
14.1 Variable Order Adams Method for
Ordinary Differential Equations

A. Purpose

This collection of subroutines uses a variable order
Adams method to solve the initial value problem

dyi
dt

= fi(t, y1, y2, ..., yNEQ)

yi(t0) = ηi

, i = 1, 2, ..., NEQ, (1)

or more generally

z
(di)
i = fi(t,y), y(t0) = η0, i = 1, 2, ..., NEQ, (2)

where y is the vector (z1, z
′
1, ..., z

(d1−1)
1 , z2, ..., z

(dNEQ−1)
NEQ),

z
(k)
i is the kth derivative of zi with respect to t, di is the

order of the ith differential equation, and η is a vector
with the same dimension as y.

If your derivatives are cheap to compute and you have
a first order system, the Runge-Kutta routines in Chap-
ter 14.2 will probably run faster. The RK routines will
also provide a little more accuracy, and thus you may
want to use them if the Adams method just barely fails
to meet your accuracy needs.

B. Usage

Described below under B.1 through B.8 are:

B.1 Setting up for double precision usage 1
B.1.a The calling routine . 1
B.1.b The user supplied subroutine for

computing derivatives .2
B.1.c The user supplied subroutine for doing

output . 2
B.1.d Argument Definitions . 2

B.2 Finding zeros of arbitrary functions, G-stops 3
B.3 Saving the solution for later retrieval, and the

retrieval of that saved solution 5
B.4 Setting up the program to use reverse

communication . 6
B.5 Additional detail for the argument KORD 6
B.6 Setting options using the array IOPT() 7
B.7 Other options . 10
B.8 Modifications for single precision usage 11
B.9 Special treatment of weak discontinuities 12

B.1 Program Prototype, Double Precision

B.1.a The calling routine

The dimensioning parameters must satisfy the following
constraints.

IFDIM ≥ k×NEQ+1 (See the specification of IFDIM
below for information on selecting k.)

IKDIM ≥ NEQ + 4

ITDIM ≥ 4

IYDIM ≥ 2 × L = 2 ×
∑NEQ

i=1 di = 2 × (number of
components in the y vector)

The subroutine arguments should be declared as follows:

EXTERNAL DIVAF, DIVAO

INTEGER NEQ, ITDIM, IYDIM, IFDIM,
IKDIM, KORD(IKDIM), IOPT(≥ k)
[k depends on options used (≥ 4).]

DOUBLE PRECISION TSPECS(ITDIM),
F(IFDIM), Y(IYDIM)

Assign values to NEQ, TSPECS(), and Y(i), 1 ≤ i ≤ L,
where L = number of components in the y vector. Set
KORD(1) = 0. Set the option vector, IOPT(), to specify
an error tolerance. For example, to get the same abso-
lute error tolerance on all equations:

IOPT(1) = 16
IOPT(2) = NEQ + 4
IOPT(3) = NEQ + 1
KORD(NEQ+4) = NEQ
F(NEQ + 1) = desired tolerance

If integrating a system of first order equations and no
further options are desired, then terminate the option
vector with

IOPT(4) = 0

If integrating a system of second order equations and no
further options are desired, then set

IOPT(4) = 17
IOPT(5) = 2
IOPT(6) = 0

The subroutine DIVA may then be called as follows:

100 CALL DIVA (TSPECS, Y, F, KORD,
NEQ, DIVAF, DIVAO, ITDIM,
IYDIM, IFDIM, IKDIM, IOPT)

if (KORD(1) .ne. 1) go to 100

(Here the computation is complete.)

c©1997 Calif. Inst. of Technology, 2015 Math à la Carte, Inc.

July 11, 2015 Variable Order Adams Method for Ordinary Differential Equations 14.1–1

B.1.b Program Prototype, DIVAF, Double Pre-
cision

SUBROUTINE DIVAF (TSPECS, Y, F, KORD)

DOUBLE PRECISION TSPECS(*), Y(*), F(*)

INTEGER KORD(*)

T = TSPECS(1)

Compute F(i) = fi(T, Y), i = 1, 2, ..., NEQ.

RETURN

END

If f has complicated subexpressions which depend only
weakly or not at all on y, such subexpressions need only
be computed when KORD(1) = 1 and their values may
be reused when KORD(1) = 2.

The use of options 7 or 18 described in Section B.6. re-
quires additional action to be taken in DIVAF.

B.1.c Program Prototype, DIVAO, Double Pre-
cision

SUBROUTINE DIVAO (TSPECS, Y, F, KORD)

DOUBLE PRECISION TSPECS(*), Y(*), F(*)

INTEGER KORD(*)

Output results depending on the value of

KORD(1), see Section B.5 for details.

If KORD(1) ≤ 2, the output increment, ∆t,
stored in TSPECS(3) can be changed.

If KORD(1) ≤ 3, or = 5, any output abscissas

stored in TSPECS() can be changed.

RETURN

END

B.1.d Argument Definitions

TSPECS() [inout] An array used to store information
about the independent variable. The first location
available for options is TSPECS(5).

TSPECS(1) = current value of t, the independent
variable. Must be initialized by the user, and is up-
dated by the integrator.

TSPECS(2) = current value of h, the integration
stepsize. Must be initialized by the user, and is up-
dated by the integrator. The initial value selected for
h is not critical to the accuracy or the efficiency of
the integration.

TSPECS(3) = current value of ∆t, the output in-
crement. The user subroutine DIVAO is called with
KORD(1) = 2 at t = tk, where tk = tk−1 + ∆t, t0
is the initial value of t, and k = 1, 2, Different
increments between these output points can be ob-
tained by changing TSPECS(3) whenever DIVAO is
called with KORD(1) = 2. If no output of this type
is desired, give TSPECS(3) a large absolute value.
You must have h×∆t > 0 in all cases.

TSPECS(4) = current value of tf , the “final” out-
put point. The user subroutine DIVAO is called
with KORD(1) = 3 at t = tf . If TSPECS(4) is not
changed at this time, control is returned to the pro-
gram which called the integrator with KORD(1) = 1.
If TSPECS(4) is changed, the integration is contin-
ued.

Y() [inout] Vector of dependent variables, y. For a sys-
tem of first order equations Y(i) is the ith depen-
dent variable, and must be initialized by the user for
i = 1, 2,..., NEQ. Y(NEQ+i), i = 1, ..., NEQ is used
to store previous values of Y(i) required for the inte-
gration process.

For a system of second order equations Y(2i− 1) is
the ith dependent variable and Y(2i) is the derivative
of the ith dependent variable. They must be initial-
ized by the user for i = 1, 2,..., NEQ. Y(2× (NEQ +
i)−1) and Y(2×(NEQ+i)) are used to save previous
values of Y required for the integration.

For a system with mixed orders, values are stored in
the order given for the vector y just below Eq. (2).
This part of Y must be initialized by the user. Fol-
lowing these values is space to save previous values
of y for use by the integration process.

F() [inout] Derivative value. The user should compute
fi(t,y) and store it in F(i), i = 1, 2,..., NEQ, when-
ever DIVAF is called with KORD(1) = 1 or 2. Ad-
ditional storage is required in F() for options and
difference tables required for the integration. We rec-
ommend using the space starting at F(NEQ+1) for
options. (The difference tables will be stored in the
largest contiguous unused space in F().)

KORD() [inout] Vector used for flags to communicate
with the user and to store integration orders. The
user must set KORD(1) = 0 before the first call to
DIVA for a new problem. Thereafter, DIVA sets
KORD(1) to indicate what is to be done or what
has happened. See “B.5 Additional Detail for the
Argument, KORD” for further details. This section
should be read before using the options that require
examination of KORD. The first location available
for options is KORD(NEQ+4).

NEQ [in] The number of differential equations in the
system being solved.

DIVAF [in] Name of the subroutine supplied by the
user. The name need not be ’DIVAF’. See “B.1.b
Program Prototype, DIVAF, Single Precision” for
the specifications of this subroutine.

DIVAO [in] Name of the subroutine supplied by the
user. The name need not be ’DIVAO’. See “B.1.c
Program Prototype, DIVAO, Single Precision” for
the specifications of this subroutine.

14.1–2 Variable Order Adams Method for Ordinary Differential Equations July 11, 2015

ITDIM [in] Dimension of the TSPECS array. ITDIM
≥ 4 unless extra output points are specified by Op-
tion 5, in which case ITDIM must be > 4.

IYDIM [in] Dimension of the Y array. This should be
twice the dimension of the dependent variable vector
y. E.g., for a system of NEQ first order equations,
IYDIM = 2×NEQ; for a system of NEQ second order
equations, IYDIM = 4×NEQ.

IFDIM [in] Declared dimension of F(). The first NEQ
locations of F() contain the current value of the
derivative vector f . Other locations in F() are used
for options, as specified by the user. The largest con-
tiguous block left in F() is used for difference tables.

At least one location must be used to provide the
error tolerance associated with Option 16, which is
required. We suggest location F(NEQ+1) be used
for this purpose.

The suggested amount of space for difference tables
is (k − 1)× NEQ, where k = b7.50− .5 log10 εc, and
ε is the machine precision. For IEEE Arithmetic, we
suggest k = 11 for single precision and k = 16 for
double precision.

A storage size of (k−1)×NEQ permits the subroutine
to use differences of f up to k−2 in the predictor for-
mula and k − 1 in the corrector. Use of higher order
differences, up to a limit depending on the machine
precision, generally permits a problem to be solved
in fewer integration steps. The subroutine requires
difference table space of at least 5 × NEQ and will
not use more than 16 × NEQ in single precision or
20×NEQ in double precision.

IKDIM [in] Declared dimension of KORD. This de-
pends on the options used. With no options one must
have IKDIM ≥ NEQ + 4.

IOPT() [in] A vector providing access to optional fea-
tures of the integrator. Option 16 must be set by
the user to specify an error tolerance. Defaults are
such that you need not read about any of the other
options. See Section B.6 for details and the following
table for a quick overview.

B.2 Usage of G-Stops

The “G-stop” feature provides a means for the integra-
tion package to monitor user defined functions, gi(t,y),
and return control to the user’s code for special actions
whenever one of these functions attains a zero value.
This feature is activated by Options 6 and/or 7, and
is supported by the subroutine DIVAG.

Option Brief description
0 No more options.
1 Skip initial point output.
−2 Resets all options to their nominal values.

2 Define a special output point while integrating.
3 Select interpolation, extrapolation or integration

to final output point.
4 Increment for output based on step number.
5 Additional output points.
6 Interpolating G-stops and/or output every step.
7 Extrapolating G-stops.
8 Output when stepsize is changed.
9 Save information to reconstruct global solution.

10 Diagnostic output control.
11 Use when calling divadb to avoid diagnostics on

uninitialized memory.
12 Stepsize control.
13 Reverse communication for f .
14 Reverse communication for output.
15 Return after initialization.
16 Define error control (must be specified).
17 Direct integration of higher order equations.
18 Grouping of equations for derivative evaluation.
19 Integration order control.
20 Save estimated local error.
21 Set tolerance on G-stops.

A distinction is made between interpolating and extrap-
olating G-stop functions. If the differential equations
remain well behaved beyond a zero of a function g(t,y)
then g should be an interpolating G-stop function. Its
zero can be detected by noting a sign change at some step
of the solution algorithm and then using iteration and in-
terpolation to locate the zero precisely. When f(t,y) has
a discontinuity it is usually the case that there is a natu-
ral extension of f which is smooth and thus will allow the
use of interpolatory G-stops. One can distinguish how f
is to be computed in DIVAF via a flag that is set to one
value before the G-stop, and to another value after the
stop. Thus if y′ = −|y| + sin t, y0 = 1, one could start
with some flag Ymul = −1., and when getting a G stop
for a change in sign on y, set Ymul = −Ymul and restart
the integration. One then computes y′ = Ymul ∗y+sin t.
Note that unlike the first form for y′, the second form
has a discontinuity only upon having the G-stop flagged
at which time the integration is restarted.

If there is no convenient way to compute f (or a smooth
extension of f) beyond the G-stop, the function g(t,y)
must be tested more frequently and its zero must be
found by searching from one side using iteration and ex-
trapolation. This latter case requires more computation
time, is slightly less accurate, and slightly less reliable.

Using Option 6 the user may specify that there are K6

July 11, 2015 Variable Order Adams Method for Ordinary Differential Equations 14.1–3

interpolating G-stop functions, say g
(6)
i (t,y), i = 1, ...,

K6, and using Option 7 the user may specify that there

are K7 extrapolating G-stop functions, say g
(7)
i (t,y),

i = 1, ..., K7. Code defining the interpolating (or extrap-
olating) G-stop functions must be in the user’s DIVAO
(or DIVAF) subroutine or in the equivalent part of the
main program if reverse communication (Section B.4) is
used.

The code is designed to find a zero crossing only if the
sign change persists for at least an integration step.
(This is to insure that computational noise does not
result in multiple stops.) It will miss sign changes
which persist for less than the current integration step,
TSPECS(2). If it is necessary to locate such sign
changes, the following procedure should be followed. Let
d denote the lowest order total derivative of g with
respect to t for which one knows that (dd/dtd)g does
not change sign more than once in a given integra-

tion step. For some k, let g
(6)
k−j = (dj/dtj)g, j = 0,

1,..., d. Just above the statement with label 100 be-
low, set some variable TT = TSPECS(1) (=value of
TSPECS(1) at the end of the last complete integration
step). When computing G6(i), if TSPECS(1) > TT
(or when TSPECS(2) < 0, if TSPECS(1) < TT), and
k − d < NSTOP ≤ k then

1. If multiple G-Stops due to computational noise are
not a concern, set G6(NSTOP) = 0, else

2. Set KG = 0 when defining TT. If for k−d ≤ NSTOP

< k, g
(6)
NSTOP has a different sign from the corre-

sponding GT6 (see argument definitions below), or
k− d < NSTOP ≤ k and KG= NSTOP− 1, then set
G6(NSTOP) = 0 and KG = NSTOP.

B.2.a Code for G-stops in subroutine DIVAO

Let M6 denote the maximum value K6 will have during
a run. DIVAO must have the additional declarations:

INTEGER NSTOP

DOUBLE PRECISION G6(M6), GT6(M6)

SAVE G6, GT6

The code in DIVAO may have the form:

IF((KORD(1).EQ.6).OR.(KORD(1).EQ.7)) THEN

100 {Compute G6(i) = g
(6)
i (TSPECS(1), Y)

for i = 1, ..., K6.}

CALL DIVAG (TSPECS, Y, F, KORD,
IFLAG, NSTOP, G6, GT6)

IF (IFLAG .EQ. 1) THEN
{Take any other action you may want to take at the

end of every step}
RETURN

ELSE IF (IFLAG .NE. 2) THEN
IF (IFLAG .EQ. 4) GO TO 100
IF ((IFLAG .EQ. 3) .OR. (IFLAG .EQ. 8))

1 RETURN
{A zero of a G-stop function has been found for the

current values of TSPECS(1) and Y(). If

NSTOP > 0 it is a zero of g
(6)
NSTOP , otherwise

it is a zero of g
(7)
−NSTOP .}

{Take whatever action is desired. If the action taken
produces a discontinuous change in some fi, then set
KORD(1) = 0 to cause a restart of the integration.}

RETURN
END IF

END IF
{Test KORD(1) for values other than 6 and 7 and do

the selected output actions. See Section B.5}
RETURN

B.2.b Code for G-stops in subroutine DIVAF

Let M7 denote the maximum value K7 will have during
a run. DIVAF must have the additional declarations:

INTEGER NSTOP

DOUBLE PRECISION G7(M7), GT7(M7)

SAVE G7, GT7

The code in DIVAF may have the form:

100 {Compute G7(i) = g
(7)
i (TSPECS(1),Y)

for i = 1, ..., K7.}

CALL DIVAG (TSPECS, Y, F, KORD,
IFLAG, NSTOP, G7, GT7)

IF (IFLAG .EQ. 4) GO TO 100
IF (IFLAG .LE. 2) THEN
{Compute F(i) = fi(TSPECS(1), Y) for

i = 1, ..., NEQ.}
END IF
RETURN

B.2.c Argument Definitions, G-stops

TSPECS(), Y(), F() [inout] Same as in B.1 above.

IFLAG [out] A flag telling the user what to do after a
call to DIVAG.

= 1 Continue as if DIVAG were not called.

= 2 Check KORD(1) as one would do at the begin-
ning of the subroutine if no G-stops were present
(only has any real effect in DIVAO).

14.1–4 Variable Order Adams Method for Ordinary Differential Equations July 11, 2015

= 3 Return to the integrator. (If in DIVAF and
NSTOP 6= 0, a G-stop was found, but further
checks must be made to see if there is preceding
output.)

= 4 Compute values of G6() if in DIVAO or of G7()
if in DIVAF; then call DIVAG again.

= 5 A G-stop has been found, and NSTOP gives its
index. (If NSTOP < 0, an extrapolating G-stop
with index −NSTOP has been found.)

= 6 Same as 5, but requested accuracy not met.

= 7 Same as 5, but there is probable error in com-
puting G.

= 8 Fatal error of some type. An error message has
been printed, and the program will be stopped
if a return is made to the integrator.

NSTOP [out] Index of the G-stop. See IFLAG = 5,
6, and 7 above. After the call to DIVAG, if IFLAG
= 4, and NSTOP 6= 0, only the G with index NSTOP
need be computed.

G6() [in] An array containing current values of the func-
tions whose zeros are to be found using interpolatory
G-stops. The user must compute G6 in DIVAO as
indicated above.

G7() [in] As for G6, except for extrapolatory G-stops.
G7 is computed in DIVAF.

GT6() [inout] An array containing previous values of
G6. The user should not change its values, except
for the following.

1. To turn off testing for G6(k). This can be done
by setting G6(k) = GT6(k) = 0.

2. When redefining how G6(k) is computed. In
this case, it is permitted to store in GT6(k) any
value that has the same sign as would be ex-
pected for the new G function it it were com-
puted slightly before the current time. (GT6(k)
= 0 just after an indication of a G-stop for
G6(k). While GT6(k) is 0 no G-stop is indi-
cated, but GT6(k) is replaced by G6(k) after
the g’s are computed.)

GT7() [inout] As for GT6, except used with G7.

KORD() [inout] Vector used for flags to communicate
with the user. See Section B.5 for details.

B.3 Saving the Solution

If Option 9 has been specified, DIVAO is called with
KORD(1) = 9 whenever information necessary to recon-
struct the solution should be saved. Besides making this
call when required to maintain sufficient accuracy in the
saved solution, this call is made if, before a return to the
integrator from DIVAO, the user sets KORD(1) ≤ 0. (A

restart of the integration results if KORD(1) = 0, and a
return to the program which called the integrator results
if KORD(1) < 0. See below, “B.7, Other Options.”)

The contents of the common block DIVASC (SIVASC in
the case of single precision), the base values for Y(), the
difference tables, and the integration orders (which are
stored as indicated below) must be saved in order to re-
construct the solution. The common block contains the
following, in the order given.

TN The base value of the independent variable.

XI() XI(k) = tn − tn−k, where tn = TN, and tn−k was
the value of TN k steps back. XI has dimension
KDIMDT, where KDIMDT=16 for single precision
and=20 for double precision.

IOPST Reserved for use in case of stiff equations.

KORDI If all differential equations have the same or-
der, KORDI is that order, otherwise it is not used.

KQMAXD Maximum integration order used for stiff
equations (when implemented).

KQMAXI Maximum integration order used for equa-
tions which are not stiff.

LDT Flag giving current state of difference tables.
Whenever DIVAO is called with KORD(1)=9,
LDT=1 indicating that the differences are updated
to the proper values for the current base point TN.

MAXDIF Maximum order derivative of F to be com-
puted. Ordinarily this will equal 0.

MAXINT Maximum number of integrations to be per-
formed. Ordinarily this will be the same as the order
of the differential equation with the largest order.

NKDKO If all differential equations are of the same or-
der, NKDKO=0, otherwise orders of the differential
equations are stored starting in KORD(NKDKO).

NTE Total number of differential equations being inte-
grated.

NYNY The base values for Y() are stored in
Y(NYNY), Y(NYNY + 1),...,Y(NYNY+k−1), where
k is the total order of the system. (k = NTE× KO-
RDI if NKDKO=0.) NYNY=k+1.

NDTF Difference tables are stored starting in
F(NDTF)

NUMDT Number of differences for each equation.

Base values for Y() are stored as indicated just
above. Difference tables are stored in F(NDTF),
F(NDTF+1),...F(NDTF+NEQ×NUMDT − 1), and the
integration orders are stored in KORD(4), KORD(5), ...,
KORD(NTE+3). TN and XI() have the same type as F.
Note that TN, XI(), KQMAXI, the integration orders,
the base values for Y(), and the difference tables are the

July 11, 2015 Variable Order Adams Method for Ordinary Differential Equations 14.1–5

only variables that change from one time to the next.
Thus the other variables need only be saved once.

If one requests integration restarts when saving the solu-
tion (because of discontinuities in some fi, for example),
then the value of TSPECS(1) should be stored in ad-
dition to the variables indicated above. In describing
how to reconstruct the solution we assume the values of
TSPECS(1) have been saved. If not, simply use TN for
TSPECS(1).

To reconstruct the solution at a given point t, find that
value of j such that tj−1 < t ≤ tj (or tj−1 > t ≥ tj if the
stepsize is negative), where tj is the value of TSPECS(1)
at the jth time the solution was stored. Store the saved
values from the common block, the base Y(), the dif-
ference tables, and the integration orders into the lo-
cations they occupied originally. Set TSPECS(1) = t,
TSPECS(2) = tj − tj−1, and

CALL DIVAIN (TSPECS, Y, F, KORD)

Y() and F() will then contain the interpolated values of
the solution and derivative at the specified value of t.

If the integrator is being used while reconstructing a so-
lution from another integration, then one should intro-
duce a new subroutine which is the same as DIVAIN (or
SIVAIN) except for the subroutine name and the com-
mon block name DIVASC (or SIVASC), and call it in
place of the above call. Names used for retrieved values
should, of course, be different from names being used in
the current integration.

If one is interested in interpolating only for the variables
associated with some of the equations, one need store
only the corresponding base values of Y, difference ta-
bles, and integration orders.

B.4 Program Prototype, Reverse Communica-
tion, Double Precision

Declare the subroutine parameters and initialize their
values as described in Section B.1.a with the following
exceptions:

(a) To use reverse communication for derivative com-
putation set Option 13. Then DIVAF need not be
declared EXTERNAL but some name must occupy
the sixth position in the CALL to DIVA.

(b) To use reverse communication for output set Op-
tion 14. Then DIVAO need not be declared EX-
TERNAL but some name must occupy the seventh
position in the CALL to DIVA.

(c) The array IOPT() must be dimensioned sufficiently
large to handle the selected options.

Remark: In a Fortran system that checks argument typ-
ing carefully, it may be necessary that the sixth and sev-
enth argument in the CALL to DIVA always be names
of actual subprograms that are accessible at run time.

CALL DIVA(TSPECS, Y, F, KORD,
NEQ, DIVAF, DIVAO, ITDIM,
IYDIM, IFDIM, IKDIM, IOPT)

100 CONTINUE
CALL DIVAA (TSPECS, Y, F,

KORD, DIVAF, DIVAO)

IF (KORD(2) .LT. 0) THEN
If (KORD(1) .NE. 1) GO TO 100

ELSE IF(KORD(2) .EQ. 0) THEN
{This point can only be reached if Option 13 has been

selected. Do what was specified in Section B.1.b
for subroutine DIVAF.}

GO TO 100
ELSE IF(KORD(2) .GT. 0) THEN

{This point can only be reached if Option 14 has been
selected. Do what was specified in Section B.1.c.
for subroutine DIVAO.}

GO TO 100
END IF
(Here the computation is complete.)

B.5 Additional detail for the argument KORD

KORD(1) and KORD(2) are used for communication
between the user’s code and the integration package.
KORD(3) is used with Option 18. KORD(4), ...,
KORD(NEQ+3) are used to store integration orders.
Other locations in KORD() may be used with various
options.

The integrator transfers control to the user by: return-
ing, calling DIVAF, or calling DIVAO. The user may use
the same name for DIVAF and DIVAO, and there are op-
tions which permit the user to get a return in place of
a call to DIVAF and/or DIVAO. The value of KORD(2)
indicates which of the above cases should apply if there
is a chance for confusion. (If DIVAF and DIVAO are dif-
ferent and the optional return feature is not used, then
KORD(2) need never be examined.) KORD(1) gives the
specific information on what is to be done or what has
happened as indicated below. Also see Other Options
on page 10 for values of KORD that can be set by the
user’s code.

RETURN (KORD(2) = −1)

KORD(1) = 1 TSPECS(1) = TSPECS(4), pre-
sumably the integration is finished. If the
integrator is called with a new value for

14.1–6 Variable Order Adams Method for Ordinary Differential Equations July 11, 2015

TSPECS(4), the integration continues; if called
with TSPECS(4) unchanged, a diagnostic re-
sults.

KORD(1) > 1 A diagnostic message with values of
key variables has been printed. Except for spe-
cial situations we recommended simply calling
the integrator. If KORD(1) > 10 this will re-
sult in the program being stopped. For details
see Section E.

DIVAF (KORD(2) = 0)

KORD(1) = 1 Y() has been predicted. Compute
f(t,y) and store in F().

KORD(1) = 2 Y() has been corrected. Compute
f(t,y) and store in F(). The fact that f was last
computed for the same value of t and a nearby
value of y can frequently be used to reduce the
work in computing f .

KORD(1) > 2 This occurs only if the option for ex-
tra equations or stiff equations is used, see IOPT
below.

DIVAO (KORD(2) = 1)

KORD(1) = 1 Initial point, output results (if de-
sired) and return.

KORD(1) = 2 Output results. See description of
TSPECS(3).

KORD(1) = 3 Output results. See description of
TSPECS(4).

KORD(1) > 3 This occurs only if some special out-
put option is specified; see IOPT below. In
brief: = 4, step number; = 5, extra output
point; = 6, end of step (or G-stop); = 7, G-
stop; = 8, step change; and = 9, solution dump.

B.6 Setting options using the array IOPT()

Any number of options can be stored in the array IOPT()
in any order. Each option consists of an identifying code
plus 0, 1, or 2 integer arguments. Option codes are sum-
marized in the table on page 14.1–3. An option is se-
lected by placing its code in the array IOPT() with its
required arguments, if any, in the immediately follow-
ing array locations. Thus if an option has two argu-
ments, its code and its arguments occupy three locations
in IOPT().

The option codes, with space for their arguments as re-
quired, must be stored as a contiguous sequence begin-
ning in IOPT(1) and ending with the option code 0. If
the same nonzero option code appears more than once,
the last occurrence will be effective. If the option code 1
or codes 3–20 are set negative, it has the effect of setting
values for that option to their default values. Space for
the option arguments must be set aside even though the

arguments aren’t referenced for negative values of the
option.

Depending on the option, an argument may be an in-
teger datum or it may be a pointer, i.e. an index, into
the array F(), TSPECS(), or KORD(). Any option that
uses an argument as a pointer to another array requires
that the storage referred to be distinct from the storage
pointed to for any other option, and from the storage
already indicated as required for that array in the pre-
ceding declarations. The dimension of the array which
is pointed to must be increased to the size required by
the option.

The option, 16, is required to be selected. It is used to
specify an error tolerance.

Option
Code Description

0 (No argument) No more options. The list of re-
quested options must always be terminated by this
zero option.

1 (No argument) Skip initial point output. The call to
DIVAO with KORD(1) = 1 is not to be made.

−2 (No argument) Sets all options to their nominal val-
ues. However, if other nonzero option codes follow
this one in the array IOPT(), they will be effective,
as usual.

2 (Args: K2,L2) Available only when calling DIVAOP
during an integration, see Section B.7. This call will
give the next output at TSPECS(1) = FOPT(L2)
with KORD(1) = K2. This is useful when one wants
to get the output from TSPECS(3) based at a certain
point. If K2 is 3, then one should set TSPECS(4) to
the output point you want, set L2 to 4, and pass
TSPECS to DIVAOP for the argument described as
FOPT. In this case the next output point is only
changed if TSPECS(4) precedes other output points.

3 (Arg: K3) Select interpolation, extrapolation or
integration to the final output point. When
DIVAO is called with KORD(1) = 3, results
at TSPECS(4) are obtained as follows. (t̂ =
value of TSPECS(1) at the last point at which
f was computed, tf = TSPECS(4), h =
TSPECS(2).) Reverse all inequalities if h < 0.

K3 = 0 Interpolation t̂− h < tf ≤ t̂
= 1 Integration t̂ = tf
=−1 Extrapolation t̂ < tf

Interpolation is the default and should ordinarily be
used unless there is a problem in computing deriva-
tives beyond the end point.

4 (Arg: K4) Increment for output based on step num-
ber. DIVAO is called with KORD(1) = 4 every K4
steps. The default is K4 = 500000.

July 11, 2015 Variable Order Adams Method for Ordinary Differential Equations 14.1–7

5 (Arg: K5) Additional output points. If K5 > 4,
then TSPECS(5), ..., TSPECS(K5) are the addi-
tional output points. Whenever the integration
passes one of these points, DIVAO is called with
KORD(1) = 5, KORD(3) = index in TSPECS() to
which the output corresponds, and all other variables
set to their appropriate values, i.e., TSPECS(1)=
TSPECS(KORD(3)), and Y and F are interpolated
at TSPECS(1).
If K5 < 0, let NK5 = −K5. Then starting in
KORD(NK5) one should have stored a vector of the
form i1, j1, k1, i2, j2, k2, ..., where the end of the
vector is flagged by setting in = 0. The triple
(in, jn, kn) indicates output points are contained in
TSPECS(in),TSPECS(in + 1), ..., TSPECS(jn) and
the way results are computed depends on kn in the
same way as K3 is used for option 3. The user can
indicate that output for the nth block is to be turned
off by setting in = −in. One must always have
jn−1 < in ≤ jn (except for the case in = 0), and
i1 > 4. Output is indicated in the same way as for
the case K5 > 0.
If K5 = 0, this option is turned off.
When several output points coincide, the one
with KORD(1) = 2 is given first, then that for
KORD(1) = 5 with smaller values of KORD(3) given
first, and finally that for KORD(1) = 3.

6 (Arg: K6) Interpolating G-stops and/or output ev-
ery step. K6 = −1 gives a call to DIVAO with
KORD(1) = 6 at the conclusion of every step. K6
= 0 turns this option off. K6 > 0 indicates that the
user has K6 interpolatory G-stop functions. See Sec-
tion B.2. K6 6= 0 calls DIVAO at the initial point
also.

7 (Arg: K7) Extrapolating G-stops. K7 > 0 indicates
that the user has K7 extrapolating G-stop functions.
See Section B.2. K7 = 0 turns this option off.

8 (No argument) DIVAO is called with KORD(1) = 8
whenever the stepsize is changed.

9 (Arg: K9) Save global solution. DIVAO is called with
KORD(1) = 9 whenever it is time to save informa-
tion necessary to reconstruct the solution globally.
See “B.3 Saving the Solution,” above. With K9 = 1
if error estimates are sufficiently small, then the dif-
ference tables at a saved point may not span all the
way back to the previously saved point. With K9
= −1 difference tables will span back to the previ-
ously saved point, with an exception possible if the
error estimate is zero. K9 = 1, is recommended if the
error control is scaled properly for all equations.

10 (Args: K10,L10) Diagnostic output control.
K10 = 0 (nominal value) no diagnostic output.

K10 > 0 prints (as error messages) storage usage in
TSPECS, Y, F, and KORD, and then gives inter-
nal output useful for tracing problems for K10 passes
through the logic for estimating errors, selecting in-
tegration orders, etc. (Typically this will be slightly
less than K10 integration steps.)
K10 = −1 just gives the storage usage part of this
print.
L10 = 0 gives the internal output for all equations.
L10 > 0 means a vector i1, i2, ..., in specifying equa-
tions for which output is desired is stored starting
in KORD(L10). If ik > 0, output is given only for
equation ik, if ik < 0, output is given for equations
|ik−1| + 1, ..., |ik|(i0 assumed = 0). One must have
0 < |i1| < |i2| < ... < |in| where n is the first index
for which |in| ≥ NEQ. One specifies the end of this
option list by setting in ≥ NEQ. (Use > if you don’t
want the output for the last equation.) For example,
if you you have 500 equations and want output for
the first 4 and equations 10–15, you could use −4,
10, −15, 5001.

11 (No argument) When calling divadb using this op-
tion will initialize some variabless that are printed
that may otherwise not be set.

12 (Arg: K12) Stepsize control. If K12 > 0, then param-
eters which affect the choice of stepsize are defined by
the user. (Replace F with FOPT below if DIVAOP
is used.)
F(K12) = HINC = nominal factor for increasing the
stepsize. After the integration is started, the stepsize
when increased is ordinarily increased by a factor of
HINC. 9/8 ≤HINC ≤ 4, and nominally HINC = 2.
Choosing HINC (or HDEC below) closer to one will
generally result in fewer function evaluations to get
a given accuracy, but will increase the internal over-
head of the integrator. The best choice is problem
dependent and depends primarily on the expense of
computing derivatives. Values close to one also tend
to make the global error a more regular function of
the local error tolerance.
F(K12+1) = HDEC = nominal factor for decreas-
ing the stepsize. After the integration is started, the
stepsize when decreased is ordinarily decreased by a
factor of HDEC. 1/4 ≤ HDEC ≤ 7/8, and nominally
HDEC = 1

2 . Ordinarily one will probably want HINC
× HDEC ≈ 1.
F(K12+2) = HMIN = the absolute value of the
minimum stepsize permitted after the integration is
started. The integrator will give a diagnostic if it
cannot maintain the requested error with a stepsize
of HMIN. The nominal value for HMIN is very close
to zero.
F(K12+3) = HMAX = the absolute value of the max-

14.1–8 Variable Order Adams Method for Ordinary Differential Equations July 11, 2015

imum stepsize. The integrator will not take a step
greater than HMAX. The nominal value for HMAX
is a very large number.
A zero value for any of these parameters will result
in the current value being left unchanged.
If K12 < 0, then DIVAO will be called at the end
of every step with KORD(1) = 8, at which time the
user can change TSPECS(2) (the integration step-
size). When K12 < 0, the integrator does not check
the integration error, and does not alter the user’s
choice of stepsize.

13 (No argument) Use reverse communication for the
computation of f . The integrator will return to the
user instead of calling DIVAF when it is time to eval-
uate f . See “B.4 Program Prototype, Reverse Com-
munication, Double Precision,” above.

14 (No argument) Use reverse communication for out-
put. The integrator will return to the user instead of
calling DIVAO whenever DIVAO would otherwise be
called. See “B.4 Program Prototype, Reverse Com-
munication, Double Precision,” above.

15 (No argument) Return after initialization. After the
call to DIVA, control is returned to the user as is
done for the two above options, and DIVAA should
be called to do the actual integration. Reverse com-
munication need not be used.

16 (Args: K16,M16) Define error control (must be spec-
ified). Let
Lk = KORD(K16+k−1), and εk = F(M16+k−1).

K16 thus points to the location in KORD contain-
ing L1, where the L’s are used to define groups and
types of error control; M16 points to the location in
F containing ε1, where the ε’s define the magnitude
of the local error tolerance. Note that for differential
equations with order d > 1, the error control is on
y(d−1).
To get the same absolute error tolerance for all equa-
tions, set L1 = NEQ and ε1 = the absolute local
error tolerance desired.
If different absolute error tolerances are desired for
different equations, set εk = the tolerance desired for
the kth group, and Lk = the index of the last equa-
tion in the kth group.
Other types of error control are available and are in-
dicated by giving Lk a non-positive value. Example:
L1, L2, ... = 2, 6, −3, 10, 12, 0, 15 would indicate
an absolute error test with tolerance ε1 on equations
1 and 2, an absolute error test with tolerance ε2 on
equations 3 to 6, an Lk = −3 type of relative error
test (defined below) with base tolerance ε3 and factor
ε4 on equations 7 to 10, an absolute error test with
tolerance ε5 on equations 11 and 12, and no error
testing on equations 13 to 15 (provided ε6 = −1.0).

To describe the general case, let k either be 1 or be
such that Lk−1 > 0. The index of the first equation
in the group defined for this value of k is

Îk =

{
1 if k = 1

Lk−1 + 1 if k > 1

and the index of the last equation in the group is

Ik =

{
Lk if Lk > 0

Lk+1 if Lk ≤ 0.

One must have Ik ≥ Îk, and the value of k used in
defining the next group will be one greater than the
subscript of L which gives the value of Ik.

Lk > 0 Use an absolute error tolerance of εk for the
group.

Lk = 0 Do not check errors for the group (to prevent
accidental use of this option one must also set
εk = εk+1 = −1.0). (The value in εk+1 is not
checked.)

Lk < 0 Use a relative error test, with base tolerance
(usually fixed) in εk and the relative error factor
in εk+1. The actual absolute local error toler-
ance used is then εk × εk+1.
Lk = −1 User stores the relative factor in εk+1.
Lk ≤ −2 User initializes εk+1; the integrator

updates it on each step to equal

max

εk+1,
|h|

Ik − Îk + 1

Ik∑
j=Îk

|F (j)|

× ρ|Lk|−1,

where

ρ1 = 1 Lk = −2
ρ2 = 15/16 Lk = −3
ρ3 = 3/4 Lk = −4
ρ4 = 1/2 Lk = −5

One must have Lk ≥ −5. The setting Lk = −3
is suggested unless the user has a reason for a
different choice.

The relative error test built into the integrator is
based on making the error relative to the change in
the solution over a single step. To assist in the ini-
tial choice of εk+1 we offer the following (equivalent)
suggestions.

1. εk+1 ≈ e/εk, where e is the maximum absolute
error per step, over the first few steps for any Y
in the current group.

2. εk+1 ≈ the maximum absolute change for any
Y in the group in a single step over the first few
steps. (Substitute h×F for the absolute change
in Y if you find it more convenient.) In making

July 11, 2015 Variable Order Adams Method for Ordinary Differential Equations 14.1–9

this estimate one should ignore the fact that h
(and hence the change in Y) is quite small ini-
tially because of the need to start the integra-
tion.

17 (Arg: K17) Direct integration of higher order equa-
tions. If K17 > 0, then all differential equations are
of order K17. (If this option is not used, it is assumed
that K17 = 1.) If K17 < 0, then the order of the ith

equation should be stored in KORD(−K17 + i − 1).
(The description of KORD mentions locations in
KORD that are reserved.) If this option is used, Y()
contains all derivatives with order less than that of
the differential equation, stored as indicated for y in
Eq. (2) under “A. Purpose.” Y() must have dimen-
sion ≥ 2× (total order of the system). Note also that
the error control is on z(d−1) and not on z.

18 (Arg: K18) Grouping of equations for derivative eval-
uation. If K18 = k > 0, then a grouping of equations
(frequently useful for variational equations) is indi-
cated in KORD(k), KORD(k + 1), Let ji =
KORD(k + i − 1), for i = 1, 2, ..., n where jn =
NEQ, and |jk+1| ≥ |jk|. Equations are grouped
into: equations 1 to |j1|, equations |j1| + 1 to |j2|,
..., equations |jn−1|+ 1 to |jn|. Predicted derivatives
for any group are only computed after the corrected
values for the previous group have been computed.
For equations after the first group, DIVAF is called
with KORD(1) = 3 and KORD(3) = i, when pre-
dicted values of the derivatives for equations |ji|+ 1
to |ji+1| are to be computed. (One can have i in-
cremented without any active equations in a group
by setting ji = 0.) Usually when this option is used,
only one extra set of equations is introduced. When
there are extra equations KORD(3) will contain the
number of extra groups when DIVAF is called with
KORD(1) = 2. At this time corrected derivatives
should be computed for all equations, presumably
taking advantage of the fact that the values of cer-
tain subexpressions will not have changed.

19 (Arg: K19) Integration order control. If K19 > 0,
then the user has grouped equations to specify some
kind of control over the integration orders selected by
the integrator. Let Lk = KORD(K19 + k − 1), and
define Ik, and Îk as for Option 16. Options available
are

Lk > 0 different equations in the group may be inte-
grated with different integration orders;

Lk = 0 integration orders for the group are not to be
changed;

Lk = −1 orders may be changed, but all equations are
integrated with the same order method;

Lk = −2 same as Lk = −1, except order is not to be
increased; and

Lk = −j (j > 2) same as Lk = −1, except order is not to
be decreased and is not to be increased greater
than j.

20 (Arg: K20) Save estimated local error. If K20 > 0,
the integrator stores the estimated local error com-
mitted for equation i into F(K20+i− 1), i = 1, 2,...,
NEQ whenever corrected values of Y are computed.

21 (Arg: K21) The user is to store a value for TOLG
in F(K21). This value is used as the last argument,
TOL, to DZERO when iterating for a 0 when locat-
ing a zero for G-stop, see Chapter 8.1. The default is
to use TOLG = 0, which locates the 0 as accurately
as possible. A positive value isolates the 0 to within
an interval of length TOLG. A negative value iterates
until a value of |gi| < |TOLG| is found. The negative
value should only be used if all of your G functions
are scaled in the same way. A positive value is recom-
mended if your G functions are a bit noisy on short
intervals. For example one might use TOLG = the
minimum value for max |εi(t)/fi(t)| where the maxi-
mum is computed for t in the interval of integration,
the minimum is computed over all equations, and
εi(t) is the absolute error tolerance applied to the ith

equation at time t. With such a TOLG, the error
in locating the G-stop will be on the same order as
the usual integration error, and when the G-stops are
time consuming to compute this can save significant
time.

Any option, once set, remains set until turned off. (This
has implications only if one is running a sequence of
problems, or is using the call to DIVAOP described be-
low in “B.7 Other Options.”)

B.7 Other Options

From either DIVAF or DIVAO, one can get an imme-
diate return to the program which called the integrator
by setting KORD(1) < 0. (If KORD(1) is set < 0 from
inside DIVAO and option 9 is being used to save the so-
lution, then DIVAO is called with KORD(1) = 9 before
the return is made.) Of course, one must be prepared
to treat negative values of KORD(1) after the call to
the integrator if this option is used. If the integrator is
called after such a return, computation continues just as
if the value of KORD(1) had not been changed in the
first place.

In DIVAO, one can cause the integration to be
restarted at the current value of TSPECS(1) by setting
KORD(1) = 0. This feature should be used if the cur-
rent output point corresponds to a discontinuity in the
derivatives.

14.1–10 Variable Order Adams Method for Ordinary Differential Equations July 11, 2015

Except at the initial point of an integration one can in-
terpolate to an arbitrary value of the independent vari-
able when DIVAO is called. Let TINT() be an array of
length 2 with the same type as TSPECS. Set TINT(1) =
the value of t to be interpolated to, and TINT(2) = d,
where d has the same sign as TSPECS(2) and |d| is the
greatest distance back from the current base time that
one wants to permit for interpolation. Then, call DI-
VAIN as indicated above in Section B.2 with TINT sub-
stituted for TSPECS.

B.7.a Changing Options

Options can be set up or changed any time and from any
place with the following call.

CALL DIVAOP (IOPTOP, FOPT)

where IOPTOP() is defined in the same way as IOPT()
in Section B.1 above, and FOPT() is used only if Option
2 or 12 is specified, in which case it is a vector with the
same type as F(). If FOPT is not the same as F, then
IOPTOP(1) must contain -1111, with the usual option
specification following. The arguments L2 and K12 are
pointers into FOPT() giving the location of the next out-
put point, or the location of HINC, HDEC, HMIN, and
HMAX, for Options 2 and 12 respectively. Options 15
and 17 will not have any effect on the computation until
DIVA is called with KORD(1) = 0. Options 3 and 5 will
not take effect until a return is made from DIVAO, after
DIVAO has been called with KORD(1) = 1, 2, 3, or 5,
or DIVA is called with KORD(1) = 0.

B.7.b Debugging Output

One can obtain output of various variables for debugging
or other purposes with the following call.

CALL DIVADB(LPRINT, TSPECS,
Y, F, KORD, TEXT)

LPRINT is a two-digit decimal integer n1n2 which
determines print as follows

n1 = 1 do not print anything from the integration
variables in the call.

= 2 print TSPECS(), current Y(), base Y(), cur-
rent F(), all pertinent contents of KORD, and
the error tolerances stored in F().

= 3 same as n1 = 2 plus difference tables up to
the highest difference used.

= 4 same as n1 = 3 plus all in the storage allo-
cated for the differences.

n2 = 1 do not print any variables in the integrator
common blocks.

= 2 print all scalar variables in the interpolation
common block, DIVASC (or SIVASC). These
variables are described in Section B.3.

= 3 same as n2 = 2 plus all scalar variables in the
main integration common block. All variables
used in this integration package are described
as comments in the file IVACOM.

= 4 same as n2 = 3 plus everything used from the
arrays XI(), BETA(), ALPHA(), first column of
G(), GS(), RBQ(), and SIGMA().

= 5 same as n2 = 4 plus everything used in the
arrays G(), D(), DS() and V().

TSPECS(), Y(), F(),KORD() [in] are all defined as
in DIVA.

TEXT [in] (Type: CHARACTER) Message to be
printed preceding the output. The first character
serves as a vertical space control. It is usually most
convenient to make TEXT a literal, e.g., CALL DI-
VADB (..., ′0END OF DIVAF′)

B.7.c Viewing Some Internal Variables

One can get the values of some variables from the com-
mon blocks used by the integrator as follows:

INTEGER ID(5)

DOUBLE PRECISION RD(3)

CALL DIVACO(ID, RD)

where

ID [out] is an integer array where the following are re-
turned:

ID(1) = KEMAX = index of equation with the
largest error estimate.

ID(2) = KSTEP = current step number.

ID(3) = NUMDT = number of differences used for
each equation

ID(4) and ID(5) are reserved for future use.

RD [out] is a double precision array where the following
are returned.

RD(1) = EMAX = max. ratio of estimated error to
requested error.

RD(2) and RD(3) are reserved for future use.

B.8 Modifications for Single Precision Usage

Change any entry or common block names starting with
DIVA to start with SIVA. Change all DOUBLE PRECI-
SION type statements to REAL. The value of k, used in
Sections B.1.a and B.1.d in determining the dimension,
IFDIM, of F() will be smaller for single precision. See
Chapter 19.4, and the listings for mixed precision, and
extended precisions.

July 11, 2015 Variable Order Adams Method for Ordinary Differential Equations 14.1–11

B.9 Special Treatment of Weak Discontinuities

This option is provided to make the integration more ef-
ficient when there are small discontinuities in either the
solution, the derivatives, or perhaps in a higher deriva-
tive. This option can get over a discontinuity faster than
doing a restart, and is both faster and more reliable than
ignoring the discontinuity. If the magnitude of the dis-
continuity in the derivative is larger than 1% of the av-
erage local value of the derivative, then one is slightly
better off doing a restart.

To signal a discontinuity, in DIVAO at the point of dis-
continuity set KORD(1) = 0, and if there is no discon-
tinuity in Y, set KORD(2) = 2, else set KORD(2) = 3
and store the difference (new Y at discontinuity) − (old
Y at discontinuity) in Y before returning.

C. Examples and Remarks

The program DRDIVA with output ODDIVA, illustrates
integrating the equations of motion for a simple two body
problem. Initial conditions are selected to give circular
motion. This example uses the option for integrating
second order equations.

D. Functional Description

The Initial Value problem stated in Section A is
solved using a variable order Adams predictor-corrector
method. Details of the algorithm can be found in [1].

Although written in 1974, these subroutines still repre-
sent the current state of the art for non stiff ordinary
differential equations. In comparison with other vari-
able order Adams methods, SIVA/DIVA requires fewer
derivative evaluations except at crude tolerances where
it is less efficient than some, and has a wider selection of
optional features.

References

1. Fred T. Krogh, Changing stepsize in the integra-
tion of differential equations using modified divided
differences, in Dale G. Bettis, editor, Proceedings
of the Conference on the Numerical Solution
of Ordinary Differential Equations, Lecture Notes
in Mathematics 362, 22–71, Springer Verlag, Berlin
(1974). Also, JPL Internal Technical Memoran-
dum 312, March 20, 1973.

E. Error Procedures and Restrictions

All error diagnostics and messages are handled by calls
to the library subroutines MESS and SMESS or DMESS
of Chapter 19.3. The following error indicator flags are
possible. When the return is made to the user’s pro-
gram, KORD(1) will have the same value as the error

indicator flag specified below. Note that if the integra-
tor is called again, the integration will be continued if
KORD(1) < 10, or if 10 < KORD(1) < 20 and the user
has taken some special action. In all other cases the
program is stopped. The user can change the printing
and/or stopping actions taken by the error message pro-
gram or change the file to which such messages are sent
by calling MESS.

2 The local error tolerance specified by the user is ap-
parently too small. If no action is taken by the user,
the current tolerance TOLC will be changed to the
new tolerance TOLN. If KORD(2) is set = 0, the cur-
rent error tolerance in not changed and internal tests
are modified to make the noise test more difficult to
satisfy.

3 The stepsize has been cut back so rapidly that the
integrator is going to do a restart (a discontinuity is
a possibility). If KORD(2) is set = 0, the last step
is merely repeated with half the stepsize instead of
doing a restart.

11 The current step length is less than the minimum
step length at the conclusion of the starting phase
of the integration. If HMIN (see Option 12) is de-
creased ≤ |TSPECS(2)|, the integration continues as
if this had been the value of HMIN in the first place.
If KORD(2) is set = 0, the integrator stays in the
starting phase. If nothing is done the subroutine ex-
ecutes STOP.

12 The integrator needs to take a step smaller than
HMIN in order to maintain the requested local er-
ror. A reduction in HMIN is treated as in 11 above.
If KORD(2) is set = 0, the integrator continues with
the old stepsize even though error estimates are too
large. If nothing is done the subroutine executes
STOP.

13 Either the new output point precedes the last one,
or it has the same index and the same value. If the
integrator is called without defining a different value
for the next output point, the subroutine executes
STOP.

21 The step length, H, is so small that when TN + H
is formed, the result is the same as TN, where TN
is the current base value of the independent variable.
If this problem is not due to a non-integrable singu-
larity, it can probably be corrected by translating t
so that TN is closer to 0.

22 A local error tolerance of zero has been requested.

23 The program has been stopped. The error diagnostic
preceding this one tells why.

24 An impossible option has been specified.

14.1–12 Variable Order Adams Method for Ordinary Differential Equations July 11, 2015

24 An option has been specified improperly; values
printed should indicate the problem.

24 Either not enough storage has been allocated, or stor-
age required for an option overlaps with storage re-
quired by another option. In the error message out-
put, an option number of 0 indicates storage required
even if no options are present.

24 The G-stop subroutine has been called and values in
KORD(1) and KORD(2) are such that no reasonable
action can be taken.

F. Supporting Information

The source language is ANSI Fortran 77. In single preci-
sion this package uses common blocks SIVAEV, SIVASC,
and SIVAMC internally. In double precision, DIVAEV,
DIVASC, and DIVAMC are used.

Subroutine designed and written by: Fred T. Krogh,
JPL, October 1987; Revised September 1990, Novem-
ber 1991, April 1992.

Entry Required Files

DIVA AMACH, DIVA, DMESS, MESS, OPTCHK

DIVAA AMACH, DIVA, DMESS, MESS, OPTCHK

DIVACO AMACH, DIVA, DMESS, MESS, OPTCHK

DIVADB AMACH, DIVADB, DMESS, MESS

DIVAG AMACH, DIVA, DIVAG, DMESS, DZERO,
MESS, OPTCHK

DIVAIN AMACH, DIVA, DMESS, MESS, OPTCHK

DIVAOP AMACH, DIVA, DMESS, MESS, OPTCHK

Entry Required Files

SIVA AMACH, MESS, OPTCHK, SIVA, SMESS

SIVAA AMACH, MESS, OPTCHK, SIVA, SMESS

SIVACO AMACH, MESS, OPTCHK, SIVA, SMESS

SIVADB AMACH, MESS, SIVADB, SMESS

SIVAG AMACH, MESS, OPTCHK, SIVA, SIVAG,
SMESS, SZERO

SIVAIN AMACH, MESS, OPTCHK, SIVA, SMESS

SIVAOP AMACH, MESS, OPTCHK, SIVA, SMESS

July 11, 2015 Variable Order Adams Method for Ordinary Differential Equations 14.1–13

DRDIVA

program DRDIVA
c>> 2010−06−09 DRDIVA Krogh Used parameters f o r a l l d imenssions .
c>> 2001−05−25 DRDIVA Krogh Minor change f o r making . f90 ve r s i on .
c>> 1996−06−14 DRDIVA Krogh Small change in output format
c>> 1994−11−02 DRDIVA Krogh Changes to use M77CON
c>> 1994−07−18 DRDIVA Krogh Last change .
c−−D rep l a c e s ”?”: DR?IVA, ?IVA, ?IVAF, ?IVAO
c Sample d r i v e r f o r DIVA −− Set up to s o l v e two second order equa t i ons .
c

integer INEQ, IFDIM , IKDIM, ITDIM, IYDIM
parameter (INEQ=2,IFDIM=16∗INEQ+1,IKDIM=6,ITDIM=4,IYDIM=4∗INEQ)
integer NEQ, KORD(IKDIM) , IOPT(6)

c−−D Next l i n e s p e c i a l : P=>D, X=>Q
double precision TSPECS(ITDIM) , Y(IYDIM) , T, H, DELT, TFINAL
integer NDIG
double precision F(IFDIM) , TOL
equivalence (TSPECS(1) , T) , (TSPECS(2) , H) , (TSPECS(3) , DELT) ,

1 (TSPECS(4) , TFINAL)
external DIVAO, DIVAF

c++SP Defau l t NDIG = 4
c++ Defau l t NDIG = 10
c++ Su b s t i t u t e f o r NDIG below

parameter (NDIG = 10)
parameter (TOL = 10 .D0 ∗∗(−NDIG))

c
data NEQ, T, H, DELT, TFINAL /

1 2 , 0 .D0 , 1 .D0 , 6.283185307179586477D0 , 2 .D1 / ,
2 Y(1) , Y(2) , Y(3) , Y(4) /
3 1 .D0 , 0 .D0 , 0 .D0 , 1 .D0 /

c
c Set op t ion f o r error cont ro l , l o c a l a b s o l u t e error < TOL.

data IOPT(1) , IOPT(2) , IOPT(3) /
1 16 , 6 , 3 / ,

c Group the system to be t r e a t e d as a s i n g l e unit , s e t t o l e r anc e va lue
2 KORD(6) , F(3)/
3 2 , TOL/

c Set op t ion f o r second order equa t i ons
data IOPT(4) , IOPT(5) /

1 17 , 2 /
c Flag end o f op t i ons

data IOPT(6) / 0/
c
c Do the i n t e g r a t i o n
c

KORD(1) = 0
100 continue

ca l l DIVA(TSPECS, Y, F , KORD, NEQ, DIVAF, DIVAO,
1 ITDIM, IYDIM, IFDIM , IKDIM, IOPT)
i f (KORD(1) .NE. 1) go to 100
stop
end

subroutine DIVAF(T, Y, F , KORD)
c Sample d e r i v a t i v e sub rou t ine f o r use wi th DIVA
c This e v a l u a t e s d e r i v a t i v e s f o r a s imple two body problem .
c

14.1–14 Variable Order Adams Method for Ordinary Differential Equations July 11, 2015

integer KORD
c−−D Next l i n e s p e c i a l : P=>D, X=>Q

double precision T, Y(4) , TP
double precision F(2)

c
c Eva luate the d e r i v a t i v e s
c

TP = Y(1)∗Y(1) + Y(3)∗Y(3)
TP = 1 .D0 / (TP ∗ SQRT(TP))
F(1) = −Y(1) ∗ TP
F(2) = −Y(3) ∗ TP
return
end

subroutine DIVAO(TSPECS, Y, F , KORD)
c Sample output sub rou t ine f o r use wi th DIVA.
c This sub rou t ine g i v e s output f o r a s imple two body problem .
c

integer KORD
c−−D Next l i n e s p e c i a l : P=>D, X=>Q

double precision TSPECS(4) , Y(4)
double precision F(2)

1000 format (12X,
1 ’RESULTS FOR A SIMPLE 2−BODY PROBLEM’ //
2 8X, ’T ’ , 13X, ’U/V ’ , 11X, ’UP/VP’ , 9X, ’UPP/VPP’)

1001 format (1P, SP, 4 E15 . 6 / 15X, 3E15 .6/ ’ ’)
c
c Do the output
c

i f (KORD .EQ. 1) then
write (∗ , 1000)

end i f
write (∗ , 1001) TSPECS(1) , Y(1) , Y(2) , F(1) , Y(3) , Y(4) , F(2)

c
return
end

ODDIVA

RESULTS FOR A SIMPLE 2−BODY PROBLEM

T U/V UP/VP UPP/VPP
+0.000000E+00 +1.000000E+00 +0.000000E+00 −1.000000E+00

+0.000000E+00 +1.000000E+00 −0.000000E+00

+6.283185E+00 +1.000000E+00 +2.045697E−12 −1.000000E+00
−2.963546E−12 +1.000000E+00 −2.379763E−12

+1.256637E+01 +1.000000E+00 −7.160714E−11 −1.000000E+00
+7.058165E−11 +1.000000E+00 −7.080797E−11

+1.884956E+01 +1.000000E+00 −2.797420E−10 −1.000000E+00
+2.789906E−10 +1.000000E+00 −2.906193E−10

+2.000000E+01 +4.080821E−01 −9.129453E−01 −4.080821E−01
+9.129453E−01 +4.080821E−01 −9.129453E−01

July 11, 2015 Variable Order Adams Method for Ordinary Differential Equations 14.1–15

	Variable Order Adams Method for Ordinary Differential Equations
	Purpose
	Usage
	Program Prototype, Double Precision
	Usage of G-Stops
	Saving the Solution
	Program Prototype, Reverse Communication, Double Precision
	Additional detail for the argument KORD
	Setting options using the array IOPT()
	Other Options
	Modifications for Single Precision Usage
	Special Treatment of Weak Discontinuities

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Supporting Information

