An Intr oduction to the C shell

William Joy
(revised for 4.3BSD by Mark Seiden)

Computer Science Bision
Department of Electrical Engineering and Computer Science
University of California, Berkley
Berkeley, California 94720

ABSTRAT

Csh is a nev command language interpreter fONIXT systems. Itincorporates
good features of other shells andistory mechanism similar to theedo of INTERLISP.
While incorporating man features of other shells which nealariting shell programs
(shell scripts) easiemost of the features unique ¢sh are designed more for the interac-
tive UNIX user

UNIX users who h& read a general introduction to the system will fincaluable
basic &planation of the shell hereSimple terminal interaction witbsh is possible after
reading just the first section of this documemhe second section describes the shell’
capabilities which you canxplore after you hae begun to become acquainted with the
shell. Latersections introduce features which are usefutl not necessary for all users of
the shell.

Additional information includes an appendix listing special characters of the shell
and a glossary of terms and commands introduced in this manual.

Intr oduction

A shell is a command language interpret&sh is the name of one particular command interpreter
onuNIX. The primary purpose afsh is to translate command lines typed at a terminal into system actions,
such as imocation of other programsCsh is a user program just kkany you might write. Hopefully, csh
will be a \ery useful program for you in interacting with threix system.

In addition to this document, you willamt to refer to a cgpof the uNix User Reference Manual.
Thecsh documentation in section 1 of the manuaMmtes a full description of all features of the shell and
is the definitve reference for questions about the shell.

Many words in this document are sk in italics. These are importantawds; names of commands,
and words which hae gecial meaning in discussing the shell amgx. Mary of the words are defined in
a dossary at the end of this documeiftyou dont know what is meant by a evd, you should look for it
in the glossary

Acknowledgements

Numerous people ke povided good input about prmus \ersions ofcsh and aided in its dely-
ging and in the dalgging of its documentation.would especially lik o thank Michael Ubell who made
the crucial obseantion that history commands could be done wedt the word structure of input &, and
implemented a prototype history mechanism in an oldesien of the shellEric Allman has also praded
a large number of useful comments on the shell, helping to unify those concepts which are present and to

T UNIX is a trademark of Bell Laboratories.

UsD:4-2 AnlIntroduction to the C shell

identify and eliminate useless and giaally useful featuresMike OBrien suggested the pathname hash-
ing mechanism which speeds commamdcation. JimKulp added the job control and directory stack
primitives and added their documentation to this introduction.

An Introduction to the C shell UsD:4-3

1. Terminal usage of the shell

1.1. Thebasic notion of commands

A shell in uNix acts mostly as a medium through which otw@igrams are irvoked. Whileit has a
set ofbuiltin functions which it performs directlynost commands causgeeution of programs that are, in
fact, external to the shellThe shell is thus distinguished from the command interpreters of other systems
both by the &ct that it is just a user program, and by #a fhat it is used almost@usively as a mecha-
nism for irvoking other programs.

Commandsn the uNIX system consist of a list of strings words interpreted as aommand name
followed byarguments.Thus the command

mail bill

consists of tw words. Thefirst word mail names the command to beeeuted, in this case the mail pro-
gram which sends messages to other uséhe shell uses the name of the command in attempting to
execute it for you. It will look in a number oflirectoriesfor a file with the namenail which is expected to
contain the mail program.

The rest of the wrds of the command arevgh as argumentsto the command itself when it is
executed. Inthis case we specified also thguanentbill which is interpreted by theail program to be
the name of a user to whom mail is to be sémtormal terminal usage we might use thail command
as follawvs.

% mail bill
| havea question about the csh documentation.
My document seems to be missing page 5.
Does a page fevexist?

Bill
EOT
%

Here we typed a message to senbdiloand ended this message with a "D which sent an end-of-file
to the mail program(Here and throughout this document, the notatioti | s to be read ‘control-x” and
represents the striking of tlxekey while the control ky is held davn.) Themail program then echoed the
characters ‘E@ and transmitted our messagéhe characters ‘% ' were printed before and after the mail
command by the shell to indicate that inpatsweeded.

After typing the ‘% ’ prompt the shell as reading command input from our termindle typed a
complete command ‘mail bill"The shell thenecuted themail program with agumentbill and went
dormant vaiting for it to complete.The mail program then read input from our terminal until we signalled
an end-of-file via typing a "D after which the shell noticed that mail had completed and signaled us that it
was ready to read from the terminalaag by printing another ‘% ' prompt.

This is the essential pattern of all interaction withx through the shell A complete command is
typed at the terminal, the shekeeutes the command and when thisgaition completes, it prompts for a
new command. Ifyou run the editor for an hguhe shell will patiently wait for you to finish editing and
obediently prompt you @&in whenger you finish editing.

An example of a useful command you cateaute nav is the tset command, which sets the deft
erase andkill characters on your terminal — the erase character erases the last character you typed and the
kill character erases the entire line yowdentered sodr. By default, the erase character is the delete k
(equivalent to “?’) and the kill character is “U.Some people prefer to nakhe erase character the
backspacedy equivaent to "H’). You can male this be true by typing

tset —e

which tells the prograniset to set the erase character to tseffault setting for this character (a
backspace).

USD:4-4 AnlIntroduction to the C shell

1.2. Flagarguments

A useful notion inunix is that of aflag argument. Whilemary arguments to commands specify file
names or user names, somguanents rather specify an optional capability of the command which you
wish to invoke. By cornvention, such ajuments bgin with the character ‘-’ §fphen). Thushe command

Is
will produce a list of the files in the currambrking directory. The option-s is the size option, and
Is —s

causeds to also gve, for each file the size of the file in blocks of 512 charactére manual section for
each command in thenix reference manual ggs the available options for each commandhels com-
mand has a lge number of useful and interesting optioMost other commands e gther no options or
only one or tw options. Itis hard to remember options of commands which are not wsgdrequently
so mostuNix utilities perform only one or ta functions rather than Wilg a lage number of hard to
remember options.

1.3. Outputto files

Commands that normally read input or write output on the terminal can als@dugeel with this
input and/or output done to a file.

Thus suppose we wish tovgathe current date in a file called \mb The command
date

will print the current date on our terminalhis is because our terminal is theaidf standad output for
the date command and the date command prints the date on its standard Themshell lets usedirect
the standad output of a command through a notation using tietaharacter >’ and the name of the file
where output is to be placedhus the command

date > nwv

runs thedate command such that its standard output is the filew*mather than the terminalThus this
command places the current date and time into the fil&'‘nk is important to knev that thedate com-
mand vas unavare that its output @s going to a file rather than to the terminghe shell performed this
redirection before the command gan executing.

One other thing to note here is that the filewhaeed not hee exsted before thelate command
was executed; the shell wuld have aeated the file if it did notxést. Andif the file did eist? If it had
existed preiously these prgous contents muld hare keen discardedA shell optionnoclobber exists to
prevent this from happening accidentally; it is discussed in section 2.2.

The system normallydeps files which you create with >’ and all other fil@wus the defult is for
files to be permanentf you wish to create a file which will be renea automatically you can bgin its
name with a ‘#' charactgethis ‘scratch’ character denotes tlaetfthat the file will be a scratch file-Fhe
system will remge such files after a couple of days, or sooner if file space becoenggight. Thus, in
running thedate command abee, we don'’t really want to sge the output foreer, so we would more lilely
do

date > #nw

*Note that if your erase character is a ‘#’, you will/ea precede the ‘#' with a ‘\".The fact that the ‘# character is the
old (precrr) standard erase character means that it seldom appears in a file name venthisllcomention to be used for
scratch files.If you are using &rr, your erase character should be a "H, as we demonstrated in sectiow thishauld
be set up.

An Introduction to the C shell uUsD:4-5

1.4. Metacharactersin the shell

The shell has a lge number of special characters€lik’) which indicate special functionde sy
that these notations ¥asyntactic and semanticmeaning to the shellln general, most characters which
are neither letters nor digits\egpecial meaning to the shele dall shortly learn a means qfiotation
which allovs us to usenetaharacters without the shell treating them inyagpecial vay.

Metacharacters normally ¥xa dfect only when the shell is reading our inpiYe reed not verry
about placing shell metacharacters in a letter we are sendinwailjsor when we are typing inxeor data
to some other programNote that the shell is only reading input when it has prompted with ‘% ’ (although
we can type our inputven before it prompts).

1.5. Input from files; pipelines

We learned abee how to redirect the standad output of a command to a filelt is also possible to
redirect thestandad input of a command from a fileThis is not often necessary since most commands
will read from a file whose name isvgh as an agument. V¢ can give the command

sort < data

to run thesort command with standard input, where the command normally reads its input, from the file
‘data’. We would more lilely say

sort data

letting thesort command open the file ‘data’ for input itself since this is less to type.
We dhould note that if we just typed

sort

then the sort programauld sort lines from itstandad input. Since we did notedirect the standard
input, it would sort lines as we typed them on the terminal until we typed a "D to indicate an end-of-file.

A most useful capability is the ability to combine the standard output of one command with the stan-
dard input of anothei.e. to run the commands in a sequencerknas apipeline For instance the com-
mand

Is —s

normally produces a list of the files in our directory with the size of each in blocks of 512 chargters.
are interested in learning which of our files igést we may wish to ke this sorted by size rather than by
name, which is the dafilt way in whichls sorts. V¢ oould look at the manoptions ofls to see if there
was an option to do this bt would eventually discwer that there is notlnstead we can use a couple of sim-
ple options of thesort command, combining it witls to get what we ant.

The—n option of sort specifies a numeric sort rather than an alphabeticTéois.
Is —s | sort —n

specifies that the output of thecommand run with the optiors is to bepiped to the commandort run
with the numeric sort optionThis would give us a ®rted list of our files by size ubwith the smallest first.
We oould then use ther reverse sort option and thieead command in combination with the preus
command doing

Is —s | sort —n —r | head -5

Here we hae taken a list of our files sorted alphabeticaéigch with the size in blockd/Ne haverun this to
the standard input of theort command asking it to sort numerically irveese order (lagest first). This
output has then been run into the commhaadd which gives us the first fav lines. Inthis case we ha
askedhead for the first 5 lines.Thus this command gés us the names and sizes of our Fykest files.

The notation introduced ab®e is called thepipe mechanism. Commandgparated by|” characters
are connected together by the shell and the standard output of each is run into the standard input.of the ne
The leftmost command in a pipeline will normally ¢alts standard input from the terminal and the

USD:4-6 AnlIntroduction to the C shell

rightmost will place its standard output on the termir@ther ekamples of pipelines will be gn later
when we discuss the history mechanism; one important use of pipes which is illustrated there is in the rout-
ing of information to the line printer

1.6. Filenames

Many commands to bexecuted will need the names of files aguanents.UNIx pathnamesconsist
of a number otomponentsseparated by ‘/.Each componentxeept the last names a directory in which
the next component resides, infett specifying theath of directories to folla to reach the file.Thus the
pathname

/etc/motd

specifies a file in the directory ‘etc’ which is a subdirectory ofrtlo¢ directory ‘/'. Within this directory
the file named is ‘motd’ which stands for ‘message of the dayathnamethat bejins with a slash is said
to be anabsolute pathname since it is specified from the absolute top of the entire directory hiestrch
the system (theoot). Pathnameswhich do not bgin with /' are interpreted as starting in the current
working directory, which is, by dedult, yourhome directory and can be changed dynamically bydtie
change directory commanduch pathnames are said torélative to the working directory since thyeare
found by starting in the erking directory and descending taver levels of directories for eactomponent

of the pathnamelf the pathname contains no slashes at all then the file is contained inriiegndirec-
tory itself and the pathname is merely the name of the file in this direcitagolute pathnames V& o
relation to the wrking directory

Most filenames consist of a number of alphanumeric characterssafperiods). Infact, all printing
characters>xxept '/’ (slash) may appear in filenamdsis incorvenient to hae nost non-alphabetic char
acters in filenames because mahthese hae pecial meaning to the shelllhe character™(period) is
not a shell-metacharacter and is often used to separagtéimsion of a file name from the base of the
name. Thus

prog.c prog.o prog.errs prog.output

are four related filesThey share abase portion of a name (a base portion being that part of the name that
is left when a trailing *.and following characters which are ndtdre stripped dj. Thefile ‘prog.c’ might

be the source for a C program, the file ‘prog.o’ the corresponding object file, the file ‘prog.errs’ the errors
resulting from a compilation of the program and the file ‘prog.output’ the output of a run of the program.

If we wished to refer to all four of these files in a command, we could use the notation

prog.*
This expression isxpanded by the shell, before the command to which it isgamraant is gecuted, into a
list of names which lggn with ‘prog’. The character **' here matches yasequence (including the empty
sequence) of characters in a file nariae names which match are alphabetically sorted and placed in the
argument listof the commandThus the command

echo prog.*
will echo the names

prog.c prog.errs prog.o prog.output

Note that the names are in sorted order here, andeaedif order than we listed them &bo The echo
command recges four words as ajuments, een though we only typed oneosd as as gument directly
The four words were generated filename gpansionof the one input ward.

Other notations fofilename gpansionare also @ailable. Thecharacter ‘?’ matches wmsingle char
acter in a filenameThus

echo ??? ?2??

will echo a line of filenames; first those with one character names, then those ovithar@cter names,
and finally those with three character namélse names of each length will be independently sorted.

An Introduction to the C shell UsD:4-7

Another mechanism consists of a sequence of characters between ‘[' afithi§ .metasequence
matches ansingle character from the enclosed séhus
prog.[co]
will match

prog.c prog.o
in the kample abwe. We can also place tacharacters around a ‘=’ in this notation to denote a range.
Thus

chap.[1-5]
might match files

chap.1 chap.2 chap.3 chap.4 chap.5
if they existed. Thids shorthand for

chap.[12345]

and otherwise equalent.

An important point to note is that if a list ofgament vords to a command (aargument list)con-
tains filename xpansion syntax, and if this flenamgpansion syntaxails to match ay existing file
names, then the shell considers this to be an error and prints a diagnostic

No match.

and does nobecute the command.

Another \ery important point is that files with the characteat the bginning are treated specially
Neither **" or “?’ or the ‘[’ I’ mechanism will match it. This prevents accidental matching of the filenames
‘and ‘.! in the working directory which h&e gecial meaning to the system, as well as other files such as
.cshc which are not normally visibleWe will discuss the special role of the fileshic later.

Another filename xpansion mechanism\gs access to the pathname of theme directory of other
users. Thisiotation consists of the character ™ (tilde) felied by another usarlogin name.For instance
the word “bill' would map to the pathname ‘/usr/bill’ if the home directory for ‘bildsv/usr/bill’. Since,
on lage systems, users mayvhdogin directories scattered/e mary different disk wlumes with difer-
ent prefix directory names, this notation\pdes a comenient way of accessing the files of other users.

A special case of this notation consists of a ™ alone, e.g. “/mbdkis notation is panded by the
shell into the file ‘mbox’ in youhome directory i.e. into ‘/usr/bill/mbox’ for me on Ernie Ccax, the
UCB Computer Science DepartmerAX/ machine, where this documents preparedThis can be ery
useful if you hae wsedcd to change to another directory andidadound a file you wish to cgpusing cp.
If I give the command

cp thatfile ~
the shell will épand this command to
cp thatfile /usr/bill

since my home directory is /ust/bill.

There alsoxsts a mechanism using the characters {’ and '}’ for ablating a set of wrds which
have mmmon parts Bt cannot be abbvated by the abege mechanisms because yhare not files, are the
names of files which do not yekist, are not thus ceeniently described.This mechanism will be
described much latein section 4.2, as it is used less frequently

1.7. Quotation

We havealready seen a number of metacharacters used by the Thelle metacharacters pose a
problem in that we cannot use them directly as partoodsv Thughe command

USD:4-8 AnlIntroduction to the C shell

echo *
will not echo the character *'It will either echo an sorted list of filenames in the curreoitking ditec-
tory, or print the message ‘No match’ if there are no files in thekiwg directory
The recommended mechanism for placing characters which are neither numbers, diditst, ‘£, ‘.
in an agument vord to a command is to enclose it with single quotation characters ', i.e.
echo ¥

There is one special character ‘I’ which is used byhiktory mechanism of the shell and which cannot be
escapedby placing it within *’ characterslt and the character * itself can be preceded by a single ‘\' to
prevent their special meaninglhus

echo \'\!

prints
1

These tw mechanisms sfite to place apprinting character into a evd which is an gument to a shell
command. Thgcan be combined, as in

echo \""*

which prints

%
since the first '\’ escaped the first "’ and the “*awenclosed between ’ characters.

1.8. Terminating commands

When you arexecuting a command and the shell iaiting for it to complete there arevemsl ways
to force it to stop.For instance if you type the command

cat /etc/passwd

the system will print a cgpof a list of all users of the system on your termin&his is likely to continue
for several minutes unless you stop i¥ou can send amNTERRUPT signal to thecat command by typing
“C on your terminal.*Sincecat does not ta any precautions toid or otherwise handle this signal the
INTERRUPT Will cause it to terminateThe shell notices thaiat has terminated and prompts yowasmgwith
‘% . If you hit INTERRUPT again, the shell will just repeat its prompt since it handlg&RRUPT signals
and chooses to continue tweeute commands rather than terminating lilat did, which would have the
effect of logging you out.

Another vay in which mayg programs terminate is when thget an end-of-file from their standard
input. Thusthemail program in the first>@ample abwe was terminated when we typed a "D which gener
ates an end-of-file from the standard inptihe shell also terminates when it gets an end-of-file printing
‘logout’; UNIX then logs you dfthe system.Since this means that typing too gdD’s can accidentally
log us of, the shell has a mechanism forymmting this. This ignoreeof option will be discussed in section
2.2.

If a command has its standard input redirected from a file, then it will normally terminate when it
reaches the end of this fil&hus if we &ecute

mail bill < prepared.tet

the mail command will terminate without our typing a "This is because it read to the end-of-file of our
file ‘prepared.tet’ in which we placed a message for ‘bill’ with an editor prograie could also hee
done

*On some older Unix systems tbeL or RuBouT key has the same fefct. "stty all” will tell you the INTR ky value.

An Introduction to the C shell UsSD:4-9

cat prepared.i¢ | mailbill

since thecat command wuld then hae written the tet through the pipe to the standard input of the mail
command. Whethecat command completed itauld have terminated, closing den the pipeline and the
mail command wuld hare receved an end-of-file from it and terminatedUsing a pipe here is more com-
plicated than redirecting input so weomdd more lilely use the first form.These commands could also
have been stopped by sending AITERRUPT.

Another possibility for stopping a command is to suspendxésuéion temporarilywith the possi-
bility of continuing eecution later This is done by sending sropP signal via typing a "Z.This signal
causes all commands running on the terminal (usually ohenbre if a pipeline is»ecuting) to become
suspended. Thehell notices that the command(syédeen suspended, types ‘Stopped’ and then prompts
for a nev command. Thereviously executing command has been suspendeat ptherwise unéécted by
the sToP signal. Ary other commands can beeeuted while the original command remains suspended.
The suspended command can be continued usinfg) ttemmand with no guments. Thehell will then
retype the command to remind you which command is being continued, and cause the command to resume
execution. Unlessary input files in use by the suspended commane iaen changed in the meantime,
the suspension has ndesft whatsoeer on the execution of the commandThis feature can beevy useful
during editing, when you need to look at another file before continuingx@dmpe of command suspen-
sion follows.

% mail harold

Someone just copied a big file into my directory and its name is
Z

Stopped

% Is

funnyfile

prog.c

prog.o

% jobs

[1] + Stopped maiharold
% fg

mail harold

funnyfile. Do you knev who did it?

EOT

%

In this xkample someone as sending a message to Harold anddbthe name of the file heanted to
mention. Themail command w&s suspended by typing "XVhen the shell noticed that the mail program

was auspended, it typed ‘Stopped’ and prompted forwe cemmand. Thenhels command \as typed to

find out the name of the fileThe jobs command was run to find out which commandag/suspended. At

this time thefg command was typed to continuexecution of the mail programinput to the mail program

was then continued and ended with a "D which indicated the end of the message at which time the mail pro-
gram typed E@. Thejobs command will shav which commands are suspendéte “Z should only be

typed at the bginning of a line sinceverything typed on the current line is discarded when a signal is sent
from the leyboard. Thisalso happens omWTERRUPT, and QUIT signals. Mordanformation on suspending

jobs and controlling them isygn in sction 2.6.

If you write or run programs which are not fully dejged then it may be necessary to stop them
somavhat ungracefully This can be done by sending themuar signal, sent by typing a "This will usu-
ally provoke the shell to produce a messagelik

Quit (Core dumped)

indicating that a file ‘core’ has been created containing information about the running psogmganivhen
it terminated due to theuiT signal. You can gamine this file yourself, or foravrd information to the
maintainer of the program telling him/her where ¢bee fie is.

USD:4-10 Anintroduction to the C shell

If you run background commands (agpkained in section 2.6) then these commands will ignore
INTERRUPT andQuIT signals at the terminallo gop them you must use tlkél command. Sesection 2.6
for an ekample.

If you want to éamine the output of a command withouving it move df the screen as the output
of the

cat /etc/passwd
command will, you can use the command
more /etc/passwd

Themore program pauses after each complete screenful and types ‘——More—-"at which point you can hit
a pace to get another screenful, a return to get another line, a *?’ to get some help on other commands, or a
‘g’ to end themore program. Yu can also use more as a filies.

cat /etc/passwd | more

works just like the more simple more command a&o

For stopping output of commands notvatving more you can use the "Sei o gop the typeout.
The typeout will resume when you hit "Q oryasther ley, but "Q is normally used because it only restarts
the output and does not become input to the program which is runfgworks well on lev-speed ter
minals, lut at 9600 baud it is hard to type "S and &3t fenough to paginate the output nicahd a pro-
gram like more is usually used.

An additional possibility is to use the O flush output character; when this character is typed, all out-
put from the current command is ttno avay (quickly) until the n&t input read occurs or until the xie
shell prompt. This can be used to alloa mommand to complete without Viag to sufer through the out-
put on a slar terminal; "O is a toggle, so flushing can be turnédptyping "O agin while output is being
flushed.

1.9. Whatnow?

We haveso far seen a number of mechanisms of the shell and learned a lot aboay timewtich it
operates. Theemaining sections will go yet further into the internals of the shallydu will surely vant
to try using the shell before you goyafurther To try it you can log in tauNix and type the follawing
command to the system:

chsh myname /bin/csh

Here ‘myname’ should be replaced by the name you typed to the system prompt of ‘login:’ to get onto the
system. Thud would use ‘chsh bill /bin/csh’.You only have to do this once; it takes effect at next
login. You are naw ready to try usingsh.

Before you do the ‘chsh’ command, the shell you are using when you log into the system is ‘/bin/sh’.
In fact, much of the alve dscussion is applicable to ‘/bin/shThe net section will introduce manfea-
tures particular tash so you should change your shelkth before you bgin reading it.

An Introduction to the C shell uUsD:4-11

2. Detailson the shell br terminal users

2.1. Shellstartup and termination

When you login, the shell is started by the system in yaune directory and bgins by reading
commands from a fileeshic in this directory All shells which you may start during your terminal session
will read from this file. We will later see what kinds of commands are usefully placed thHemenow we
need not hee tis file and the shell does not complain about its absence.

A login shell, executed after you login to the system, will, after it reads commands.bsime, read
commands from a fildogin also in your home directaryThis file contains commands which you wish to
do each time you login to thenix system. My.login file looks something lig:

set ignoreeof
set mail=(/usr/spool/mail/bill)
echo "${promptlusers" ; users
alias ts\
“set noglob ;al “tset —s —m dialup:c100rv4pna —m plugboard:?hp2621nl **’;
ts; stty intr "C kill "U crt
set time=15 history=10
msgs —f
if (e $mail) then
echo "${prompt}mail"
mail
endif

This file contains seral commands to bexecuted byuNix each time | login.The first is aset com-
mand which is interpreted directly by the shdflsets the shellariableignoreeofwhich causes the shell to
not log me dfif | hit "D. Rather| use thelogout command to log éfof the system.By setting themail
variable, | ask the shell toatch for incoming mail to meEvery 5 minutes the shell looks for this file and
tells me if more mail has aved there. Analternatve o this is to put the command

biff y

in place of thisset; this will cause me to be notified immediately when mailvestiand to be shn the
first few lines of the n& message.

Next | set the shell ariable ‘time’ to ‘15’ causing the shell to automatically print out statistics lines
for commands whichxecute for at least 15 secondsasfutime. Thevariable ‘history’ is set to 10 indicat-
ing that | wvant the shell to remember the last 10 commands | typeliisitey list, (described later).

| create aralias “ ts” which executes da@set(1) command setting up the modes of the termifi&le
parameters ttset indicate the kinds of terminal which | usually use when not on a hardwiredlgben
execute ‘ts” and also use thstty command to change the interrupt character to "C and the line kill charac-
ter to "U.

| then run the ‘msgs’ program, which pides me with ay system messages which Ivgarot seen
before; the ‘—f option here preents it from telling me aything if there are no memessages. Finallyf
my mailbox file ists, then | run the ‘mail’ program to process my mail.

When the ‘mail’ and ‘msgs’ programs finish, the shell will finish processindagin file and bgin
reading commands from the terminal, prompting for each with ‘When | log of (by giving thelogout
command) the shell will print ‘logout’ anckecute commands from the file ‘“.logout’ if ikists in my home
directory After that the shell will terminate amohix will log me of the system.If the system is not going
down, | will receive a rew login messageln ary case, after the ‘logout’ message the shell is committed to
terminating and will ta& ro further input from my terminal.

UsD:4-12 Anintroduction to the C shell

2.2. Shellvariables

The shell maintains a set wériables. We saw éove the \ariableshistory andtime which had al-
ues ‘10" and ‘15'.In fact, each shellariable has asalue an array of zero or mos&ings. Shell \ariables
may be assignedalues by the set commandt. has seeral forms, the most useful of whichas gven
abore and is

set name=alue

Shell variables may be used to storues which are to be used in commands later through a substi-
tution mechanismThe shell ariables most commonly referenced arey&er, those which the shell itself
refers to. By changing the alues of theseariables one can directlyfa€t the behaor of the shell.

One of the most importanaxiables is theariablepath. This variable contains a sequence of direc-
tory names where the shell searches for commanidsset command with no guments shes the alue
of all variables currently defined (we usually s&) in the shell. The de&ult value for path will be shwan
by setto be

% =t

argv 0

cwd {usr/bill
home {usr/bill
path (/usr/ucb /bin /ustr/bin)
prompt %

shell /bin/csh
status 0

term c100rv4pna
user bill

%

This output indicates that thanable path points to the current directohahd then ‘/usr/ucb’, ‘/bin’ and
‘lusr/bin’. Commandsvhich you may write might be in’ ‘(usually one of your directorieslCommands
developed at Berkley, live in ‘/usr/ucb’ while commands #eloped at Bell Laboratoriesvie in ‘/bin’ and
‘lusr/bin’.

A number of locally deeloped programs on the systerweliin the directory ‘/usr/local’.If we wish
that all shells which we Wioke © haveaccess to thesewgrograms we can place the command

set path=(. /usr/ucb /bin /usr/bin /usr/local)
in our file.cshic in our home directoryTry doing this and then logging out and back in and do
set

again to see that thealue assigned tpath has changed.

One thing you should bevare of is that the shelkamines each directory which you insert into your
path and determines which commands are contained tReept for the current directory, ‘which the
shell treats speciallyhis means that if commands are added to a directory in your search path after you
have darted the shell, tlyewill not necessarily be found by the shdfi.you wish to use a command which
has been added in thisay you should gie the command

rehash

to the shell, which will cause it to recompute its internal table of command locations, so that it will find the
newly added commandSince the shell has to look in the current directoryri.each command, placing it
at the end of the path specification usualtykg equialently and reducesverhead.

T Another directory that might interest you is /Juswnehich contains manuseful usercontrituted programs praded
with Berkeley Unix.

An Introduction to the C shell USD:4-13

Other useful bilt in variables are theariablehome which shaevs your home directorewd which
contains your current evking directory the \ariableignoreeof which can be set in youlogin file to tell
the shell not to @t when it receres an end-of-file from a terminal (as described a&Bo The variable
‘ignoreeof’is one of seeral variables which the shell does not care about #tgevof, only whether tlye
areset or unset. Thus to set thisariable you simply do

set ignoreeof
and to unset it do
unset ignoreeof

These gie the \ariable ‘ignoreedfno value, lut none is desired or required.

Finally, some other bilt-in shell \ariables of use are thawvablesnoclobberandmail. The metasyn-
tax

> filename

which redirects the standard output of a command wédiwarite and destrp the preious contents of the
named file.In this way you may accidentallyverwrite a file which is aluable. Ifyou would prefer that
the shell not werwrite files in this vay you can

set noclobber

in your .login file. Thentrying to do
date > nw

would cause a diagnostic if ‘n0 existed already You could type
date >! now

if you really wanted to werwrite the contents of ‘n@. The ‘>!" is a special metasyntax indicating that
clobbering the file is ok.T

2.3. Theshell's history list

The shell can maintaintastory list into which it places the @rds of preious commandsilt is pos-
sible to use a notation to reuse commands ards/ from commands in forming wecommands. This
mechanism can be used to repeatiptes commands or to correct minor typing missk commands.

The followving figure gives a ample session wolving typical usage of the history mechanism of the
shell. Inthis ekample we hee a vey simple C program which has ad(or two) in it in the file ‘lug.c’,
which we ‘cat’ out on our terminalWe then try to run the C compiler on it, referring to the filaings
‘1$’, meaning the last gument to the préous commandHere the V" is the history mechanismvatation
metacharacteend the ‘$’ stands for the lastgarment, by analogy to ‘$’ in the editor which stands for the
end of the line.The shell echoed the command, as duld hare keen typed without use of the history
mechanism, and thenxeeuted it. The compilation yielded error diagnostics so wevman the editor on
the file we were trying to compile, fix thedy and run the C compiler aig, this time referring to this com-
mand simply as ‘!c’, which repeats the last command which started with the lettdrtteere were other
commands starting with ‘c’ done recently we couldéhaaid ‘!cc’ or even ‘lcc:p’ which would have
printed the last command starting with ‘cc’ withomeeuting it.

After this recompilation, we ran the resulting ‘a.out’ file, and then noting that there asilaviag,
ran the editor agjn. Afterfixing the program we ran the C compilefaayg hut tacled onto the command
an «tra ‘—o kug’ telling the compiler to place the resultant binary in the filgy*brather than ‘a.out’.In
general, the history mechanisms may be usgd/laere in the formation of mecommands and other char
acters may be placed before and after the substituted commands.

TThe space between the ‘I’ and therd/‘now’ is critical here, as ‘Im@’ would be an imocation of thehistory mechanism,
and hae a btally different efect.

UsSD:4-14 Anintroduction to the C shell

% cat hug.c
main()

{

}
% cc !9
cc hug.c
"bug.c", line 4: ne/line in string or char constant
"bug.c", line 5: syntax error
% ed!$
ed hug.c
29
4s/);"&Ip
printf("hello");

printf("hello);

w
30
q
% lc
cc hug.c
% aout
hello% le
ed hug.c
30
4s/lo/lo\\n/p
printf("hello\n");

w
32
q
% !c —o bug
cc lug.c —o lig
% gze a.out bg
a.out: 2784+364+1028 = 4176b = 0x1050b
bug: 2784+364+1028 = 4176b = 0x1050b
% Is - 1*
Is -l a.out lig
—rwxr—xr—x 1 bill 3932 Dec 19 09:41 a.out
—rwxr—xr-x 1 hill 3932 Dec 19 09:42 g
% bug
hello
% num kug.c | spp
spp: Command not found.
% “spp”ssp
num hug.c | ssp

1 main()

3 {

4 printf("hello\n");

5}
% '] lpr
num tug.c | ssp | Ipr
%

An Introduction to the C shell USD:4-15

We then ran the ‘size’ command to seavlarge the binary program images wevaareated were,
and then an ‘Is -I' command with the samguement list, denoting thegument list **'. Finally we ran the
program ‘lug’ to see that its output is indeed correct.

To make a umbered listing of the program we ran the ‘num’ command on the €iggcb Inorder
to compress out blank lines in the output of ‘num’ we ran the output through the filter tgsmiskpelled
it as spp.To correct this we used a shell substitute, placing the atdared nev text between ' characters.
This is similar to the substitute command in the edit@nally, we repeated the same command with ‘I,
but sent its output to the line printer

There are other mechanismsitable for repeating commandd.he history command prints out a
number of preious commands with numbers by whichytlvan be referencedlhere is a &y to refer to a
previous command by searching for a string which appeared in it, and there ardestheseful, ays to
select aguments to include in a wecommand. Acomplete description of all these mechanismsviengin
the C shell manual pages in theix Programmegs Manual.

2.4. Aliases

The shell has aalias mechanism which can be used to m#ansformations on input commands.
This mechanism can be used to simplify the commands you type, to suppljt @efuments to com-
mands, or to perform transformations on commands and tigeimants. Thealias &cility is similar to a
macro fcility. Some of the features obtained by aliasing can be obtained also using shell command files,
but these tak pace in another instance of the shell and cannot direddgtahe current shells ginonment
or involve ammmands such asl which must be done in the current shell.

As an gample, suppose that there is avnesrsion of the mail program on the system calledvhe
mail’ you wish to use, rather than the standard mail program which is called ‘tfigibu place the shell
command

alias mail nevmail
in your.cshi file, the shell will transform an input line of the form
mail bill

into a call on ‘nevmail’. More generally suppose we wish the command ‘Is’ tavays shav sizes of files,
that is to alvays do ‘-s’. We @an do

aliasIsls -s

or even
alias dir Is —-s

creating a n& command syntax ‘dir’ which does an ‘Is —df.we say
dir “bill

then the shell will translate this to

Is —s /mnt/bill

Thus thealias mechanism can be used to yd® short names for commands, tovide defult
arguments, and to define wmeshort commands in terms of other commantisis also possible to define
aliases which contain multiple commands or pipelineswsitpwhere the guments to the original com-
mand are to be substituted using theilities of the history mechanisnThus the definition

aliascd ‘cd \I*; Is”

would do anls command after each change directodycommand. W enclosed the entire alias definition

in ’ characters to preent most substitutions from occurring and the character *;’ from being recognized as
a metacharacterThe ‘" here is escaped with a ‘\' to et it from being interpreted when the alias com-
mand is typed in.The \I*" here substitutes the entiregairment list to the pre-aliasirggl command, with-

out giving an error if there were nogquments. The;’ separating commands is used here to indicate that

USD:4-16 Anintroduction to the C shell

one command is to be done and then the. ngimilarly the definition
alias whois “grep \I" /etc/passwd’

defines a command which looks up its firgfusment in the passwd file.

Warning: The shell currently reads theshi file each time it starts ugf you place a laye number
of commands there, shells will tend to starindyjo A mechanism for sang the shell evironment after
reading thecshc file and quickly restoring it is underiopment, It for nov you should try to limit the
number of aliases you & o a reasonable numhber10 or 15 is reasonable, 50 or 60 will cause a notice-
able delay in starting up shells, and madfe system seem sluggish when yoecete commands from
within the editor and other programs.

2.5. More redirection; >> and >&
There are a f@ more notations useful to the terminal user whichehat been introduced yet.

In addition to the standard output, commands alse hadiagnostic outputwhich is normally
directed to the terminalven when the standard output is redirected to a file or a dipis. occasionally
desirable to direct the diagnostic output along with the standard odgrunstance if you ant to redirect
the output of a long running command into a file and wish e baecord of ag error diagnostic it pro-
duces you can do

command >& file

The >&' here tells the shell to route both the diagnostic output and the standard output int&lfite’.
larly you can gre the command

command & | pr

to route both standard and diagnostic output through the pipe to the line printer diaemon
Finally, it is possible to use the form

command >> file

to place output at the end of ansting file.t

2.6. Dbs; Backgmound, Foreground, or Suspended

When one or more commands are typed together as a pipeline or as a sequence of commands sepa-
rated by semicolons, a singleb is created by the shell consisting of these commands together as a unit.
Single commands without pipes or semicolons create the simplestsbglly every line typed to the
shell creates a jobSome lines that create jobs (one per line) are

sort < data
Is —s | sort —n | head -5
mail harold

If the metacharacter ‘&’ is typed at the end of the commands, then the job is starteabag@ind
job. This means that the shell does natitwor it to complete it immediately prompts and is ready for
another commandThe job rundn the ba&ground at the same time that normal jobs, callecegound
jobs, continue to be read amxkeuted by the shell one at a tim€hus

du > usage &

+ A command of the form
command >&! file
exists, and is used whemoclobberis set andile already &ists.
T If noclobberis set, then an error will resultfife does not eist, otherwise the shell will creafiée if it doesnt exist. A
form
command >>! file
makes it not be an error for file to notist whennoclobberis set.

An Introduction to the C shell uUsD:4-17

would run thedu program, which reports on the disk usage of yoorking directory (as well as gmlirec-
tories belav it), put the output into the file ‘usage’ and return immediately with a prompt for ¥hearma-
mand without out witing for du to finish. The du program would continue xecuting in the background
until it finished, ®en though you can type andezute more commands in the mean tinvghen a back-
ground job terminates, a message is typed by the shell just beforexthpamapt telling you that the job
has completedin the follonving example thedu job finishes sometime during th&eeution of themail
command and its completion is reported just before the prompt afteraih@b is finished.

% du > usage &

[1] 503

% mail bill

How do you knav when a background job is finished?
EOT

[1] - Done du > usage

%

If the job did not terminate normally the ‘Done’ message might say something elsKilied’. If you
want the terminations of background jobs to be reported at the tipeotiear (possibly interrupting the
output of other forground jobs), you can set thetify variable. Inthe preious example this wuld mean
that the ‘Done’ message mightyeacmme right in the middle of the message to BBlackground jobs are
unafected by ap signals from the &yboard like the STOP, INTERRUPT, or QUIT signals mentioned earlier

Jobs are recorded in a table inside the shell unt tdseninate. Inthis table, the shell remembers
the command names,gaiments and thprocess numberof all commands in the job as well as therky
ing directory where the jobas started.Each job in the table is either runnimgthe foegound with the
shell waiting for it to terminate, running the ba&ground, or suspendedOnly one job can be running in
the forground at one time,ub several jobs can be suspended or running in the background at ésce.
each job is started, it is assigned a small identifying number callgobtimemberwhich can be used later
to refer to the job in the commands describedvaeldnb numbers remain the same until the job terminates
and then are re-used.

When a job is started in the backgound using ‘&', its numésenell as the process numbers of all
its (top level) commands, is typed by the shell before prompting you for another comnuaretafple,

% Is —s | ©rt —n > usage &
[2] 2034 2035
%

runs the ‘Is’ program with the ‘=s’ options, pipes this output into the ‘sort’ program with the ‘-—n’ option
which puts its output into the file ‘usageSince the ‘&’ was at the end of the line, theseotprograms
were started together as a background jstter starting the job, the shell prints the job number in keisck

(2 in this case) follwed by the process number of each program started in th@l@m the shell immedi-
ates prompts for a mecommand, leging the job running simultaneously

As mentioned in section 1.8, fgm®und jobs becomsuspendedy typing "Z which sends sToP
signal to the currently running fayeound job A background job can become suspended by usingtdipe
command described b&lo When jobs are suspendedytheerely stop ay further progress until started
again, either in the foground or the backgoundThe shell notices when a job becomes stopped and
reports this dct, much lile it reports the termination of background jold%or foreground jobs this looks
like

% du > usage
Z

Stopped
%

‘Stopped’ message is typed by the shell when it notices thdutpeogram stoppedFor background jobs,
using thestop command, it is

USD:4-18 Anintroduction to the C shell

% ort usage &

[1] 2345

% gop %1

[1] + Stopped (signal) sort usage
%

Suspending foiground jobs can beevy useful when you need to temporarily change what you are doing
(execute other commands) and then return to the suspended\ist, foreground jobs can be suspended
and then continued as background jobs usindotheommand, allwing you to continue other avk and

stop waiting for the forground job to finish.Thus

% du > usage

Z

Stopped

% bg

[1] du > usage &
%

starts ‘du’ in the forground, stops it before it finishes, then continues it in the backgroumdnaglanore
foreground commands to beeeuted. Thisis especially helpful when a fayeound job ends up taking
longer than youxgected and you wish you had started it in the backgound in ¢frenbeg.

All job contol commands can takan algument that identifies a particular jolll job name agu-
ments bgin with the character ‘%’, since some of the job control commands also accept process numbers
(printed by theps command.) Thelefault job (when no gument is gien) is called theurrent job and is
identified by a ‘+’ in the output of thebs command, which shes you which jobs you lva. When only
one job is stopped or running in the background (the usual case)vitais dahe current job thus nogar-
ment is neededlf a job is stopped while running in the fgreund it becomes theurrent job and the
existing current job becomes tipeevious job - identified by a ‘-’ in the output gbbs. When the current
job terminates, the pvous job becomes the current joWhen given, the agument is either ‘%-’ (indicat-
ing the preious job); ‘%#', where # is the job number; ‘Y%opgrefhere pref is some unique prefix of the
command name andguments of one of the jobs; or ‘%?’ folled by some string found in only one of the
jobs.

The jobs command types the table of jobsyigg the job numbercommands and status (‘Stopped’
or ‘Running’) of each backgound or suspended jwiith the ‘—I' option the process numbers are also
typed.

% du > usage &

[1] 3398

% Is —s | ort —n > myfile &

[2] 3405

% mail bill

Z

Stopped

% jobs

[1] = Running du> usage
[2] Running Is —s | sort —n > myfile
[3] + Stopped maibill

% fg %s

Is —s | sort —n > myfile

% more myfile

Thefg command runs a suspended or background job in thgréaned. Itis used to restart a pie
ously suspended job or change a background job to run in tlggdonel (alleving signals or input from
the terminal). In the abwe example we usedg to change the ‘Is’ job from the background to the fore-
ground since we anted to it for it to finish before looking at its output fil&the bg command runs a
suspended job in the backgrounid.is usually used after stopping the currently runninggarend job

An Introduction to the C shell USD:4-19

with the sTop sighal. Thecombination of thesTop signal and thédgg command changes a fgreund job
into a background jobThe stop command suspends a background job

The kill command terminates a background or suspended job immediatedgddition to jobs, it
may be gien process numbers asgaiments, as printed Ips. Thus, in the gample abwe, the runningdu
command could hee been terminated by the command

% kill %1
[1] Terminated dw usage
%

The notify command (not theariable mentioned earlier) indicates that the termination of a specific
job should be reported at the time it finishes insteadadtfrvg for the ngt prompt.

If a job running in the background tries to read input from the terminal it is automatically stopped.
When such a job is then run in the fgr@und, input can begn to the job If desired, the job can be run
in the background agn until it requests input ag. Thisis illustrated in the follwing sequence where the
‘s’ command in the td editor might tak a bng time.

% ed bigfile

120000
1,$s/thisverd/thatword/
Z

Stopped

% bg

[1] ed bigfile &

%

. me forground commands
[1] Stopped (tty input) ed bigfile
% fg
ed bigfile
w
120000

q
%

So after the ‘s’ commandag issued, the ‘ed’ job ag stopped with “Z and then put in the background
usingbg. Some time later when the ‘s’ commandsafinisheded tried to read another command anasw
stopped because jobs in the backgound cannot read from the terfiiedty command returned the ‘ed’
job to the forground where it could once @g accept commands from the terminal.

The command
stty tostop

causes all background jobs run on your terminal to stop whgrat@bout to write output to the terminal.
This prevents messages from background jobs from interruptingyforand job output and allies you to
run a job in the background without losing terminal outpualso can be used for interagiprograms that
sometimes hae long periods without interactionThus each time it outputs a prompt for more input it will
stop before the promplit can then be run in the faypund usindg, more input can be gén and, if nec-
essary stopped and returned to the backgrodimis stty command might be a good thing to put in your
Jogin file if you do not lile autput from background jobs interrupting youonk. It also can reduce the
need for redirecting the output of background jobs if the output isempthig:

USD:4-20 Anintroduction to the C shell

% dty tostop
% wc hugefile &
[1] 10387
% ed text
... ome time later
q
[1] Stopped (tty output) wc hugefile
% fg wc
wc hugefile
13371 30123 302577
% dty —tostop

Thus after some time the ‘wc’ command, which counts the linesjsvand characters in a file, had one
line of output. When it tried to write this to the terminal it stoppeBly restarting it in the foground we
allowed it to write on the terminalxactly when we were ready to look at its outpBrograms which
attempt to change the mode of the terminal will also block, whether ¢osiop is set, when theare not
in the forground, as it wuld be \ery unpleasant to ke a ackground job change the state of the terminal.

Since thgobs command only prints jobs started in the currendgcating shell, it knas nothing
about background jobs started in other login sessions or within shellTiegps can be used in this case
to find out about background jobs not started in the current shell.

2.7. Working Dir ectories

As mentioned in section 1.6, the shell iwafs in a particulaworking directory The ‘change direc-
tory’ commandchdir (its short formcd may also be used) changes tharking directory of the shell, that
is, changes the directory you are located in.

It is useful to ma& a drectory for each project you wish toovk on and to place all files related to
that project in that directoryThe ‘male drectory’ commandmkdir, creates a me directory. The pwd
(‘print working directory’) command reports the absolute pathname of dking directory of the shell,
that is, the directory you are located ifhus in the gample belo:

% pwd

{usr/bill

% mkdir newpaper
% chdir nevpaper
% pwd
[usr/bill/nevpaper
%

the user has created andvem to the directorynewpaper where, for @mple, he might place a group of
related files.

No matter where you kia noved to in a drectory hierarcly, you can return to your ‘home’ login
directory by doing just

cd
with no aguments. Thaame ‘.. always means the directory almte current one in the hierasghhus
cd ..

changes the sheadlworking directory to the one directly almte current oneThe name ‘..can be used
in ary pathname, thus,

cd ../programs

means change to the directory ‘programs’ contained in the directowe dim current onelf you have
several directories for dferent projects undegay, your home directorythis shorthand notation permits
you to switch easily between them.

An Introduction to the C shell uUsD:4-21

The shell abays remembers the pathname of its currentkimg directory in the ariablecwd. The
shell can also be requested to remember thaque directory when you change to aveorking direc-
tory. If the ‘push directory’ commanpushdis used in place of thed command, the shell ges the name
of the current wrking directory on alirectory stak before changing to the weone. You can see this list
at ary time by typing the ‘directories’ commaratits.

% pushd nevpaper/references
“Inewpaper/references ~

% pushd /usr/lib/tmac

usr/lib/tmac “/nepaper/references ~
% dirs

usr/lib/tmac “/nepaper/references ~
% popd
“Inewpaper/references

% popd

%

The list is printed in a horizontal line, reading left to right, with a tilde (*) as shorthand for your home direc-
tory—in this case ‘/usr/bill. The directory stack is printed whesethere is more than one entry on it and

it changes.lt is also printed by airs command.Dirs is usually &ster and more informag than pwd

since it shavs the current wrking directory as well as grother directories remembered in the stack.

The pushd command with no gument alternates the current directory with the first directory in the
list. The'‘pop directory’ popd command without an gument returns you to the directory you were in
prior to the current one, discarding thevoes current directory from the stack @etting it). Typing
popd several times in a series tak you backard through the directories you had been in (changed to) by
pushdcommand. Therare other options tpushd and popd to manipulate the contents of the directory
stack and to change to directories not at the top of the stack; sz thanual page for details.

Since the shell remembers therking directory in which each jobas started, it arns you when
you might be confused by restarting a job in thegoyend which has a dérent working directory than
the current wrking directory of the shellThus if you start a background job, then change the shelik-
ing directory and then cause the background job to run in thgréoned, the shell arns you that the avk-
ing directory of the currently running fapound job is diierent from that of the shell.

% dirs -
/mnt/bill

% od myproject
% dirs
“Imyproject

% ed prog.c
1143

Z

Stopped

%o ..

% Is

myproject
textfile

% fg

ed prog.c (wd: “/myproject)

This way the shell wrns you when there is an implied change ofking directory even though no cd
command s issued.In the abwe example the ‘ed’ job ws still in ‘/mnt/bill/project’ &en though the
shell had changed to ‘/mnt/bil’A similar warning is gien when such a foground job terminates or is
suspended (using tlsgop signal) since the return to the shelhagimplies a change ofarking directory

UsSD:4-22 Anintroduction to the C shell

% fg

ed prog.c (wd: “/myproject)
.. . dter some editing

q

(wd naw: ")

%

These messages are sometimes confusing if you use programs that changentieirking directories,
since the shell only remembers which directory a job is started in, and assumes it stayShierd.

option ofjobs will type the working directory of suspended or background jobs when it iisrdift from
the current wrking directory of the shell.

2.8. Usefulbuilt-in commands
We row gve a few d the useful hilt-in commands of the shell describingahthey are used.

The alias command described ab®is used to assign meaiases and to shothe «isting aliases.
With no aguments it prints the current aliasésmay also be gien only one agument such as

alias Is

to shav the current alias foe.g., ‘Is’.

The echo command prints its guments. Itis often used irshell scriptsor as an interaate com-
mand to see what filenamepansions will produce.

The history command will shev the contents of the history listhe numbers gen with the history
evants can be used to referenceviiwas events which are dffcult to reference using the corteal mecha-
nisms introduced alve. There is also a shelbviable callecorompt. By placing a ‘I character in itsalue
the shell will there substitute the number of the current command in the historyolistan use this num-
ber to refer to this command in a history substitutibhus you could

set prompt="\! % ~
Note that the ‘' character had to becapedhere &en within *’ characters.

Thelimit command is used to restrict use of resour&®gh no aguments it prints the current limi-
tations:

cputime unlimited
filesize unlimited
datasize 5618bytes
stacksize 51Rbytes

coredumpsize unlimited
Limits can be set, e.g.:
limit coredumpsize 128k

Most reasonable units abbiations will work; see thesh manual page for more details.
Thelogout command can be used to terminate a login shell whicighaseof set.

Therehash command causes the shell to recompute a table of where commands are [Dlotésl.
necessary if you add a command to a directory in the currensskalith path and wish the shell to find it,
since otherwise the hashing algorithm may tell the shell that the comnaandl iw that directory when the
hash table &s computed.

The repeat command can be used to repeat a commarataddimes. Thus to mak 5 @pies of the
file one in the filefive you could do

repeat 5 cat one >> fiv

Theseter command can be used to satigbles in the efronment. Thus

An Introduction to the C shell USD:4-23

setern TERM adm3a

will set the alue of the evironment \ariableTERM to ‘adm3a’. A user progranprinteny exists which will
print out the ewironment. ltmight then sha:

% printerv

HOME=/usr/bill

SHELL=/bin/csh
PATH=:/usr/ucb:/bin:/usr/bin:/usr/local
TERM=adm3a

USER=Dill

%

Thesource command can be used to force the current shell to read commands fronThaufde.
source .cshrc

can be used after editing in a change tadkkrc file which you wish to tad ef ect right avay.

The time command can be used to cause a command to be timed no matteubl cpu time it
takes. Thus

% time cp /etc/rc /ust/bill/rc
0.0u 0.1s 0:01 8% 2+1k 3+2io 1pf+Ow
% time wc /etc/rc /usr/bill/rc

52 178 1347 /etc/rc

52 178 1347 /usr/bill/rc

104 356 2694 total
0.1u 0.1s 0:00 13% 3+3k 5+3io 7pf+0w
%

indicates that thep command used a gkgible amount of user time (u) and about 1/10th of a system time

(s); the elapsed timeag 1 second (0:01), therasvan gerage memory usage of 2k bytes of program space

and 1k bytes of data spacenthe cpu time imolved (2+1k); the program did three disk reads araldisk

writes (3+2i0), and took one pageuft and vas not s\vapped (1pf+Ow).The word count commandc on

the other hand used 0.1 seconds of user time and 0.1 seconds of system time in less than a second of
elapsed time.The percentage ‘13%’ indicates thateothe period when it as actre the command ‘wc’

used an\erage of 13 percent of thealable cpucycles of the machine.

The unalias and unset commands can be used to remaliases and ariable definitions from the
shell, andunsetem remorves variables from the efronment.

2.9. Whatelse?

This concludes the basic discussion of the shell for terminal ufbese are more features of the
shell to be discussed here, and all features of the shell are discussed in its manu@mpagssful feature
which is discussed later is tliereac built-in command which can be used to run the same command
sequence with a number offéifent aguments.

If you intend to useNiX a lot you you should look through the rest of this document and the csh
manual pages (sectionl) to becomniliar with the otherdcilities which areailable to you.

USD:4-24 Anintroduction to the C shell

3. Shellcontrol structures and command scripts

3.1. Introduction

It is possible to place commands in files and to cause shells todkedrio read and xecute com-
mands from these files, which are caltdell scripts.We here detail those features of the shell useful to
the writers of such scripts.

3.2. Make

It is important to first note what shell scripts @@ useful for There is a program calledale
which is \ery useful for maintaining a group of related files or performing sets of operations on related
files. For instance a lge program consisting of one or more files carelis dependencies described in a
malefile which contains definitions of the commands used to create théseenliffiles when changes
occur Definitions of the means for printing listings, cleaning up the directory in which the files reside, and
installing the resultant programs are easihd most appropriately placed in thislefile This format is
superior and preferable to maintaining a group of shell procedures to maintain these files.

Similarly when vorking on a document malefile may be created which definesahdifferent \er-
sions of the document are to be created and which optionsfbbr troff are appropriate.

3.3. Invocation and the agv variable
A csh command script may be interpreted by saying

% csh script ...

wherescript is the name of the file containing a grougsii commands and “.i.s replaced by a sequence
of aguments. Theshell places these gurments in the ariableargv and then bgins to read commands
from the script. These parameters are thesaikable through the same mechanisms which are used te refer
ence ay other shell ariables.

If you male the file ‘script’ executable by doing
chmod 755 script

and place a shell comment at thgibaing of the shell script (i.e. g, the file with a ‘#' character) then a
‘Ibin/csh’ will automatically be imoked to execute ‘script’ when you type

script

If the file does not leen with a ‘# then the standard shell ‘/bin/sh’ will be usedstecate it. This allovs
you to conert your older shell scripts to ussh at your comenience.

3.4. \Variable substitution

After each input line is bran into words and history substitutions are done on it, the input line is
parsed into distinct commandBefore each command igeeuted a mechanism kwoes variable substitu-
tion is done on theseavds. Keyed by the character ‘$’ this substitution replaces the namesiables by
their values. Thus

echo $agv

when placed in a command scripbwld cause the currenalie of the ariableargv to be echoed to the
output of the shell scriptlt is an error folargv to be unset at this point.

A number of notations are prialed for accessing components and aitdb of ariables. Theanota-
tion
$?name

expands to ‘1’ if name isetor to ‘0’ if name is noset. It is the fundamental mechanism used for checking
whether particularariables hae been assignedalues. Allother forms of reference to undefineatiables
cause errors.

An Introduction to the C shell USD:4-25

The notation
$#tname
expands to the number of elements in thdablename Thus

% st agv=(a b c)
% echo $?agv

1

% echo $#agv

3

% unset agv

% echo $?agv

0

% echo $agv
Undefined ariable: agv.
%

It is also possible to access the components afiable which has seral values. Thus
Sagv[1]
gives the first component a&rgv or in the @ample abwoe ‘a’. Similarly
$agv[$#agv]
would give ‘c’, and
Sagv[1-2]
would give ‘a B. Other notations useful in shell scripts are
$n
wheren is an intger as a shorthand for
Sagv[n]
thenth parameter and
$*
which is a shorthand for
$agv
The form
$$

expands to the process number of the current sBatice this process number is unique in the system it can
be used in generation of unique temporary file nariiég. form

$<

is quite special and is replaced by th&tdime of input read from the shalltandard input (not the script it
is reading). This is useful for writing shell scripts that are intenggtieading commands from the terminal,
or even writing a shell script that acts as a fiJtexading lines from its input file. Thus the sequence

echo 'yes or no?\c’

set a=($<)
would write out the prompt ‘yes or no?’ without awilime and then read the answer into tlagiable ‘a’.
In this case ‘$#a’ wuld be ‘0’ if either a blank line or end-of-file ("D)aw typed.

One minor diference between t$ and ‘$agv[n]’ should be noted hereThe form ‘$agv[n]’ will
yield an error ifn is not in the range ‘1-$#gw’ while ‘$n’ will never yield an out of range subscript error

USD:4-26 Anintroduction to the C shell

This is for compatibility with the ay older shells handled parameters.

Another important point is that it is ve¥ an eror to give a sibrange of the form ‘n-’; if there are
less tham components of the gen variable then no ards are substitutedA range of the form ‘m-n’
likewise returns an emptyeetor without gring an error whem exceeds the number of elements of the
given variable, preided the subscriptis in range.

3.5. Expressions

In order for interesting shell scripts to be constructed it must be possihlduate epressions in
the shell based on thalues of ariables. Irfact, all the arithmetic operations of the language C weai¢ a
able in the shell with the same precedence thagthheein C. In particular the operations ‘=="and ‘1=’
compare strings and the operators ‘&&' and’ implement the boolean and/or operatioithe special
operators ‘=" and ‘I’ are similar to ‘=="and ‘I="»xept that the string on the right side camehpattern
matching characters (E*, ? a []) and the test is whether the string on the left matches the pattern on the

right.
The shell also alles file enquiries of the form
—? filename
where ?’ is replace by a number of single charactEos.instance thexgpression primitie
—e filename
tell whether the file ‘filename’xgsts. Otherprimitives test for read, write andxecute access to the file,
whether it is a directorpr has non-zero length.

It is possible to test whether a command terminates norrbglyy primitive d the form ‘{ command
} which returns true, i.e. ‘1’ if the command succeexsieg normally with it status 0, or ‘0’ if the com-
mand terminates abnormally or witkitestatus non-zerolf more detailed information about thgeeution
status of a command is required, it can keceted and theariable ‘$status’ Xamined in the ng com-
mand. Since$status’ is set bywery command, it is ery transient.It can be saed if it is incorvenient to
use it only in the single immediately folling command.

For a full list of expression componentyalable see the manual section for the shell.

3.6. Sampleshell script

A sample shell script which mak use of thexpression mechanism of the shell and some of its con-
trol structure follavs:

An Introduction to the C shell uUsD:4-27

% cat copyc

#

Copyc copies those C programs in the specified list
to the directory “/backup if thyediffer from the files

dready in “/backup

#

set noglob

foreach i ($agv)

if ($i " *.c) continue # not a .c file so do nothing

if (! —r “/backup/$i:t) then
echo $i:t not in backup... not cp\'ed
continue

endif

cmp —s $i “/backup/$i:t # to set $status

if ($status != 0) then
echo n& backup of $i
cp $i “/backup/$i:t
endif
end

This script maks use of thédoreadh command, which causes the shell ®oeite the commands
between théoreadh and the matchingnd for each of the alues gven between ‘(" and ‘)’ with the named
variable, in this case ‘i' set to succesasivalues in the list.Within this loop we may use the command
break to stop &ecuting the loop andontinue to prematurely terminate one iteration andibehe net.
After theforead loop the iteration &riable {in this case) has thahe at the last iteration.

We st the wariablenoglob here to preent filename gpansion of the members afgv. This is a
good idea, in general, if thegarments to a shell script are filenames whicketdready beenxpanded or
if the aguments may contain filenamepansion metacharactert.is also possible to quote each use of a
‘$’ variable e&pansion, bt this is harder and less reliable.

The other control construct used here is a statement of the form
if (expression Yhen
command
endif

The placement of theekwords here isot flexible due to the current implementation of the shell.t
The shell does lva another form of the if statement of the form

1The follaving two formats are not currently acceptable to the shell:

if (expression) #Won't work!
then

command
endif

and

if (expression Yhen commandendif #Won't work

USD:4-28 Anintroduction to the C shell

if (expression rommand
which can be written

if (expression)\
command

Here we hee escaped the ndine for the sak o appearance. Theommand must notvwolve ‘|’, ‘&’ or
" and must not be another control commarithe second form requires the final ‘\' itomediately pre-
cede the end-of-line.

The more generaf statements alve dso admit a sequence efse-if pairs follaved by a single
elseand arendif e.g.:

if (expression Yhen
commands

else if(expression Yhen
commands

else
commands
endif

Another important mechanism used in shell scripts is the *:" modi¥és can use the modifier “:r’
here to ®tract a root of a filename or ‘e’ tocteact theexension. Thus if the ariablei has the alue
‘‘mnt/foo.bar’ then

% echo $i $i:r $ice
/mnt/foo.bar /mnt/foo bar
%

shavs hav the ‘“:r' modifier strips df the trailing ‘.bar’ and the the “:e’ modifier s only the ‘bar’.
Other modifiers will tai& df the last component of a pathnamevieg the head “:h’ or all lt the last com-
ponent of a pathname lgag the tail :t'. These modifiers are fully described in tgh manual pages in
the Users Reference Manuallt is also possible to use tikemmand substitutiomechanism described in
the net major section to perform modifications on strings to then reenter thessinglfonment. Since
each usage of this mechanismalves the creation of a weprocess, it is much morejgensve o use than

the ’ modification mechanism.¥ Finallwe rote that the character ‘# Xeally introduces a shell com-
ment in shell scripts (i not from the terminal) All subsequent characters on the input line after a ‘#" are
discarded by the shelllhis character can be quoted using ‘"’ or ‘\' to place it in gument vord.

3.7. Othercontrol structures
The shell also has control structurdsile andswitch similar to those of CThese tak the forms
while (expression)
commands
end

T Itis dso important to note that the current implementation of the shell limits the number of *:" modifiers on a ‘$’ substitu-
tion to 1. Thus

% echo $i $i:h:t
la/blc /a/b:t
%

does not do what oneowld expect.

An Introduction to the C shell USD:4-29

and

switch (word)

casestrl:
commands
breaksw

casestrn:
commands
breaksw

default:
commands
breaksw

endsw

For details see the manual section ésh. C programmers should note that we lseakswto exit from a
switch while break exits awhile or foread loop. A common mista& to make in csh scripts is to use
break rather tharbreakswin switches.

Finally, csh allows agoto statement, with labels looking ékhey do in C, i.e.:

loop:
commands
gotoloop

3.8. Supplyinginput to commands

Commands run from shell scripts raeeby default the standard input of the shell which is running
the script. This is diferent from preious shells running undemix. It allows shell scripts to fully partici-
pate in pipelines, i mandatesxtra notation for commands which are togdakine data.

Thus we need a metanotation for supplying inline data to commands in shell s&sipis.ecample,
consider this script which runs the editor to delete leading blanks from the lines ingrankrarfile:

% cat deblank

deblank —— remee leading blanks
foreach i ($agv)

ed - $i << "EOF’

1,8s/[¥

w

q

"EOF’

end

%

The notation ‘<< "EOF"’ means that the standard input foetheommand is to come from thexten the
shell script file up to the meline consisting of xactly “EOF". The fact that the ‘EOF’ is enclosed in
characters, i.e. quoted, causes the shell to not perfaniable substitution on the int&ming lines.In gen-
eral, if ary part of the vord following the ‘<<’ which the shell uses to terminate thd te be gven to the
command is quoted then these substitutions will not be perfortnethis case since we used the form
‘1,$" in our editor script we needed to insure that this ‘@5wnot ariable substitutedWe muld also hee
insured this by preceding the ‘$’ here with a ‘\', i.e.:

USD:4-30 Anintroduction to the C shell

1\$s/ 1*//

but quoting the ‘EOF’ terminator is a more reliableywf achiging the same thing.

3.9. Catchinginterrupts

If our shell script creates temporary files, we may wish to catch interruptions of the shell script so
that we can clean up these fil&&e an then do

onintr label

wherelabel is a label in our programif an interrupt is receed the shell will do a ‘goto label’ and we can
remove the temporary files and then do ext command (which is ddlt in to the shell) to xt from the
shell script. If we wish to &it with a non-zero status we can do

exit(1)

e.g. to it with status ‘1'.

3.10. Whatelse?

There are other features of the shell useful to writers of shell procedtitesterboseand echo
options and the relatees and—x command line options can be used to help trace the actions of the shell.
The—n option causes the shell only to read commands and ngetate them and may sometimes be of
use.

One other thing to note is thegh will not execute shell scripts which do notdie with the character
‘#', that is shell scripts that do notdia with a commentSimilarly, the ‘/bin/sh’ on your system may well
defer to ‘csh’ to interpret shell scripts whichgirewith ‘#’. This allons shell scripts for both shells todi
in harmolty.

an

There is also another quotation mechanism using " whichwvallanly some of thexpansion mech-
anisms we hae 9 far discussed to occur on the quoted string andesdovmak this string into a single
word as ' does.

An Introduction to the C shell UsSD:4-31

4. Other, less commonly used, shell featas

4.1. Loopsat the terminal; variables as \ectors

It is occasionally useful to use tli@ead control structure at the terminal to aid in performing a
number of similar commanddg:or instance, there were at one point three shells in use on theyQary
system at Cory Hall, ‘/bin/sh’, ‘/bin/nsh’, and ‘/bin/cshTo count the number of persons using each shell
one could hee issued the commands

% grep —c csh$ /etc/passwd
27

% grep —c nsh$ /etc/passwd
128

% grep —c -v sh$ /etc/passwd
430

%

Since these commands aexy similar we can useread to do this more easily

% foreach i ("sh$” “csh$” "-v sh$")
? gep —c $i /etc/passwd

? end

27

128

430

%

Note here that the shell prompts for input with *? * when reading the body of the loop.

Very useful with loops areariables which contain lists of filenames or othe@rdg. You can, for
example, do

% set a=('Is")
% echo $a
csh.n csh.rm
% ls

csh.n

csh.rm

% echo $#a
2

%

The set command hereayethe \ariablea a list of all the filenames in the current directory akig. W
can then iteratever these names to performyachosen function.

The output of a command within ™’ characters isvated by the shell to a list ofards. You can
also place the *' quoted string within “” characters toetach (non-empty) line as a component of the
variable; preenting the lines from being split intookds at blanks and tab# modifier “:x’ exists which
can be used later toxgand each component of thariable into anotherariable splitting it into separate
words at embedded blanks and tabs.

4.2. Braceq ... } in argument expansion

Another form of filename>gansion, alluded to beforevislves the characters ‘{" and ‘}.These
characters specify that the contained strings, separatetdrg to be consecwily substituted into the
containing characters and the resukgamded left to rightThus

A{strl,str2,...strn}B

expands to

USD:4-32 Anintroduction to the C shell

AstrlB Astr2B ... AstrnB

This expansion occurs before the other filenampamsions, and may be applied rectdlyi (i.e. nested).
The results of eachxpanded string are sorted separatkdit to right order being presexd. Theresulting
filenames are not required teig if no other &pansion mechanisms are usdthis means that this mecha-
nism can be used to generatguaments which are not filenamest lvhich hae common parts.

A typical use of this wuld be
mkdir “/{hdrs,retrofit,csh}

to male subdirectories ‘hdrs’, ‘retrofit’ and ‘csh’ in your home directorihis mechanism is most useful
when the common prefix is longer than in thiaraple, i.e.

chown root /usr/{ucb/{e,edit},lib/{ex?.?*,hav_ex}}

4.3. Commandsubstitution

A command enclosed in *’ characters is replaced, just before filenamesgparaled, by the output
from that commandThus it is possible to do

set pwd="pwd"
to save the current directory in theaviablepwd or to do
ex grep —-| TRACE *.c’

to run the editorex supplying as guments those files whose names end in ‘.c’ whicke Hae string
‘TRACE’ in them.*

4.4. Otherdetails not corered here

In particular circumstances it may be necessary tavkhe act nature and order of tifent sub-
stitutions performed by the shellhe exact meaning of certain combinations of quotations is also occa-
sionally important.These are detailed fully in its manual section.

The shell has a number of command line option flags mostly of use in wriikgprograms, and
delugging shell scriptsSee the csh(1) manual section for a list of these options.

*Command &pansion also occurs in input redirected with ‘<<’ and within *" quotatidRefer to the shell manual section
for full details.

An Introduction to the C shell USD:4-33

Appendix — Special characters

The following table lists the special characterssii and theunix system, giing for each the section(s) in
which it is discussedA number of these characters alswdgecial meaning inx@ressions. Seiecsh
manual section for a complete list.

Syntactic metacharacters

; 2.4 separatesommands to bexecuted sequentially

| 15 separatesommands in a pipeline

() 2236 brackts expressions andariable \alues

& 2.5 follows commands to bexecuted without wvaiting for completion

Filename metacharacters

/ 1.6 separatesomponents of a file'pathname

? 16 epansion character matchingyasingle character

* 1.6 epansion character matchingyasequence of characters

[] 1.6 epansion sequence matching/angle character from a set

~ 1.6 usedat the bginning of a filename to indicate home directories
{} 4.2 usedo specify groups of guments with common parts

Quotation metacharacters

\ 1.7 prevents meta-meaning of follang single character
’ 1.7 prevents meta-meaning of a group of characters
" 4.3 like’, but allows variable and commandcgeansion

Input/output metacharacters

< 15 indicategedirected input
> 1.3 indicategedirected output

Expansion/substitution metacharacters

$ 34 indicatewariable substitution

! 2.3 indicatesistory substitution

: 3.6 precedesubstitution modifiers

h 2.3 usedn special forms of history substitution
: 4.3 indicatessommand substitution

Other metacharacters

13,3.6 bgins scratch file names; indicates shell comments
- 1.2 prefives option (flag) @uments to commands
% 26 prefixes job name specifications

USD:4-34 Anintroduction to the C shell

Glossary

This glossary lists the most important terms introduced in the introduction to the sheNemefgi
erences to sections of the shell document for further information about tReferences of the form ‘pr
(1)’ indicate that the commart is in theunix User Reference manual in sectionYou can look at an
online copy of its manual page by doing

man 1 pr

References of the form (2.5) indicate that more information can be found in section 2.5 of this manual.

Your current directory has the nameds well as the name printed by the command
pwd; see alsdirs. The current directory”is wsually the firstomponentof the search
path contained in theaviablepath, thus commands which are inare found first (2.2).
The character”is dso used in separatimpmponentf filenames (1.6).The character

‘.” at the bginning of acomponentof a pathnameis treated specially and not matched
by thefilename gpansionmetacharacters ‘?’, **’, and [’ /T’ pairs (1.6).

Each directory has a file.in it which is a reference to its parent directoifter
changing into the directory witthdir , i.e.

chdir paper
you can return to the parent directory by doing

chdir ..

The current directory is printed fpyvd (2.7).

a.out Compilersvhich create xecutable images create them, byaief, in the filea.out. for
historical reasons (2.3).

absolute pathname
A pathnamewhich begins with a ‘/’ isabsolutesince it specifies theath of directories
from the bginning of the entire directory system — callediihat directory Pathnames
which are notibsoluteare calledelative (see definition ofelative pathnamé (1.6).

alias Analias specifies a shorter or tBfent name for anix command, or a transformation
on a command to be performed in the shd@lhe shell has a commaradias which
establishegliases and can print their currenblues. Theeommandunalias is used to
remove aliases(2.4).

argument Commands UNIX receve a Ist of argumentwords. Thughe command
echoabc

consists of theommand naméecho’ and threargumentwords ‘a’, ‘b’ and ‘c’. The
set ofargumentsafter thecommand namés said to be thargument listof the com-
mand (1.1).

argv Thelist of aguments to a command written in the shell language (a shell script or shell
procedure) is stored in anable calledargv within the shell. This name is tadn from
the cowentional name in the C programming language (3.4).

background Commandstarted without witing for them to complete are calléddground com-
mands (2.6).

base Afilename is sometimes thought of as consisting lidise part, before an‘.’ character
and arexension- the part after the’:. Seefilenameandexension(1.6) and basename
).

bg Thebg command causes suspendedjob to continue xecution in thebadkground
(2.6).

bin A directory containing binaries of programs and shell scripts toxéieed is typically

called abin directory The standard systetnin directories are ‘/bin’ containing the
most hewily used commands and ‘/usr/bin’ which contains most other user programs.

An Introduction to the C shell USD:4-35

break

breaksw

builtin

case

cat

cd

chdir

chsh

cmp

command

command name

Programs deeloped at UC Ber&ley live in ‘Jusr/ucb’, while locally written programs
live in ‘/usr/local’. Gamesare lept in the directory ‘/usrgmes’. You can place binaries

in ary directory If you wish to &ecute them often, the name of the directories should be
acomponenibf the \ariablepath.

Break is a huiltin command used tox#& from loops within the control structure of the
shell (3.7).

Thebreaksw builtin command is used toxaé from a switch control structure, lik a
break exits from loops (3.7).

A command eecuted directly by the shell is calledsiltin command. Mostommands
in UNIX are not lilt into the shell, bt rather gist as files irbin directories. Theseom-
mands are accessible because the directories in whigchetside are named in tipath
variable.

Acasecommand is used as a label iswaitch statement in the shedloontrol structure,
similar to that of the language @etails are gien in the shell documentation ‘csh (1)’
(3.7).

Thecat program catenates a list of specified files onsth@dad output. It is usually
used to look at the contents of a single file on the terminal, to ‘cat a file’ (1.8, 2.3).

Thecd command is used to change twerking directory. With no aguments,cd
changes youwworking directory to be youthomedirectory (2.4, 2.7).

Thechdir command is a syngm for cd. Cd is usually used because it is easier to
type.

Thechsh command is used to change the shell which you usevon By default, you

use an dierent \ersion of the shell which resides in ‘/bin/siYou can change your
shell to ‘/bin/csh’ by doing

chsh yowlogin-name /bin/csh
Thus | would do
chsh bill /bin/csh

It is only necessary to do this onc&he net time you log in touNix after doing this
command, you will be usingsh rather than the shell in ‘/bin/sh’ (1.9).

Cmp is a program which compares filelf.is usually used on binary files, or to see if
two files are identical (3.6)For comparing ta&t files the prograndiff, described in ‘dif
(1) is used.

Afunction performed by the system, either by the shelu{iéilocommand or by a pro-
gram residing in a file in a directory within tb&ix system, is called @eemmand(1.1).

When a command is issued, it consists ecbmmand namewhich is the first wrd of
the command, follwed by aguments. Theorvention onuNix is that the first wrd of a
command names the function to be performed (1.1).

command substitution

component

continue

The replacement of a command enclosed in *’ characters byxtheutiput by that com-
mand is calledommand substitutiofd.3).

Apart of apathnamebetween ‘/’ characters is calleccamponentwf thatpathname A
variable which has multiple strings aslwe is said to he sveaal componens; each
string is acomponentof the \ariable.

Abuiltin command which causexeeution of the enclosindpread or while loop to
cycle prematurely Smilar to thecontinue command in the programming language C
(3.6).

USD:4-36

control-

core dump

cp
csh
.cshrc

cwd

date
delugging

default:

DELETE
detached

diagnostic

directory

directory stack

dirs
du

Anintroduction to the C shell

Certainspecial characters, calledntiol characters, are produced by holdingvdahe
CONTROL key on your terminal and simultaneously pressing another charameh like
the SHIFT key is used to produce upper case characters. €hasol-c is produced by
holding davn thecoNTROL key while pressing the ‘c’ &y. Usually UNiX prints an caret
(") followed by the corresponding letter when you typmiatiol character (e.g. “C’ for
contmwol-c (1.8).

When a program terminates abnormgathe system places an image of its current state
in a file named ‘core’.This core dump can be gamined with the system defpger ‘adb

(1) or 'sdb (1)’ in order to determine what went wrong with the program (1f8he
shell produces a message of the form

lllegd instruction (core dumped)

(where ‘lllegd instruction’ is only one of seral possible messages), you should report
this to the author of the program or a system administis#teng the ‘core’ file.

Thecp (copy) program is used to cgghe contents of one file into another fileis one
of the most commonly usedix commands (1.6).

Thename of the shell program that this document describes.

Thdile .cshc in yourhomedirectory is read by each shell as ighes execution. Itis
usually used to change the setting of tagablepath and to sealias parameters which
are to tak dfect globally (2.1).

The cwd variable in the shell holds thebsolute pathnameof the currentworking
directory. It is changed by the shell wheres your currentworking directory changes
and should not be changed otherwise (2.2).

Thedate command prints the current date and time (1.3).

Delugging is the process of correcting miséaskin programs and shell scriptBhe shell
has seeral options and ariables which may be used to aid in sdeltugging (4.4).

Thelabel default: is used within shelswitch statements, as it is in the C language to
label the code to bexecuted if none of thease labels matches thealue switched on
(3.7).

TheDELETE or RUBOUT key on the terminal normally causes an interrupt to be sent to the
current job Mary users change the interrupt character to be "C.

Acommand that continues running in thadkground after you logout is said to be
detated.

Arerror message produced by a program is often referred tdiagrnastic. Most error
messages are not written to standad output, since that is often directedvay from
the terminal (1.3, 1.5).Error messsages are instead written to diagnostic output
which may be directedasy from the terminal, it usually is not.Thusdiagnosticswill
usually appear on the terminal (2.5).

Astructure which contains filedAt any time you are in one particuldirectory whose
names can be printed by the commamel. The chdir command will change you to
anotherdirectory, and male the files in thadirectory visible. Thedirectory in which
you are when you first login is yohomedirectory (1.1, 2.7).

The shell sees the names of pwous working directoriesin the directory stak when
you change your curremorking directory via the pushd command. Thedirectory
stadk can be printed by using tliérs command, which includes your curremorking
directory as the first directory name on the left (2.7).

Thedirs command prints the shedldirectory stak (2.7).

Thedu command is a program (described in ‘du (1)’) which prints the number of disk
blocks is all directories bealoand including your currenworking directory (2.6).

An Introduction to the C shell UsD:4-37

echo Theacho command prints its guments (1.6, 3.6).
else Theelse command is part of the ‘if-then-else-eridibntrol command construct (3.6).
endif If anif statement is ended with theoxd then, al lines following theif up to a line start-

ing with the vord endif or else are executed if the condition between parentheses after
theif is true (3.6).

EOF An endof-file is generated by the terminal by a control-d, and wane command
reads to the end of a file which it has bearemgiss input. Commandseceving input
from apipe receve a endof-file when the command sending them input completes.
Most commands terminate when yhreceive an endof-file. The shell has an option to
ignoreendof-file from a terminal input which may help yoedp from logging out acci-
dentally by typing too mancontrol-d’s (1.1, 1.8, 3.8).

escape Acharacter ‘\" used to pvent the special meaning of a metacharacter is sagddape
the character from its special meanifthus
echo *
will echo the character *’ while just
echo *

will echo the names of the file in the current directdry this example, \escapes ‘*

(1.7). Therds also a non-printing character callescape usually labelledesc or ALT-
MODE on terminal lkeyboards. Somelder UNIX systems use this character to indicate
that output is to beuspended Most systems use control-s to stop the output and con-
trol-q to start it.

/etc/passwd Thifile contains information about the accounts currently on the sydteronsists of
a line for each account with fields separated by ‘' characters (Y&).can look at this
file by saying

cat /etc/passwd

The commandfinger andgrep are often used to search for information in this filee
‘finger (1), ‘passwd(5)’, and ‘grep (1)’ for more details.

exit Theext command is used to force termination of a shell script, andilisito the shell
(3.9).
exit status A command which disa@rs a problem may reflect this back to the command (such as a

shell) which ivoked (executed) it. It does this by returning a non-zero number asts
status, a gatus of zero being considered ‘normal terminatiofihe ext command can
be used to force a shell command script @ @i ron-zeroext status (3.6).

expansion Thereplacement of strings in the shell input which contain metacharacters by other
strings is referred to as the procesgxqfansion Thus the replacement of theowd *’
by a sorted list of files in the current directory is a ‘filenam@aasion’. Similarlythe
replacement of the characters ‘I’ by thattef the last command is a ‘historyxpan-
sion’. Expansionsare also referred to asibstitutions(1.6, 3.4, 4.2).

expressions Expressionsare used in the shell to control the conditional structures used in the writing
of shell scripts and in calculatingalues for these scriptsThe operators\ailable in
shellexpressionsare those of the language C (3.5).

extension Filenamesften consist of dase name and aexension separated by the characteér .
By corvention, groups of related files often share the seooe name. Thusf ‘prog.c’
were a C program, then the object file for this programuley be stored in ‘prog.o’.
Similarly a paper written with the ‘-me’ nfofmacro package might be stored in
‘paperme’ while a formattedersion of this paper might beft in ‘papeout’ and a list
of spelling errors in ‘papearrs’ (1.6).

USD:4-38

fg

filename

Anintroduction to the C shell

Thejob contol commandgq is used to run dadground or suspendedob in thefore-
ground (1.8, 2.6).

Eaclfile in uNix has a name consisting of up to 14 characters and not including the
character '/’ which is used ipathnamebuilding. Mostfilenamesdo not bgin with the
character *, and contain only letters and digits with perhaps a€parating thébase
portion of thefilenamefrom anexension(1.6).

filename &pansion

flag

foreach

foreground

goto

grep

head

history

home directory

Filename gpansionuses the metacharacters **’, *?’ and ‘[and ‘]’ to pide a con-
venient mechanism for naming filelsing filename gpansionit is easy to name all the
files in the current directoryr all files which hae a @ mmonroot name. Othefilename
expansion mechanisms use the metacharacter " andnefites in other users’ directo-
ries to be named easily (1.6, 4.2).

Mary UNIX commands acceptguments which are not the names of files or other users
but are used to modify the action of the commandfese are referred to disg
options, and by camention consist of one or more letters preceded by the character ‘-’
(1.2). Thughels (list files) command has an option ‘s’ to list the sizes of filHEs is
specified

Is -s

Thdoreadh command is used in shell scripts and at the terminal to specify repetition of
a ®quence of commands while thalue of a certain shellaviable ranges through a
specified list (3.6, 4.1).

Whercommands arexecuting in the normal ay such that the shell isaiting for them
to finish before prompting for another commandythe said to bdoreground jobsor
running in the foegound. This is as opposed tmadkground. Foreground jobs can be
stopped by signals from the terminal caused by typirfgréiiit control characters at the
keyboard (1.8, 2.6).

Theshell has a commargbto used in shell scripts to transfer control to gegilabel
(3.7).

Thegrep command searches through a list @fuanent files for a specified stringhus
grep bill /etc/passwd

will print each line in the fildetc/passwdwhich contains the string ‘bill’.Actually,
grep scans foregular expressionsin the sense of the editors ‘ed (1)’ and (&)'. Grep
stands for ‘globally findegular expressionand print’ (2.4).

Theéhead command prints the firstyielines of one or more filedf you have a lunch of
files containing tet which you are wndering about it is sometimes useful to head
with these files as guments. Thiwill usually shav enough of what is in these files to
let you decide which you are interested in (1.5).

Head is also used to describe the part giaahnamebefore and including the last ‘/
character Thetail of apathnameis the part after the last ‘/'The “:h’ and “:t' modifiers
allow thehead or tail of apathnamestored in a shellariable to be used (3.6).

Thehistory mechanism of the shell alie previous commands to be repeated, possibly
after modification to correct typing misekor to change the meaning of the command.
The shell has history list where these commands aepk and distory variable which
controls hav lamge this list is (2.3).

Each user has home diectory, which is gven in your entry in the passwd file,
letc/passwd This is the directory which you are placed in when you first lo@ime cd
or chdir command with no guments tak&s you back to this directgrwhose name is
recorded in the shellaviablehome You can also access theme diectories of other

An Introduction to the C shell

ignoreeof

input

interrupt

job

job control

job number

jobs
kill

Jogin

login shell

logout

Jlogout

USD:4-39

users in forming filenames usingfilename gpansion notation and the character
(1.6).

A conditional command within the shell, tlife command is used in shell command
scripts to ma& decisions about what course of action tcetadxt (3.6).

Normallyyour shell will &it, printing ‘logout’ if you type a control-d at a prompt of ‘%
". This is the vay you usually log dfthe system.You canset the ignoreeof variable if
you wish in your.login file and then use the commalodjout to logout. This is useful
if you sometimes accidentally type too masontrol-d characters, logging yourselff of
(2.2).

Mary commands oruNix take information from the terminal or from files which yhe
then act on.This information is calleéhput. Commands normally read famput from
their standad input which is, by dedult, the terminal.This standad input can be redi-
rected from a file using a shell metanotation with the characterMany commands
will also read from a file specified agament. Commandsiaced inpipelineswill read
from the output of the pvéous command in thpipeline. The leftmost command in a
pipeline reads from the terminal if you neither redirectimgut nor gie it a flename to
use asstandad input. Special mechanismsxest for supplying input to commands in
shell scripts (1.5, 3.8).

Aninterrupt is a signal to a program that is generated by typing "C. (On oddsions

of UNIX the RuBouUT or DELETE key were used for this purposel) causes most pro-
grams to stop>@cution. Certairprograms, such as the shell and the editors, handle an
interrupt in special vays, usually by stopping what there doing and prompting for
another commandWhile the shell is xecuting another command andhiting for it to
finish, the shell does not listen taterrupts. The shell often wakes up when you hit
interrupt because mancommands die when thigeceve an interrupt (1.8, 3.9).

Oneor more commands typed on the same input line separated by ‘|’ or ‘;’ characters are
run together and are calledab. Smple commands run by themses/without ag ‘|’

or ‘;’ characters are the simplgebs. bbs are classified a®regound, badkground, or
suspended?2.6).

The Hhuiltin functions that control thexecution of jobs are callejpb contol commands.
These ardg, fg, dop, kill (2.6).

When each job is started it is assigned a small number caltda rrumberwhich is
printed nat to the job in the output of tjebs command. Thisiumber preceded by a
‘%’ charactey can be used as angament tgob contol commands to indicate a specific
job (2.6).

Thejobs command prints a table skimg jobs that are either running in thadkground

or aresuspended?2.6).

A command which sends a signal to a job causing it to terminate (2.6).

Thefile .login in your home directory is read by the shell each time you logitio<
and the commands there are@ited. Therare a number of commands which are use-
fully placed here, especialfet commands to the shell itself (2.1).

The shell that is started on your terminal when you login is calledlggur shell. Itis
different from other shells which you may run (e.g. on shell scripts) in that it reads the
login file before reading commands from the terminal and it readsotpaut file after

you logout (2.1).

Thelogout command causes a login shell #te Normally, a login shell will it when
you hit control-d generating aandof-file, but if you hare stignoreeofin you .login
file then this will not verk and you must udegout to log of theuNix system (2.8).

Whenyou log of of uNix the shell will eecute commands from the fillbgout in your
homedirectory after it prints ‘logout’.

USD:4-40 Anintroduction to the C shell

lpr The commandlpr is the line printer daemonThe standard input dpr spooled and
printed on theuNix line printer You can also gelpr a list of filenames as guments to
be printed.It is most common to udpr as the last component opgeline (2.3).

Is Thels (list files) command is one of the most commonly usest commands. \ith no
argument filenames it prints the names of the files in the current dire¢tds a num-
ber of usefulflag aguments, and can also bevei the names of directories asgyar
ments, in which case it lists the names of the files in these directories (1.2).

mail Themail program is used to send and reeeiressages from othemix users (1.1, 2.1),
whether thg are logged on or not.

malke The male command is used to maintain one or more related files andjaoize func-
tions to be performed on these filda.mary waysmale is easier to use, and more help-
ful than shell command scripts (3.2).

malefile Thefile containing commands fonale is calledmalefile or Makefile (3.2).

manual Themanual often referred to is theJNiXx manual’. Iltcontains 8 numbered sections with
a description of eacluNix program (section 1), system call (section 2), subroutine (sec-
tion 3), deice (section 4), special data structure (section &peg(section 6), miscella-
neous item (section 7) and system administration program (sectiofh8)e are also
supplementary documents (tutorials and reference guides) feidinali programs which
require gplanation in more detail An online \ersion of themanual is accessible
through theman command. Itglocumentation can be obtained online via

man man

If you cant decide what manual page to look in, try #popos(1) command.The sup-
plementary documents are in subdirectories of /usr/doc.

metacharacter

Many characters which are neither letters nor digitgehgpecial meaning either to the
shell or touNix. These characters are caliegtabtaracters. If itis necessary to place
these characters ingquments to commands without thenving their special meaning
then thg must bequoted An example of ametadaracter is the character ‘>’ which is
used to indicate placement of output into a fil@r the purposes of thieistory mecha-
nism, most unquotethetabharacteis form separate ards (1.4). The appendix to this
users manual lists thenetabaracters in groups by their function.

mkdir Themkdir command is used to create awrdirectory.

modifier Substitutionsvith the history mechanism, &yed by the character ‘I'or of variables
using the metacharacter ‘$’, are often subjected to modifications, indicated by placing
the character ' after the substitution and feling this with themodifier itself. The
command substitutiomechanism can also be used to perform modification in a similar
way, but this notation is less clear (3.6).

more Theprogrammore writes a file on your terminal aling you to control hev much text
is displayed at a timeMore can mae trough the file screenful by screenful, line by
line, search forard for a string, or start am at the bginning of the file.It is generally
the easiest ay of viaving a file (1.8).

noclobber Theshell has a ariablenoclobber which may be set in the fildogin to prevent acci-
dental destruction of files by the >’ output redirection metasyntax of the shell (2.2, 2.5).

noglob Theshell \ariablenoglob is set to suppress tHigename gpansion of aguments con-
taining the metacharacters ™, **’, ‘2, ‘[’ and T (3.6).

notify Thenotify command tells the shell to report on the termination of a spéeifiground
job at the &act time it occurs as opposed taiting until just before the méprompt to
report the terminationThe notify variable, if set, causes the shell taovays report the
termination ofbadground jobs exactly when thg occur (2.6).

An Introduction to the C shell UsSD:4-41

onintr

output

path

pathname

pipeline

popd

port

pr

printerv

Theonintr command is bilt into the shell and is used to control the action of a shell
command script when anterrupt signal is receied (3.9).

Maly commands irunNix result in some lines of xewhich are called thewutput. This
output is usually placed on what is kmwo as thestandad output which is normally
connected to the userterminal. Theshell has a syntax using the metacharacter ‘>’ for
redirecting thestandad output of a command to a file (1.3)Jsing thepipe mechanism
and the metacharacter ‘| it is also possible forstamdad output of one command to
become thestandad input of another command (1.5)Certain commands such as the
line printer daemorp do not place their results on tiseandad output but rather in
more useful places such as on the line printer (S8ilarly thewrite command places
its output on another userterminal rather than itstandad output (2.3). Commands
also hae adiagnostic outputwhere thg write their error message®Normally these go

to the terminal een if the standad output has been sent to a file or another command,
but it is possible to direct error diagnostics along wstandad output using a special
metanotation (2.5).

Theshell has a ariable path which gves the names of the directories in which it
searches for the commands which it igegi It always checks first to see if the com-
mand it is gven is kuilt into the shell.If it is, then it need not search for the command as
it can do it internally If the command is notuiltin, then the shell searches for a file
with the name gen in each of the directories in thgath variable, left to right. Since

the normal definition of thpath variable is

path (./usr/ucb /bin /usr/bin)

the shell normally looks in the current directaayd then in the standard system directo-
ries ‘/usr/ucb’, ‘/bin’ and ‘/usr/bin’ for the named command (2.Rthe command can-
not be found the shell will print an error diagnostfcripts of shell commands will be
executed using another shell to interpret them if/thave‘execute’ permission setThis

is normally true because a command of the form

chmod 755 script

was executed to turn thisyecute permission on (3.3)f you add n& commands to a
directory in thepath, you should issue the commargthash (2.2).

Alist of names, separated by ‘/' characters, formpathname Each component,
between succes& /' characters, names a directory in which th&tre@mponentfile
resides.Pathnameswhich beayin with the character ‘/’ are interpreted relatio the root
directory in the filesystemOtherpathnamesare interpreted relat o the current direc-
tory as reported bpwd. The last component of gathnamemay name a directorjput
usually names a file.

Agroup of commands which are connected togetherstandad output of each con-
nected to thetandad input of the net, is called gipeline The pipe mechanism used
to connect these commands is indicated by the shell metacharacter ‘| (1.5, 2.3).

Thepopd command changes the sheMiorking directory to the directory you most
recently left using thpushdcommand. Ireturns to the directory without Yiag to type
its name, fagetting the name of the currembrking directory before doing so (2.7).

Thepart of a computer system to which each terminal is connected is caghled.a
Usually the system has adik number oports, some of which are connected to tele-
phone lines for dial-up access, and some of which are permanently wired directly to spe-
cific terminals.

Thepr command is used to prepare listings of the contents of files with headears gi
the name of the file and the date and time at which the d¢dlast modified (2.3).

The printerv command is used to print the current setting ariables in the esron-
ment (2.8).

USD:4-42

process

program

prompt

pushd

ps

pwd
quit

guotation

redirection

rehash

Anintroduction to the C shell

Arinstance of a running program is calledracess(2.6). UNIX assigns eacjprocessa
unigue number when it is started — called phecess number Process numbsrcan be
used to stop indidual processeausing thekill or stop commands when thgrocesses
are part of a detachdxhd<ground job.

Usuallysynorymous withcommand a bnary file or shell command script which per
forms a useful function is often calleghegram.

Maty programs will print aprompt on the terminal when tlyeexpect input. Thus the
editor ‘ex (1)" will print a *:* when it expects input.The shellpromptsfor input with ‘%
" and occasionally with *? * when reading commands from the terminal (TH¢.shell
has a wariableprompt which may be set to a é#frent \alue to change the sheallfmain
prompt. This is mostly used when dedpging the shell (2.8).

Thepushd command, which means ‘push directory’, changes the shelrking direc-
tory and also remembers the currembrking directory before the change is made,
allowing you to return to the same directory via gfopd command later without retyp-
ing its name (2.7).

Theps command is used to slvdhe processes you are currently runniBgch process
is shavn with its unique process numben indication of the terminal name it is
attached to, an indication of the state of the process (whether it is running, stopped,
awadting some gent (sleeping), and whether it is apped out), and the amount @#u
time it has used s@af The command is identified by printing some of therdg used
when it was irvoked (2.6). Shellssuch as thesh you use to run thps command, are
not normally shavn in the output.

Thepwd command prints the fuppathnameof the currenivorking directory. Thedirs
builtin command is usually a better araster choice.

Thequit signal, generated by a control-\, is used to terminate programs which ave beha
ing unreasonablylt normally produces a core image file (1.8).

Theprocess by which metacharacters arevgsred their special meaning, usually by
using the character * in pairs, or by using the character ‘\', is referredgoosation
a.7).

Theouting of input or output from or to a file is kmo asredirection of input or output
(1.3).

Theehash command tells the shell to naild its internal table of which commands are
found in which directories in youpath. This is necessary when awgrogram is
installed in one of these directories (2.8).

relative ppthname

repeat
root

RUBOUT

A pathnamewhich does not lign with a /" is called arelative pathnamesince it is
interpretedrelative to the currenworking directory. The firstcomponentof such a
pathnamerefers to some file or directory in therking ditectory, and subsequerdom-
ponentsbetween ‘/' characters refer to directories bethe working directory. Path-
namesthat are notelative are calledabsolute pathnamedl..6).

Theepeat command iterates another command a specified number of times.

Thedirectory that is at the top of the entire directory structure is calleddhelirectory
since it is the ‘root’ of the entire tree structure of directorieke name used ipath-
namesto indicate theoot is /. Pathnamesstarting with /' are said to babsolute
since thg start at theroot directory Root is also used as the part opathnamethat is
left after remeing theextension Seefilenamefor a further &planation (1.6).

The RUBOUT or DELETE key is dten used to erase the pieusly typed character; some
users prefer theacksmce for this purpose.On older \ersions ofunix this key ®rved
as theNTr character

An Introduction to the C shell

scratch file

script

set

seten

shell

shell script
signal

sort

source

USD:4-43

Files whose names fi@ with a ‘#' are referred to axratch files, since thg are auto-
matically remeed by the system after a couple of days of non-use, or more frequently if
disk space becomes tight (1.3).

Sequencesf shell commands placed in a file are called shell comrsarnidts. It is
often possible to perform simple tasks using tlsesipts without writing a program in a
language such as C, by using the shell to se#bgtiun other programs (3.3, 3.10).

Thebuiltin set command is used to assignanealues to shell ariables and to shothe
values of the currentariables. Maw shell variables hee gecial meaning to the shell
itself. Thusby using theset command the beki#r of the shell can be fafcted (2.1).

Variables in the edronment ‘ewiron (5)' can be changed by using thetenr builtin
command (2.8).Theprinterv command can be used to print tladue of the ariables in
the ewironment.

A shell is a command language interpretér is possible to write and run youmm
shell, as shells are no diferent than ay other programs asaf as the system is con-
cerned. Thignanual deals with the details of one particslaell, calledcsh.

Seescript (3.3, 3.10).

Asignal in UNIX is a short message that is sent to a running program which causes
something to happen to that proceSsgnals are sent either by typing spec@introl
characters on thesiboard or by using thkill or stop commands (1.8, 2.6).

Thesort program sorts a sequence of lines iy that can be controlled bygament
flags (1.5).

Thesource command causes the shell to read commands from a specifiet ilenost
useful for reading files such ashc after changing them (2.8).

special character

standard

status

stop
string

stty

substitution

suspended

switch

termination

Seemetatharacteis and the appendix to this manual.

W refer often to thestandad input andstandad output of commands.Seeinput and
output (1.3, 3.8).

Acommand normally returnsstatus when it finishes.By corvention astatus of zero
indicates that the command succeed€dmmands may return non-zestatusto indi-
cate that some abnormaleat has occurredThe shell ariablestatusis set to thestatus
returned by the last commantl.is most useful in shell commmand scripts (3.6).

Thestop command causestadiground job to becomasuspended?2.6).

A sequential group of characters gaktogether is called string. Strings can contain
ary printable characters (2.2).

Thestty program changes certain parameters ingidg which determine he your ter
minal is handled See ‘stty (1)’ for a complete description (2.6).

Theshell implements a number sfibstitutionswhere sequences indicated by metachar
acters are replaced by other sequenbd&stable @amples of this are histogubstitution
keyed by the metacharacter ‘I’ andnablesubstitutionindicated by ‘$’. We dso refer
to substitutionsasexpansions(3.4).

Aob becomesuspendedafter astor signal is sent to it, either by typingcantiol -z at
the terminal (foforeground jobs) or by using thetop command (fobadground jobs).
Whensuspendegda job temporarily stops running until it is restarted by eitherfgher
bg command (2.6).

Theswitch command of the shell alies the shell to select one of a number of sequences
of commands based on argament string.It is similar to theswitch statement in the
language C (3.7).

Whera command which is beingxecuted finishes we say it undeestermination or
terminates. Commands normally terminate when ythead anendof-file from their

USD:4-44

then

time

tset

tty

unalias
UNIX

unset

Anintroduction to the C shell

standad input. It is dso possible to terminate commands by sending theimt@mupt
or quit signal (1.8).Thekill program terminates specified jobs (2.6).

Thethen command is part of the shall'if-then-else-endif’control construct used in
command scripts (3.6).

Thetime command can be used to measure the amoutkwénd real time consumed
by a specified command as well as the amount of disk i/o, memory utilized, and number
of page &ults and saps takn by the command (2.1, 2.8).

Thetset program is used to set standard erase and kill characters and to tell the system
what kind of terminal you are usindt is often irvoked in a.login file (2.1).

Theword tty is a historical abbkeation for ‘teletype’ which is frequently used umnix
to indicate theoort to which a gien terminal is connectedThetty command will print
the name of th&ty or port to which your terminal is presently connected.

Theaunalias command remees diases (2.8).

UNIX is an operating system on whickh runs. UNIX provides fcilities which allov
csh to invoke aher programs such as editors and fermatters which you may wish to
use.

Thainsetcommand remees the definitions of shellariables (2.2, 2.8).

variable xpansion

variables

verbose

wcC

while
word

Seevariables andexpansion (2.2, 3.4).

Variables in csh hold one or more strings aalue. Themost common use ofariables

is in controlling the behaor of the shell. Seepath, noclobber, and ignoreeof for exam-
ples. Variables such asargv are also used in writing shell programs (shell command
scripts) (2.2).

Theverboseshell \ariable can be set to cause commands to be echoed afterettigs-
tory expanded. Thiss often useful in dalgging shell scriptsThe verbosevariable is
set by the sheld'—v command line option (3.10).

Thewc program calculates the number of charactessds; and lines in the files whose
names are gen as aguments (2.6).

Thewhile builtin control construct is used in shell command scripts (3.7).

A sequence of characters which forms aguarent to a command is calledwenrd .
Many characters which are neither letters, digits, ‘*’nbr /' form words all by them-
seles &en if they are not surrounded by blank#&ny sequence of characters may be
made into avord by surrounding it with *’ charactersceept for the characters ' and
‘I which require special treatment (1.1Yhis process of placing special characters in
words without their special meaning is callgdoting.

working directory

write

At ary given time you are in one particular directpigalled yourworking ditectory.
This directorys name is printed by thpwd command and the files listed ks are the
ones in this directoryYou can changeorking directoriesusingchdir .

The write command is an obsoleteayw of communicating with other users who are
logged in touNix (you hare o take trns typing). If you are both using display termi-
nals, usealk(1), which is much more pleasant.

