Soletta

STANDARD DELPHI
LIBRARY

TUTORIAL AND REFERENCE GUIDE

STANDARD DELPHI LIBRARY

TUTORIAL AND REFERENCE GUIDE

Copyright © 1998 Soletta and Ross Judson All rights reserved.

Soletta
2103 Patty Lane
Vienna, VA 22182

http://www.sol etta.com

Please email support@soletta.com with any technical questions about this product.
Email sales@soletta.com with any sales questions.

I ntroduction

TABLE OF CONTENTS

Product Versions

Ordering SDL and/or SuperStream

How to use this documentation

Quick Start

I nstallation

Archive Installation

Soletta Store Installation

Basic Concepts

Accessing the SDL and Super Stream Libraries

Item

Container

Iterator

Compar ator

Closure

Morphing Closure

Garbage Callection

© © O© © © W W W W W 00 N N N N N N oo o o 0o M DR P

AtEnd

Range

Pair

Sequence

Vector

Map

Set

Hashing

Algorithm 10
Quick Example 11
A Note About Namespaces 12
Error Handling 13
Ten Easy SDL Lessons 14

Lesson 1 - Keeping Lists of Objects 14

Lesson 2 — Keeping Listsof Strings and other Atomic Types 15

Lesson 3 — Iterating with Iterators 16

Lesson 4 — Using SDL instead of Delphi’s Data Structures 18

Lesson 5— Using Maps (Key-Value Pairs) 19

Lesson 6 — Using Sets 21
Lesson 7 — Using the Sort Algorithms 22
Lesson 8 — Changing Data Structur es 23
Lesson 9 — Transfor ming Objects 25
Lesson 10 — Filtering Objects 25
Containers 27
All About DODbjects 27
Example Code 28
Container hierarchy 28
Dlterator 29
Forward Iterators 31
Bidirectional Iterators 32
Random Iterators 32
Iterator Adapters 32
DContainer 32
Comparators 33
Constructing Containers 34
Number of Items 34
Adding Items 34
Removing Items 35
Retrieving Items 35
DSequence 36
Adding Items 36
Retrieving Items 36
Removing Items 36
DVector 36
DAssociative 37
Sets and Maps 37
Adding Elements 37
Finding Elements 38
Removing Elements 38
Container Adapters 38
Creating Your Own Containers 38
Frequently Asked Questions 38
How do | get the number of items in a container? 38
How do | add items to a container? 38
How do | iterate over a container? 39
How do | retrieve the keys from a map container? 39
How do | sort a sequence? 39
Why does SDL use functions instead of class members for its algorithms, and for iterator operations?39
How do | find itemsin a map? 40
Algorithms 41
A Note About Ranges 41

-V -

Naming Conventions

Applying

forEach

Inject

Comparing

Equal

L exicographical Compare

Median

Mismatch

Copying

Copy

Counting

Count

Filling

Fill

Generate

Filtering

Unique

Filter

Finding

AdjacentFind

BinarySearch

Detect

Every

Find

Some

Freeing and Deleting
ObjFree

ObjDispose

ObjFreeKeys

Hashing

OrderedHash

UnorderedHash

Removing

Remove

removeCopy

removel f

Replacing

Replace

ReplaceCopy

Replacelf

Reversing

Reverse

ReverseCopy

Rotating

Rotate

RotateCopy

Set Operations

Includes

SetDifference

Setlntersection

SetSymmetricDifference

SetUnion

Shuffling

RandomShuffle

Sorting

Sort

StableSort

Swapping

IterSwap

SwapRanges

Transforming

Collect

TransformBinary

TransformUnary

Utility Functions

Atomic Converters

Iterator Helpers

Hashing

DObject Helpers

M or phing Closur es

Printing

Debugging Support

Persistence with Super Stream

Basic Concepts

Stream

Object

Atomic Types

Transfer Function

Object Versioning

Buffered Stream

Nine Easy Super Stream L essons

Lesson 1 — Saving and L oading One Object

Lesson 2 — Storing Different Objects
Lesson 3 — Writing Embedded Objects

Lesson 4 — Inheritance and Super Stream

Lesson 5 — Storing SDL Containers

Lesson 6 — Storing Special Types (TDateTime, Single, Double)
Lesson 7 — Storing Raw Data

Lesson 8 — Storing Complex Object Graphs

Lesson 9 — Reading and Writing Different Versions of Objects

Super Stream Classes

TStreamAdapter

TObjStream

- Vi -

50
50
51
51
51

51
51

52
52
52

52
52
52

52
52
53
53

55
56
57
59
60

60
60
60
60
61
61
61

61
62

65
66
68
68
71
72
73

75
75
75

TBufferedinputStream

TBufferedOutputStream
TObjList

Epilogue

- vii -

76
76
76

77

Introduction

The Standard Delphi Library (SDL) by Solettais a powerful library of reusable container
classes, generic algorithms, and an easy to use persistence mechanism. SDL is designed for
intermediate to advanced Delphi programmers who have a heed for sophisticated data
structures or who wish to take advantage of SDL’s large library of generic algorithms. SDL
is also highly appropriate for programmers who are experienced with the C++ STL
(Standard Template Library), or ObjectSpace s JGL (Java Generic Library). SDL isan
adaptation of Stepanov and Le€' s concepts to the Delphi environment.

SDL offers a number of features not found in any other Delphi class library:

= Powerful underlying methodology. SDL isthefirst data structure and
algorithm library for Delphi to be based on generic programming with
reusable algorithms and data structures. It is based on a mature and
sophisticated model (STL).

= Natural and easy to use storage of atomic data types. This means that
SDL containers can be used to hold any Delphi data type (such as Integers,
Strings, Extended values) with no special syntax. SDL is the first container
library to take advantage of Delphi’s array of const feature, which lifts a
significant burden from the programmer.

= Genericalgorithms. LikeSTL and JGL, SDL comes with over 60 generic
algorithms. The set of algorithms was originally chosen by Stepanov; SDL
provides implementations of many of the algorithms found in STL. Thus,
an STL programmer will be immediately familiar. SDL’s container classes
follow theinterface/iterator model; the consequence is that most generic
algorithms will work on any container class.

= Integrated persistence. SDL’scompanion library, SuperStream (included
with SDL Source Edition), provides a capable, easy to use method for
storing and retrieving objects in Delphi. SDL comes complete with the
integration code necessary to use SuperStream and SDL together.
SuperStream and SDL are based on many of the same techniques, so
programmers who become familiar with one will be immediately familiar
with the other.

= Complete set of data structures. SDL includes arrays, double-linked lists,
maps, and sets. The mapping structures are available both in red-black tree
and hashing form. There are at least ten different data structures available,
with more being devel oped.

= Atomic, associative data structures. SDL isthefirst data structure library
for Delphi to provide natural, atomic storage of associations. For example,
adding to amap is as simple as map.putPair([10, ‘hello’]). This placesthe
value'hdllo’ at key 10 in the map. Note that the values are specified
without any object wrappers. We can also just as easily add objects to the
map: map.putPair([* Ross Judson’, objTest]).

Product Versions

SDL isavailablein two versions: The binary release and the source release. The garbage
collection featureis available only in the source release, as it requires recompilation of the

SDL unit to enable. Both versions are available directly from Soletta — please email
sales@sol etta.com for information on purchasing either product. If you have the binary
release and wish to upgrade to the source release, please contact Soletta, and we' Il guide
you through the process.

You may have acquired thetrial version of SDL on the internet. If so, we're glad that
you'retaking the time to look at SDL, and seeif it can help you. You'll find the Lessonsin
the sections ahead to be particularly insightful, and we recommend that you read them
closdy. SDL isn't really like other container class libraries for Delphi, and to appreciate the
power it gives you, you' Il need an open mind!

If you are coming froman STL or JGL background, reading the SDL documentation will be
easy for you. SDL uses the same terms, the same words, and the sameideas. You'll find it
to be an effective adaptation of the STL methodology to Delphi. You'll also find that it
makes migrating C++ programmers (who have experience with STL) to Delphi easier.

SDL pushes the envelope with Delphi, right to the limit. I1t’s exciting when a language can
be manipulated to effectively accomplish tasks it wasn't designed to do directly. Thisisthe
hallmark of the mature language and environment, and Delphi’ s time is now.

Ordering SDL and/or Super Stream

You can purchase this package several ways: By credit card over the phone, credit card over
the web, credit card through email, or check/credit card through postal mail. To order SDL
over theinternet, visit the following web page:

http://www.shareit.com/programs/101667.htm

To order Super Stream, visit this page:

http://www.shareit.com/programs/101670.htm

Thisweb ordering service is provided by Sharelt!, who handle ordersonly. Please do not
telephone or email Sharelt with support questions or sales questions, unless they are
payment related.

If you would like to order by telephone, please call the following number:

In the USA: 1-800-903-4152
Everywhere else: +49-221-2407279

During ordering please reference program # 101667 for SDL, and program # 101670 for
SuperStream.

You can also order by credit card directly from Soletta. A file with ordering information is
included in the distribution (or dering.txt).

Send email to sales@soletta.com, including the following information:

Name
Address

City, Province/State, Postal Code/Zip

Country

Name on Credit Card

Credit Card Type (Visa/M C/Amex)

Credit Card Number

Credit Card Expiry

Email address (very important!)

Product (SDL Source/Binary, SuperStream Source/Binary)
Delphi version (3 or 4)

If you prefer postal mail, you can send the information listed above to:

Soletta

2103 Patty Lane
Vienna, VA 22182
USA

How to use this documentation

SDL is sufficiently different from other container class libraries (and just about every other
classlibrary) for Delphi that you should read the Guide section of this manual fairly
thoroughly. Programming with containers and generic algorithms takes some thought,
planning, and knowledge if you’ re going to get the most benefit fromit. Reading the
Reference material will give you a good fed for what's in the library; you should probably
read it after you’ ve done some programming with SDL.

The Guide has three major sections — Containers, Algorithms, and Persistence. Containers
discusses the data structures in SDL, enumerates their relative advantages and
disadvantages, and illuminates the iterator concept. Algorithms lists the major types of
algorithms that are present in SDL, and how to apply them to containers. Persistence
discusses storing and loading objects from streams.

The Containers section can beread on its own. The Algorithms section should be read only
after reading the Containers section. The Persistence section stands alone, but if you want
to understand the mechanism used to serialize SDL Containers, you should have a working
knowledge of them first.

Soletta highly recommends that you study the Algorithms at length. Their names are
generic, but the tasks that they perform occur over and over again in common programming
situations. Thetrick is to recognize when a task can be performed by one of the generic
algorithms. A side effect of using them is that your code becomes more readable to persons
fluent with generic algorithms. Much like patterns, code comprehension is often based on
vocabulary, and the Algorithms in this library provide an excellent set of verbs.

Included with SDL isan HTML reference to the library that was generated with another
Soletta product, DelphiDoc. That HTML reference should be considered to be the most
accurate source of information, asit is directly generated from the SDL source code. If
there are differences between what you read here and what you find in the HTML reference,
this document will defer to the HTML.

Quick Start
Here s what you need to know to get started with SDL quickly:

1) Become familiar with the basic concepts of thislibrary.

2) Learn about the basic container classes and DObjects, which are the basic
items that are stored in containers.

3) Learn about iterators — the types of iterators, and the functions that operate
on them.

4) Learn basic techniques for adding items to containers, and how to iterate
over containers.

5) Learn about what the algorithms can do for you.
6) Learn about SuperStream, SDL’s persistence mechanism.

Each of theseisin the order we suggest you learn. The best thing to do is put together a few
quick programs that make use of basic SDL features so you can get a fed for how the
library operates. After you' ve done that, come back to the reference material, which you'll
then be able to read with good basic proficiency in place.

Installation
SDL and SuperStream have been delivered to you in one of several ways:

As an archive, downloaded from the internet
On aCD-ROM
From the Soletta Store, for online purchasing of Soletta libraries

Archive Installation

If you’ ve downloaded an archive, unzip the contents of the archiveinto a new directory.
Make sure that you preserve the paths in the archivel The HTML documentation has a large
number of files, and you’ll want to make sure that they land in the correct directories.

Make sure the directory you created is on your library path (Tools | Environment Options,
library page) — Delphi needs this to find the SDL and SuperStream unit files.

Copy the sdlhelp.hlp and sdihelp.cnt files to the Help directory in your Delphi installation.
Add :link sdlhelp.hlp to the last section of the delphi.cfg file, and :include sdlhelp.cnt to the
last section of the delphi.cnt file. Thiswill enable F1 based help for SDL.

Soletta Store Installation

The Soletta Store will automatically emit libraries into a directory you specify. You will
still need to add the directory to the Delphi Library Path, and add the help file entries, as
above.

Basic Concepts

To effectively use SDL, you need to learn about its parts and become familiar with SDL’s
vocabulary. SDL uses the same words to describe its concepts that JGL and STL do, so if
you're familiar with those, you’ Il adapt to SDL quickly. If you're not familiar with other
generic programming packages, you'll want to read this section thoroughly.

Accessing the SDL and SuperStream Libraries

To use classes and functions from the SDL library, make sure the SDL unit isin your uses
statement. To use classes and functions from Super Stream, make sure Super Stream isin
your uses clause.

If you will be streaming SDL containers with Super Stream, make sure your program
includes the SDL 10 unit. No function calls are necessary — including the unit will perform
all necessary registration and initialization.

Item

In SDL, items are atomic values or objects. An atomic value is one of the basic types, like
an Integer, String, Currency, or Char. An object is also an atomic type because Del phi
treats all objects by reference (pointer).

Container

A container is a data structure that can hold a number of items. Different types of
containers have different capabilities — for example, one type of container may support very
fast deletion, but slow addition, and another might support fast random access but slow
ddetion. When you need a container class, choose an appropriate one based on what you
need that container to do. Each container classis describe later on in this guide, and the
strengths and weaknesses of each are provided.

Iterator

An iterator is analogous in many ways to a pointer. It points at a certain item in a container.
Iterators can be moved forward, and can usually be moved backwards. The object under the
iterator can beretrieved, and can sometimes be set. Iterators are the preferred way for
algorithms and for your code to deal with SDL containers. If you use iterators to access the
containers, you can change the container without changing your code. Thisis one of the
primary strengths of SDL. You will see the following constructs very often when perusing
SDL -based code:

contai ner.start;
cont ai ner. finish;

Iterator :
Iterator :

Thestart function retrieves an iterator positioned on the first item in the container. The
finish function retrieves an atEnd iterator (which is positioned just after the last item in the
container). SeeatEnd for moreinformation on the special atEnd iterator.

Comparator

A comparator is a function used to compare two items. It should return less than zero if the
first object is less than the second; zero if the two objects are equal, and greater than zero if
the second object is greater than thefirst. Comparators are closures (procedures of objects)

with a special signature. See Closur e and M or phing Closur e for related information.
Herée s the signature of a DComparator:

DCompar ator = function (const obj1l, obj2 : DObject) : Integer of object;

Closure

A closureis aprocedure of object. Closures are at the heart of Delphi’ s event model —
hopefully, as a Delphi programmer, you understand how they work. While effective for
event handling, the closure mechanism is an elegant solution for any situation in which
methods of objects must be called. All of SDL’s functional types are defined as procedure
of abject. This allows them to be methods on objects. If SDL did not do this, you would
need to create unit-level procedures for procedures you wanted to passto SDL. SDL also
supports the transformation of unit-level procedures into Closures — see Morphing Closure.

Morphing Closure

A unit-level procedure can be transformed into a closure by making use of one of the
MakeX XX family of functions. This makes use of a Delphi trick that fools Delphi’s method
calling mechanism into believing that it is calling a closure.

Garbage Collection

Garbage collection is a more advanced, automatic method of dealing with memory
allocation issues. Delphi has traditionally been programmed using manual memory
management, which means that the programmer is responsible for allocating and
deallocating all objects. In a garbage collecting system, the programmer only allocates
objects. The system will deallocate them when it determines that it is permissible to do so.
SDL is compatible with a garbage collection system called the Boehm Collector. The
Boehm Coallector is a conservative, mark-and-sweep collector.

AtEnd

SDL maintains positions in containers using iterators. Thereis a special iterator position
known as atEnd. An atEnd iterator is positioned one past the last itemin the container. It
isillegal to retrieve an object from this position. It is sometimes legal to write to this
position — certain containers will add the object being written to the end of the container, but
not all containers will do this. Notably, the mapping containers will not. AtEnd is
important — when algorithms don’t succeed, they will often return atEnd as their result.

Range

A rangeis apair of iterators, marking the beginning and ending of a set of items. For
example, there is a range of items between container .start and container .finish.
Pair

A pair istwo items (two DODbjects, stored in a DPair). The mapping containers store pairs,
each consisting of a key (stored in the .first field) and a value (stored in the .second field).

Sequence

A sequenceis a container where the items in the container have a defined order. Containers
descended from sequence will retrieve their items in the order that they were added.
Examples of sequences include linked lists and arrays.

Vector

A vector is a container whose items are numerically addressable. That is, you can specify
that you want the first item, or the tenth, or the fiftieth. While all sequences can return the
item at a specific position, being a vector implies that this operation is efficient. Vectorsare
usually implemented as arrays, but other implementations can exist.

Map

Maps store key-value pairs. Asauser of SDL, you should pay special attention to maps
because it has been estimated that for other, similar container libraries, up to 90% of all
container usage is of map-based structures. Maps store associative data. For example, you
may want to keep a set of employee objects, keyed by employee ID. What does it mean to
key on employee ID? It means that you want to associate an employee object (say, Jim
Smith’s), with a numeric ID (like 1001). You do this by putting a pair to the map structure:

Map.putPair([1001, jimSmithObject]);
When you want to retrieve the employee associated with 1001, you do the following:
employee := getObject(map.locate([1001])) as TEmployee;

Mapping containers ensure that the process of looking up a key valueis very efficient. SDL
has two basic kinds of maps in it: An ordered map (based on red-black trees) and an
unordered map (based on hash structures).

There are two basic variants on maps. A MultiMap and aregular Map. The differenceis
that MultiMaps can store multiple objects on the same key. Storing avalueat akey ina
regular map will replace whatever value was stored there before.

Set

Sets store items and allow you to rapidly determineif a set contains a particular item or not.
You may already be familiar with Delphi’s set types. SDL’s sets are much more general —
you can have sets of numbers, strings, objects, or just about anything else. As with maps,
there are MultiSets and regular Sets. A MultiSet can have multiple copies of an object init.
Sets also come in the two basic kinds — red-black based and hash based.

Hashing

Hashing is the process of converting an item (or object) into a number. SDL provides a
number of hashing functions and makes use of hashing internally. Creating good hash
functionsis difficult — ideal hash functions try to create very random-looking numbers from
whatever objects are given to them. Making use of SDL’s hash functions ensures that you
are getting good hash performance.

Algorithm

An algorithm is a series of steps necessary to carry out a process. Most algorithms operate
on data, make decisions about what to do based on that data, and transform the data into
some kind of output. SDL contains a large number of reusable algorithms. Reusable
algorithms are solutions for problems that crop up again and again in common programming
situations. By learning about SDL’s algorithms, you can avoid writing a lot of common
code, and simply substitute the appropriate reusable algorithm.

-10 -

Quick Example

Many Delphi programmers may not be familiar with generic programming. Before going
into great detail about containers, algorithms, and all the other SDL features, let’s look at an
example of SDL programming. First we'll create a narrative sentence that describes what
we want to do. Thenwe |l present SDL-based code that does it. Once you see how
compact the SDL codeis and how it solved the problem, you’ Il want to know more about
SDL! Hereisour narrative:

We have two classes of students. Some students can be in both classes. We want to find
every student whose grade is above 80 in both classes, making sure that we remove
duplicates (because students might be in both classes). Then we want to sort the students by
their names, in reverse alphabetical order. Here's the code:

Procedure test;
Var classl, class2 : DMap;
GoodStudents : DArray;

I : Integer;
Iterl, Iter2 : Diterator,;
Begi n
/1 fill our classes with random students and grades
classl : = DMap. Create;
class2 := DMap. Create;
for I :=1to 25 do
begin

cl ass1. put Pai r ([Randon{ 100), RandomNane]);
cl ass?2. put Pai r ([Randon{ 100), RandomNane]);
end;

goodStudents : = DArray. Create;

iterl := classl.|ower_bound([80]);

iter2 := class2.|ower_bound([80]);

setlntersectionln(iterl, classl.finish, iter2, class2.finish, goodStudents.finish);
rever se(goodSt udents);

Pri nt Cont ai ner (goodSt udent s) ;

FreeAl |l ([cl assl, class2, GoodStudents]);

End;

Notice how compact the codeis! Thekey to using SDL effectively is learning about the
special algorithms it gives you and applying those algorithms in your programming.

-11 -

A Note About Namespaces

SDL uses some rather common (and short) names for certain procedures and functions. An
early design decision was taken to not prefix all SDL items with a special tag, such as SDL_.
First, such a convention requires that they be absolutely everywhere, and would seriously
impact the readability of the code. Second, Delphi’ s namespace (unit) rules are quite
straightforward.

We chose instead to place all SDL functionality in a single unit. Any time a namespace
conflict is discovered, simply prefix the desired SDL call with SDL. (that is SDL period).
Hereis an example:

Advance(iter);
SDL. Advance(iter);

These represent exactly the same function call.

In order to avoid naming collisions for classes, we have chosen to use the letter D (as
opposed to T) to prefix all SDL class names. That is why you see DObject, DContainer,
and so forth.

We hope that this is acceptable to you. If you have suggestions about how to modify this
scheme, please email us. Of course, purchasing the source edition will allow you to make
any changes you warnt.

-12 -

Error Handling

SDL and SuperStream throw exceptions whenever illegal conditions are encountered.
SDL’s exceptions are rooted by SDLException. You should never rely on exception
handling during the normal course of execution in your program. Therefore, any

SDL Exception throw by your program should be considered a bug that must be eradicated.
Use SDL’s various testing methods to ensure that a method call will succeed before you
executeit.

SDL also has a number of assertions throughout its implementation. 1f you purchased the
source version, you can compile a version of SDL that has these assertions enabled, which
provides additional diagnostics.

-13 -

Ten Easy SDL Lessons

Because Delphi programmers may not be familiar with SDL programming techniques, we
present ten examples here, showing how SDL’s generic algorithms and containers can be
used. For each example we' ll provide a short narrative describing the problem and then
display the SDL-based code that is a solution.

All of the lessons will use this simple object definition:

Type
TEnpl oyee = cl ass
Id : Integer;
Name : String;
Sal ary : |Integer;
Benefits : Bool ean;
End;

Lesson 1 - Keeping Lists of Objects

Let's say that we want to store a list of employee objects. Thisis very simple to do with
Delphi’s own TList class, and it's something that nearly every Delphi programmer has done.
We're going to create a list of employee objects, then print out the salary values for each
one. Let’slook at the Delphi code, and then see the equivalent SDL code.

Procedur e Del phi Li st;
Var list : TList;

I : Integer;
Enp : TEnpl oyee;
Begi n
For I :=1 to 10 do

Li st.add(TEmpl oyee. Create);

For I := 0 to list.count — 1 do
Begi n
Enp : = TEnpl oyee(list[I]);
Witeln('Salary for ‘, enp.nane, ‘' is ‘', enp.salary);
End;
For I := 0 to list.count — 1 do

TObject(list[I]).free;

List.free;
End;

That's pretty simple code. The SDL codeis just as simple, and we'll see later on how much
flexibility using SDL gives you.

Procedure SDLLi st ;
Var list : DList;

I : Integer;
Iter : Diterator;
Begi n
List := DList.Create;
For I :=1 to 10 do

Li st.add([TEnpl oyee. Create]);

-14 -

Iter :=list.start;
Whil e not atEnd(iter) do
Begi n
Enmp := getObject(iter) as TEnpl oyee;
Witeln('Salary for ‘, enp.nane, ‘' is ‘', enp.salary);
Advance(iter);
End;
Obj Free(list);
List.free;
End;

The SDL code, while structured very slightly differently, is quite easy to read. Note the use
of the ObjFree function — you' Il learn a lot more about the many functions (or algorithms)
that SDL offerslater on. Hereis another way of writing the same thing, in a more SDL -
centric way:

Function GenEnpl oyee(ptr : Pointer) : DObject;

Begi n

Result := Make([TEnpl oyee. Create]);
End;
Procedure Print Enpl oyee(ptr : Pointer; const obj : DObject);
Begi n

Wth asObj ect(obj) as TEnpl oyee do

Witeln(*Salary for ‘', name, ‘' is ‘', salary);

End;

Procedure WiteEnpl oyee(ptr : Pointer; const obj : DObject);
Var list : DList;
Begi n
List := DList.Create,;
Generate(list, 10, MakeGenerator (GenEnpl oyee));
For Each(list, MakeAppl y(PrintEnmpl oyee));
Obj Free(list);
List.free;
End;

Note how compact the WriteEmployee procedure is, and how clearly it reads. We are using
three algorithms here — generate, forEach, and ObjFree. Generate calls a generator
function, which is a function that creates DObjects. ForEach calls a function with each item
in a container, and ObjFree calls TObject.Free for each item in a container. Thesethree
algorithms are just a small part of the many generic algorithms that are part of SDL. Using
these algorithms creatively is the key to multiplying your productivity.

Lesson 2 — Keeping Lists of Strings and other Atomic Types

One of the best things about SDL containers is that they don't hold just pointers, or objects,
like other data structures for Delphi do. They can hold just about any atomic type. And you
can even mix them in the same container! Let’s say that we want to store a bunch of strings,
numbers, and floating point values in a container. Here' s how we can do that:

Procedure GenM x;

Begi n
Case Random(3) of
0 : result := Make([Random(10)]);
1: result := Make([‘str * + IntToStr(Randonm(10))]);
2 : result := Make([Random(1000) / 1000]);

-15-

end;

end;
procedure PrintM x(ptr : Pointer; const obj : DObject);
begin
case obj.vtype of
vtlinteger: witeln(‘Integer: ‘, aslnteger(obj));
vt Ansi String: witeln(*String: ‘, asString(obj));
vt Ext ended: writel n(‘Extended: ‘, asExtended(obj));
end;
end;

Procedure M xEnip;

Var a : DArray;

Begi n
A := DArray. Create;
Generate(a, 10, MakeGenerator(GenM x));
For Each(a, MakeApply(PrintMx));
a.free;

end;

SDL can, in its containers, effectively handle a mixture of atomic types. Most of the time
you’ll just store one type in a container, but it’s nice to know that the flexibility is there.
SDL stores the following atomic types:

= Viinteger

= VtBoolean

= viChar

= ViExtended

= ViString

= VitPointer

= ViPChar

= VviObject

= VviClass

= VtWideChar
= VtPWideChar
= VtANsiString
= vtCurrency

= VvtWideString

SDL takes care of the storage of all of these atomic types automatically — although it’s still
important for you to understand what’ s going on underneath, so that you can manipulate the
DObject values correctly. You'll learn more about this later.

Lesson 3 — Iterating with Iterators

Iterators are one of the most powerful featuresin the SDL library. By making extensive use
of iterators, you’re insulating yoursdlf against changes in your program’s structures.
Iterators work the same way across all SDL containers. What follows is an example that
demonstrates this, by storing the same data in both a list structure and in an array structure,
and performs the same operations on both.

Procedure Iteration;

-16 -

Var iter : Diterator;
Arr : DArray;

Li st : DList;
Sum : I nteger;
Begi n
Arr := DArray. Create,;
List := DList.Create,;

Generate(arr, 10, MakeGener at or (GenEnpl oyee));
CopyTo(arr, list);

Sum : = 0;
Iter := arr.start;
Whil e not atEnd(iter) do
Begi n
Inc(sum TEnpl oyee(get Cbject(iter)).salary);
Advance(iter);
End;
Witeln(‘'Sumis ‘, sum;

Sum : = 0;
Iter :=list.start;
Whil e not atEnd(iter) do
Begi n
Inc(sum TEnpl oyee(get Cbject(iter)).salary);
Advance(iter);
End;
Witeln(‘'Sumis ‘, sum;

Obj Free(arr);

Arr.free;
List.free;
End;

Note that the codeto iterate over thelist and the array isidentical. Y ou should also note
that we only performed ObjFree on the arr variable, and not on the list variable. Thisis
because the two containers have the same objects in them — the copyTo routine only makes
copies of the pointers to the objects (it is a“shallow” copy of athe arr container).

This example demonstrates a use of iterators. Thereis another way of expressing the same
operation using generic algorithms:

Function SunSal ary(ptr : Pointer; const obj1l, obj2 : DObject) : DObject;
Begi n

Result := make([aslnteger(objl) + TEnpl oyee(asObject(obj2)).Salary]);
End;
Procedure UseCeneri c;
Var arr : DArray;

Begi n
Arr := DArray. Create,;
Generate(arr, 10, MakeGener at or (GenEnpl oyee));
Witeln(‘Salary sumis ‘, aslnteger(lnject(arr, [0], SunSalary)));
Arr.free;
End;

By now you may be understanding why generic algorithms are so powerful! Let’slook at
using iteratorsto limit a range of an operation to a particular part of a data structure.

-17 -

Procedure LimtGeneric;
Var arr : DArray;
Starting, ending : Dliterator;
Begi n
Arr := DArray. Create,;
Generate(arr, 10, MakeGener at or (GenEnpl oyee));
Starting := arr.start;
AdvanceBy(starting, 2);
Ending := arr.finish;
Ret reat By(endi ng, 2);
Witeln('Salary for some enpl oyees is '
Asl nt eger (
Injectln(starting, ending,
[0], Sunfalary)));
end;

Lesson 4 — Using SDL instead of Delphi’s Data Structures

Déephi provides two basic data structures— TList and TStringList. Let’slook at how to use
SDL instead of these, and what the SDL equivalents offer in additional functionality.

Here's a simple example of TStringList code:

Procedure TStringThing;
Var sl : TStringlist;

I : Integer;
Begi n
S| := TStringlList.Create;
For I :=1to 20 do
Sl . add(RandonSt ri ng) ;
Sl .sort;
For 1 :=0 to sl.count - 1 do
Witeln(sl[I1]);
Sl.free;
End;

Here' s an equivalent SDL version:

Procedure SDLStringThi ng;
Var arr : DArray;
Iter : Diterator;

Begi n
Arr := DArray. Create,;
For I :=1 to 20 do
Arr.add([Randonftring]);
Sort(arr);
Iter := arr.start;

While iterateOver(iter) do
witeln(getString(iter));
arr.free;
End;

This version makes use of a neat SDL helper function — iterateOver. Iterate over returns
true while its source iterator is not atEnd, and automatically advancesit. You need to call
iterateOver with a fresh iterator (not one that’s already been used with iterateOver) for
implementation reasons, but it's a very handy function.

-18 -

TStringList also offers the very convenient IndexOf and Find functions. Here' s some
equivalent SDL code:

Procedur e SDLFi ndi ng;
Var arr : DArray;
Loc : Diterator;

Begi n
Arr := DArray. Create,;
Generate(arr, 20, RandonString);
Loc := find(['toaster’]); /1 linear search
If not atEnd(loc) then
Witeln(‘found it: ‘, getString(loc));
Sort(arr);
Loc := BinarySearch(arr, [‘toaster’]); // log N search
If not atEnd(loc) then
Witeln(‘found it: ‘, getString(loc));
Arr.free;
End;

This code performs a search on an array using two different algorithms — find and
binarySearch. Find isalinear search through any container, looking for a value.
BinarySearch relies on the container being sorted, and performsaLog N efficiency search.

Other data structures, such as Maps, offer powerful searching and location functionality as
well. Find will always work on any container, although it may not be optimally efficient.

Lesson 5— Using Maps (Key-Value Pairs)

Studies have indicated that, when available, maps make up some 90% of all container class
usage. There sareason for that —they’re amazing useful, so much so that when you stop
and analyze a given storage requirement in an application, it’s almost always easily phrased
in terms of maps.

Until SDL, there hasn't been an effective way of storing maps. The only possibility was to
use TStringList, keep it sorted, and put objects in the Objects property. There are serious
problems with this approach, though — TStringList is based on arrays, and does not scale
effectively. In addition, data that has a bad storage pattern (already sorted) may generate
extremely inefficient results when used with TStringList. That’s not to say that TStringList
isinefficient — it isn't, but it is limited by the underlying data store.

SDL’s mapping structures are efficient and scale well. The ordered maps, in particular, are
very well suited to just about any pattern of data access. They are red-black trees, and
rebalance themselves automatically to match the data stored. They maintain their good
characteristics at all times, which means a guaranteed Log N time for just about any
operation.

Let's create a map of employeeid to employee object. This type of operation is very
common — we want to be able to quickly look up any employee given his’her employee
number. Wewant to be able to identify if we're using a particular employee number. We
may also want to be able to iterate over the employees.

Procedure MapEnpl oyees;

Var map : DMap;
Iter : Diterator;

-19 -

I : Integer;
Enp : TEnpl oyee;

Begi n
Map : = DMap. Create;
For I :=1 to 20 do
Begi n
Enp : = TEnpl oyee. Create;
Map. put Pair ([enp.id, enp.nane]);
End;

/1 locate enployee with id 1001
Iter := nmap.locate([1001]);
If atEnd(iter) then
Witeln(*Enpl oyee doesn’’'t exist’')
El se
Witeln(*Enployee is ‘, TEnpl oyee(getCbject(iter)).nane);

/'l renpove enpl oyee 2004 - this will renpve both the key and val ue.
map. renmove([2004]);

Iter := map.start;
While iterateOver(iter) do
Witel n(TEnpl oyee(get Object(iter)).nane);

/] iterate over the enpl oyee ids
iter := map.start;
set ToKey(iter);
while iterateOver(iter) do
witeln(‘Enployee IDis ‘, TEnployee(getObject(iter)).id);

Obj Free(map) ;
Map. free;
End;

There are a couple of interesting things to note about this example — first, note the usage of
the locate function to find out whether a given key isin the map or not. Second, note that
the remove function can be called to take a key-value pair out of the map. Third, when we
wanted to iterate over the key part of each pair, we called setToKey on theiterator. Calling
setToKey tells SDL that when we use a getX XX function on theiterator, we want it to
return the key part of a key-value pair. To set theiterator back to returning values, call
setToValue.

Let'slook at another way of mapping our employees. Thistimewe'll do it by name. We're
going to create a map of names to employee objects.

Procedure MapEnpl oyees;
Var map : DMap;
Iter : Diterator;
I : Integer;
Enp : TEnpl oyee;
Begi n
Map : = DMap. Create;
For I :=1 to 20 do
Begi n
Enp : = TEnpl oyee. Create;
Map. put Pai r ([enp. name, enp]);

-20 -

End;

Iter := map.locate([‘'ted jones'];
If not atEnd(iter) then
Begi n

Enmp := getObject(iter) as TEnpl oyee;
Witel n(' Found Ted Jones, whose id is ‘', enp.id;

End;

Iter := map.start;

While iterateOver(iter) do
Begi n

Set ToVal ue(iter);

Enmp := getObject(iter) as TEnpl oyee;

Set ToKey(iter);

Witeln('Found at key ‘, getString(iter), ‘ enployee id ‘, enp.id);
End;

Obj Free(nmap) ;
Map. free;
End;

Lesson 6 — Using Sets

Sets are another very common data structure. Delphi and Object Pascal provide an elegant,
albeit limited, set feature in the language. Programmers coming from other languages often
don’t make use of setsto ther fullest. SDL provides a very powerful set abstraction; one
that can deal with any kind of atomic type.

Let'slook at an example that works with a set of random numbers:

Functi on RandomNumber (ptr : Pointer) : DObject;
Begi n

Result := Make([Randonm(1000)]);
End;
Procedure Set Stuff;
Var s : DSet;

I, x @ Integer;

Begi n

S := DSet. Create;

Gener ate(s, 40, MkeGenerat or (RandonNumber));

For I :=1 to 50 do
Begi n
X := Random(1000) ;
If set.includes([x]) then

Witeln(x, ‘ is in the set’)
El se
Witeln(x, * is NOT in the set’);
End;
End;

Thisis an example of avery basic set usage. It builds a set full of random numbers, then
uses that set to determineif other random numbers arein the set. Let’s do something alittle

-21 -

more sophisticated. We know that Delphi supports certain set operations, like set
intersection and set unions. SDL supports theseas well. Here's an example:

Procedure Set Ops;
Var s1, s2 : DSet;

A : DArray;
Iter : Diterator;
Begi n
S1 : = DSet. Create;
S2 .= DSet. Create;

A := DArray. Create;
Generate(sl, 100, mmkeGener at or (RandomNunber));
Gener at e(s2, 100, mmkeGener at or (RandomNunber));
SetIntersection(sl, s2, a.finish);
Iter := a.start;
While iterateOver(iter) do
Witeln(getinteger(iter), ‘ is in both sets.’);

FreeAl l ([s1l, s2, a]);

End;

This examples generates two sets full of random numbers, then computes the intersection
between the two sets. It then prints out the intersection set, which is the set of numbers that
arein both sets. We can easily modify this to generate the union of the two sets, which is
the set of numbersthat are in both sets:

Procedure Set Ops;
Var sl1, s2 : DSet;

A : DArray;
Iter : Diterator;
Begi n
S1 : = DSet. Create;
S2 .= DSet. Create;

A := DArray. Create;
Gener ate(sl, 100, mmkeGener at or (RandomNunber));
Gener at e(s2, 100, mmkeGener at or (RandomNunber));
Set Uni on(sl, s2, a.finish);
Iter := a.start;
While iterateOver(iter) do
Witeln(getlinteger(iter), ‘' is in one of the sets.’);
FreeAll ([s1, s2, a]);
End;

Note that to accomplish this, we only needed to change the setlntersection to a setUnion
call.

Lesson 7 — Using the Sort Algorithms

SDL provides two different bases for sorting — the sort and stableSort algorithms. Sort isa
quicksort, and stableSort is a merge sort. StableSort has the additional property that, for any
items that are equal, their order will be retained after the sort. On very large sorts,
stableSort can be faster than quickSort, at the expense of using more memory.

Function NameConparator(ptr : Pointer; const obj1l, obj2 : DObject) : Integer;
Begi n
Result : = CompareText (

TEnpl oyee(get Obj ect (obj 1)).nane, TEnpl oyee(get Obj ect (obj2)).name));

-22 -

End;
Function BenefitsConparator(ptr : Pointer; const objl, obj2 : DObject) : Integer;
Var el, e2 : Bool ean;
Begi n
E1l : = TEnpl oyee(get Obj ect (obj 1)). benefits;
E2 : = TEnpl oyee(get Obj ect (obj 2)). benefits;
If el = e2 then
Result := 0
Else if el then
Result := -1
El se
Result := 1;

End;
Procedure Sort Denp;
var al, a2 : DArray;
begin
al := DArray. Create;
Generate(1l, 10, MakeGenerator (GenEnpl oyee));
sortWth(al, MakeConparator(NameConparator));
Pri nt Cont ai ner (al);
a2 := al.clone as DArray;
sortWth(al, MakeConparator(BenefitsConparator));
stabl esort Wth(a2, MakeConparator(BenefitsConparator));
Print Contai ners([al, a2]);
Obj Free(al);
al.free;
a2.free;
end;

This rather long example shows the essential difference between the two sorting algorithms.
Wefirst sort by employee id and print the employees. We then sort with both the sort
algorithm and the stableSort algorithm on the benefits field. When we print out al (done
with sort), the employees are no longer in employee id order, because sort scrambles them
up. When we print out a2, we notice that all the employees without benefits (benefits =
false) show up first, still in employeeid order, followed by those who have benefits. Thisis
the advantage of stable-sorting. You can sort multiple times, and the order is retained
(without violating sort concerns).

Lesson 8 — Changing Data Structures

W€ ve mentioned several times that you can change data structures fairly easily with SDL.
Let’s show how thisis possible.

Procedure PrintNumber(ptr : Pointer; const obj : DObject);
Begi n

Witel n(getlnteger(obj));
End;

Procedure Usi ngArray;
Var con : DCont ai ner;
I : Integer;
Begi n
con := DArray. Create;
Gener ate(con, 100, MakeGenerat or (RandomNunber));

For I :=1 to 10 do

-23-

con. renove([Randon(100)]);
For Each(con, MakeAppl y(Print Nunmber));

Con. free;
End;

Procedure Usi nglLi st;

Begi n
Var con : DCont ai ner;
I : Integer;
Begi n
con : = DList.Create;

Gener ate(con, 100, MakeGenerat or (RandomNunber));

For I :=1 to 10 do
con. renmove([Randon(100)]);

For Each(con, MakeAppl y(Print Nunmber));

Con. free;
End;

Procedure Usi ngSet;
Var con : DCont ai ner;
I : Integer;
Begi n
con : = DSet. Create,
Gener ate(con, 100, MakeGenerat or (RandomNunber));

For I :=1 to 10 do
con. renove([Randon(100)]);

For Each(con, MakeAppl y(Print Nurmber));

Con. free;
End;

Note how similar these three examples are— in fact, they’ re identical except for the
container construction call. The code that operates on themisidentical. This exampleis
important because it goes to the heart of why you would choose one data structure over
another. Let’sfollow the thought process through these three examples.

Our first example uses arrays. Arrays are good at iteration, and very good for random
access, but not so good for addition and removal. 1n our example we are adding and
removing, but not doing any indexed access. Thisroutineis not performing very well, so
we might as well try to make it more efficient.

Our second example uses alist. Lists aregood at iteration, and very good at insertion and
deletion at any point. They are not particularly good at finding items. This second routine
performs better because it can quickly add and do the removal operation, but we find that
remove runs slowly because list must scan through all of its elements to find the e ement
that needs to remove.

-24 -

Since we really want that remove to run fast, we change our data structurein the third
exampleto usea DSet. Now every operation runs quickly. Of course, set is not the ideal
structure for every situation. Its drawbacks include larger storage requirements, and
increased time (log N) for both addition and deletion. The advanced is that instead of a
O(N) timefor the removal, we have a O(Log N).

Lesson 9 — Transforming Objects

One of the most powerful algorithm setsin SDL is the transform family. Transform will
iterate over one or two containers (in its unary and binary forms) and call a specified
function with items from each container. The result of the function is then stored at a
destination. Let's say that we wanted to create a routine that would fill an array with the
hash codes of all our employee names. Here's how we would do it (with transformUnary):

Function HashName(ptr : Pointer; const obj : DObject) : DObject;
Begi n
Result := make([Jenki nsHashStri ng(TEnpl oyee(get Obj ect (obj)).nanme)]);
End;
Procedure showTransfornUnary;
Var enpl oyees, hashcodes : DArray;
Begi n
Enpl oyees : = DArray. Create;
Hashcodes : = DArray. Create;
Gener at e(enpl oyees, 20, MakeGener at or (GenEnpl oyee));
Transf or mnar y(enpl oyees, hashcodes, MakeUnary(HashNane));
FreeAl | ([enpl oyees, hashcodes]);
End;

Thetransform unary algorithm does all the hard work of organizing values and putting them
into the output container automatically. Let’stry another scenario, in which we want to fill
an array with a sum of the hash code and the employeeid:

Function SunCodes(ptr : Pointer; const obj1l, obj2 : DObject) : Dbject;
Begi n
Result := Make([
TEnpl oyee(get Cbj ect (obj1)).id + aslnteger(obj2) 1);
End;
Procedure showTransfornBi nary;
Var enpl oyees, hashcodes, suns : DArray;
Begi n
Enpl oyees : = DArray. Create;
Hashcodes : = DArray. Create;
Sums : = DArray. Create;
Gener at e(enpl oyees, 20, MakeGener at or (GenEnpl oyee));
Transf or mnary(enpl oyees, hashcodes, MakeUnary(HashNane));
Transf or nBi nary(enpl oyees, hashcodes, sunms, MakeBi nary(Suntodes));
FreeAl | ([enpl oyees, hashcodes, suns]);
End;

Using the transform algorithms effectively can make your code very small, and very
readable.

Lesson 10 — Filtering Objects

This lesson demonstrates another family of SDL functions — the filtering functions.
Filtering out a set of objects happens all thetime, and SDL is hereto help. Our scenario this

-25-

timeis that we want to examine all of our employees and create a list of those making over
$50,000 ayear. We then want to sort thelist, and print out their names. SDL’sfiltering and
other algorithms make this very easy to accomplish:

Function IsRich(ptr : Pointer; const obj : DObject) : Bool ean;
Begi n

Result := TEnpl oyee(get Obj ect (obj)).salary >= 50000;
End;
Function NameConparator(ptr : Pointer; const obj1l, obj2 : DObject) : Integer;
Begi n

Result : = ConmpareText (

TEnpl oyee(get Obj ect (obj 1)).nane, TEnpl oyee(get Obj ect (obj2)).nanme));

End;
Procedure Print Enpl oyee(ptr : Pointer; const obj : DObject);
Begi n

Wth asObj ect(obj) as TEnpl oyee do

Witeln(*Salary for ‘', name, ' is ‘', salary);

End;

Procedure FilterDenp;
Var enpl oyees, richGuys : DArray;
Iter : Diterator;
Begi n
Enpl oyees = DArray. Creat eWt h(MakeConpar at or (NaneConpar at or)) ;
Ri chGuys := DArray. Creat eWt h(MakeConpar at or (NaneConpar at or)) ;
Gener at e(enpl oyees, 50, MakeGener at or (GenEnpl oyee));
Filter(enpl oyees, RichCuys, MkeTest(IsRich));
Sort (R chGuys);
For Each(Ri chGuys, MakeAppl y(Print Enpl oyee));
Obj Free(enpl oyees);
FreeAl | ([Enpl oyees, RichGuys]);
End;

Ther€ s one special trick being used here. We making our arrays with CreateWith; that tells
SDL about the comparator we want to use with for the container being created. All
algorithms will then use that comparator as the default comparator.

Much of the time you can ignore comparators, because SDL puts a fairly intelligent default
comparator on your containers. This comparator can sort on any of the atomic types. If you
want to have special ordering behavior, such as sorting on a field of an object, you need to
provide SDL with a comparator that can do the job. NameComparator in the example above
does just that.

-26 -

Containers

SDL provides the programmer with 11 basic data structures, which cover a large range of
programmer’s needs. The data structures have good characteristics: efficient
implementation, consistent naming, and compatibility with generic algorithms. In addition,
SDL’s data structures provide a seamless compatibility with Delphi’ s fundamental data
types, as wel as its object modd.

SDL storesitemsin its data structures, which are descended from DContainer. ltemsare
either Delphi primitive data types, or Delphi objects. Therefore, items can be any of the
following:

Integer, Boolean, Char, Extended, ShortString (old-style string), Pointer, PChar, Object,
Class, WideChar, PWideChar, String (long string), Currency, Interface, WideString.

DL always storesitems by value. Thisis very important! SDL does not own
objects that areinside of its containers. When you put an integer or a string into
a container, the value is copied into the container. When you put an object
(pointer to object) into a container, the pointer is copied, but the object is not;
thisis because SDL is storing the pointer, not the object itself.

When an SDL container is destroyed, it does not free the objects that areinside of it. You
can use the ObjFree generic algorithm to do this, if you want to.

Because Delphi provides limited language support for certain constructs that would have
made creating SDL easier, it isimportant that you understand exactly how SDL stores your
items.

All About DObjects

Delphi provides us with a parameter type known as array of const. You can pass just about
any atomic type or object as part of an array of const. The receiving procedure sees the
array of const as an array of TVarRec objects. DObject (SDL’s atomic type) is defined
precisely the sameway as TVarRec. When you add items to a container, you will usually
use the add([item]) form. Delphi convertsthisinto an array of TVarRec records, and passes
them to the add procedure. SDL makes copies of all the items passed in (creates new
TVarRec/DObject records for them), and adds them to the container.

If you arejust using the helper functions (putinteger, getinteger, atAsinteger, etc.) you don't
need to worry about this value copying — it will happen automatically. Periodically, for
performance reasons, you may want to interact directly with the DObject records that SDL
isstoring. If you do this, you need to be aware of therules.

DObjects can be copied directly, by assigning them to one another. If you do this, you need
to ensure that only one of the objects is cleaned up with the ClearDObject function. If you
want to make a copy, use the CopyDObject function. If you want to ensure that a DObject
is empty without clearing it, use InitDObject. SDL uses these functions internally to ensure
that all items are copied around cleanly, and that no memory is leaked.

-27 -

If you retrieve a DObject from a container directly, you need to clean it up when you are
finished with it by calling ClearDObject. Thisis because SDL has created a copy of the
DObject and passed it back to you. ClearDObject doesn’'t do anything for most types, but
for Strings, ShortStrings, and Extended values it cleans up associated memory.

If you retrieve a pointer to a DObject (PDODbject), you should not cleanit up. If you
examine the SDL source code, you will seethe SDL’s algorithms rely extensively on
retrieving pointers to DObjects. They do this for performance reasons, and also because
they wish to manipulate the items in the containers without actually knowing what the types
of thoseitems are.

SDL provides two versions of many functions that operate on containers — thefirst is
conventionally named (like add), and the second is the direct DObject form, prefixed by an
underscore (_add). Using the conventional form, you can pass any items in that Delphi will
permit in an array of const, which is just about all atomic types and object pointers. You
may periodically use the second form when you have a DODbject already, which can
sometimes happen when you are coding for extreme efficiency. The conventional forms
calls the DObject form internally, and automatically.

Another side effect of thisisthat SDL takes advantage of the array of const feature to allow
multiple items to be specified in calls. For example, add([25, 26, 27, 31]) will add all four
numbers to its container. SDL will internally loop through each item in the array and add it
automatically. This can be a very convenient shortcut at times.

Hereisalist of functions that operate directly on DODbjects:

procedure Set DObj ect(var obj : DObject; value : array of const);
procedure | nitDObject(var obj : DObject);

procedure CopyDObj ect(const source : DObject; var dest : DCbject);
procedure MoveDObj ect (var source, dest : DObject);

procedure Cl ear DObj ect (var obj : DObject);

Example Code

SDL comes with many examples. Please examine the SDL Examples.pasfile that came
with your distribution — it's a great guide to the usage of various SDL features and
containers. It also demonstrates many “correct” waysto use SDL.

Container hierarchy

SDL divides its containers into a simple hierarchy. Moving down the hierarchy increases
the functionality available in each container. This has advantages; note that if you know
that a given situation requires a mapping structure, you can assume in your code that the
data structure is a descendent of DAssociative. Then, later, you can use any of the
subclasses of DAssociative to store the actual data, and none of your code that uses the data
will need to change. You can further insulate yourself by making sure that you use iterators
wherever possible.

Figure 1 shows the SDL container class hierarchy:

-28 -

DiterHandler

DiterAdapter
DAssociative DAdapter

I
il

DMulti
HashMap

Dinternal
HashMap

DinternalMap

DMultiHash
Set

Figure 1- SDL Class Hierarchy

Dlterator

Iterators (Dlterator) are absolutely fundamental to working with SDL. Generic algorithms
(and very likely your algorithms) operate by manipulating and using iterators, rather than
working with the container classes directly. All containers provide methods for retrieving

-29 -

their starting and finishing iterators. Once you have an iterator, you can use a set of global
functions to move them from item to item, retrieve the item the iterator is positioned at, and
put new items at theiterator position. All of these operations on iterators are independent of
the containers underneath them. Hereis an example of retrieving and using an iterator:

Procedure test(c : DContainer);
var iter : Dlterator;
begin
iter := c.start;
while not atEnd(iter) do
begin
witeln(getlnteger(iter));
advance(iter);
end;
end;

This example accepts any kind of container, then prints out each item in the container,
assuming that item is an integer. Note the use of the atEnd function, which tests to seeif an
iterator is positioned after the last item in the container. When theiterator is at the end of a
container, you cannot read from it (with a getXXX function). Some containers do permit
you to write to an iterator that is positioned at the end, but not all (associative containers do
not support this). SDL provides afull set of getXXX functions; oneis provided for each
atomic type. Thereare equivalent putXXX functions aswell. Here' sthelist:

function getlnteger(const iterator : Diterator) : I|nteger;
function getBool ean(const iterator : Diterator) : Bool ean;
function getChar(const iterator : Diterator) : Char;

function get Extended(const iterator : Diterator) : Extended;
function getShortString(const iterator : Diterator) : ShortString;
function getPointer(const iterator : Diterator) : Pointer;
function getPChar(const iterator : Diterator) : PChar;

function get Object(const iterator : Diterator) : TObject;
function getCl ass(const iterator : Diterator) : Td ass;

function getWdeChar(const iterator : Diterator) : WdeChar;
function get PWdeChar(const iterator : Diterator) : PWdeChar;
function getString(const iterator : Diterator) : String;
function getCurrency(const iterator : Diterator) : Currency;
function getVariant(const iterator : Diterator) : Variant;
function getlnterface(const iterator : Diterator) : Pointer;
function getWdeString(const iterator : Diterator) : WdeString;

Hereis the equivalent list of putXXX functions:

procedure put(const iterator : Diterator; objs : array of const);

procedure putlnteger(const iterator : Diterator; value : Integer);
procedure putBool ean(const iterator : Diterator; value : Bool ean);
procedure putChar(const iterator : Diterator; value : Char);

procedure put Extended(const iterator : Diterator; const value : Extended);
procedure putShortString(const iterator : Diterator; const value : ShortString);
procedure putPointer(const iterator : Diterator; value : Pointer);
procedure putPChar(const iterator : Diterator; value : PChar);

procedure putObject(const iterator : Diterator; value : TCObject);
procedure putClass(const iterator : Diterator; value : Td ass);

procedure put WdeChar(const iterator : Diterator; value : WdeChar);
procedure put PW deChar(const iterator : Diterator; value : PWdeChar);
procedure putString(const iterator : Diterator; const value : String);

-30 -

procedure putCurrency(const iterator : Diterator; value : Currency);

procedure putVariant(const iterator : Diterator; const value : Variant);
procedure putlnterface(const iterator : Diterator; value : Pointer);

procedure putWdeString(const iterator : Diterator; const value : WdeString);

Thereis also the output function, which combines the writing of a valueto an iterator’s
position with advancing the iterator:

procedure output(var iterator : Diterator; objs : array of const);

Making use of these functions lets you get your atomic values in and out of DObjects easily
and quickly. SDL has a great number of these type conversion functions — make use of
them! SDL has these details done right, so you don’t have to code them yoursdlf.

Certain containers store pairs (DMap, DMultiMap, DHashMap, DMultiHashMap). When
you retrieve an iterator from one of these containers, the iterator will walk over the valuesin
the key-value pairs. If you want to examine the keys, call SetToKey(iterator). After making
that call, the getX XX functions will return the key part of the pair. To retrieve values, call
SetToValue(iterator).

Dlterators arerecords. They have been specifically designed to ensure that you can copy
them freely, return them as results from functions, and assign them between variables. Each
Dlterator contains enough information to indicate which container it came from, the position
it has in that container, and certain flags indicating the status of theiterator. Dlterators are
exactly 16 bytesin length, and will stay that way if possible (to accelerate reading and
writing Dlterators are one cache line in length).

Dlterators can be grouped into classes. Each class adds more functionality. The class of an
iterator is dependent on the data structure that produced it. Certain data structures only
support very simple operations; this means that their iterators are simple. Other data
structures provide much fuller iterator operation support. What follows is a description of
theiterator classes.

Forward lterators

The simplest iterator is one that can only move forward. You can retrieve theiterator from
the container (usually with the start function), and you can move it forward (with advance)
until it is at the end of the container. Y ou can use the following functions with forward
iterators:

advance - nove an iterator to the next item

get XXXX - retrieve the itemthe iterator is positioned at

equals - test if two iterators are at the sane position

put XXXX - store an itemwhere the iterator is positioned

output — store an itemwhere the iterator is positioned, and advance the iterator
advanceBy - advance the iterator multiple positions (retreat if negative)

atStart - tests to see if an iterator is at the start of a container

atEnd - test to see if an iterator is at the end of a container

get Container - retrieves the container associated with an iterator

di stance - determ nes the number of positions between two iterators

-31-

Bidirectional Iterators

Bidirectional iterators extend forward iterators so that they can move backwards. The
following functions work only with bidirectional (and better) iterators:

retreat - noves an iterator backwards to the previous item

retreatBy - nopves an iterators backwards by a number of positions

getAt - retrieves the itemat a certain position relative to the iterator
putAt - stores an itemrelative to the position of the iterator

Random Iterators

Random iterators extend bidirectional iterators to implement efficient movement of the
iterator to a random position in the container, usually indicated by an integer. Thefollowing
functions work with random iterators:

index - determines the current position of the iterator, as an integer
less - determines if one iterator is pointing “earlier” in a container

Iterator Adapters

Iterators can be wrapped with adapters to provide additional or different behavior. SDL has
one such adapter DlterSkipper, which alters the behavior of the iterator it is attached to so
that advances and retreats move by a certain number of positions.

You can create your own adapters by subclassing DIterAdapter.

Iterator adapters work by substituting themselves into the iterator’ s Handler field. All
functions that are executed on theiterator are routed through the Handler. The adapter can
then pass the request unmodified to the original handler (which is often the container that
produced the iterator), or they can modify the request, or do any other processing that is
required.

DContainer

DContainer is the base class for all container classesin the SDL library. It defines a basic
set of public operations that all containers support, defines essential comparator
functionality, and anchors the container hierarchy with a set of abstract, virtual operations
that concrete container classes must implement. It also provides default implementations of
a number of basic operations — these default implementations are very “lowest common
denominator”. Subclasses may decide to implement these operations in a more efficient
way; to do so, they simply override the function with the new, improved, and more efficient
version. Hereisalist of the standard methods provided by containers:

add - add items to containers

clear - clears all itens froma container

|l one - creates a shallow copy of a container

contains - determines if a container has a given itemin it

count - counts the nunber of times a given itemoccurs in a container

finish - returns an iterator positionedafter the last itemin the container
get Conparator - returns the conparator currently being used by the container
i sSEnpty - determines if the container has any itens in it

maxSi ze - returns the | argest nunber of itens the container can hold

renmove - erases (renpves) nmatching itenms froma container

-32-

size - returns the nunber of itenms in a container
start - returns an iterator positioned on the first itemin the container

Since all containers provide these functions, quite a bit can be done without knowing
anything about the details of a data structure being used. The DContainer interface, coupled
with the iterator manipulation functions, constitute a powerful abstraction of data structures
away from your code.

Comparators

Comparators are the functions used by SDL containers to compare eements. For certain
structures, such as maps, comparators are absolutely integral to the function of the
container, as they provide the mechanism by which items are compared to one another.
Other container classes, like arrays, don't use comparators to the same extent, but they are
still present.

A comparator is defined as follows:

DConpar ator = function (const obj1l, obj2 : DObject) : Integer of object;

An alternate form of comparators is defined like this:

DCompar ator Proc = function(ptr : Pointer; const objl, obj2 : DObject) : Integer;

These two definitions are compatible with each other because they take advantage of a trick
— calls on procedures of object always have sdlf as thefirst parameter. By placing a dummy
pointer in this position, we can make our comparators either closures (procedures on
objects) or functions (standalone functions).

If you are defining your own comparators, you should always ensure that the function
returnslessthan zeroif obj1 isless than obj2, zeroif obj2 equals obj2, and greater than
zeroif obj2 is greater than obj1.

You will be using this most frequently when you are comparing two T Object descendents,
which will be contained inside the DObjects. Y ou can access the objects by using
asObject, like so:

ACar := asObject(objl) as TCar

Comparators can be called very frequently, so you will want to try and make them as
efficient as possible. Note that a little more knowledge about how DODbjects are formed can
help in this efficiency:

Result := TCar(obj2.Voject)”. Fval ue - TCar (obj 1. VObj ect)”. FVal ue;

This comparator compares two TCar objects based on the their FValuefidds. Notethe trick
of subtracting thefirst from the second — this will give us a result with the correct sign for
the result.

-33-

Congtructing Containers

All containers support two forms of construction, and also have the ability to clone
themselves. Here arethe two forms:

Constructor Create; virtual;
Constructor CreateWth(conmparator : DConmparator); virtual;

Note that these constructors are virtual — thisis very handy for algorithms that need to create
auxiliary storage and still want to work independently of container type. The plain Create
constructor makes a container that uses the standard comparator routine. This default
comparator routine knows how to compare all atomic Delphi types, such as strings, integers,
floats, and so forth. 1t compares objects by comparing their pointers; this is adequate for
things like set membership, but is inadequate for locating items or any kind of ordering. If
you'’re storing objects you'’ |l probably want to provide your own comparator that works on
one of the fields of the object (see the section above for an example).

Containers can also clone themselves:
Function clone : DContainer; virtual;

This functions creates a complete new copy of the container, with copies of all itemsinside
the container. Notethat if the container had TObjects inside of it, the pointers will be
copied but not the objects themselves (a shallow copy).

Certain container classes provide additional constructor functions that are appropriate to
their specific data structures. For example, the DArray class provides a CreateSize
constructor, which makes room for a certain number of itemsin the array.

Number of Items

Every container responds to the size function, which returns the number of itemsin the
container. Note that you should not use the size function to iterate over containers. If you
do, you'll limit yoursdlf to those containers that have random access iterators! Instead,
retrieve an iterator with the start function and advance it until atEnd returns true.

MaxS ze returns the largest number of items that you can place in a given container type.
Note that the number returned assumes you have unlimited memory; it is more of a
theoretical limit than a hard limit.

Contains determines if the container has a certain item inside of it. Count iterates through
the container and determines the number of items that match the object specified.

Adding Items

Containers almost always support the add function, which puts new items into the container
(notable exceptions are the Map classes, which only accept pairs of items, in key — value
form). There are often other functions that add items to the container, but most of them are
data structure specific. Usethe simple add call whenever you can — it’ll make your code as
independent of the underlying data structure as possible.

-34 -

Removing Items

You can remove an item by calling remove. Remove operates on a value-oriented basis.
The container uses its comparator to determineif an item needs to be removed. Remove
will generally only remove oneitem. There are other forms of the call (RemoveN) that can
be used to remove more than one item that matches the value passed in.

If you have an iterator positioned at an item, you can use the removeAt function. This will
erase the element the iterator is over. It also invalidates theiterator.

Toremove all items from a container, use the clear function. All containers support clear.
Note that calling clear does not free any TObjects that the container might be holding
pointersto. You can call the FreeAll algorithm to destroy the objects before clearing the
container.

Various subclasses have additional operations for removing e ements that operate in ways
specific to that data structure.

Retrieving Items

Container-independent retrieval and iteration is achieved by using iterators. All containers
support start and finish. Calling start retrieves an iterator positioned at thefirst itemin the
container. Finishreturns an iterator positioned just after the last element — this non-existent
position is known as the finish position. If the container is empty, the start function may
return an iterator that isin thefinish position. You can test whether an iterator is at the
finish position with the following function:

Function AtEnd(const iter : Dliterator) : Bool ean;
AtEnd is often used in a construct like the following:

Procedure test(con : DContainer);
Var iter : Dlterator;
I : Integer;
Begi n
iter := con.start;
while not atEnd(iter) do
begi n
<.. do sonething ..>
| := getlnteger(iter);
witeln(l);
advance(iter);
end;
end;

The atEnd procedure invokes a data structure-dependent method of determining if the
iterator is positioned at the finish of the container.

-35-

DSequence

DSequenceis a container that holdsitsitemsin...a sequence! Items placed in a sequence-
derived container will beretrieved in the order that they were added. D Sequences maintain
their ordering. Note that a DSequenceis not necessarily indexed (with an integer). Double-
linked lists are DSequence-derived. Double-linked lists offer rapid insertion and deletion at
any point.

Some of the functions available on DSequences are index-based. These functions are not
necessarily efficiently implemented by certain kinds of DSequences. Index-based functions
are generally only efficiently performed on DVector-based containers, but it will vary.
DDeques provide an intermediary type of container that performs well under many
conditions.

Adding Items
There are a number of additional functions for adding items that DSequence provides:

Put At (pos, item)
PushBack(item
PushFront (i tem

Retrieving Items

D Sequence provides the following additional methods for retrieving items from sequence-
type containers:

At (pos)

At As XXXX(pos)
Back

Fr ont

I ndexOF (i tem
PopFr ont
PopBack

Removing Items

To remove items ether use remove or use removeAt, which removes theitem an iterator is
positioned at. Be aware that removing the item pointed to by an iterator will usually
invalidate that iterator.

DVector

A DVector is a DSequence for which each item can be addressed by an integer index.
DArrays and DDeques are DVectors. DVectors are frequently slower to add and delete
from in the middle of the structure, but offer very rapid access to individual eements
through an index.

These are the additional functions available with DVectors:

function capacity : |Integer;
procedure ensureCapacity(anount : Integer);
procedure insertAtlter(iterator : Diterator; objs : array of const);

-36 -

procedure insertAt(index : Integer; objs : array of const);

procedure insertMiultipleAtliter(iterator : Diterator; count : Integer; objs : array of
const);

procedure insertMiltipleAt(index : Integer; count : Integer; objs : array of const);
procedure insertRangeAtlter(iterator : Diterator; _start, _finish : Diterator);
procedure insertRangeAt (index : Integer; _start, _finish : Diterator);

procedure renoveAt (i ndex : |Integer);

procedure setCapacity(ambunt : Integer);

procedure trinioSi ze;

DAssociative

The DAssociative classes place significantly more organization on their contents than do the
other classes. The structure of the data is directly determined by the values that are placed
inside of them. There are two major families of associative classes : Hash-based and red-
black tree-based. Hash based structures are appropriate where comparisons are slow, or
there are smaller numbers of items, and where memory is not as important. Red-black
structures are appropriate where ensuring access timeis highly important, as red black trees
are balanced data structures. Red-black trees have a guaranteed upper bound on the amount
of time it takes to execute their various operations.

Setsand Maps

Associatives are divided into two types — sets and maps. They are, in fact, implemented
exactly the same way (they both store pairs). Sets usually contain a null value in the second
half of the pair, and all their operations work on the key, by default.

Maps store pairs — they associative a given value with a given key. They are exceptionally
useful data structures — in fact, it's estimated that 90% of all container usage in programsis
map-based, where efficient and easy to use map implementations are available. SDL
provides four different map structures: DMap, DMultiMap, DHashMap, DMultiHashM ap.
DMap and DMultiMap are red-black tree based, and DHashMap and DM ultiHashMap are
hash-based.

Themulti designator indicates whether or not the container will accept multiple values for
the same key. It is often desirable to have a container store only one value for a given key,
and if another valueis set to the same key, it replaces the first value. For these situations,
do not use the multi versions.

Multi-maps will allow any number of pairs with the same key to be added to the map.

Where maps associate a key with a value, sets are concerned only with the key. For sets, the
valueisthe key. Other than that, they generally perform exactly the same way that maps
do.

Adding Elements

To add dements to a set, useadd. To add e ements to a map, use putPair or putAt. Each
type of container will ensure that you use the correct form with assertions. Notethat is
doesn’'t make any senseto try to add ements directly to a map (because you haven't

-37 -

supplied the value part of the pair), and it doesn’t make any sense to add pairsto a set
(because thereisn’'t any value).
Finding Elements

Tofindif akey isinamap, uselocate. Tofindif avalueisin aset, you can also use locate.
For maps, locate returns an iterator positioned at the first item (value) that matches the key.
For sets, the iterator is positioned at the key itself (which is also the datal).

Note that if you want to retrieve a value from a map or set and you don’t know if the value
isactually there, uselocate. Test theiterator that locate returns — if it’s atEnd, then the key
doesn’t exist in the map, and you'll have to add it.

Removing Elements

You can remove eements from maps using remove.

Container Adapters

Creating Your Own Containers

Creating your own containers is not too difficult — basically you need to override a series of
virtual functions that DContainer has defined. Some of them don’t need to overridden —
there are default implementations. Those default implementations may not be the fastest
way to perform an operation on your new data structure, so you may want to implement a
custom version.

You will very likely need the SDL source code to implement your own containers,
particularly if you need to change the definition of Dlterator in any way.

Frequently Asked Questions

How do | get the number of itemsin a container?

The size function returns the number of items in any container.

Howdo | add itemsto a container?

If you’'re adding to a non-map container, use the add function:

Cont ai ner . add([val ue]);

If you’'re adding to a map-based container, use the putAt or putPair functions:

Container.putAt([‘testing’, ‘again’], [1, 2]);
Container.putPair([‘toast’, 10]);

-38 -

Howdo | iterate over a container?

Declare an iterator, then call the container’s start function to retrieve an iterator for the
container. Loop until theiterator is at theend. Here are the two basic techniques for doing
this:

Procedure Exanpl e(con : DContai ner);
Var iter : Dlterator;
Begi n
Iter := con.start;
While not atEnd(iter) do
Begi n
Advance(iter);
End;

Iter := con.start;
While iterateOver(iter) do
Begi n
/1l no advancenment necessary — but don’t reuse the iterator once tte loop is
done!
End;
end;

How do | retrieve the keys from a map container?

Call SetToKey on your iterator, then retrieve values with the getX XX functions. Call
SetToValueto retrieve the value part of the key-value pair again.

How do | sort a sequence?

Use the sort or stableSort algorithms.

Sort (cont ai ner);

Note that sorting only makes sense on sequential containers. Sorting an associative
structure will result in exceptions.

Why does SDL usefunctionsinstead of class membersfor itsalgorithms, and for iterator operations?

There aretwo reasons. First, SDL iterators can operate on any class that implements the
DlterHandler interface. SDL’s containers are descended from DContainer, which inherits
from DIterHandler, but other containers or container-like classes don’t have to be.

The second reason is for compatibility and interoperability with STL and JGL. Both of
those packages use the functional style of programming. In STL, this was done to enable all
algorithms to operate on C-style arrays as well as containers. Soletta assumes that JGL was
coded this way to maintain compatibility with STL.

Another effect of thisis that algorithms are very cleanly separated from the container code.

-39 -

How do| find itemsin a map?

Call the locate function, and test the returned iterator:

Iter := map.locate([val ue]);
If not atEnd(iter) then
Witeln(‘Found it: ‘, getlnteger(iter));

- 40 -

Algorithms

SDL contains alarge number of generic algorithms. These algorithms are solutions to
problems that present themselves over and over again whileyou're coding. Study of this
section is very important to getting the maximum benefit out of SDL. What you need to
learn to do is recognize when a common problem occurs, then substitute the appropriate
generic algorithm.

As avery simple example, we all know that a need to sort objects occurs all the time.
Rather than coding your own sort, you can call either sort or stableSort in the SDL library.
You're probably used to calling a sort procedure in alibrary, rather than creating your own.

Let'slook at another situation: Let’s say you need have a bunch of employee objects and
you need to cull out the ones who are waiting for expenses to bereimbursed. The removel f
algorithm can do this for you. Let’s say that you want to create reimbursement objects for
those employees that need to be paid. The transformUnary algorithmisideal for this case.

A Note About Ranges

Algorithms that accept a range (_start to _end, typically) do not apply themselves to the
_end element. They stop at the position before the _end supplied. Thisis done so that you
can conveniently pass (container.start, container.finish) as arguments to an algorithm. It is
generally illegal to do anything at container.finish. Certain containers may permit addition
or writing at this location, but not all.

Naming Conventions

Because Delphi 3 does not support overloading, SDL uses a naming convention for its
functions to achieve the samething. For each algorithm there are often several ways to call
it, depending on what you want to achieve. Decorators are added to the algorithm name to
arrive at theright call mix. The following decorators are used:

= In— Peformthealgorithmin a certain range (usually a_start - _end pair).

= To- Sendthe output of the algorithm to a destination (usually an _output
iterator).

= If — Useatest to determineif the algorithm should operate on that element
(usually a DTest).

= With— A comparator is provided that should be used in place of the
container’s comparator (a DComparator is passed to the algorithm).

So, for example, the routine Uniquel nWithT o performs the unique algorithm, in arange,
with a comparator, to a destination. 1t’'s defined like this:

procedure uni quel nWthTo(_start, _end, dest : Dliterator; conpare : DBinaryTes};

Theserules do tend to vary by algorithm, because each algorithm has a certain set of
parameters that must be provided to it. The naming convention is followed wherever
possible, though.

- 41 -

Applying

forEach

procedure forEach(container : DContainer; unary : DApply);

procedure forEachln(_start, _end : Diterator; unary : DApply);

procedure forEachlf(container : DContainer; unary : DApply; test : DTest);
procedure forEachinlf(_start, _end : Diterator; unary : DApply; test : DTest);

Applies a unary function to each dement in a container. Frequently you'll need to pass each
item in a container to a function — perhaps you are printing, or summing the valuesin the
container, or you need to perform some kind of special processing on each item. The
various forms of the forEach function can do this for you. Remember that you can convert a
non-closure function into the DTest these algorithms require with the MakeT est function.

For Each applies the unary function to each item in the container.

For Eachln applies the unary function to each item in the range given (not including the
item at the _end position).

For Eachlf applies the test specified to each itemin the container. For those items that
return true on the test, the unary function is called.

For Eachlnlf applied the test to each item in therange. Those items that return true are
passed to the unary function.

I nject

function _inject(container : DContainer; const obj : DObject; binary : DBinary) :
DObj ect ;

function _injectln(_start, _end : Diterator; const obj : DObject; binary : DBinary)
. Dbj ect;

function inject(container : DContainer; obj : array of const; binary : DBinary) :
DObj ect ;

function injectin(_start, _end : Diterator; obj : array of const; binary : DBinary)
. Dbj ect;

Theinject family moves a calculation’s results along through an entire range or container.

It is useful if, for example, you want to sum the values in a container. Inject takes a seed
value (the obj parameter). It calls binary for each object in the range or container, passing
the seed value as the first parameter and the item as the second parameter. The results of the
binary function call become the new seed. After all items have been processed, the last
result is returned.

Comparing

Equal

function equal (conl, con2 : DContainer) : Bool ean;
function equal In(startl, endl, start2 : Diterator) : Bool ean;

=42 -

The equal algorithm determines if the two containers or ranges are equal to each other.
They are equal to each other if each itemin the range equals the corresponding item in the
other range, and the ranges (or containers) are of equal length.

Lexicographical Compare

function | exi cographi cal Conpare(conl, con2 : DContainer) : Bool ean;

function | exi cographi cal ConpareWth(conl, con2 : DContainer; conpare : DConparator) :
Bool ean;

function | exicographi cal Conpareln(startl, endl, start2, end2 : Diterator) : Bool ean;
function | exicographical ConparelnWth(startl, endl, start2, end2 : Diterator; conpare
: DCOnparator) : Bool ean;

L exicographical comparison compares the items in two containers or ranges one by one.
Thefirst time adifferenceis found between two items, it returns less than zero if theitemin
thefirst range or container was less than the second, or returns greater than zero if the item
inthefirst range or container was greater than the second. In either case, the comparison
stops as soon as a difference is detected.

Median

function _nedian(const obj1, obj2, obj3 : DObject; conpare : DConparator) : Dbject;
function nedian(objs : array of const; conpare : DConparator) : DObject;

Median returns the middle of three values, using the comparator specified. You must pass
exactly three valuesto it.

Mismatch

function mismatch(conl, con2 : DContainer) : DiteratorPair;

function mismatchWth(conl, con2 : DContainer; bt : DBinaryTest) : DliteratorPair;
function mismatchln(startl, endl, start2 : Diterator) : DiteratorPair;

function mismatchlnWth(startl, endl, start2 : Diterator; bt : DBinaryTest) :
DiteratorPair;

Mismatch determines the point at which two sequences begin to differ. It returns an iterator
pair, thefirst of which is positioned at the position in the first sequence where the difference
began, and the second of which is positioned in the second sequence.

Mismatch returns where two containers begin to differ. If no differenceis found the first
part of the iterator pair is set to conl's atEnd.

MismatchWith returns where two containers begin to differ, using the binary test supplied.

Mismatchln returns where two sequences (ranges, identified by iterators) begin to differ. If
no differenceis found, the first pair is set to endl.

MismatchlnWith returns where two sequences begin to differ using the binary test
supplied.

-43 -

Copying

Copy

function copyContai ner(conl, con2 : DContainer) : Dlterator;

function copyTo(conl : DContainer; iterator : Diterator) : Dlterator;
function copylnTo(_start, _end, output : Diterator) : Dlterator;
function copyBackward(_start, _end, output : Diterator) : Dlterator;

CaopyContainer Copies the contents of conl to con2. Aniterator isreturned that is
positioned at the end of con2.

CopyT o copies the contents of conl to theiterator given. Theiterator is advanced with
output.

CopylInTo copies the dements in the range given to the output iterator.

CopyBackward copies the e ements from the range given to the output iterator, in reverse
order.

Counting

Count

function count(conl : DContainer; objs : array of const) : I|nteger;
function countln(_start, _end : Diterator; objs : array of const) : Integer;
function countlf(conl : DContainer; test : DTest) : Integer;

function countlfln(_start, _end : Diterator; test : DTest) : Integer;

Count determines the number of itemsin conl that are equal to each item passed for objs.
If more than oneitem is passed to objs, the counts are summed.

CountlIn counts the number of itemsin therange _start to _end that are equal to each item
passed for objs. If more than oneitem is given, the counts are summed.

CountIf Determines the number of itemsin the container that pass the test supplied.

CountIfln determines the number of itemsin therange _start to _end that pass the test
supplied.

Filling

Fill

procedure fill (con : DContainer; obj : array of const);

procedure fill N(con : DContainer; count : Integer; obj : array of const);
procedure fillln(_start, _end : Diterator; obj : array of const);

Fill fills con with the specified value (there must be only one). The currently set size of the
container is used to determine how many items are to be put there.

- 44 -

FillN fills con with count copies of avalue. If the container isn’t large enough, it will have
more values added to its end, and will expand to the correct size.

Fillln fill the range specified with the value given.

Generate

procedure generate(con : DContainer; count : Integer; gen : DGenerator);
procedure generateln(_start, _end : Diterator; gen : DGenerator);
procedure generateTo(dest : Dliterator; count : Integer; gen : DGenerator);

The generate algorithm fill containers or ranges with the output of a given generator
function. Thegoal of the generator function isto create DObjects. The DObjects are stored
into the target.

Filtering

Unique

Function uni que(con : DContainer) : Dliterator;

Function uniqueln(_start, _end : Diterator) : Diterator;

Function uni queWth(con : DContainer; conpare : DBinaryTest) : Dliterator;

Function uniquelnWth(_start, _end : Diterator; conpare : DBinaryTest) : Diterator;
Function uni queTo(con : DContainer; dest : Diterator) : Diterator;

Function uni quel nTo(_start, _end, dest : Diterator) : Dlterator;

Function uni quel nWthTo(_start, _end, dest : Diterator; conpare : DBinaryTest)
Diterator;

Unique ensures that every item in the range or container is unique. If you have the sequence
(1,2,3,4,4,5,6,6,7) calling unique on that sequence will result in
(1,2,3,4,5,6,7,undefined,undefined). In addition, the algorithm returns an iterator positioned
at the first undefined value.

Filter
procedure Filter(fromCon, toCon : DContainer; test : DTest);

function FilterTo(con : DContainer; dest : Dliterator; test : DTest) : Diterator;
function FilterIlnTo(_start, _end, dest : Diterator; test : DTest) : Dliterator;

Filter copiesitemsto a destination if they pass atest. Each item passed to thetest — if the
test returns true, theitem is copied to the output. ThefilterTo and FilterInTo functions
return an iterator positioned after where the last item was written to the destination.

Finding
AdjacentFind

function adjacentFind(contai ner : DContainer) : Dliterator;
function adjacentFi ndWth(container : DContainer; conpare : DBinaryTest) : Diterator;
function adjacentFindln(_start, _end : Diterator) : Diterator;

- 45 -

function adjacentFindlnWth(_start, _end : Diterator; conpare : DBinaryTest)
Diterator;

AdjacentFind determines if there are two equal, consecutive itemsin a sequence. It returns
an iterator positioned at the first oneif it finds two such items. If it doesn’t find any, it
returns an iterator positioned at the end of the container if given a container, or at the end of
the rangeif given the range.

BinarySearch

function binarySearch(con : DContainer; obj : array of const) : Dliterator;

function binarySearchln(_start, _end : Diterator; obj : array of const) : Diterator;
function binarySearchWth(con : DContainer; conpare : DConparator; obj : array of
const) : Dlterator;

function binarySearchlnWth(_start, _end : Diterator; conpare : DConparator; obj
array of const) : Dlterator;

BinarySearch relies on the fact that the sequenceit is givenis sorted. It will very efficiently
locate an itemin a sorted sequence. It returns an iterator positioned at the item.

Detect

function detect Wth(container : DContainer; conpare : DTest) : Dliterator;
function detectInWth(_start, _end : Diterator; conpare : DTest) : Dliterator;

Detect locates thefirst item in a container or range for which the test returnstrue. It returns
an iterator positioned at the end if such an itemis not found.

Every

function every(container : DContainer; test : DTest) : Bool ean;
function everyln(_start, _end : Diterator; test : DTest) : Bool ean;

Every determines if the test returns true for every element in the container or range. 1t does
agiant AND of test for every dement in therange. It short-circuits, so thefirst time the test
returns false, it will return.

Find
function find(container : DContainer; obj : array of const) : Dliterator;
function findln(_start, _end : Diterator; obj : array of const) : Diterator;

function findlf(container : DContainer; test : DTest) : Diterator;
function findlfln(_start, _end : Diterator; test : DTest) : Diterator;

Locate an object in a container, returning an iterator positioned where the object was found.
If no object is found, an atEnd iterator isreturned. The third and fourth form use a test
instead of the container’s comparator.

- 46 -

Some

function some(container : DContainer; test : DTest) : Bool ean;
function someln(_start, _end : Diterator; test : DTest) : Bool ean;

Some determines if any of the items in a container return true for the given test. Some
short-circuits, so thefirst item that returns true causes the algorithm to return true.

Freeing and Deleting

ObjFree

procedure obj Free(contai ner : DContai ner);
procedure obj Freeln(_start, _end : Diterator);

ObjFree assumes that every itemin a container is an object. It calls TObject.Free on each
item.

ObjDispose

procedure obj Di spose(contai ner : DCont ai ner);
procedure obj Di sposeln(_start, _end : Dliterator);

ObjDispose assumes that every item in a container or range is a pointer to a heap allocated
object (allocated with GemMem); it calls FreeMem on the pointer.

ObjFreeKeys

procedure obj FreeKeys(assoc : DAssoci ative);

ObjFreeK eys performs the same function as ObjFree, but does it on the keys in the range,
not on thevalues. Thisisuseful if you are have a map that maps objects to some other type.

Hashing

OrderedHash

function orderedHash(contai ner : DContainer) : Integer;
function orderedHashln(_start, _end : Diterator) : Integer;

During coding, it is often convenient to convert values, or arange of memory, into a single
numeric value that has almost-random characteristics. This can be used to rapidly identify
objects, or to sort objects when no other alternatives are available. SDL provides the
orderedHash algorithm to create these numeric codes. The ordered hash algorithm has the
addition characteristic that the hash code produced will be sensitive to and affected by the
order of the items in the container that’s being hashed. If thislevel of sensitivity is not
required, use the unorderedHash algorithm, which is slightly more efficient.

UnorderedHash

function unorderedHash(container : DContainer) : |nteger;

- 47 -

function unorderedHashln(_start, _end : Diterator) : Integer;

The unorderedHash algorithm is identical to the orderedHash algorithm, except that the hash
code produced is not sensitive to the order of the items in the container or range. Thisis
slightly more efficient to calculate than the orderedHash.

Removing

Remove

function renmove(container : DContainer; objs : array of const) : Diterator;

function renmoveln(_start, _end : Diterator; objs : array of const) : Diterator;

function renoveTo(container : DContainer; output : Diterator; objs : array of const)
Dl terator;

function renmovel nTo(_start, _end, output : Diterator; objs : array of const)

Diterator;

Removes all matching items from the container or rangeit is given. The size of the
container doesn’t change; the remove family of functions return an iterator positioned at the
end of the new sequence.

removeCopy

function renmoveCopy(source, destination : DContainer; objs : array of const)

Diterator;

function renmoveCopyTo(source : DContainer; output : Dliterator; objs : array of const)
Dl terator;

function removeCopyln(_start, _end, output : Diterator; objs : array of const)

Diterator;

function renmoveCopyl f (source, destination : DContainer; test : DTest) : Dliterator;

function renmoveCopyl f To(source : DContainer; output : Diterator; test : DTest)

Diterator;

function removeCopylfln(_start, _end, output : Diterator; test : DTest) : Diterator;

The removeCopy algorithm copies a sequence of items from one location to another,
removing any matching items as it goes.

removel

function renovel f(container : DContainer; test : DTest) : Dlterator;

function renmovelfln(_start, _end : Diterator; test : DTest) : Dliterator;

function renovel f To(contai ner : DContainer; output : Diterator; test : DTest)
Diterator;

function renovel fInTo(_start, _end, output : Diterator; test : DTest) : Dliterator;

The removelf and removel fIn algorithms remove any items from a sequence for which the
test returns true. RemovelfTo and Removel finT o copy the sequence of items, removing any
for which the test returned true.

- 48 -

Replacing

Replace

function replace(contai ner : DContainer; objsl, objs2 : array of const) : Integer;
function replaceln(_start, _end : Diterator; objsl, objs2 : array of const)
I nt eger;

Replaces all itemsin the container or sequence that match obj1 with obj2. If you pass more
than one object for objsl and objs2, the algorithms runs multiple times, doing each pair of
objects.

ReplaceCopy

function replaceCopy(conl, con2 : DContainer; objsl, objs2 : array of const)

I nt eger;

function replaceCopyTo(container : DContainer; output : Dliterator; objsl, objs2 :

array of const) : Integer;

function replaceCopyl nTo(_start, _end, output : Diterator; objsl, objs2 : array of

const) : Integer;

function replaceCopylf(conl, con2 : DContainer; test : DTest; objs : array of const)
I nt eger;

function replaceCopyl f To(contai ner : DContainer; output : Diterator; test : DTest;

objs : array of const) : Integer;

function replaceCopyl fInTo(_start, _end, output : Diterator; test : DTest; objs :
array of const) : Integer;

ReplaceCopy copies a sequence to a new container or iterator, replacing each item that
matches obj1 with obj2 as it copies. The IF variants use test to determine if the replacement
should happen or not.

Replacel f

function replacelf(container : DContainer; test : DTest; objs : array of const)

I nt eger;

function replacelfln(_start, _end : Diterator; test : DTest; objs : array of const)

I nt eger;

Replacelf replaces items for which the test returns true with objs. Y ou must pass only one
item for abjs.

Reversing

Reverse

procedure reverse(contai ner : DContainer);
procedure reverseln(_start, _end : Diterator);

Reverse reverses the order of itemsin a sequence. For example, the sequence (1,2,3,4,5)
becomes (5,4,3,2,1).

- 49 -

ReverseCopy

procedure reverseCopy(conl, con2 : DContainer);
procedure reverseCopyTo(container : DContainer; output : Diterator);
procedure reverseCopyl nTo(_start, _end, output : Diterator);

ReverseCopy copies a sequence to a new location, reversing it during the copy.

Rotating

Rotate
procedure rotate(first, mddle, last : Diterator);

Rotate performs a right rotation on a sequence. Thefirst item will end up at position
middle, the second at middle + 1, and so forth.

RotateCopy
function rotateCopy(first, mddle, last, output : Diterator) : Dliterator;

RotateCopy does the same thing as rotate except that the original sequence is unchanged —
the rotated result is written to a new location.

Set Operations

Includes

function includes(master, subset : DContainer) : Bool ean;

function includesWth(master, subset : DContainer; conparator : DConparator)

Bool ean;

function includesln(startMaster, finishMaster, startSubset, finishSubset : Diterator)
Bool ean;

function includeslnWth(startMaster, finishMaster, startSubset, finishSubset

Diterator; conparator : DConparator) : Bool ean;

Includes determines if a master set includes an entire sub set. Includes relies on the two
containers or ranges being sorted. If set 1is(1,2,3,4,5) and sat 2 is(2,3,4), includes returns
true If set 1is(1,2,3,4,5) and set 2 is(2,3,10), includes returns false.

SetDifference

function setDifference(conl, con2 : DContainer; output : Diterator) : Diterator;
function setDifferenceln(startl, finishl, start2, finish2, output : Dliterator)
Diterator;

function setDifferenceWth(conl, con2 : DContainer; output : Dliterator; conparator :
DConparator) : Dlterator;

function setDifferencelnWth(startl, finishl, start2, finish2, output : Dliterator;
conparator : DConparator) : Dliterator;

-50 -

SetDifference finds the set of items that are in the first range but not in the second range. It
sends this new set of items to an output iterator. SetDifference relies on both ranges being
sorted. If set 1is(1,2,3,4,5) and set 2 is(2,3,4), setDifference returns (1,5).

Setl ntersection

function setlntersection(conl, con2 : DContainer; output : Diterator) : Dliterator;

function setlntersectionln(startl, finishl, start2, finish2, output : Diterator)

Diterator;

function setlntersectionWth(conl, con2 : DContainer; output : Diterator; conparator
DConparator) : Dlterator;

function setlntersectionlnWth(startl, finishl, start2, finish2, output : Diterator;

conparator : DConparator) : Dlterator;

SetIntersection finds the set of items that arein both containers or ranges. It sends this new
list of items to an output iterator. SetIntersection relies on both ranges being sorted. If set 1
is(1,2,3,4,5) and set 2is (2,3,4,10), setintersection returns (2,3,4).

SetSymmetricDifference

function setSymmetricDi fference(conl, con2 : DContainer; output : Dliterator)
Diterator;

function setSymmetricDi fferenceln(startl, finishl, start2, finish2, output
Diterator) : Diterator;

function setSymmetricDi fferenceWth(conl, con2 : DContainer; output : Diterator;
conparator : DConparator) : Dlterator;

function setSymmetricDi fferencelnWth(startl, finishl, start2, finish2, output
Diterator; conparator : DConparator) : Dliterator;

SetSymmetricDifference finds the items that are not in both sets. It relies on both ranges
being sorted. If set 1is(1,2,3,4,5) and set 2 is (4,5,6,7,8), setSymmetricDifference returns
(1,2,3,6,7,8);

SetUnion

function setUnion(conl, con2 : DContainer; output : Diterator) : Diterator;
function setUnionln(startl, finishl, start2, finish2, output : Dliterator)
Diterator;

function setUnionWth(conl, con2 : DContainer; output : Dliterator; conparator :
DConparator) : Dliterator;

function setUnionlnWth(startl, finishl, start2, finish2, output : Dliterator;
conparator : DConparator) : Dliterator;

SetUnion finds the items that arein both sequences. It relies on both ranges being sorted.
Only one copy of each value will be present in the output set. If set 1is(1,2,3,4,5) and set 2
is(4,5,6,7,8), setUnion will return (1,2,3,4,5,6,7,8).

Shuffling

RandomShuffle

procedure randonthuffl e(container : DContainer);

-51-

procedure randontShuffleln(_start, _end : Diterator);

RandomShuffle randomly moves around el ements in the container, just like shuffling a deck
of cards.

Sorting

Sort

procedure sort(sequence : DSequence);

procedure sortln(_start, _end : Diterator);

procedure sortWth(sequence : DSequence; conparator : DConparator);

procedure sortlnWth(_start, _end : Diterator; conparator : DConparator);

Sort sorts the items in the container or rangeit isgiven. This sort is not stable; that is, the
ordering the elements have in the container before the sort algorithm is run have nothing to
do with the order after the sort isrun. Sort is based on a QuickSort.

StableSort

procedure stabl esort(sequence : DSequence);

procedure stablesortin(_start, _end : Dliterator);

procedure stabl esortWth(sequence : DSequence; conparator : DConparator);

procedure stablesortInWth(_start, _end : Dliterator; conparator : DConparator);

StableSort sorts the items in the container or range, an maintains (without violating sort
ordering) the current order of theitemsin the container. StableSort is based on a
MergeSort.

Swapping
| ter Swap

procedure iterSwap(iterl, iter2 : Diterator);

Iter Swaps swaps the values two iterators are positioned at.

SwapRanges

procedure swapRanges(conl, con2 : DContai ner);
procedure swaprangeslnTo(startl, endl, start2 : Diterator);

SwapRanges swaps the values in two ranges — the values in the first range will move to the
second range, and the values in the second range will move to thefirst.

Transforming

Collect

function collect(container : DContainer; unary : DUnary) : DContai ner;
function collectln(_start, _end : Diterator; unary : DUnary) : DContainer;

-52 -

Collect applies the unary function to each object in the container, storing the resultsin a new
container (that is constructed by the function) that is of the same type as the existing one.

TransformBinary

procedure transfornBi nary(conl, con2, output : DContainer; binary : DBinary);
function transfornBinaryTo(conl, con2 : DContainer; output : Diterator; binary :
DBi nary) : Dlterator;

function transfornmBinarylnTo(startl, finishl, start2, output : Dliterator; binary :
DBi nary) : Dlterator;

TransformBinary applies a binary function to pairs of objects from conl and con2, and
stores the result into the output area. conl and con2 need to have the same number of
objects in them.

TransformUnary

procedure transfornnary(container, output : DContainer; unary : DuUnary);

function transformnaryTo(contai ner : DContainer; output : Diterator; unary : DUnary)
Dl terator;

function transformunarylnTo(_start, _finish, output : Diterator; unary : DUnary)

Diterator;

TransformUnary applies a unary function to each item in a container or range, and stored
the results in an output area.

-B53-

Utility Functions

SDL provides a number of utility functions to make using the library easier. These mostly
revolve around converting atomic types in and out of DODbjects, as wdl as functions to aid
in common programming situations.

Atomic Converters

SDL provides a series of functions that can aid you in moving atomic values into and out of
the DObject structure, with and without iterators. Each of these functions has many variants,
named for the atomic types. XXXX can be any of the following:

Integer, Boolean, Char, Extended, ShortString, Pointer, PChar, Object, Class, WideChar,
PWideChar, String, Currency, WideString

Function AsXXXX(const obj : DObject) : XXXX;
Converts a DObject to the specified type, leaving the original value in place.
Function ToXXXX(const obj : Dobject) : XXXX;

Converts a DObject to the specified type, clearing the original.

Procedure Set XXXX(var obj : Dobject; const value : XXXX) ;

Sets the value of an already initialized DObject to a new value. The old valueis cleared and
freed.

Function Get XXXX(const iter : Diterator) : XXXX;
Retrieves the DODbject at the iterator’s position as an XXXX.
Procedure Put XXXX(const iter : Diterator, const value : XXXX);

Writes the value to theiterator’s current position. The old valueis cleared and replaced
with the new one.

Iterator Helpers

function MakePair(const obl, ob2 : DCbject) : DPair;

MakePair copies two DObjects into a pair abject, which it returns. Y ou need to make sure
that you clean up the pair object that is returned.

function MakeRange(s,f : Dliterator) : DRange;

MakeRange converts to iterators into arange. Sometimes it’s easier to manipulate ranges
directly, inside a DRange structure. Certain algorithms will return ranges as DRanges.

Hashing

function hashCode(const obj : DObject) : I|nteger;
Return a hash value for a DObject. The object is hashed according to its type.

function Jenki nsHashl nteger(value : Integer) : Integer;

-54 -

Return a hash value for an integer.

function Jenki nsHashBuf fer(const buffer; length : Integer; initVal : Integer) :
I nteger;

Return a hash value for a series of bytes. Pass the variable you want to has as buffer. Be
careful to note that buffer is an untyped const. If you have a pointer to some variable, and
you want to hash the variable, use the notation.

function Jenki nsHashString(const s : String) : Integer;
Return the hash value for a string.

function Jenki nsHashSingle(s : Single) : Integer;
Return the hash value for a single value.

function Jenki nsHashDoubl e(d : Double) : Integer;

Return the hash value for a double value.

DObject Helpers

SDL provides a number of helper functions for getting objects into and out of DObjects.
You need to pay some attention to the lifetimes and initialization states of your DODbjects.
In particular, you need to make sure that you never store a string value to an uninitialized
DObject. Most of thetime, if you store a value to an uninitialized DObject, it won't make
much difference. Delphi does reference-counted strings, though, so storing a string value to
a random piece of memory can cause an access violation.

There are two easy ways to get around this. Thefirst is not to use the SetString function,
unless you're sure the DObject in question has already been initialized. The second isto
use the Make function or the CopyDODbject function, which ensure that the destination is
initialized before storing a value.

You need to be particularly aware of this when you are creating callbacks that return
DObjects. The result variable (which is often a DObject), is not initialized when your
procedure getsit. You need to make sure you clear result, or assign it with the Make
function or the CopyDObject function.

Function Make(value : array of const) : DObject;

Creates a new DODbject, based on the value you supply. You are responsible for cleaning up
the storage of this DObject, if necessary. This function is frequently used to return the
results of callback functions.

procedure | nitDObject(var obj : DObject);

Empties a DODbject, ensuring that it is ready to receive whatever you want to put init. The
previous contents of the object are not freed or cleared. If you want to do that, use
ClearDODbject, or one of the SetObjectX XX family.

procedure CopyDObj ect(const source : DObject; var dest : DCbject);

-55-

Copies a DObject from sourceto dest. The destination is initialized before writing the new
value. Any object that was in destination is lost, and is not cleared.

procedure MoveDbj ect (var source, dest : DObject);

Moves a DODbject from the source to the dest. The destination is initialized before writing
the new value. Any object that was in the destination is lost. After a copy, the sourceis
cleared.

procedure Cl ear DObj ect (var obj : DObject);

Frees any storage and clears the object, resetting it to an initialized state. The DObject is
then ready to receive another value.

procedure Set DObj ect(var obj : DObject; value : array of const);

Sets a DODbject to any atomic value. Clears the DObject first, releasing any storage
currently being used by the DObject. Do not call any function in the SetXXX family unless
you are sure that the target DObject has been initialized.

procedure Swap(var obj1l, obj2 : DObject);
Swaps the values of any two DObjects.

Morphing Closures

SDL can use BOTH closures (procedures of object) and regular functions for those placesin
which it needs to call your code. It does this by taking advantage of the way that Delphi's
object mode works. Let's look at an example:

DConpar ator = function(const obj 1, obj2 : DObject) : Integer of object;
That's the official definition of DComparator. SDL also provides the following:
DCompar ator Proc = function(ptr : Pointer; const obj1l, obj2 : DObject) : Integer;

These two definitions amount to the same call in Delphi. On the closure (the first one),
Delphi passes an _invisible parameter_, sdlf, as thefirst parameter to the call. Sdf is always
a pointer. In the second one, we are making the pointer an explicit part of the call.

SDL also provides these:
function MakeConparator(proc : DConparatorProc) : DConparator;
begin

TMet hod(result).data := nil;

TMet hod(result).code := @roc;

end;

function MakeConparat or Ex(proc : DConparatorProc; ptr : Pointer) : DConparator;
begin

TMet hod(result).data := ptr;

TMet hod(result).code := @roc;

end;

We can then do something like this:

-56 -

function MyConparator(ptr : Pointer; const obj1l, obj2 : DObject) : Integer;
begin

end;

X
or
x := DArray. Creat eWt h(MakeConpar at or Ex(MyConparator, a_pointer_i_want_to_pass));

DArray. Creat eW t h(MakeConpar at or (MyConpar at or)) ;

Now -- why do we want all this? Simple -- most Delphi code is done in methods on forms or
on objects. SDL needs to have a way to make callbacks onto methods on those objects, and
that led to the requirement that closures be part of the definitions. But, with the techniques
outlined above, we can also use regular functions as callbacks, which are very useful for
putting small bits of code right near where they're used.

function MakeConparator(proc : DConparatorProc) : DConparator;
function MakeEqual s(proc : DEqual sProc) : DEqual s;

function MakeTest(proc : DTestProc) : DTest;

function MakeApply(proc : DApplyProc) : DApply;

function MakeUnary(proc : DUnaryProc) : DUnary;

function MakeBinary(proc : DBinaryProc) : DBinary;

function MakeHash(proc : DHashProc) : DHash;

function MakeGenerator(proc : DGeneratorProc) : DGenerator;

These are the definitions for the functions that can create closures out of regular procedures.

function MakeConparat or Ex(proc : DConparatorProc; ptr : Pointer) : DConparator;
function MakeEqual sEx(proc : DEqual sProc; ptr : Pointer) : DEquals;

function MakeTest Ex(proc : DTestProc; ptr : Pointer) : DTest;

function MakeAppl yEx(proc : DApplyProc; ptr : Pointer) : DApply;

function MakeUnaryEx(proc : DUnaryProc; ptr : Pointer) : DuUnary;

function MakeBi naryEx(proc : DBinaryProc; ptr : Pointer) : DBinary;

function MakeHashEx(proc : DHashProc; ptr : Pointer) : DHash;

function MakeGenerator Ex(proc : DGeneratorProc; ptr : Pointer) : DGenerator;

Sometimes it’s useful to be able to pass a pointer to the procedure you' re making a closure
for. The Ex versions of these functions allow you to do just that. The pointer you put in
will be passed to your procedure as its first parameter.

Printing

SDL has some built-in support for printing the contents of containers. Thisis often useful
during the debugging phase of developing your application. SDL knows how to print the
basic types, but if you want it to print your own objects, you'll need to register a printing
routine. The printing routine has this signature:

DPrinterProc = function (obj : TObject) : String;

After you create a routine with that signature, you'll need to call the following routine to
register it with SDL:

procedure RegisterSDLPrinter(cls : TCl ass; prt : DPrinterProc);
Pass the class object in as the first parameter, like this:

Function MyPrinter(obj : TObject) : String;
Begi n

-57 -

Wth obj as TWyCl ass do

end;
Regi ster SDLPrinter (TWC ass, MyPrinter);

SDL provides a helper function to convert a DObject into a printable string. This function
will call any registered printing functions for objects that it encounters.

function PrintString(const obj : DObject) : String;

Printing is often done in conjunction with the forEach routine, which can apply a printing
function to each item in a container. SDL provides the ApplyPrint routine, which can be
passed directly to forEach for a container or range, and invokes PrintString to get the strings
it needs to write to the console.

procedure ApplyPrint(ptr : Pointer; const obj : DObject);

The ApplyPrintLN variant puts a linefeed after it prints each item. Thisis nice when you're
print objects.

procedure ApplyPrintLN(ptr : Pointer; const obj : DObject);

- 58 -

Debugging Support

SDL contains numerous assertions throughout its code. In the binary release of the library,
these assertions are turned off. 1f you have the source version, you can recompile the library
and turn the assertions on. They will catch many of the common problems that you will
encounter while using SDL.

Any time that SDL throws an exception, you can expect that something has gone quite
wrong. SDL does not throw exceptions during the course of any normal activity; for this
reason, you never need to turn off “break on exception” while working with SDL. Most
SDL exceptions will contain a message indicating what went wrong.

-59 -

Persistence with SuperStream

SuperStream is SDL’s companion library. It provides simple, powerful object streaming
capabilities. The object streams support atomic types, objects, inheritance and permits the
storage and loading of multiple versions of objects. Object graphs (arbitrarily connected
sets of objects) are also supported, as an option. SuperStream’ s primary advantages over
other streaming systems are:

Ease of use

Nested object support

Source not required to stream an object’s data

Intelligent, atomic-type aware transfer mechanism

Object versioning

SuperStream can effectively save and load SDL containers, as well.

To use SuperStream, you need only provide a simple Transfer Function for each of your
classes.

Basic Concepts

Stream

Streams are Delphi’s official way of handling most I/O. Delphi provides a number of basic
stream classes, like TMemoryStream, TFileStream, and so forth. They all have as their base
class TStream. SuperStream creates a subclass of T Stream called T StreamAdapter, whichis
designed to wrap one streamwith another. This allows us to add additional behavior onto
an existing stream. This layering is avery powerful abstraction, and it permits SuperStream
to act as efficiently and flexibly asit does.

Object

Theroot of most of your data in Delphi will be the object. SuperStream can save and |oad
Delphi’s atomic types, and can also save and load objects. One of the advantages of
SuperStream is that it does not require you to derive the classes you want to save and load
from a common base class. It also doesn’t require that you have the source code to these
classes. You only need to provide a Transfer Function, which is independent of the class.

Atomic Types

Atomic types are Delphi’ s fundamental types, such as String, Integer, Extended,
ShortString, and so on. SuperStream knows how to read and write most of these types
automatically, so you don’'t need to do very much work. Certain atomic types, such as
Variants, cannot be streamed in and out. Your transfer function may have to do some extra
work to save and load these types.

-60 -

Transfer Function

A transfer function (also known as an 1O procedure) is a simple function that tells
SuperStream how to save and load your objects. The transfer function has been designed to
be as simple and fast to implement as possible. Let’slook at one now, so you can see how
simpleit can be. What followsis a type definition and a transfer function for that type.

TTest = cl ass

public

s,t : String;
end;
procedure Testl Q(obj : TObject; stream: TObjStreany direction : TObjlODirection;
version : Integer; var call Super : Bool ean);
begin

with obj as TTest do stream Transferltems([s,t], [@&, @], direction, version);
end;

This transfer function (TestlO), can both read and write any TTest object. The more
advanced capabilities of SuperStream aren’'t used in this simple example, which is intended
to show the brevity that is possible.

Note that separate read and write routines are not necessary. Y ou should also note that all
the fields in the object were read and written with a single, simple call. Thisis the power of
SuperStream! You can easily create transfer functions for your classes.

Object Versioning

As an application changes and improves, it often finds itself adding fields to its objects, or
altering them in some way. SuperStream attaches a version number to each object that it
writes to a stream. When the object is read back in, the version number is passed to the
transfer function, which can read the old version and make appropriate changes to make the
object compatible with the newer one.

This “automatic upgrading” of objectsis very convenient when maintaining an application.
Usually, an application will read old versions of objects, and automatically upgrade them to
the latest version when they are stored.

Buffered Stream

Delphi’s streaming functions for files are useful, but tend to be rather slow when many
small read and write calls are made. SuperStream makes many, many of these kinds of
calls. To get around this problem, SuperStream provides buffering stream adapters. These
stream adapters wrap themselves around another stream (like TFileStream), and add a
buffering capability to accelerate operations on the stream. On large reads or writes, with
many thousands of objects, order-of-magnitude or higher speedups are gained.

Of course, on TMemoryStreams buffering isn't necessary.

Nine Easy SuperStream Lessons

Just like SDL, we Il introduce the SuperStream library with simple lessons. These will
provide simple narratives that will describe the problem to be solved, and demonstrate how

-61-

it is solved with SuperStream. After thelessons, you'll find more detailed reference
information on the library and the classes it contains.
Lesson 1 — Saving and Loading One Object

Here we' Il tackle the simplest case: We have an object that we want to saveinto afile, and
then read it back. We'll use an object called TTest for this sample.

TTest = cl ass

public
s,t : String;
yi pe : Integer;

constructor Create;
end;

constructor TTest. Create;

begin

s := ‘zonk’;

t := RandonSftri ng;

yi pe := Integer(self);
end;

procedure Testl Q(obj : TObject; stream: TObj Streany direction : TObjlODirection;
version : Integer; var call Super : Bool ean);
begin

with obj as TTest do stream Transferltens([s, t, yipe], [&®, @, @ipe],
direction, version);
end;

procedure Sinpl eExanpl e;
var test : TTest;

begin
TObj Stream Regi sterCl ass(TTest, Testl O, 1);
Test := TTest. Create;
TObj Stream WiteObjectToFile(‘sinple.od, [], test);
Test . free;

Test := TObj Stream ReadObj ectInFile('sinple.od, []) as TTest;
/1 We're done!
Test . free;

end;

Let’s take apart this sample code, so we can see how all thisworks. Thefirst thingwedid is
define our class, TTest. We made a simple constructor on TTest to put some random
information into the object. Then we defined TestlO — the transfer function for our TTest
class. Transfer functions are what you need to write to make SuperStream work for you, so
let’s look at the function in more detail.

A transfer function (TObjlO) has the following signature:

TObj | O = procedure(obj : TObject; stream: TObjStream direction : TObjl ODirection;
version : Integer; var call Super : Bool ean);

Your transfer function will always receive a pointer (obj) to the object that is being read or
written. If an object is being read from the stream, it will already have been constructed by

-62 -

the time your transfer function is called. You only need to be concerned about making sure
the fields in the object are properly written or read.

Sreamiis the object stream the operation is being performed on. Stream is passed to you so
that you can call its methods to help you do the 1O. Direction indicates whether the object
is being read (iodirRead) or written (iodirWrite). For most transfer functions, you don’t
need to be concerned about whether you are reading or writing. For some specialized
functions (such as transferring your own container classes), you may need to know whether
aread or writeisin progress. Version indicates the version of the object that needs to be
read or written. When an object is read off a stream, the version number is passed to the
transfer routine so that it can elect to read in an old version if necessary, and upgrade the
object to the latest version. CallSuper is an advanced variable — you only need to be
concerned with this if you want to prevent SuperStream from calling a superclass' transfer
function. For normal usage, you want to permit SuperStream to take advantage of your
class hierarchy.

Onto the example! Thefirst thing we do in SimpleExampleis register our transfer
function, with TObjStream.RegisterClass. Thisis a necessary step for any 10. It'salsoa
good a idea to call TObjStream.RegisterDefaultClasses. SuperStream knows how to
transfer some of the simple VCL classes, and RegisterDefaultClasses tells SuperStream to
use these default transfer functions.

RegisterClass takes three parameters. Thefirst is the name of the class you want to register
the transfer function for. The second is the transfer function. The third is thetip version of
the object. When reading objects, the version number comes from the object’s definition in
the stream. When writing objects, SuperStream will always write the tip version, unless you
request otherwise.

Each time you change your object’s structure, you should modify your transfer function to
read and write the new version, and increment the tip version number. W€ Il explain this
mechanism in more detail, later.

After registering our transfer function, we create a simple abject. Then, we write the object
to afile. TObjStream provides two helper functions for the very common scenario of
writing an object to afile: WriteObjectToFile and ReadObjectinFile. The helper functions
do all thework of opening the file stream, wrapping it with a buffered stream, wrapping the
buffered stream with an object stream, transferring the object, and then shutting down
correctly.

After writing the object, we free our test object, then read the object back in with
ReadObjectinFile. Since ReadObjectinFilereturns a TObject, we need to cast the object to
the correct type. And that’s how easy it is to use SuperStream!

WriteObject T oFile and ReadObjectInFile are both class methods on TObjStream. That
means that you don’t need to create a TObj Stream object to use them.

Asafinal point in this lesson, please note that Super Stream does not call constructors
during object reading. If it’s necessary to call an object’s constructor to perform some kind
of initialization, check to seethat you're reading (direction = iodirRead), and then call the
constructor on the object directly. You can do this by calling obj.Create, or whatever your

-63 -

constructor’s nameis. Calling obj.Create directly bypasses the allocation of a new object
and just invokes the construction code.

In our next lesson, we' Il examine writing more than one object into a stream.

Lesson 2 — Storing Different Objects

In this lesson we re going to store more than one object into a stream. We're also going to
store objects of different classes, and examine how SuperStream deals with that situation.
WEe re also going to take our first ook at SuperStream’s inheritance mechanism.

Let’'s assume that we have the same simple TTest type as we defined in the first example.
WEe |l add a second type for this lesson.

TExtra = cl ass(TTest)
public

d : Integer;
end;

Note that thistypeis asubclassof TTest. It addsasinglefield, d, to TTest’s definition.
Here sthe lO procedure for TExtra:

procedure Extral Q(obj : TCObject; stream: TObjStream direction : TCObjl ODirection;
version : Integer; var call Super : Bool ean);
begin
with obj as TExtra do
stream Transferltens([d], [@l], direction, version);
end;

Notice that this 1O procedure only deals with the field that’s been added, d. It relies on the
superclass’ 10 procedure to take care of the other fields.

Now let’s create aroutine that puts a TTest, a TExtra, and another TText object into a
memory stream, then reads them back.

Procedure ThreeObj ects;
Var t1, t2 : TTest;
El : TExtra;
Ms : TMenoryStream
Gs : TObj Stream
Begi n
TObj Stream Regi sterCl ass(TTest, Testl O, 1);
TObj Stream Regi sterCl ass(TExtra, Extral O 1);

Tl := TTest. Create;

T2 := TTest. Create;

El : = TExtra. Create,

Ms := TMenoryStream Creat e;

OCs := TObj Stream Create(ns, false, []);

Cs. WiteObject(tl);

Cs. WiteObject(el);

Cs. WiteObject(t2);

FreeAll ([t1, t2, el]);

Cs. free;

Ms. position := 0;

Os := TObj Stream Create(ms, true, []);

-64 -

Tl := os.readObj ect as TTest;
El : = os.readObj ect as TExtra;
T2 := os.readObj ect as TTest;
Cs. free;

End;

Thefirst thing we do is register our two classes, followed by the creation of our test objects.
We then create the memory stream we want to write into, and write our objects to the
stream. Then we free the objects, and reset the memory stream’ s position to zero.

Note that when we opened the object stream for writing, the second parameter on the
constructor was false. This parameter tells the object stream whether it owns the stream it is
wrapping. If the object stream owns the other stream, it will free the other stream when the
object streamis freed.

To read our objects back in, we simple create our object stream, then call the stream’s
ReadObject routine, casting the results to the correct type. Note that we created the object
stream with a true value for the owned parameter. When we free this object stream, it will
automatically free the underlying memory stream.

When the TExtra object is written and read, SuperStream first calls its registered IO
procedure, Extral O. It then walks up the inheritance hierarchy, calling each 10 procedure it
finds registered. The superclass of TExtrais TTest, so TTest's 10 procedureis called next.
For this reason, make sure you don’t read or write a superclass’ fieldsin an 10 procedure,
unless you set the Call Superl O parameter to false, which will prevent walking up the
inheritance tree any further.

Lesson 3 — Writing Embedded Objects

One of the best features of SuperStream is that writing embedded objectsis no different
from writing other atomic types! No special call is needed, and you don’'t need to treat the
object fidds differently from other fields. For that reason, this lessonis particularly short.
We re going to define a new type that has embedded pointers to other objects in it, and
perform some basic 10 with it.

Type

TEnbed = cl ass
Intl, int2 : Integer;
T : TTest;

Constructor Create;
End;

Constructor TEnmbed. Create;
Begi n
Intl := Randon{1000);
Int2 := Randon(1000);
T := TTest. Create;
End;

procedure Embedl OQ(obj : TCObject; stream: TObj Stream direction : TCObjl ODirection;

version : Integer; var call Super : Bool ean);
begin

-65 -

with obj as TEnbed do
stream Transferltens(
[intl, int2, t],
[@ntl, @nt2, @],
direction, version);
end;

procedure EnmbedExanpl e;
var e : TEnbed;
begin
TObj Stream Regi sterCl ass(TTest, Testl O, 1);
TObj Stream Regi sterCl ass(TEnrbed, Enbedl O 1);
E : = TEnmbed. Creat e;
TObj Stream WiteObjectToFile(‘test.out’, [], €);
e.free;

e := TCObj Stream ReadObj ectInfile(‘test.out’, []) as TEnbed;
end;

And that's all thereistoit! SuperStream automatically detects that thet field is an object,
and invokes its 10 procedure automatically. Notice that the embedded t object gets full
object versioning and all other facilities, as well.

Lesson 4 — Inheritance and Super Stream

SuperStream automatically handles most inheritance issues, because it knows how to call
the 10 procedures that are registered for any superclasses of an object being read or written.
In this example, we'll demonstrate a simple inheritance situation, and a slightly more
complex one, in which we don’'t want the superclass’ 10 procedureto be called.

Type
TBase = cl ass
11, i2 : Integer;
End;

TDerived = cl ass(TBase)
S : String;
End;

TAnot her = cl ass(TDeri ved)
Toast : String;
End;

procedure Basel O(obj : TObject; stream: TObjStreany direction : TObjlODirection;
version : Integer; var call Super : Bool ean);
begin
with obj as TBase do
streamtransferltens([il, i2], [@1, @2], direction, version);
end;

procedure Derivedl O(obj : TObject; stream: TObjStream direction : TObj |l ODirection;
version : Integer; var call Super : Bool ean);
begin
with obj as TDerived do
streamtransferltens([s], [@], direction, version);
end;

- 66 -

procedure Anotherl Q(obj : TObject; stream: TObjStream direction : TObj |l ODirection;
version : Integer; var call Super : Bool ean);
begin
with obj as TAnother do
streamtransferltens([il, toast], [@1, @oast], direction, version);
cal | Super := fal se;
end;

procedure | nheritanceExanpl e;
var b : TBase;
d : TDerived,
a : TAnot her;
begin
TObj Stream Regi ster Cl ass(TBase, Basel O, 1);
TObj Stream Regi sterCl ass(TDeri ved, Derivedl O 1);
TObj Stream Regi st er Cl ass(TAnot her, Anotherl O 1);

b := TBase. Create;

d : = TDerived. Create;
= TAnot her. Creat e;

b.il := 100;

b.i2 := 101;

TObj Stream Wi teObj ect ToFi |l e(‘ base.od’, [], b);

d.il := 200;
d.i2 := 201;
d.s := ‘Hello;

TObj Stream WiteObj ect ToFil e(‘derived.od , [], d);

a.il := 300;

a.i2 := 301;

a.s := ‘yarf’;
a.toast := ‘toast’;

TObj Stream WiteObj ect ToFil e(‘ another.od’, [], a);

FreeAll ([b,d, a]);

b := TOoj Stream ReadObj ectInFil e(‘ base.od’, []) as TBase;

D := TObj Stream ReadObj ectInFil e(‘ derived.od’, []) as TDerived;
A := TObj Stream ReadObj ectI nFil e(‘another.od’, []) as TAnother;
Witeln(‘base: ‘, b.il, * ', b.i2);

Witeln(‘derived: *, d.il, * “, d.i2, * ‘', d.s);
Witeln(*another: *, a.il, * *‘, a.i2, * ‘', a.s, ' ', a.toast);

FreeAll ([b,d, a]);
end;

So what do we expect to be printed out by this example? We expect this:
Base: 100 101

Derived: 200 201 Hello
Anot her: 300 O toast

-67 -

TAnother’s 10 procedure is preventing the calling of the base class 10 procedures, so some
of thefields are not written. Y ou can use this technique when you want your 10 procedure
to take charge of all 10 for an object, preventing the subclass from doing anything.

Lesson 5— Storing SDL Containers

Activating SDL’s integration with SuperStream is very ssimple. Just add the SDLIO unit
into your project, and all SDL container classes will automatically be registered for
streaming. You'll still need to code IO procedures for your own classes, but SDL will take
care of itsdf.

SDL’s container class design and SuperStream are highly complimentary. To perform 10
on all 13 container classesin SDL, only two 10 procedures needed to be written. OnelO
procedure handles containers that are single data eement oriented (like arrays and lists), and
the other handles containers that are pair oriented (like maps and hash maps).

SuperStream’ s inheritance mechanism and SDL’ s virtual constructors ensure that the correct
results arereached. Here's an example of an SDL container saving and loading itself
automatically:

Uses SDLIG, // causes autonmmtic registration of SDL-SuperStreamintegration
Procedure SDLI OExanpl e;
Var c¢ : DContai ner;

I : Integer;
Begi n
C := DArray. Create;
For I :=1 to 20 do
Begi n

Case | mod 3 of

0 : c.add([I]);

1: c.add([IntToStr(1)]);
2 : c.add(TTest.Create);

End;
TObj Stream WiteObj ect ToFil e(‘container.od, [], ¢);
Obj Free(c);
c.free;
c := TCObj Stream ReadCbj ectInFile(‘container.od , []) as DContainer;

end;

This example also demonstrates how SuperStream and SDL can deftly handle the
persistence of a container class that contains different types (some of which are atomic, and
some of which are objects). SuperStream automatically checks all objects in the SDL
container and performs the correct kind of 10 on them.

Lesson 6 — Storing Special Types (TDateTime, Single, Double)

Inprise’s array of const is the coretrick at the base of SDL and SuperStream. We can make
this mechanism do a great deal of work for us, but unfortunately it doesn’'t do everything.
The placeit falls down a bit is in dealing with different floating point types. The array of
const mechanism automatically casts each floating point value into an Extended value.
Because it does this, we cannot distinguish between Single, Double, TDateTime (whichis
based on Double), and Extended. To get around this limitation, SuperStream provides some
extra type codes (called the ssvt constants), and a more powerful version of Transferltems,

-68 -

TransferltemsEx. The two transferltems calls are identical, except for an addition open
array parameter, which specifies the type codes for the items being written.

To understand the type codes, you need to understand what Delphi does when it creates an
array of const. Each item passed in the array gets put in a TVarRec structure, which is
defined like this:

TVar Rec = record
case Byte of

vt | nteger: (VInteger: Integer; VType: Byte);
vt Bool ean: (VBool ean: Bool ean);

vt Char : (VChar: Char);

vt Ext ended: (VExt ended: PExt ended);

vt String: (VString: PShortString);

vt Poi nter: (VPoi nter: Pointer);

vt PChar : (VPChar: PChar);

vt Obj ect : (VQObj ect: TObject);

vt Cl ass: (VC ass: Td ass);

vt W deChar: (VW deChar: W deChar);
vt PW deChar: (VPW deChar: PWdeChar);
vt Ansi String: (VAnsi String: Pointer);
vt Currency: (VCurrency: PCurrency);
vt Vari ant: (Wariant: PVariant);
vtinterface: (Vinterface: Pointer);
vtWdeString: (VWdeString: Pointer);
end;

By setting the VTypefield and the other fields, the TVarRec allows just about any atomic
typeto berepresented. There' satable of type codes, called vt constants. They are as
follows (and are defined in the system unit):

vt | nt eger =
vt Bool ean
vt Char

vt Ext ended
vt String =
vt Poi nt er
vt PChar =
vt Obj ect
vt Cl ass =
vt W deChar

vt PW deChar
vt Ansi String
vt Currency =
vt Vari ant =
vtinterface
vt W deString

[TRT oo 1
P RPRRPREOONODOANWNEREO

SuperStreams adds a couple of new type codes:

ssvt Singl e -2;
ssvt Doubl e = -3;
ssvt Dat eTi me = ssvt Doubl e;

-69 -

Normally, when you call Transferltems, you don’'t need to specify type codes, because
Dephi supplies them for you when you create an array of const. For the special types
(single, double, TDateTime), you need to tell SuperStream the type of the variable.

Thethird parameter of the TransferltemsEx call is the special one. It specifies the vt type
codes for each of the fields you are writing. SuperStream provides a shortcut here —
frequently you aren’t writing that many of these special fields. You don't need to specify
the type code for all of the fields you are writing. To take advantage of this, put all your
special fidds first, supplying type codes in the third parameter for them. SuperStream will
automatically assign the remaining type codes. Our code example for this lesson will
demonstrate all of this.

Type
TSpecial = class
Intl, int2 : Integer;
St : String;
When : TDateTi ne;
R : Single;
End;

procedure Speciall O(obj : TObject; stream: TObjStream direction : TObj |l ODirection;
version : Integer; var call Super : Bool ean);
begin
with obj as TSpecial do
stream TransferltenmsEx(
[when, r, intl, int2 st],
[@hen, @, @ntl, @nt2, @&t],
[ssvtDateTi me, ssvtSingle],
direction, version);
end;

procedure Speci al Exanpl e;
var s : TSpecial;
begin
TObj Stream Regi st er Cl ass(TSpeci al, SpeciallQ 1);
s := TSpecial . Create;
with s do
begi n
s.intl := Random(1000);
s.int2 := Randon{1000);
s.st := RandonString;
s. when : = Now,
s.r := Random(1000) / 1000;
end;
TObj Stream WiteObjectToFile(‘test.out’, [], S);
S.free;
S := TObj Stream ReadObj ectInFile(‘test.out’, []) as TSpecial;
s.free;
end;

Note that we only specified the special type codes for the first two variables, where it was
necessary to do so.

-70 -

Lesson 7 — Storing Raw Data

SuperStream provides a number of facilities to help with the transfer of raw data in and out
of streams. Storing your application data sometimes requires this handling of large blocks
of data for objects like bitmaps, or if you have a class with an embedded array, or things of
that type.

WEe're going to demonstrate how to do 10 on arbitrary blocks of memory, and how to
transfer arrays of atomic types. What we' |l show hereis a sample type that has both an
array of stringsin it, and a bunch of raw data that represents a bitmap. We want to read and
write this object.

Type
TRaw = cl ass
FNames : | nteger;

FNarme : array[1l..25] of String;
FAddresses : array[1l..25] of String;
FEmpl oyees : array[1l..25] of TEnpl oyee;

FBi t mapSi ze : Integer;
FBi t mapData : Pointer;
End;

procedure Speciall O(obj : TObject; stream: TObjStream direction : TObj |l ODirection;

version : Integer; var call Super : Bool ean);
begin
with obj as TRaw do
begi n
stream Transferltens([FNanes, FBitnmapSize] [@nanes, @BitnmapSize], direction,
version);

stream TransferArrays(
[FNane[1], FAddresses[1], FEnployees[1]],
[@Name[1], @Addresses[1], @Enployees[1]],
[25, 25, 25],
direction);
if direction = iodirRead then
Get Mem(FBi t mapDat a, Fbit mapSi ze);
stream TransferBl ocks([FBi t mapDat a], [FBitnapSize], direction);
end;
end;

procedur e Rawkxanpl e;
var r : TRaw,
begin
r := TRaw. Create;
TObj Stream Regi sterC ass(TRaw, Rawi O, 1);

TObj Stream WiteObjectToFile(‘raw.od’, [], r);
r.free;
r := TOoj Stream ReadObj ectInFile(‘raw. od’, []) as TRaw,
r.free;
end;

This example shows the general technique for reading and writing arbitrary arrays of atomic
values, and storing binary blocks of data. Everything here should be familiar except what’s
new in the 10 procedure, so let’s concentrate on that.

-71 -

Thefirst thing this 10 procedure does it transfer the sizes of the other itemsit’s going to
write. These are atomic values and are very simple to move, so we do them first. Wealso
do them first because we may need to get at the information in them during a read operation.

Next we invoke the TransferArrays function. TransferArrays needs four parameters. the
first itemin each array (which is used to get type information), the addr ess of thefirst item
inthe array (which is used to figure out where everything is), the number of itemsin the
array, and the direction flag. That's all that’s needed — Super Stream takes care of figuring
out therest, and handles the transfer of all atomic values (including arrays of objects)
automatically.

Following that is a transfer of a binary block of data. Thisisaccomplished with the
TransferBlocks function. TransferBlocks can actually write multiple blocks at the same
times (just like TransferArrays can write multiple arrays simultaneously). 1n our example
we're only writing one block.

Theonly wrinklein this exampleis that during a read, we need to allocate the memory for
our block. Thisisaccomplished with the GetMem call — and note that we already know the
size of the block we're reading, because it was part of the atomic value read we did at the
beginning of the IO procedure.

TransferBlocks takes three parameters: The address of the block, the size of the block, and a
direction flag. SuperStream takes care of the rest.

Lesson 8 — Storing Complex Object Graphs

You may have a complex object graph — which is a bunch of objects that have pointers that
refer to each other. SuperStream can take care of this for you automatically, by assembling
an object graph tracking system. To enable this mechanism (which slows down
SuperStream very slightly), pass the [osoGraph] option to the constructor of the
TObjStream. Or, if you're using the WriteObjectToFile or ReadObjectinFile calls, pass
[0soGraph] as the options.

This short example will demonstrate this:

Type
TOne = cl ass;
TTwo = cl ass;

TOne = cl ass
FHello : String
I nside : TTwo;

End;

TTwo = cl ass
Inside : TOne
Quch : String;

End;

procedure Onel O(obj : TObject; stream: TObjStream direction : TObj |l ODirection;

version : Integer; var call Super : Bool ean);
begin
with obj as TOne do
stream Transferltenms([FHell o, Inside], [@hello, @nside], direction, version);
end;

-72 -

procedure Twol O(obj : TObject; stream: TObj Stream direction : TObj |l ODirection;
version : Integer; var call Super : Bool ean);
begin
with obj as TTwo do
stream Transferltens([Quch, Inside], [@uch, @nside], direction, version);
end;

procedure G aphExanpl e;
var o : TOne;
t : TTwo;
begin
TObj Stream Regi sterCl ass(TOne, Onel O 1);
TObj Stream Regi sterclass(TTwo, Twol O 1);
O := TOne. Create;
T := TTwo. Create;

o.FHello := ‘hello’;
o.inside :=1;
t.ouch := *ouch’;
t.inside := o;

TObj Stream WiteObject ToFile(‘test.od’, [0osoG aph], 0);
FreeAll ([o,t]);

O := Thj Stream ReadObj ectInFile(‘test.od, [osoG aph]) as TOne;

Witeln(*Proof: ', o.inside.inside.Fhello);
end;

By passing the osoGraph option, SuperStream keeps track of all objects it reads an writes.
It can then properly restore multiple references to the same object. Inthisexample, t's
pointer to o is automatically set up, even though o has already been read.

Lesson 9 — Reading and Writing Different Versions of Objects

Objects change as an application is maintained. We're going to look at how SuperStream
deals with different versions of objects in this example. What we'll do is define an object,
show its 10 procedure, then change the definition of the object and show the new 1O
procedurefor it.

Type

TAppObj ect = cl ass
Narme, address : String;
Sal ary : |nteger;

End;

procedure Appl O(obj : TObject; stream: TObjStream direction : TObj |l ODirection;
version : Integer; var call Super : Bool ean);
begin
with obj as TAppOhject do
streamtransferltens([nane, address, salary], [@ane, @ddress, @alary],
direction, version);
end;

procedure |nitExanple;
var a : TAppObject;

-73 -

begin

TObj Stream Regi sterCl ass(TAppObj ect, Appl O 1);

A : = TAppObj ect. Create;

TObj Stream WiteObjectToFile(‘zot’', [], a);

a.free;

a := TCObj Stream ReadCbjectInFile(‘zot’, []) as TAppOhject;
end;

Thisisavery simple 10 procedure, and very straightforward. Now we' [l make two changes
to the existing object: We'll add a new field and we'll delete an old one. Here' s what the
new code |looks like:

Const
Hi ghSal aryVal ue = nnnn;
Type
TAppObj ect = cl ass
Narme, Address : STring;
Sal aryHi gh : Bool ean;
End;

procedure Appl O(obj : TObject; stream: TObjStream direction : TObj |l ODirection;

version : Integer; var call Super : Bool ean);
var oldSalary : |Integer;
begin

case version of
1: with obj as TAppObj ect do
begi n
streamtransferltens([name, address, ddSalary], [@ane, @address,
@l dSal ary], direction, version);
Sal aryHi gh : = ol dSal ary > Hi ghSal aryVal ue;
end;
2:
with obj as TAppObject do
streamtransferltens([nane, address, salaryHi gh], [@ane, @ddress,
@al aryHi gh], direction, version);
end;

procedure | nitExanple;
var a : TAppObject;
begin
TObj Stream Regi ster Cl ass(TAppObj ect, Appl O 2);
A : = TAppObj ect. Create;
TObj Stream WiteObjectToFile(‘zot’', [], a);
a.free;
a := TCObj Stream ReadCbjectInFile(‘zot’, []) as TAppOhject;
end;

We ve modified the |O procedure to have a case statement, switched on the version being
passed in. If we'rereading or writing thetip version (which has now been set to 2 — notice
the change in the RegisterClass call), then we just perform convention 10. If we're reading
an old object (which is pretty much the only way it happens, because writes of old objects
don’'t happen that much), we need to do a little extra processing. We need to make sure we
correctly read in any deleted members from the old version of the object. Then, we need to
make sure that any new members arefilled in correctly. We do thisin this case by testing
the salary valuethat’ s read in, and setting the field as appropriate.

-74 -

This technique of using temporary variables to hold old, deleted values works well. In
practice, you'll rarely be deleting variables. Addition of new fields is much more common.
Just make sure that your 10 procedure can correctly initialize the new values.

A very important point to noteis that constructor functions are not called by Super Sream.
SuperStream relies on the IO procedure to correctly create the fields. If it’s really important
that the constructor be called, check to seeif you'rereading an object (direction =
iodirRead) and then invoke the constructor yourself. SDLIO does this to ensure that the
container classes are correctly built. Make sure that you only call the constructor if theio
directionisiodirRead. The author of SDL and SuperStream got bitten badly by this one ©.

SuperStream Classes

This section contains a brief discussion of the classes that are included in the SuperStream
unit, and how you would use them. See the Lesson material for more detailed examples on
usage, and common situations. The online documentation contains a detailed HTML
reference for the SuperStream classes; pleaserefer to it for complete information. This
section discusses the major points you should be aware of.

TStreamAdapter

Wediscuss T StreamAdapter first becauseit is the root of the SuperStream class hierarchy.
A stream adapter is a T Stream-compatible object that “ wraps’ itself around another stream,
usually to provide additional functionality. SuperStream’s TObjStream class is a stream
adapter. Using the adapter technique permits TObjStream to read and write objects from
any other type of TStream, including TFileStream and TMemoryStream, which are shipped
with Delphi. Using an adapter stream also permits T ObjStream to operate over other types
of streams that may not be included with Delphi. Examples of such streams include
compressing streams and buffering stream adapters, or streams that write their contents over
network connections.

The TStreamAdapter provides a constructor that takes another stream as an argument; thisis
the stream that is being “ wrapped”. It then delegates the T Stream functions onto the
wrapped stream. This provides a basis for creating new adapter streams.

TObjStream

TObjStream is the primary focus of the SuperStream package. It provides comprehensive
support for reading and writing objects to and from streams. It also provides many
convenience functions for handling large binary objects, handling arrays of atomic types,
and dealing with complex graphs of objects. The Lessons section contains detailed
examples of the proper usage of TObjStream. For comprehensive reference information,
please seethe online HTML reference.

TObjStream is descended from T StreamAdapter, so that it can be wrapped around any kind
of stream. If you are reading and writing from files, Soletta highly recommends that you
first wrap the TFileStream with one of the buffering stream adapters, then wrap the object
stream around the buffered stream. Y ou may achieve an order of magnitude performance
improvement, or more, by doing this.

-75 -

The binary data created by TObjStream compresses well, so you may wish to add a
compressing stream to your application’s design.

TBufferedl nputStream

TBufferedinputStream is designed to provide buffered read access to another stream.
Seeking and writing are not supported — the sole purpose of this class is to provide rapid,
sequential access to the data contained in another stream.

TBufferedOutputStream

TBufferedOutputStream is designed to provided buffered write access to another stream.
Reading and seeking are not supported, and will cause exceptions to be thrown. This class
is intended to provide output buffering of a sequentially written stream. The output of
TObjStream has this characteristic.

TObjList

TODbjList isasimplelist class provided by SuperStream to contain a list of objects. Itisa
subclass of Delphi’s TList class, with an addition property or two. You may find it useful in
your “quick and dirty” apps, if you don’'t want to bring in the full power of the SDL library.
By using TObjStream.Register DefaultClasses, SuperStream will automatically be able to
save and load TObjList objects.

-76 -

Epilogue
The creation of SDL and SuperStream has been a long, but satisfying journey through the

intricacies of building a complex library package, and adapting theories to the realities of a
programming environment.

I'd like to take a moment to thank certain individuals whose work has made mine possible:

Stepanov and Lee, the creators of STL, whose architectural work made these kinds of
libraries possible, and provided the roadmap for constructing new ones.

ObjectSpace' s JGL team, who adapted STL to Java to create the Java Generic Library, and
in doing so, proved that the STL concepts could migrate from one language to another.

Inprise, for creating the Delphi environment. 1've heard lately that a programmer’s favorite
environment becomes his hammer, and everything starts to look like a nail to that person.
Wéll, Delphi is my hammer, and I’ ve pounded a ton of nails with it in thelast five years. It
is, without a doubt, the most productive environment I’ ve ever worked in, and is a very
precise match to my list of wants. Delphi just keeps getting better and better. | hope SDL
givesit new credibility.

My friends: Kurt and Mdanie Westerfed, Tim Sheridan, Larry Chang (thanks for the office
space), Steve Giordano Jr., Steve Giordano Sr., Tim Shinkle, and Paula Thomson. They
ddivered well-timed criticisms and encouragement.

The SDL Reviewers:

Xavier Pacheco; William Mann; Robert P Kerr; Robert Marsh; Rob Lafreniere; Ray
Konopka; Phillip Woon; Peter Roth; Pablo Pissanetzky; Mark Vaughan; Mark Leymaster;
Marco Cantu'; Luk Vermeulen; Louis Kleiman; Kurt Westerfed; Julian Bucknall; John
Elrick; J Merrill; Deven Hickingbotham; Danny Thorpe; Brad Stowers; Josh Dahlby

-77 -

