Free Pascal 1.0.x Internal documentation
version 1.0

June 11, 2005

Carl Eric Codere

CONTENTS

Contents
1 Introduction 16
2 Scanner/ Tokenizer 16
2.1 Architecture. 17
Inputstream. e e e 17
Preprocessor. e 19
Conditional compilation (scandir.inc, scanner.pas). 19
Compiler switches (scandir.inc, switches.pas) 19
2.2 Scannerinterface e 19
Routines. e e 19
ReadToken. e 19
Variables 20
Token e e 20
Pattern e e 20
2.3 Assembler parserinterface. 20
FOULINES e e e e e 20
AsmGetChar. e 20
3 Thetree 20
3.1 Architecture. e e 20
3.2 Treetypes. o i e e e e e 21
3.3 Treestructure fields (tree.pas) oo 23
Additionalfields. 25
AddN . . . 25
CallParaN. e 25
AsSIgNN . . L L e 25
LoadN e 25
CallN e 26
addrn e 26
OrdConstN e 26
RealConstN. e 26

CONTENTS

FixXConstN e 26

FuncRetN. 27

SubscriptN 27

RaiseN e 27

VecN . . . e e e 27
StringConstN. 27

TypeConvN. e 27

TypeN. . . e e 28

InineN e 28

ProcInlineN. e 28

SetConstN e 28

LOOPN . . . e e e 29

AsmN . . . e e e 29

CaseN. e 29

LabelN, GotoN. e 29

WiIthN e 29

ONN. . . . e 30
ArrayConstructorN. 30

4 Symbol tables 30
4.1 Architecture. e 30
4.2 The Symboltableobject. 30
4.3 Inserting symbolsintoasymboltable 32
4.4 Symboltableinterface. 32
Routines. e 32
Search_a Symtable. 32

GetSym. 32

GlobalDef. 33

Variables e 33
SISYM. . . . e e 33
SrSymTable 34

CONTENTS

5 Symbol entries 34
5.1 Architecture. e 34
5.2 Symbolentrytypes 35

Base symboltype (TSym). 35
label symbol (TLabelSym). 36
unitsymbol (TUnitSym) 36
macro symbol (TMacroSym) i e 36
error symbol (TErrorSym). e 37
procedure symbol (TProcSym). 37
type symbol (TTypeSym) e e 37
variable symbol (TVarSym) 38
property symbol (TPropertySym). 39
return value of functionsymbol L oL 39
absolute declared symbol (TAbsoluteSym) 39
typed constantsymbol. 40
constant symbol (TConstSym) 40
enumerationsymbaol L L 41
programsymbol 41
syssymbol s AL
5.3 Symbolinterface. e 41

6 Type information 41
6.1 Architecture. s A2
6.2 Definitiontypes. 41

base definition (TDef) 42
file definition (TFileDef) 43
formal definition (TFormalDef) 44
forward definition (TForwardDef). 44
error definition (TErrorDef) 44
pointer definition (TPointerDef). 44
object definition (TObjectDef). 44
class reference definition (TClassRefDef). 46

CONTENTS

array definition (TArrayDef) 46
record definition (TRecordDef) 46
ordinal definition (TOrdDef) 46

float definition (TFloatDef). a7
abstract procedure definition (tabstractprocdef). 48
procedural variable definition (TProcVarDef) 50
procedure definition (TProcDef) 50
string definition (TStringDef), 51
enumeration definition (TEnumbDef) 52
setdefinition (TSetDef) 52

6.3 Definitioninterface. e 53
FOULINES o e e e e 53
TDef.Size. 53

TDef Alignment 53

7 The parser 53
7.1 Moduleinformation 54
7.2 Parsetypes. e e e 56
Entry . . e 56
programor libraryparsing. 56
UNILPArSING o v o e e e e e e e e e e e 56
FOUtiNE Parsing v v o e e e e e e 56
label declarations. 56
constantdeclarations L 56

type declarations. 56
variable declarations. 56
thread variable declarations. 56
resource string declarations. L. 56
exportsdeclaration. 56
eXPression Parsing. o i e e e e e e e 56
typed constant declarations. 56

7.3 Parserinterface 56

CONTENTS

variables. L 56
AKEtProcSym 58
LexLevel e 58
Current Module 58
VoidDef 58
cCharDef. 58
cWideCharDef. 59
BoolDef. 59
u8BitDef 59
ul6BitDef. e 59
u3d2BitDef. 59
S32BitDef. 60
Cub4BitDef 60
Ccs64BitDef 60
s64FloatDef 60
s32FloatDef 60
s80FloatDef 61
s32FixedDef 61
cShortStringDef 61
cLongStringDef. L 61
CAnsiStringDef. L 61
cWideStringDef 62
OpenShortStringDef. 62
OpenCharArrayDef e 62
VoidPointerDef. e 62
CharPointerDef 62
VoidFarPointerDef. 63
cFormalDef. 63
cfRileDef 63

8 The inline assembler parser 63

CONTENTS

9 The code generator 63
9.1 Introduction. e 63
9.2 Locations (cpubase.pas) 64

LOC _INVALID e e e 65
LOC FPU. . . . e e 65
Stackbased FPU 65
Registerbased FPU., 65

LOC REGISTER. e e e e 65
LOC MEM,LOC REFERENCE. 66
LOC JUMP. . . . o oot e 67
LOC FLAGS e 67
LOC CREGISTER. e e 67
LOCATION PUBLICINTERFACE o oo 67
Del_Location. e 67
Clear_Location. e 67

Set Location. 68
Swap_Location. 68

9.3 Registers(cpubase.pas) 68
iINteger registers. 68
addressregisters. e e 69
fpuregisters. e e e 69
scratchregisters 69

9.4 Special registers (cpubase.pas) o 69
Stack _Pointer. L e e 69
Frame_Pointer e 69
Self_Pointer. e 70
accumulator. e e 70
scratchregister. e e 70

9.5 INStructions. e 70
9.6 Referencesubsystem. 70
Architecture. 70
Code generatorinterface e 70

CONTENTS

DisposeReference. 70
NewReference. 71

Del Reference. e 71

New Reference, 71

Reset Reference 71

9.7 Theregister allocator subsystem. 71
Architecture. e 71
Code generator interface (tgen.pas) 71
GetReqgister32 72
GetRegisterPair 72
UngetRegister32. 72
GetFloatRegister. 72
IsFloatsRegister 73
GetAdressReg. 73
IsAddressRegister. 73
UngetRegister 73
SaveUsedRegisters. e 73
RestoreUsedRegisters 74
GetExplicitRegister32. 74

9.8 Temporary memory allocator subsystem 74
Architecture. e 74
Temporary memory allocator interface (temp_gen.pas) 75
GetTempOfSize 75
GetTempOfSizeReference 75
UnGetlfTemp. 75
GetTempAnsiStringReference 75
GetTempOfSizePersistant 76
UngetPersistantTemp. i 76
ResetTempGen 76
SetFirstTemp. 76
GetFirstTempSize e 76
NormalTempToPersistant. 77

7

CONTENTS

PersistantTempToNormal. 77

ISTemp 77

9.9 Assemblergeneration. 77
Architecture. 77
Generic instruction generationinterface. 78
Emit Load Loc Reg 79

FloatLoad. e 79

FloatStore. 79

emit mov_ref regb4. 79
Emit Lea Loc Ref 80
Emit Lea Loc Reg. 80

GetLabel 80

EmitLab 80
EmitLabeled 80

EmitCall 81
ConcatCopy o e e 81

Emit Flag2Reg. 81

10 The assembler output 81
11 The Runtime library 84
11.1 Operatingsystemhooks 86
System_EXit 86
ParamCount 86

Randomize. 86
GetHeapStart 86
GetHeapSize. 86

sbrk . . . 87

Do _Close. e 87

Do _Erase. e 87

Do Truncate. e e 87

Do Rename e 88

CONTENTS

Do Write e 88

Do Read. e 88

Do FilePos. e 88

Do Seek e 89

Do Seekend. 89

Do _FileSize e 89

Do _IsDevice e 89

Do Open. e e e 90

ChDIir . . . 90

MKDIr . . . e e 90

RmDIir . . . 90

11.2 CPUspecifichooks e 91
FPC _SETIMP e e 91
Setdmp 91

FPC LONGIMP e e s s e e 91
function SPtr() L 91
function Get_Caller_Frame(framebp:longint):longint; 91
function Get_Caller_Addr(framebp:longint):longint; 91
function Get_Frame:longint;. oo 91
function Trunc(). e e 91
11.3 Stringrelated. 91
FPC_SHORTSTR _COPY. oot 91
INt_StrCopy. e e e 91
FPC_SHORTSTR_COMPARE. 92
IN_StrCmp. 92
FPC_SHORTSTR _CONCAT . . . o v oo ot e, 92
Int. StrConcat 92
FPC_ANSISTR_CONCAT. o e e e e e 92
AnsiStr_Concat 92
FPC_ANSISTR_COMPARE o it e, 93
AnsiStr_Compare e e 93
FPC_ANSISTR_INCR_REFE o 93

9

CONTENTS

11.4

AnsiStr_Incr Ref. 93
FPC_ANSISTR_ DECR REF. oo 93
AnsiStr_ Decr Ref. 93
FPC_ANSISTR_ASSIGN. e 93
ANSIStr_ASSIgN. e e e 93
FPC _PCHAR_TO SHORTSTRt o oot e e 94
StrPas. 94
FPC_SHORTSTR_TO_ANSISTR e 94
FPC_ShortStr To AnsiStr 94
FPC_STR_TO CHARARRAY.\ oo e 94
Str_To_CharArray. 94
FPC_CHARARRAY_TO_SHORTSTR. oo, 95
StrCharArray. e e e 95
FPC_CHARARRAY TO ANSISTR oo ot 95
Fpc_Chararray _To AnsiStr. 95
FPC_CHAR_TO_ANSISTR. e e e 95
Fpc_Char_To AnsiStr. e 95
FPC_PCHAR_TO ANSISTR. oo e 96
Fpc_pChar_To AnsiStr. i 96
Compiler runtime checking. 96
FPC _STACKCHECK. e e e s e 96
Int_StackCheck 96
FPC_RANGEERROR e 96
Int_ RangeError. 96
FPC BOUNDCHECK e e e e e e e 96
Int BoundCheck. 96
FPC_OVERFLOW e e 97
Int_ OverFlow. e 97
FPC CHECK OBJECT. . . . o vttt e e e e 97
Int Check Object., 97
FPC_CHECK OBJECT _EXT. e e 98
Int._ Check Object Ext 98

CONTENTS

FPC IO _CHECK. e e e e e 98
Int_IOCheck 98

FPC HANDLEERROR e 99
HandleError. 99
FPC_ASSERT 99
INt_ASSert. e 99

11.5 Exceptionhandling 99
FPC_RAISEEXCEPTION. e e 99
RaiseExcept e 99

FPC PUSHEXCEPTADDR. oo 100
PushExceptAddr. 100
FPC_RERAISE. e 100
ReRaise. e 100

FPC POPOBJECTSTACK e e e e e e e 100
PopObjectStack 100
FPC_POPSECONDOBJECTSTACK. it 100
PopSecondObjectStack. 100

FPC DESTROYEXCEPTION. o .. 101
DestroyException 101
FPC_POPADDRSTACK. e e e e 101
PopAddrStack 101

FPC CATCHES e e 101
Catches. 101
FPC_GETRESOURCESTRING o 101
GetResourceString 101

11.6 Runtime type information. o 102
FPC_DO_IS. . . . e 102
INnt. Do _IS. e 102
FPC DO _AS e e 102
INt. DO_AS e 102
FPC_INITIALIZE e e e 102
Initialize 102

CONTENTS

FPC_FINALIZE e e e 103
Finalize e 103

FPC ADDREF. e 103
AddRef L 103
FPC_DECREF e e e e 103
DecRef e 103

11.7 Memoryrelated 104
FPC_GETMEM. e e e e e 104
GetMem L 104

FPC FREEMEM. e e 104
FreeMem. 104
FPC_CHECKPOINTER. e e 104
CheckPointer. 104
FPC DO EXIT. . . ottt e e e e e e e 104
Do EXit. e 104
FPC_ABSTRACTERROR. e 105
AbstractError. 105

FPC _INITIALIZEUNITS. e e 105
InitializeUnits. e 105
FPC_NEW_CLASS (assembler). 105
int new class e 105

FPC HELP_DESTRUCTOR 105
Int_ Help_Destructor. 105
FPC_HELP_CONSTRUCTOR. i e 106
Int_Help_Constructor, 106

FPC HELP _FAIL_CLASS. o s, 106
Help Fail Class. 106
FPC_HELP_FAIL. e 107
Help Fail 107

11.8 Sethandling 107
FPC_SET_COMP_SETS. e 107
Do Comp_Sets e 107

CONTENTS

11.9

FPC_SET_CONTAINS SET 107
Do Contains_Sets. 107
FPC_SET CREATE_ELEMENT.ottt . 107
Do Create Element. 107
FPC_SET_SET RANGE e 108
Do _Set Range. 108
FPC SET SET BYTE . . . o ottt e 108
Do _Set Byte. e 108
FPC SET SUB _SETS o it ot e e e e 109
Do Sub Sets e 109
FPC SET MUL_SETS o vt s s 109
Do Mul_Sets. e 109
FPC SET SYMDIF SETS. . . . o ot oo e 109
Do _Symdif_Sets. 109
FPC SET ADD_SETS o vt s e 110
Do Add Sets 110
FPC SET LOAD SMALLo 110
Do Load Small 110
FPC_SET UNSET BYTE oot 111
Do Unset Byte e 111
FPC SET IN BYTE. . . . o oot e e 111
Do In_Byte. e 111
Optional internalroutines. 111
FPC_MUL_INT64 e e e e e e 111
Mullnt64 e 111
FPC DIV INT64. . . . o o e s 112
DivINt64 112
FPC_MOD _INTB4 e e e e e e e e e e 112
ModInt64 112
FPC SHL_INTBA. . . . o o e s e 112
Shiinté4. e 112
FPC_SHR_INT64 e e e 113

CONTENTS

Shrintéd
FPC_MUL LONGINT.
Mullong
FPC_REM_LONGINT.
RemLong.
FPC DIV_LONGINT
DivLong
FPC_MUL LONGINT
MulCardinal
FPC_REM_CARDINAL
RemCardinal.
FPC _DIV_CARDINAL.
DivCardinal.
FPC LONG TO_SINGLE.
LongSingle.

12 Optimizing your code

12.1 Simpletypes
12.2 constantduplicate merging.
12.3 inlineroutines.

12.4 temporary memory allocation reuse

13 Appendix A

14

LIST OF FIGURES

List of Figures

© 00 N oo o A WO DN B

N
= O

compileroverview L e 17
scanner interface overview 18
Example tree structure. L 21
Interactions between symboltables 31
Inserting into the symboltable 33
relation between symbol entry and type definitionandname 34
Type symbol and definitionrelations. 42
Parser-Scannerflow 57
Code generator architecture e 64
Interaction between codegeneration and the parsing process 64
Assembler generation organisation L. 82

15

2 SCANNER / TOKENIZER

TODO:

1

Describe in detail tsymtable, including all methods and fields
Describe in detail procinfo (tprocinfo)

Explain how a symbol is inserted into the symbol table (and how alignment requirements
are met)

Explain pparaitem

Explain all symbol table fields

Finish all internal routines definitions
Architecture of the assembler generators + API
Architecture of the PPU file and information
Explain systems.pas

routine parsing and code generation algorithm

(MvdV) OS specific stuff (like hardcoded linker includedirs)

Introduction

This document describes the internal architecture of the Free Pascal Compiler version 1.0 re-
lease. This document is meant to be used as a guide for those who wish to understand how the
compiler was created. Most of the architecture of the compiler described herein is based on the
m68k version on the compiler, the i386 version of the compiler ressembles closely the m68k
version, but there are subtle differences in the different interfaces.

The architecture, and the different passes of the compiler are shown in figure #gure (

2 Scanner/ Tokenizer

The scanner and tokenizer is used to construct an input stream of tokens which will be fed to
the parser. It is in this stage that the preprocessing is done, that all read compiler directives
change the internal state variables of the compiler, and that all illegal characters found in the
input stream cause an error.

16

2 SCANNER / TOKENIZER

SYMBOL TABLE
(symtable.pas)

PARSER
(parser.pas) —
(pbase.pas)
((Pdec'-PaS)) ASSEMBLER
pexpr.pas) CODE GENERATION
ANNER/TOKENIZER ('::> GENERATORI/LINKER
pexports.pas) TYPE CHECKING
(scanner.pas) :> (pmodules pas) o T :>@_2.pas) (aasm.pas)
(pstatmnt.pas) - (aggas pas)
(ppsub.pas)
tokens.pas (psystem.pas)
switches.pas (ptconst.pas) T
(ptype.pas)
tcadd.pas cga.pas asmhip.pas
tccal.pas cgadd.pad assemble.pas
INLINE tccon.pas cgceal.pas link.pas
ASSEMBLER tcenv.pas cgenv.pas script.pas
PARSER tcflw.pas cgeon.pas
(raint.pas) tcinl.pas cgflw.pas
(rautils.pas) tcmat.pas cginl.pas
tcmem.pas cgld.pas
tcset.pas cgmat.pas
tcld.pas cgmem.pas
cgset.pas
PROCESSOR/OS
ECIFIC INFORMATIO
Ecpuasm.pas)
cpubase.pas)
(systems.pas)

Figure 1: compiler overview

2.1 Architecture
The general architecture of the scanner is shown in figure

Several types can be read from the input stream, a string, handieddstring() , a nu-
meric value, handled bigadnumeric() , comments , compiler and preprocessor directives.

Input stream

The input data is handled via the standard way of handling all the 1/0 in the compiler. That is
to say, that it is a hook which can be overridercomphook.pas (do_openinputfile)in case
where another 1/0 method wants to be used.

The default hook uses a non-buffered dos stream contairfddsrpas

17

2 SCANNER / TOKENIZER

ReadChar()
Inline Assembler /l AsmGetChar() <_I
Parser
Text / // ReadComment()
> 4
Pascal Parser ReadToken()
‘\
™~ .
Scanner Interface \ ReadString()
internal variable
states for compiler ReadNumber()
PreProcessor K HandleDirectives() | g ReadPreproc()
Scanner Core

Figure 2: scanner interface overview

18

2 SCANNER / TOKENIZER

Preprocessor

The scanner resolves all preprocessor directives and only gives to the parser the visible parts
of the code (such as those which are included in conditional compilation). Compiler switches
and directives are also saved in global variables while in the preprocessor, therefore this is part
is completely independent of the parser.

Conditional compilation (scandir.inc, scanner.pas) The conditional compilation is handled

via a preprocessor stack, where each directive is pushed on a stack, and popped when it is
resolved. The actual implementation of the stack is a linked list of preprocessor directive
items.

Compiler switches (scandir.inc, switches.pas) The compiler switches are handled via a
lookup table which is linearly searched. Then another lookup table takes care of setting the
appropriate bit flags and variables in the switches for this compilation process.

2.2 Scanner interface

The parser only receives tokens as its input, where a token is a enumeration which indicates the
type of the token, either a reserved word, a special character, an operator, a numeric constant,
string, or an identifier.

Resolution of the string into a token is done via lookup which searches the string table to find
the equivalent token. This search is done using a binary search algorithm through the string
table.

In the case of identifiers, constants (including numeric values), the value is returned in the
pattern string variable , with the appropriate return value of the token (numeric values are also
returned as non-converted strings, with any special prefix included). In the case of operators,
and reserved words, only the token itself must be assumed to be preserved. The read input
string is assmued to be lost.

Therefore the interface with the parser is with teadtoken() routine and th@attern variable.
Routines

ReadToken

Declaration: Procedure ReadToken;

Description: Sets the global variabkeken to the current token read, and sets pladgtern variable appro-
priately (if required).

19

3 THE TREE

Variables

Token

Description: Var Token : TToken;
Description: Contains the contain token which was last read by a c&ldadToken (19)

See also: ReadToken (19)

Pattern

Declaration: var Pattern : String;

Description: Contains the string of the last pattern read by a caéadToken (19)

See also: ReadToken (19)

2.3 Assembler parser interface

The inline assembler parser is completely separate from the pascal parser, therefore its scanning
process is also completely independent. The scanner only takes care of the preprocessor part
and comments, all the rest is passed character per character to the assembler parser via the

AsmGetChar (20)() scanner routine.
routines
AsmGetChar

Declaration: Function AsmGetChar: Char;

Description: Returns the next character in the input stream.

3 The tree

3.1 Architecture

The tree is the basis of the compiler. When the compiler parses statements and blocks of code,
they are converted to a tree representation. This tree representation is actually a doubly linked
list. From this tree the code generation can easily be implemented.

Assuming that you have the following pascal syntax:

20

3 THE TREE

assignn

loadn addn

X %
muln @ shin
\, < TN,

X D » %

X
loadn Ioad® ordconstn Ioad@
X

Figure 3: Example tree structure

z:=xxy+ (6 shl z);

The tree structure in pictu@will be built in memory, where each circle represents an element

(anode) in the tree:

3.2 Tree types

The following tree nodes are possible (of typ&eeTyp):

Table 1: Possible node types (ttreetyp)

Tree type definition

Description

addn
muln
subn
divn
symdifn
modn
assignn
loadn
rangen
Itn

Iten

Represents the + operator
Represents the * operator
Represents the - operator
Represents the div operator
Represents the >< operator
Represents the mod operator
Represents the := operator (assignment)
Represents the use of a variable
Represents a numeric range (i.e 0..9)
Represents the < operator
Represents the <= operator

21

3 THE TREE

Table 1: Possible node types (ttreetyp) - continued

Tree type definition

Description

gtn

gten
equaln
unequaln
inn

orn

xorn
shrn
shin
slashn
andn
subscriptn
derefn

addrn
doubleaddrn
ordconstn
typeconvn
calln
callparan
realconstn
fixconstn
unaryminusn
asmn

vecn
pointerconstn
stringconstn
funcretn

selfn
notn
inlinen

niln
erron

typen
hnewn

hdisposen
newn

Represents the > operator
Represents the >= operator
Represents the = operator
Represents the <> operator
Represents the in operator
Represents the or operator
Represents the xor operator
Represents the shr operator
Represents the shl operator
Represents the / operator
Represents the and operator
Represents a field in an object or record

tor)

Represents the @ operator

Represents the @@ operator

Represents an ordinal constant
Represents a typecast / type conversion
Represents a routine call

Represents a parameter passed to a routine
Represents a floating point constant
Represents a fixed point constant
Represents a sign change (e.g : -)
Represents an assembler statement node
Represents array indexing

Represents a pointer constant
Represents a string constant

loadn)
Represents the self parameter
Represents the not operator

etc.)
Represents the nil pointer

detection and correction)
Represents a type name (i.e typeof(obj))
Represents the new routine call on objects

Represents a pointer reference (such as the ~ opera-

Represents the return function result variable (not

Represents one of the internal routines (writeln,ord,

Represents error in parsing this node (used for error

Represents the dispose routine call on objects
Represents the new routine call on non-objects

22

3 THE TREE

Table 1: Possible node types (ttreetyp) - continued

Tree type definition

Description

simpledisposen
setelementn

setconstn
blockn
statementn
loopn

ifn

breakn
continuen
repeatn
whilen

forn

exitn

withn
casen
labeln
goton
simplenewn
tryexceptn
raisen
switchesn
tryfinallyn
onn

isn

asn

caretn

failn
starstarn
procinlinen
arrayconstrucn
arrayconstructrangen
nothingn
loadvmtn

Represents the dispose routine call on non-objects
Represents set elements (i.e : [a..b], [a,b,c]) (non-
constant)

Represents set element constants i.e : [1..9], [1,2,3])
Represents a block of statements

One statement in a block of nodes

Represents a loop (for, while, repeat) node
Represents an if statement

Represents a break statement

Represents a continue statement

Represents a repeat statement

Represents a while statement

Represents a for statement

Represents an exit statement

Represents a with statement

Represents a case statement

Represents a label statement

Represents a goto statement

Represents a new statement

Represents a try statement

Represents a raise statement

Unused

Represents a try..finally statement

Represents an on..do statement

Represents the is operator

Represents the as typecast operator

Represents the operator

Represents the fail statement

Represents the ** operator (exponentiation)
Represents an inline routine

Represents a [..] statement (array or sets)
Represents ranges in [..] statements (array or sets)
Empty node

Load method table register

3.3 Tree structure fields (tree.pas)

Each element in a node is a pointer to a TTree structure, which is summarily explained and

defined as follows:

23

3 THE TREE

TYPE
pTree = ~TTree;
TTree = RECORD

Error : boolean; Set to TRUE if there was an error parsing this
node

DisposeTyp : tdisposetyp;

Swaped : boolean; Set to TRUE if the left and right nodes (fields)
of this node have been swaped.

VarStateSet : boolean;

Location : tlocation; Location information for this information (cf.
Code generator)

Registers32 : longint; Minimum number of general purpose registers
required to evaluate this node

RegistersFpu : longint; Minimum number of floating point registers re-
quired to evaluate this node

Left : pTree; LEFT leaf of this node

Right : pTree; RIGHT leaf of this node

ResultType : pDef; Result type of this node
(cf. Type definitions)

Filelnfo : TFilePoslInfo; Line number information for this node creation
in the original source code (for error manage-
ment)

LocalSwitches : tlocalswitches; Local compiler switches used for code genera-
tion
(Cf. 2

IsProperty : boolean; TRUE if this is a property

TreeType : ttreetyp; Type of this tree (cf??)

END;

Table 2: local compiler switches (tlocalswitches)

tlocalswitches Switch | Description

cs_check overflow | {$Q+} | Code generator should emit overflow checking code
cs_check_range {$R+} | Code generator should emit range checking code
cs_check_10 {$1+} | Code generator should emit I/O checking code
cs_check_object_ext | N/A Code generator should emit extended object access checks

cs_omitstackframe N/A Code generator should not emit frame_pointer setup gode
in entry code

cs_do_assertion {$C+} | Code generator supports using the assert inline routine
CS_generate_rtti {$M+} | Code generator should emit runtime type information
cs_typed_addresses | {$T+} | Parser emits typed pointer using the @ operator
CS_ansistrings {$H+} | Parser creates aansistring when an unspecifie®tring

type is declared instead of the defaghortString

24

3 THE TREE

tlocalswitches Switch

Description

cs_strict_var_strings | {$V+}

String types must be identical (same length) to be compati-

ble

Additional fields

Depending on the tree type, some additional fields may be present in the tree node. This
section describes these additional fields. Before accessing these additional fields, a check on
thetreetype should always be done to verify if not reading invalid memory ranges.

AddN

Field Description

Use_StrConcat : Boolean; | Currently unused (use for optimizations in future versions)

String_Typ: TStringType; | In the case where the + operator is applied on a string,|this
field indicates the string type.

CallParaN

Field

Description

Is_Colon_Para : Boolean;

Exact_Match_Found : Boolean;

ConvLevellFound : Boolean;

ConvLevel2Found : Boolean;

HighTree : pTree;

Used for internal routines which can use optional forr
parameters (using colons). Is set to TRUE if this param
was preceded by a colon (i.e : :1)

Set to TRUE if the parameter type is exactly the same as
one expected by the routine.

Set to TRUE if the parameter type requires a level 1 t
conversion to conform to the parameter expected by the
tine.

Set to TRUE if the parameter type requires a level 2 t
conversion to conform to the parameter expected by the
tine.

AssignN

Field Description

AssignTyp : TAssignTyp; | Currently unused (Used to be used for C-like assigns)
Concat_String : Boolean; | Currently unused (use for optimizations in future versions)

LoadN

25

nat
eter

5 the

ype
rou-

ype
rou-

3 THE TREE

Field Description

SymTableEntry : pSym; | Symbol table entry for this symbol
SymTable : pSymTable; | Symbol table in which this symbol is stored
Is_Absolute : Boolean; | setto TRUE if this variable is absolute

Is_First : Boolean; set to TRUE if this is the first occurrence of the load for this

variable (used with the varstate variable for optimizations)

CallN

Field

Description

SymTableProcEntry : pProcSym;
SymTableProc : pSymTable;

ProcDefinition : pAbstractProcDef;
MethodPointer : pTree;
No_Check : Boolean;
Unit_Specific : Boolean,;

Return_Value _Used : Boolean

Static_Call : Boolean;

Symbol table entry for this routine
Symbol table associated with a call (object symbol tablg
routine symbol table)

Type definition for this routine
229777777

Currently unused
set to TRUE if the routine is imported in a unit specific w
(for example: system.writeln())

set to TRUE if the routine is a function and that the ret
value is not used (in extended syntax parsing - $X+)
unused

D
(@)

ay

U

addrn

Field Description

ProcVarLoad : Boolean; | Set to TRUE if this is a procedural variable call

OrdConstN

Field Description

Value : Longint; | The numeric value of this constant node

RealConstN

Field Description

Value Real : Best_Real; | The numeric value of this constant node
Lab_Real : pAsmLabel; | The assembler label reference to this constant

FixConstN

26

3 THE TREE

Field

Description

Value_Fix : Longint;

The numeric value of this constant node

FuncRetN

Field

Description

FuncRetProclinfo : Poi
RetType : TType;

Is_First_FuncRet : Boolean;

nter; (pProcinfo) | Pointer to procedure information
Indicates the return type of the function

SubscriptN

Field Description

Vs : pVarSym; | Symb

class/record)

ol table entry for this variable (a field of object/-

RaiseN

Field Description

FrameTree : pTree; | Exception frame tree (code in Raise statement)

VecN

Field

Description

Memlindex : Boolean;
MemSeg : Boolean;
CallUnigue: Boolean;

Set to TRUE if Mem[Seg:Ofs] directive is parsed
Set to TRUE if Mem[Seq:Ofs] directive is parsed

StringConstN

Field

Description

Value_Str : pChar;
Length : Longint;
Lab_Str: pAsmLabel;

StringType : TStringType; | The string type (short, long, ansi, wide)

The constant value of the string
Length of the string in bytes (or in characters???)
The assembler label reference to this constant

TypeConvN

27

3 THE TREE

[Field |

Description

Field

Description

ConvType: TConvertType;
Explizit : Boolean;

Indicates the conversion type to do
set to TRUE if this was an explicit conversion (with expli
typecast, or calling one of the internal conversion routin

Cit

es)

TypeN

Field

Description

TypeNodeType : pDef;
TypeNodeSym : pTypeSym;

The type definition for this node
The type symbol information

InlineN
Field Description
InlineNumber: Byte; Indicates the internal routine called (Cf. code generator

InlineConst : Boolean; | One or more of the parameters to this inline routine call
contains constant values

ProclnlineN

Inline nodes are created when a routine is declared as being inline. The routine is actually

inlined when the following conditions are satisfied:

It is called within the same module

The appropriate compiler switch to support inline is activated

It is @ non-method routine (a standard procedure or function)

Otherwise a normal call is made, ignoring the inline directive. In the case where a routine
is inlined, all parameters , return values and local variables of the inlined routine are actually

allocated in the stack space of the routine which called the inline routine.

Field

Description

InlineTree : pTree;
InlineProcsym : pProcSym;
RetOffset : Longint;
Para_Offset : Longint;
Para_Size : Longint;

The complete tree for this inline procedure

Symbol table entry for this procedure

Return offset in parent routine stack space
Parameter start offset in parent routine stack space
Parameter size in the parent routine stack space

SetConstN

28

3 THE TREE

Field Description

Value_Set : pConstSet; | The numeric value of this constant node
Lab_Set: pAsmLabel; | The assembler label reference to this constant

LoopN

Field | Description

AsmN

Field

Description

p_Asm : pAasmOutput;
Object_Preserved : Boolean;

The instruction tree created by the assembler parser
set to FALSE if the Self_Register was modified in the a

statement.

CaseN
Field Description
Nodes : pCaserecord; | Tree for each of the possible case in the case statement
ElseBlock : pTree; Else statement block tree

LabelN, GotoN

Field Description

ExceptionBlock : ptree; | ?

LabelNr : pAsmLabel; | Assembler label associated with this statement

LabSym : pLabelSym; | Symbol table entry for this label

WithN

sSm

Field

Description

TableCount : Longint;
WithReference : pReference;
IsLocal : Boolean;

WithSymTables : pWithSymTable;

29

4 SYMBOL TABLES

OnN

Field Description
ExceptSymTable : pSymtable;
ExceptType : pObjectdef;

ArrayConstructorN

Field Description
CArgs : Boolean;
CArgSwap : Boolean;
ForceVaria : Boolean;
NoVariaAllowed : Boolean;
ConstructorDef : pDef;

4 Symbol tables

4.1 Architecture

The symbol table contains all definitions for all symbols in the compiler. It also contains all
type information for all symbols encountered during the parsing process. All symbols and
definitions are streamable, and are used within PPU files to avoid recompiling everything to
verify if all symbols are valid.

There are different types of symbol tables, all of which maybe active at one time or another
depending on the context of the parser.

An architectural overview of the interaction between the symbol tables, the symbol entries and
the definition entries is displayed in figu4el

As can be seen, the symbol table entries in the symbol table are done using the fast hashing
algorithm with a hash dictionary.

4.2 The Symbol table object

All symbol tables in the compiler are from this type of object, which contains fields for the
total size of the data in the symbol table, and methods to read and write the symbol table into
a stream. The start of the linked list of active symbol tables isymatablestackvariable.

30

4 SYMBOL TABLES

SymTableStack

symbol table
(TSymTable)

symbol table
(TSymTable)

hash dictionary
hash array
of symbols

symbol table
entries

(TSym)

hash dictionary
hash array
of symbols

symbol table
(TSymTable)

hash dictionary
hash array
of symbols

symbol table
entries

(TSym)

symbol table
entries

(TSym)

Figure 4: Interactions between symbol tables

TYPE
pSymTable
TSymTable

=" TSymTable;

= object

Name : pString;
DataSize : Longint;

DataAlignment : Longint;
Symindex : plndexArray;
Defindex : plndexArray;
SymSearch : pDictionary;
Next : pSymtable;

DefOwner : pDef;

Address_Fixup : Longint

Unitld : Word;

SymTableLevel : Byte;
SymTableType :TSymTabIe:])';_(pe;

end;

The total size of all the data in th
symbol table (after the data has be
aligned). Only valid for certain type
of symbol tables.

Points to the next symbol table in th
linked list of active symbol tables.
The owner definition (only valid in
the cases of objects and records, t

points to the definition of that objec

or record).

Indicates the type of this symbol tab
2.

en

[%2)

e

his
t

le

4 SYMBOL TABLES

The type of possible symbol tables are shown in the following table:

TSymTableType Description

InvalidSymTable Default value when the symbol table is created and its type
is not defined. Used for debugging purposes

WithSymTable All symbols accessed in a with statement

StaticSymTable

GlobalSymTable

UnitSymTable Linked list of units symbol used (all or unit?). The linked
list is composed ofunitsym structures.

ObjectSymTable

RecordSymTable Contains all symbols within a record statement

MacroSymTable Holds all macros currently in scope.

LocalSymTable Hold symbols for all local variables of a routine

ParaSymTable Holds symbols for all parameters of a routine (the actual

parameter declaration symbols)
InlineParaSymTable | Holds all parameter symbols for the current inline routine
InlineLocalSymTable | Holds all local symbols for the current inline routine
Stt_ExceptSymTable
StaticPPUSymTable

4.3 Inserting symbols into a symbol table

To add a symbol into a specific symbol table, that's symbol talfessrt method is called,

which in turns call thdnsert_In_Data method of that symbolinsert_In_Data, depending

on the symbol type, adjusts the alignment and sizes of the data and actually creates the data
entry in the correct segment.

4.4 Symbol table interface

Routines

Search_a_Symtable

Declaration: Function Search_a_Symtable(Const Symbol:String;
SymTableType : TSymTableType):pSym;

Description: Search for a symbd&@ymbol in a specified symbol tablgymTableType. ReturnsNIL if the
symbol table is not found, and also if the symbol cannot be found in the desired symbol table.

GetSym

32

4 SYMBOL TABLES

set owner of symbol
to this symbol table

call the symbols
insert_in_data method
(aligns the data correctly)

check if the symbol already
exists, if so give an error

l

insert symbol into hash
table

Figure 5: Inserting into the symbol table

Declaration: Procedure GetSym(Const S : Stringld; NotFoundError. Boolean);

Description: Search all the active symbol tables for the syndysektting the global variabl&rSym to the
found symbol, or tanil if the symbol was not foundiotfounderror should be set to TRUE if
the routine must give out an error when the symbol is not found.

GlobalDef

Declaration: Function GlobalDef(Const S : String) : pDef;
Description: Returns a pointer to the definition of the fully qualified type syn®obr NIL if not found.

Notes: It is fully qualified, in that the symbaodystem.byte, for example, will be fully resolved to
a unit and byte type component The symbol must have a global scope, and it must be a type
symbol, otherwis&IL will be returned..

Variables
SrSym

Declaration: Var SrSym : pSym;

33

5 SYMBOL ENTRIES

symbol table entry
(TSym)

reference information
(TRef)

specific information
for type

type definition

sybol table entry
type name
(TTypeSym)

Figure 6: relation between symbol entry and type definition and name

Description: This points to the symbol entry found, when calliggtsym.

SrSymTable

Declaration: Var SrSymTable : pSymTable;

Description: This points to the symbol table of the symt&iSym (33) when callingGetSym (32).

5 Symbol entries

5.1 Architecture

There are different possible types of symbols, each one having different fields then the others.
Each symbol type has a specific signature to indicate what kind of entry it is. Each entry
in the symbol table is actually one of the symbol entries described in the following sections.
The relationship between a symbol entry, a type definition, and the type name symbol entry is

shown in figures. 1

34

5 SYMBOL ENTRIES

5.2 Symbol entry types
Base symbol type (TSym)

All entries in the symbol table are derived from this base object which contains information on
the symbol type as well as information on the owner of this symbol entry.

TYPE
pSym =" TSym;

TSym =Object(TSymTableEntry)

SymOptions : TSymOptions;

FileInfo : tFilePoslinfo;

Refs : Longint;

Indicates how many times this lab

Indicate the access scope of the symbol

el is refered in the

parsed code (is only used with variable and assembler

label symbols).

LastRef : pRef;
DefRef : pRef;
LastWritten : pRef;

RefCount : Longint;
Typ : tSymTyp;
IsStabWritten : Boolean;

Browser information indicating the
Indicates the symbol type

been written for this symbol.

reference count

Set to TRUE if the stabs debugging information has

end,;
Table 30: tsymtyp

TSymTyp Description

AbstractSym This is a special abstract symbol (this should never occur)

VarSym This symbol is a variable declaration in tiar section, or
avar parameter.

TypeSym This symbol is a type name

ProcSym This symbol is a routine or method name

UnitSym This symbol is a unit name

ProgramSym This symbol is the main program name

ConstSym This symbol is a constant

EnumSym This symbol is an enumeration symbol (an element in an
enumeration)

TypedConstSym | This symbol is pre-initialized variable (pascal typed con-
stant)

ErrorSym This symbol is created for error generation

SysSym This symbol represents an inlined system unit routine

LabelSym This symbol represents a label inadoel pascal declaration

AbsoluteSym This symbol represents an the symbol followingaso-
lute variable declaration

35

5 SYMBOL ENTRIES

TSymTyp Description

PropertySym This symbol is a property name

FuncRetSym This symbol is the name of the return value for function
MacroSym This symbol is a macro symbol (just like #define in C)

U

label symbol (TLabelSym)

The label symbol table entry is only created when a pascal label is declared via the label
keyword. The object has the following fields which are available for use publicly:

TYPE
pLabelSym =
TLabelSym =

" TLabelSym,;
Object(TSym)

Used : Boolean Set to TRUE if this pascal label is used usingao
or in an assembler statement

Defined: Boolean Set to TRUE if this label has been declared

Lab : pAsmLabel Points to the actual assembler label structure which
will be emitted by the code generator

Code : Pointer
end;

unit symbol (TUnitSym)

The unit symbol is created and added to the symbol table each time that the uses clause is
parsed and a unit name is found, it is also used when compiling a unit, with the first entry in
that symbol table being the unit name being compiled. The unit symbol entry is actual part of

a linked list which is used in the unit symbol table.

TYPE
pUnitSym =
TUNitSym =

“ TUNIitSym;
Object(TSym)
UnitSymTable:pUnitSymTable

PrevSym : pUnitSym
end;

Pointer to the global symbol table for th

unit, containing entries for each publi¢c?

symbol in that unit
Pointer to previous entry in the linked li

at

t

U

macro symbol (TMacroSym)

The macro synbols are used in the preprocessor for conditional compilation statements. There
is one such entry created for each $define directive, it contains the value of the define (stored

as a string).

36

5 SYMBOL ENTRIES

TYPE
pMacroSym = " TMacroSym;
TMacroSym = Object(TSym)

1372
1

Defined : Boolean; TRUE if the symbol has been d¢
fined with a$define directive, or
false if it has been undefined with
a$undef directive

Defined_At_Startup : Boolean; TRUE if the symbol is a system
wide define

Is_Used: Boolean; TRUE if the define has been used
such as in &ifdef directive.

BufText : pChar; The actual string text of the define

BufLength : Longint; The actual string length of the de-
fine

end,;

error symbol (TErrorSym)

This symbol is actually an empty symbol table entry. When the parser encounters an error
when parsing a symbol, instead of putting nothing in the symbol table, it puts this symbol
entry. This avoids illegal memory accesses later in parsing.

procedure symbol (TProcSym)

The procedure symbol is created each time a routine is defined in the code. This can be either
a forward definition or the actual implementation of the routine. After creation, the symbol is
added into the appropriate symbol table stack.

TYPE

pProcSym = " TProcSym;

TProcSym = Object(TSym)
Is_Global : Boolean Set if the routine is exported by the unit
Definition : pProcDef Procedure definition, including parameter infor-

mation and return values
end;

type symbol (TTypeSym)

The type symbol is created each time a new type declaration is done, the current symbol table
stack is then inserted with this symbol. Furthermore, each time the compiler compiles a mod-
ule, the default base types are initialized and added into the symbol paylstém.pa The

type symbol contains the name of a type, as well as a pointer to its type definition.

37

5 SYMBOL ENTRIES

TYPE
pTypeSym = " TTypeSym;
TTypeSym = Object(TSym)

ResType : TType
definition

Contains base type information as well as the type

end;

variable symbol (TVarSym)

Variable declarations, as well as parameters which are passed onto routines are declared as

variable symbol types. Access information, as well as type information and optimization in-

formation are stored in this symbol type.

TYPE

pVarSym = "~ TVarSym;

TVarSym =Object(TSym)
Reg: TRegister;

VarSpez : TVarSpez;

Address : Longint;

LocalVarSym : pVarSym;
VarType : TType;

VarOptions : TVarOptions;
VarState : TVarState

If the value is a register variable, tiheg field will
be different then R_NO

Indicates the variable type (parameters only) (Cf.

32).
In the case where the variable is a routine
rameter, this indicates the positive offset from {

pa-

he

frame_pointer to access this variable. In the case

of a local variable, this field indicates the negat
offset from theframe_pointer. to access this vari
able.

ve

Contains base type information as well as the type

definition

Flags for this variable (Cf31)

Indicates the state of the variable, if it's used
declared

or

Vvo_is_external
vo_is_DII_var
vo_is_thread var

The variable is declared external
The variable is a shared library variable
The variable is declared as being thread safe

end;
Table 31: tvaroptions
TVarOptions Description
VvOo_regable The variable can be put into a hardware general purpose
register
VO_is_c_var The variable is imported from a C module

38

5 SYMBOL ENTRIES

Table 31: tvaroptions (continued)

TVarOptions Description

vo_fpuregable The variable can be put into a hardware floating point reg-
ister

vo_is_local_copy

VO _is_const unused and useless

VO_is_exported The variable is declared as exported in a dynamic link li-
brary

Table 32: parameter type

TVarSpez| Description

vs_value | This is a value parameter

vs_const | This is a constant parameter, property or array
vs_var This is a variable parameter

property symbol (TPropertySym)

TYPE

pPropertySym = " TPropertySym;

TPropertySym = Object(TSym)
propoptions: tpropertyoptions; ?2?7?
proptype : ttype; Indicates the type of the

property

propoverriden : ppropertysym; ??7?
indextype : ttype;
index : longint; 7?7
default : longint ???
readaccess : psymlist ??7?
writeaccess : psymlist ??7?
storedaccess : psymlist ??77?
end;

return value of function symbol
absolute declared symbol (TAbsoluteSym)

This symbol represents a variable declared withdbhsolute keyword. Theaddress
of the TVarSym object holds the address of the variable in the case of an absolute address
variable.

39

5 SYMBOL ENTRIES

The possible types of absolute symbols, are from an external object reference, an absolute
address (for certain targets only), or on top of another declared variable. For the possible

types,33.

TYPE

pAbsoluteSym = " TAbsoluteSym;

TAbsoluteSym = Object(TVarSym)
abstyp : absolutetyp;
absseg : boolean;
ref : psym,;

asmname : pstring;

Indicates the type of absolute symbol it is (GB)
???

In caseabstyp istovar |, this field indicates the
symbol which is overlaid with this symbol. Other-

wise this field is unused.
In caseabstyp istoasm, this field indicates la;
bel name for the variable.

Table 33: possible absolute variable types

tabsolutetyp| Description

tovar The symbol will be declared on top of another symbol (vari-
able or typed constant)

toasm The variable is imported from an external module

toaddr The variable is declared as being at an absolute address

typed constant symbol

constant symbol (TConstSym)

This symbol type will contain all constants defined and encountered during the parsing. The
values of the constants are also set in this symbol type entry.

TYPE

pConstSym = "~ TConstSym;

TConstSym = Object(TSym)
consttype : ttype;
consttyp : tconsttyp
resstrindex : longint

value : longint
len : longint

Type information for this constant (?).

Indicates the type of the constant

If this is a resource string constant, it indicates
index in the resource table

In certain cases, contains the value of the cons

the

[ant

40

6 TYPE INFORMATION

enumeration symbol
program symbol

The program symbol typddrogramsym) is used to store the name of the program, which
is declared usingprogram in the pascal source. This symbol type is currently unused in
FreePascal.

sys symbol

Thetsyssym symbol type is used to load indexes into the symbol table of the internal routines
which are inlined directly by the compiler. It has a single field, which is the index of the inline
routine.

5.3 Symbol interface
6 Type information

6.1 Architecture

A type declaration , which is the basis for the symbol table, since inherently everything comes
down to a type after parsing is a special structure with two principal fields, which point to a

symbol table entry which is the type name, and the actual definition which gives the informa-
tion on other symbols in the type, the size of the type and other such information.

TYPE

TType = Object
Sym : pSym; Points to the symbol table of this type
Def : pDef; Points to the actual definition of this type
end,

6.2 Definition types

Definitions represent the type information for all possible symbols which can be encountered
by the parser. The definition types are associated with symbols in the symbol table, and are
used by the parsing process (among other things) to perform type checking.

The current possible definition types are enumeratetiDefType and can have one of the
following symbolic values:

41

6 TYPE INFORMATION

TT m.ResType
ypesy yp TDef. TypeSym

TType.Def

Figure 7: Type symbol and definition relations

deftype of TDef object Description

AbstractDef

ArrayDef array type definition

RecordDef record type definition

PointerDef pointer type definition

OrdDef ordinal (numeric value) type definition
StringDef string type definition

EnumDef enumeration type definition

ProcDef procedure type definition

ObjectDef object or class type definition
ErrorDef error definition (empty, used for error recovery)
FileDef file type definition

FormalDef

SetDef set type definition

ProcVarDef procedure variable type definition
FloatDef floating point type definition
ClassrefDef

ForwardDef

base definition (TDef)

All type definitions are based on this object. Therefore all derived object all posess the fields
in this object in addition to their own private fields.

42

6 TYPE INFORMATION

TYPE
pDef =" TDef;
TDef =Object(TSymTableEntry)

TypeSym : pTypeSym,;
InitTable_Label : pAsmLabel,

Rtti_Label : pAsmLabel,
NextGlobal : pDef;
PreviousGlobal : pDef;
SaveSize : Longint;
DefType : tDefType;

Has_InitTable : Boolean;
Has_Rtti : Boolean;
Is_Def Stab_Written : TDefStabStatus

GlobalNb : Longint;

end;

Pointer to symbol table entry for this typ
definition

Label to initialization information (re:

quired for some complex types)
Label to the runtime type information.

Size in bytes of the data definition

Indicates the definition type (see tah
??).

Can be one of the following states| :

(Not_Written, written, Being_Written)
which indicates if the debug informatio
for this type has been defined or not.

Internal stabs debug information type s
nature (each type definition has a nume
signature).

file definition (TFileDef)

The file definition can occur in only some rare instances, whigle af type is parsed, a file
definition of that type will be created. Furthermore, internally, a definition foex file type

anduntyped File type are created when the system unit is loaded. These types are always
defined when compiling any unit or program.

e

g_
ric

TYPE
pFileDef = "~ TFileDef;
TFileDef = Object(TDef)

FileTyp : TFileTyp;

Indicates what type of file definition it i$ext, un-

typed or typed).

TypedFileType : TType;

In the case of a typed file definition, definition

the type of the file

end;

43

6 TYPE INFORMATION

formal definition (TFormalDef)
forward definition (TForwardDef)
The forward definition is created, when a type is declared before an actual definition exists.

This is the case, when, for exampige pmyobject = tmyobject, while tmyobject has yet
to be defined.

TYPE
pForwardDef = " TForwardDef;
TForwardDef = Object(TDef)

toSymName : String; The symbol name for this forward dec-
laration (the actual real definition doés
not exist yet)
ForwardPos : TFilePoslinfo; Indicates file position where this for
ward definition was declared.

end;

error definition (TErrorDef)

This definition is actually an empty definition entry. When the parser encounters an error when
parsing a definition instead of putting nothing in the type for a symbol, it puts this entry. This
avoids illegal memory accesses later in parsing.

pointer definition (TPointerDef)

The pointer definition is used for distinguishing between different types of pointers in the
compiler, and are created at eatfpename parsing construct found.

TYPE
pPointerDef = " TPointerDef;
TPointerDef = Object(TDef)
Is_Far : Boolean; Used to indicate if this is a far pointer or not (this flag
is cpu-specific)
PointerType : TType; This indicates to what type definition this pointer
points to.

end;

object definition (TObjectDef)

The object definition is created each time an object declaration is found in the type declaration
section.

44

6 TYPE INFORMATION

TYPE

pObjectDef = ~ TObjectDef;

TObjectDef = Object(TDef)
ChildOf : pObjectDef;

ObjName : pString;
SymTable : pSymTable;
PbjectOptions : TObjectOptions;

VMT_Offset : Longint;

Writing_Class_Record_Stab : Boolean;

This is a pointer to the parent ob-
ject definition. It is set to nil, if
this object definition has no par
ent.

This is the object name
This is a pointer to the symbo
table entries within this object.
The options for this object, see
the following table for the possi
ble options for the object.

This is the offset from the star
of the object image in memory
where the virtual method table |s
located.

~+

end;

Object Options(TObjectOptions)Description

00_is_class This is a delphi styled class declaration, and not a Turbo
Pascal object.

0o _is_forward This flag is set to indicate that the object has been declared
in a type section, but there is no implementation yet.

00_has_virtual This object / class contains virtual methods

00_has_private This object / class contains private fields or methods

00_has_protected This object / class contains protected fields or methods

00_has_constructor This object / class has a constructor method

00_has_destructor This object / class has a destructor method

00 _has_vmt This object / class has a virtual method table

00_has_msgstr This object / class contains one or more message handlers

00_has_msgint This object / class contains one or more message handlers

00_has_abstract This object / class contains one or more abstract methads

00_can_have_published the class has runtime type information, i.e. you can puhlish
properties

00_cpp_class the object/class uses an C++ compatible class layout

00_interface this class is a delphi styled interface

45

6 TYPE INFORMATION

class reference definition (TClassRefDef)
array definition (TArrayDef)

This definition is created when an array type declaration is parsed. It contains all the informa-
tion necessary for array type checking and code generation.

TYPE

pArrayDef =" TArrayDef;

TArrayDef = Object(TDef)
IsVariant : Boolean;
IsConstructor : Boolean;

RangeNr: Longint; Label number associated with the index values
when range checking is on

LowRange : Longint; The lower index range of the array definition

HighRange : Longint; The higher index range of the array definition

ElementType : TType; The type information for the elements of the array

RangeType : TType; The type information for the index ranges of the
array

IsArrayofConst : Boolean;
end,

record definition (TRecordDef)

The record definition entry is created each time a record type declaration is parsed. It contains
the symbol table to the elements in the record.

TYPE
pRecordDef = ~ TRecordDef;
TRecordDef =Object(TDef)
SymTable : PSymTable; This is a pointer to the symbol table entries with
this record.

n

end;

ordinal definition (TOrdDef)
This type definition is the one used for all ordinal values such as char, bytes and other numeric

integer type values. Some of the predefined type definitions are automatically created and
loaded when the compiler starts. Others are created at compile time, when declared.

46

6 TYPE INFORMATION

TYPE
pOrdDef =
TOrdDef =

" TOrdDef;

Object(TDef)

Low : Longint; The minimum value of this ordinal type
High : Longint; The maximum value of this ordinal type

Typ : TBaseType;

The type of ordinal value (cf. tabl&?)

end;

Table 36: Base types

Base ordinal type (TBaseType)Description

uauto
uvoid
uchar
u8bit
ul6bit
u32bit
s16bit
s32bit
bool8bit
bool16bit
bool32bit
u64bit
s64bit
uwidechar

user defined ordinal type definition
Represents a void return value or node
ASCII character (1 byte)

unsigned 8-bit value

unsigned 16-bit value

unsigned 32-bit value

signed 16-bit value

signed 32-bit value

boolean 8-bit value

boolean 16-bit value

boolean 32-bit value

unsigned 64-bit value (not fully supported/tested)
signed 64-bit value

Currently not supported and unused

float definition (TFloatDef)

This type definition is the one used for all floating point values such as SINGLE, DOUBLE.
Some of the predefined type definitions are automatically created and loaded when the compiler
starts.

TYPE

pFloatDef = " TFloatDef;

TFloatDef = Object(TDef)
Typ : TFloatType; The type of floating point value (cf. tabg).
end;

Table 37: Floating point types

Base floating point type (TFloatType)Description

s32real
s64real

IEEE Single precision floating point value
IEEE Double precision floating point value

47

6 TYPE INFORMATION

Base floating point type (TFloatType)Description

s80real

s64comp
f16bit
f32bit

Extended precision floating point value (cpu-specific, U
ally maps to double)

63-bit signed value, using 1 bit for sign indication
Unsupported

Unsupported

abstract procedure definition (tabstractprocdef)

This is the base of all routine type definitions. This object is abstract, and is not directly used

in a useful way. The derived object of

this object are used for the actual parsing process.

TYPE

pAbstractProcDef = ~ TAbstractProcDef;

TAbstractProcDef =Object(TDef)
SymtableLevel :

Fpu_Used : Byte;

RetType : TType;

ProcTypeOption : TProcTypeOption;

ProcCallOptions : TProcCallOptions;

ProcOptions : T

Para : pLinkedL

end;

byte;

Number of floating point regis
ters used in this routine

Type information for the return
value

(uvoid if it returns nothing)
Indicates the type of routine
is (cf table38).

Indicates the calling conver

—

tion of the routine (cf. table
39).

ProcOptions; Indicates general procedure
options.

(cf. table40).
This is a linked list of parame
ters (pparaitem list)

ist;

Table

38: Procedure type options

Procedure options (TProcTypeOptio

npescription

poType_Proglnit
poType_Unitlnit

poType_UnitFinalize

poType_Constructor

Routine is the program entry point (defined amin’ in the
compiler).

Routine is the unit initialization code

(defined as unitnaménit in the compiler

Routine is the unit exit code

(defined as unitnamdinalize in the compiler)

Routine is an object or class constructor

48

6 TYPE INFORMATION

Table

38: Procedure type options (continued)

Procedure options (TProcTypeOptio

npescription

poType_Destructor
poType_Operator

Routine is an object or class destructor
Procedure is an operator

Table 39: Procedure call options

call options (TProcCallOptions

) Description

pocall_clearstack
pocall_leftright
pocall_cdecl

pocall_register
pocall_stdcall

pocall_safecall
pocall_palmsssyscall
pocall_system
pocall_inline
pocall_internproc
pocall_internconst

The routine caller clears the stack upon return
Send parameters to routine from left to right

Passing parameters is done using the GCC alignment
0 the

scheme, passing parameter values is directly copied int
stack space

unused (Send parameters via registers)

Passing parameters is done using GCC alignment sch
standard GCC registers are saved

Standard GCC registers are saved

This is a special syscall macro for embedded system
unused

Routine is an inline assembler macro (not a true call)
System unit code generator helper routine

System unit code generator helper macro routine

Table 40: Procedure options

routine options (TProcOptions)Description

po_classmethod
po_virtualmethod
po_abstractmethod
po_staticmethod
po_overridingmethod
po_methodpointer
po_containsself
po_interrupt
po_iocheck
po_assembler
po_msgstr
po_msgint
po_exports
po_external
po_savestdregs

This is a class method
This is a virtual method
This is an abstract method
This is a static method
This is an overriden method (with po_virtual flag usually
This is a method pointer (not a normal routine pointer)
self is passed explicitly as a parameter to the method
This routine is an interrupt handler

IO checking should be done after a call to the procedur¢
The routine is in assembler

method for string message handling

method for int message handling

Routine has export directive

Routine is external (in other object or lib)

Routine entry should save all registers used by GCC

p—

D

49

eme,

6 TYPE INFORMATION

Table 40: Procedure options (continued)

routine options (TProcOptions)Description

po_saveregisters
po_overload

Routine entry should save all registers
Routine is declared as being overloaded

procedural variable definition (TProcVarDef)

This definition is c

reated when a procedure variable type is declared. It gives information on

the type of a procedure, and is used when assigning and directly calling a routine through a

pointer.

TYPE
pProcVarDef =

TProcVarDef = Object(TAbstractProcDef)
end;

" TProcVarDef;

procedure definition (TProcDef)

When a procedure head is parsed, the definition of the routine is created. Thereafter, other
fields containing information on the definition of the routine are populated as required.

50

6 TYPE INFORMATION

TYPE

pProcDef = " TProcDef;
TProcDef =Object(TAbstractProcDef)

ForwardDef : Boolean;
InterfaceDef: Boolean;
ExtNumber : Longint;
Messagelnf : TMessagelnf;
NextOverloaded : pProcDef;
Filelnfo : TFilePoslInfo;

Localst : pSymTable;
Parast: pSymTable;
ProcSym : pProcSym;
LastRef : pRef;
DefRef: pRef;
CrossRef : pRef;
LastWritten : pRef;
RefCount : Longint;
_Class : ProbjectDef;
Code : Pointer;

UsedRegisters : TRegisterSet;

HasForward : Boolean;
Count: Boolean;
Is_Used : Boolean;
end;

TRUE if this is a forward definition

Position in source code for the declaration| of

this routine. Used for error management.
The local variables symbol table

The parameter symbol table

Points to owner of this definition

The actual code for the routine (only for i
lined routines)
The set of registers used in this routine

n

string definition (TStringDef)

This definition represents all string types as well as derived types. Some of the default string
type definitions are loaded when the compiler starts up. Others are created at compile time as
they are declared with a specific length type.

TYPE

pStringDef = "~ TStringDef;
TStringDef = Object(TDef)

String_Typ : TStringType;
Len : Longint;

end;

Indicates the string type definition (cf1)
This is the maximum length which can have t
string

he

51

6 TYPE INFORMATION

Table 41: string types

String type (TStringType) Description

st_default Depends on current compiler switches, can either he a
st_ShortString or st_AnsiString

st_shortstring short string (length byte followed by actual ASCII charac-
ters (1 byte/char))

st_longstring long string (length longint followed by actual ASCII char-
acters (1 byte/char))

st_ansistring long string garbage collected (pointer to a length, reference
count followed by actual ASCII characters (1 byte/char)

st_widestring long string garbage collected (pointer to a length, reference
count followed by actual unicode characters (1 word/char
(utf16)))

enumeration definition (TEnumDef)

An enumeration definition is created each time an enumeration is declared and parsed. Each
element in the enumeration will be added to the linked list of symbols associated with this
enumeration, and this symbol table will then be attached to the enumeration definition.

TYPE
pEnumDef =" TEnumDef;
TEnumDef = object(TDef)
Has_Jumps : Boolean; Currently unused
MinVal : Longint; Value of the first element in the enu-
meration
MaxVal : Longint; Value of the last element in the enu-
meration
FirstEnum : pEnumSym,; Pointer to a linked list of elements in
the enumeration, each with its name
and value.
BaseDef : pEnumDef; In the case where the enumeration is a

subrange of another enumeration, this
gives information on the base range|of
the elements

end;

set definition (TSetDef)

This definition is created when a set type construct is parsetdof declaration).

52

7 THE PARSER

TYPE
pSetDef =" TSetDef
TSetDef = object(TDef)
SetType : TSetType; Indicates the storage type of the set
(Cf. table4?2).
ElementType : TType; Points the type definition and symbopl

table to the elements in the set.

end;

Table 42: set types

set type (TSetType) Description

NormSet Normal set of up to 256 elements (32 byte storage space
required)

SmallSet Small set of up to 32 elements (4 byte storage space)

VarSet Variable number of element set (storage size is dependent
on number of elements) (currently unused and unsupported)

6.3 Definition interface

routines

TDef.Size

Declaration: Function TDef.Size : Longint;

Description: This method returns the true size of the memory space required in bytes for this type definition
(after alignment considerations).

TDef.Alignment

Declaration: Function TDef.Alignment : Longint;

Description: This method returns the alignment of the data for complex types such as records and objects,
otherwise returns 0 or 1 (no alignment).

7 The parser
The task of the parser is to read the token fed by the scanner, and make sure that the pascal
syntax is respected. It also populates the symbol table, and creates the intermediate nodes (the

tree) which will be used by the code generator.

53

7 THE PARSER

An overview of the parsing process, as well as its relationship with the tree the type checker

and the code generator is shown in the following diagram:

7.1 Module information

Each module being compiled, be it a library , unit or main program has some information
which is required. This is stored in the tmodule object in memory. To avoid recompilation
of already compiled module, the dependencies of the modules is stored in a PPU file, which

makes it easier to determine which modules to recompile.

TYPE

pModule =" TModule;
TModule =Object(TLinkedList_Item)

PPUFile : pPPUFile;
Crc : Longint;
Interface_CRC : Longint;

Flags: Longint;
Compiled: Boolean;

Do_Reload : Boolean;
Do_Assemble : Boolean;
Sources_Avalil : Boolean;
Sources_Checked : Boolean;
Is_Unit: Boolean;

In_Compile: Boolean;
In_Second_Compile: Boolean;
In_Second_Load: Boolean;
In_Implementation : Boolean;
In_Global : Boolean;

Recompile_Reason : TRecompile_Reason;

Pointer to PPU file object (unit file
CRC-32 bit of the whole PPU file
CRC-32 bit of the interface part @
the PPU file

—

Unit file flags
TRUE if module is already com-
piled

TRUE if the PPU file must be
reloaded
Only assemble, don’t recompile
unit
TRUE if all sources of module are
available
TRUE if the sources has already
been checked
TRUE if this is a unit (otherwise &
library or a main program)
module is currently being recom
piled
module is being compiled for se¢
ond time
module is being reloaded a second
time
currently compiling implementa
tion part (units only)
currently compiling implementa
tion part (units only)
Reason why module should be re-
compiled

155

A4

54

7 THE PARSER

Islibrary : Boolean;

Map : pUnitMap;
Unitcount : Word;

Unit_index : Eord;
Globalsymtable : Pointer;

Localsymtable : Pointer;

Scanner : Pointer;
Loaded_From : pModule;

Uses_Imports : Boolean;

Imports : pLinkedList
_Exports : pLinkedList;

SourceFiles : pFileManager;
ResourceFiles : TStringContainer;
Used_Units : TLinkedList;

Dependent_Units : TLinkedList;
LocalUnitSearchPath,

LocalObjectSearchPath,
LocallncludeSearchPath,

LocalLibrarySearchPath:TSearchPathList;
Path : pString;

OutputPath : pString;
ModuleName : pString;
ObjFileName : pString;

AsmFileName : pString;
PPUFileName : pString;

TRUE if this module is a shared |
brary

Map of all used units for this unit
Internal identifier of unit (for GDB
support)

Symbol table for this module of ex
ternally visible symbols

Symbol table for this module of lo
cally visible symbols

Scanner object pointer

Module which referred to this mod
ule

TRUE if this module imports sym
bols from a shared library

Linked list of imported symbols

Linked list of exported symbols (li+

braries only)
List of all source files for this mod
ule

List of all resource files for this

module
Information on units used by thi
module (pused_unit)

Search path for obtaining modu
source code

Search path for includes for th
module

Path were module is located or cr
ated

Path where object files (unit), ex
cutable (program) or shared libra
(library) is created

Name of the module in uppercase
Full name of object file or exe
cutable file

Full name of the assembler file
Full name of the PPU file

55

D

[72)

e

e-

D
]

ry

7 THE PARSER

StaticLibFilename : pString;
SharedLibFilename : pString;
ExeFileName : pString;
AsmPrefix : pString;

MainSource : pString;

end;

Full name of the static library nam
(used when smart linking is used)
Filename of the output shared

brary (in the case of a library)

Filename of the output executab

(in the case of a program)

Filename prefix of output assembl

files when using smartlinking
Name of the main source file

7.2 Parse types
Entry

program or library parsing
unit parsing

routine parsing

label declarations

constant declarations

type declarations

variable declarations

thread variable declarations
resource string declarations
exports declaration
expression parsing

typed constant declarations

7.3 Parser interface
variables

56

7 THE PARSER

Parser.Compile(
Increment compile
level

Saveall global
state variables

Current module

w\i d?

No

Initialize module

-————— == | Indicate that
fent_Module®.In_Compile:=T! - = module s being
e - - - = '?U‘E— compiled

Initialize compiler
switches

Initialize CPU
target

Init and assign
scanner object

Read first token
from scanner

Initidlize code
generator

Token=UNIT?
or compile_level=1

No
i

Parse program
or library
generate tree
and code

Free scanner
object

Dispose of the tree

compile level>=1

Y

Indi cate that)
moduleisaunit

Y Reset module info
to defaults

Parse unit and
generate tree
and code

Figure 8: Parser - Scanner flow

57

7 THE PARSER

AktProcSym

Declaration: Var AktProcSym : pProcSym,;

Description: Pointer to the symbol information for the routine currently being parsed.

LexLevel

Declaration: var LexLevel : longint;

Description: Level of code currently being parsed and compiled
0 = for main program
1 = for subroutine
2 = for local / nested subroutines.

Current_Module

Declaration: Var Current_Module : pModule;

Description: Information on the current module (program, library or unit) being compiled.

The following variables are default type definitions which are created each time compilation
begins (default system-unit definitions), these definitions should always be valid:

VoidDef

Declaration: Var VoidDef : pOrdDef;
Description: Pointer to nothing type

Notes: This is loaded as a default supported type for the compiler

cCharDef

Declaration: Var cCharDef : pOrdDef;
Description: Type definition for a characteclar)

Notes: This is loaded as a default supported type for the compiler

58

7 THE PARSER

cWideCharDef

Declaration: Var cWideCharDef : pOrdDef;
Description: Type definition for a unicode charactaviflechar)

Notes: This is loaded as a default supported type for the compiler

BoolDef

Declaration: Var BoolDef : pOrdDef;
Description: Type definition for a boolean valubdgolean)

Notes: This is loaded as a default supported type for the compiler

u8BitDef

Declaration: Var u8BitDef : pOrdDef;
Description: Type definition for an 8-nit unsigned valuleyte)

Notes: This is loaded as a default supported type for the compiler

ul6BitDef

Declaration: Var ul6BitDef : pOrdDef;
Description: Type definition for an unsigned 16-bit valuedrd)

Notes: This is loaded as a default supported type for the compiler

u32BitDef

Declaration: Var u32BitDef : pOrdDef;
Description: Type definition for an unsigned 32-bit valuea¢dinal)

Notes: This is loaded as a default supported type for the compiler

59

7 THE PARSER

s32BitDef

Declaration: Var s32BitDef : pOrdDef;
Description: Type definition for a signed 32-bit valuk(gint)

Notes: This is loaded as a default supported type for the compiler

cu64BitDef

Declaration: Var cu64BitDef : pOrdDef;
Description: Type definition for an unsigned 64-bit valugword)

Notes: This is loaded as a default supported type for the compiler

cs64BitDef

Declaration: Var cs64BitDef : pOrdDef;
Description: Type definition for a signed 64-bit valua{64)

Notes: This is loaded as a default supported type for the compiler

The following variables are default type definitions which are created each time compilation
begins (default system-unit definitions), these definitions should always be valid:

s64FloatDef

Declaration: Var s64FloatDef : pFloatDef;
Description: Type definition for a 64-bit IEEE floating point typdduble)

Notes: This is loaded as a default supported type for the compiler. This might not actually really point
to the double type if the cpu does not support it.

s32FloatDef

Declaration: Var s32FloatDef : pFloatDef;
Description: Type definition for a 32-bit IEEE floating point typsifigle)

Notes: This is loaded as a default supported type for the compiler. This might not actually really point
to the single type if the cpu does not support it.

60

7 THE PARSER

s80FloatDef

Declaration: Var s80FloatDef : pFloatDef;
Description: Type definition for an extended floating point typxiended)

Notes: This is loaded as a default supported type for the compiler. This might not actually really point
to the extended type if the cpu does not support it.

s32FixedDef

Declaration: Var s32FixedDef : pFloatDef;
Description: Type definition for a fixed point 32-bit valuéixed)

Notes: This is loaded as a default supported type for the compiler. This is not supported officially in
FPC 1.0

The following variables are default type definitions which are created each time compilation
begins (default system-unit definitions), these definitions should always be valid:

cShortStringDef

Declaration: Var cShortStringDef : pStringDef;
Description: Type definition for a short string typslortstring)

Notes: This is loaded as a default supported type for the compiler.

cLongStringDef

Declaration: Var cLongStringDef : pStringDef;
Description: Type definition for a long string typédngstring)

Notes: This is loaded as a default supported type for the compiler.

cAnsiStringDef

Declaration: Var cAnsiStringDef . pStringDef;
Description: Type definition for an ansistring typarisistring)

Notes: This is loaded as a default supported type for the compiler.

61

7 THE PARSER

cWideStringDef

Declaration: Var cWideStringDef : pStringDef;
Description: Type definition for an wide string typevidestring)

Notes: This is loaded as a default supported type for the compiler.

OpenShortStringDef

Declaration: Var OpenShortStringDef : pStringDef;
Description: Type definition for an open string typegenstring)

Notes: This is loaded as a default supported type for the compiler.

OpenCharArrayDef

Declaration: Var OpenCharArrayDef : pArrayDef;
Description: Type definition for an open char array typpénchararray)

Notes: This is loaded as a default supported type for the compiler.

The following variables are default type definitions which are created each time compilation
begins (default system-unit definitions), these definitions should always be valid:

VoidPointerDef

Declaration: Var VoidPointerDef : pPointerDef;
Description: Type definition for a pointer which can point to anythinmpinter)

Notes: This is loaded as a default supported type for the compiler

CharPointerDef

Declaration: Var CharPointerDef : pPointerDef;
Description: Type definition for a pointer which can point to charactersh@ar)

Notes: This is loaded as a default supported type for the compiler

62

9 THE CODE GENERATOR

VoidFarPointerDef

Declaration: Var VoidFarPointerDef : pPointerDef;
Description: Type definition for a pointer which can point to anything (intra-segméat)dointer)

Notes: This is loaded as a default supported type for the compiler

cFormalDef

Declaration: Var cFormalDef : pFormalDef;

Notes: This is loaded as a default supported type for the compiler

cfFileDef

Declaration: Var cfFileDef : pFileDef;
Description: This is the default file typéefi(e)

Notes: This is loaded as a default supported type for the compiler

8 The inline assembler parser

To be written.

9 The code generator

9.1 Introduction

The code generator is responsible for creating the assembler output in form of a linked list,

taking as input the node created in the parser and thpaks. Picture figured(1) shows an
overview of the code generator architecture:

The code generation is only done when a procedure body is parsed; the interaction, between
the 2! pass (type checking phase), the code generation and the parsing process is show in the

following diagram:

The secondpass() is actually a simple dispatcher. Each possible tree type node (Cf. Tree

types) is associated with a second pass routine which is called using a dispatch table.

63

9 THE CODE GENERATOR

Code Generator .mpler:
tree nodes Generates code for each of the nodes Insiructions
created in the 1st pass (in memory)
—
register allocator temporary reference
subsystem allocator subsystem
Figure 9: Code generator architecture
) Procedure Gener at eCode() nOdediCOdaet(?ﬁerator
arsn - parsing Zsr'?d pa$g
(Read_Proc()) (Do_Secondpass())
After tyeeis built
Other blocks
parsing lactual code generatiol
(SecondPass()
type checking
- generic tree generatiol
recursive dispatching .
parsing (1t pass) ;icdtgsve '
. generation
(Do_Fi r st Pass(}) (SecondPass())
recursive
tree generation

(FirstPass())

Figure 10: Interaction between codegeneration and the parsing process

9.2 Locations (cpubase.pas)

The code generator uses the tree location component to indicate the location where the current
node operands are located. This is then used by the code generator to generate the appropriate
instruction, all depending on the location of the operand. The possible operand locations:

Location define Description

LOC_INVALID Invalid location (should never occur)
LOC_FPU Floating point registers
LOC_REGISTER Integer registers

LOC_MEM Memory Location
LOC_REFERENCE | Constant node with constant value
LOC_JUMP Label operand

LOC_FLAGS Flags operand

64

9 THE CODE GENERATOR

Location define Description
LOC_CREGISTER | Constant integer register (when operand is in this location,
it should be considered as read-only)

Depending on the location type, a variable structure is defined indicating more information on
the operand. This is used by the code generator to generate the exact instructions.

LOC_INVALID

This location does not contain any related information, when this location occurs, it indicates
that the operand location was not initially allocated correctly. This indicates a problem in the
compiler.

LOC_FPU
This indicates a location in the coprocessor; this is platform dependant.
Stack based FPU Only one CPU uses a stack based FPU architecture, this is the intel 80x86

family of processors. When the operand is on the top of the stack, the operand is of type
LOC_FPU.

Register based FPU When the floating point co-processor is register based, the following
field(s) are defined in the structure to indicate the current location of the operand:

Field Description
FpuRegister : TRegister; Indicates in what register the operand| is
located (a general purpose register in em-
ulation mode, and a floating point register
when floating point hardware is present)
FpuRegisterHigh, FpuRegisterLow : TRegister; | Indicates in what registers the operand are
located (for emulation support - these are
general purpose registers)

LOC_REGISTER

This fields indicates that the operand is located in a CPU register. It is possible to allocate more
then one register, if trying to access 64-bit values on 32-bit wide register machines.

Field Description
Register : TRegister Indicates in what register the operand is located.

65

9 THE CODE GENERATOR

Field Description
RegisterHigh : TRegister; | High 32-bit of 64-bit virtual register (on 32-bit machines
RegisterLow : TRegister; | Low 32-bit of 64-bit virtual register (on 32-bit machines)

LOC_MEM, LOC_REFERENCE

This either indicates an operand in memory, or a constant integer numeric value. The fields for
this type of operand is as follows:

Field Description
Reference : TReference; | Information on the location in memory

References are the basic building blocks of the code generator, every load and store in memory
is done via a reference. A reference type can either point to a symbolic name, an assembler
expression (base register + index register + offset)*scale factor, as well as simply giving infor-
mation on a numeric value.

The treference consists of the following:

TYPE
pReference =" TReference
TReference = packed Record

Is_Immediate : Boolean; Indicates that this location points to
a memory location, but to a constant
value (TRUE), which is located in th

offset field.

Segment : TRegister; (cpu-specific)

Base : TRegister; Base address register for assembler|ex-
pression

Index : TRegister; Index register for assembler expres-
sion

ScaleFactor : Byte; Multiplication factor for assembler ex-
pression (this field is cpu-specific)

Offset : Longint; Either an offset from base assem-

bler address expression to add |(if
Is_Constant = FALSE) otherwise the
numeric value of the operand
Symbol : pAsmSymbol, Pointer to the symbol name string of
the reference in case where it is a sym-
bolic reference
OffsetFixup : Longint;
Options : TRefOptions;
END;

66

9 THE CODE GENERATOR

LOC_JUMP
There are no fields associated with this location, it simply indicates that it is a boolean com-

parison which must be done to verify the succeeding operations. (i.e the processor zero flag is
valid and gives information on the result of the last operation).

LOC_FLAGS

The operand is in the flags register. From this operand, the conditional jumps can be done. This
is processor dependant, but normally the flags for all different comparisons should be present.

Field Description
ResFlags : TResFlags; | This indicates the flag which must be verified for the actual
jump operationtresflags is an enumeration of all possible
conditional flags which can be set by the processor.

LOC_CREGISTER

This is a read-only register allocated somewhere else in the code generator. It is used mainly
for optimization purposes. It has the same fields as LOC_REGISTER, except that the registers
associated with this location can only be read from, and should never be modified directly.

Field Description

Register : TRegister Indicates in what register the operand is located.
RegisterHigh : TRegister; | High 32-bit of 64-bit virtual register (on 32-bit machines
RegisterLow : TRegister; | Low 32-bit of 64-bit virtual register (on 32-bit machines)

LOCATION PUBLIC INTERFACE

Del_Location

Declaration: procedur Del_Location(const L : TLocation);

Description: If the location points to a LOC_REGISTER or LOC_CREGISTER, it frees up the allo-

cated register(s) associated with this location. If the location points to LOC_REFERENCE
or LOC_MEM, it frees up the the allocated base and index registers associated with this node.

Clear_Location

Declaration: procedure Clear_location(var Loc : TLocation);

Description: Sets the location to point to a LOC_INVALID type.

67

9 THE CODE GENERATOR

Set_Location

Declaration: procedure Set_Location(var Destloc,Sourceloc : TLocation);

Description: The destination location now points to the destination location (now copy is made, a simple
pointer assignment)

Swap_Location

Declaration: Procedure Swap_Location(var Destloc,Sourceloc : TLocation);

Description: Swap both location pointers.

9.3 Registers (cpubase.pas)

The code generator defines several types of registers which are categorized by classes. All
(except for the scratch register class) of these register classes are allocated / freed on the fly,
when the code is generated in the code generator: The registers are defined in a special enu-
meration called tregister. This enumeration contains all possible register defines for the target

architecture, and a possible definition could be as follows :

tregister = ({ general purpose registers }
R_NO,R_DO,R_D1,R_D2,R_D3,R_D4,R_D5,R_D6,R_D7,
{ address registers }
R_AO,R_A1,R_A2,R A3,R_A4,R A5R_A6,R_SP,
{ PUSH/PULL- quick and dirty hack }
R_SPPUSH,R_SPPULL,

{ misc. and floating point registers }
R_CCR,R_FPO,R_FP1,R_FP2,R_FP3,R_FP4,R_FP5,R_FP6,
R_FP7,R_FPCR,R_SR,R_SSP,R_DFC,R_SFC,R_VBR,R_FPSR,

{ other - not used }

R_DEFAULT_SEG

);

integer registers

intregs: array[1l..maxintregs] of tregister;

General purpose registers which can contain any data, usually integer values. These can also be
used, when no floating point coprocessor is present, to hold values for floating point operations.

68

9 THE CODE GENERATOR

address registers

addrregs: array[1..maxaddrregs] of tregister;

Registers which are used to construct assembler address expressions, usually the address reg-
isters are used as the base registers in these assembler expressions.

fpu registers

FpuRegs: array[1l..MaxFpuRegs] of TRegister;

Hardware floating point registers. These registers must at least be able to load and store IEEE
DOUBLE floating point values, otherwise they cannot be considered as FPU registers. Not
available on systems with no floating point coprocessor.

scratch registers

Scratch_Regs: array[1l..MaxScratchRegs] of TRegister;

These registers are used as scratch, and can be used in assembler statement in the pascal code
without being saved. They will always be valid across routine calls. These registers are some-
times temporarily allocated inside code generator nodes, and then immediately freed (always
inside the same routine).

9.4 Special registers (cpubase.pas)

The code generator has special uses for certain types of registers. These special registers are of
course CPU dependant, but as an indication, the following sections explains the uses of these
special registers and their defines.

Stack_Pointer

Const Stack_Pointer = R_A7

This represents the stack pointer, an address register pointing to the allocated stack area.
Frame_Pointer

Const Frame_Pointer = R_A6

This represents the frame register which is used to access values in the stack. This is usually
also an address register.

69

9 THE CODE GENERATOR

Self_Pointer

Const Self_Pointer = R_A5

This represents the self register, which represents a pointer to the current instance of a class or
object.

accumulator

Const Accumulator = R_DO0

The accumulator is used (except in the i386) as a scratch register, and also for return value
in functions (in the case where they are 32-bit or less). In the case it is a 64-bit value (and

the target processor only supports 32-bit registers) , the result of the routine is stored in the
accumulator for the low 32-bit value, and in the scratch regiserafch_register) for the

high 32-bit value.

scratch register

const scratch_reg = R_D1

This register is used in special circumstances by the code generator. Itis simply a define to one
of the registers in thecratch_regs array.

9.5 Instructions
9.6 Reference subsystem

Architecture

As described before in the locations section, one of the possible locations for an operand is a
memory location, which is described in a special structigference (described earlier). This
subsection describes the interface available by the code generator for allocation and freeing
reference locations.

Code generator interface
DisposeReference

Declaration: Procedure DisposeReference(Var R : pReference);
Description: Disposes of the referené®and sets r taNIL

Notes: Does not verify ifR is assigned first.

70

9 THE CODE GENERATOR

NewReference

Declaration: Function NewReference(Const R : TReference) : pReference;

Description: Allocates in the heap a copy of the referem@ad returns that allocated pointer.

Del_Reference

Declaration: Procedure Del Reference(Const Ref : tReference);
Description: Free up all address registers allocated in this reference for the index and base (if required).

Notes: Does not free the reference symbol if it exists.

New_Reference

Declaration: Function New_Reference(Base : TRegister;Offset : Longint) : PReference;

Description: Allocates a reference pointer, clears all the fields to zero, and sets the offset to the offset field
and the base to the base fields of the newly allocated reference. Returns this newly allocated
reference.

Reset_Reference

Declaration: Procedure Reset_Reference(Var Ref : TReference);

Description: Clears all fields of the reference.

9.7 The register allocator subsystem

Architecture

This system allocates and deallocates registers, from a pool of free registers. Each time the
code generator requires a register for generating assembler instructions, it either calls the reg-
ister allocator subsystem to get a free register or directly uses the scratch registers (which are
never allocated in a pool except in the optimization phases of the compiler).

The code generator when no longer referencing the register should deallocate it so it can be
used once again.

Code generator interface (tgen.pas)

The following interface routines are used by the code generator to allocate and deallocate
registers from the different register pools available to code generator.

71

9 THE CODE GENERATOR

GetRegister32

Declaration: Function GetRegister32 . TRegister;

Description: Allocates and returns a general purpose (integer) register which can be used in the code
generator. The register, when no longer used should be deallocated with ungetregister32() or
ungetregister()

Notes: On non 32-bit machines, this routine should return the normal register for this machine (eg :
64-bit machines will alloate and return a 64-bit register).

GetRegisterPair

Declaration: Procedure GetRegisterPair(Var Low, High : TRegister);

Description: Returns a register pair to be used by the code generator when accessing 64-bit values on
32-bit wide register machines.

Notes: On machines which support 64-bit registers naturally, this routine should never be used, it is
intended for 32-bit machines only.par Some machines support 64-bit integer operations using
register 32-bit pairs in hardware, but the allocated registers must be specific, this routine is here
to support these architectures.

UngetRegister32

Declaration: Procedure UnGetRegister32(R : TRegister);
Description: Deallocates a general purpose register which was previously allocateGetitegister32

(72)().

GetFloatRegister

Declaration: Function GetFloatRegister : TRegister;

Description: Allocates and returns a floating point register which can be used in the code generator. The
register, when no longer used should be deallocated with ungetregister(). The register returned
is a true floating point register (if supported).

Notes: This routine should only be used when floating point hardware is present in the system. For
emulation of floating point, the general purpose register allocator / deallocator routines should
be used instead.

72

9 THE CODE GENERATOR

IsFloatsRegister

Declaration: Function IsFloatsRegister(R : TRegister): Boolean;

Description: Returns TRUE if the register r is actually a floating point register, otherwise returns FALSE.
This is used when the location is LOC_FPU on machines which do not support true floating
point registers.

GetAdressReg

Declaration: Function GetAddressReg : TRegister;

Description: Allocates and returns an address register which can be used for address related opcodes in the
code generator. The register, when no longer used should be deallocated with ungetregister()

Notes: If there is no distinction between address registers, and general purpose register in the archi-
tecture, this routine may simply call and return the getregister32() result.

IsAddressRegister

Declaration: Function IsAddressRegister(r : TRegister): Boolean;
Description: Returns TRUE if the register r is actually an address register, otherwise returns FALSE.

Notes: If there is no distinction between address registers, and general purpose register in the archi-
tecture, this routine may simply verify if this is a general purpose register and return TRUE in
that case.

UngetRegister

Declaration: Procedure UngetRegister(r : TRegister);

Description: Deallocates any register which was previously allocated with any of the allocation register
routines.

SaveUsedRegisters

Declaration: Procedure SaveUsedRegisters(Var Saved : TSaved; ToSave: TRegisterset);

Description: Saves in a temporary location all specified registers. On stack based machines the registers
are saved on the stack, otherwise they are saved in a temporary memory location. The registers
which were saved are stored in thaved variable. The constaLL_REGISTERS passed
to thetosave parameter indicates to save all used registers.

73

9 THE CODE GENERATOR

RestoreUsedRegisters

Declaration: procedure restoreusedregisters(Saved : TSaved);

Description: Restores all saved registers from the stack (or a temporary memory location). Free any tem-

porary memory space allocated, if necessary.

GetExplicitRegister32

Declaration: Function GetExplicitRegister32(R : TRegister): TRegister;

Description: This routine allocates specifically the specified regisgerd returns that register. The register

to allocate can only be one of the scratch registers.

Notes: This routine is used for debugging purposes only. It should be used in conjunctions with

UnGetRegister32() to explicitly allocate and deallocate a scratch register.

9.8 Temporary memory allocator subsystem

Architecture

Sometimes it is necessary to reserve temporary memory locations on the stack to store inter-
mediate results of statements. This is done by the temporary management module.

Since entry and exit code for routines are added after the code for the statements in the routine
have been generated, temporary memory allocation can be used ‘on the fly’ in the case where
temporary memory values are required in the code generation phase of the routines being
compiled. After usage, the temporary memory space should be freed, so it can be reused if
necessary.

The temporary memory allocation is a linked list of entries containing information where to
access the data via a negative offset from the Frame_Pointer register. The linked list is only
valid when compiling and generating the code for the procedure bodies; it is reset and cleared
each time a new routine is compiled. There are currently three different types of memory
spaces in use : volatilét(Normal) which can be allocated and freed any time in the proce-
dure body, ansistring, which is currently the same as volatile, except it only stored references
to ansistring’s, and persistertt_(Persistent) which are memory blocks which are reserved
throughout the routine duration; persistent allocated space can never be reused in a procedure
body, unless explicitly released.

The temporary memory allocator guarantees to allocate memory space on the stack at least on
a 16-bit alignment boundary. The exact alignment depends on the operating system required
alignment.

74

9 THE CODE GENERATOR

Temporary memory allocator interface (temp_gen.pas)

GetTempOfSize

Declaration: Function GetTempOfSize(Size : Longint) : Longint;

Description: Allocates at leassize bytes of temporary volatile memory on the stack. The return value is
the negative offset from the frame pointer where this memory was allocated.

Notes: The return offset always has the required alignment for the target system, and can be used as
an offset from the Frame_Pointer to access the temporary space.

GetTempOfSizeReference

Declaration: Procedure GetTempOfSizeReference(L : Longint;Var Ref : TReference);

Description: This routine is used to assign and allocate extra temporary volatile memory space on the
stack from a referencel is the size of the persistent memory space to allocate, virele
is a reference entry which will be set to the correct offset from the Frame_Pointer register
base. TheOffset andBase fields of Ref will be set appropriately in this routine, and can be
considered valid on exit of this routine.

Notes: The return offset always has the required alignment for the target system.

UnGetlfTemp

Declaration: Procedure UnGetlfTemp(Const Ref : TReference);
Description: Frees a referendeef which was allocated in the volatile temporary memory space.

Notes: The freed space can later be reallocated and reused.

GetTempAnsiStringReference

Declaration: Procedure GetTempAnsiStringReference(Var Ref : TReference);

Description: AllocatesRef on the volatile memory space and setsBase to the Frame_Pointer register
andOffset to the correct offset to access this allocated memory space.

Notes: The return offset always has the required alignment for the target system.

75

9 THE CODE GENERATOR

GetTempOfSizePersistant

Declaration: Function GetTempOfSizePersistant(Size : Longint) :Longint;

Description: Allocates persistent storage space on the stack. return value is the negative offset from the
frame pointer where this memory was allocated.

Notes: The return offset always has the required alignment for the target system.

UngetPersistantTemp

Declaration: Procedure UnGetPersistantTemp(Pos : Longint);

Description: Frees space allocated as being persistent. This persistent space can then later be used anc
reallocated Pos is the offset relative to the Frame_Pointer of the persistent memory block to
free.

ResetTempGen

Declaration: Procedure ResetTempGen,;
Description: Clear and free the complete linked list of temporary memory locations. The list is set to nil.

Notes: This routine is called each time a routine has been fully compiled.

SetFirstTemp

Declaration: Procedure SetFirstTemp(L : Longint);

Description: This routine sets the start of the temporary local area (this value is a negative offset from the
Frame_Pointer, which is located after the local variables). Usually the start offset is the size of
the local variables, modified by any alignment requirements.

Notes: This routine is called once before compiling a routine, it indicates the start address where to
allocate temporary memory space.

GetFirstTempSize

Declaration: Function GetFirstTempSize : Longint;

Description: Returns the total number of bytes allocated for local and temporary allocated stack space.
This value is aligned according to the target system alignment requirements, even if the actual
size is not aligned.

Notes: This routine is used by the code generator to get the total number of bytes to allocate locally
(i.e the stackframe size) in the entry and exit code of the routine being compiled.

76

9 THE CODE GENERATOR

NormalTempToPersistant

Declaration: Procedure NormalTempToPersistant(Pos : Longint);

Description: Searches the list of currently temporary memory allocated for the one with the Bfset
and if found converts this temporary memory space as persistent (can never be freed and real-
located).

PersistantTempToNormal

Declaration: Procedure PersistantTempToNormal(Pos : Longint);

Description: Searches the list of currently allocated persistent memory space as the specifiedRaklress
and if found converts this memory space to normal volatile memory space which can be freed
and reused.

IsTemp

Declaration: Function IsTemp(const Ref : TReference): Boolean;

Description: Returns TRUE if the referencgef is allocated in temporary volatile memory space, otherwise
returns FALSE.

9.9 Assembler generation

Architecture

The different architectures on the market today only support certain types of operands as as-
sembler instructions. The typical format of an assembler instruction has the following format:

OPCODE [opr1,opr2[,opr3][. . .]]

The opcode field is a mnemonic for a specific assembler instruction, suktO&son the
80x86, orADDX on the 680x0. Furthermore, in most cases, this mnemonic is followed by
zero to three operands which can be of the following types:

Possible Operand Types

e a LABEL or SYMBOL (to code or data)
e a REGISTER (one of the predefined hardware registers)
e a CONSTANT (an immediate value)

77

9 THE CODE GENERATOR

¢ a MEMORY EXPRESSION (indirect addressing through offsets, symbols, and address
registers)

In the compiler, this concept of different operand types has been directly defined for easier
generation of assembler output. All opcodes generated by the code generator are stored in a
linked list of opcodes which contain information on the operand types, The opcode and the
size (which is important to determine on what size the operand must be operated on) are stored
in that linked list.

The possible operand sizes for the code generator are as follows (a enumerationtoptype
size):

Description

8-bit integer operand

W 16-bit integer operand

L 32-bit integer operand

Q 64-bit integer operand

FS 32-bit IEEE 754 Single floating point operand
FL

FX

CP

Operand size enunidpsize)
S B

64-bit IEEE 754 Double floating point operand

Extended point floating point operand (cpu-specific)
U A constant equal to one of the previous sizes (natural |size
of operands)

The possible operand types for the code generator are as follows (other might be added as
required by the target architecture):

Operand typeTOpType) | Description

top_None No operand

top_Reg Operand is a register

top_Ref Operand is a referenceéference type)
top_Symbol Operand is a symbol (reference or label)

The architecture specific opcodes are done in an enumeration abtyypep. An example of
an enumeration for some of the opcodes of the PowerPC 32-bit architecture is as follows:

Type TAsmOp = (a_Add, a_Add_, a Addo, a Addo , a Addc, a_Addc_, a_Addco,

a_Addco_,a_Adde, a Adde_,
a_Addic_,

a_Addic,

a_Addeo, a_Addeo_,
a_Addis \ldots

a_Addi,

Generic instruction generation interface

To independently generate code for different architectures, wrappers for the most used in-
structions in the code generator have been created which are totally independent of the target

78

9 THE CODE GENERATOR

system.

Emit_Load Loc_Reg

Declaration: Procedure Emit_Load_Loc_Reg(Src:TLocation;Srcdef:pDef; DstDef :
pDef, Dst : TRegister);

Description: Loads an operand from the source locatiorSit into the destination registddst taking
into account the source definition and destination definition (sign-extension, zero extension
depending on the sign and size of the operands).

Notes: The source location can only be in LOC_REGISTER, LOC_CREGISTER, LOC_MEM or
LOC_REFERENCE otherwise an internal error will occur. This generic opcode does not work
on floating point values, only integer values.

FloatLoad

Declaration: Procedure FloatLoad(t : tFloatType;Ref : TReference; Var Location:TLocation);

Description: This routine is to be called each time a location must be setto LOC_FPU and a value loaded
into a FPU register

Notes: The routine sets up the register field of LOC_FPU correctly. The source location can only be
: LOC_MEM or LOC_REFERENCE. The destination location is set to LOC_FPU.

FloatStore

Declaration: Procedure FloatStore(t : TFloatType;Var Location:TLocation; Ref:TReference);
Description: This routine is to be called when a value located in LOC_FPU must be stored into memory.

Notes: The destination must be LOC_REFERENCE or LOC_MEM. This routine frees the LOC_FPU
location

emit_mov_ref reg64

Declaration: Procedure Emit_Mov_Ref Reg64(r : TReference;rl,rh : TRegister);

Description: This routine moves a 64-bit integer value stored in memory locatiomo the low 32-bit
registerrl and the high 32-bit registeh.

79

9 THE CODE GENERATOR

Emit_Lea Loc_Ref

Declaration: Procedure Emit_Lea_Loc_Ref(Const t:TLocation;Const Ref:TReference;
FreeTemp:Boolean);

Description: Loads the address of the locatilmt and stores the result inief

Notes: The store addressf should point to an allocated area at lesigeof(pointer) bytes, otherwise
unexpected code might be generated.

Emit_Lea_Loc_Reg

Declaration: Procedure Emit_Lea_Loc_Reg(const t:TLocation;Reg:TRegister;Freetemp:Boolean);

Description: Loads the address of the locatilme and stores the result into ther target regiséey

GetlLabel

Declaration: Procedure GetLabel(Var | : pAsmLabel);

Description: Returns a label associated with code. This label can then be used with the instructions output
by the code generator using the instruction generation templates which require labels as pa-
rameters. The label itself can be emitted to the assembler source by calliamitieab (80)
routine.

EmitLab

Declaration: Procedure EmitLab(Var | : pAsmLabel);
Description: Output the label to the assembler instruction stream.

Notes: The label should have been previously allocated d#iLabel, The output label will be of
the form label: in the instruction stream. This label is usually a jump target.

EmitLabeled

Declaration: Procedure EmitLabeled(op : TAsmOp; Var | : pAsmLabel);
Description: Output the opcodep with the operandwhich is a previously allocated label.

Notes: This routine is used to output jump instructions such as : jmp label, jne label. The label should
have been previously allocated with a callGetLabel

80

10 THE ASSEMBLER OUTPUT

EmitCall

Declaration: Procedure EmitCall(Const Routine:String);
Description: Emit a call instruction to an internal routine

Parameters: Routine = The name of the routine to call.

ConcatCopy

Declaration: procedure ConcatCopy(Source,Dest : TReference;Size : Longint;DelSource
Boolean; loadref:boolean);

Description: This routine copie$ize data from theSource reference to the destinati@est reference.

Parameters: Source = Source reference to copy from

Dest = Depending on the value of loadref, either indicates a location where a pointer to the
data to copy is Stored, or this reference directly the address to copy to.

Size = Number of bytes to copy
DelSource = TRUE if the source reference should be freed in this routine

LoadRef = TRUE if the source reference contains a pointer to the address we wish to copy to,
otherwise the reference itself is the destination location to copy to.

Emit_Flag2Reg

Declaration: Procedure Emit_Flag2Reg(Flag:TResflags;HRegister: TRegister);

Description: Sets the value of the register to 1 if the condition code flaglay is TRUE, otherwise sets
the register to zero.

Notes: The operand should be zero extended to the natural register size for the target architecture.

10 The assembler output

All code is generated via special linked lists of instructions. The base of this is a special object,
an abstract assembler which implements all directives which are usually implemented in the
different assemblers available on the market . When the code generator and parser generates
the final output, it is generated as a linked list for each of the sections available for the output
assembler. Each entry in the linked list is either an instruction, or one of the abstract directives
for the assembler.

81

10 THE ASSEMBLER OUTPUT

section list data

(codesegment)

(datasegment)
etc.

erateAsm()

emble.pas)
WriteTree()

(aggas.pas)

assembler file

DoAssemble()
(assemble.pas)

Ob|
Fi

Figure 11. Assembler generation organisation

82

10 THE ASSEMBLER OUTPUT

The different possible

sections which are output are as follows:

Section lists for the assembler output

Internal section nam

e Description

ExparAsmList
DataSegment
CodeSegment
DebugList
WithDebugList
Consts
ImportSection
ExportSection
ResourceSection
RttiList
ResourceStringList

temporary list
initialized variables
instructions and general code directives

debugging information
2227777777777

read only constants

imported symbols

exported symbols

Resource data

runtime type information data
resource string data

The following directives for the abstract assembler currently exist:

Abstract assembler node types:

Ait_Comment
Ait_Instruction
Ait_DataBlock
Ait_Symbol

Ait_Symbol_End
Ait_Const_32bit
Ait_Const_16bit
Ait_Const_8bit
Ait_Const_symbol
Ait_Real_80bit (x86)

Assembler output comment
Processor specific instruction
Unitialized data block (BSS)

public symbol type)

GLOBAL
eg : A symbol followed by an Ait_const_32bit

Initialized 32-bit constant (without a symbol)
Initialized 16-bit constant (without a symbol)

Initialized 8-bit constant (without a symbol)
2277777277777

Entry represents a symbol (exported, imported, or o

Possible symbol types : NONE, EXTERNAL, LOCAL ar

Symbol end (for example the end of a routine)

Initialized 80-bit floating point constant (without symbol

Node entry Type Description \

Ait_None This entry in the linked list is invalid (this should normally
never occur)

Ait_Direct Direct output to the resulting assembler file (as string)

Ait_String Shortstring with a predefined length

Ait_Label Numbered assembler label used for jumps

83

ther

nd

11 THE RUNTIME LIBRARY

Node entry Type Description

Ait_Real 64bit Initialized Double IEEE floating point constant (without
symbol)

Ait_Real_32bit Initialized Single IEEE floating point constant (without
symbol)

Ait_Comp_64bit (x86)
Ait_Align

Ait_Section
Ait_const_rva (Win32)
Ait_Stabn

Ait_Stabs
Ait_Force_Line

Alignment directive
Section directive

stabs debugging information (numerical value)
stabs debugging information (string)
stabs debugging line information

Ait_Stab_Function_Name stabs debug information routine name

Ait_Cut Cut in the assembler files (used for smartlinking)
Ait_RegAlloc Debugging information for the register allocator
Ait_Marker P9??????7?777?

Ait_Frame (Alpha)
Ait_Ent (Alpha)

Ait_Labeled_Instruction (m68k|

Ait_Dummy

Unused - should never appear

Initialized 64-bit floating point integer (without symbol)

11 The Runtime library

This section describes the requirements of the internal routines which MUST be implemented
for all relevant platforms to port the system unit to a new architecture or operating system.

The following defines are available when compiling the runtime library:

DEFAULT_EXTENDED

Define Name| Description

1386 Intel 80x86 family of processors (and compatibles)

m68k Motorola 680x0 family of processors (excludes coldfire

alpha Alpha 21x64 family of processors

powerpc Motorola / IBM 32-bit family of processors

sparc SPARC v7 compatible processors

Define name Description

RTLLITE Removes some extraneous routine from compilation (

tem unit is minimal). Mvdv: Afaik the status of this is ul
known

SyS-

The runtime library routines dealing with fixed point values

have theextended type instead of theeal type.

84

11 THE RUNTIME LIBRARY

Define name

Description

SUPPORT_SINGLE The compiler supports thgingle floating point precision
SUPPORT_DOUBLE | The compiler supports thgouble floating point precision

SUPPORT_EXTENDED The compiler supports thextended floating point preci-

SUPPORT_FIXED

HASWIDECHAR
INT64
MAC_LINEBREAK

type
type

sion type
The compiler supports théxed floating point precision
type

The compiler supported theidechar character type
The compiler supports 64-bit integer operations
Text I/0 uses Mac styled line break (#13) instead of #13#10

SHORT_LINEBREAK | Text I1/O uses UNIX styled line breaks (#10) instead|of

EOF CTRLZ

#13#10
A Ctrl-Z character in a text file is an EOF marker (UNIX
mostly)

The following defines are used for fexpand definitions:

Define name

Description

UNIX

FPC_EXPAND_UNC Universal Naming convention support i.e

FPC_EXPAND_TILDE Replaces the~ character, with the ‘HOME’ directory

FPC_EXPAND_DRIVES | Different devices with different names (as drives) are sup-

ported
(like DOS, Netware, etc...)

\\ <server-namex<share-name®<directory/filename>
Unix style file names

FPC_EXPAND_VOLUMES| Volume names (i.e. drive descriptions longer than 1 charac-

ter) are supported.

(mostly on UNIX platforms)

The following defines some debugging routines for the runtime library:

Define Name Description

DEFINE NAME Description

ANSISTRDEBUG | Add Debug routines for ansi string support
EXCDEBUG Add Debug routines for exception debugging
LOGGING Log the operations to a file

85

11 THE RUNTIME LIBRARY

11.1 Operating system hooks

This section contains information on all routines which should be hooked and implemented to
be able to compile and use the system unit for a new operating system:

System_EXxit
Declaration: Procedure System_EXxit;
Description: This routine is internally called by the system unit when the application exits.

Notes: This routine should actually exit the application. It should exit with the error code specified in
the ExitCode variable.

Algorithm: Exit application with ExitCode value.

ParamCount

Declaration: Function ParamCount : Longint;

Description: This routine is described in the Free Pascal reference manual.

Randomize
Declaration: Procedure Randomize;
Description: This routine should initialize the built-in random generator with a random value.
Notes: This routine is used by random

Algorithm: Randseed := pseudo random 32-bit value

GetHeapStart

Declaration: Function GetHeapStart : Pointer;
Description: This routine should return a pointer to the start of the heap area.

Algorithm: GetHeapStart := address of start of heap.

GetHeapSize

Declaration: Function GetHeapSize : Longint;
Description: This routine should return the total heap size in bytes

Algorithm: GetHeapSize := total size of the initial heap area.

86

11 THE RUNTIME LIBRARY

shrk

Declaration: Function Sbrk(Size : Longint): Longint;

Description: This routine should grow the heap by the number of bytes specified. If the heap cannot be
grown it should return -1, otherwise it should return a pointer to the newly allocated area.

Parameters: size = Number of bytes to allocate

Do_Close

Declaration: Procedure Do_Close(Handle : Longint);
Description: This closes the file specified of the specified handle number.
Parameters: handle = file handle of file to close

Notes: This routine should close the specified file.

Notes: This routine should set InoutRes in case of error.

Do_Erase

Declaration: Procedure Do_Erase(p: pChar);
Description: This erases the file specifed by p.
Parameters: p = name of the file to erase

Notes: This routine should set InoutRes in case of error.

Do_Truncate

Declaration: Procedure Do_Truncate(Handle, FPos : Longint);
Description: This truncates the file at the specified position.
Parameters: handle = file handle of file to truncate fpos = file position where the truncate should occur

Notes: This routine should set InoutRes in case of error.

87

11 THE RUNTIME LIBRARY

Do_Rename

Declaration: Procedure Do_Rename(pl, p2 : pchar);
Description: This renames the file specified.
Parameters: p1 = old file name p2 = new file name

Notes: This routine should set InoutRes in case of error.

Do_Write

Declaration: Function Do_Write(Handle,Addr,Len:Longint):longint;
Description: This writes to the specified file. Returns the number of bytes actually written.

Parameters: handle = file handle of file to write to addr = address of buffer containing the data to write len
= number of bytes to write

Notes: This routine should set InoutRes in case of error.

Do_Read

Declaration: Function Do_Read(Handle,Addr,Len:Longint):Longint;
Description: Reads from a file. Returns the number of bytes read.

Parameters: handle = file handle of file to read from addr = address of buffer containing the data to read
len = number of bytes to read

Notes: This routine should set InoutRes in case of error.

Do_FilePos

Declaration: function Do_FilePos(Handle: Longint):longint;
Description: Returns the file pointer position
Parameters: handle = file handle of file to get file position on

Notes: This routine should set InoutRes in case of error.

88

11 THE RUNTIME LIBRARY

Do_Seek

Declaration: Procedure Do_Seek(Handle,Pos:Longint);
Description: Set file pointer of file to a new position
Parameters: handle = file handle of file to seek in pos = new position of file pointer (from start of file)

Notes: This routine should set InoutRes in case of error.

Do_Seekend

Declaration: Function Do_SeekEnd(Handle:Longint): Longint;
Description: Seeks to the end of the file. Returns the new file pointer position.
Parameters: handle = file handle of file to seek to end of file

Notes: This routine should set InoutRes in case of error.

Do_FileSize

Declaration: Function Do_FileSize(Handle:Longint): Longint;
Description: Returns the filesize in bytes.
Parameters: handle = file handle of file to get the file size

Notes: This routine should set InoutRes in case of error.

Do_lIsDevice

Declaration: Function Do_ISDevice(Handle:Longint): boolean;
Description: Returns TRUE if the file handle points to a device instead of a file.
Parameters: handle = file handle to gtet status on

Notes: This routine should set InoutRes in case of error.

89

11 THE RUNTIME LIBRARY

Do_Open
Declaration: Procedure Do_Open(var f;p:pchar;flags:longint);

Description: Opens a file in the specified mode, and setstioele andhandle fields of thef structure
parameter.

Parameters: f = pointer totextrec or filerec structure p = name and path of file to open flags =
access mode to open the file with

Notes: This routine should set InoutRes in case of error.

ChDir

Declaration: Procedure ChDir(Const s: String);[IOCheck];
Description: Changes to the specified directory. . and .. should also be supported by this call.
Parameters: s = new directory to change to

Notes: This routine should set InoutRes in case of error.

MkDir

Declaration: Procedure MKDir(Const s: String);[IOCheck];
Description: Creates the specified directory.
Parameters: s = name of directory to create

Notes: This routine should set InoutRes in case of error.

RmDir

Declaration: Procedure RmDir(Const s: String);[IOCheck];
Description: Removes the specified directory.
Parameters: s = name of directory to remove

Notes: This routine should set InoutRes in case of error.

The following variables should also be defined for each new operating system, they are used
by external units:

argc : The number of command line arguments of the program
argv : A pointer to each of the command line arguments (an array of pchar pointers)

90

11 THE RUNTIME LIBRARY

11.2 CPU specific hooks

The following routines must absolutely be implemented for each processor, as they are depen-
dent on the processor:

FPC_SETJIMP

Setdmp

Declaration: Function SetJmp (Var S : Jmp_Buf) : Longint;

Description: A call to SetJmp(), saves the calling environment irsissgument for later use dgngjmp().
Called by the code generator in exception handling code. The return value should be zero.

Notes: This routine should save / restore all used registers (except the accumulator which should be
cleared).

FPC_LONGJMP

function SPtr()

function Get_Caller_Frame(framebp:longint):longint;
function Get_Caller_Addr(framebp:longint):longint;
function Get_Frame:longint;

function Trunc()

11.3 String related
FPC_SHORTSTR_COPY

Int_StrCopy

Declaration: Procedure Int_StrCopy(Len:Longint;SStr,DStr:pointer);

Description: This routine copies the string pointed to by the address in sstr, to the string pointed in the
destination. The old string is overwritten, and the source string will be truncated to make
it fit in destination if the length of the source is greater then destination string len (the len
parameter).

Parameters: Len = maximum length to copy (the destination string length)

SStr = pointer to source shortstring

DStr = point to destination shortstring

91

11 THE RUNTIME LIBRARY

Notes: Called by code generator when a string is assigned to another string.

FPC_SHORTSTR_COMPARE

Int_StrCmp

Declaration: Function Int_StrCmp(DStr,SStr:Pointer) : Longint;

Description: The routine compares two shortstrings, and returns 0 if both are equalStrifis greater
thenSSrc, otherwise it returns —1.

Notes: Both pointers must point to shortstrings. Length checking must be performed in the routine.

FPC_SHORTSTR_CONCAT

Int_StrConcat

Declaration: Procedure Int_StrConcat(Src,Dest:Pointer);
Description: This routine appends the string pointed to3rg to the end of the string pointed to Dest.
Parameters: Src = pointer to shortstring to append to dest

Dest = pointer to shortstring to receive appended string

Notes: Both pointers must point to shortstrings. In the case where the src string length does not fit in
dest, it is truncated.

Algorithm:
if src =nil or dest = nil then

exit routine;

if (src string length + dest string length) > 255 then
number of bytes to copy = 255 — dest string length
else

number of bytes to copy = src string length ;

copy the string data (except the length byte)
dest string length = dest string length + number of bytes to copied

FPC_ANSISTR_CONCAT

AnsiStr_Concat

Declaration: Procedure AnsiStr_Concat(sl,s2:Pointer;var s3:Pointer);

Description: This routine appendsl+s2 and stores the result at the address pointed t&3by

Notes: All pointers must point to ansistrings.

92

11 THE RUNTIME LIBRARY

FPC_ANSISTR_COMPARE
AnsiStr_Compare

Declaration: Function AnsiStr_Compare(sl,s2 : Pointer): Longint;

Description: The routine compares two ansistrings, and returns 0 if both are equal isfgreater then
s2, otherwise it returns —1.

Parameters: Both pointers must point to ansistrings.

FPC_ANSISTR_INCR_REF
AnsiStr_Incr_Ref

Declaration: procedure AnsiStr_Incr_Ref (var s : Pointer);

Description: This routine simply increments the ANSI string reference count, which is used for garbage
collection of ANSI strings.

Parameters: s = pointer to the ansi string (including the header structure)

FPC_ANSISTR_DECR_REF
AnsiStr_Decr_Ref

Declaration: procedure AnsiStr_Decr_Ref (Var S : Pointer);
Parameters: s = pointer to the ansi string (including the header structure)

Algorithm: Decreases the internal reference count of this non constant ansistring; If the reference count is
zero, the string is deallocated from the heap.

FPC_ANSISTR_ASSIGN
AnsiStr_Assign

Declaration: Procedure AnsiStr_Assign (var sl : Pointer;s2 : Pointer);

Parameters: sl = address of ANSI string to be assigned to
s2 = address of ANSI string which will be assigned

Algorithm: Assigns S2 to S1 (S1:=S2), also by the time decreasing the reference count to S1 (it is no
longer used by this variable).

93

11 THE RUNTIME LIBRARY

FPC_PCHAR_TO_SHORTSTR
StrPas

Declaration: Function StrPas(p:pChar):ShortString;
Description: Copies and converts a null-terminated string (pchar) to a shortstring with length checking.
Parameters: p = pointer to null terminated string to copy

Notes: Length checking is performed. Verifies also p=nil, and if so sets the shortstring length to zero.
Called by the type conversion generated code of code generator.

Algorithm:
if p=nil then
string length =0
else

string length =string length (p)

if string length >255 then

string length = 255

if string length >0 then

Copy all characters of pchar array to string (except length byte)

FPC_SHORTSTR_TO_ANSISTR
FPC_ShortStr_To_AnsiStr

Notes: Called by the type conversion generated code of code generator.

FPC _STR_TO_CHARARRAY
Str_To_CharArray

Declaration: procedure Str_To_CharArray(StrTyp, ArraySize: Longint; src,dest:
pChar);

Description: Converts a string to a character array (currently supports both shortstring and ansistring
types). Length checking is performed, and copies wgrtaysize elements to dest.

Parameters: strtyp = Indicates the conversion type to do (0 = shortstring, 1 = ansistring, 2 = longstring, 3 =
widestring)
arraysize = size of the destination array

src = pointer to source string
dest = pointer to character array

94

11 THE RUNTIME LIBRARY

Notes: Called by the type conversion generated code of code generator when converting a string to
an array of char. If the size of the string is less then the size of the array, the rest of the array is
filled with zeros.

FPC_CHARARRAY_TO_SHORTSTR

StrCharArray

Declaration: Function StrCharArray(p:pChar; | : Longint):ShortString;
Description: Copies a character array to a shortstring with length checking (upto 255 characters are copied)

Parameters: p = Character array pointer
| = size of the array

Notes: Called by the type conversion generated code of code generator when converting an array of
char to a shortstring.

Algorithm:
if size of array >= 256 then
length of string =255

else
if size of array < 0 then
length of string =0
else
length of string = size of array

Copy all characters from array to shortstring

FPC_CHARARRAY TO_ANSISTR

Fpc_Chararray_To_AnsiStr

Notes: Called by the type conversion generated code of code generator when converting an array of
char to an ansistring.

FPC_CHAR_TO_ANSISTR
Fpc_Char_To_AnsiStr

Notes: Called by the type conversion generated code of code generator when converting a char to an
ansistring.

95

11 THE RUNTIME LIBRARY

FPC_PCHAR_TO_ANSISTR
Fpc_pChar_To_AnsiStr

Notes: Called by the type conversion generated code of code generator when converting a pchar to an
ansistring.

11.4 Compiler runtime checking
FPC_STACKCHECK

Int_StackCheck

Declaration: procedure int_stackcheck (stack_size:longint);

Description: This routine is used to check if there will be a stack overflow when trying to allocate stack
space from the operating system. The routine must preserve all registers. In the case the stack
limit is reached, the routine calls the appropriate error handler.

Parameters: stack_size = The amount of stack we wish to allocate

Notes: Inserted in the entry code of a routine in the {$S+} state by the code generator
Algorithm:

if ((StackPointer — stack_size) < System. StackLimit) then
Throw a Runtime error with error code 202 (stack overflow)

FPC_RANGEERROR
Int_RangeError

Declaration: procedure Int_RangekError;

Description: This routine is called when a range check error is detected when executing the compiled
code. This usually simply calls the default error handler, with the correct runtime error code to
produce.

Parameters: Inserted in code generator when a Runtime error 201 {$R+} should be generated

FPC_BOUNDCHECK
Int_BoundCheck

Declaration: procedure Int_BoundCheck(l : Longint; Range : Pointer);

96

11 THE RUNTIME LIBRARY

Description: This routine is called at runtime in $R+ mode to check if accessing indexes in a string or
array is out of bounds. In this case, the default error handler is called, with the correct runtime
error code to produce.

Parameters: | = Index we need to check

range = pointer to a structure containing the minimum and maximum allowed indexes (points
to two 32-bit signed values which are the limits of the array to verify).

Notes: Inserted in the generated code after assignments, and array indexing to verify if the result of
operands is within range (in the {$R+} state)

FPC_OVERFLOW

Int_OverFlow

Declaration: procedure Int_OverFlow;

Description: This routine is called when an overflow is detected when executing the compiled code. This
usually simply calls the default error handler, with the correct runtime error code to produce.

Parameters: Inserted in code generator when a Runtime error 215 {$Q+} should be generated.

FPC_CHECK_OBJECT

Int_Check_Object

Declaration: procedure Int_Check Object(vmt : Pointer);

Description: This routine is called at runtime in the $R+ state each time a virtual method is called. It ver-
ifies that the object constructor has been called first to build the VMT of the object, otherwise
it throws an Runtime error 210.

Parameters: vmt = Current value of the SELF register

Notes: Call inserted by the code generator before calling the virtual method. This routine should save
/ restore all used registers.

Algorithm:
if vmt = nil or size of method table =0 then

Throw a Runtime error with error code 210 (object not initialized)

97

11 THE RUNTIME LIBRARY

FPC_CHECK_OBJECT_EXT
Int_Check_Object_Ext

Declaration: procedure Int_Check Object_Ext(vmt, expvmt : pointer);

Description: This routine is called at runtime when extended object checking is enabled (on the command
line) and a virtual method is called. It verifies that the object constructor has been called first
to build the VMT of the object, otherwise it throws an Runtime error 210, and furthermore
it check that the object is actually a descendant of the parent object, otherwise it returns a
Runtime error 219.

Parameters: vmt = Current value of the SELF register
expvmt = Pointer to TRUE object definition

Notes: Call inserted by the code generator before calling the virtual method.
This routine should save / restore all used registers.

Algorithm:
if vmt = nil or size of method table =0 then

Throw a Runtime error with error code 210 (object not initialized)
Repeat
If SELF (VMT) <> VMT Address (expvmt) Then
Get Parent VMT Address
Else
Exit ;
until no more ent;
Throw a Runtime error with error code 220 (Incorrect object reference)

FPC_10_CHECK
Int_IOCheck

Declaration: procedure Int_IOCheck(addr : longint);

Description: This routine is called after an 1/0O operation to verify the success of the operation when the
code is compiled in the $I+ state.

Parameters: addr = currently unused

Algorithm: Check last I/O was successful, if not call error handler.

98

11 THE RUNTIME LIBRARY

FPC_HANDLEERROR

HandleError

Declaration: procedure HandleError (Errno : longint);

Description: This routine should be called to generate a runtime error either from one of the system unit
routines or the code generator.

Parameters: Errno = Runtime error to generate
Notes: This routine calls the appropriate existing error handler with the specified error code.

Algorithm:

FPC_ASSERT

Int_Assert

Declaration: procedure Int_Assert(Const Msg,FName:Shortstring;LineNo,ErrorAddr:Longint);

Description: This routine is called by the code generator in an assert statement. When the assertion fails,
this routine is called.

Parameters: msg = string to print
Fname = Current filename of source
LineNo = Current line number of source
ErrorAddr = Address of assertion failure

11.5 Exception handling
FPC_RAISEEXCEPTION

RaiseExcept

Declaration: function RaiseExcept (Obj : Tobject; AnAddr,AFrame : Pointer)
Tobject;

Description: Called by the code generator in the raise statement to raise an exception.

Parameters: Obj = Instance of class exception handler
AnAddr = Address of exception
Aframe = Exception frame address

99

11 THE RUNTIME LIBRARY

FPC_PUSHEXCEPTADDR

PushExceptAddr

Declaration: function PushExceptAddr (Ft: Longint): PJmp_buf ;

Description: This routine should be called to save the current caller context to be used for exception han-
dling, usually called in the context where ANSI strings are used (they can raise exceptions), or
in a try..finally or on statements to save the current context.

Parameters: Ft = Indicates the frame type on the stack (1= Exception frame or 2=Finalize frame)

Algorithm: Adds this item to the linked list of stack frame context information saved. Allocates a buffer
for the jump statement and returns it.

FPC_RERAISE

ReRaise

Declaration: procedure ReRaise;

FPC_POPOBJECTSTACK

PopObijectStack

Declaration: function PopObjectStack : TObject;

Description: This is called by the code generator when an exception occurs, it is used to retrieve the
exception handler object from the context information.

FPC_POPSECONDOBJECTSTACK

PopSecondObjectStack

Declaration: function PopSecondObjectStack : TObject;

Description: This is called by the code generator when a double exception occurs, it is used to retrieve the
second exception handler object from the context information.

100

11 THE RUNTIME LIBRARY

FPC_DESTROYEXCEPTION
DestroyException

Declaration: Procedure DestroyException(o : TObject);

Description: This routine is called by the code generator after the exception handling code is complete to
destroy the exception object.

Parameters: o = Exception handler object reference

FPC_POPADDRSTACK
PopAddrStack

Declaration: procedure PopAddrStack;

Description: Called by the code generator in the finally part of a try statement to restore the stackframe
and dispose of all the saved context information.

FPC_CATCHES

Catches

Declaration: function Catches(Objtype : TExceptObjectClass) : TObiject;

Description: This routine is called by the code generator to get the exception handler object. ????????2?????

Parameters: ObjType = The exception type class

FPC_GETRESOURCESTRING

GetResourceString

Declaration: function GetResourceString(Const TheTable: TResourceStringTable;Index
longint) : AnsiString;

Description: Called by code generator when a reference to a resource string is made. This routine loads the
correct string from the resource string section and returns the found string (or * if not found).

101

11 THE RUNTIME LIBRARY

Parameters: TheTable = pointer to the resource string table
Index = Index in the resource string table.

11.6 Runtime type information
FPC_DO_IS

Int_Do_lIs
Declaration: Function Int_Do_Is(AClass : TClass;AObject : TObject) : Boolean;

Description: If aclass is of typeaobject, returns TRUE otherwise returns FALSE.

Parameters: aclass = class type reference
aobject = Object instance to compare against

Notes: This is called by the code generator whenitheperator is used.

Algorithm:

FPC_DO_AS
Int. Do _As

Declaration: Procedure Int_Do_As(AClass : TClass;AObject : TObject)

Description: Typecastsaclass as aobject, with dynamic type checking. If the object is not from the
correct type class, a runtime error 219 is generated. Called by the code generatora®r the

statement.

Parameters: aclass = Class to typecast to
aobject = Object to typecast
FPC_INITIALIZE
Initialize
Declaration: Procedure Initialize (Data,Typelnfo : Pointer);

Description:

Parameters: data = pointer to the data to initialize
typeinfo = pointer to the type information for this data

102

11 THE RUNTIME LIBRARY

Notes: This routine should save / restore all used registers.

Algorithm: Initializes the class data for runtime typed values

FPC_FINALIZE

Finalize

Declaration: procedure Finalize (Data,Typelnfo: Pointer);
Description: Called by code generator if and only if the reference to finalize <> nil.

Parameters: data = point to the data to finalize
typeinfo = Pointer to the type information of this data

Notes: This routine should save / restore all used registers. Finalizes and frees the heap class data for
runtime typed values (decrements the reference count)

FPC_ADDREF

AddRef

Declaration: Procedure AddRef (Data,Typelnfo : Pointer);

Description: Called by the code generator for class parameters (property support) of type const or value in
parameters, to increment the reference count of ANSI strings.

Notes: This routine should save / restore all used registers. This routine can be called recursively with
a very deep nesting level, an assembler implementation in suggested.

FPC_DECREF

DecRef

Declaration: Procedure DecRef (Data, Typelnfo : Pointer);

Description: Called by the code generator for class parameters (property support) of type const or value
parameters, to decrement the reference count. of ANSI strings.

Parameters:

Notes: This routine should save / restore all used registers. This routine can be called recursively with
a very deep nesting level, an assembler implementation in suggested.

103

11 THE RUNTIME LIBRARY

11.7 Memory related
FPC_GETMEM

GetMem

Declaration: procedure GetMem(Var p:Pointer;Size:Longint);

FPC_FREEMEM

FreeMem

Declaration: Procedure FreeMem(Var P:Pointer;Size:Longint);

FPC_CHECKPOINTER

CheckPointer

Declaration: Procedure CheckPointer(p : Pointer);

Description: Called by the code generator when a pointer is referenced in heap debug mode. Verifies that
the pointer actually points in the heap area.

Parameters: p = pointer to check

Notes: This routine should save /restore all used registers.

FPC_DO_EXIT
Do_Exit

Declaration: procedure Do_EXxit;
Description: Called by code generator at the end of the program entry point.
Notes: Called to terminate the program

Algorithm: Call all unit exit handlers.
Finalize all units which have a finalization section
Print runtime error in case of error

Call OS-dependant system_exit routine

104

11 THE RUNTIME LIBRARY

FPC_ABSTRACTERROR
AbstractError

Declaration: procedure AbstractError;

Description: The code generator allocates a VMT entry equal to this routine address when a method of a
class is declared as being abstract. This routine simply calls the default error handler.

Algorithm: Throw a Runtime error with error code 211 (Abstract call)

FPC_INITIALIZEUNITS
InitializeUnits

Declaration:

Description: Called by the code generator in the main program, this is only availableiffitadization
section exists in one of the units used by the program.

FPC_NEW_CLASS (assembler)

int_new_class

Description: This routine will call the TObject.Initinstance() routine to instantiate a class (Delphi-styled
class) and allocate the memory for all fields of the class.

On entry the self_register should be valid, and should point either to nil, for a non-initialized
class, or to the current instance of the class. The first parameter on the top of the stack should
be a pointer to the VMT table for this class(??7??).

FPC_HELP_DESTRUCTOR

Could be implemented in ASM directly with register parameter passing.

Int_Help_Destructor

Declaration: Procedure Int_Help Destructor(Var _Self : Pointer; Vmt . Pointer;
Vmt_Pos : Cardinal);

Description: Frees the memory allocated for the object fields, and if the object had a VMT field, sets it to
nil.

105

11 THE RUNTIME LIBRARY

Parameters: self = pointer to the object field image in memory
vmt = pointer to the the actual vmt table (used to get the size of the object)

vmt_pos = offset in the object field image to the vmt pointer field

Notes: This routine should / save restore all used registers.
Algorithm:

if self = nil then

exit

set VMT field in object field image ,if present, to nil
Free the allocated heap memory for the field objects

set Self = nil

FPC_HELP_CONSTRUCTOR

Could be implemented in ASM directly with register parameter passing.

Int_Help_Constructor

Declaration: function Int_Help_Constructor(Var _self : Pointer; Var VMT : Pointer;
Vmt_Pos : Cardinal):Pointer;
Description: Allocates the memory for an object’s field, and fills the object fields with zeros. Returns the
newly allocated self_pointer
Parameters: self = pointer to the object field image in memory
vmt = pointer to the the actual vmt table (used to get the size of the object)
vmt_pos = offset in the object field image to the vmt pointer field
Notes: The self _pointer register should be set appropriately by the code generator to the allocated
memory (self parameter)
Algorithm: Self = Allocate Memory block for object fields
Fill the object field image with zeros
Set the VMT field in allocated object to VMT pointer

FPC_HELP_FAIL_CLASS

Help_Fail_Class

Description: Inserted by code generator after constructor call. If the constructor failed to allocate the mem-
ory for its fields, this routine will be called.

106

11 THE RUNTIME LIBRARY

FPC_HELP_FAIL

Help_Fall

Description: Inserted by code generator after constructor call. If the constructor failed to allocate the mem-
ory for its fields, this routine will be called.

11.8 Set handling
FPC_SET_COMP_SETS

Do_Comp_Sets

Declaration: function Do_Comp_Sets(Setl,Set2 : Pointer): Boolean;

Description: This routine compares if setl and set2 are exactly equal and returns 1 if so, otherwise it
returns false.

Parameters: setl = Pointer to 32 byte set to compare
set2 = Pointer to 32 byte set to compare

Notes: Both pointers must point to normal sets.

FPC_SET_CONTAINS_SET

Do_Contains_Sets

Declaration: Procedure Do_Contains_Sets(Setl,Set2 : Pointer): Boolean;
Description: Returns 1 if set2 contains setl (That is all elements of set2 are in setl).

Parameters: setl = Pointer to 32 byte set to verify
set2 = Pointer to 32 byte set to verify

Notes: Both pointers must point to normal sets.

FPC_SET_CREATE_ELEMENT

Do_Create_Element

Declaration: procedure Do_Create Element(p : Pointer; b : Byte);

Description: Create a new normal set in the area pointed tp layd add the element vallan that set.

107

11 THE RUNTIME LIBRARY

Parameters: p = pointer to area where the 32 byte set will be created
b = bit value within that set which must be set

Notes: This works on normal sets only.

Algorithm: Zero the area pointed to by p
Set the bit numberbto 1

FPC_SET_SET RANGE
Do_Set Range

Declaration: Procedure Do_Set Range(P : Pointer;l,h : Byte);
Description: Sets the bit values within tHeandh bit ranges in the normal set pointed to jpy

Parameters: p = pointer to area where the 32 bytes of the set will be updated
| = low bit number value to set
h = high bit number value to set

Notes: This works on normal sets only.

Algorithm: Set all bit numbers from I to h in set p

FPC_SET_SET BYTE
Do_Set Byte

Declaration: procedure Do_Set_Byte(P : Pointer;B : byte);
Description: Add the elemenb in the normal set pointed to hy

Parameters: p = pointer to 32 byte set
b = bit number to set

Notes: This works on normal sets only. The intel 80386 version of the compiler does not save the
used registers, therefore, in that case, it must be done in the routine itself.

Algorithm: Set bit number b in p

108

11 THE RUNTIME LIBRARY

FPC_SET_SUB_SETS

Do_Sub_Sets

Declaration: Procedure Do_Sub_Sets(Setl,Set2,Dest:Pointer);
Description: Calculate the difference betwesatl andset2, setting the result idest.

Parameters: setl = pointer to 32 byte set
set2 = pointer to 32 byte set
dest = pointer to 32 byte set which will receive the result

Notes: This works on normal sets only.
Algorithm:

For each bit in the set do
dest bit = setl bit AND NOT set2 bit

FPC_SET_MUL_SETS

Do_Mul_Sets

Declaration: procedure Do_Mul_Sets(Setl,Set2,Dest:Pointer);
Description: Calculate the multiplication betweeetl andset2, setting the result idest.

Parameters: setl = pointer to 32 byte set
set2 = pointer to 32 byte set
dest = pointer to 32 byte set which will receive the result

Notes: This works on normal sets only.
Algorithm:

For each bit in the set do
dest bit = setl bit AND set2 bit

FPC_SET_SYMDIF_SETS
Do_Symdif_Sets

Declaration: Procedure Do_Symdif Sets(Setl,Set2,Dest:Pointer);

Description: Calculate the symmetric betwesatl andset2, setting the result idest.

109

11 THE RUNTIME LIBRARY

Parameters: setl = pointer to 32 byte set
set2 = pointer to 32 byte set
dest = pointer to 32 byte set which will receive the result

Notes: This works on normal sets only.
Algorithm:

For each bit in the set do
dest bit = setl bit XOR set2 bit

FPC_SET _ADD_SETS
Do _Add_Sets

Declaration: procedure Do_Add_Sets(Setl,Set2,Dest : Pointer);
Description: Calculate the addition betwesetl andset2, setting the result idest.

Parameters: setl = pointer to 32 byte set
set2 = pointer to 32 byte set
dest = pointer to 32 byte set which will receive the result

Notes: This works on normal sets only.
Algorithm:

For each bit in the set do
dest bit = setl bit OR set2 bit

FPC_SET_LOAD_SMALL
Do _Load_Small

Declaration: Procedure Do _Load_Small(P : Pointer;L:Longint);
Description: Load a small set into a 32-byte normal set.

Parameters: p = pointer to 32 byte set
| = value of the small set
Notes: Called by code generator (type conversion) from small set to large set. Apart from the first 32

bits of the 32 byte set, other bits are not modified.
Algorithm:

For n = bit 0 to bit 31 of | do
p bit n =1 bit n

110

11 THE RUNTIME LIBRARY

FPC_SET _UNSET BYTE
Do_Unset_Byte

Declaration: Procedure Do_Unset Byte(P : Pointer;B : Byte);

Description: Called by code generator to exclude element b from a big 32-byte set pointed to by p.

Parameters: p = pointer to 32 byte set
b = element number to exclude

Notes: The intel 80386 version of the compiler does not save the used registers, therefore, in that
case, it must be done in the routine itself.

Algorithm: Clear bit number b inp

FPC_SET_IN_BYTE
Do_In_Byte

Declaration: Function Do_In_Byte(P : Pointer;B : Byte):boolean;

Description: Called by code generator to verify the existence of an element in a set. Returns TRUE if b is
in the set pointed to by p, otherwise returns FALSE.

Parameters: p = pointer to 32 byte set
b = element number to verify

Notes: This routine should save / restore all used registers.

Algorithm: Clear bit number b inp

11.9 Optional internal routines

These routines are dependant on the target architecture. They are present in software if the
hardware does not support these features.

They could be implemented in assembler directly with register parameter passing.
FPC_MUL_INT64
Mulint64

Declaration: function Mullnt64(f1,f2 : Int64;CheckOverflow : LongBool) : Int64;

111

11 THE RUNTIME LIBRARY

Description: Called by the code generator to multiply two int64 values, when the hardware does not sup-
port this type of operation. The value returned is the result of the multiplication.

Parameters: f1 = first operand
f2 = second operand
checkoverflow = TRUE if overflow checking should be done

FPC_DIV_INT64

Divint64

Declaration: function Divinté4(n,z : Int64) : Int64;

Description: Called by the code generator to get the division two int64 values, when the hardware does
not support this type of operation. The value returned is the result of the division.

Parameters: n =numerator
z = denominator

FPC_MOD_INT64

ModInt64

Declaration: function ModInt64(n,z : Int64) : Int64;

Description: Called by the code generator to get the modulo two int64 values, when the architecture does
not support this type of operation. The value returned is the result of the modulo.

Parameters: n = numerator
z = denominator

FPC_SHL_INT64

Shlint64

Declaration: Function Shlint64(Cnt : Longint; Low, High: Longint): Int64;

Description: Called by the code generator to shift left a 64-bit integer by the specified amount cnt, when
this is not directly supported by the hardware. Returns the shifted value.

Parameters: low,high = value to shift (low / high 32-bit value)
cnt = shift count

112

11 THE RUNTIME LIBRARY

FPC_SHR_INT64

Shrint64

Declaration: function Shrint64(Cnt : Longint; Low, High: Longint): Int64;

Description: Called by the code generator to shift left a 64-bit integer by the specified amount cnt, when
this is not directly supported by the hardware. Returns the shifted value.

Parameters: low,high = value to shift (low/high 32-bit values)
cnt = shift count
FPC_MUL_LONGINT

MulLong

Declaration: Function MulLong: Longint;

Description: Called by the code generator to multiply two longint values, when the hardware does not
support this type of operation. The value returned is the result of the multiplication.

Parameters: Parameters are passed in registers.

Notes: This routine should save / restore all used registers.

FPC_REM_LONGINT
RemLong

Declaration: Function RemLong: Longint;

Description: Called by the code generator to get the modulo two longint values, when the hardware does
not support this type of operation. The value returned is the result of the modulo.

Parameters: Parameters are passed in registers.

Notes: This routine should save / restore all used registers.

FPC_DIV_LONGINT
DivLong

Declaration: Function DivLong: Longint;

113

11 THE RUNTIME LIBRARY

Description: Called by the code generator to get the division two longint values, when the hardware does
not support this type of operation. The value returned is the result of the division.

Parameters: Parameters are passed in registers.

Notes: This routine should save / restore all used registers.

FPC_MUL_LONGINT
MulCardinal

Declaration: Function MulCardinal: Cardinal;

Description: Called by the code generator to multiply two cardinal values, when the hardware does not
support this type of operation. The value returned is the result of the multiplication.

Parameters: Parameters are passed in registers.

Notes: This routine should save / restore all used registers.

FPC_REM_CARDINAL
RemCardinal

Declaration: Function RemCardinal : Cardinal;

Description: Called by the code generator to get the modulo two cardinal values, when the hardware does
not support this type of operation. The value returned is the result of the modulo.

Parameters: Parameters are passed in registers.

Notes: This routine should save / restore all used registers.

FPC_DIV_CARDINAL

DivCardinal

Declaration: Function DivCardinal: Cardinal;

Description: Called by the code generator to get the division two cardinal values, when the hardware does
not support this type of operation. The value returned is the result of the division.

Parameters: Parameters are passed in registers.

Notes: This routine should save / restore all used registers.

114

12 OPTIMIZING YOUR CODE

FPC_LONG_TO_SINGLE
LongSingle

Declaration: Function LongSingle: Single;
Description: Called by the code generator to convert a longint to a single IEEE floating point value.
Parameters: Parameters are passed in registers

Notes: This routine should save / restore all used registers.

FPC_ADD_SINGLE
FPC_SUB_SINGLE
FPC_MUL_SINGLE
FPC_REM_SINGLE
FPC_DIV_SINGLE
FPC_CMP_SINGLE
FPC_SINGLE_TO_LONGINT

12 Optimizing your code

12.1 Simple types

Use the most simple types, when defining and declaring variables, they require less overhead.
Classes, and complex string types (ansi strings and wide strings) posess runtime type informa-
tion, as well as more overhead for operating on them then simple types such as shortstring and
simple ordinal types.

12.2 constant duplicate merging

When duplicates of constant strings, sets or floating point values are found in the code, they are
replaced by only once instance of the same string, set or floating point constant which reduces
the size of the final executable.

12.3 inline routines

The following routines of the system unit are directly inlined by the compiler, and generate
more efficient code:

115

12 OPTIMIZING YOUR CODE

Prototype

Definition and notes

function pi : extended;

function abs(d : extended) : extended,;
function sqr(d : extended) : extended,
function sqrt(d : extended) : extended;
function arctan(d : extended) : extended,;
function In(d : extended) : extended;
function sin(d : extended) : extended,;
function cos(d : extended) : extended,;
function ord(X): longint;

function lo(X) : byte or word;

function hi(X) : byte or word;

function chr(b : byte) : Char;

function Length(s : string) : byte;
function Length(c : char) : byte;
procedure Reset(var f : TypedFile);
procedure rewrite(var f : TypedFile);
procedure settextbuf(var F : Text; var Buf);
procedure writen;

procedure writeln;

procedure read,;

procedure readin;

procedure concat;

function assigned(var p): boolean;
procedure str(X :[Width [:Decimals]]; var S);

function sizeof(X): longint;

function typeof(X): pointer;

procedure val(S;var V; var Code: integer);
function seg(X): longint;

function High(X)

function Low(X)

function pred(x)

function succ(X)

procedure inc(var X [; N: longint]);
procedure dec(var X [; N:longint]);
procedure include(var s: set of T; I: T);
procedure exclude(var S : setof T; I: T);
procedure assert(expr : Boolean);
function addr(X): pointer;

function typelnfo(typeldent): pointer;

Changes node type to be type compatible
Generates 2-3 instruction sequence inline
Generates 2-3 instruction sequence inline
Changes node type to be type compatible
Generate 2-3 instruction sequence
Generates 1 instruction sequence (appx.)
Calls FPC_RESET _TYPED

Calls FPC_REWRITE_TYPED

Calls SetTextBuf of runtime library

Calls FPC_WRITE_XXXX routines

Calls FPC_WRITE_XXXX routines

Calls FPC_READ_XXXX routines

Calls FPC_READ_XXXX routines
Generates a TREE NODES of type addn
Generates 1-2 instruction sequence inline

Generates 2-3 instruction sequence inline
Generates 2-3 instruction sequence inline

Generates a TREE NODE of type ordconst
Generates a TREE NODE of type ordconst
Generates 2-3 instruction sequence inline
Generates 2-3 instruction sequence inline
Generate 2-3 instruction sequence inline
Generate 2-3 instruction sequence inline

Calls routine FPC_ASSERT if the assert fai
Generates a TREE NODE of type addrn
Generates 1 instruction sequence inline

5 O

Is.

116

13 APPENDIX A

12.4 temporary memory allocation reuse

When routines are very complex , they may require temporary allocated space on the stack to
store intermediate results. The temporary memory space can be reused for several different
operations if other space is required on the stack.

13 Appendix A

This appendix describes the temporary defines when compiling software under the compiler:

The following defines are defined in FreePascal for v1.0.x, but they will be removed in future
versions, they are used for debugging purposes only:

e INT64

e HASRESOURCESTRINGS
e NEWVMTOFFSET
e HASINTERNMATH
e SYSTEMVARREC
o INCLUDEOK

e NEWMM

e HASWIDECHAR

o INT64AFUNCRESOK
e CORRECTFLDCW
o ENHANCEDRAISE
o PACKENUMFIXED

NOTE: Currently, the only possible stack alignment are either 2 or 4 if the target operating
system pushes parameters on the stack directly in assembler (because for example if pushing

a long value on the stack while the required stack alignment is 8 will give out wrong access to
data in the actual routine — the offset will be wrong).

117

	Introduction
	Scanner / Tokenizer
	Architecture
	Input stream
	Preprocessor
	Conditional compilation (scandir.inc, scanner.pas)
	Compiler switches (scandir.inc, switches.pas)

	Scanner interface
	Routines
	ReadToken

	Variables
	Token
	Pattern

	Assembler parser interface
	routines
	AsmGetChar

	The tree
	Architecture
	Tree types
	Tree structure fields (tree.pas)
	Additional fields
	AddN
	CallParaN
	AssignN
	LoadN
	CallN
	addrn
	OrdConstN
	RealConstN
	FixConstN
	FuncRetN
	SubscriptN
	RaiseN
	VecN
	StringConstN
	TypeConvN
	TypeN
	InlineN
	ProcInlineN
	SetConstN
	LoopN
	AsmN
	CaseN
	LabelN, GotoN
	WithN
	OnN
	ArrayConstructorN

	Symbol tables
	Architecture
	The Symbol table object
	Inserting symbols into a symbol table
	Symbol table interface
	Routines
	Search_a_Symtable
	GetSym
	GlobalDef

	Variables
	SrSym
	SrSymTable

	Symbol entries
	Architecture
	Symbol entry types
	Base symbol type (TSym)
	label symbol (TLabelSym)
	unit symbol (TUnitSym)
	macro symbol (TMacroSym)
	error symbol (TErrorSym)
	procedure symbol (TProcSym)
	type symbol (TTypeSym)
	variable symbol (TVarSym)
	property symbol (TPropertySym)
	return value of function symbol
	absolute declared symbol (TAbsoluteSym)
	typed constant symbol
	constant symbol (TConstSym)
	enumeration symbol
	program symbol
	sys symbol

	Symbol interface

	Type information
	Architecture
	Definition types
	base definition (TDef)
	file definition (TFileDef)
	formal definition (TFormalDef)
	forward definition (TForwardDef)
	error definition (TErrorDef)
	pointer definition (TPointerDef)
	object definition (TObjectDef)
	class reference definition (TClassRefDef)
	array definition (TArrayDef)
	record definition (TRecordDef)
	ordinal definition (TOrdDef)
	float definition (TFloatDef)
	abstract procedure definition (tabstractprocdef)
	procedural variable definition (TProcVarDef)
	procedure definition (TProcDef)
	string definition (TStringDef)
	enumeration definition (TEnumDef)
	set definition (TSetDef)

	Definition interface
	routines
	TDef.Size
	TDef.Alignment

	The parser
	Module information
	Parse types
	Entry
	program or library parsing
	unit parsing
	routine parsing
	label declarations
	constant declarations
	type declarations
	variable declarations
	thread variable declarations
	resource string declarations
	exports declaration
	expression parsing
	typed constant declarations

	Parser interface
	variables
	AktProcSym
	LexLevel
	Current_Module
	VoidDef
	cCharDef
	cWideCharDef
	BoolDef
	u8BitDef
	u16BitDef
	u32BitDef
	s32BitDef
	cu64BitDef
	cs64BitDef
	s64FloatDef
	s32FloatDef
	s80FloatDef
	s32FixedDef
	cShortStringDef
	cLongStringDef
	cAnsiStringDef
	cWideStringDef
	OpenShortStringDef
	OpenCharArrayDef
	VoidPointerDef
	CharPointerDef
	VoidFarPointerDef
	cFormalDef
	cfFileDef

	The inline assembler parser
	The code generator
	Introduction
	Locations (cpubase.pas)
	LOC_INVALID
	LOC_FPU
	Stack based FPU
	Register based FPU

	LOC_REGISTER
	LOC_MEM, LOC_REFERENCE
	LOC_JUMP
	LOC_FLAGS
	LOC_CREGISTER
	LOCATION PUBLIC INTERFACE
	Del_Location
	Clear_Location
	Set_Location
	Swap_Location

	Registers (cpubase.pas)
	integer registers
	address registers
	fpu registers
	scratch registers

	Special registers (cpubase.pas)
	Stack_Pointer
	Frame_Pointer
	Self_Pointer
	accumulator
	scratch register

	Instructions
	Reference subsystem
	Architecture
	Code generator interface
	DisposeReference
	NewReference
	Del_Reference
	New_Reference
	Reset_Reference

	The register allocator subsystem
	Architecture
	Code generator interface (tgen.pas)
	GetRegister32
	GetRegisterPair
	UngetRegister32
	GetFloatRegister
	IsFloatsRegister
	GetAdressReg
	IsAddressRegister
	UngetRegister
	SaveUsedRegisters
	RestoreUsedRegisters
	GetExplicitRegister32

	Temporary memory allocator subsystem
	Architecture
	Temporary memory allocator interface (temp_gen.pas)
	GetTempOfSize
	GetTempOfSizeReference
	UnGetIfTemp
	GetTempAnsiStringReference
	GetTempOfSizePersistant
	UngetPersistantTemp
	ResetTempGen
	SetFirstTemp
	GetFirstTempSize
	NormalTempToPersistant
	PersistantTempToNormal
	IsTemp

	Assembler generation
	Architecture
	Generic instruction generation interface
	Emit_Load_Loc_Reg
	FloatLoad
	FloatStore
	emit_mov_ref_reg64
	Emit_Lea_Loc_Ref
	Emit_Lea_Loc_Reg
	GetLabel
	EmitLab
	EmitLabeled
	EmitCall
	ConcatCopy
	Emit_Flag2Reg

	The assembler output
	The Runtime library
	Operating system hooks
	System_Exit
	ParamCount
	Randomize
	GetHeapStart
	GetHeapSize
	sbrk
	Do_Close
	Do_Erase
	Do_Truncate
	Do_Rename
	Do_Write
	Do_Read
	Do_FilePos
	Do_Seek
	Do_Seekend
	Do_FileSize
	Do_IsDevice
	Do_Open
	ChDir
	MkDir
	RmDir

	CPU specific hooks
	FPC_SETJMP
	SetJmp

	FPC_LONGJMP
	function SPtr()
	function Get_Caller_Frame(framebp:longint):longint;
	function Get_Caller_Addr(framebp:longint):longint;
	function Get_Frame:longint;
	function Trunc()

	String related
	FPC_SHORTSTR_COPY
	Int_StrCopy

	FPC_SHORTSTR_COMPARE
	Int_StrCmp

	FPC_SHORTSTR_CONCAT
	Int_StrConcat

	FPC_ANSISTR_CONCAT
	AnsiStr_Concat

	FPC_ANSISTR_COMPARE
	AnsiStr_Compare

	FPC_ANSISTR_INCR_REF
	AnsiStr_Incr_Ref

	FPC_ANSISTR_DECR_REF
	AnsiStr_Decr_Ref

	FPC_ANSISTR_ASSIGN
	AnsiStr_Assign

	FPC_PCHAR_TO_SHORTSTR
	StrPas

	FPC_SHORTSTR_TO_ANSISTR
	FPC_ShortStr_To_AnsiStr

	FPC_STR_TO_CHARARRAY
	Str_To_CharArray

	FPC_CHARARRAY_TO_SHORTSTR
	StrCharArray

	FPC_CHARARRAY_TO_ANSISTR
	Fpc_Chararray_To_AnsiStr

	FPC_CHAR_TO_ANSISTR
	Fpc_Char_To_AnsiStr

	FPC_PCHAR_TO_ANSISTR
	Fpc_pChar_To_AnsiStr

	Compiler runtime checking
	FPC_STACKCHECK
	Int_StackCheck

	FPC_RANGEERROR
	Int_RangeError

	FPC_BOUNDCHECK
	Int_BoundCheck

	FPC_OVERFLOW
	Int_OverFlow

	FPC_CHECK_OBJECT
	Int_Check_Object

	FPC_CHECK_OBJECT_EXT
	Int_Check_Object_Ext

	FPC_IO_CHECK
	Int_IOCheck

	FPC_HANDLEERROR
	HandleError

	FPC_ASSERT
	Int_Assert

	Exception handling
	FPC_RAISEEXCEPTION
	RaiseExcept

	FPC_PUSHEXCEPTADDR
	PushExceptAddr

	FPC_RERAISE
	ReRaise

	FPC_POPOBJECTSTACK
	PopObjectStack

	FPC_POPSECONDOBJECTSTACK
	PopSecondObjectStack

	FPC_DESTROYEXCEPTION
	DestroyException

	FPC_POPADDRSTACK
	PopAddrStack

	FPC_CATCHES
	Catches

	FPC_GETRESOURCESTRING
	GetResourceString

	Runtime type information
	FPC_DO_IS
	Int_Do_Is

	FPC_DO_AS
	Int_Do_As

	FPC_INITIALIZE
	Initialize

	FPC_FINALIZE
	Finalize

	FPC_ADDREF
	AddRef

	FPC_DECREF
	DecRef

	Memory related
	FPC_GETMEM
	GetMem

	FPC_FREEMEM
	FreeMem

	FPC_CHECKPOINTER
	CheckPointer

	FPC_DO_EXIT
	Do_Exit

	FPC_ABSTRACTERROR
	AbstractError

	FPC_INITIALIZEUNITS
	InitializeUnits

	FPC_NEW_CLASS (assembler)
	int_new_class

	FPC_HELP_DESTRUCTOR
	Int_Help_Destructor

	FPC_HELP_CONSTRUCTOR
	Int_Help_Constructor

	FPC_HELP_FAIL_CLASS
	Help_Fail_Class

	FPC_HELP_FAIL
	Help_Fail

	Set handling
	FPC_SET_COMP_SETS
	Do_Comp_Sets

	FPC_SET_CONTAINS_SET
	Do_Contains_Sets

	FPC_SET_CREATE_ELEMENT
	Do_Create_Element

	FPC_SET_SET_RANGE
	Do_Set_Range

	FPC_SET_SET_BYTE
	Do_Set_Byte

	FPC_SET_SUB_SETS
	Do_Sub_Sets

	FPC_SET_MUL_SETS
	Do_Mul_Sets

	FPC_SET_SYMDIF_SETS
	Do_Symdif_Sets

	FPC_SET_ADD_SETS
	Do_Add_Sets

	FPC_SET_LOAD_SMALL
	Do_Load_Small

	FPC_SET_UNSET_BYTE
	Do_Unset_Byte

	FPC_SET_IN_BYTE
	Do_In_Byte

	Optional internal routines
	FPC_MUL_INT64
	MulInt64

	FPC_DIV_INT64
	DivInt64

	FPC_MOD_INT64
	ModInt64

	FPC_SHL_INT64
	ShlInt64

	FPC_SHR_INT64
	ShrInt64

	FPC_MUL_LONGINT
	MulLong

	FPC_REM_LONGINT
	RemLong

	FPC_DIV_LONGINT
	DivLong

	FPC_MUL_LONGINT
	MulCardinal

	FPC_REM_CARDINAL
	RemCardinal

	FPC_DIV_CARDINAL
	DivCardinal

	FPC_LONG_TO_SINGLE
	LongSingle

	Optimizing your code
	Simple types
	constant duplicate merging
	inline routines
	temporary memory allocation reuse

	Appendix A

