
-  - 

S o l e t t a

STANDARD DELPHI
LIBRARY

TUTORIAL AND REFERENCE GUIDE



- ii -

STANDARD DELPHI  L IBRARY
TUTORIAL AND REFERENCE GUIDE

Copyright © 1998 Soletta and Ross Judson  All rights reserved.

Soletta
2103 Patty Lane

Vienna, VA  22182

http://www.soletta.com

Please email support@soletta.com with any technical questions about this product.
Email sales@soletta.com with any sales questions.



- iii -

TABLE OF CONTENTS

Introduction __________________________________________________________________1

Product Versions___________________________________________________________________ 1
Ordering SDL and/or SuperStream____________________________________________________ 2

How to use this documentation ___________________________________________________4

Quick Start ___________________________________________________________________5

Installation ___________________________________________________________________6

Archive Installation ________________________________________________________________ 6

Soletta Store Installation ____________________________________________________________ 6

Basic Concepts ________________________________________________________________7

Accessing the SDL and SuperStream Libraries__________________________________________ 7

Item _____________________________________________________________________________ 7

Container_________________________________________________________________________ 7

Iterator __________________________________________________________________________ 7

Comparator_______________________________________________________________________ 7

Closure___________________________________________________________________________ 8

Morphing Closure__________________________________________________________________ 8

Garbage Collection_________________________________________________________________ 8

AtEnd____________________________________________________________________________ 8

Range ____________________________________________________________________________ 8

Pair______________________________________________________________________________ 8

Sequence _________________________________________________________________________ 9

Vector ___________________________________________________________________________ 9

Map _____________________________________________________________________________ 9

Set_______________________________________________________________________________ 9

Hashing __________________________________________________________________________ 9

Algorithm _______________________________________________________________________ 10

Quick Example_______________________________________________________________11

A Note About Namespaces______________________________________________________12

Error Handling ______________________________________________________________13

Ten Easy SDL Lessons ________________________________________________________14

Lesson 1 - Keeping Lists of Objects __________________________________________________ 14

Lesson 2 – Keeping Lists of Strings and other Atomic Types______________________________ 15

Lesson 3 – Iterating with Iterators ___________________________________________________ 16

Lesson 4 – Using SDL instead of Delphi’s Data Structures _______________________________ 18



- iv -

Lesson 5 – Using Maps (Key-Value Pairs) _____________________________________________ 19

Lesson 6 – Using Sets ______________________________________________________________ 21

Lesson 7 – Using the Sort Algorithms_________________________________________________ 22

Lesson 8 – Changing Data Structures_________________________________________________ 23

Lesson 9 – Transforming Objects ____________________________________________________ 25

Lesson 10 – Filtering Objects________________________________________________________ 25

Containers __________________________________________________________________27

All About DObjects _______________________________________________________________ 27

Example Code ____________________________________________________________________ 28

Container hierarchy _______________________________________________________________ 28

DIterator ________________________________________________________________________ 29
Forward Iterators ________________________________________________________________ 31
Bidirectional Iterators _____________________________________________________________ 32
Random Iterators ________________________________________________________________ 32
Iterator Adapters_________________________________________________________________ 32

DContainer ______________________________________________________________________ 32
Comparators ____________________________________________________________________ 33
Constructing Containers ___________________________________________________________ 34
Number of Items_________________________________________________________________ 34
Adding Items ___________________________________________________________________ 34
Removing Items _________________________________________________________________ 35
Retrieving Items _________________________________________________________________ 35

DSequence _______________________________________________________________________ 36
Adding Items ___________________________________________________________________ 36
Retrieving Items _________________________________________________________________ 36
Removing Items _________________________________________________________________ 36

DVector _________________________________________________________________________ 36

DAssociative _____________________________________________________________________ 37
Sets and Maps___________________________________________________________________ 37
Adding Elements ________________________________________________________________ 37
Finding Elements ________________________________________________________________ 38
Removing Elements ______________________________________________________________ 38

Container Adapters _______________________________________________________________ 38

Creating Your Own Containers _____________________________________________________ 38

Frequently Asked Questions ________________________________________________________ 38
How do I get the number of items in a container? _______________________________________ 38
How do I add items to a container? __________________________________________________ 38
How do I iterate over a container? ___________________________________________________ 39
How do I retrieve the keys from a map container?_______________________________________ 39
How do I sort a sequence? _________________________________________________________ 39
Why does SDL use functions instead of class members for its algorithms, and for iterator operations?39
How do I find items in a map? ______________________________________________________ 40

Algorithms __________________________________________________________________41

A Note About Ranges ______________________________________________________________ 41



- v -

Naming Conventions ______________________________________________________________ 41

Applying ________________________________________________________________________ 42
forEach ________________________________________________________________________ 42
Inject __________________________________________________________________________ 42

Comparing_______________________________________________________________________ 42
Equal__________________________________________________________________________ 42
LexicographicalCompare __________________________________________________________ 43
Median ________________________________________________________________________ 43
Mismatch ______________________________________________________________________ 43

Copying _________________________________________________________________________ 44
Copy __________________________________________________________________________ 44

Counting ________________________________________________________________________ 44
Count _________________________________________________________________________ 44

Filling___________________________________________________________________________ 44
Fill ___________________________________________________________________________ 44
Generate _______________________________________________________________________ 45

Filtering _________________________________________________________________________ 45
Unique ________________________________________________________________________ 45
Filter __________________________________________________________________________ 45

Finding__________________________________________________________________________ 45
AdjacentFind ___________________________________________________________________ 45
BinarySearch ___________________________________________________________________ 46
Detect _________________________________________________________________________ 46
Every__________________________________________________________________________ 46
Find___________________________________________________________________________ 46
Some __________________________________________________________________________ 47

Freeing and Deleting ______________________________________________________________ 47
ObjFree ________________________________________________________________________ 47
ObjDispose _____________________________________________________________________ 47
ObjFreeKeys____________________________________________________________________ 47

Hashing _________________________________________________________________________ 47
OrderedHash____________________________________________________________________ 47
UnorderedHash__________________________________________________________________ 47

Removing________________________________________________________________________ 48
Remove________________________________________________________________________ 48
removeCopy ____________________________________________________________________ 48
removeIf _______________________________________________________________________ 48

Replacing________________________________________________________________________ 49
Replace ________________________________________________________________________ 49
ReplaceCopy____________________________________________________________________ 49
ReplaceIf_______________________________________________________________________ 49

Reversing________________________________________________________________________ 49
Reverse ________________________________________________________________________ 49
ReverseCopy____________________________________________________________________ 50

Rotating _________________________________________________________________________ 50
Rotate _________________________________________________________________________ 50
RotateCopy _____________________________________________________________________ 50

Set Operations____________________________________________________________________ 50



- vi -

Includes________________________________________________________________________ 50
SetDifference ___________________________________________________________________ 50
SetIntersection __________________________________________________________________ 51
SetSymmetricDifference___________________________________________________________ 51
SetUnion _______________________________________________________________________ 51

Shuffling ________________________________________________________________________ 51
RandomShuffle__________________________________________________________________ 51

Sorting __________________________________________________________________________ 52
Sort ___________________________________________________________________________ 52
StableSort ______________________________________________________________________ 52

Swapping ________________________________________________________________________ 52
IterSwap _______________________________________________________________________ 52
SwapRanges ____________________________________________________________________ 52

Transforming ____________________________________________________________________ 52
Collect_________________________________________________________________________ 52
TransformBinary_________________________________________________________________ 53
TransformUnary _________________________________________________________________ 53

Utility Functions _____________________________________________________________54

Atomic Converters ________________________________________________________________ 54

Iterator Helpers __________________________________________________________________ 54

Hashing _________________________________________________________________________ 54

DObject Helpers __________________________________________________________________ 55

Morphing Closures________________________________________________________________ 56

Printing _________________________________________________________________________ 57

Debugging Support ___________________________________________________________59

Persistence with SuperStream ___________________________________________________60

Basic Concepts ___________________________________________________________________ 60
Stream_________________________________________________________________________ 60
Object _________________________________________________________________________ 60
Atomic Types ___________________________________________________________________ 60
Transfer Function ________________________________________________________________ 61
Object Versioning________________________________________________________________ 61
Buffered Stream _________________________________________________________________ 61

Nine Easy SuperStream Lessons _____________________________________________________ 61
Lesson 1 – Saving and Loading One Object____________________________________________ 62
Lesson 2 – Storing Different Objects _________________________________________________ 64
Lesson 3 – Writing Embedded Objects________________________________________________ 65
Lesson 4 – Inheritance and SuperStream ______________________________________________ 66
Lesson 5 – Storing SDL Containers __________________________________________________ 68
Lesson 6 – Storing Special Types (TDateTime, Single, Double) ____________________________ 68
Lesson 7 – Storing Raw Data _______________________________________________________ 71
Lesson 8 – Storing Complex Object Graphs____________________________________________ 72
Lesson 9 – Reading and Writing Different Versions of Objects_____________________________ 73

SuperStream Classes ______________________________________________________________ 75
TStreamAdapter _________________________________________________________________ 75
TObjStream ____________________________________________________________________ 75



- vii -

TBufferedInputStream ____________________________________________________________ 76
TBufferedOutputStream ___________________________________________________________ 76
TObjList _______________________________________________________________________ 76

Epilogue ____________________________________________________________________77



- 1 -

Introduction
The Standard Delphi Library (SDL) by Soletta is a powerful library of reusable container
classes, generic algorithms, and an easy to use persistence mechanism.  SDL is designed for
intermediate to advanced Delphi programmers who have a need for sophisticated data
structures or who wish to take advantage of SDL’s large library of generic algorithms.  SDL
is also highly appropriate for programmers who are experienced with the C++ STL
(Standard Template Library), or ObjectSpace’s JGL (Java Generic Library).  SDL is an
adaptation of Stepanov and Lee’s concepts to the Delphi environment.

SDL offers a number of features not found in any other Delphi class library:

n Powerful underlying methodology.  SDL is the first data structure and
algorithm library for Delphi to be based on generic programming with
reusable algorithms and data structures.  It is based on a mature and
sophisticated model (STL).

n Natural and easy to use storage of atomic data types.  This means that
SDL containers can be used to hold any Delphi data type (such as Integers,
Strings, Extended values) with no special syntax.  SDL is the first container
library to take advantage of Delphi’s array of const feature, which lifts a
significant burden from the programmer.

n Generic algorithms.  Like STL and JGL, SDL comes with over 60 generic
algorithms.  The set of algorithms was originally chosen by Stepanov; SDL
provides implementations of many of the algorithms found in STL.  Thus,
an STL programmer will be immediately familiar.  SDL’s container classes
follow the interface/iterator model; the consequence is that most generic
algorithms will work on any container class.

n Integrated persistence.  SDL’s companion library, SuperStream (included
with SDL Source Edition), provides a capable, easy to use method for
storing and retrieving objects in Delphi.  SDL comes complete with the
integration code necessary to use SuperStream and SDL together.
SuperStream and SDL are based on many of the same techniques, so
programmers who become familiar with one will be immediately familiar
with the other.

n Complete set of data structures.  SDL includes arrays, double-linked lists,
maps, and sets.  The mapping structures are available both in red-black tree
and hashing form.  There are at least ten different data structures available,
with more being developed.

n Atomic, associative data structures.  SDL is the first data structure library
for Delphi to provide natural, atomic storage of associations.  For example,
adding to a map is as simple as map.putPair([10, ‘hello’]).  This places the
value ‘hello’ at key 10 in the map.  Note that the values are specified
without any object wrappers.  We can also just as easily add objects to the
map:  map.putPair([‘Ross Judson’, objTest]).

Product Versions
SDL is available in two versions: The binary release and the source release.  The garbage
collection feature is available only in the source release, as it requires recompilation of the



- 2 -

SDL unit to enable.  Both versions are available directly from Soletta – please email
sales@soletta.com for information on purchasing either product.  If you have the binary
release and wish to upgrade to the source release, please contact Soletta, and we’ll guide
you through the process.

You may have acquired the trial version of SDL on the internet.  If so, we’re glad that
you’re taking the time to look at SDL, and see if it can help you.  You’ll find the Lessons in
the sections ahead to be particularly insightful, and we recommend that you read them
closely.  SDL isn’t really like other container class libraries for Delphi, and to appreciate the
power it gives you, you’ll need an open mind!

If you are coming from an STL or JGL background, reading the SDL documentation will be
easy for you.  SDL uses the same terms, the same words, and the same ideas.  You’ll find it
to be an effective adaptation of the STL methodology to Delphi.  You’ll also find that it
makes migrating C++ programmers (who have experience with STL) to Delphi easier.

SDL pushes the envelope with Delphi, right to the limit.  It’s exciting when a language can
be manipulated to effectively accomplish tasks it wasn’t designed to do directly.  This is the
hallmark of the mature language and environment, and Delphi’s time is now.

Ordering SDL and/or SuperStream

You can purchase this package several ways: By credit card over the phone, credit card over
the web, credit card through email, or check/credit card through postal mail.  To order SDL
over the internet, visit the following web page:

http://www.shareit.com/programs/101667.htm

To order SuperStream, visit this page:

http://www.shareit.com/programs/101670.htm

This web ordering service is provided by ShareIt!, who handle orders only.  Please do not
telephone or email ShareIt with support questions or sales questions, unless they are
payment related.

If you would like to order by telephone, please call the following number:

In the USA: 1-800-903-4152
Everywhere else: +49-221-2407279

During ordering please reference program # 101667 for SDL, and program # 101670 for
SuperStream.

You can also order by credit card directly from Soletta.  A file with ordering information is
included in the distribution (ordering.txt).

Send email to sales@soletta.com, including the following information:

Name
Address



- 3 -

City, Province/State, Postal Code/Zip
Country
Name on Credit Card
Credit Card Type (Visa/MC/Amex)
Credit Card Number
Credit Card Expiry
Email address (very important!)
Product (SDL Source/Binary, SuperStream Source/Binary)
Delphi version (3 or 4)

If you prefer postal mail, you can send the information listed above to:

Soletta
2103 Patty Lane
Vienna, VA  22182
USA



- 4 -

How to use this documentation
SDL is sufficiently different from other container class libraries (and just about every other
class library) for Delphi that you should read the Guide section of this manual fairly
thoroughly.  Programming with containers and generic algorithms takes some thought,
planning, and knowledge if you’re going to get the most benefit from it.  Reading the
Reference material will give you a good feel for what’s in the library; you should probably
read it after you’ve done some programming with SDL.

The Guide has three major sections – Containers, Algorithms, and Persistence.  Containers
discusses the data structures in SDL, enumerates their relative advantages and
disadvantages, and illuminates the iterator concept.  Algorithms lists the major types of
algorithms that are present in SDL, and how to apply them to containers.  Persistence
discusses storing and loading objects from streams.

The Containers section can be read on its own.  The Algorithms section should be read only
after reading the Containers section.  The Persistence section stands alone, but if you want
to understand the mechanism used to serialize SDL Containers, you should have a working
knowledge of them first.

Soletta highly recommends that you study the Algorithms at length.  Their names are
generic, but the tasks that they perform occur over and over again in common programming
situations.  The trick is to recognize when a task can be performed by one of the generic
algorithms.  A side effect of using them is that your code becomes more readable to persons
fluent with generic algorithms.  Much like patterns, code comprehension is often based on
vocabulary, and the Algorithms in this library provide an excellent set of verbs.

Included with SDL is an HTML reference to the library that was generated with another
Soletta product, DelphiDoc.  That HTML reference should be considered to be the most
accurate source of information, as it is directly generated from the SDL source code.  If
there are differences between what you read here and what you find in the HTML reference,
this document will defer to the HTML.



- 5 -

Quick Start
Here’s what you need to know to get started with SDL quickly:

1) Become familiar with the basic concepts of this library.

2) Learn about the basic container classes and DObjects, which are the basic
items that are stored in containers.

3) Learn about iterators – the types of iterators, and the functions that operate
on them.

4) Learn basic techniques for adding items to containers, and how to iterate
over containers.

5) Learn about what the algorithms can do for you.

6) Learn about SuperStream, SDL’s persistence mechanism.

Each of these is in the order we suggest you learn.  The best thing to do is put together a few
quick programs that make use of basic SDL features so you can get a feel for how the
library operates.  After you’ve done that, come back to the reference material, which you’ll
then be able to read with good basic proficiency in place.



- 6 -

Installation
SDL and SuperStream have been delivered to you in one of several ways:

• As an archive, downloaded from the internet

• On a CD-ROM

• From the Soletta Store, for online purchasing of Soletta libraries

Archive Installation
If you’ve downloaded an archive, unzip the contents of the archive into a new directory.
Make sure that you preserve the paths in the archive!  The HTML documentation has a large
number of files, and you’ll want to make sure that they land in the correct directories.

Make sure the directory you created is on your library path (Tools | Environment Options,
library page) – Delphi needs this to find the SDL and SuperStream unit files.

Copy the sdlhelp.hlp and sdlhelp.cnt files to the Help directory in your Delphi installation.
Add :link sdlhelp.hlp to the last section of the delphi.cfg file, and :include sdlhelp.cnt to the
last section of the delphi.cnt file.  This will enable F1 based help for SDL.

Soletta Store Installation
The Soletta Store will automatically emit libraries into a directory you specify.  You will
still need to add the directory to the Delphi Library Path, and add the help file entries, as
above.



- 7 -

Basic Concepts
To effectively use SDL, you need to learn about its parts and become familiar with SDL’s
vocabulary.  SDL uses the same words to describe its concepts that JGL and STL do, so if
you’re familiar with those, you’ll adapt to SDL quickly.  If you’re not familiar with other
generic programming packages, you’ll want to read this section thoroughly.

Accessing the SDL and SuperStream Libraries
To use classes and functions from the SDL library, make sure the SDL unit is in your uses
statement.  To use classes and functions from SuperStream, make sure SuperStream is in
your uses clause.

If you will be streaming SDL containers with SuperStream, make sure your program
includes the SDLIO unit.  No function calls are necessary – including the unit will perform
all necessary registration and initialization.

Item
In SDL, items are atomic values or objects.  An atomic value is one of the basic types, like
an Integer, String, Currency, or Char.  An object is also an atomic type because Delphi
treats all objects by reference (pointer).

Container
A container is a data structure that can hold a number of items.  Different types of
containers have different capabilities – for example, one type of container may support very
fast deletion, but slow addition, and another might support fast random access but slow
deletion.  When you need a container class, choose an appropriate one based on what you
need that container to do.  Each container class is describe later on in this guide, and the
strengths and weaknesses of each are provided.

Iterator
An iterator is analogous in many ways to a pointer.  It points at a certain item in a container.
Iterators can be moved forward, and can usually be moved backwards.  The object under the
iterator can be retrieved, and can sometimes be set.  Iterators are the preferred way for
algorithms and for your code to deal with SDL containers.  If you use iterators to access the
containers, you can change the container without changing your code.  This is one of the
primary strengths of SDL.  You will see the following constructs very often when perusing
SDL-based code:

Iterator := container.start;
Iterator := container.finish;

The start function retrieves an iterator positioned on the first item in the container.  The
finish function retrieves an atEnd iterator (which is positioned just after the last item in the
container).  See atEnd for more information on the special atEnd iterator.

Comparator
A comparator is a function used to compare two items.  It should return less than zero if the
first object is less than the second; zero if the two objects are equal, and greater than zero if
the second object is greater than the first.  Comparators are closures (procedures of objects)



- 8 -

with a special signature.  See Closure and Morphing Closure for related information.
Here’s the signature of a DComparator:

DComparator = function (const obj1, obj2 : DObject) : Integer of object;

Closure
A closure is a procedure of object.  Closures are at the heart of Delphi’s event model –
hopefully, as a Delphi programmer, you understand how they work.  While effective for
event handling, the closure mechanism is an elegant solution for any situation in which
methods of objects must be called.  All of SDL’s functional types are defined as procedure
of object.  This allows them to be methods on objects.  If SDL did not do this, you would
need to create unit-level procedures for procedures you wanted to pass to SDL.  SDL also
supports the transformation of unit-level procedures into Closures – see Morphing Closure.

Morphing Closure
A unit-level procedure can be transformed into a closure by making use of one of the
MakeXXX family of functions.  This makes use of a Delphi trick that fools Delphi’s method
calling mechanism into believing that it is calling a closure.

Garbage Collection
Garbage collection is a more advanced, automatic method of dealing with memory
allocation issues.  Delphi has traditionally been programmed using manual memory
management, which means that the programmer is responsible for allocating and
deallocating all objects.  In a garbage collecting system, the programmer only allocates
objects.  The system will deallocate them when it determines that it is permissible to do so.
SDL is compatible with a garbage collection system called the Boehm Collector.  The
Boehm Collector is a conservative, mark-and-sweep collector.

AtEnd
SDL maintains positions in containers using iterators.  There is a special iterator position
known as atEnd.  An atEnd iterator is positioned one past the last item in the container.  It
is illegal to retrieve an object from this position.  It is sometimes legal to write to this
position – certain containers will add the object being written to the end of the container, but
not all containers will do this.  Notably, the mapping containers will not.  AtEnd is
important – when algorithms don’t succeed, they will often return atEnd as their result.

Range
A range is a pair of iterators, marking the beginning and ending of a set of items.  For
example, there is a range of items between container.start and container.finish.

Pair
A pair is two items (two DObjects, stored in a DPair).  The mapping containers store pairs,
each consisting of a key (stored in the .first field) and a value (stored in the .second field).



- 9 -

Sequence
A sequence is a container where the items in the container have a defined order.  Containers
descended from sequence will retrieve their items in the order that they were added.
Examples of sequences include linked lists and arrays.

Vector
A vector is a container whose items are numerically addressable.  That is, you can specify
that you want the first item, or the tenth, or the fiftieth.  While all sequences can return the
item at a specific position, being a vector implies that this operation is efficient.  Vectors are
usually implemented as arrays, but other implementations can exist.

Map
Maps store key-value pairs.  As a user of SDL, you should pay special attention to maps
because it has been estimated that for other, similar container libraries, up to 90% of all
container usage is of map-based structures.  Maps store associative data.  For example, you
may want to keep a set of employee objects, keyed by employee ID.  What does it mean to
key on employee ID? It means that you want to associate an employee object (say, Jim
Smith’s), with a numeric ID (like 1001).  You do this by putting a pair to the map structure:

Map.putPair([1001, jimSmithObject]);

When you want to retrieve the employee associated with 1001, you do the following:

employee := getObject(map.locate([1001])) as TEmployee;

Mapping containers ensure that the process of looking up a key value is very efficient.  SDL
has two basic kinds of maps in it: An ordered map (based on red-black trees) and an
unordered map (based on hash structures).

There are two basic variants on maps: A MultiMap and a regular Map.  The difference is
that MultiMaps can store multiple objects on the same key.  Storing a value at a key in a
regular map will replace whatever value was stored there before.

Set
Sets store items and allow you to rapidly determine if a set contains a particular item or not.
You may already be familiar with Delphi’s set types.  SDL’s sets are much more general –
you can have sets of numbers, strings, objects, or just about anything else.  As with maps,
there are MultiSets and regular Sets. A MultiSet can have multiple copies of an object in it.
Sets also come in the two basic kinds – red-black based and hash based.

Hashing
Hashing is the process of converting an item (or object) into a number.  SDL provides a
number of hashing functions and makes use of hashing internally.  Creating good hash
functions is difficult – ideal hash functions try to create very random-looking numbers from
whatever objects are given to them.  Making use of SDL’s hash functions ensures that you
are getting good hash performance.



- 10 -

Algorithm
An algorithm is a series of steps necessary to carry out a process.  Most algorithms operate
on data, make decisions about what to do based on that data, and transform the data into
some kind of output.  SDL contains a large number of reusable algorithms.  Reusable
algorithms are solutions for problems that crop up again and again in common programming
situations.  By learning about SDL’s algorithms, you can avoid writing a lot of common
code, and simply substitute the appropriate reusable algorithm.



- 11 -

Quick Example
Many Delphi programmers may not be familiar with generic programming.  Before going
into great detail about containers, algorithms, and all the other SDL features, let’s look at an
example of SDL programming.  First we’ll create a narrative sentence that describes what
we want to do.  Then we’ll present SDL-based code that does it.  Once you see how
compact the SDL code is and how it solved the problem, you’ll want to know more about
SDL!  Here is our narrative:

We have two classes of students.  Some students can be in both classes.  We want to find
every student whose grade is above 80 in both classes, making sure that we remove
duplicates (because students might be in both classes).  Then we want to sort the students by
their names, in reverse alphabetical order.  Here’s the code:

Procedure test;
Var class1, class2 : DMap;

GoodStudents : DArray;
    I : Integer;
    Iter1, Iter2 : DIterator;
Begin
  // fill our classes with random students and grades
  class1 := DMap.Create;
  class2 := DMap.Create;

  for I := 1 to 25 do
    begin
      class1.putPair([Random(100), RandomName]);
      class2.putPair([Random(100), RandomName]);
    end;

  goodStudents := DArray.Create;
  iter1 := class1.lower_bound([80]);
  iter2 := class2.lower_bound([80]);
  setIntersectionIn(iter1, class1.finish, iter2, class2.finish, goodStudents.finish);
  reverse(goodStudents);

  PrintContainer(goodStudents);

  FreeAll([class1, class2, GoodStudents]);

End;

Notice how compact the code is!  The key to using SDL effectively is learning about the
special algorithms it gives you and applying those algorithms in your programming.



- 12 -

A Note About Namespaces
SDL uses some rather common (and short) names for certain procedures and functions.  An
early design decision was taken to not prefix all SDL items with a special tag, such as SDL_.
First, such a convention requires that they be absolutely everywhere, and would seriously
impact the readability of the code.  Second, Delphi’s namespace (unit) rules are quite
straightforward.

We chose instead to place all SDL functionality in a single unit.  Any time a namespace
conflict is discovered, simply prefix the desired SDL call with SDL. (that is SDL period).
Here is an example:

Advance(iter);
SDL.Advance(iter);

These represent exactly the same function call.

In order to avoid naming collisions for classes, we have chosen to use the letter D (as
opposed to T) to prefix all SDL class names.  That is why you see DObject, DContainer,
and so forth.

We hope that this is acceptable to you.  If you have suggestions about how to modify this
scheme, please email us.  Of course, purchasing the source edition will allow you to make
any changes you want.



- 13 -

Error Handling
SDL and SuperStream throw exceptions whenever illegal conditions are encountered.
SDL’s exceptions are rooted by SDLException.  You should never rely on exception
handling during the normal course of execution in your program.  Therefore, any
SDLException throw by your program should be considered a bug that must be eradicated.
Use SDL’s various testing methods to ensure that a method call will succeed before you
execute it.

SDL also has a number of assertions throughout its implementation.  If you purchased the
source version, you can compile a version of SDL that has these assertions enabled, which
provides additional diagnostics.



- 14 -

Ten Easy SDL Lessons
Because Delphi programmers may not be familiar with SDL programming techniques, we
present ten examples here, showing how SDL’s generic algorithms and containers can be
used.  For each example we’ll provide a short narrative describing the problem and then
display the SDL-based code that is a solution.

All of the lessons will use this simple object definition:

Type
  TEmployee = class
    Id : Integer;
    Name : String;
    Salary : Integer;
    Benefits : Boolean;
  End;

Lesson 1 - Keeping Lists of Objects
Let’s say that we want to store a list of employee objects.  This is very simple to do with
Delphi’s own TList class, and it’s something that nearly every Delphi programmer has done.
We’re going to create a list of employee objects, then print out the salary values for each
one.  Let’s look at the Delphi code, and then see the equivalent SDL code.

Procedure DelphiList;
Var list : TList;
    I : Integer;
    Emp : TEmployee;
Begin
  For I := 1 to 10 do
    List.add(TEmployee.Create);

  For I := 0 to list.count – 1 do
    Begin
      Emp := TEmployee(list[I]);
      Writeln(‘Salary for ‘, emp.name, ‘ is ‘, emp.salary);
    End;

  For I := 0 to list.count – 1 do
    TObject(list[I]).free;

  List.free;
End;

That’s pretty simple code.  The SDL code is just as simple, and we’ll see later on how much
flexibility using SDL gives you.

Procedure SDLList;
Var list : DList;
    I : Integer;
    Iter : DIterator;
Begin
  List := DList.Create;
  For I := 1 to 10 do
    List.add([TEmployee.Create]);



- 15 -

  Iter := list.start;
  While not atEnd(iter) do
    Begin
      Emp := getObject(iter) as TEmployee;
      Writeln(‘Salary for ‘, emp.name, ‘ is ‘, emp.salary);
      Advance(iter);
    End;
  ObjFree(list);
  List.free;
End;

The SDL code, while structured very slightly differently, is quite easy to read.  Note the use
of the ObjFree function – you’ll learn a lot more about the many functions (or algorithms)
that SDL offers later on.  Here is another way of writing the same thing, in a more SDL-
centric way:

Function GenEmployee(ptr : Pointer) : DObject;
Begin
  Result := Make([TEmployee.Create]);
End;
Procedure PrintEmployee(ptr : Pointer; const obj : DObject);
Begin
  With asObject(obj) as TEmployee do
    Writeln(‘Salary for ‘, name, ‘ is ‘, salary);
End;
Procedure WriteEmployee(ptr : Pointer; const obj : DObject);
Var list : DList;
Begin
  List := DList.Create;
  Generate(list, 10, MakeGenerator(GenEmployee));
  ForEach(list, MakeApply(PrintEmployee));
  ObjFree(list);
  List.free;
End;

Note how compact the WriteEmployee procedure is, and how clearly it reads.  We are using
three algorithms here – generate, forEach, and ObjFree.  Generate calls a generator
function, which is a function that creates DObjects.  ForEach calls a function with each item
in a container, and ObjFree calls TObject.Free for each item in a container.  These three
algorithms are just a small part of the many generic algorithms that are part of SDL.  Using
these algorithms creatively is the key to multiplying your productivity.

Lesson 2 – Keeping Lists of Strings and other Atomic Types
One of the best things about SDL containers is that they don’t hold just pointers, or objects,
like other data structures for Delphi do.  They can hold just about any atomic type.  And you
can even mix them in the same container!  Let’s say that we want to store a bunch of strings,
numbers, and floating point values in a container.  Here’s how we can do that:

Procedure GenMix;
Begin
  Case Random(3) of
  0 : result := Make([Random(10)]);
  1 : result := Make([‘str ‘ + IntToStr(Random(10))]);
  2 : result := Make([Random(1000) / 1000]);



- 16 -

  end;
end;
procedure PrintMix(ptr : Pointer; const obj : DObject);
begin
  case obj.vtype of
    vtInteger: writeln(‘Integer: ‘, asInteger(obj));
    vtAnsiString: writeln(‘String: ‘, asString(obj));
    vtExtended: writeln(‘Extended: ‘, asExtended(obj));
  end;
end;
Procedure MixEmUp;
Var a : DArray;
Begin
  A := DArray.Create;
  Generate(a, 10, MakeGenerator(GenMix));
  ForEach(a, MakeApply(PrintMix));
  a.free;
end;

SDL can, in its containers, effectively handle a mixture of atomic types.  Most of the time
you’ll just store one type in a container, but it’s nice to know that the flexibility is there.
SDL stores the following atomic types:

n VtInteger
n VtBoolean
n vtChar
n vtExtended
n vtString
n vtPointer
n vtPChar
n vtObject
n vtClass
n vtWideChar
n vtPWideChar
n vtAnsiString
n vtCurrency
n vtWideString
SDL takes care of the storage of all of these atomic types automatically – although it’s still
important for you to understand what’s going on underneath, so that you can manipulate the
DObject values correctly.  You’ll learn more about this later.

Lesson 3 – Iterating with Iterators
Iterators are one of the most powerful features in the SDL library.  By making extensive use
of iterators, you’re insulating yourself against changes in your program’s structures.
Iterators work the same way across all SDL containers.  What follows is an example that
demonstrates this, by storing the same data in both a list structure and in an array structure,
and performs the same operations on both.

Procedure Iteration;



- 17 -

Var iter : DIterator;
    Arr : DArray;
    List : DList;
    Sum : Integer;
Begin
  Arr := DArray.Create;
  List := DList.Create;
  Generate(arr, 10, MakeGenerator(GenEmployee));
  CopyTo(arr, list);

  Sum := 0;
  Iter := arr.start;
  While not atEnd(iter) do
    Begin
      Inc(sum, TEmployee(getObject(iter)).salary);
      Advance(iter);
    End;
  Writeln(‘Sum is ‘, sum);

  Sum := 0;
  Iter := list.start;
  While not atEnd(iter) do
    Begin
      Inc(sum, TEmployee(getObject(iter)).salary);
      Advance(iter);
    End;
  Writeln(‘Sum is ‘, sum);

  ObjFree(arr);
  Arr.free;
  List.free;
End;

Note that the code to iterate over the list and the array is identical.  You should also note
that we only performed ObjFree on the arr variable, and not on the list variable.  This is
because the two containers have the same objects in them – the copyTo routine only makes
copies of the pointers to the objects (it is a “shallow” copy of a the arr container).

This example demonstrates a use of iterators.  There is another way of expressing the same
operation using generic algorithms:

Function SumSalary(ptr : Pointer; const obj1, obj2 : DObject) : DObject;
Begin
  Result := make([asInteger(obj1) + TEmployee(asObject(obj2)).Salary]);
End;
Procedure UseGeneric;
Var arr : DArray;
Begin
  Arr := DArray.Create;
  Generate(arr, 10, MakeGenerator(GenEmployee));
  Writeln(‘Salary sum is ‘, asInteger(Inject(arr, [0], SumSalary)));
  Arr.free;
End;

By now you may be understanding why generic algorithms are so powerful!  Let’s look at
using iterators to limit a range of an operation to a particular part of a data structure.



- 18 -

Procedure LimitGeneric;
Var arr : DArray;

Starting, ending : DIterator;
Begin
  Arr := DArray.Create;
  Generate(arr, 10, MakeGenerator(GenEmployee));
  Starting := arr.start;
  AdvanceBy(starting, 2);
  Ending := arr.finish;
  RetreatBy(ending, 2);
  Writeln(‘Salary for some employees is ‘,
    AsInteger(
      InjectIn( starting, ending,
                [0], SumSalary)));
end;

Lesson 4 – Using SDL instead of Delphi’s Data Structures
Delphi provides two basic data structures – TList and TStringList.  Let’s look at how to use
SDL instead of these, and what the SDL equivalents offer in additional functionality.

Here’s a simple example of TStringList code:

Procedure TStringThing;
Var sl : TStringList;
    I : Integer;
Begin
  Sl := TStringList.Create;
  For I := 1 to 20 do
    Sl.add(RandomString);
  Sl.sort;
  For I := 0 to sl.count - 1 do
    Writeln(sl[I]);
  Sl.free;
End;

Here’s an equivalent SDL version:

Procedure SDLStringThing;
Var arr : DArray;
    Iter : DIterator;
Begin
  Arr := DArray.Create;
  For I := 1 to 20 do
    Arr.add([RandomString]);
  Sort(arr);
  Iter := arr.start;
  While iterateOver(iter) do
    writeln(getString(iter));
  arr.free;
End;

This version makes use of a neat SDL helper function – iterateOver.  Iterate over returns
true while its source iterator is not atEnd, and automatically advances it.  You need to call
iterateOver with a fresh iterator (not one that’s already been used with iterateOver) for
implementation reasons, but it’s a very handy function.



- 19 -

TStringList also offers the very convenient IndexOf and Find functions.  Here’s some
equivalent SDL code:

Procedure SDLFinding;
Var arr : DArray;
    Loc : DIterator;
Begin
  Arr := DArray.Create;
  Generate(arr, 20, RandomString);
  Loc := find([‘toaster’]);        // linear search
  If not atEnd(loc) then
    Writeln(‘found it: ‘, getString(loc));
  Sort(arr);
  Loc := BinarySearch(arr, [‘toaster’]);  // log N search
  If not atEnd(loc) then
    Writeln(‘found it: ‘, getString(loc));
  Arr.free;
End;

This code performs a search on an array using two different algorithms – find and
binarySearch.  Find is a linear search through any container, looking for a value.
BinarySearch relies on the container being sorted, and performs a Log N efficiency search.

Other data structures, such as Maps, offer powerful searching and location functionality as
well.  Find will always work on any container, although it may not be optimally efficient.

Lesson 5 – Using Maps (Key-Value Pairs)
Studies have indicated that, when available, maps make up some 90% of all container class
usage.  There’s a reason for that – they’re amazing useful, so much so that when you stop
and analyze a given storage requirement in an application, it’s almost always easily phrased
in terms of maps.

Until SDL, there hasn’t been an effective way of storing maps.  The only possibility was to
use TStringList, keep it sorted, and put objects in the Objects property.  There are serious
problems with this approach, though – TStringList is based on arrays, and does not scale
effectively.  In addition, data that has a bad storage pattern (already sorted) may generate
extremely inefficient results when used with TStringList.  That’s not to say that TStringList
is inefficient – it isn’t, but it is limited by the underlying data store.

SDL’s mapping structures are efficient and scale well.  The ordered maps, in particular, are
very well suited to just about any pattern of data access: They are red-black trees, and
rebalance themselves automatically to match the data stored.  They maintain their good
characteristics at all times, which means a guaranteed Log N time for just about any
operation.

Let’s create a map of employee id to employee object.  This type of operation is very
common – we want to be able to quickly look up any employee given his/her employee
number.  We want to be able to identify if we’re using a particular employee number.  We
may also want to be able to iterate over the employees.

Procedure MapEmployees;
Var map : DMap;
    Iter : DIterator;



- 20 -

    I : Integer;
    Emp : TEmployee;
Begin
  Map := DMap.Create;
  For I := 1 to 20 do
    Begin
      Emp := TEmployee.Create;
      Map.putPair([emp.id, emp.name]);
    End;

  // locate employee with id 1001
  Iter := map.locate([1001]);
  If atEnd(iter) then
    Writeln(‘Employee doesn’’t exist’)

           Else
             Writeln(‘Employee is ‘, TEmployee(getObject(iter)).name);

  // remove employee 2004 - this will remove both the key and value.
  map.remove([2004]);

  Iter := map.start;
  While iterateOver(iter) do
    Writeln(TEmployee(getObject(iter)).name);

  // iterate over the employee ids
  iter := map.start;
  setToKey(iter);
  while iterateOver(iter) do
    writeln(‘Employee ID is ‘, TEmployee(getObject(iter)).id);

  ObjFree(map);
  Map.free;
End;

There are a couple of interesting things to note about this example – first, note the usage of
the locate function to find out whether a given key is in the map or not.  Second, note that
the remove function can be called to take a key-value pair out of the map.  Third, when we
wanted to iterate over the key part of each pair, we called setToKey on the iterator.  Calling
setToKey tells SDL that when we use a getXXX function on the iterator, we want it to
return the key part of a key-value pair.  To set the iterator back to returning values, call
setToValue.

Let’s look at another way of mapping our employees.  This time we’ll do it by name.  We’re
going to create a map of names to employee objects.

Procedure MapEmployees;
Var map : DMap;
    Iter : DIterator;
    I : Integer;
    Emp : TEmployee;
Begin
  Map := DMap.Create;
  For I := 1 to 20 do
    Begin
      Emp := TEmployee.Create;
      Map.putPair([emp.name, emp]);



- 21 -

    End;

  Iter := map.locate([‘ted jones’];
  If not atEnd(iter) then

Begin
      Emp := getObject(iter) as TEmployee;

  Writeln(‘Found Ted Jones, whose id is ‘, emp.id;
    End;

  Iter := map.start;
  While iterateOver(iter) do
    Begin
      SetToValue(iter);
      Emp := getObject(iter) as TEmployee;
      SetToKey(iter);
      Writeln(‘Found at key ‘, getString(iter), ‘ employee id ‘, emp.id);
    End;

  ObjFree(map);
          Map.free;

End;

Lesson 6 – Using Sets
Sets are another very common data structure.  Delphi and Object Pascal provide an elegant,
albeit limited, set feature in the language.  Programmers coming from other languages often
don’t make use of sets to their fullest.  SDL provides a very powerful set abstraction; one
that can deal with any kind of atomic type.

Let’s look at an example that works with a set of random numbers:

Function RandomNumber(ptr : Pointer) : DObject;
Begin
  Result := Make([Random(1000)]);
End;
Procedure SetStuff;
Var s : DSet;
    I, x : Integer;
Begin
  S := DSet.Create;
  Generate(s, 40, MakeGenerator(RandomNumber));

  For I := 1 to 50 do
    Begin
      X := Random(1000);
      If set.includes([x]) then
        Writeln(x, ‘ is in the set’)
      Else
        Writeln(x, ‘ is NOT in the set’);
    End;
End;

This is an example of a very basic set usage.  It builds a set full of random numbers, then
uses that set to determine if other random numbers are in the set.  Let’s do something a little



- 22 -

more sophisticated.  We know that Delphi supports certain set operations, like set
intersection and set unions.  SDL supports these as well.  Here’s an example:

Procedure SetOps;
Var s1, s2 : DSet;
    A : DArray;
    Iter : DIterator;
Begin
  S1 := DSet.Create;
  S2 := DSet.Create;
  A := DArray.Create;
  Generate(s1, 100, makeGenerator(RandomNumber));
  Generate(s2, 100, makeGenerator(RandomNumber));
  SetIntersection(s1, s2, a.finish);
  Iter := a.start;
  While iterateOver(iter) do
    Writeln(getInteger(iter), ‘ is in both sets.’);
  FreeAll([s1, s2, a]);
End;

   This examples generates two sets full of random numbers, then computes the intersection
between the two sets.  It then prints out the intersection set, which is the set of numbers that
are in both sets.  We can easily modify this to generate the union of the two sets, which is
the set of numbers that are in both sets:

Procedure SetOps;
Var s1, s2 : DSet;
    A : DArray;
    Iter : DIterator;
Begin
  S1 := DSet.Create;
  S2 := DSet.Create;
  A := DArray.Create;
  Generate(s1, 100, makeGenerator(RandomNumber));
  Generate(s2, 100, makeGenerator(RandomNumber));
  SetUnion(s1, s2, a.finish);
  Iter := a.start;
  While iterateOver(iter) do
    Writeln(getInteger(iter), ‘ is in one of the sets.’);
  FreeAll([s1, s2, a]);
End;

Note that to accomplish this, we only needed to change the setIntersection to a setUnion
call.

Lesson 7 – Using the Sort Algorithms
SDL provides two different bases for sorting – the sort and stableSort algorithms.  Sort is a
quicksort, and stableSort is a merge sort.  StableSort has the additional property that, for any
items that are equal, their order will be retained after the sort.  On very large sorts,
stableSort can be faster than quickSort, at the expense of using more memory.

Function NameComparator(ptr : Pointer; const obj1, obj2 : DObject) : Integer;
Begin
  Result := CompareText(
      TEmployee( getObject(obj1)).name, TEmployee( getObject(obj2)).name));



- 23 -

End;
Function BenefitsComparator(ptr : Pointer; const obj1, obj2 : DObject) : Integer;
Var e1, e2 : Boolean;
Begin
  E1 := TEmployee(getObject(obj1)).benefits;
  E2 := TEmployee(getObject(obj2)).benefits;
  If e1 = e2 then
    Result := 0

           Else if e1 then
             Result := -1
           Else
             Result := 1;

End;
Procedure SortDemo;
var a1, a2 : DArray;
begin
  a1 := DArray.Create;
  Generate(1, 10, MakeGenerator(GenEmployee));
  sortWith(a1, MakeComparator(NameComparator));
  PrintContainer(a1);
  a2 := a1.clone as DArray;
  sortWith(a1, MakeComparator(BenefitsComparator));
  stablesortWith(a2, MakeComparator(BenefitsComparator));
  PrintContainers([a1, a2]);
  ObjFree(a1);
  a1.free;
  a2.free;
end;

This rather long example shows the essential difference between the two sorting algorithms.
We first sort by employee id and print the employees.  We then sort with both the sort
algorithm and the stableSort algorithm on the benefits field.  When we print out a1 (done
with sort), the employees are no longer in employee id order, because sort scrambles them
up.   When we print out a2, we notice that all the employees without benefits (benefits =
false) show up first, still in employee id order, followed by those who have benefits.  This is
the advantage of stable-sorting.  You can sort multiple times, and the order is retained
(without violating sort concerns).

Lesson 8 – Changing Data Structures
We’ve mentioned several times that you can change data structures fairly easily with SDL.
Let’s show how this is possible.

Procedure PrintNumber(ptr : Pointer; const obj : DObject);
Begin
  Writeln(getInteger(obj));
End;

Procedure UsingArray;
Var con : DContainer;
    I : Integer;
Begin
  con := DArray.Create;
  Generate(con, 100, MakeGenerator(RandomNumber));

  For I := 1 to 10 do



- 24 -

    con.remove([Random(100)]);

  ForEach(con, MakeApply(PrintNumber));

 Con.free;
End;

Procedure UsingList;
Begin
Var con : DContainer;
    I : Integer;
Begin
  con := DList.Create;
  Generate(con, 100, MakeGenerator(RandomNumber));

  For I := 1 to 10 do
    con.remove([Random(100)]);

  ForEach(con, MakeApply(PrintNumber));

 Con.free;
End;

Procedure UsingSet;
Var con : DContainer;
    I : Integer;
Begin
  con := DSet.Create;
  Generate(con, 100, MakeGenerator(RandomNumber));

  For I := 1 to 10 do
    con.remove([Random(100)]);

  ForEach(con, MakeApply(PrintNumber));

 Con.free;
End;

Note how similar these three examples are – in fact, they’re identical except for the
container construction call.  The code that operates on them is identical.  This example is
important because it goes to the heart of why you would choose one data structure over
another.  Let’s follow the thought process through these three examples.

Our first example uses arrays.  Arrays are good at iteration, and very good for random
access, but not so good for addition and removal.  In our example we are adding and
removing, but not doing any indexed access.  This routine is not performing very well, so
we might as well try to make it more efficient.

Our second example uses a list.  Lists are good at iteration, and very good at insertion and
deletion at any point.  They are not particularly good at finding items.  This second routine
performs better because it can quickly add and do the removal operation, but we find that
remove runs slowly because list must scan through all of its elements to find the element
that needs to remove.



- 25 -

Since we really want that remove to run fast, we change our data structure in the third
example to use a DSet.  Now every operation runs quickly.  Of course, set is not the ideal
structure for every situation.  Its drawbacks include larger storage requirements, and
increased time (log N) for both addition and deletion.  The advanced is that instead of a
O(N) time for the removal, we have a O(Log N).

Lesson 9 – Transforming Objects
One of the most powerful algorithm sets in SDL is the transform family.  Transform will
iterate over one or two containers (in its unary and binary forms) and call a specified
function with items from each container.  The result of the function is then stored at a
destination.  Let’s say that we wanted to create a routine that would fill an array with the
hash codes of all our employee names.  Here’s how we would do it (with transformUnary):

Function HashName(ptr : Pointer; const obj : DObject) : DObject;
Begin
  Result := make([JenkinsHashString(TEmployee(getObject(obj)).name)]);
End;
Procedure showTransformUnary;
Var employees, hashcodes : DArray;
Begin
  Employees := DArray.Create;
  Hashcodes := DArray.Create;
  Generate(employees, 20, MakeGenerator(GenEmployee));
  TransformUnary(employees, hashcodes, MakeUnary(HashName));
  FreeAll([employees, hashcodes]);
End;

The transform unary algorithm does all the hard work of organizing values and putting them
into the output container automatically.  Let’s try another scenario, in which we want to fill
an array with a sum of the hash code and the employee id:

Function SumCodes(ptr : Pointer; const obj1, obj2 : DObject) : DObject;
Begin
  Result := Make([
    TEmployee(getObject(obj1)).id + asInteger(obj2) ]);
End;
Procedure showTransformBinary;
Var employees, hashcodes, sums : DArray;
Begin
  Employees := DArray.Create;
  Hashcodes := DArray.Create;
  Sums := DArray.Create;
  Generate(employees, 20, MakeGenerator(GenEmployee));
  TransformUnary(employees, hashcodes, MakeUnary(HashName));
  TransformBinary(employees, hashcodes, sums, MakeBinary(SumCodes));
  FreeAll([employees, hashcodes, sums]);
End;

Using the transform algorithms effectively can make your code very small, and very
readable.

Lesson 10 – Filtering Objects
This lesson demonstrates another family of SDL functions – the filtering functions.
Filtering out a set of objects happens all the time, and SDL is here to help.  Our scenario this



- 26 -

time is that we want to examine all of our employees and create a list of those making over
$50,000 a year.  We then want to sort the list, and print out their names.  SDL’s filtering and
other algorithms make this very easy to accomplish:

Function IsRich(ptr : Pointer; const obj : DObject) : Boolean;
Begin

Result := TEmployee(getObject(obj)).salary >= 50000;
End;
Function NameComparator(ptr : Pointer; const obj1, obj2 : DObject) : Integer;
Begin
  Result := CompareText(
      TEmployee( getObject(obj1)).name, TEmployee( getObject(obj2)).name));
End;
Procedure PrintEmployee(ptr : Pointer; const obj : DObject);
Begin
  With asObject(obj) as TEmployee do
    Writeln(‘Salary for ‘, name, ‘ is ‘, salary);
End;
Procedure FilterDemo;
Var employees, richGuys : DArray;
    Iter : DIterator;
Begin
  Employees = DArray.CreateWith(MakeComparator(NameComparator));
  RichGuys := DArray.CreateWith(MakeComparator(NameComparator));
  Generate(employees, 50, MakeGenerator(GenEmployee));
  Filter(employees, RichGuys, MakeTest(IsRich));
  Sort(RichGuys);
  ForEach(RichGuys, MakeApply(PrintEmployee));
  ObjFree(employees);
  FreeAll([Employees, RichGuys]);
End;

There’s one special trick being used here.  We making our arrays with CreateWith; that tells
SDL about the comparator we want to use with for the container being created.  All
algorithms will then use that comparator as the default comparator.

Much of the time you can ignore comparators, because SDL puts a fairly intelligent default
comparator on your containers.  This comparator can sort on any of the atomic types.  If you
want to have special ordering behavior, such as sorting on a field of an object, you need to
provide SDL with a comparator that can do the job.  NameComparator in the example above
does just that.



- 27 -

Containers
SDL provides the programmer with 11 basic data structures, which cover a large range of
programmer’s needs.  The data structures have good characteristics: efficient
implementation, consistent naming, and compatibility with generic algorithms.  In addition,
SDL’s data structures provide a seamless compatibility with Delphi’s fundamental data
types, as well as its object model.

SDL stores items in its data structures, which are descended from DContainer.  Items are
either Delphi primitive data types, or Delphi objects.  Therefore, items can be any of the
following:

Integer, Boolean, Char, Extended, ShortString (old-style string), Pointer, PChar, Object,
Class, WideChar, PWideChar, String (long string), Currency, Interface, WideString.

SDL always stores items by value.  This is very important!  SDL does not own
objects that are inside of its containers.  When you put an integer or a string into
a container, the value is copied into the container.  When you put an object
(pointer to object) into a container, the pointer is copied, but the object is not;
this is because SDL is storing the pointer, not the object itself.

When an SDL container is destroyed, it does not free the objects that are inside of it.  You
can use the ObjFree generic algorithm to do this, if you want to.

Because Delphi provides limited language support for certain constructs that would have
made creating SDL easier, it is important that you understand exactly how SDL stores your
items.

All About DObjects
Delphi provides us with a parameter type known as array of const.  You can pass just about
any atomic type or object as part of an array of const.  The receiving procedure sees the
array of const as an array of TVarRec objects.  DObject (SDL’s atomic type) is defined
precisely the same way as TVarRec.  When you add items to a container, you will usually
use the add([item]) form.  Delphi converts this into an array of TVarRec records, and passes
them to the add procedure.  SDL makes copies of all the items passed in (creates new
TVarRec/DObject records for them), and adds them to the container.

If you are just using the helper functions (putInteger, getInteger, atAsInteger, etc.) you don’t
need to worry about this value copying – it will happen automatically.  Periodically, for
performance reasons, you may want to interact directly with the DObject records that SDL
is storing.  If you do this, you need to be aware of the rules.

DObjects can be copied directly, by assigning them to one another.  If you do this, you need
to ensure that only one of the objects is cleaned up with the ClearDObject function.  If you
want to make a copy, use the CopyDObject function.  If you want to ensure that a DObject
is empty without clearing it, use InitDObject.  SDL uses these functions internally to ensure
that all items are copied around cleanly, and that no memory is leaked.



- 28 -

If you retrieve a DObject from a container directly, you need to clean it up when you are
finished with it by calling ClearDObject.  This is because SDL has created a copy of the
DObject and passed it back to you.  ClearDObject doesn’t do anything for most types, but
for Strings, ShortStrings, and Extended values it cleans up associated memory.

If you retrieve a pointer to a DObject (PDObject), you should not clean it up.  If you
examine the SDL source code, you will see the SDL’s algorithms rely extensively on
retrieving pointers to DObjects.  They do this for performance reasons, and also because
they wish to manipulate the items in the containers without actually knowing what the types
of those items are.

SDL provides two versions of many functions that operate on containers – the first is
conventionally named (like add), and the second is the direct DObject form, prefixed by an
underscore (_add).  Using the conventional form, you can pass any items in that Delphi will
permit in an array of const, which is just about all atomic types and object pointers.  You
may periodically use the second form when you have a DObject already, which can
sometimes happen when you are coding for extreme efficiency.  The conventional forms
calls the DObject form internally, and automatically.

Another side effect of this is that SDL takes advantage of the array of const feature to allow
multiple items to be specified in calls.  For example, add([25, 26, 27, 31]) will add all four
numbers to its container.  SDL will internally loop through each item in the array and add it
automatically.  This can be a very convenient shortcut at times.

Here is a list of functions that operate directly on DObjects:

procedure SetDObject(var obj : DObject; value : array of const);
procedure InitDObject(var obj : DObject);
procedure CopyDObject(const source : DObject; var dest : DObject);
procedure MoveDObject(var source, dest : DObject);
procedure ClearDObject(var obj : DObject);

Example Code
SDL comes with many examples.  Please examine the SDLExamples.pas file that came
with your distribution – it’s a great guide to the usage of various SDL features and
containers.  It also demonstrates many “correct” ways to use SDL.

Container hierarchy
SDL divides its containers into a simple hierarchy.  Moving down the hierarchy increases
the functionality available in each container.  This has advantages; note that if you know
that a given situation requires a mapping structure, you can assume in your code that the
data structure is a descendent of DAssociative.  Then, later, you can use any of the
subclasses of DAssociative to store the actual data, and none of your code that uses the data
will need to change.  You can further insulate yourself by making sure that you use iterators
wherever possible.

Figure 1 shows the SDL container class hierarchy:



- 29 -

DIterHandler

DContainer

DSequence

DVector

DAssociative

DInternalMap DInternal
HashMap

DHashMapDMap

DMultiMap

DSet

DMultiSet

DHashSet

DMulti
HashMap

DMultiHash
Set

DList

DArray

DIterAdapter

DAdapter

Figure 1- SDL Class Hierarchy

DIterator
Iterators (DIterator) are absolutely fundamental to working with SDL.  Generic algorithms
(and very likely your algorithms) operate by manipulating and using iterators, rather than
working with the container classes directly.  All containers provide methods for retrieving



- 30 -

their starting and finishing iterators.  Once you have an iterator, you can use a set of global
functions to move them from item to item, retrieve the item the iterator is positioned at, and
put new items at the iterator position.  All of these operations on iterators are independent of
the containers underneath them.  Here is an example of retrieving and using an iterator:

Procedure test(c : DContainer);
var iter : DIterator;
begin
  iter := c.start;
  while not atEnd(iter) do
    begin
      writeln(getInteger(iter));
      advance(iter);
    end;
end;

This example accepts any kind of container, then prints out each item in the container,
assuming that item is an integer.  Note the use of the atEnd function, which tests to see if an
iterator is positioned after the last item in the container.  When the iterator is at the end of a
container, you cannot read from it (with a getXXX function).  Some containers do permit
you to write to an iterator that is positioned at the end, but not all (associative containers do
not support this).  SDL provides a full set of getXXX functions; one is provided for each
atomic type.  There are equivalent putXXX functions as well.  Here’s the list:

function getInteger(const iterator : DIterator) : Integer;
function getBoolean(const iterator : DIterator) : Boolean;
function getChar(const iterator : DIterator) : Char;
function getExtended(const iterator : DIterator) : Extended;
function getShortString(const iterator : DIterator) : ShortString;
function getPointer(const iterator : DIterator) : Pointer;
function getPChar(const iterator : DIterator) : PChar;
function getObject(const iterator : DIterator) : TObject;
function getClass(const iterator : DIterator) : TClass;
function getWideChar(const iterator : DIterator) : WideChar;
function getPWideChar(const iterator : DIterator) : PWideChar;
function getString(const iterator : DIterator) : String;
function getCurrency(const iterator : DIterator) : Currency;
function getVariant(const iterator : DIterator) : Variant;
function getInterface(const iterator : DIterator) : Pointer;
function getWideString(const iterator : DIterator) : WideString;

Here is the equivalent list of putXXX functions:

procedure put(const iterator : DIterator; objs : array of const);
procedure putInteger(const iterator : DIterator; value : Integer);
procedure putBoolean(const iterator : DIterator; value : Boolean);
procedure putChar(const iterator : DIterator; value : Char);
procedure putExtended(const iterator : DIterator; const value : Extended);
procedure putShortString(const iterator : DIterator; const value : ShortString);
procedure putPointer(const iterator : DIterator; value : Pointer);
procedure putPChar(const iterator : DIterator; value : PChar);
procedure putObject(const iterator : DIterator; value : TObject);
procedure putClass(const iterator : DIterator; value : TClass);
procedure putWideChar(const iterator : DIterator; value : WideChar);
procedure putPWideChar(const iterator : DIterator; value : PWideChar);
procedure putString(const iterator : DIterator; const value : String);



- 31 -

procedure putCurrency(const iterator : DIterator; value : Currency);
procedure putVariant(const iterator : DIterator; const value : Variant);
procedure putInterface(const iterator : DIterator; value : Pointer);
procedure putWideString(const iterator : DIterator; const value : WideString);

There is also the output function, which combines the writing of a value to an iterator’s
position with advancing the iterator:

procedure output(var iterator : DIterator; objs : array of const);

Making use of these functions lets you get your atomic values in and out of DObjects easily
and quickly.  SDL has a great number of these type conversion functions – make use of
them!  SDL has these details done right, so you don’t have to code them yourself.

Certain containers store pairs (DMap, DMultiMap, DHashMap, DMultiHashMap).  When
you retrieve an iterator from one of these containers, the iterator will walk over the values in
the key-value pairs.  If you want to examine the keys, call SetToKey(iterator).  After making
that call, the getXXX functions will return the key part of the pair.  To retrieve values, call
SetToValue(iterator).

DIterators are records.  They have been specifically designed to ensure that you can copy
them freely, return them as results from functions, and assign them between variables.  Each
DIterator contains enough information to indicate which container it came from, the position
it has in that container, and certain flags indicating the status of the iterator.  DIterators are
exactly 16 bytes in length, and will stay that way if possible (to accelerate reading and
writing DIterators are one cache line in length).

DIterators can be grouped into classes.  Each class adds more functionality.  The class of an
iterator is dependent on the data structure that produced it.  Certain data structures only
support very simple operations; this means that their iterators are simple.  Other data
structures provide much fuller iterator operation support.  What follows is a description of
the iterator classes.

Forward Iterators

The simplest iterator is one that can only move forward.  You can retrieve the iterator from
the container (usually with the start function), and you can move it forward (with advance)
until it is at the end of the container.  You can use the following functions with forward
iterators:

advance - move an iterator to the next item
getXXXX - retrieve the item the iterator is positioned at
equals - test if two iterators are at the same position
putXXXX - store an item where the iterator is positioned
output – store an item where the iterator is positioned, and advance the iterator
advanceBy - advance the iterator multiple positions (retreat if negative)
atStart - tests to see if an iterator is at the start of a container
atEnd - test to see if an iterator is at the end of a container
getContainer - retrieves the container associated with an iterator
distance - determines the number of positions between two iterators



- 32 -

Bidirectional Iterators

Bidirectional iterators extend forward iterators so that they can move backwards.  The
following functions work only with bidirectional (and better) iterators:

retreat - moves an iterator backwards to the previous item
retreatBy - moves an iterators backwards by a number of positions
getAt - retrieves the item at a certain position relative to the iterator
putAt - stores an item relative to the position of the iterator

Random Iterators

Random iterators extend bidirectional iterators to implement efficient movement of the
iterator to a random position in the container, usually indicated by an integer.  The following
functions work with random iterators:

index - determines the current position of the iterator, as an integer
less - determines if one iterator is pointing “earlier” in a container

Iterator Adapters

Iterators can be wrapped with adapters to provide additional or different behavior. SDL has
one such adapter DIterSkipper, which alters the behavior of the iterator it is attached to so
that advances and retreats move by a certain number of positions.

You can create your own adapters by subclassing DIterAdapter.

Iterator adapters work by substituting themselves into the iterator’s Handler field.  All
functions that are executed on the iterator are routed through the Handler.  The adapter can
then pass the request unmodified to the original handler (which is often the container that
produced the iterator), or they can modify the request, or do any other processing that is
required.

DContainer
DContainer is the base class for all container classes in the SDL library.  It defines a basic
set of public operations that all containers support, defines essential comparator
functionality, and anchors the container hierarchy with a set of abstract, virtual operations
that concrete container classes must implement.  It also provides default implementations of
a number of basic operations – these default implementations are very “lowest common
denominator”.  Subclasses may decide to implement these operations in a more efficient
way; to do so, they simply override the function with the new, improved, and more efficient
version.  Here is a list of the standard methods provided by containers:

add - add items to containers
clear - clears all items from a container
lone - creates a shallow copy of a container
contains - determines if a container has a given item in it
count - counts the number of times a given item occurs in a container
finish - returns an iterator positioned after the last item in the container
getComparator - returns the comparator currently being used by the container
isEmpty - determines if the container has any items in it
maxSize - returns the largest number of items the container can hold
remove - erases (removes) matching items from a container



- 33 -

size - returns the number of items in a container
start - returns an iterator positioned on the first item in the container

Since all containers provide these functions, quite a bit can be done without knowing
anything about the details of a data structure being used.  The DContainer interface, coupled
with the iterator manipulation functions, constitute a powerful abstraction of data structures
away from your code.

Comparators

Comparators are the functions used by SDL containers to compare elements.  For certain
structures, such as maps, comparators are absolutely integral to the function of the
container, as they provide the mechanism by which items are compared to one another.
Other container classes, like arrays, don’t use comparators to the same extent, but they are
still present.

A comparator is defined as follows:

DComparator = function (const obj1, obj2 : DObject) : Integer of object;

An alternate form of comparators is defined like this:

DComparatorProc = function(ptr : Pointer; const obj1, obj2 : DObject) : Integer;

These two definitions are compatible with each other because they take advantage of a trick
– calls on procedures of object always have self as the first parameter.  By placing a dummy
pointer in this position, we can make our comparators either closures (procedures on
objects) or functions (standalone functions).

If you are defining your own comparators, you should always ensure that the function
returns less than zero if obj1 is less than obj2, zero if obj2 equals obj2, and greater than
zero if obj2 is greater than obj1.

You will be using this most frequently when you are comparing two TObject descendents,
which will be contained inside the DObjects.  You can access the objects by using
asObject, like so:

ACar := asObject(obj1) as TCar

Comparators can be called very frequently, so you will want to try and make them as
efficient as possible.  Note that a little more knowledge about how DObjects are formed can
help in this efficiency:

Result := TCar(obj2.VObject)^.FValue - TCar(obj1.VObject)^.FValue;

This comparator compares two TCar objects based on the their FValue fields.  Note the trick
of subtracting the first from the second – this will give us a result with the correct sign for
the result.



- 34 -

Constructing Containers

All containers support two  forms of construction, and also have the ability to clone
themselves.  Here are the two forms:

Constructor Create; virtual;
Constructor CreateWith(comparator : DComparator); virtual;

Note that these constructors are virtual – this is very handy for algorithms that need to create
auxiliary storage and still want to work independently of container type.  The plain Create
constructor makes a container that uses the standard comparator routine.  This default
comparator routine knows how to compare all atomic Delphi types, such as strings, integers,
floats, and so forth.  It compares objects by comparing their pointers; this is adequate for
things like set membership, but is inadequate for locating items or any kind of ordering.  If
you’re storing objects you’ll probably want to provide your own comparator that works on
one of the fields of the object (see the section above for an example).

Containers can also clone themselves:

Function clone : DContainer; virtual;

This functions creates a complete new copy of the container, with copies of all items inside
the container.  Note that if the container had TObjects inside of it, the pointers will be
copied but not the objects themselves (a shallow copy).

Certain container classes provide additional constructor functions that are appropriate to
their specific data structures.  For example, the DArray class provides a CreateSize
constructor, which makes room for a certain number of items in the array.

Number of Items

Every container responds to the size function, which returns the number of items in the
container.  Note that you should not use the size function to iterate over containers.  If you
do, you’ll limit yourself to those containers that have random access iterators!  Instead,
retrieve an iterator with the start function and advance it until atEnd returns true.

MaxSize returns the largest number of items that you can place in a given container type.
Note that the number returned assumes you have unlimited memory; it is more of a
theoretical limit than a hard limit.

Contains determines if the container has a certain item inside of it.  Count iterates through
the container and determines the number of items that match the object specified.

Adding Items

Containers almost always support the add function, which puts new items into the container
(notable exceptions are the Map classes, which only accept pairs of items, in key – value
form).  There are often other functions that add items to the container, but most of them are
data structure specific.  Use the simple add call whenever you can – it’ll make your code as
independent of the underlying data structure as possible.



- 35 -

Removing Items

You can remove an item by calling remove.  Remove operates on a value-oriented basis.
The container uses its comparator to determine if an item needs to be removed.  Remove
will generally only remove one item.  There are other forms of the call (RemoveN) that can
be used to remove more than one item that matches the value passed in.

If you have an iterator positioned at an item, you can use the removeAt function.  This will
erase the element the iterator is over.  It also invalidates the iterator.

To remove all items from a container, use the clear function. All containers support clear.
Note that calling clear does not free any TObjects that the container might be holding
pointers to.  You can call the FreeAll algorithm to destroy the objects before clearing the
container.

Various subclasses have additional operations for removing elements that operate in ways
specific to that data structure.

Retrieving Items

Container-independent retrieval and iteration is achieved by using iterators.  All containers
support start and finish.  Calling start retrieves an iterator positioned at the first item in the
container.  Finish returns an iterator positioned just after the last element – this non-existent
position is known as the finish position.  If the container is empty, the start function may
return an iterator that is in the finish position.  You can test whether an iterator is at the
finish position with the following function:

Function AtEnd(const iter : DIterator) : Boolean;

AtEnd is often used in a construct like the following:

Procedure test(con : DContainer);
Var iter : DIterator;
    I : Integer;
Begin
  iter := con.start;
  while not atEnd(iter) do
  begin
    <.. do something ..>
    I := getInteger(iter);
    writeln(I);
    advance(iter);
  end;
end;

The atEnd procedure invokes a data structure-dependent method of determining if the
iterator is positioned at the finish of the container.



- 36 -

DSequence
DSequence is a container that holds its items in… a sequence!  Items placed in a sequence-
derived container will be retrieved in the order that they were added.  DSequences maintain
their ordering.  Note that a DSequence is not necessarily indexed (with an integer).  Double-
linked lists are DSequence-derived.  Double-linked lists offer rapid insertion and deletion at
any point.

Some of the functions available on DSequences are index-based.  These functions are not
necessarily efficiently implemented by certain kinds of DSequences.  Index-based functions
are generally only efficiently performed on DVector-based containers, but it will vary.
DDeques provide an intermediary type of container that performs well under many
conditions.

Adding Items

There are a number of additional functions for adding items that DSequence provides:

PutAt(pos, item)
PushBack(item)
PushFront(item)

Retrieving Items

DSequence provides the following additional methods for retrieving items from sequence-
type containers:

At(pos)
AtAsXXXX(pos)
Back
Front
IndexOf(item)
PopFront
PopBack

Removing Items

To remove items either use remove or use removeAt, which removes the item an iterator is
positioned at.  Be aware that removing the item pointed to by an iterator will usually
invalidate that iterator.

DVector
A DVector is a DSequence for which each item can be addressed by an integer index.
DArrays and DDeques are DVectors.  DVectors are frequently slower to add and delete
from in the middle of the structure, but offer very rapid access to individual elements
through an index.

These are the additional functions available with DVectors:

function capacity : Integer;
procedure ensureCapacity(amount : Integer);
procedure insertAtIter(iterator : DIterator; objs : array of const);



- 37 -

procedure insertAt(index : Integer; objs : array of const);
procedure insertMultipleAtIter(iterator : DIterator; count : Integer; objs : array of
const);
procedure insertMultipleAt(index : Integer; count : Integer; objs : array of const);
procedure insertRangeAtIter(iterator : DIterator; _start, _finish : DIterator);
procedure insertRangeAt(index : Integer; _start, _finish : DIterator);
procedure removeAt(index : Integer);
procedure setCapacity(amount : Integer);
procedure trimToSize;

DAssociative
The DAssociative classes place significantly more organization on their contents than do the
other classes.  The structure of the data is directly determined by the values that are placed
inside of them.  There are two major families of associative classes : Hash-based and red-
black tree-based.  Hash based structures are appropriate where comparisons are slow, or
there are smaller numbers of items, and where memory is not as important.  Red-black
structures are appropriate where ensuring access time is highly important, as red black trees
are balanced data structures.  Red-black trees have a guaranteed upper bound on the amount
of time it takes to execute their various operations.

Sets and Maps

Associatives are divided into two types – sets and maps.  They are, in fact, implemented
exactly the same way (they both store pairs).  Sets usually contain a null value in the second
half of the pair, and all their operations work on the key, by default.

Maps store pairs – they associative a given value with a given key.  They are exceptionally
useful data structures – in fact, it’s estimated that 90% of all container usage in programs is
map-based, where efficient and easy to use map implementations are available.  SDL
provides four different map structures: DMap, DMultiMap, DHashMap, DMultiHashMap.
DMap and DMultiMap are red-black tree based, and DHashMap and DMultiHashMap are
hash-based.

The multi designator indicates whether or not the container will accept multiple values for
the same key.  It is often desirable to have a container store only one value for a given key,
and if another value is set to the same key, it replaces the first value.  For these situations,
do not use the multi versions.

Multi-maps will allow any number of pairs with the same key to be added to the map.

Where maps associate a key with a value, sets are concerned only with the key.  For sets, the
value is the key.  Other than that, they generally perform exactly the same way that maps
do.

Adding Elements

To add elements to a set, use add.  To add elements to a map, use putPair or putAt.  Each
type of container will ensure that you use the correct form with assertions.  Note that is
doesn’t make any sense to try to add elements directly to a map (because you haven’t



- 38 -

supplied the value part of the pair), and it doesn’t make any sense to add pairs to a set
(because there isn’t any value).

Finding Elements

To find if a key is in a map, use locate.  To find if a value is in a set, you can also use locate.
For maps, locate returns an iterator positioned at the first item (value) that matches the key.
For sets, the iterator is positioned at the key itself (which is also the data!).

Note that if you want to retrieve a value from a map or set and you don’t know if the value
is actually there, use locate.  Test the iterator that locate returns – if it’s atEnd, then the key
doesn’t exist in the map, and you’ll have to add it.

Removing Elements

You can remove elements from maps using remove.

Container Adapters

Creating Your Own Containers
Creating your own containers is not too difficult – basically you need to override a series of
virtual functions that DContainer has defined.  Some of them don’t need to overridden –
there are default implementations.  Those default implementations may not be the fastest
way to perform an operation on your new data structure, so you may want to implement a
custom version.

You will very likely need the SDL source code to implement your own containers,
particularly if you need to change the definition of DIterator in any way.

Frequently Asked Questions

How do I get the number of items in a container?

The size function returns the number of items in any container.

How do I add items to a container?

If you’re adding to a non-map container, use the add function:

Container.add([value]);

If you’re adding to a map-based container, use the putAt or putPair functions:

Container.putAt([‘testing’, ‘again’], [1, 2]);
Container.putPair([‘toast’, 10]);



- 39 -

How do I iterate over a container?

Declare an iterator, then call the container’s start function to retrieve an iterator for the
container.  Loop until the iterator is at the end.  Here are the two basic techniques for doing
this:

Procedure Example(con : DContainer);
Var iter : DIterator;
Begin

Iter := con.start;
   While not atEnd(iter) do

  Begin
       Advance(iter);
     End;

   Iter := con.start;
   While iterateOver(iter) do

  Begin
// no advancement necessary – but don’t reuse the iterator once the loop is

done!
     End;
end;

How do I retrieve the keys from a map container?

Call SetToKey on your iterator, then retrieve values with the getXXX functions.  Call
SetToValue to retrieve the value part of the key-value pair again.

How do I sort a sequence?

Use the sort or stableSort algorithms.

Sort(container);

Note that sorting only makes sense on sequential containers.  Sorting an associative
structure will result in exceptions.

Why does SDL use functions instead of class members for its algorithms, and for iterator operations?

There are two reasons.  First, SDL iterators can operate on any class that implements the
DIterHandler interface.  SDL’s containers are descended from DContainer, which inherits
from DIterHandler, but other containers or container-like classes don’t have to be.

The second reason is for compatibility and interoperability with STL and JGL.  Both of
those packages use the functional style of programming.  In STL, this was done to enable all
algorithms to operate on C-style arrays as well as containers.  Soletta assumes that JGL was
coded this way to maintain compatibility with STL.

Another effect of this is that algorithms are very cleanly separated from the container code.



- 40 -

How do I find items in a map?

Call the locate function, and test the returned iterator:

Iter := map.locate([value]);
If not atEnd(iter) then
  Writeln(‘Found it: ‘, getInteger(iter));



- 41 -

Algorithms
SDL contains a large number of generic algorithms.  These algorithms are solutions to
problems that present themselves over and over again while you’re coding.  Study of this
section is very important to getting the maximum benefit out of SDL.  What you need to
learn to do is recognize when a common problem occurs, then substitute the appropriate
generic algorithm.

As a very simple example, we all know that a need to sort objects occurs all the time.
Rather than coding your own sort, you can call either sort or stableSort in the SDL library.
You’re probably used to calling a sort procedure in a library, rather than creating your own.

Let’s look at another situation: Let’s say you need have a bunch of employee objects and
you need to cull out the ones who are waiting for expenses to be reimbursed.  The removeIf
algorithm can do this for you.  Let’s say that you want to create reimbursement objects for
those employees that need to be paid.  The transformUnary algorithm is ideal for this case.

A Note About Ranges
Algorithms that accept a range (_start to _end, typically) do not apply themselves to the
_end element.  They stop at the position before the _end supplied.  This is done so that you
can conveniently pass (container.start, container.finish) as arguments to an algorithm. It is
generally illegal to do anything at container.finish.  Certain containers may permit addition
or writing at this location, but not all.

Naming Conventions
Because Delphi 3 does not support overloading, SDL uses a naming convention for its
functions to achieve the same thing.  For each algorithm there are often several ways to call
it, depending on what you want to achieve.  Decorators are added to the algorithm name to
arrive at the right call mix.  The following decorators are used:

n In – Perform the algorithm in a certain range (usually a _start - _end pair).
n To – Send the output of the algorithm to a destination (usually an _output

iterator).
n If – Use a test to determine if the algorithm should operate on that element

(usually a DTest).
n With – A comparator is provided that should be used in place of the

container’s comparator (a DComparator is passed to the algorithm).
So, for example, the routine UniqueInWithTo performs the unique algorithm, in a range,
with a comparator, to a destination.  It’s defined like this:

procedure uniqueInWithTo(_start, _end, dest : DIterator; compare : DBinaryTest);

These rules do tend to vary by algorithm, because each algorithm has a certain set of
parameters that must be provided to it.  The naming convention is followed wherever
possible, though.



- 42 -

Applying

forEach

procedure forEach(container : DContainer; unary : DApply);
procedure forEachIn(_start, _end : DIterator; unary : DApply);
procedure forEachIf(container : DContainer; unary : DApply; test : DTest);
procedure forEachInIf(_start, _end : DIterator; unary : DApply; test : DTest);

Applies a unary function to each element in a container.  Frequently you’ll need to pass each
item in a container to a function – perhaps you are printing, or summing the values in the
container, or you need to perform some kind of special processing on each item.  The
various forms of the forEach function can do this for you.  Remember that you can convert a
non-closure function into the DTest these algorithms require with the MakeTest function.

ForEach applies the unary function to each item in the container.

ForEachIn applies the unary function to each item in the range given (not including the
item at the _end position).

ForEachIf applies the test specified to each item in the container.  For those items that
return true on the test, the unary function is called.

ForEachInIf applied the test to each item in the range.  Those items that return true are
passed to the unary function.

Inject

function _inject(container : DContainer; const obj : DObject; binary : DBinary) :
DObject;
function _injectIn(_start, _end : DIterator; const obj : DObject; binary : DBinary)
: DObject;
function inject(container : DContainer; obj : array of const; binary : DBinary) :
DObject;
function injectIn(_start, _end : DIterator; obj : array of const; binary : DBinary)
: DObject;

The inject family moves a calculation’s results along through an entire range or container.
It is useful if, for example, you want to sum the values in a container.  Inject takes a seed
value (the obj parameter). It calls binary for each object in the range or container, passing
the seed value as the first parameter and the item as the second parameter.  The results of the
binary function call become the new seed.  After all items have been processed, the last
result is returned.

Comparing

Equal

function equal(con1, con2 : DContainer) : Boolean;
function equalIn(start1, end1, start2 : DIterator) : Boolean;



- 43 -

The equal algorithm determines if the two containers or ranges are equal to each other.
They are equal to each other if each item in the range equals the corresponding item in the
other range, and the ranges (or containers) are of equal length.

LexicographicalCompare

function lexicographicalCompare(con1, con2 : DContainer) : Boolean;
function lexicographicalCompareWith(con1, con2 : DContainer; compare : DComparator) :
Boolean;
function lexicographicalCompareIn(start1, end1, start2, end2 : DIterator) : Boolean;
function lexicographicalCompareInWith(start1, end1, start2, end2 : DIterator; compare
: DCOmparator) : Boolean;

Lexicographical comparison compares the items in two containers or ranges one by one.
The first time a difference is found between two items, it returns less than zero if the item in
the first range or container was less than the second, or returns greater than zero if the item
in the first range or container was greater than the second.  In either case, the comparison
stops as soon as a difference is detected.

Median

function _median(const obj1, obj2, obj3 : DObject; compare : DComparator) : DObject;
function median(objs : array of const; compare : DComparator) : DObject;

Median returns the middle of three values, using the comparator specified.  You must pass
exactly three values to it.

Mismatch

function mismatch(con1, con2 : DContainer) : DIteratorPair;
function mismatchWith(con1, con2 : DContainer; bt : DBinaryTest) : DIteratorPair;
function mismatchIn(start1, end1, start2 : DIterator) : DIteratorPair;
function mismatchInWith(start1, end1, start2 : DIterator; bt : DBinaryTest) :
DIteratorPair;

Mismatch determines the point at which two sequences begin to differ.  It returns an iterator
pair, the first of which is positioned at the position in the first sequence where the difference
began, and the second of which is positioned in the second sequence.

Mismatch returns where two containers begin to differ.  If no difference is found the first
part of the iterator pair is set to con1’s atEnd.

MismatchWith returns where two containers begin to differ, using the binary test supplied.

MismatchIn returns where two sequences (ranges, identified by iterators) begin to differ.  If
no difference is found, the first pair is set to end1.

MismatchInWith returns where two sequences begin to differ using the binary test
supplied.



- 44 -

Copying

Copy

function copyContainer(con1, con2 : DContainer) : DIterator;
function copyTo(con1 : DContainer; iterator : DIterator) : DIterator;
function copyInTo(_start, _end, output : DIterator) : DIterator;
function copyBackward(_start, _end, output : DIterator) : DIterator;

CopyContainer Copies the contents of con1 to con2.  An iterator is returned that is
positioned at the end of con2.

CopyTo copies the contents of con1 to the iterator given.  The iterator is advanced with
output.

CopyInTo copies the elements in the range given to the output iterator.

CopyBackward copies the elements from the range given to the output iterator, in reverse
order.

Counting

Count

function count(con1 : DContainer; objs : array of const) : Integer;
function countIn(_start, _end : DIterator; objs : array of const) : Integer;
function countIf(con1 : DContainer; test : DTest) : Integer;
function countIfIn(_start, _end : DIterator; test : DTest) : Integer;

Count determines the number of items in con1 that are equal to each item passed for objs.
If more than one item is passed to objs, the counts are summed.

CountIn counts the number of items in the range _start to _end that are equal to each item
passed for objs.  If more than one item is given, the counts are summed.

CountIf Determines the number of items in the container that pass the test supplied.

CountIfIn determines the number of items in the range _start to _end that pass the test
supplied.

Filling

Fill

procedure fill(con : DContainer; obj : array of const);
procedure fillN(con : DContainer; count : Integer; obj : array of const);
procedure fillIn(_start, _end : DIterator; obj : array of const);

Fill fills con with the specified value (there must be only one).  The currently set size of the
container is used to determine how many items are to be put there.



- 45 -

FillN fills con with count copies of a value.  If the container isn’t large enough, it will have
more values added to its end, and will expand to the correct size.

FillIn fill the range specified with the value given.

Generate

procedure generate(con : DContainer; count : Integer; gen : DGenerator);
procedure generateIn(_start, _end : DIterator; gen : DGenerator);
procedure generateTo(dest : DIterator; count : Integer; gen : DGenerator);

The generate algorithm fill containers or ranges with the output of a given generator
function.  The goal of the generator function is to create DObjects.  The DObjects are stored
into the target.

Filtering

Unique

Function unique(con : DContainer) : DIterator;
Function uniqueIn(_start, _end : DIterator) : DIterator;
Function uniqueWith(con : DContainer; compare : DBinaryTest) : DIterator;
Function uniqueInWith(_start, _end : DIterator; compare : DBinaryTest) : DIterator;
Function uniqueTo(con : DContainer; dest : DIterator) : DIterator;
Function uniqueInTo(_start, _end, dest : DIterator) : DIterator;
Function uniqueInWithTo(_start, _end, dest : DIterator; compare : DBinaryTest) :
DIterator;

Unique ensures that every item in the range or container is unique. If you have the sequence
(1,2,3,4,4,5,6,6,7) calling unique on that sequence will result in
(1,2,3,4,5,6,7,undefined,undefined).  In addition, the algorithm returns an iterator positioned
at the first undefined value.

Filter

procedure Filter(fromCon, toCon : DContainer; test : DTest);
function FilterTo(con : DContainer; dest : DIterator; test : DTest) : DIterator;
function FilterInTo(_start, _end, dest : DIterator; test : DTest) : DIterator;

Filter copies items to a destination if they pass a test.  Each item passed to the test – if the
test returns true, the item is copied to the output. The filterTo and FilterInTo functions
return an iterator positioned after where the last item was written to the destination.

Finding

AdjacentFind

function adjacentFind(container : DContainer) : DIterator;
function adjacentFindWith(container : DContainer; compare : DBinaryTest) : DIterator;
function adjacentFindIn(_start, _end : DIterator) : DIterator;



- 46 -

function adjacentFindInWith(_start, _end : DIterator; compare : DBinaryTest) :
DIterator;

AdjacentFind determines if there are two equal, consecutive items in a sequence.  It returns
an iterator positioned at the first one if it finds two such items.  If it doesn’t find any, it
returns an iterator positioned at the end of the container if given a container, or at the end of
the range if given the range.

BinarySearch

function binarySearch(con : DContainer; obj : array of const) : DIterator;
function binarySearchIn(_start, _end : DIterator; obj : array of const) : DIterator;
function binarySearchWith(con : DContainer; compare : DComparator; obj : array of
const) : DIterator;
function binarySearchInWith(_start, _end : DIterator; compare : DComparator; obj :
array of const) : DIterator;

BinarySearch relies on the fact that the sequence it is given is sorted.  It will very efficiently
locate an item in a sorted sequence.  It returns an iterator positioned at the item.

Detect

function detectWith(container : DContainer; compare : DTest) : DIterator;
function detectInWith(_start, _end : DIterator; compare : DTest) : DIterator;

Detect locates the first item in a container or range for which the test returns true.  It returns
an iterator positioned at the end if such an item is not found.

Every

function every(container : DContainer; test : DTest) : Boolean;
function everyIn(_start, _end : DIterator; test : DTest) : Boolean;

Every determines if the test returns true for every element in the container or range.  It does
a giant AND of test for every element in the range.  It short-circuits, so the first time the test
returns false, it will return.

Find

function find(container : DContainer; obj : array of const) : DIterator;
function findIn(_start, _end : DIterator; obj : array of const) : DIterator;
function findIf(container : DContainer; test : DTest) : DIterator;
function findIfIn(_start, _end : DIterator; test : DTest) : DIterator;

Locate an object in a container, returning an iterator positioned where the object was found.
If no object is found, an atEnd iterator is returned.  The third and fourth form use a test
instead of the container’s comparator.



- 47 -

Some

function some(container : DContainer; test : DTest) : Boolean;
function someIn(_start, _end : DIterator; test : DTest) : Boolean;

Some determines if any of the items in a container return true for the given test.  Some
short-circuits, so the first item that returns true causes the algorithm to return true.

Freeing and Deleting

ObjFree

procedure objFree(container : DContainer);
procedure objFreeIn(_start, _end : DIterator);

ObjFree assumes that every item in a container is an object.  It calls TObject.Free on each
item.

ObjDispose

procedure objDispose(container : DContainer);
procedure objDisposeIn(_start, _end : DIterator);

ObjDispose assumes that every item in a container or range is a pointer to a heap allocated
object (allocated with GemMem); it calls FreeMem on the pointer.

ObjFreeKeys

procedure objFreeKeys(assoc : DAssociative);

ObjFreeKeys performs the same function as ObjFree, but does it on the keys in the range,
not on the values.  This is useful if you are have a map that maps objects to some other type.

Hashing

OrderedHash

function orderedHash(container : DContainer) : Integer;
function orderedHashIn(_start, _end : DIterator) : Integer;

During coding, it is often convenient to convert values, or a range of memory, into a single
numeric value that has almost-random characteristics.  This can be used to rapidly identify
objects, or to sort objects when no other alternatives are available.  SDL provides the
orderedHash algorithm to create these numeric codes.  The ordered hash algorithm has the
addition characteristic that the hash code produced will be sensitive to and affected by the
order of the items in the container that’s being hashed.  If this level of sensitivity is not
required, use the unorderedHash algorithm, which is slightly more efficient.

UnorderedHash

function unorderedHash(container : DContainer) : Integer;



- 48 -

function unorderedHashIn(_start, _end : DIterator) : Integer;

The unorderedHash algorithm is identical to the orderedHash algorithm, except that the hash
code produced is not sensitive to the order of the items in the container or range.  This is
slightly more efficient to calculate than the orderedHash.

Removing

Remove

function remove(container : DContainer; objs : array of const) : DIterator;
function removeIn(_start, _end : DIterator; objs : array of const) : DIterator;
function removeTo(container : DContainer; output : DIterator; objs : array of const)
: DIterator;
function removeInTo(_start, _end, output : DIterator; objs : array of const) :
DIterator;

Removes all matching items from the container or range it is given.  The size of the
container doesn’t change; the remove family of functions return an iterator positioned at the
end of the new sequence.

removeCopy

function removeCopy(source, destination : DContainer; objs : array of const) :
DIterator;
function removeCopyTo(source : DContainer; output : DIterator; objs : array of const)
: DIterator;
function removeCopyIn(_start, _end, output : DIterator; objs : array of const) :
DIterator;
function removeCopyIf(source, destination : DContainer; test : DTest) : DIterator;
function removeCopyIfTo(source : DContainer; output : DIterator; test : DTest) :
DIterator;
function removeCopyIfIn(_start, _end, output : DIterator; test : DTest) : DIterator;

The removeCopy algorithm copies a sequence of items from one location to another,
removing any matching items as it goes.

removeIf

function removeIf(container : DContainer; test : DTest) : DIterator;
function removeIfIn(_start, _end : DIterator; test : DTest) : DIterator;
function removeIfTo(container : DContainer; output : DIterator; test : DTest) :
DIterator;
function removeIfInTo(_start, _end, output : DIterator; test : DTest) : DIterator;

The removeIf and removeIfIn algorithms remove any items from a sequence for which the
test returns true.  RemoveIfTo and RemoveIfInTo copy the sequence of items, removing any
for which the test returned true.



- 49 -

Replacing

Replace

function replace(container : DContainer; objs1, objs2 : array of const) : Integer;
function replaceIn(_start, _end : DIterator; objs1, objs2 : array of const) :
Integer;

Replaces all items in the container or sequence that match obj1 with obj2.  If you pass more
than one object for objs1 and objs2, the algorithms runs multiple times, doing each pair of
objects.

ReplaceCopy

function replaceCopy(con1, con2 : DContainer; objs1, objs2 : array of const) :
Integer;
function replaceCopyTo(container : DContainer; output : DIterator; objs1, objs2 :
array of const) : Integer;
function replaceCopyInTo(_start, _end, output : DIterator; objs1, objs2 : array of
const) : Integer;
function replaceCopyIf(con1, con2 : DContainer; test : DTest; objs : array of const)
: Integer;
function replaceCopyIfTo(container : DContainer; output : DIterator; test : DTest;
objs : array of const) : Integer;
function replaceCopyIfInTo(_start, _end, output : DIterator; test : DTest; objs :
array of const) : Integer;

ReplaceCopy copies a sequence to a new container or iterator, replacing each item that
matches obj1 with obj2 as it copies.  The IF variants use test to determine if the replacement
should happen or not.

ReplaceIf

function replaceIf(container : DContainer; test : DTest; objs : array of const) :
Integer;
function replaceIfIn(_start, _end : DIterator; test : DTest; objs : array of const) :
Integer;

ReplaceIf replaces items for which the test returns true with objs.  You must pass only one
item for objs.

Reversing

Reverse

procedure reverse(container : DContainer);
procedure reverseIn(_start, _end : DIterator);

Reverse reverses the order of items in a sequence.  For example, the sequence (1,2,3,4,5)
becomes (5,4,3,2,1).



- 50 -

ReverseCopy

procedure reverseCopy(con1, con2 : DContainer);
procedure reverseCopyTo(container : DContainer; output : DIterator);
procedure reverseCopyInTo(_start, _end, output : DIterator);

ReverseCopy copies a sequence to a new location, reversing it during the copy.

Rotating

Rotate

procedure rotate(first, middle, last : DIterator);

Rotate performs a right rotation on a sequence.  The first item will end up at position
middle, the second at middle + 1, and so forth.

RotateCopy

function rotateCopy(first, middle, last, output : DIterator) : DIterator;

RotateCopy does the same thing as rotate except that the original sequence is unchanged –
the rotated result is written to a new location.

Set Operations

Includes

function includes(master, subset : DContainer) : Boolean;
function includesWith(master, subset : DContainer; comparator : DComparator) :
Boolean;
function includesIn(startMaster, finishMaster, startSubset, finishSubset : DIterator)
: Boolean;
function includesInWith(startMaster, finishMaster, startSubset, finishSubset :
DIterator; comparator : DComparator) : Boolean;

Includes determines if a master set includes an entire sub set.  Includes relies on the two
containers or ranges being sorted.  If set 1 is (1,2,3,4,5) and set 2 is (2,3,4), includes returns
true.  If set 1 is (1,2,3,4,5) and set 2 is (2,3,10), includes returns false.

SetDifference

function setDifference(con1, con2 : DContainer; output : DIterator) : DIterator;
function setDifferenceIn(start1, finish1, start2, finish2, output : DIterator) :
DIterator;
function setDifferenceWith(con1, con2 : DContainer; output : DIterator; comparator :
DComparator) : DIterator;
function setDifferenceInWith(start1, finish1, start2, finish2, output : DIterator;
comparator : DComparator) : DIterator;



- 51 -

SetDifference finds the set of items that are in the first range but not in the second range.  It
sends this new set of items to an output iterator.  SetDifference relies on both ranges being
sorted.  If set 1 is (1,2,3,4,5) and set 2 is (2,3,4), setDifference returns (1,5).

SetIntersection

function setIntersection(con1, con2 : DContainer; output : DIterator) : DIterator;
function setIntersectionIn(start1, finish1, start2, finish2, output : DIterator) :
DIterator;
function setIntersectionWith(con1, con2 : DContainer; output : DIterator; comparator
: DComparator) : DIterator;
function setIntersectionInWith(start1, finish1, start2, finish2, output : DIterator;
comparator : DComparator) : DIterator;

SetIntersection finds the set of items that are in both containers or ranges.  It sends this new
list of items to an output iterator.  SetIntersection relies on both ranges being sorted.  If set 1
is (1,2,3,4,5) and set 2 is (2,3,4,10), setIntersection returns (2,3,4).

SetSymmetricDifference

function setSymmetricDifference(con1, con2 : DContainer; output : DIterator) :
DIterator;
function setSymmetricDifferenceIn(start1, finish1, start2, finish2, output :
DIterator) : DIterator;
function setSymmetricDifferenceWith(con1, con2 : DContainer; output : DIterator;
comparator : DComparator) : DIterator;
function setSymmetricDifferenceInWith(start1, finish1, start2, finish2, output :
DIterator; comparator : DComparator) : DIterator;

SetSymmetricDifference finds the items that are not in both sets.  It relies on both ranges
being sorted.  If set 1 is (1,2,3,4,5) and set 2 is (4,5,6,7,8), setSymmetricDifference returns
(1,2,3,6,7,8);

SetUnion

function setUnion(con1, con2 : DContainer; output : DIterator) : DIterator;
function setUnionIn(start1, finish1, start2, finish2, output : DIterator) :
DIterator;
function setUnionWith(con1, con2 : DContainer; output : DIterator; comparator :
DComparator) : DIterator;
function setUnionInWith(start1, finish1, start2, finish2, output : DIterator;
comparator : DComparator) : DIterator;

SetUnion finds the items that are in both sequences.  It relies on both ranges being sorted.
Only one copy of each value will be present in the output set.  If set 1 is (1,2,3,4,5) and set 2
is (4,5,6,7,8), setUnion will return (1,2,3,4,5,6,7,8).

Shuffling

RandomShuffle

procedure randomShuffle(container : DContainer);



- 52 -

procedure randomShuffleIn(_start, _end : DIterator);

RandomShuffle randomly moves around elements in the container, just like shuffling a deck
of cards.

Sorting

Sort

procedure sort(sequence : DSequence);
procedure sortIn(_start, _end : DIterator);
procedure sortWith(sequence : DSequence; comparator : DComparator);
procedure sortInWith(_start, _end : DIterator; comparator : DComparator);

Sort sorts the items in the container or range it is given.  This sort is not stable; that is, the
ordering the elements have in the container before the sort algorithm is run have nothing to
do with the order after the sort is run.  Sort is based on a QuickSort.

StableSort

procedure stablesort(sequence : DSequence);
procedure stablesortIn(_start, _end : DIterator);
procedure stablesortWith(sequence : DSequence; comparator : DComparator);
procedure stablesortInWith(_start, _end : DIterator; comparator : DComparator);

StableSort sorts the items in the container or range, an maintains (without violating sort
ordering) the current order of the items in the container.  StableSort is based on a
MergeSort.

Swapping

IterSwap

procedure iterSwap(iter1, iter2 : DIterator);

IterSwaps swaps the values two iterators are positioned at.

SwapRanges

procedure swapRanges(con1, con2 : DContainer);
procedure swaprangesInTo(start1, end1, start2 : DIterator);

SwapRanges swaps the values in two ranges – the values in the first range will move to the
second range, and the values in the second range will move to the first.

Transforming

Collect

function collect(container : DContainer; unary : DUnary) : DContainer;
function collectIn(_start, _end : DIterator; unary : DUnary) : DContainer;



- 53 -

Collect applies the unary function to each object in the container, storing the results in a new
container (that is constructed by the function) that is of the same type as the existing one.

TransformBinary

procedure transformBinary(con1, con2, output : DContainer; binary : DBinary);
function transformBinaryTo(con1, con2 : DContainer; output : DIterator; binary :
DBinary) : DIterator;
function transformBinaryInTo(start1, finish1, start2, output : DIterator; binary :
DBinary) : DIterator;

TransformBinary applies a binary function to pairs of objects from con1 and con2, and
stores the result into the output area.  con1 and con2 need to have the same number of
objects in them.

TransformUnary

procedure transformUnary(container, output : DContainer; unary : DUnary);
function transformUnaryTo(container : DContainer; output : DIterator; unary : DUnary)
: DIterator;
function transformunaryInTo(_start, _finish, output : DIterator; unary : DUnary) :
DIterator;

TransformUnary applies a unary function to each item in a container or range, and stored
the results in an output area.



- 54 -

Utility Functions
SDL provides a number of utility functions to make using the library easier.  These mostly
revolve around converting atomic types in and out of DObjects, as well as functions to aid
in common programming situations.

Atomic Converters
SDL provides a series of functions that can aid you in moving atomic values into and out of
the DObject structure, with and without iterators. Each of these functions has many variants,
named for the atomic types.  XXXX can be any of the following:

Integer, Boolean, Char, Extended, ShortString, Pointer, PChar, Object, Class, WideChar,
PWideChar, String, Currency, WideString

Function AsXXXX(const obj : DObject) : XXXX;

Converts a DObject to the specified type, leaving the original value in place.

Function ToXXXX(const obj : Dobject) : XXXX;

Converts a DObject to the specified type, clearing the original.

Procedure SetXXXX(var obj : Dobject; const value : XXXX) ;

Sets the value of an already initialized DObject to a new value.  The old value is cleared and
freed.

Function GetXXXX(const iter : DIterator) : XXXX;

Retrieves the DObject at the iterator’s position as an XXXX.

Procedure PutXXXX(const iter : DIterator, const value : XXXX);

Writes the value to the iterator’s current position.  The old value is cleared and replaced
with the new one.

Iterator Helpers
function MakePair(const ob1, ob2 : DObject) : DPair;

MakePair copies two DObjects into a pair object, which it returns.  You need to make sure
that you clean up the pair object that is returned.

function MakeRange(s,f : DIterator) : DRange;

MakeRange converts to iterators into a range.  Sometimes it’s easier to manipulate ranges
directly, inside a DRange structure.  Certain algorithms will return ranges as DRanges.

Hashing
function hashCode(const obj : DObject) : Integer;

Return a hash value for a DObject.  The object is hashed according to its type.

function JenkinsHashInteger(value : Integer) : Integer;



- 55 -

Return a hash value for an integer.

function JenkinsHashBuffer(const buffer; length : Integer; initVal : Integer) :
Integer;

Return a hash value for a series of bytes.  Pass the variable you want to has as buffer.  Be
careful to note that buffer is an untyped const.  If you have a pointer to some variable, and
you want to hash the variable, use the ^ notation.

function JenkinsHashString(const s : String) : Integer;

Return the hash value for a string.

function JenkinsHashSingle(s : Single) : Integer;

Return the hash value for a single value.

function JenkinsHashDouble(d : Double) : Integer;

Return the hash value for a double value.

DObject Helpers
SDL provides a number of helper functions for getting objects into and out of DObjects.
You need to pay some attention to the lifetimes and initialization states of your DObjects.
In particular, you need to make sure that you never store a string value to an uninitialized
DObject.  Most of the time, if you store a value to an uninitialized DObject, it won’t make
much difference.  Delphi does reference-counted strings, though, so storing a string value to
a random piece of memory can cause an access violation.

There are two easy ways to get around this.  The first is not to use the SetString function,
unless you’re sure the DObject in question has already been initialized.  The second is to
use the Make function or the CopyDObject function, which ensure that the destination is
initialized before storing a value.

You need to be particularly aware of this when you are creating callbacks that return
DObjects.  The result variable (which is often a DObject), is not initialized when your
procedure gets it.  You need to make sure you clear result, or assign it with the Make
function or the CopyDObject function.

Function Make(value : array of const) : DObject;

Creates a new DObject, based on the value you supply.  You are responsible for cleaning up
the storage of this DObject, if necessary.  This function is frequently used to return the
results of callback functions.

procedure InitDObject(var obj : DObject);

Empties a DObject, ensuring that it is ready to receive whatever you want to put in it.  The
previous contents of the object are not freed or cleared.  If you want to do that, use
ClearDObject, or one  of the SetObjectXXX family.

procedure CopyDObject(const source : DObject; var dest : DObject);



- 56 -

Copies a DObject from source to dest.  The destination is initialized before writing the new
value.  Any object that was in destination is lost, and is not cleared.

procedure MoveDObject(var source, dest : DObject);

Moves a DObject from the source to the dest.  The destination is initialized before writing
the new value.  Any object that was in the destination is lost.  After a copy, the source is
cleared.

procedure ClearDObject(var obj : DObject);

Frees any storage and clears the object, resetting it to an initialized state.  The DObject is
then ready to receive another value.

procedure SetDObject(var obj : DObject; value : array of const);

Sets a DObject to any atomic value.  Clears the DObject first, releasing any storage
currently being used by the DObject.  Do not call any function in the SetXXX family unless
you are sure that the target DObject has been initialized.

procedure Swap(var obj1, obj2 : DObject);

Swaps the values of any two DObjects.

Morphing Closures
SDL can use BOTH closures (procedures of object) and regular functions for those places in
which it needs to call your code. It does this by taking advantage of the way that Delphi's
object model works. Let's look at an example:

DComparator = function(const obj1, obj2 : DObject) : Integer of object;

That's the official definition of DComparator. SDL also provides the following:

DComparatorProc = function(ptr : Pointer; const obj1, obj2 : DObject) : Integer;

These two definitions amount to the same call in Delphi. On the closure (the first one),
Delphi passes an _invisible parameter_, self, as the first parameter to the call. Self is always
a pointer. In the second one, we are making the pointer an explicit part of the call.

SDL also provides these:
function MakeComparator(proc : DComparatorProc) : DComparator;
begin
TMethod(result).data := nil;
TMethod(result).code := @proc;
end;
function MakeComparatorEx(proc : DComparatorProc; ptr : Pointer) : DComparator;
begin
TMethod(result).data := ptr;
TMethod(result).code := @proc;
end;

We can then do something like this:



- 57 -

function MyComparator(ptr : Pointer; const obj1, obj2 : DObject) : Integer;
begin
...
end;
x := DArray.CreateWith(MakeComparator(MyComparator));
or
x := DArray.CreateWith(MakeComparatorEx(MyComparator, a_pointer_i_want_to_pass));

Now -- why do we want all this? Simple -- most Delphi code is done in methods on forms or
on objects. SDL needs to have a way to make callbacks onto methods on those objects, and
that led to the requirement that closures be part of the definitions. But, with the techniques
outlined above, we can also use regular functions as callbacks, which are very useful for
putting small bits of code right near where they're used.

function MakeComparator(proc : DComparatorProc) : DComparator;
function MakeEquals(proc : DEqualsProc) : DEquals;
function MakeTest(proc : DTestProc) : DTest;
function MakeApply(proc : DApplyProc) : DApply;
function MakeUnary(proc : DUnaryProc) : DUnary;
function MakeBinary(proc : DBinaryProc) : DBinary;
function MakeHash(proc : DHashProc) : DHash;
function MakeGenerator(proc : DGeneratorProc) : DGenerator;

These are the definitions for the functions that can create closures out of regular procedures.

function MakeComparatorEx(proc : DComparatorProc; ptr : Pointer) : DComparator;
function MakeEqualsEx(proc : DEqualsProc; ptr : Pointer) : DEquals;
function MakeTestEx(proc : DTestProc; ptr : Pointer) : DTest;
function MakeApplyEx(proc : DApplyProc; ptr : Pointer) : DApply;
function MakeUnaryEx(proc : DUnaryProc; ptr : Pointer) : DUnary;
function MakeBinaryEx(proc : DBinaryProc; ptr : Pointer) : DBinary;
function MakeHashEx(proc : DHashProc; ptr : Pointer) : DHash;
function MakeGeneratorEx(proc : DGeneratorProc; ptr : Pointer) : DGenerator;

Sometimes it’s useful to be able to pass a pointer to the procedure you’re making a closure
for.  The Ex versions of these functions allow you to do just that.  The pointer you put in
will be passed to your procedure as its first parameter.

Printing
SDL has some built-in support for printing the contents of containers.  This is often useful
during the debugging phase of developing your application.  SDL knows how to print the
basic types, but if you want it to print your own objects, you’ll need to register a printing
routine.  The printing routine has this signature:

DPrinterProc = function (obj : TObject) : String;

After you create a routine with that signature, you’ll need to call the following routine to
register it with SDL:

procedure RegisterSDLPrinter(cls : TClass; prt : DPrinterProc);
Pass the class object in as the first parameter, like this:

Function MyPrinter(obj : TObject) : String;
Begin



- 58 -

With obj as TMyClass do
  …
end;
RegisterSDLPrinter(TMyClass, MyPrinter);

SDL provides a helper function to convert a DObject into a printable string.  This function
will call any registered printing functions for objects that it encounters.

function PrintString(const obj : DObject) : String;

Printing is often done in conjunction with the forEach routine, which can apply a printing
function to each item in a container.  SDL provides the ApplyPrint routine, which can be
passed directly to forEach for a container or range, and invokes PrintString to get the strings
it needs to write to the console.

procedure ApplyPrint(ptr : Pointer; const obj : DObject);

The ApplyPrintLN variant puts a linefeed after it prints each item.  This is nice when you’re
print objects.

procedure ApplyPrintLN(ptr : Pointer; const obj : DObject);



- 59 -

Debugging Support
SDL contains numerous assertions throughout its code.  In the binary release of the library,
these assertions are turned off.  If you have the source version, you can recompile the library
and turn the assertions on.  They will catch many of the common problems that you will
encounter while using SDL.

Any time that SDL throws an exception, you can expect that something has gone quite
wrong.  SDL does not throw exceptions during the course of any normal activity; for this
reason, you never need to turn off “break on exception” while working with SDL.  Most
SDL exceptions will contain a message indicating what went wrong.



- 60 -

Persistence with SuperStream
SuperStream is SDL’s companion library.  It provides simple, powerful object streaming
capabilities.  The object streams support atomic types, objects, inheritance and permits the
storage and loading of multiple versions of objects.  Object graphs (arbitrarily connected
sets of objects) are also supported, as an option. SuperStream’s primary advantages over
other streaming systems are:

• Ease of use

• Nested object support

• Source not required to stream an object’s data

• Intelligent, atomic-type aware transfer mechanism

• Object versioning

• SuperStream can effectively save and load SDL containers, as well.

To use SuperStream, you need only provide a simple Transfer Function for each of your
classes.

Basic Concepts

Stream

Streams are Delphi’s official way of handling most I/O.  Delphi provides a number of basic
stream classes, like TMemoryStream, TFileStream, and so forth.  They all have as their base
class TStream.  SuperStream creates a subclass of TStream called TStreamAdapter, which is
designed to wrap one stream with another.    This allows us to add additional behavior onto
an existing stream.  This layering is a very powerful abstraction, and it permits SuperStream
to act as efficiently and flexibly as it does.

Object

The root of most of your data in Delphi will be the object.  SuperStream can save and load
Delphi’s atomic types, and can also save and load objects.  One of the advantages of
SuperStream is that it does not require you to derive the classes you want to save and load
from a common base class.  It also doesn’t require that you have the source code to these
classes.  You only need to provide a Transfer Function, which is independent of the class.

Atomic Types

Atomic types are Delphi’s fundamental types, such as String, Integer, Extended,
ShortString, and so on.  SuperStream knows how to read and write most of these types
automatically, so you don’t need to do very much work.  Certain atomic types, such as
Variants, cannot be streamed in and out.  Your transfer function may have to do some extra
work to save and load these types.



- 61 -

Transfer Function

A transfer function (also known as an IO procedure) is a simple function that tells
SuperStream how to save and load your objects.  The transfer function has been designed to
be as simple and fast to implement as possible.  Let’s look at one now, so you can see how
simple it can be.  What follows is a type definition and a transfer function for that type.

TTest = class
public
  s,t : String;
end;
procedure TestIO(obj : TObject; stream : TObjStream; direction : TObjIODirection;
version : Integer; var callSuper : Boolean);
begin
  with obj as TTest do stream.TransferItems([s,t], [@s, @t], direction, version);
end;

This transfer function (TestIO), can both read and write any TTest object.  The more
advanced capabilities of SuperStream aren’t used in this simple example, which is intended
to show the brevity that is possible.

Note that separate read and write routines are not necessary.  You should also note that all
the fields in the object were read and written with a single, simple call.  This is the power of
SuperStream!  You can easily create transfer functions for your classes.

Object Versioning

As an application changes and improves, it often finds itself adding fields to its objects, or
altering them in some way.  SuperStream attaches a version number to each object that it
writes to a stream.  When the object is read back in, the version number is passed to the
transfer function, which can read the old version and make appropriate changes to make the
object compatible with the newer one.

This “automatic upgrading” of objects is very convenient when maintaining an application.
Usually, an application will read old versions of objects, and automatically upgrade them to
the latest version when they are stored.

Buffered Stream

Delphi’s streaming functions for files are useful, but tend to be rather slow when many
small read and write calls are made.  SuperStream makes many, many of these kinds of
calls.  To get around this problem, SuperStream provides buffering stream adapters.  These
stream adapters wrap themselves around another stream (like TFileStream), and add a
buffering capability to accelerate operations on the stream.  On large reads or writes, with
many thousands of objects, order-of-magnitude or higher speedups are gained.

Of course, on TMemoryStreams buffering isn’t necessary.

Nine Easy SuperStream Lessons
Just like SDL, we’ll introduce the SuperStream library with simple lessons.  These will
provide simple narratives that will describe the problem to be solved, and demonstrate how



- 62 -

it is solved with SuperStream.  After the lessons, you’ll find more detailed reference
information on the library and the classes it contains.

Lesson 1 – Saving and Loading One Object

Here we’ll tackle the simplest case: We have an object that we want to save into a file, and
then read it back.  We’ll use an object called TTest for this sample.

TTest = class
public
  s,t : String;

yipe : Integer;

constructor Create;
end;

constructor TTest.Create;
begin
  s := ‘zonk’;
  t := RandomString;
  yipe := Integer(self);
end;

procedure TestIO(obj : TObject; stream : TObjStream; direction : TObjIODirection;
version : Integer; var callSuper : Boolean);
begin
  with obj as TTest do stream.TransferItems([s, t, yipe], [@s, @t, @yipe],
direction, version);
end;

procedure SimpleExample;
var test : TTest;
begin

TObjStream.RegisterClass(TTest, TestIO, 1);
Test := TTest.Create;
TObjStream.WriteObjectToFile(‘simple.od’, [], test);
Test.free;
Test := TObjStream.ReadObjectInFile(‘simple.od’, []) as TTest;
// We’re done!
Test.free;

end;

Let’s take apart this sample code, so we can see how all this works.  The first thing we did is
define our class, TTest.  We made a simple constructor on TTest to put some random
information into the object.  Then we defined TestIO – the transfer function for our TTest
class.  Transfer functions are what you need to write to make SuperStream work for you, so
let’s look at the function in more detail.

A transfer function (TObjIO) has the following signature:

TObjIO = procedure(obj : TObject; stream : TObjStream; direction : TObjIODirection;
version : Integer; var callSuper : Boolean);

Your transfer function will always receive a pointer (obj) to the object that is being read or
written.  If an object is being read from the stream, it will already have been constructed by



- 63 -

the time your transfer function is called.  You only need to be concerned about making sure
the fields in the object are properly written or read.

Stream is the object stream the operation is being performed on.  Stream is passed to you so
that you can call its methods to help you do the IO.  Direction indicates whether the object
is being read (iodirRead) or written (iodirWrite).  For most transfer functions, you don’t
need to be concerned about whether you are reading or writing.  For some specialized
functions (such as transferring your own container classes), you may need to know whether
a read or write is in progress.  Version indicates the version of the object that needs to be
read or written.  When an object is read off a stream, the version number is passed to the
transfer routine so that it can elect to read in an old version if necessary, and upgrade the
object to the latest version.  CallSuper is an advanced variable – you only need to be
concerned with this if you want to prevent SuperStream from calling a superclass’ transfer
function.  For normal usage, you want to permit SuperStream to take advantage of your
class hierarchy.

On to the example!  The first thing we do in SimpleExample is register our transfer
function, with TObjStream.RegisterClass.  This is a necessary step for any IO.  It’s also a
good a idea to call TObjStream.RegisterDefaultClasses.  SuperStream knows how to
transfer some of the simple VCL classes, and RegisterDefaultClasses tells SuperStream to
use these default transfer functions.

RegisterClass takes three parameters.  The first is the name of the class you want to register
the transfer function for.  The second is the transfer function.  The third is the tip version of
the object.  When reading objects, the version number comes from the object’s definition in
the stream.  When writing objects, SuperStream will always write the tip version, unless you
request otherwise.

Each time you change your object’s structure, you should modify your transfer function to
read and write the new version, and increment the tip version number.  We’ll explain this
mechanism in more detail, later.

After registering our transfer function, we create a simple object.  Then, we write the object
to a file.  TObjStream provides two helper functions for the very common scenario of
writing an object to a file: WriteObjectToFile and ReadObjectInFile.  The helper functions
do all the work of opening the file stream, wrapping it with a buffered stream, wrapping the
buffered stream with an object stream, transferring the object, and then shutting down
correctly.

After writing the object, we free our test object, then read the object back in with
ReadObjectInFile.  Since ReadObjectInFile returns a TObject, we need to cast the object to
the correct type.  And that’s how easy it is to use SuperStream!

WriteObjectToFile and ReadObjectInFile are both class methods on TObjStream.  That
means that you don’t need to create a TObjStream object to use them.

As a final point in this lesson, please note that SuperStream does not call constructors
during object reading.  If it’s necessary to call an object’s constructor to perform some kind
of initialization, check to see that you’re reading (direction = iodirRead), and then call the
constructor on the object directly.  You can do this by calling obj.Create, or whatever your



- 64 -

constructor’s name is.  Calling obj.Create directly bypasses the allocation of a new object
and just invokes the construction code.

In our next lesson, we’ll examine writing more than one object into a stream.

Lesson 2 – Storing Different Objects

In this lesson we’re going to store more than one object into a stream.  We’re also going to
store objects of different classes, and examine how SuperStream deals with that situation.
We’re also going to take our first look at SuperStream’s inheritance mechanism.

Let’s assume that we have the same simple TTest type as we defined in the first example.
We’ll add a second type for this lesson.

TExtra = class(TTest)
public
  d : Integer;
end;

Note that this type is a subclass of TTest.  It adds a single field, d, to TTest’s definition.
Here’s the IO procedure for TExtra:

procedure ExtraIO(obj : TObject; stream : TObjStream; direction : TObjIODirection;
version : Integer; var callSuper : Boolean);
begin

with obj as TExtra do
  stream.TransferItems([d], [@d], direction, version);
end;

Notice that this IO procedure only deals with the field that’s been added, d.  It relies on the
superclass’ IO procedure to take care of the other fields.

Now let’s create a routine that puts a TTest, a TExtra, and another TText object into a
memory stream, then reads them back.

Procedure ThreeObjects;
Var t1, t2 : TTest;
    E1 : TExtra;
    Ms : TMemoryStream;
    Os : TObjStream;
Begin
  TObjStream.RegisterClass(TTest, TestIO, 1);
  TObjStream.RegisterClass(TExtra, ExtraIO, 1);
  T1 := TTest.Create;
  T2 := TTest.Create;
  E1 := TExtra.Create;
  Ms := TMemoryStream.Create;
  Os := TObjStream.Create(ms, false, []);
  Os.WriteObject(t1);
  Os.WriteObject(e1);
  Os.WriteObject(t2);
  FreeAll([t1, t2, e1]);
  Os.free;
  Ms.position := 0;
  Os := TObjStream.Create(ms, true, []);



- 65 -

  T1 := os.readObject as TTest;
  E1 := os.readObject as TExtra;
  T2 := os.readObject as TTest;
  Os.free;
End;

The first thing we do is register our two classes, followed by the creation of our test objects.
We then create the memory stream we want to write into, and write our objects to the
stream.  Then we free the objects, and reset the memory stream’s position to zero.

Note that when we opened the object stream for writing, the second parameter on the
constructor was false.  This parameter tells the object stream whether it owns the stream it is
wrapping.  If the object stream owns the other stream, it will free the other stream when the
object stream is freed.

To read our objects back in, we simple create our object stream, then call the stream’s
ReadObject routine, casting the results to the correct type.  Note that we created the object
stream with a true value for the owned parameter.  When we free this object stream, it will
automatically free the underlying memory stream.

When the TExtra object is written and read, SuperStream first calls its registered IO
procedure, ExtraIO. It then walks up the inheritance hierarchy, calling each IO procedure it
finds registered.  The superclass of TExtra is TTest, so TTest’s IO procedure is called next.
For this reason, make sure you don’t read or write a superclass’ fields in an IO procedure,
unless you set the CallSuperIO parameter to false, which will prevent walking up the
inheritance tree any further.

Lesson 3 – Writing Embedded Objects

One of the best features of SuperStream is that writing embedded objects is no different
from writing other atomic types!  No special call is needed, and you don’t need to treat the
object fields differently from other fields.  For that reason, this lesson is particularly short.
We’re going to define a new type that has embedded pointers to other objects in it, and
perform some basic IO with it.

Type
TEmbed = class
  Int1, int2 : Integer;
  T : TTest;

  Constructor Create;
End;

Constructor TEmbed.Create;
Begin
  Int1 := Random(1000);
  Int2 := Random(1000);
  T := TTest.Create;
End;

procedure EmbedIO(obj : TObject; stream : TObjStream; direction : TObjIODirection;
version : Integer; var callSuper : Boolean);
begin



- 66 -

with obj as TEmbed do
stream.TransferItems(

[int1, int2, t],
[@int1, @int2, @t],
direction, version);

end;

procedure EmbedExample;
var e : TEmbed;
begin

TObjStream.RegisterClass(TTest, TestIO, 1);
   TObjStream.RegisterClass(TEmbed, EmbedIO, 1);
   E := TEmbed.Create;
   TObjStream.WriteObjectToFile(‘test.out’, [], e);
   e.free;
   e := TObjStream.ReadObjectInfile(‘test.out’, []) as TEmbed;
end;

And that’s all there is to it!  SuperStream automatically detects that the t field is an object,
and invokes its IO procedure automatically.  Notice that the embedded t object gets full
object versioning and all other facilities, as well.

Lesson 4 – Inheritance and SuperStream

SuperStream automatically handles most inheritance issues, because it knows how to call
the IO procedures that are registered for any superclasses of an object being read or written.
In this example, we’ll demonstrate a simple inheritance situation, and a slightly more
complex one, in which we don’t want the superclass’ IO procedure to be called.

Type
TBase = class

     I1, i2 : Integer;
   End;

   TDerived = class(TBase)
     S : String;
   End;

   TAnother = class(TDerived)
    Toast : String;
   End;

procedure BaseIO(obj : TObject; stream : TObjStream; direction : TObjIODirection;
version : Integer; var callSuper : Boolean);
begin
  with obj as TBase do

stream.transferItems([i1, i2], [@i1, @i2], direction, version);
end;

procedure DerivedIO(obj : TObject; stream : TObjStream; direction : TObjIODirection;
version : Integer; var callSuper : Boolean);
begin

with obj as TDerived do
  stream.transferItems([s], [@s], direction, version);

end;



- 67 -

procedure AnotherIO(obj : TObject; stream : TObjStream; direction : TObjIODirection;
version : Integer; var callSuper : Boolean);
begin

with obj as TAnother do
  stream.transferItems([i1, toast], [@i1, @toast], direction, version);

   callSuper := false;
end;

procedure InheritanceExample;
var b : TBase;
    d : TDerived;
    a : TAnother;
begin

TObjStream.RegisterClass(TBase, BaseIO, 1);
   TObjStream.RegisterClass(TDerived, DerivedIO, 1);
   TObjStream.RegisterClass(TAnother, AnotherIO, 1);

   b := TBase.Create;
   d := TDerived.Create;
   a := TAnother.Create;

   b.i1 := 100;
   b.i2 := 101;
   TObjStream.WriteObjectToFile(‘base.od’, [], b);

   d.i1 := 200;
   d.i2 := 201;
   d.s := ‘Hello’;
   TObjStream.WriteObjectToFile(‘derived.od’, [], d);

   a.i1 := 300;
   a.i2 := 301;
   a.s := ‘yarf’;
   a.toast := ‘toast’;
   TObjStream.WriteObjectToFile(‘another.od’, [], a);

   FreeAll([b,d,a]);

   b := TObjStream.ReadObjectInFile(‘base.od’, []) as TBase;
   D := TObjStream.ReadObjectInFile(‘derived.od’, []) as TDerived;
   A := TObjStream.ReadObjectInFile(‘another.od’, []) as TAnother;

   Writeln(‘base: ‘, b.i1, ‘ ‘, b.i2);
   Writeln(‘derived: ‘, d.i1, ‘ ‘, d.i2, ‘ ‘, d.s);
   Writeln(‘another: ‘, a.i1, ‘ ‘, a.i2, ‘ ‘, a.s, ‘ ‘, a.toast);

   FreeAll([b,d,a]);
end;

So what do we expect to be printed out by this example?  We expect this:

Base: 100 101
Derived: 200 201 Hello
Another: 300 0 toast



- 68 -

TAnother’s IO procedure is preventing the calling of the base class IO procedures, so some
of the fields are not written.  You can use this technique when you want your IO procedure
to take charge of all IO for an object, preventing the subclass from doing anything.

Lesson 5 – Storing SDL Containers

Activating SDL’s integration with SuperStream is very simple.  Just add the SDLIO unit
into your project, and all SDL container classes will automatically be registered for
streaming.  You’ll still need to code IO procedures for your own classes, but SDL will take
care of itself.

SDL’s container class design and SuperStream are highly complimentary.  To perform IO
on all 13 container classes in SDL, only two IO procedures needed to be written.  One IO
procedure handles containers that are single data element oriented (like arrays and lists), and
the other handles containers that are pair oriented (like maps and hash maps).
SuperStream’s inheritance mechanism and SDL’s virtual constructors ensure that the correct
results are reached.  Here’s an example of an SDL container saving and loading itself
automatically:

Uses SDLIO;  // causes automatic registration of SDL-SuperStream integration
Procedure SDLIOExample;
Var c : DContainer;

 I : Integer;
Begin

C := DArray.Create;
For I := 1 to 20 do

     Begin
Case I mod 3 of
 0 : c.add([I]);

        1 : c.add([IntToStr(I)]);
        2 : c.add(TTest.Create);
     End;
  TObjStream.WriteObjectToFile(‘container.od’, [], c);
  ObjFree(c);
  c.free;
  c := TObjStream.ReadObjectInFile(‘container.od’, []) as DContainer;
end;

This example also demonstrates how SuperStream and SDL can deftly handle the
persistence of a container class that contains different types (some of which are atomic, and
some of which are objects).  SuperStream automatically checks all objects in the SDL
container and performs the correct kind of IO on them.

Lesson 6 – Storing Special Types (TDateTime, Single, Double)

Inprise’s array of const is the core trick at the base of SDL and SuperStream.  We can make
this mechanism do a great deal of work for us, but unfortunately it doesn’t do everything.
The place it falls down a bit is in dealing with different floating point types.  The array of
const mechanism automatically casts each floating point value into an Extended value.
Because it does this, we cannot distinguish between Single, Double, TDateTime (which is
based on Double), and Extended.  To get around this limitation, SuperStream provides some
extra type codes (called the ssvt constants), and a more powerful version of TransferItems,



- 69 -

TransferItemsEx.  The two transferItems calls are identical, except for an addition open
array parameter, which specifies the type codes for the items being written.

To understand the type codes, you need to understand what Delphi does when it creates an
array of const.  Each item passed in the array gets put in a TVarRec structure, which is
defined like this:

TVarRec = record
    case Byte of
      vtInteger:    (VInteger: Integer; VType: Byte);
      vtBoolean:    (VBoolean: Boolean);
      vtChar:       (VChar: Char);
      vtExtended:   (VExtended: PExtended);
      vtString:     (VString: PShortString);
      vtPointer:    (VPointer: Pointer);
      vtPChar:      (VPChar: PChar);
      vtObject:     (VObject: TObject);
      vtClass:      (VClass: TClass);
      vtWideChar:   (VWideChar: WideChar);
      vtPWideChar:  (VPWideChar: PWideChar);
      vtAnsiString: (VAnsiString: Pointer);
      vtCurrency:   (VCurrency: PCurrency);
      vtVariant:    (VVariant: PVariant);
      vtInterface:  (VInterface: Pointer);
      vtWideString: (VWideString: Pointer);
end;

By setting the VType field and the other fields, the TVarRec allows just about any atomic
type to be represented.  There’s a table of type codes, called vt constants.  They are as
follows (and are defined in the system unit):

vtInteger    = 0;
vtBoolean    = 1;
vtChar       = 2;
vtExtended   = 3;
vtString     = 4;
vtPointer    = 5;
vtPChar      = 6;
vtObject     = 7;
vtClass      = 8;
vtWideChar   = 9;
vtPWideChar  = 10;
vtAnsiString = 11;
vtCurrency   = 12;
vtVariant    = 13;
vtInterface  = 14;
vtWideString = 15;

SuperStreams adds a couple of new type codes:

ssvtSingle = -2;
ssvtDouble = -3;
ssvtDateTime = ssvtDouble;



- 70 -

Normally, when you call TransferItems, you don’t need to specify type codes, because
Delphi supplies them for you when you create an array of const.  For the special types
(single, double, TDateTime), you need to tell SuperStream the type of the variable.

The third parameter of the TransferItemsEx call is the special one.  It specifies the vt type
codes for each of the fields you are writing.  SuperStream provides a shortcut here –
frequently you aren’t writing that many of these special fields.  You don’t need to specify
the type code for all of the fields you are writing.  To take advantage of this, put all your
special fields first, supplying type codes in the third parameter for them.  SuperStream will
automatically assign the remaining type codes.  Our code example for this lesson will
demonstrate all of this.

Type
TSpecial = class
  Int1, int2 : Integer;
  St : String;
  When : TDateTime;
  R : Single;
End;

procedure SpecialIO(obj : TObject; stream : TObjStream; direction : TObjIODirection;
version : Integer; var callSuper : Boolean);
begin

with obj as TSpecial do
stream.TransferItemsEx(

[when, r, int1, int2, st],
[@when, @r, @int1, @int2, @st],
[ssvtDateTime, ssvtSingle],
direction, version);

end;

procedure SpecialExample;
var s : TSpecial;
begin

TObjStream.RegisterClass(TSpecial, SpecialIO, 1);
s := TSpecial.Create;
with s do
  begin
    s.int1 := Random(1000);
    s.int2 := Random(1000);

s.st := RandomString;
s.when := Now;

       s.r := Random(1000) / 1000;
 end;

TObjStream.WriteObjectToFile(‘test.out’, [], s);
S.free;
S := TObjStream.ReadObjectInFile(‘test.out’, []) as TSpecial;

   s.free;
end;

Note that we only specified the special type codes for the first two variables, where it was
necessary to do so.



- 71 -

Lesson 7 – Storing Raw Data

SuperStream provides a number of facilities to help with the transfer of raw data in and out
of streams.  Storing your application data sometimes requires this handling of large blocks
of data for objects like bitmaps, or if you have a class with an embedded array, or things of
that type.

We’re going to demonstrate how to do IO on arbitrary blocks of memory, and how to
transfer arrays of atomic types.  What we’ll show here is a sample type that has both an
array of strings in it, and a bunch of raw data that represents a bitmap.  We want to read and
write this object.

Type
TRaw = class
  FNames : Integer;
  FName : array[1..25] of String;
  FAddresses : array[1..25] of String;
  FEmployees : array[1..25] of TEmployee;
  FBitmapSize : Integer;
  FBitmapData : Pointer;
End;

procedure SpecialIO(obj : TObject; stream : TObjStream; direction : TObjIODirection;
version : Integer; var callSuper : Boolean);
begin

with obj as TRaw do
  begin

       stream.TransferItems([FNames, FBitmapSize] [@Fnames, @FBitmapSize], direction,
version);
       stream.TransferArrays(

  [FName[1], FAddresses[1], FEmployees[1]],
         [@FName[1], @FAddresses[1], @FEmployees[1]],
         [25, 25, 25],
         direction);
       if direction = iodirRead then

GetMem(FBitmapData, FbitmapSize);
       stream.TransferBlocks([FBitmapData], [FBitmapSize], direction);
     end;
end;

procedure RawExample;
var r : TRaw;
begin

r := TRaw.Create;
   TObjStream.RegisterClass(TRaw, RawIO, 1);
   TObjStream.WriteObjectToFile(‘raw.od’, [], r);
   r.free;
   r := TObjStream.ReadObjectInFile(‘raw.od’, []) as TRaw;
   r.free;
end;

This example shows the general technique for reading and writing arbitrary arrays of atomic
values, and storing binary blocks of data.  Everything here should be familiar except what’s
new in the IO procedure, so let’s concentrate on that.



- 72 -

The first thing this IO procedure does it transfer the sizes of the other items it’s going to
write.  These are atomic values and are very simple to move, so we do them first.  We also
do them first because we may need to get at the information in them during a read operation.

Next we invoke the TransferArrays function.  TransferArrays needs four parameters: the
first item in each array (which is used to get type information), the address of the first item
in the array (which is used to figure out where everything is), the number of items in the
array, and the direction flag.  That’s all that’s needed – SuperStream takes care of figuring
out the rest, and handles the transfer of all atomic values (including arrays of objects)
automatically.

Following that is a transfer of a binary block of data.  This is accomplished with the
TransferBlocks function.  TransferBlocks can actually write multiple blocks at the same
times (just like TransferArrays can write multiple arrays simultaneously).  In our example
we’re only writing one block.

The only wrinkle in this example is that during a read, we need to allocate the memory for
our block.  This is accomplished with the GetMem call – and note that we already know the
size of the block we’re reading, because it was part of the atomic value read we did at the
beginning of the IO procedure.

TransferBlocks takes three parameters: The address of the block, the size of the block, and a
direction flag.  SuperStream takes care of the rest.

Lesson 8 – Storing Complex Object Graphs

You may have a complex object graph – which is a bunch of objects that have pointers that
refer to each other.  SuperStream can take care of this for you automatically, by assembling
an object graph tracking system.  To enable this mechanism (which slows down
SuperStream very slightly), pass the [osoGraph] option to the constructor of the
TObjStream.  Or, if you’re using the WriteObjectToFile or ReadObjectInFile calls, pass
[osoGraph] as the options.

This short example will demonstrate this:

Type
TOne = class;
TTwo = class;
TOne = class
  FHello : String;
  Inside : TTwo;
End;
TTwo = class
  Inside : TOne;
  Ouch : String;
End;

procedure OneIO(obj : TObject; stream : TObjStream; direction : TObjIODirection;
version : Integer; var callSuper : Boolean);
begin

with obj as TOne do
  stream.TransferItems([FHello, Inside], [@Fhello, @Inside], direction, version);

end;



- 73 -

procedure TwoIO(obj : TObject; stream : TObjStream; direction : TObjIODirection;
version : Integer; var callSuper : Boolean);
begin

with obj as TTwo do
  stream.TransferItems([Ouch, Inside], [@Ouch, @Inside], direction, version);

end;

procedure GraphExample;
var o : TOne;
    t : TTwo;
begin

TObjStream.RegisterClass(TOne, OneIO, 1);
   TObjStream.Registerclass(TTwo, TwoIO, 1);
   O := TOne.Create;
   T := TTwo.Create;
   o.FHello := ‘hello’;
   o.inside := t;
   t.ouch := ‘ouch’;
   t.inside := o;

   TObjStream.WriteObjectToFile(‘test.od’, [osoGraph], o);
   FreeAll([o,t]);

   O := TObjStream.ReadObjectInFile(‘test.od’, [osoGraph]) as TOne;

   Writeln(‘Proof: ‘, o.inside.inside.Fhello);
end;

By passing the osoGraph option, SuperStream keeps track of all objects it reads an writes.
It can then properly restore multiple references to the same object.  In this example, t’s
pointer to o is automatically set up, even though o has already been read.

Lesson 9 – Reading and Writing Different Versions of Objects

Objects change as an application is maintained.  We’re going to look at how SuperStream
deals with different versions of objects in this example.  What we’ll do is define an object,
show its IO procedure, then change the definition of the object and show the new IO
procedure for it.

Type
TAppObject = class
  Name, address : String;
  Salary : Integer;
End;

procedure AppIO(obj : TObject; stream : TObjStream; direction : TObjIODirection;
version : Integer; var callSuper : Boolean);
begin

with obj as TAppObject do
  stream.transferItems([name, address, salary], [@name, @address, @salary],

direction, version);
end;

procedure InitExample;
var a : TAppObject;



- 74 -

begin
TObjStream.RegisterClass(TAppObject, AppIO, 1);

   A := TAppObject.Create;
   TObjStream.WriteObjectToFile(‘zot’, [], a);
   a.free;
   a := TObjStream.ReadObjectInFile(‘zot’, []) as TAppObject;
end;

This is a very simple IO procedure, and very straightforward.  Now we’ll make two changes
to the existing object: We’ll add a new field and we’ll delete an old one.  Here’s what the
new code looks like:

Const
HighSalaryValue = nnnn;
Type
TAppObject = class
   Name, Address : STring;

SalaryHigh : Boolean;
End;

procedure AppIO(obj : TObject; stream : TObjStream; direction : TObjIODirection;
version : Integer; var callSuper : Boolean);
var oldSalary : Integer;
begin
  case version of
   1: with obj as TAppObject do

  begin
     stream.transferItems([name, address, oldSalary], [@name, @address,
@oldSalary], direction, version);
       SalaryHigh := oldSalary > HighSalaryValue;

  end;
   2:

with obj as TAppObject do
  stream.transferItems([name, address, salaryHigh], [@name, @address,

@salaryHigh], direction, version);
end;

procedure InitExample;
var a : TAppObject;
begin

TObjStream.RegisterClass(TAppObject, AppIO, 2);
   A := TAppObject.Create;
   TObjStream.WriteObjectToFile(‘zot’, [], a);
   a.free;
   a := TObjStream.ReadObjectInFile(‘zot’, []) as TAppObject;
end;

We’ve modified the IO procedure to have a case statement, switched on the version being
passed in.  If we’re reading or writing the tip version (which has now been set to 2 – notice
the change in the RegisterClass call), then we just perform convention IO.  If we’re reading
an old object (which is pretty much the only way it happens, because writes of old objects
don’t happen that much), we need to do a little extra processing.  We need to make sure we
correctly read in any deleted members from the old version of the object.  Then, we need to
make sure that any new members are filled in correctly.  We do this in this case by testing
the salary value that’s read in, and setting the field as appropriate.



- 75 -

This technique of using temporary variables to hold old, deleted values works well.  In
practice, you’ll rarely be deleting variables.  Addition of new fields is much more common.
Just make sure that your IO procedure can correctly initialize the new values.

A very important point to note is that constructor functions are not called by SuperStream.
SuperStream relies on the IO procedure to correctly create the fields.  If it’s really important
that the constructor be called, check to see if you’re reading an object (direction =
iodirRead) and then invoke the constructor yourself.  SDLIO does this to ensure that the
container classes are correctly built.  Make sure that you only call the constructor if the io
direction is iodirRead.  The author of SDL and SuperStream got bitten badly by this one ☺.

SuperStream Classes
This section contains a brief discussion of the classes that are included in the SuperStream
unit, and how you would use them.  See the Lesson material for more detailed examples on
usage, and common situations.  The online documentation contains a detailed HTML
reference for the SuperStream classes; please refer to it for complete information.  This
section discusses the major points you should be aware of.

TStreamAdapter

We discuss TStreamAdapter first because it is the root of the SuperStream class hierarchy.
A stream adapter is a TStream-compatible object that “wraps” itself around another stream,
usually to provide additional functionality.  SuperStream’s TObjStream class is a stream
adapter.  Using the adapter technique permits TObjStream to read and write objects from
any other type of TStream, including TFileStream and TMemoryStream, which are shipped
with Delphi.  Using an adapter stream also permits TObjStream to operate over other types
of streams that may not be included with Delphi.  Examples of such streams include
compressing streams and buffering stream adapters, or streams that write their contents over
network connections.

The TStreamAdapter provides a constructor that takes another stream as an argument; this is
the stream that is being “wrapped”.  It then delegates the TStream functions onto the
wrapped stream.  This provides a basis for creating new adapter streams.

TObjStream

TObjStream is the primary focus of the SuperStream package.  It provides comprehensive
support for reading and writing objects to and from streams.  It also provides many
convenience functions for handling large binary objects, handling arrays of atomic types,
and dealing with complex graphs of objects.  The Lessons section contains detailed
examples of the proper usage of TObjStream.  For comprehensive reference information,
please see the online HTML reference.

TObjStream is descended from TStreamAdapter, so that it can be wrapped around any kind
of stream.  If you are reading and writing from files, Soletta highly recommends that you
first wrap the TFileStream with one of the buffering stream adapters, then wrap the object
stream around the buffered stream.  You may achieve an order of magnitude performance
improvement, or more, by doing this.



- 76 -

The binary data created by TObjStream compresses well, so you may wish to add a
compressing stream to your application’s design.

TBufferedInputStream

TBufferedInputStream is designed to provide buffered read access to another stream.
Seeking and writing are not supported – the sole purpose of this class is to provide rapid,
sequential access to the data contained in another stream.

TBufferedOutputStream

TBufferedOutputStream is designed to provided buffered write access to another stream.
Reading and seeking are not supported, and will cause exceptions to be thrown.  This class
is intended to provide output buffering of a sequentially written stream.  The output of
TObjStream has this characteristic.

TObjList

TObjList is a simple list class provided by SuperStream to contain a list of objects.  It is a
subclass of Delphi’s TList class, with an addition property or two.  You may find it useful in
your “quick and dirty” apps, if you don’t want to bring in the full power of the SDL library.
By using TObjStream.RegisterDefaultClasses, SuperStream will automatically be able to
save and load TObjList objects.



- 77 -

Epilogue
The creation of SDL and SuperStream has been a long, but satisfying journey through the
intricacies of building a complex library package, and adapting theories to the realities of a
programming environment.

I’d like to take a moment to thank certain individuals whose work has made mine possible:

Stepanov and Lee, the creators of STL, whose architectural work made these kinds of
libraries possible, and provided the roadmap for constructing new ones.

ObjectSpace’s JGL team, who adapted STL to Java to create the Java Generic Library, and
in doing so, proved that the STL concepts could migrate from one language to another.

Inprise, for creating the Delphi environment.  I’ve heard lately that a programmer’s favorite
environment becomes his hammer, and everything starts to look like a nail to that person.
Well, Delphi is my hammer, and I’ve pounded a ton of nails with it in the last five years.  It
is, without a doubt, the most productive environment I’ve ever worked in, and is a very
precise match to my list of wants.  Delphi just keeps getting better and better.  I hope SDL
gives it new credibility.

My friends: Kurt and Melanie Westerfeld, Tim Sheridan, Larry Chang (thanks for the office
space), Steve Giordano Jr., Steve Giordano Sr., Tim Shinkle, and Paula Thomson.  They
delivered well-timed criticisms and encouragement.

The SDL Reviewers:

Xavier Pacheco; William Mann; Robert P Kerr; Robert Marsh; Rob Lafreniere; Ray
Konopka; Phillip Woon; Peter Roth; Pablo Pissanetzky; Mark Vaughan; Mark Leymaster;
Marco Cantu'; Luk Vermeulen; Louis Kleiman; Kurt Westerfeld; Julian Bucknall; John
Elrick; J Merrill; Deven Hickingbotham; Danny Thorpe; Brad Stowers; Josh Dahlby


