
FPDoc
Free Pascal code documenter: Reference manual

Reference manual for FPDoc
Document version 3.2.2

May 14, 2021

Michaël Van Canneyt

Contents

1 Introduction 5
1.1 About this document . 5

1.2 About FPDOC . 5

1.3 Getting more information. 6

2 Compiling and Installing FPDOC 7
2.1 Compiling . 7

2.2 Installation . 7

3 FPDOC usage 9
3.1 fpdoc . 9

3.2 FPDOC command-line options reference . 10

3.2.1 auto-index . 10

3.2.2 auto-toc . 10

3.2.3 charset . 10

3.2.4 chm-title . 11

3.2.5 content . 11

3.2.6 css-file . 11

3.2.7 default-page . 11

3.2.8 descr . 11

3.2.9 emit-notes . 12

3.2.10 footer . 12

3.2.11 footer-date . 12

3.2.12 format . 12

3.2.13 help . 12

3.2.14 hide-protected . 13

3.2.15 html-search . 13

3.2.16 image-dir . 13

3.2.17 image-url . 13

3.2.18 import . 13

3.2.19 index-colcount . 14

1

CONTENTS

3.2.20 index-file . 14

3.2.21 input . 14

3.2.22 lang . 14

3.2.23 latex-highlight . 15

3.2.24 make-searchable . 15

3.2.25 other-files . 15

3.2.26 output . 15

3.2.27 package . 16

3.2.28 project . 16

3.2.29 show-private . 16

3.2.30 toc-file . 16

3.2.31 warn-no-node . 16

3.2.32 write-project . 16

3.3 makeskel . 16

3.3.1 introduction . 16

3.4 Makeskel option reference . 17

3.4.1 descr . 17

3.4.2 disable-arguments . 17

3.4.3 disable-errors . 17

3.4.4 disable-function-results . 17

3.4.5 disable-override . 18

3.4.6 disable-private . 18

3.4.7 disable-protected . 18

3.4.8 disable-seealso . 18

3.4.9 emitclassseparator . 18

3.4.10 help . 18

3.4.11 input . 18

3.4.12 lang . 18

3.4.13 output . 19

3.4.14 package . 19

3.4.15 update . 19

4 The project file 20
4.1 Introduction . 20

4.2 Project file structure . 21

4.2.1 The options node . 21

4.2.2 The option node . 21

4.2.3 The packages node . 21

4.2.4 The package node . 21

4.2.5 The units node . 22

2

CONTENTS

4.2.6 The unit node . 22

4.2.7 The descriptions node . 22

4.2.8 The description node . 22

4.2.9 The imports node . 23

4.2.10 The import node . 23

5 The description file 24
5.1 Introduction . 24

5.2 Element names and cross-referencing . 27

5.2.1 Element name conventions . 27

5.2.2 Cross referencing: the link tag . 27

5.3 Tag reference . 28

5.3.1 Overview . 28

5.3.2 b : format bold . 29

5.3.3 br : Linebreak . 30

5.3.4 caption : Specify table caption . 30

5.3.5 code : format as pascal code . 30

5.3.6 descr : Descriptions . 31

5.3.7 dd : definition data. 31

5.3.8 dl : definition list. 31

5.3.9 dt : definition term. 32

5.3.10 element : Identifier documentation . 32

5.3.11 errors : Error section. 33

5.3.12 example : Include an example source file. 33

5.3.13 file : Format filename . 33

5.3.14 fpdoc-description : Global tag . 33

5.3.15 i : Format italics . 33

5.3.16 img : include image . 34

5.3.17 li : list element . 34

5.3.18 link : Cross-reference . 34

5.3.19 module : Unit reference . 35

5.3.20 notes : Documentation notes (annotations). 35

5.3.21 note : Notes/Annotation entry. 36

5.3.22 ol : Numbered list. 36

5.3.23 p : Paragraph . 37

5.3.24 package : Package reference . 37

5.3.25 pre : Insert text as-is . 37

5.3.26 printshort : insert short description . 38

5.3.27 remark : format as remark . 38

5.3.28 seealso : Cross-reference section . 39

3

CONTENTS

5.3.29 short : Short description . 39

5.3.30 table : Table start . 39

5.3.31 td : Table cell . 40

5.3.32 th : Table header . 40

5.3.33 topic : Topic section . 41

5.3.34 tr : table row . 41

5.3.35 u : Format underlined . 41

5.3.36 ul : bulleted list . 41

5.3.37 url : Hyperlink . 42

5.3.38 var : variable . 42

5.3.39 version : version info . 43

6 Generated output files. 44
6.1 HTML output . 44

6.2 Latex output . 45

6.3 CHM output . 45

6.4 TXT output . 45

6.5 RTF output . 46

6.6 Man output . 46

4

Chapter 1

Introduction

1.1 About this document

This is the reference manual for FPDOC, a free documentation tool for Pascal units. It describes the
usage of FPDOC and how to write documentation with it.

It attempts to be complete, but the tool is under continuous development, and so there may be some
slight differences between the documentation and the actual program. In case of discrepancy, the
sources of the tool are the final reference. A README or CHANGES file may be provided, and can
also give some hints as to things which have changed. In case of doubt, these files or the sources are
authoritative.

1.2 About FPDOC

FPDOC is a tool that combines a Pascal unit file and a description file in XML format and produces
reference documentation for the unit. The reference documentation contains documentation for all
of the identifiers found in the unit’s interface section. The documentation is fully cross-referenced,
making it easy to navigate. It is also possible to refer to other documentation sets written with
FPDOC, making it possible to maintain larger documentation sets for large projects.

Contrary to some other documentation techniques, FPDOC does not require the presence of formatted
comments in the source code. It takes a source file and a documentation file (in XML format) and
merges these two together to a full documentation of the source. This means that the code doesn’t
get obfuscated with large pieces of comment, making it hard to read and understand.

FPDOC is package-oriented, which means that it considers units as part of a package. Documentation
for all units in a package can be generated in one run.

At the moment of writing, the documentation can be generated in the following formats:

HTML Plain HTML. Javascript is used to be able to show a small window with class properties or
class methods, but the generated HTML will work without JavaScript as well. Style sheets are
used to do the markup, so the output can be customised.

XHTML As HTML, but using a more strict syntax.

LaTeX LaTeX files, which can be used with the fpc.sty file which comes with the Free Pascal doc-
umentation. From this output, PDF documents can be generated, and with the use of latex2rtf,
RTF or Winhelp files. Text files can also be generated.

5

CHAPTER 1. INTRODUCTION

Text plain ascii text files. No cross-referencing exists. Other than that it resembles the LaTeX output
in it’s structure.

Man Unix man pages. Each function/procedure/method identifier is a man page. Constants are on a
separate page, as are types, variables and resourcestrings.

CHM HTML files compressed into a .chm file using lzx compression.

RTF Linear RTF files.

Note that pascal program files cannot be parsed by fpdoc, it is therefor impossible to create docu-
mentation for a program. Only units are supported.

1.3 Getting more information.

If the documentation doesn’t give an answer to your questions, you can obtain more information on
the Internet, on the Free Pascal Website:

http://www.freepascal.org/

It contains links to download all FPDOC related material.

Finally, if you think something should be added to this manual (entirely possible), please do not
hesitate and contact me at michael@freepascal.org.

6

http://www.freepascal.org
mailto:michael@freepascal.org

Chapter 2

Compiling and Installing FPDOC

2.1 Compiling

In order to compile FPDOC, the following things are needed:

1. The fpdoc sources. These can be downloaded from the FPDOC website.

2. The Free Pascal compiler sources. FPDOC uses the scanner from the Free Pascal compiler to
scan the source file.

3. The FCL units (or their sources) should be installed.

4. fpcmake is needed to create the makefile for fpdoc. It comes with Free Pascal, so if Free Pascal
is installed, there should be no problem.

5. To make new internationalisation support files, rstconv must be installed, and the GNU gettext
package.

Links to download all these programs can be found on the FPDOC website.

When the fpdoc sources have been unzipped, the Makefile must be generated. Before generating the
makefile, the location of the compiler source directory should be indicated. In the Makefile.fpc file,
which has a windows ini file format, locate the fpcdir entry in the defaults section:

fpcdir=../..

and change it so it points to the top-level Free Pascal source directory.

After that, running fpcmake will produce the Makefile, and running make should produce 2 exe-
cutables: fpdoc and makeskel.

2.2 Installation

When installing from sources, a simple

make install
cd intl
make install

7

CHAPTER 2. COMPILING AND INSTALLING FPDOC

should completely install the documentation tool.

When installing from a archive with the binaries, it should be sufficient to copy the binaries to a
directory in the PATH.

To have fpdoc available in several languages, the language files should be installed in the following
directory on Unix systems:

/usr/local/share/locale/XX/LC_MESSAGES/

or

/usr/share/locale/XX/LC_MESSAGES/

Depending on the setup. Here XX should be replaced by the locale identifier.

8

Chapter 3

FPDOC usage

3.1 fpdoc

Using FPDOC is quite simple. It takes some command-line options, and based on these options, cre-
ates documentation. The command-line options can be given as long or short options, as is common
for most GNU programs.

In principle, only 2 command-line options are needed:

package This specifies the name of the package for which documentation must be created. Exactly
one package option can be specified.

input The name of a unit file for which documentation should be generated. This can be a simple
filename, but can also contain some syntax options as they could be given to the Free Pascal
scanner. More than one input option can be given, and documentation will be generated for
all specified input files.

Some examples:

fpdoc --package=fcl --input=crt.pp

This will scan the crt.pp file and generate documentation for it in a directory called fcl.

fpdoc --package=fcl --input='-I../inc -S2 -DDebug classes.pp'

This will scan the file classes.pp, with the DEBUG symbol defined, the scanner will look for include
files in the ../inc directory, and OBJFPC-mode syntax will be accepted.

(for more information about these options, see the Free Pascal compiler user’s guide)

With the above commands, a set of documentation files will be generated in HTML format (this is the
standard). There will be no description of any of the identifiers found in the unit’s interface section,
but all identifiers declarations will be present in the documentation.

The actual documentation (i.e. the description of each of the identifiers) resides in a description file,
which can be specified with the descr option:

fpdoc --package=fcl --descr=crt.xml --input=crt.pp

This will scan the crt.pp file and generate documentation for it, using the descriptions found in the
filecrt.xml file. The documentation will be written in a directory called fcl.

9

CHAPTER 3. FPDOC USAGE

fpdoc --package=fcl --descr=classes.xml \
--input='-I../inc -S2 -DDebug classes.pp'

All options should be given on one line. This will scan the file classes.pp, with the DEBUG symbol
defined, the scanner will look for include files in the ../inc directory, and OBJFPC-mode syntax will
be accepted.

More than one input file or description file can be given:

fpdoc --package=fcl --descr=classes.xml --descr=process.xml \
--input='-I../inc -S2 -DDebug classes.pp' \
--input='-I../inc -S2 -DDebug process.pp'

Here, documentation will be generated for 2 units: classes and process

The format of the description file is discussed in the next chapter.

Other formats can be generated, such as latex:

fpdoc --format=latex --package=fcl \
--descr=classes.xml --descr=process.xml\
--input='-I../inc -S2 -DDebug classes.pp' \
--input='-I../inc -S2 -DDebug process.pp'

This will generate a LaTeX file called fcl.tex, which contains the documentation of the units classes
and process. The latex file contains no document preamble, it starts with a chapter command. It
is meant to be included (using the LaTeX include command) in a latex document with a preamble.

The output of FPDOC can be further customised by several command-line options, which will be
explained in the next section.

3.2 FPDOC command-line options reference

In this section all FPDOC command-line options are explained.

3.2.1 auto-index
This option generates an index of all the types including objects, classes, their methods and enums,
sorted alphabetically. Methods of classes and objects will appear as subitems of their class. If used
in combination with –index-file this option will be used instead. This option only applies to the chm
backend.

3.2.2 auto-toc
This option generates a Table of Contents that displays all classes, objects and routines in several
ways. If used in combination with –toc-file this option will be used instead. This option only applies
to the chm backend.

3.2.3 charset
This option can be used to specify the character set to be used for the HTML backend. It is simply
inserted in the HTML tree. The default character set is iso-8859-1

For example

10

CHAPTER 3. FPDOC USAGE

--charset=UTF8

will result in an UTF8 specification of the content attribute of the meta tag in the generated HTML
file:

<meta content="text/html; charset=UTF8" http-equiv="Content-Type">

3.2.4 chm-title
This option is to specify a nicer title than the default title which is the same value as –package=value.

3.2.5 content
This option tells FPDOC to generate a content file. A content file contains a list of all the possible
anchors (labels) in the generated documentation file, and can be used to create cross-links in doc-
umentation for units in other packages, using the counterpart of the content option, the import
option (section 3.2.18, page 13).

3.2.6 css-file
This option only applies to the chm backend. Use this option to set the css file used to style the html
when the html is rendered by a viewer.

3.2.7 default-page
This option only applies to the chm backend. The default page to load when the chm is opened by a
viewer. Using this option does not include a file but instead specifies a file you have included using
–other-files. You only need to use this option if you have used the –other-files option and included a
page you wish to use instead of the default page.

3.2.8 descr
This option specifies the name of a description file that contains the actual documentation for the
unit. This option can be given several times, for several description files. The file will be searched
relative to the current directory. No extension is added to the file, it should be a complete filename.

If the filename starts with an ’at’ sign @, then it is interpreted as a text file which contains a list of
filenames, one per line. Each of these files will be added to the list of description files.

The nodes in the description files will be merged into one big tree. This means that the documentation
can be divided over multiple files. When merging the description files, nodes that occur twice will
end up only once in the big node tree: the last node will always be the node that ends up in the parse
tree. This means that the order of the various input commands or the ordering of the files in the file
list is important.

Examples:

--descr=crt.xml

will tell FPDOC to read documentation from crt.xml, while

--descr=@fcl.lst

will tell FPDOC to read filenames from fcl.lst; each of the filenames found in it will be added to the
list of files to be scanned for descriptions.

11

CHAPTER 3. FPDOC USAGE

3.2.9 emit-notes
This option tells the documentation engine to include notes in the text. By default, notes are not
included in the text as they serve as working notes for the documenter.

3.2.10 footer
This option tells the HTML engine to include the file indicated by this option as the footer of each
generated HTML page. The file is assumed to contain a valid XHTML fragment. The contents of
the file will be inserted in the HTML tree.

Example:

--footer=footer.xml

Where footer.xml contains for example:

<hr/>
<i>Date generated : June 1, 2008</i>

This option is mutually exclusive with the footer-date option.

3.2.11 footer-date
This option tells the HTML engine to generate a footer for each page containing the current date.
The optional format argument can be used to specify the format of the date. The format must be a
formatting string as understood by the FormatDateTime function in the sysutils unit.

For example

--footer-date='mmm dd yyyy'

This option is mutually exclusive with the footer option.

3.2.12 format
Specifies the output format in which the documentation will be generated. Currently, the following
formats are known:

htm Plain HTML with 8.3 conforming filenames.

html HTML with long filenames.

xhtml XHTML with long filenames.

latex LaTex, which uses the fpc.sty style used by the Free Pascal documentation.

xml-struct Structured XML.

chm Compressed HTML.

3.2.13 help
Gives a short copyright notice.

12

CHAPTER 3. FPDOC USAGE

3.2.14 hide-protected
By default, the documentation will include descriptions and listings of protected fields and methods
in classes or objects. This option changes this behaviour; if it is specified, no documentation will
be generated for these methods. Note that public methods or properties that refer to these protected
methods will then have a dangling (i.e. unavailable) link.

3.2.15 html-search
This option can be used when generating HTML documentation, to specify an url that can be used
to search in the generated documentation. The URL will be included in the header of each generated
page with a Search caption. The option is ignored for non-html output formats.

FPDOC does not generate a search page, this should be made by some external tool. Only the url to
such a page can be specified.

Example:

--html-search=../search.html

3.2.16 image-dir
This option tells the backend where the images are located. By default, a directory images is as-
sumed. A path using forward slashes must be provided.

Example:

--image-dir=pictures/

3.2.17 image-url
This option tells the HTML backend where the images are located: the argument must be an absolute
URL. By default, the images are assumed to be in a images directory below the package directory.
Note that the URL must be absolute, i.e. if it is provided, the link to the image will be composed
from the argument of this option with the filename.

Example:

--image-url=http://www.mysite.org/docs/pictures/

3.2.18 import
Import a table of contents file, generated by FPDOC for another package with the content option
(section 3.2.5, page 11). This option can be used to refer to documentation nodes in documentation
sets for other packages. The argument consists of two parts: a filename, and a link prefix.

The filename is the name of the file that will be imported. The link prefix is a prefix that will be made
to each HTML link; this needs to be done to be able to place the files in different directories.

Example:

--import=../fcl.cnt,../fcl

This will read the file fcl.cnt in the parent directory. For HTML documentation, all links to items in
the fcl.cnt file, the link will be prepended with ../fcl.

13

CHAPTER 3. FPDOC USAGE

This allows a setup where all packages have their own subdirectory of a common documentation
directory, and all content files reside in the main documentation directory, as e.g. in the following
directory tree:

/docs/fcl
/fpdoc
/fpgui
/fpgfx
/fpimg

The file fcl.cnt would reside in the docs directory. Similarly, for each package a contents file xxx.cnt
could be places in that directory. Inside the subdirectory, commands as the above could be used to
provide links to other documentation packages.

Example:

--import=../fcl.cnt,ms-its:fcl.chm::/

As in the previous example this will read the file fcl.cnt in the parent directory. But all links to items
in the fcl.cnt file, will be prepended with ms-its:fcl.chm::/. This is how chm’s are crosslinked.

Note that for Latex documentation, this option is ignored.

3.2.19 index-colcount
For the HTML backend, this option can be used to specify the number of columns that should be
used when generating an identifier index page. By default, 3 columns are used.

Example:

--index-colcount=4

Will use 4 columns instead.

3.2.20 index-file
Use this option to specify a local file to include and use as the index. This file is in the sitemap
format. You can use the unit chmsitemap in your programs to read and write this type of file. Usually
this file ends with .hhk. This option only applies to the chm backend.

3.2.21 input
This option tells FPDOC what input file should be used. The argument can be just a filename, but
can also be a complete compiler command-line with options that concern the scanning of the Pascal
source: defines, include files, syntax options, as they would be specified to the Free Pascal compiler
when compiling the file. If a complete command is used, then it should be enclosed in single or
double quotes, so the shell will not break them in parts.

It is possible to specify multiple input commands; they will be treated one by one, and documentation
will be generated for each of the processed files.

3.2.22 lang
Select the language for the generated documentation. This will change all header names to the equiv-
alent in the specified language. The documentation itself will not be translated, only the captions and
headers used in the text.

14

CHAPTER 3. FPDOC USAGE

Currently, valid choices are

de German.

fr French.

nl Dutch.

Example:

--lang=de

Will select German language for headers.

The language files should be installed correctly for this option to work. See the section on installing
to check whether the languages are installed correctly.

3.2.23 latex-highlight
Switches on an internal latex syntax highlighter. This is not yet implemented. By default, syntax
highlighting is provided by the syntax package that comes with Free Pascal.

3.2.24 make-searchable
This option generates an index of all the *.htm* files added in the chm, including files added with the
–other-files option so that a full text search is possible. This option only applies to the chm backend.

3.2.25 other-files
This option specifies a text file with one filename per line to be included in the chm. You can include
any type of file you want; it does not have to be a html file. For instance you can include images that
you have linked to in the xml descr files. The files should be in a subfolder of the working directory
and within their own folder to avoid naming conflicts with the auto generated files. This option only
applies to the chm backend.

3.2.26 output
This option tells FPDOC where the output file should be generated. How this option is interpreted
depends on the format that is used. For latex, this is interpreted as the filename for the tex file.
For chm, this is interpreted as the output filename. For all other formats, this is interpreted as the
directory where all documentation files will be written. The directory will be created if it does not
yet exist.

The filename or directory name is interpreted as relative to the current directory.

Example:

--format=html --output=docs/classes

will generate HTML documentation in the directory docs/classes.

--format=latex --output=docs/classes.tex

will generate latex documentation in the file docs/classes.

--format=chm --output=docs.chm

will generate chm documentation in the file docs.chm.

15

CHAPTER 3. FPDOC USAGE

3.2.27 package
This option specifies the name of the package to be used. The package name will also be used as a
default for the output option (section 3.2.26, page 15).

Note that if a project file is specified with multiple packages, this option will be used to select the
package for which to produce documentation.

3.2.28 project
FPDOC can work with a project file. This is an XML file which can contain specifies global op-
tions, and which contains the definition for one or more packages, for which it lists input files and
description files etc. The project file is described in more detail in chapter 4, page 20.

This option expects an argument, the name of the project file to use.

Example:

fpdoc --project=rtl-project.xml --format=html --package=rtl

3.2.29 show-private
By default, no documentation is generated for private methods or fields of classes or objects. This
option causes FPDOC to generate documentation for these methods and fields as well.

3.2.30 toc-file
Use this option to specify a local file to include as Table of Contents. The table of contents is in the
sitemap format and usually ends in .hhc. You can use the unit chmsitemap in your programs to read
and write files of this type. This option only applies to the chm backend of FPDOC.

3.2.31 warn-no-node
If this option is given, then fpdoc will emit a warning if it cannot find a documentation node for some
identifier. This can be used to see whether the description files are up-to-date, or whether they must
be updated.

3.2.32 write-project
FPDOC can create a project file based on all options given on the command line. For more informa-
tion about the project file, chapter 4, page 20.

This option expects an argument, the name of the project file to write.

Example:

fpdoc --write-project=rtl-project.xml --format=html --package=rtl
--input=file.pp --descr=file.xml

3.3 makeskel

3.3.1 introduction
The makeskel tool can be used to generate an empty description file for a unit. The description file
will contain an element node for each identifier in the interface section of the Pascal unit.

16

CHAPTER 3. FPDOC USAGE

It’s usage is quite straightforward: the name of an input file (one or more) must be specified (as for
FPDOC), an output file, and the name of a package:

makeskel --package=rtl --input=crt.pp --output=crt.xml

This will read the file crt.pp and will create a file crt.xml which contains empty nodes for all identi-
fiers found in crt.pp, all in a package named rtl.

The input option can be given more than once, as for the fpdoc command:

makeskel --input='-Sn system.pp' --input=crt.pp --output=rtl.xml

As can be seen, the input option can contain some compiler options, as is the case for FPDOC.
The above command will process the files system.pp and crt.pp, and will create element tags for
the identifiers in both units in the file rtl.xml.

The output of makeskel is a valid, empty description file. It will contain a module tag for each unit
specified, and each module will have element tags for each identifier in the unit.

Each element tag will by default contain short, descr, errors and seealso tags, but this can be
customised.

3.4 Makeskel option reference

The output of makeskel can be customised using several options, which are discussed below.

3.4.1 descr
When in update mode (section 3.4.15, page 19), this option can be used to add an existing documen-
tation file, as for fpdoc. Nodes that are already in one of the existing documentation files will not be
written to the output file.

3.4.2 disable-arguments
By default, for each function or procedure argument, a element tag will be generated. This option
disables this behaviour: no element tags will be generated for procedure and function arguments.

3.4.3 disable-errors
If this option is specified, no errors tag will be generated in the element nodes. By default all element
tags contain a errors node.

The errors tag is ignored when it is not needed; Normally, an errors tag is only needed for procedure
and function elements.

3.4.4 disable-function-results
If this option is specified, then no element tag will be generated for function results. By default,
makeskel will generate a result node for each function in the interface section. The result node is
used in the documentation to document the return value of the function under a separate heading in
the documentation page. Specifying this option suppresses the generation of the element tag for the
function result.

17

CHAPTER 3. FPDOC USAGE

3.4.5 disable-override
If this option is specified, then no element tags will be generated for methods that override a method
in a parent class. This means that the fpdoc engine will refer to the parent implementation for the
documentation of the inherited method (provided it can find a parent implementation).

3.4.6 disable-private
If this option is specified, then no element tags will be generated for private methods or fields of
classes or objects. The default behavior is to generate nodes for private methods or fields. It can be
used to generate a skeleton for end-user and developer documentation.

3.4.7 disable-protected
If this option is specified, then no element tags will be generated for protected and private methods
or fields of classes or objects. The default is to generate nodes for protected methods or fields. If this
option is given, the option -disable-private is implied. It can be used to generate end-user-
only documentation for classes.

3.4.8 disable-seealso
If this option is specified, no seealso tag will be generated in the element nodes. By default all
element tags contain a seealso tag.

3.4.9 emitclassseparator
When this option is specified, at the beginning of the elements for the documentation of a class, a
comment tag is emitted which contains a separator text. This can be useful to separate documentation
of different classes and make the description file more understandable.

3.4.10 help
Makeskel emits a short copyright notice and exits when this option is specified.

3.4.11 input
This option is identical in meaning and functionality as the input option for FPDOC. (section
3.2.21, page 14) It specifies the Pascal unit source file that will be scanned and for which a skeleton
description file will be generated. Multiple input options can be given, and element tags will be
written for all the files, in one big output file.

3.4.12 lang
This option is used to specify the language for messages emitted by makeskel. The supported
languages are identical to the ones for FPDOC:

de German.

fr French.

nl Dutch.

18

CHAPTER 3. FPDOC USAGE

3.4.13 output
This option specifies the name of the output file. A full filename must be given, no extension will be
added. If this option is omitted, the output will be sent to standard output.

When using update mode, the output file name should not appear in the list of existing documentation
files. The makeskel program will do some elementary checks on this.

3.4.14 package
This option specifies the package name that will be used when generating the skeleton. It is a manda-
tory option.

3.4.15 update
This option tells makeskel to create an update file: it will read description files (section 3.2.8, page
11) and will only create documentation nodes for identifiers which do not yet have a documentation
node in the read documentation files. The output file in this case can be merged with one (or more) of
the documentation files: it’s name should not appear in the list of existing documentation files. The
makeskel program will do some elementary checks on this.

19

Chapter 4

The project file

4.1 Introduction

When there are a lot of units to document, the command-line can be rather long. On some operating
systems, this is a problem, as the length of the command-line easily exceeds the maximum length of
command-line options supported by the OS. Also, command-lines are difficult to read and/or parse.
fpdoc has always supported reading options from a file, but this is not very structured and difficult to
handle in e.g. an IDE.

Therefor it is possible to write a project file. The project file is an XML file that describes an fpdoc
project. The XML file contains only a few tag names.

In general, it looks as follows:

<?xml version="1.0" encoding="utf-8"?>
<docproject>

<options>
<option name="ostarget" value="Linux"/>
<option name="cputarget" value="x86_64"/>
<option name="show-private" value="false"/>
<option name="stop-on-parser-error" value="false"/>

</options>
<packages>

<package name="rtl" output="rtl" content="rtl.xct">
<units>
<unit file="../rtl/objpas/objpas.pp"

options="-dHASINTF"/>
<unit file="../rtl/objpas/types.pp"

options=""/>
</units>
<descriptions>
<description file="rtl.xml"/>
<description file="system.xml"/>

</descriptions>
</package>

</packages>
</docproject>

20

CHAPTER 4. THE PROJECT FILE

4.2 Project file structure

The top node is always a docproject node. This node can contain only 2 nodes: a options node and
a packages node; All other nodes will be ignored.

4.2.1 The options node
The options tag that appears below the docproject node specifies the options for the FPDOC project.
It contains a series of option tags. No other nodes should appear under the options tag.

Example:

<options>
<option name="ostarget" value="Linux"/>
<option name="cputarget" value="x86_64"/>
<option name="hide-protected" value="true"/>

</options>

4.2.2 The option node
Each option tag under the options tag specifies an option.

Each option tag has 2 attributes: name and value. The name correspond to the command-line
options that fpdoc supports. This attribute is mandatory. The value attribute contains the value for
the node. It is also mandatory.

For command-line switches, only 2 values are accepted: true and false.

Both general options and format-specific options can be specified this way.

Example:

<option name="ostarget" value="Linux"/>
<option name="cputarget" value="x86_64"/>
<option name="hide-protected" value="true"/>
<option name="warn-no-node" value="false"/>

4.2.3 The packages node
The packages tag under the docproject tag contains a package tag for each package described by
the project file. As many packages as needed can be described by the project file. All other tags
under the packages tag are ignored.

Example:

<packages>
<package name="rtl" output="rtl" content="rtl.xct">

</packages>

4.2.4 The package node
Each package tag under the packages tag describes one package. It contains at most 2 tags: the
units tag and the descriptions tag.

The package tag has 3 attributes:

21

CHAPTER 4. THE PROJECT FILE

name This attribute specifies the name of the package. This attribute is mandatory.

output This attribute contains the default output name for the package. This attribute is optional.

content The content attribute specifies the name of the content file to write for this package. This
attribute is optional. No file will be written if it is omitted.

Example:

<package name="rtl" output="rtl" content="rtl.xct">

4.2.5 The units node
The units tag below the package tag describes the input files for the package. It consists of a series
of unit tags, one tag for each unit.

Example:

<units>
<unit file="../rtl/linux/system.pp" options="-dfpdocsystem"/>
<unit file="../rtl/objpas/objpas.pp" options="-dHASINTF"/>

</units>

4.2.6 The unit node
The unit tag describes one input file for the package. This tag corresponds to the -input
command-line option.

The tag has 2 attributes:

file The file tag contains the file name. This attribute is mandatory.

options The options attribute is optional, and specifies any options that must be passed on to the
parser when parsing the input file.

Example:

<unit file="cthreads.pp" options="-S2"/>

4.2.7 The descriptions node
The descriptions tag below the package tag contains one description tag for each description file
belonging to the package. No other tags should appear below the descriptions tag.

Example:

<descriptions>
<description file="rtl.xml"/>
<description file="system.xml"/>

</descriptions>

4.2.8 The description node
The description tag describes one description file used in the documentation for the package. It has
one attribute file, containing the filename of the documentation file. This attribute is mandatory. All
other attributes are ignored.

22

CHAPTER 4. THE PROJECT FILE

Example:

<description file="cthreads.xml"/>

4.2.9 The imports node
The imports tag below the package tag contains one import tag for each content file to import file
belonging to the package. No other tags should appear below the imports tag.

Example:

<imports>
<import file="rtl.xct"/>
<import file="fcl.xct"/>

</imports>

4.2.10 The import node
The import tag describes one import file used in the documentation for the package. It has one
attribute file, containing the filename of the documentation file. This attribute is mandatory. All other
attributes are ignored.

Example:

<import file="rtl.xct"/>

23

Chapter 5

The description file

5.1 Introduction

The description file is a XML document, which means that it is a kind of HTML or SGML like
format, however it is more structured than HTML, making it easier to parse - and makes it easier to
connect or merge it with a Pascal source file. Since the allowed syntax uses a lot of HTML tags, this
makes it easy to write code for those that are familiar with writing HTML.

More information about the XML format, SGML and HTML can be found on the website of the W3
(World Wide Web) consortium: http://www.w3.org/

The remaining of this chapter assumes a basic knowledge of tags, their attributes and markup lan-
guage, so these terms will not be explained here.

The minimal documentation file would look something like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<fpdoc-description>
<package name="fpc">
<module name="Classes">
</module>
</package>
</fpdoc-description>

The header xml tag is mandatory, and indicates that the file contains a documentation XML docu-
ment.

Inside the document, one or more top-level fpdoc-descriptions tags may appear. Each of these tags
can contain one or more package tags, which must have a name attribute. The name attribute will be
used by fpdoc to select the documentation nodes.

Inside a package tag, one or more module tags may appear. There should be one module tag per
unit that should be documented. The value of the name attribute of the module should be the name
of the unit for which the module tag contains the documentation. The value of the name attribute is
case insensitive, i.e.

<module name="CRT">

can be used for the documentation of the crt unit.

As it is above, the documentation description does not do much. To write real documentation, the
module tag must be filled with the documentation for each identifier that appears in the unit interface
header.

24

http://www.w3.org

CHAPTER 5. THE DESCRIPTION FILE

For each identifier in the unit interface header, the module should contain a tag that documents the
identifier: this is the element tag. The name attribute of the element tag links the documentation to
the identifier: the name attribute should have as value the fully qualified name of the identifier in the
unit.

For example, to document the type

Type
MyEnum = (meOne,meTwo,meThree);

an element tag called myenum should exist:

<element name="myenum">
</element>

But also for each of the three enumerated values an element tag should exist:

<element name="myenum.meOne">
</element>
<element name="myenum.meTwo">
</element>
<element name="myenum.meThree">
</element>

As it can be seen, the names of the identifiers follow a hierarchical structure. More about this in the
next section.

Now the tags for the types are present, all that should be done is to fill it with the actual description.
For this, several tags can be placed inside a element tag. The most important tag is the descr tag.
The contents of the descr tag will be used to describe a type, function, constant or variable:

<element name="myenum">
<descr>
The MyEnum type is a simple enumeration type which is not
really useful, except for demonstration purposes.
</descr>
</element>

A second important tag is the short tag. It should contain a short description of the identifier, prefer-
ably a description that fits on one line. The short tag will be used in various overviews, at the top of
a page in the HTML documentation (a synopsis) or will be used instead of the descr tag if that one
is not available. It can also be used in different other cases: For instance the different values of an
enumeration type will be laid out in a table, using the short description:

<element name="myenum.meOne">
<short>The first enumeration value</short>
</element>
<element name="myenum.meTwo">
<short>The second enumeration value</short>
</element>
<element name="myenum.meThree">
<short>The third enumeration value</short>
</element>

This will be converted to a table looking more or less like this:

25

CHAPTER 5. THE DESCRIPTION FILE

meOne The first enumeration value
meTwo The second enumeration value
meThree The third enumeration value

For functions and procedures, a list of possible error conditions can be documented inside a errors
tag. This tag is equivalent to the descr tag, but is placed under a different heading in the generated
documentation.

Finally, to cross-reference between related functions, types or classes, a seealso tag is also introduced.
This will be used to lay out a series of links to related information. This tag can only have sub-tags
which are link tags. For more about the link tag, see link (34).

If a certain identifier has appeared only in a certain version of a library, then this information can be
specified in a version tag, see version (43) for more information.

The following example illustrates the use:

<element name="myenum">
<descr>
The MyEnum type is a simple enumeration type which is not
really useful, except for demonstration purposes.
</descr>
<version>The myenum type appeared in version 2.1</version>
</element>

When documenting methods or properties, it is possible to let the fpdoc engine refer to the parent
method when it generates an overview of methods or properties. There are 2 ways of achieving this:

1. Do not include an element tag

2. Specify the link attribute, with the name of the parent method which contains the documenta-
tion, as in the following example:

<element name="TParent.SomeMethod">
</element

<element name="TChild.SomeMethod" link="TParent.SomeMethod"/>

this can be used to speed up the search for the parent implementation, or to skip several parent
classes.

To add a section or page of documentation that is not directly related to a single identifier in a unit,
a topic tag can be used. This tag can appear inside a package or module tag, and can contain a
short or descr tag. The contents of the short tag will be used for the title of the section or page. In
on-line formats, a short list of related topics will appear in the package or module page, with links
to the pages that contain the text of the topics. In a linear format, the topic sections will be inserted
before the description of all identifiers.

If the topic appears in a package tag, then it can be nested: 2 levels of topics may be used. This is not
so for topics inside a module: they can not be nested (the level of nesting in a linear documentation
format is limited).

The following is an example of a valid topic tag:

<module name="CRT">
<topic name="UsingKeyboard">
<short>Using the keyboard functions</short>
<descr>

26

CHAPTER 5. THE DESCRIPTION FILE

To use the keyboard functions of the CRT unit, one...
</descr>
</topic>

Topic nodes can be useful to add ’how to’ sections to a unit, or to provide general IDE help.

5.2 Element names and cross-referencing

5.2.1 Element name conventions
As mentioned in the previous section, the element tag’s name attribute is hierarchical. All levels
in the hierarchy are denoted by a dot (.) in the name attribute.

As shown in the previous example, for an enumerated type, the various enumeration constants can
be documented by specifying their name as enumname.constname. For example, given the type

Type
MyEnum = (meOne,meTwo,meThree);

The various enumeration values can be documented using the element names MyEnum.meOne,
MyEnum.meTwo and MyEnum.meThree:

<element name="myenum.meOne">
</element>
<element name="myenum.meTwo">
</element>
<element name="myenum.meThree">
</element>

Note that the casing of the name attribute need not be the same as the casing of the declaration.

This hierarchical structure can be used for all non-simple types:

• Enumeration type values.

• Fields in records, objects, classes. For nested record definitions, multiple levels are possible in
the name.

• Methods of classes and objects.

• Properties of classes.

• Function and procedure arguments.

• Function results. The name is always the function name followed by Result.

5.2.2 Cross referencing: the link tag
To refer to another point in the documentation (a related function, class or whatever), a link tag exists.
The link tag takes as a sole attribute a target id attribute. The link tag usually encloses a piece of
text. In the HTML version of the documentation, this piece of text will function as a hyperlink. In
the latex version, a page number reference will be printed.

The id attribute contains the name of an element to which the link refers. The name is not case
sensitive, but it must be a fully qualified name.

An example of the link type would be:

27

CHAPTER 5. THE DESCRIPTION FILE

The <link id="MyEnum">MyEnum</link> type is a simple type.

The link attribute also has a short form:

The <link id="MyEnum"/> type is a simple type.

In the short form, the value of the id attribute will be used as the text which will be hyperlinked. This
is especially useful in the seealso tag.

To refer to a type in another unit, the unit name must be prepended to the id attribute:

<link id="myunit.myenum"/>

will link to the myenum type in a unit named myunit.

To refer to a node in the documentation of another package, the package name should be prepended
to the id attribute, and it should be prepended with the hash symbol (#):

<link id="#fcl.classes.sofrombeginning"/>

will link to the constant sofrombeginning in the classes unit of the FCL reference documen-
tation. Note that for this to work correctly, the contents file which was created when generating the
documentation of the type must be imported correctly (see the import option).

5.3 Tag reference

5.3.1 Overview
The tags can roughly be divided in 2 groups:

1. Documentation structure tags. These are needed for fpdoc to do it’s work. They determine
what elements are documented. See table (5.1)

2. Text structure and formatting tags. These tags indicate blocks of text, such as paragraphs,
tables, lists and remarks, but also specify formatting: apply formatting (make-up) to the text,
or to provide links to other parts of the text. These mostly occur in text structure tags. See
table (5.2)

Table 5.1: Documentation structure tags
Tag Description Page
descr Element description 31
element Identifier documentation 32
errors Error section 33
fpdoc-description Global tag 33
module Unit tag 35
package Package global tab 37
seealso Cross-reference section 39
short Short description 39
topic Topic page 41

The nodes for formatting a text resemble closely the basic HTML formatting tags with the following
exceptions:

• Each opening tag must have a corresponding closing tag.

28

CHAPTER 5. THE DESCRIPTION FILE

Table 5.2: Text formatting tags
Tag Description Page
b Format bold 29
caption Specify table caption 30
code Syntax highlight code 30
dd definition data 31
dl definition list 31
dt Definition term 32
i format italics 33
img include image 34
li list element 34
link Cross-reference 34
ol numbered list 36
p paragraph 37
pre Preformatted text 37
remark remark paragraph 38
table Table 39
td Table cell 40
th Table header 40
tr Table row 41
u format underlined 41
ul bulleted list 41
var format as variable 42

• Tags are case sensitive.

• Tables and paragraphs are at the same level, i.e. a table cannot occur inside a paragraph. The
same is true for all ’structural’ tags such as lists,

Also, if special formatting tags such as a table or lists are inserted, then the remaining text must be
inside a paragraph tag. This means that the following is wrong:

<descr>
Some beginning text

A list item

some ending text
</descr>

Instead, the correct XML should be

<descr>
<p>Some beginning text</p>

A list item

<p>some ending text</p>
</descr>

5.3.2 b : format bold
This tag will cause the text inside it to be formatted using a bold font.

29

CHAPTER 5. THE DESCRIPTION FILE

Example:

Normal text Bold text normal text.

will be formatted as:
Normal text Bold text normal text.

See also: i (33), u (41).

5.3.3 br : Linebreak
This tag will cause the text to be continued on the next line, without starting a new paragraph.

Example:

Normal text on first line
Continued on next line.

will be formatted as:
Normal text on first line
Continued on next line.

See also: i (33), u (41).

5.3.4 caption : Specify table caption
This tag can occur inside a table tag and serves to set the table caption.

Example

<table>
<caption>This caption will end up above the table</caption>
<th><td>Column 1</td><td>Column 2</td></th>
</table>

See also: table (39)

5.3.5 code : format as pascal code
The code tag serves to insert Pascal code into the text. When possible this code will be highlighted
in the output. It can be used to put highlighted Pascal code in the documentation of some identifier.
It can occur inside descr or errors tags.

Note that any text surrounding the code tag should be placed in paragraph tags p.

Example:

<code>
With Strings do

For i:=Count-1 downto 0 do
Delete(i);

</code>

Seealso: pre (37), p (37)

30

CHAPTER 5. THE DESCRIPTION FILE

5.3.6 descr : Descriptions
This is the actual documentation tag. The contents of this tag will be written as the documentation of
the element. It can contain any mixture of text and markup tags. The descr tag can only occur inside
a element or module.

Example:

<element name="MyEnym">
<descr>Myenum is a simple enumeration type</descr>
</element>

See also: element (32), short (39), errors (33), seealso (39)

5.3.7 dd : definition data.
The dd tag is used to denote the definition of a term in a definition list. It can occur only inside a
definition list tag (dl), after a definition term (dt) tag. It’s usage is identical to the one in HTML.

Example:

<dl>
<dt>FPC</dt><dd>stands for Free Pascal Compiler.</dd>
</dl>

Will be typeset as

FPC stands for Free Pascal Compiler.

See also: dl (31), dt (32), ol (36), ul (41)

5.3.8 dl : definition list.
Definition lists are meant to type a set of terms together with their explanation. It’s usage is identical
to the one in HTML, with the exception that it cannot occur inside ordinary text: surrounding text
should always be enclosed in paragraph tags.

Example:

<dl>
<dt>meOne</dt><dd>First element of the enumeration type.</dd>
<dt>meTwo</dt><dd>Second element of the enumeration type.</dd>
<dt>meThree</dt><dd>Third element of the enumeration type.</dd>
</dl>

Will be typeset as

meOne First element of the enumeration type.

meTwo Second element of the enumeration type.

meThree Third element of the enumeration type.

See also: dt (32), dd (31), ol (36), ul (41)

31

CHAPTER 5. THE DESCRIPTION FILE

5.3.9 dt : definition term.
The dt tag is used in definition lists to enclose the term for which a definition is presented. It’s usage
is identical to the usage in HTML.

Example:

<dl>
<dt>FPC</dt><dd>stands for Free Pascal Compiler.</dd>
</dl>

Will be typeset as

FPC stands for Free Pascal Compiler.

See also: dl (31), dd (31), ol (36), ul (41)

5.3.10 element : Identifier documentation
The element contains the documentation for an identifier in a unit. It should occur inside a module
tag. It can contain 4 tags:

short For a one-line description of the identifier. Is used as a header or is used in overviews of
constants, types, variables or classes.

descr Contains the actual description of the identifier.

errors For functions an procedures this can be used to describe error conditions. It will be put in a
separate section below the description section.

seealso Used to refer to other nodes. will be typeset in a separate section.

The element tag should have at least the name attribute, it is used to link the element node to the
actual identifier in the Pascal unit. Other attributes may be added in future.

Example:

<element name="MyEnym">
<descr>Myenum is a simple enumeration type</descr>
</element>

The following attributes are supported:

name this attribute is required and should equal the identifier name.

opaque this attribute is used for opaque types: if set to 1, the declaration will be replaced with the
term “opaque”.

link this should contain the name of an element. A link to the current element will be referred to
this identifier instead. This can be used in overridden methods/properties to refer to the parent
documentation instead.

alwaysvisible if set to 1, documentation for the element will be shown anyway, even if the current
visibility is not shown. This can be used to force generation of documentation for private or
protected members of a class even when they are not supposed to be shown. (for example,
-hide-protected is given, and one wishes to show a protected method.)

skip if set to 1, the element will not appear in any overviews. A documentation page may be gener-
ated in HTML, but it will not be linked to from any overview.

See also: descr (31), short (39), errors (33), seealso (39)

32

CHAPTER 5. THE DESCRIPTION FILE

5.3.11 errors : Error section.
The errors tag is used to document any errors that can occur when calling a function or procedure.
it is placed in a different section in the generated documentation. It occurs inside a element tag, at
the same level as a descr or short tag. It’s contents can be any text or formatting tag.

Example:

<element name="MyDangerousFunction">
<descr>MyDangerousFunction is a dangerous function</descr>
<errors>When MyDangerousFunction fails, all is lost</errors>
</element>

See also: descr (31), short (39), element (32), seealso (39)

5.3.12 example : Include an example source file.
The example tag is used to include a sample code fragment in the documentation. It must appear
below an element tag. Multiple example tags may appear in an element tag.

The file attribute of the is used to specify the file name containing the example. No extension is
required in the filename: if it is missing, .pp is assumed.

Example:

<element name="MyDangerousFunction">
<descr>MyDangerousFunction is a dangerous function</descr>
<errors>When MyDangerousFunction fails, all is lost</errors>
<example file="ex/ex1"/>
</element>

See also: descr (31), element (32), seealso (39)

5.3.13 file : Format filename
The file tag will cause its contents as a filename. It can occur mixed with any text. It is similar to the
var (42) tag.

Example:

The file <file>me.exe</file> is searched in the PATH.

will be formatted as:
The file me.exe< is searched in the PATH.

See also: b (29), i (33); u (41), var (42)

5.3.14 fpdoc-description : Global tag
The fpdoc-description tag is the topmost tag in a description file. It contains a series of package
tags, one for each package that is described in the file.

See also: package (37)

5.3.15 i : Format italics
The i tag will cause its contents to be typeset in italics. It can occur mixed with any text.

33

CHAPTER 5. THE DESCRIPTION FILE

Example:

Normal text <i>italic text</i> normal text.

will be formatted as:
Normal text italic text normal text.

See also: b (29), u (41)

5.3.16 img : include image
The img tag will include an image in the text. It is considered equivalent to a paragraph tag. The
required attribute file can be used to search to specify the filename. What kind of file is used depends
on the output format. Normally, using png images should work with all output formats.

The caption attribute is optional and can be used to specify a caption text which will be displayed
above or under the figure. Lastly, the name attribute can be used to attach a name to the figure (a
label to which can be referred).

For example:

<p>
some text
</p>

<p>
Some more text.
</p>

See also: p (37).

5.3.17 li : list element
The tag li denotes an element in a ol or ul list. The usage is the same as for it’s HTML counterpart:
It can occur only inside one of the ol or ul list tags. It’s contents may be arbitrary text and formatting
tags, contrary to HTML tags, the li tag always must have a closing tag. Note that it cannot be used in
a definition list (dl (31)).

Example:

First item in the list
Second item in the list

Will be typeset as

• First item in the list.

• Second item in the list.

See also: ol (36), ul (41).

5.3.18 link : Cross-reference
The link tag is used to insert a reference to an element inside some piece of text or inside the seealso
section. It is similar in functionality to the

34

CHAPTER 5. THE DESCRIPTION FILE

some linked text

construct in HTML.

The mandatory id attribute of the link tag should have the name of an element tag in it. This name
is not case sensitive. FPDOC will issue a warning if it cannot find a matching name. It will look for
matching names in the current file, and in all content files that have been specified with the import
command-line option.

The link tag can exist in 2 forms: one with separate closing tag, surrounding a piece of text, one
without separate closing tag. If a piece of text is surrounded by the link tag, then the text will be
converted to a hyperlink in the HTML documentation. If there is no surrounded text, then the value
of the id attribute will be used as the text. This means that

<link id="TStream">TStream</link>

and

<link id="TStream"/>

are completely equivalent.

Example:

The <link id="TStringlist">stringlist</link> class is a descendent of the
<link id="TStrings"/> class.

See also: element (32), url (42) and the import option (section 3.2.18, page 13).

5.3.19 module : Unit reference
The module tag encloses all element tags for a unit. It can contain only element tags for all iden-
tifiers in the unit and a descr tag describing the unit itself. The module tag should occur inside a
package tag.

The name attribute should have as a value the name of the unit which is described by the module.
This name is not case sensitive.

Example:

<module name="classes">
<descr>
The classes unit contains basic class definitions for the FCL.
</descr>
</module>

See also: package (37), descr (31), element (32)

5.3.20 notes : Documentation notes (annotations).
The notes tag indicates that a particular documentation topic contains annotations. It consists of one
or more note tags, no other tags are allowed They serve as annotations to the documentation, usually
for the benefit of the documentation writer.

As such, notes are by default not included in the final documentation, but they can be added to them
with the –emit-notes command-line option.

Notes can appear below the module, topic and element tags.

35

CHAPTER 5. THE DESCRIPTION FILE

For an explanation of what can appear inside the note tag itself, see note (36).

Example:

<module name="classes">
<descr>
The classes unit contains basic class definitions for the FCL.
</descr>
<notes>
<note>MVC. This unit needs more documenting</note>
<note>FK The new class MyVeryImportantClass needs documenting</note>
<notes>
</module>

See also: note (36), module (35), topic (41) and element (32).

5.3.21 note : Notes/Annotation entry.
The note tag contains the text of one note. It must appear below a tag notes collection of annotations.
The notes will be typeset as a unordered list below the documentation. (usually the descr node).

This means there is a limitation to the markup that a note can contain: It can just contain plain
text with some markup, similar to what is allowed in li tags. No tables, lists or other structures are
supported inside. Example:

<element name="TDuplicates">
<short>How to handle duplicates in a list</short>
<descr>
Some text
</descr>
<notes>
<note>Be more explicit. Maybe refer to <link id="TStringList"/></note>
<notes>
</module>

See also: notes (35), li (34)

5.3.22 ol : Numbered list.
The ol tag starts a numbered list. It can contain only li (34) tags, which denote the various elements in
the list. Each item will be preceded by a number. The ol tag can occur inside a text, but surrounding
text should always be enclosed in a p (37) paragraph tag, i.e. an ol tag should occur always at the
same level as a p tag.

Example:

<p>some text before</p>

First item in the list
Second item in the list

Will be typeset as:

some text before

36

CHAPTER 5. THE DESCRIPTION FILE

1. First item in the list.

2. Second item in the list.

See also: li (34), ul (41).

5.3.23 p : Paragraph
The p tag is the paragraph tag. Every description text should be enclosed in a p tag. Only when there
is only one paragraph (and no lists or tables or remarks) in a description node, then the p tag may be
skipped.

Note that if a description node contains a table, pre, code or any list tag, then the text surrounding
these tags must be put inside a p paragraph tag. This is different from the behavior in HTML.

The paragraph tag must always have an opening tag and a closing tag, unlike html where only the
opening tag may be present.

Example:

<descr>
This is a paragraph which need not be surrounded by paragraph tags.
</descr>

<descr>
<p>
This is the first paragraph.
</p>
<p>
This is the second paragraph.
</p>
</descr>

See also: table (39), dl (31), remark (38),code (30), ol (36),ul (41),ol (36)

5.3.24 package : Package reference
The package tag indicates the package for which the description file contains documentation. A
package is a collection of units which are logically grouped together (for a library, program, com-
ponent suites). The name attribute of the package tag will be used to select the package node in
the description file: Only the package node with name as specified by the package command-line
option will be used when generating documentation. All other package nodes will be ignored.

The package node must always reside in a fpdoc-description node. It can contain a descr node, and
various module nodes, one node per unit in the package.

See also: fpdocdescription (33), module (35), descr (31)

5.3.25 pre : Insert text as-is
The pre tag can be used to insert arbitrary text in the documentation. The text will not be formatted
in any way, and will be displayed as it is encountered in the description node. It is functionally
equivalent to the pre tag in HTML.

Note that if there is text surrounding the pre tag, it should be placed inside a p paragraph tag.

Example:

37

CHAPTER 5. THE DESCRIPTION FILE

<pre>
This is some text.

This is some more text

And yet more text...
</pre>

This will be typeset as:

This is some text.
This is some more text

And yet more text...

See also: code (30), p (37)

5.3.26 printshort : insert short description
A printshort tag can be used to insert the short description of an element in the current text. The
name of the element whose short description must be printed must be given in the id attribute. Typical
use for this is to repeat the elements of an enumerated type when discussion function results or
possible parameter values.

Example:

<dl>
<dt>float_round_nearest_even</dt><dd><printshort id="float_round_nearest_even"/></dd>
<dt>float_round_down</dt><dd><printshort id="float_round_down"/></dd>
<dt>float_round_up</dt><dd><printshort id="float_round_up"/></dd>
<dt>float_round_to_zero</dt><dd><printshort id="float_round_to_zero"/></dd>

5.3.27 remark : format as remark
A remark tag can be used to make a paragraph stand out. The remark is equivalent to the p tag, but
it’s contents is formatted in a way that makes it stand out from the rest of the text.

Note that any text before or after the remark tag must be enclosed in paragraph (p) tags.

Example:

<p>Normal text.</p>
<remark>
This text will stand out.
</remark>
<p>Again normal text.</p>

Will be formatted as

Normal text.

Remark This text will stand out.

Again normal text.

See also: p (37), code (30), pre (37)

38

CHAPTER 5. THE DESCRIPTION FILE

5.3.28 seealso : Cross-reference section
The seealso section can occur inside any element tag, and will be used to create a list of cross-
references. The contents of the seealso tag is a list of link tags. No other text is allowed inside this
tag. Note that both the long and short form if the link tag may be used.

Example:

<seealso>
<link id="TStrings"/>
<link id="TStringList.Create">Create</link>
</seealso>

See also: link (34), element (32)

5.3.29 short : Short description
The short description is used to give a short description of an identifier. If possible, the description
should fit on a single line of text. The contents of this tag will be used for the following purposes:

• Used as the synopsis on a page that describes an identifier.

• Used in overviews of constants, types, variables, record fields, functions and procedures,
classes, and for method and property listings of classes.

• Replaces the descr tag in an element if no descr tag is present.

• In the description of an enumerated type, the enumeration values are typeset in a table, each
row containing the name of the value and the short description.

• In the description of a function or procedure that accepts arguments, the arguments are fol-
lowed by their short description.

• In the declaration of a class or record, each method, field or property is followed by the short
description.

Example:

<element name="MyEnum.meOne">
<short>First element of MyEnum</short>
</element>

See also: element (32), descr (31)

5.3.30 table : Table start
The table tag starts a table, as in HTML. A table can contain tr (table row), th (table header row)
or caption tags. Any text surrounding the table must be enclosed in paragraph tags (p).

Example:

<table>
<caption>
<var>TALignment</var> values and their meanings.
</caption>
<th><td>Value</td><td>Meaning</td></th>

39

CHAPTER 5. THE DESCRIPTION FILE

<tr>
<td><var>taLeftJustify</var></td>
<td>Text is displayed aligned to the left.</td>

</tr>
<tr>

<td><var>taRightJustify</var></td>
<td>Text is displayed aligned to the right</td>

</tr>
<tr>

<td><var>taCenter</var></td>
<td>Text is displayed centred.</td>

</tr>
</table>

Will be formatted approximately as follows:

Value Meaning
taLeftJustify Text is displayed aligned to the left.
taRightJustify Text is displayed aligned to the right
taCenter Text is displayed centred.

See also: th (40), caption (30), tr (41), p (37)

5.3.31 td : Table cell
The td tag is used to denote one cell in a table. It occurs inside a tr or th tag, and can contain any
text and formatting tags.

Example:

<table>
<tr><td>Cell (1,1)</td><td>Cell (2,1)</td></tr>
<tr><td>Cell (1,2)</td><td>Cell (2,2)</td></tr>
</table>

Will be formatted approximately as

Cell (1,1) Cell (2,1)
Cell (1,2) Cell (2,2)

See also: table (39), th (40), tr (41)

5.3.32 th : Table header
The th table header tag is used to denote the first row(s) of a table: It (they) will be made up
differently from the other rows in the table. Exactly how it is made up depends on the format. In
printed documentation (latex) a line will be drawn under the row. In HTML, the font and background
may be formatted differently.

The th tag can only occur inside a table tag, and can contain only td tags.

Example:

<table>
<th><td>Cell (1,1)</td><td>Cell (2,1)</td></th>
<tr><td>Cell (1,2)</td><td>Cell (2,2)</td></tr>
</table>

40

CHAPTER 5. THE DESCRIPTION FILE

Will be formatted approximately as

Cell (1,1) Cell (2,1)
Cell (1,2) Cell (2,2)

See also: tr (41), table (39)

5.3.33 topic : Topic section
The topic tag starts a topic page or section. A topic page or section is not linked to an identifier
in some unit: it exists by itself. It must be inside a package or module tag. It must have a name
attribute (for cross-referencing). If it appears inside a package, it can be nested: a topic may be
inside another topic tag.

<module name="CRT">
<topic name="UsingKeyboard">
<short>Using the keyboard functions</short>
<descr>
To use the keyboard functions of the CRT unit, one...
</descr>
</topic>

5.3.34 tr : table row
The tr tag denotes a row in a table. It works the same as in HTML. It can occur only in a table tag,
and should contain only td table data tags.

Example:

<table>
<tr><td>Cell (1,1)</td><td>Cell (2,1)</td></tr>
<tr><td>Cell (1,2)</td><td>Cell (2,2)</td></tr>
</table>

Will be formatted approximately as

Cell (1,1) Cell (2,1)
Cell (1,2) Cell (2,2)

See also: table (39), th (40), td (40)

5.3.35 u : Format underlined
Example:

Normal text <u>underlined text</u> normal text.

will be formatted as:
Normal text underlined text normal text.

See also: i (33), b (29).

5.3.36 ul : bulleted list
The ul tag starts a bulleted list. This works as under HTML, with the exception that any text
surrounding the list must be enclosed in paragraph tags (p). The list elements should be enclosed in
li tags.

41

CHAPTER 5. THE DESCRIPTION FILE

Example:

<p>some text before</p>

First item in the list
Second item in the list

Will be typeset as:

some text before

• First item in the list.

• Second item in the list.

See also: li (34), ol (36).

5.3.37 url : Hyperlink
The url tag is meant to include an URL to an arbitrary web page. It works much like the link tag,
except that any URL may be specified. The attribute href specifies the URL to link to. In output
formats that support links, the text in the url tag will be the link’s text. For other formats, the URL
will be printed after the text.

If the url tag does not enclose any text, then the URL itself will be printed.

Examples:

The normal usage is:

<url href="http://www.freepascal.org/">Here</url>
is the website of Free Pascal.

It will be typeset as:

Here is the website of Free Pascal.

The short usage is:

Check out the following site: <url href="http://www.freepascal.org/"/>.

Which will be typeset as:

Check out the following site: http://www.freepascal.org/.

See also: link (34).

5.3.38 var : variable
The var tag is used to mark a piece of text as a variable (or, more general, as an identifier). It will be
typeset differently from the surrounding text. Exactly how this is done depends on the output format.

Example:

The <var>Items</var> property gives indexed access to...

Will be typeset as

The Items property gives indexed access to...

See also: b (29), u (41), i (33), code (30), file (33)

42

http://www.freepascal.org/
http://www.freepascal.org/

CHAPTER 5. THE DESCRIPTION FILE

5.3.39 version : version info
The version can be used to give version information: as of what version an identifier appeared
or was deprecated. It should be specified below the element (32) tag, and will be output in the
documentation. It can contain the same tags as the descr (31) tag, and is typeset in the same way.

The following is an example:

<element name="myenum">
<descr>
The MyEnum type is a simple enumeration type which is not
really useful, except for demonstration purposes.
</descr>
<version>The myenum type appeared in version 2.1</version>
</element>

See also: element (32), descr (31), errors (33), seealso (39)

43

Chapter 6

Generated output files.

6.1 HTML output

The HTML output consists of the following files, per unit:

1. A general unit description with the contents of the module’s descr tag. The uses clause is
documented here as well. All units in the uses clause together with their short description
tags are typeset in a table.

2. A listing of all constants in the unit.

3. A listing of all types in the unit (except classes).

4. A listing of all variables in the unit.

5. A listing of all functions/procedures in the unit.

6. A listing of all classes in the unit.

7. An index page per unit and per package. This is an index page, listing all top-level identifiers
in the current unit or all units of the package.

All these overviews are hyperlinked to pages which contain the documentation of each identifier.
Each page starts with the name of the identifier, plus a synopsis (made from the short tag’s contents).
After that follows the declaration, and the description. The description is filled with the descr node
of the identifiers element tag.

If an errors tag was present, an ’Errors’ section follows the description. Similarly, if there is a
seealso tag, a ’See also’ section with cross-reference links is made.

For classes, the declaration contains hyperlinks to separate pages which document all the members
of the class. Each member in the declaration is followed by the short tag of the member’s element
tag, if one exists. As an extra, the class hierarchy is given, plus links to pop-up pages (if JavaScript is
available, otherwise they are normal links) which contain alphabetical or hierarchical listings of the
methods, fields or properties of the class.

For functions and procedures, the declaration will be typeset in such a way that all function arguments
(if they are present) are in tabular format, followed by the short description of the argument. If it
concerns a function, and a result element exists, the result description will be provided in a separate
section, before the actual description.

The declaration of an enumerated type will be laid out in a table, with the enumeration value at the
left, and the short description node of the value’s element.

44

CHAPTER 6. GENERATED OUTPUT FILES.

6.2 Latex output

The latex output is in one big file with the name of the package as specified on the command line. in
this file, one chapter is made per unit.

Per unit the following sections are made:

1. A section with all constants.

2. A section with all types.

3. A section with all variables.

4. A section with all functions and procedures.

5. A section per declared class.

For the constants, types and variables, the declaration is given, followed by the descr node of the
element corresponding to the identifier. All other nodes are ignored.

For functions and procedures, a subsection is made per procedure or function. This subsection con-
sists of a list with the following entries:

Synopsis filled with the contents of the short tag.

Declaration Filled with the declaration of the function.

Arguments A tabular description of all arguments, if short tags are found for them.

Description Description of the function. Filled with the contents of the descr tag.

Errors Description of any error conditions. Filled with the contents of the errors tag.

See Also Cross-references to other functions. Filled with the contents of the seealso tag.

For classes, a subsection is made with an overview of implemented methods. Then a subsection is
presented with available properties.

Then follows a subsection per method. These are formatted as a function, with an additional Visibil-
ity list element, giving the visibility of the function.

After the methods, a list of properties is given , formatted as a method, with an additional Access
list element, specifying whether the property is read/write or not.

6.3 CHM output

The chm output in FPDOC is actually inherited from the HTML backend so everything that applies
to the HTML backend applies to the chm backend, except that all generated HTML files are written
directly to a stream. After all the HTML files are generated the compression is begun. Once all
the auto generated files are compressed, if the –other-files option is used these files are collected
and compressed. Now if the –auto-index or –auto-toc are used the Index and Table of Contents are
created and the compression is finished.

6.4 TXT output

The text output in FPDOC is a single TXT file. It shares the same structure as the LaTeX output.

45

CHAPTER 6. GENERATED OUTPUT FILES.

6.5 RTF output

The RTF output in FPDOC is a single TXT file. It shares the same structure as the LaTeX output.

6.6 Man output

The unix manual output (actually, groff output) creates one manual page file per identifier; the files
are named unit.identifier, and are by default saved in a directory with the package name (unless
modified with the –output command-line option).

46

	Introduction
	About this document
	About FPDoc
	Getting more information.

	Compiling and Installing FPDoc
	Compiling
	Installation

	FPDoc usage
	fpdoc
	FPDoc command-line options reference
	auto-index
	auto-toc
	charset
	chm-title
	content
	css-file
	default-page
	descr
	emit-notes
	footer
	footer-date
	format
	help
	hide-protected
	html-search
	image-dir
	image-url
	import
	index-colcount
	index-file
	input
	lang
	latex-highlight
	make-searchable
	other-files
	output
	package
	project
	show-private
	toc-file
	warn-no-node
	write-project

	makeskel
	introduction

	Makeskel option reference
	descr
	disable-arguments
	disable-errors
	disable-function-results
	disable-override
	disable-private
	disable-protected
	disable-seealso
	emitclassseparator
	help
	input
	lang
	output
	package
	update

	The project file
	Introduction
	Project file structure
	The options node
	The option node
	The packages node
	The package node
	The units node
	The unit node
	The descriptions node
	The description node
	The imports node
	The import node

	The description file
	Introduction
	Element names and cross-referencing
	Element name conventions
	Cross referencing: the link tag

	Tag reference
	Overview
	b : format bold
	br : Linebreak
	caption : Specify table caption
	code : format as pascal code
	descr : Descriptions
	dd : definition data.
	dl : definition list.
	dt : definition term.
	element : Identifier documentation
	errors : Error section.
	example : Include an example source file.
	file : Format filename
	fpdoc-description : Global tag
	i : Format italics
	img : include image
	li : list element
	link : Cross-reference
	module : Unit reference
	notes : Documentation notes (annotations).
	note : Notes/Annotation entry.
	ol : Numbered list.
	p : Paragraph
	package : Package reference
	pre : Insert text as-is
	printshort : insert short description
	remark : format as remark
	seealso : Cross-reference section
	short : Short description
	table : Table start
	td : Table cell
	th : Table header
	topic : Topic section
	tr : table row
	u : Format underlined
	ul : bulleted list
	url : Hyperlink
	var : variable
	version : version info

	Generated output files.
	HTML output
	Latex output
	CHM output
	TXT output
	RTF output
	Man output

