc t i on va l u e s on ly .
c −−
c−−D rep l a c e s ”?”: DR?NLAFU, ?NLAFU, ?CALCR, ?IVSET
c −−

external DCALCR
integer LIV , LV, MC, MDATA, NC, NDATA
parameter (MDATA = 30 , MC = 7)
parameter (LIV = 82 + MC)
parameter (LV = 105 + MC∗(MDATA + 2∗MC + 17) + 2∗MDATA)
integer IV(LIV)
integer F, COVPRT, OUTLEV, SOLPRT, STATPR, X0PRT
parameter (F=10)
parameter (COVPRT=14, OUTLEV=19, SOLPRT=22, STATPR=23, X0PRT=24)
double precision COEF(MC) , DOF, V(LV)

c −−
NDATA = MDATA
NC = MC
COEF(1) = 5 .0 d0
COEF(2) = 10 .0 d0
COEF(3) = 0 .5 d0
COEF(4) = 0 .5 d0
COEF(5) = 0 .5 d0
COEF(6) = 0 .5 d0
COEF(7) = 0 .5 d0
IV (1) = 0

print ’ (1x , a) ’ ,
∗ ’ Program DRDNLAFU. . Demo d r i v e r f o r DNLAFU. ’ ,
∗ ’ A var i ant o f NL2SOL. ’ ,
∗ ’ DNLAFU r equ i r e s func t i on va lue s but not the Jacobian . ’ ,
∗ ’ ’ ,
∗ ’ Sample problem i s a non l in ea r curve f i t to data . ’ ,
∗ ’Model func t i on i s C3 + C4 ∗ cos (C1∗ t) + C5 ∗ s i n (C1∗ t) +’ ,
∗ ’ C6 ∗ cos (C2∗ t) + C7 ∗ s i n (C2∗ t) + Noise ’ ,
∗ ’ Data generated us ing ’ ,
∗ ’ (C1 , . . . , C7) = (6 , 9 , 1 , 0 . 5 , 0 . 4 , 0 . 2 , 0 . 1) ’ ,
∗ ’ and Gaussian no i s e with mean 0 and ’ ,
∗ ’ sample standard dev i a t i on 0 .001 ’ ,
∗ ’ ’

ca l l DIVSET(1 , IV , LIV , LV, V)
IV(X0PRT) = 1
IV(OUTLEV) = 0
IV(STATPR) = 1
IV(SOLPRT) = 1
IV(COVPRT) = 1

July 11, 2015 Nonlinear Least-Squares 9.3–17

ca l l DNLAFU(NDATA, NC, COEF, DCALCR, IV , LIV , LV, V)

DOF = max(NDATA − NC, 1)
print ’ (1x/1x , a , g12 . 4) ’ ,

∗ ’SIGFAC: sq r t ((2 ∗ V(F))/DOF) =’ ,
∗ sqrt (2 . 0 d0 ∗ V(F)/DOF)
stop
end

c ==
subroutine DCALCR(NDATA, NC, C, NCOUNT, RVEC)

c Function e va l ua t i on to t e s t non l inear l e a s t squares computation .
c −−

integer I , MDATA, NCOUNT, NDATA, NC
parameter (MDATA = 30)
double precision C(NC) , DEL, RVEC(NDATA) , T, YDATA(MDATA)
data YDATA /

∗ 1.700641d0 , 1 .793512d0 , 1 .838309d0 , 1 .838416d0 , 1 .792204d0 ,
∗ 1.700501d0 , 1 .579804d0 , 1 .426268d0 , 1 .260724d0 , 1 .084901d0 ,
∗ 0.917094d0 , 0 .761920d0 , 0 .627304d0 , 0 .522146d0 , 0 .446645d0 ,
∗ 0.404920d0 , 0 .392033d0 , 0 .409622d0 , 0 .453045d0 , 0 .510765d0 ,
∗ 0.584554d0 , 0 .663109d0 , 0 .747613d0 , 0 .829439d0 , 0 .908496d0 ,
∗ 0.983178d0 , 1 .051046d0 , 1 .114072d0 , 1 .171746d0 , 1 .227823 d0/

c −−
T = 0.0D0
DEL = 1.0D0 / 29 .0D0
do 10 I = 1 ,NDATA

RVEC(I) = C(3) + C(4)∗ cos (C(1)∗T) + C(5)∗ sin (C(1)∗T) +
∗ C(6)∗ cos (C(2)∗T) + C(7)∗ sin (C(2)∗T) −
∗ YDATA(I)

T = T + DEL
10 continue

return
end

9.3–18 Nonlinear Least-Squares July 11, 2015

ODDNLAFU

Program DRDNLAFU. . Demo dr i v e r f o r DNLAFU.
A var i ant o f NL2SOL.
DNLAFU r equ i r e s func t i on va lue s but not the Jacobian .

Sample problem i s a non l in ea r curve f i t to data .
Model func t i on i s C3 + C4 ∗ cos (C1∗ t) + C5 ∗ s i n (C1∗ t) +

C6 ∗ cos (C2∗ t) + C7 ∗ s i n (C2∗ t) + Noise
Data generated us ing
(C1 , . . . , C7) = (6 , 9 , 1 , 0 . 5 , 0 . 4 , 0 . 2 , 0 . 1)
and Gaussian no i s e with mean 0 and
sample standard dev i a t i on 0 .001

I INITIAL X(I) D(I)

1 5 .00000 0 .621
2 10.0000 0 .609
3 0.500000 1 .00
4 0.500000 1 .00
5 0.500000 1 .00
6 0.500000 1 .00
7 0.500000 0 .997

∗∗∗∗∗ RELATIVE FUNCTION CONVERGENCE ∗∗∗∗∗

FUNCTION 0.111899E−04 RELDX 0.169E−07
FUNC. EVALS 11 GRAD. EVALS 63
PRELDF 0.392E−11 NPRELDF 0.392E−11

I FINAL X(I) D(I) G(I)

1 5 .99129 0 .621 0 .934E−11
2 8.99554 0 .609 0 .864E−12
3 1.00057 1 .00 −0.155E−10
4 0.501649 1 .00 0 .255E−10
5 0.396734 1 .00 −0.264E−10
6 0.198612 1 .00 0 .316E−10
7 0.100243 1 .00 −0.400E−10

35 EXTRA FUNC. EVALS FOR COVARIANCE AND DIAGNOSTICS.

++++++ INDEFINITE COVARIANCE MATRIX ++++++

SIGFAC: sq r t ((2 ∗ V(F))/DOF) = 0.9864E−03

July 11, 2015 Nonlinear Least-Squares 9.3–19

DRDNLSGU

c program DRDNLSGU
c>> 2001−05−24 DRDNLSGU Krogh Minor change f o r making . f90 ve r s i on .
c>> 1997−06−18 DRDNLSGU Krogh Changes to improve C p o r t a b i l i t y .
c>> 1994−11−02 DRDNLSGU Krogh Changes to use M77CON
c>> 1994−09−14 DRDNLSGU CLL Set IV(OUTLEV) = 0 fo r comparing output .
c>> 1992−04−13 CLL Rename and reorder common b l o c k [D/S]KEY.
c>> 1992−02−03 CLL @ JPL
c>> 1990−07−02 CLL @ JPL
c>> 1990−06−27 CLL @ JPL
c>> 1990−04−05 CLL @ JPL
c>> 1990−03−29 CLL @ JPL
c Demo dr i v e r f o r DNLSGU. A var i an t o f the non l inear LS code NL2SOL.
c DNLSGU so l v e s the ” s epa rab l e ” problem .
c DNLSGU re qu i r e s va l u e s o f the func t i on and the Jacobian matrix .
c Note : MDER i s the number o f ones in the array IND() .
c −−
c−−D rep l a c e s ”?”: DR?NLSGU, ?NLSGU, ?CALCA, ?CALCB, ?IVSET, ?KEY
c −−

external DCALCA, DCALCB
integer ITERM,IVAR, LIV ,LV,MA,MB,MDATA,MDER,MLEN,NA,NB,NDATA
parameter (MDATA = 30 , MA = 2 , MB = 5)
parameter (MDER = 4)
parameter (LIV = 115 + MA + MB + 2∗MDER)
parameter (MLEN = (MB+MA)∗ (MDATA+MB+MA+1))
parameter (LV = 105 + MDATA∗(MB+MDER+3) +

∗ MLEN + (MB∗(MB+3))/2 + MA∗(2∗MA+17))
integer IND(MB+1,MA) , IV(LIV)
integer F, COVPRT, OUTLEV, SOLPRT, STATPR, X0PRT
parameter (F=10)
parameter (COVPRT=14, OUTLEV=19, SOLPRT=22, STATPR=23, X0PRT=24)
double precision ALF(MA) , BET(MB) , DOF, V(LV) , YDATA(MDATA)
data ((IND(ITERM,IVAR) ,IVAR = 1 ,2) ,ITERM = 1 ,6)/

∗ 0 , 0 ,
∗ 1 , 0 ,
∗ 1 , 0 ,
∗ 0 , 1 ,
∗ 0 , 1 ,
∗ 0 , 0/
data YDATA /

∗ 1.700641d0 , 1 .793512d0 , 1 .838309d0 , 1 .838416d0 , 1 .792204d0 ,
∗ 1.700501d0 , 1 .579804d0 , 1 .426268d0 , 1 .260724d0 , 1 .084901d0 ,
∗ 0.917094d0 , 0 .761920d0 , 0 .627304d0 , 0 .522146d0 , 0 .446645d0 ,
∗ 0.404920d0 , 0 .392033d0 , 0 .409622d0 , 0 .453045d0 , 0 .510765d0 ,
∗ 0.584554d0 , 0 .663109d0 , 0 .747613d0 , 0 .829439d0 , 0 .908496d0 ,
∗ 0.983178d0 , 1 .051046d0 , 1 .114072d0 , 1 .171746d0 , 1 .227823 d0/

c −−
NDATA = MDATA
NA = MA
NB = MB
ALF(1) = 5 .0 d0
ALF(2) = 10 .0 d0
IV (1) = 0

print ’ (1x , a) ’ ,
∗ ’ Program DRDNLSGU. . Demo d r i v e r f o r DNLSGU. ’ ,
∗ ’ A var i ant o f NL2SOL. ’ ,

9.3–20 Nonlinear Least-Squares July 11, 2015

∗ ’ DNLSGU handles the Separable problem . ’ ,
∗ ’ DNLSGU r equ i r e s va lue s o f the func t i on and the Jacobian . ’ ,
∗ ’ ’ ,
∗ ’ Sample problem i s a non l in ea r curve f i t to data . ’ ,
∗ ’Model func t i on i s B1 + B2 ∗ cos (A1∗ t) + B3 ∗ s i n (A1∗ t) +’ ,
∗ ’ B4 ∗ cos (A2∗ t) + B5 ∗ s i n (A2∗ t) + Noise ’ ,
∗ ’ Data generated us ing ’ ,
∗ ’ (A1 , A2 , B1 , . . . , B5) = (6 , 9 , 1 , 0 . 5 , 0 . 4 , 0 . 2 , 0 . 1) ’ ,
∗ ’ and Gaussian no i s e with mean 0 and ’ ,
∗ ’ sample standard dev i a t i on 0 .001 ’ ,
∗ ’ ’

ca l l DIVSET(1 , IV , LIV , LV, V)
IV(X0PRT) = 1
IV(OUTLEV) = 0
IV(STATPR) = 1
IV(SOLPRT) = 1
IV(COVPRT) = 1

ca l l DNLSGU(NDATA, NA, NB, ALF, BET, YDATA, DCALCA, DCALCB,
∗ IND, NB+1, IV , LIV , LV, V)

DOF = max(NDATA − NA − NB, 1)
print ’ (1x/1x , a , g12 . 4) ’ ,

∗ ’SIGFAC: sq r t ((2 ∗ V(F))/DOF) =’ ,
∗ sqrt (2 . 0 d0 ∗ V(F)/DOF)
stop
end

c ==
subroutine DCALCA(NDATA, NA, NB, ALF, NCOUNT, PHI)

c Test case f o r s epa rab l e non l inear l e a s t squares computation .
c Computes MDATA x NB matrix PHI as a func t i on o f the
c non l inear parameters ALF() .
c For J . l e . NB the (I , J) term of PHI i s the c o e f f i c i e n t o f the
c l i n e a r c o e f f i c i e n t B(J) in row I o f the model .
c In t h i s example the model does not have a term tha t i s not
c mu l t i p l i e d by a l i n e a r c o e f f i c i e n t . I f such a term i s pre sen t
c then PHI must have an (NB+1) s t column to ho ld t h i s term .
c This code I l l u s t r a t e s sav ing r e s u l t s in common between DCALCA and
c DCALCB to avoid r e c a l c u l a t i o n o f common subexp r e s s i on s .
c −−

common/DKEY/C1 , C2 , S1 , S2 , KEY
save /DKEY/
integer I , KEY, MDATA, NA, NB, NCOUNT, NDATA
parameter (MDATA = 30)
double precision ALF(NA) , C1(MDATA) , C2(MDATA)
double precision DEL, PHI(NDATA,NB)
double precision S1 (MDATA) , S2 (MDATA) , T

c −−
T = 0.0D0
DEL = 1.0D0 / 29 .0D0
KEY = NCOUNT
do 10 I = 1 ,NDATA

C1(I) = cos (ALF(1)∗T)
S1 (I) = sin (ALF(1)∗T)
C2(I) = cos (ALF(2)∗T)
S2 (I) = sin (ALF(2)∗T)
PHI(I , 1) = 1 .0D0
PHI(I , 2) = C1(I)

July 11, 2015 Nonlinear Least-Squares 9.3–21

PHI(I , 3) = S1 (I)
PHI(I , 4) = C2(I)
PHI(I , 5) = S2 (I)
T = T + DEL

10 continue
return
end

c ==
subroutine DCALCB(NDATA, NA, NB, ALF, NCOUNT, DER)

c Test case f o r s epa rab l e non l inear l e a s t squares computation .
c Computes the NDATA x NDER matrix DER. Here NDER i s the number o f
c ones in the i n d i c a t o r array IND() . The columns o f DER correspond
c to nonzero e n t r i e s o f IND() t r a v e r s ed columnwise .
c In t h i s example NDER i s 4 and the correspondence i s as f o l l o w s :
c Col o f DER: 1 2 3 4
c Element o f IND() : (2 ,1) (3 ,1) (4 ,2) (5 ,2)
c In t h i s example Row I o f DER w i l l be s e t to conta in the va l u e s
c o f the four p a r t i a l d e r i v a t i v e s :
c Pa r t i a l o f PHI(I , 2) wi th r e s p e c t to ALP(1)
c Pa r t i a l o f PHI(I , 3) wi th r e s p e c t to ALP(1)
c Pa r t i a l o f PHI(I , 4) wi th r e s p e c t to ALP(2)
c Pa r t i a l o f PHI(I , 5) wi th r e s p e c t to ALP(2)
c −−

common/DKEY/C1 , C2 , S1 , S2 , KEY
save /DKEY/
integer I , KEY, MDATA, NCOUNT, NDATA, NA, NB, NDER
parameter (MDATA = 30 , NDER = 4)
double precision ALF(NA) , C1(MDATA) , C2(MDATA)
double precision DEL, DER(NDATA,NDER) , S1 (MDATA) , S2 (MDATA) , T

c −−
T = 0.0D0
DEL = 1.0D0 / 29 .0D0
i f (NCOUNT . eq . KEY) then

do 10 I = 1 ,NDATA
DER(I , 1) = −S1 (I)∗T
DER(I , 2) = C1(I)∗T
DER(I , 3) = −S2 (I)∗T
DER(I , 4) = C2(I)∗T
T = T + DEL

10 continue
else

do 20 I = 1 ,NDATA
DER(I , 1) = −sin (ALF(1)∗T)∗T
DER(I , 2) = cos (ALF(1)∗T)∗T
DER(I , 3) = −sin (ALF(2)∗T)∗T
DER(I , 4) = cos (ALF(2)∗T)∗T
T = T + DEL

20 continue
endif
return
end

9.3–22 Nonlinear Least-Squares July 11, 2015

ODDNLSGU

Program DRDNLSGU. . Demo dr i v e r f o r DNLSGU.
A var i ant o f NL2SOL.
DNLSGU handles the Separable problem .
DNLSGU r equ i r e s va lue s o f the func t i on and the Jacobian .

Sample problem i s a non l in ea r curve f i t to data .
Model func t i on i s B1 + B2 ∗ cos (A1∗ t) + B3 ∗ s i n (A1∗ t) +

B4 ∗ cos (A2∗ t) + B5 ∗ s i n (A2∗ t) + Noise
Data generated us ing
(A1 , A2 , B1 , . . . , B5) = (6 , 9 , 1 , 0 . 5 , 0 . 4 , 0 . 2 , 0 . 1)
and Gaussian no i s e with mean 0 and
sample standard dev i a t i on 0 .001

I INITIAL X(I) D(I)

1 5 .00000 1 .00
2 10.0000 1 .00

∗∗∗∗∗ SINGULAR CONVERGENCE ∗∗∗∗∗

FUNCTION 19.2768 RELDX 0.00
FUNC. EVALS 1 GRAD. EVALS 1
PRELDF 0.00 NPRELDF 0.00

I FINAL X(I) D(I) G(I)

1 5 .00000 1 .00 0 .00
2 10.0000 1 .00 0 .00

LINEAR PARAMETERS. . .

1 0 .00000
2 0.00000
3 0.00000
4 0.00000
5 0.00000

SIGFAC: sq r t ((2 ∗ V(F))/DOF) = 1.295

July 11, 2015 Nonlinear Least-Squares 9.3–23

	Nonlinear Least-Squares
	Purpose
	Usage
	Subroutines not Specialized for the Separable Problem: DNLAFB, DNLAFU, DNLAGB, DNLAGU
	Subroutines Specialized for the Separable Problem: DNLSFB, DNLSFU, DNLSGB, DNLSGU
	Setting Options and Using SubroutineDIVSET
	The Contents of IV() and V()
	Modifications for Single Precision

	Examples and Remarks
	Functional Description
	Fundamental notation for nonlinear least-squares
	The NL2SOL algorithm
	Specializing for the separable problem
	D, d, and parameter scaling
	Covariance Matrix
	Influence Coefficients (Regression Diagnostics)

	Error Procedures and Restrictions
	Supporting Information

