
How to use C code in Free Pascal projects

G. Marcou, E. Engler, A. Varnek

October 26, 2006

1

1 Introduction
Free Pascal provides a robust, portable and powerful compiler[5]. On the other hand,
the C language benefits of a very long life time and therefore of millions of lines of
codes. Hopefully, the Free Pascal compiler supports linking with objects and shared
objects compiled in C. Reusing this material is therefore often desirable in Free Pascal
projects.

Furthermore, the C++ provides also a very large number of very useful libraries.
But it is not possible yet to access them from Free Pascal directly[5, 4]. Therefore,
it is necessary to write in C code, procedures and functions to access the C++ ones.
Linking Free Pascal to C code is therefore even more important since C will act as a
“glue” between Free Pascal code and C++ -or other languages.

This article summerizes our experience about this field It will be extended, I hope,
by ourself as we continue to gain experience with this problem, and by others.

2 Dangers of mixing code
The support of other languages is not a characteristic of any language. It is a property of
compilers. Therefore, instructions for doing so are dependent of the runtime environ-
ment. This includes the system and, sometimes, the compiler chosen. Characteristics
of the definitions of the languages also plays a role [7].

In the following, the environment used is the Free Pascal Compiler (fpc 2.0.4) [5]
and the GNU Compiler Collection (gcc 4.1.2) [6].

Incompatibilities will play a role at nearly every stage of the -executable- binary
generation. The less dangerous are those that will prevent compilation or linking. The
most delicate ones will generate unpredictable behavior. For example, it is up to the
user to correctly convert from C or C++ types to Free Pascal. An error in this conversion

1Université Louis Pasteur,
Institut de Chimie de Strasbourg,
4 rue Blaise Pascal,
67000 Strasbourg,
FRANCE

1

will not necessarily generate compilation or linking errors, neither the executable will
crash immediately. Such bug can become extremly difficult to spot.

Free Pascal compiler is meant to produce as straight as possible, binaries and ex-
ecutable code [5]. This leads to some differences compared to GCC compilers suite.
The main difference is that Free Pascal users should not have to deal with a Makefile.
Therefore, they should not have to compile the program by modules and then design a
linking section.

This explains why the pre-compiler will have to deal with commands dedicated to
the linker and it helps understand the logic with the Unit key word of Free Pascal.

3 Hello in C
This section is a tutorial showing, in a simple case, how it is possible to use C written
objects in a Free Pascal project.

3.1 Hello object
The first thing to do is to produce an C written library to be compiled as a static object.
Static objects, for the Linux world, are a legacy of the a.out binary format. Objects
are pieces of code already compiled that can be reused in other programs. Linking with
a program which calls a function or procedure in an object file must be complete before
execution time [3].

Here is proposed a small C code as a classical “hello” example. First a small header
(file chello.h) defines what is the library composed of.

#ifndef CHELLO_H
#define CHELLO_H
#include <stdio.h>
void PrintHello();
void PrintHelloS(int);
#endif

This is not compulsory for C, but header files are highly encouraged since they
simplify interface and helps linking the objects. Here are defined two procedures that
write a “hello” message the second passing an integer to be written. The body of the
program follows (file verb|chello.c|).

#include "chello.h"
void PrintHello(){
printf("Hello\n");
return;

};
void PrintHelloS(int nme){
printf("Hello\n");
printf("%i",nme);
return;

2

};

This library is compiled using the command gcc -c chello.c. The result of
the compilation is a binary file chello.o.

3.2 Free Pascal wrapping
In a C compatible world, it should be possible to pass the C header and let the compiler
link the library definition of the procedures in the object files to the main program. Free
Pascal does not understand C, so the header has to be rewritten in standard Free Pascal
[5, 4]. This is the purpose of the following Free Pascal unit (file helloU.pas), wrapping
the C written object in a standard Free Pascal code:

unit helloU;

{$link chello.o}
{$linklib c}

interface

uses CTypes;

procedure PrintHello; cdecl; external;
procedure PrintHelloS(nme : ctypes.cint32); cdecl; external;

implementation

end.

Several parts shall be noted. First there is only definition of the procedures. The
implementation is empty. Even more, the definition is followed by the external
keyword. This means the Free Pascal compiler should not wait for the body of the
procedure since it shall find it at linking time [5, 4].

Second, the CTypes unit is called by the command uses CTypes. This unit is
poorly documented, but its purpose is precisely to help for correct conversion between
Free Pascal native types and C native types. In fact, it is quite difficult: the numerical
limits of types like integers or floats are not defined by a language but by the compilers.
As pointed by D. Mantione2, with GCC, an int is $80000000..$7fffffff (32 bits), while
a Pascal integer is defined as $8000..$7fff (16 bits). Thus, it would be required to use
longint Free Pascal type to match it. Here we call the ctypes.cint32 type
converter. This method shall be prefered.

For type conversion of C types it is usefull to take a look at the C/C++ header
limits.h. On Linux systems it is usually located in /lib/include/. For Free
Pascal conversion, it shall be safer to take a look to the documentation [5, 4].

2a regular contributor to Free Pascal

3

Then, there is two instructions for the linker. The first one {$link chello.o}
means that the linker should link the program with the chello.o file [5, 4]. So the
Free Pascal compiler will never know about what are truly those procedures, it will be
the job of the linker to find them in the object file.

Doing so, a lot of references will appear to some functions typical of C. For exam-
ple, it will find references to the print function and others defined in the <stdio.h>
included. Those are defined in a shared library file, libc.so.

Shared libraries are libraries that are not linked at linking time. So the linking of
the program is not complete. The program will not run until it will have found the
definition of, at least, the standard C functions. In fact, at execution time, a special
program, ld-linux.so is called to charge in memory the binary definition of the
missing procedures [3].

The linker needs to know at compile time, where to find not yet defined functions
and procedure. First, to be able to build in the program binary instructions relative
to which shared library has to be charged in memory. Second to test that at least, at
linking time, every single procedure and function will be defined.

Here we tell the linker to search in the file libc.so for missing definitions. It
is the purpose of the instruction {$link c}.The linker will add a prefix lib and a
suffix .so, in the Linux world to find the correct shared object file [5, 4].

It is usually necessary to use also the {$link gcc}to link with libgcc.so if
the C objects were created with GCC. Nonetheless this library might not have been
produced during GCC compilation and therefore can be missing. Therefore, linking
errors might occurs if this linking statement is present as well as if this statement is
missing.

One last thing, is that the Free Pascal definition has a different protocol as how to
pass arguments in functions and procedures compared to C. This is what the keyword
cdecl does. The cdecl warns the compiler and the linker that the arguments are to
be understood as if they were in C[5, 4]. If this keyword is omitted it is possible that
the program will compile and link but as soon as procedure will be called, it will crash.
It might as well not compile any more if one of the wrapped procedures or function is
called.

3.3 Free Pascal program
Now it is time to get a program that will call our C written functions. This is done in
the file hello.pas:

uses
helloU;

begin
PrintHello;

end.

It is compiled using the command fpc hello.pas. This Free Pascal code only
knows about the Free Pascal wrapper of the C object. So the compiler will compile

4

first the helloU unit, then the main program. This part will produce .ppu and .o
files. The first ones are Free Pascal binaries and the second ones, a translation in the
a.out Linux binary format.

The linker is called that will link statically the .o it knows the existence of. It will
then generate an executable binary with all informations about the shared libraries to
be dynamically loaded in memory at execution time.

4 Hello in C++
This section is a tutorial showing how, in a simple case, it is possible to use C++ written
objects in a Free Pascal project.

4.1 Hello object, again...
In this hello project in C++, a class hello is defined. This class contains a private
structure and several public methods to access it or to perform some actions. Here is
the header, in the file hello.hpp:

#ifndef HELLO_HPP
#define HELLO_HPP
#include<iostream>
#include<string>
using namespace std;
class hello{
public:
hello(){

string vide="";
hello::SetName(vide);

};
hello(string &name){

hello::SetName(name);
};
void HelloPrint();
void SetName(string&);
string GetName();

private:
string name;

};
#endif

The private structure is a C++ string containing a name. There is a constructor to
initialize this string to the null string and an overloaded constructor to initialize it to an
arbitrary value.

The other public methods include setting or retrieving the value of the private struc-
ture. The last method just prints in the current console a friendly message.

5

The body of the methods defined in the header is in the following file, hello.cpp:

#include "hello.hpp"
void hello::HelloPrint(){
cout << "Hello " << GetName() << endl;
return;

};
void hello::SetName(string &str){
hello::name=str;
return;

};
string hello::GetName(){
return(hello::name);

};

This set of file, the header and the body of the methods, is written in pure C++.
It is compiled using the command g++ -c hello.cc. The compilation provide
an object file hello.o in which there is many references to C and C++ libraries, in
particular standard template libraries -for the C++ string.

As stated before, Free Pascal cannot handle C++ objects [5, 4]. They have a very
particular structure since they are linked to C++ shared libraries and here, have class
structure. It is therefore necessary to build a C interface between this C++ code and
Free Pascal.

4.2 C wrapping
As the C language does not know about C++ object oriented structure it is not possible
to keep it. This means that the main job of the C wrapper will be to flatten the C++
class structure to a set of C functions [8].

Another important point is that C does not know about C++ standard template li-
braries and evolved structures like C++ strings, vectors, maps, etc. So another function
of the wrapper will be to cast those C++ classes in standard C types [1].

To do this, it is useful to create a special header, as shown in the file chello.h:

#ifndef FHELLO_H
#define FHELLO_H
#ifdef __cplusplus
#include "hello.hpp"
#define EXPORTCALL __attribute__((stdcall))
typedef hello *helloHandle;
#else
typedef struct hello *helloHandle;
#define EXPORTCALL
#endif

6

#ifdef __cplusplus
extern "C"
{
#endif
extern helloHandle EXPORTCALL NewHello();
extern helloHandle EXPORTCALL NewHelloC(char*);
extern void EXPORTCALL DeleteHello(helloHandle);
extern void EXPORTCALL HelloPrint(helloHandle);
extern void EXPORTCALL SetName(helloHandle, char*);
extern const char* EXPORTCALL GetName(helloHandle);
//
extern helloHandle EXPORTCALL cNewHello();
extern helloHandle EXPORTCALL cNewHelloC(char*);
extern void EXPORTCALL cDeleteHello(helloHandle);
extern void EXPORTCALL cHelloPrint(helloHandle);
extern void EXPORTCALL cSetName(helloHandle, char*);
extern const char* EXPORTCALL cGetName(helloHandle);

#ifdef __cplusplus
}
#endif
#endif/*FHELLO_H*/

This header can be interpreted both by a C and a C++ compiler. And two body files
will be implemented, one in C++ code and the other one in standard C code.

There is several instruction to help to deal with this. The first one is to use the
macro definition #ifdef __cplusplus and the corresponding #endif. It is true
if the compiler analyzing the code is a C++ compiler and false otherwise [7, 6]. This
macro definition is widely spread among compilers but it is not part of any standard.
Therefore, it might be necessary to define it manually through an option of the com-
piler.

This macro definition first protects the C++ header that needs to be included to
define the hello object. If it is not protected, a C compiler will refuse the code since it
would try to analyze the C++ code of the hello.hpp header.

The second statement that is protected so that only a C++ compiler can see it, is the
definition of the EXPORTCALL to __attribute__((stdcall)). This value is
interpreted by GCC and ensures the argument passing of the function to be compatible
with C definition. This is why it is not set for the C compiler [6, 8].

The third protected statement only to be processed by the C++ compiler just defines
a new type helloHandle as a pointer the hello class.

For the C compiler, helloHandle will still be a pointer to a structure hello
that is not yet defined. This definition is of course protected only to be seen only by the
C compiler so that it does not interfere with the C++ instructions [8].

Another important difference of behavior whether the header has to be processed
by the C or the C++ compiler comes form the instruction extern ’’C’’{}. This is
a C++ instruction and as such needs to be hidden for the C compiler. This instruction
specifies a linking convention: how to access memory, integrated type formats, etc.

7

This command does not target specifically the C language: it is also used to link Fortran
to C++ for example [7].

In the following, it shall be noted that each method of the hello class is replaced
by a function. To allow the function to call a method of the class for a given instance
of the class, at least a pointer to this instance shall be passed. Constructors are an
exception since they only receive this pointer.

The last unusual point of this header is the double definition of all the methods. It
is so to cast C++ types in C standard types. In our example, the methods of the hello
class uses C++ strings that cannot be understood by C. As the functions definitions has
to be understood by both C and C++ compiler, we had to pass only C types as argument
of the functions -a char*.

Functions written with a c prefix will be fully written in C. Therefore, they can
only make calls to C functions. Functions that has not the prefix will have a body in a
separate file, written in C++.

The C body of the functions is the file fhello.c:

#include "fhello.h"
helloHandle cNewHello(){
return(NewHello());

};
helloHandle cNewHelloC(char* nme){
return(NewHelloC(nme));

};
void cDeleteHello(helloHandle h){
return(DeleteHello(h));

};
void cHelloPrint(helloHandle h){
return(HelloPrint(h));

};
void cSetName(helloHandle h, char* nme){
return(SetName(h,nme));

};
const char* cGetName(helloHandle h){
return(GetName(h));

};

It can be compiled with the command gcc -c fhello.c -o fhello_c.o.
The C++ body of the functions is in the file fhello.cc:

#include "fhello.h"
extern "C"{
helloHandle EXPORTCALL NewHello(){
return new hello;

};
helloHandle EXPORTCALL NewHelloC(char *nme){

8

string str(nme);
return new hello(str);

};
void EXPORTCALL DeleteHello(helloHandle handle){
delete handle;

};
void EXPORTCALL HelloPrint(helloHandle handle){
handle->HelloPrint();

};
void EXPORTCALL SetName(helloHandle handle, char *nme){
string str(nme);
handle->SetName(str);

};

Here again the extern "C"{} statement specifies the linking convention [7].
The body of the functions is obviously C++ so to cast C++ types and classes into
standard C types. In this example, there is commands like string str(nme)while
nme is a char*.

This code can be compiled using the command
g++ -c fhello.cc -o fhello_cc.o.

Following this procedure, it shall be noted that on contrary of what is sometime
said [1], it is not necessary to compile the C wrapper with the C++ compiler. The final
program can be linked using the two separate objects created.

4.3 linking
The task of integrating those methods in Free Pascal is not over yet. Compilation
of C++ objects is another compiler dependent task. In this tutorial, gcc is used as
compiler. During compilation of this set of compiler, a shared version of the libgcc
might not be compiled [6]. Therefore, it might not be possible to find such version to
link the Free Pascal code with the C++ object. In brief, this task might be possible but
can be more difficult than the one of linking with pure C written objects.

Another solution is to link the C++ and the C objects in advance into a shared li-
brary. This can be done with the command
gcc -shared -o libhello.so hello.o fhello_cc.o. Here, it is the
gcc compiler tools that will find and set the correct dependencies of the libraries.

The shared library can be used as before in the Free Pascal Code.

4.4 Free Pascal wrapping
The Free Pascal wrapper is a Free Pascal unit defining the functions and procedures to
be called in a Free Pascal project.

unit helloFLAT;

interface

9

uses
sysutils;

type
helloHandle = type pointer;

function cNewHello:helloHandle; cdecl;
function cNewHelloC(nme :PChar):helloHandle; cdecl;
procedure cDeleteHello(handle : helloHandle); cdecl;
procedure cHelloPrint(handle : helloHandle); cdecl;
procedure cSetName(handle : helloHandle;nme : PChar); cdecl;
function cGetName(handle : helloHandle):PChar ; cdecl;

implementation

{$link fhello_c.o}
{$linklib hello.so}
{$linklib c}
{$linklib stdc++}

function cNewHello:helloHandle; cdecl; external;
function cNewHelloC(nme :PChar):helloHandle; cdecl; external;
procedure cDeleteHello(handle : helloHandle); cdecl; external;
procedure cHelloPrint(handle : helloHandle); cdecl; external;
procedure cSetName(handle : helloHandle;nme : PChar); cdecl; external;
function cGetName(handle : helloHandle):PChar ; cdecl; external;

end.

It shall be noted that the functions and procedures have to be declared with the
cdecl key word. It ensures compatibility between C and Free Pascal declarations of
functions and procedures arguments [5, 4]. Only the C functions are defined.

Those declarations need also a new type to be defined: helloHandle. Free
Pascal does not really need to know about the true nature of this type: it will be linked
to the C pointer [8]. As stated by D. Mantione, with this definition, helloHandle is
not compatible to a pointer, but still is a pointer, which is exactly what we want.

Implementation of the functions and procedures are referred as external. This
means that the Free Pascal compiler knows it has to wait to find them: they will be
defined only at linking time or later [5, 4].

The cdecl instruction guarantees the argument passing protocol to be compatible
with C style. It should also be noted that to correctly map the C style char* type,
the Free Pascal PChar type was used. Failing to map correctly the C type can be not
detected at compilation or linking time, leading the generated binary to crash.

10

At last, as explained before, two sets of pre-processor instructions are defined. The
first {$link fhello_c.o},link the C definition and the Free Pascal definition of
the procedures and functions with a c prefix [5, 4].

The second set of pre-processor instructions, {$linklib hello.so},
{$linklib c},{$linklib stdc++},pass instructions to the linker so that is
can link the C functions with the C++ implementations of functions and class [4, 5]. It
also performs the link to the standard libc and libc++ libraries.

5 Free Pascal program
An application resulting of this work can be found in the file helloP.pas:

uses
helloFLAT;

var
h : helloHandle;

begin
h:=cNewHelloC(’Gilles’);
cHelloPrint(h);
cDeleteHello(h);

end.

It uses the helloFLAT unit. Thus it uses the newly defined type helloHandle.
It will use it to construct an instance of the hello class for which the private string
structure is immediately set. It will use it to print a message and clean the memory
before leaving.

5.1 Conclusion
This small tutorial will help new comers to Free Pascal to build applications that are
able to take advantage of the huge libraries available in C and C++. This shall help
saving time as first not having to write again what was already written in a quite optimal
manner. Besides, reusing code prevent the need of testing it. In fact, the Borland’s
Kylix project (that is by now, cold dead) was build on the TrollTech’s QT libraries [2].
Those libraries were originally written in C for use in C++ code.

There exists some Free Pascal utilities developed for helping designing correct
wrappers. This is precisely the goal of the utility h2pas [5, 4]. It is nonetheless
essential to get knowledge of the details of the protocol to be able to use it correctly.

This tutorial is not complete. For example, there shall be a way to use the C++
class structure into Free Pascal without flattening it. It has been reported previously for
Delphi7 and Windows [8].

Some work also has to be done to check how exceptions can be handled through
those mixed code.

11

References
[1] M. Cline. How to mix c and c++, 2006.

[2] O. Dahan and P. Toth, editors. Delphi7 Studio. Eyrolles, 2004.

[3] U. Drepper. How to write shared libraries, 2006.

[4] freepascal project, http://community.freepascal.org. freepascal community forum,
2006.

[5] freepascal project, http://community.freepascal.org. freepascal programmers
guide, 2006.

[6] GNU is Not Unix. Using the gnu compiler collection (gcc), 2006.

[7] B. Stroustrup, editor. The C++ programming language, special edition. Pearson
Education, 2003.

[8] R. Velthuis. Using c++ objects in delphi, 2006.

12

