SYSTEM V
APPLICATION BINARY INTERFACE

Edition 3.1

Contents

Table of Contents

Table of Contents

INTRODUCTION

SOFTWARE INSTALLATION

LOW-LEVEL SYSTEM INFORMATION
OBJECT FILES

PROGRAM LOADING AND DYNAMIC LINKING
LIBRARIES

FORMATS AND PROTOCOLS

SYSTEM COMMANDS

EXECUTION ENVIRONMENT

WINDOWING AND TERMINAL INTERFACES
DEVELOPMENT ENVIRONMENTS FOR AN ABI SYSTEM

NETWORKING
Index

1 INTRODUCTION
System V Application Binary Interface 1-1
Foundations and Structure of the ABI 1-2
How to Use the System V ABI 1-4
Definitions of Terms 1-8

2 SOFTWARE INSTALLATION

Software Installation and Packaging 2-1
File Formats 2-7
File Tree for Add-on Software 2-15
Commands That Install, Remove and Access Packages 2-16

Table of Contents i

LOW-LEVEL SYSTEM INFORMATION

Introduction 3-1
Character Representations 3-2
Machine Interface (Processor-Specific) 3-3
Function Calling Sequence (Processor-Specific) 3-4
Operating System Interface (Processor-Specific) 3-5
Coding Examples (Processor-Specific) 3-6
OBJECT FILES

Introduction 4-1
ELF Header 4-4
Sections 4-10
String Table 4-21
Symbol Table 4-22
Relocation 4-27
PROGRAM LOADING AND DYNAMIC

LINKING

Introduction 5-1
Program Header 5-2
Program Loading (Processor-Specific) 5-11
Dynamic Linking 5-12
LIBRARIES

Introduction 6-1
System Library 6-4
C Library 6-10
Network Services Library 6-15
Socket Library 6-18
Curses Library 6-19
X Window System Library 6-23
X Toolkit Intrinsics Library 6-29
System Data Interfaces 6-33

Table of Contents

7 FORMATS AND PROTOCOLS

Introduction 7-1
Archive File 7-2
Other Archive Formats 7-6
Terminfo Data Base 7-7
Formats and Protocols for Networking 7-10

8 SYSTEM COMMANDS

Commands for Application Programs 8-1

9 EXECUTION ENVIRONMENT
Application Environment 9-1
File System Structure and Contents 9-3

10 WINDOWING AND TERMINAL INTERFACES
The System V Window System 10-1
System V Window System Components 10-3

11 DEVELOPMENT ENVIRONMENTS FOR AN
ABI SYSTEM

Development Environments 11-1

12 NETWORKING

Networking 12-1
Required STREAMS Devices and Modules 12-2
Required Interprocess Communication Support 12-3
Required Transport Layer Support 12-4
Required Transport Loopback Support 12-7
Optional Internet Transport Support 12-8

Table of Contents iii

IN

Index
Index

IN-1

Table of Contents

Figures and Tables

Figure 2-1:
Figure 2-2:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:

Figure 4-10:
Figure 4-11:
Figure 4-12:
Figure 4-13:
Figure 4-14:
Figure 4-15:
Figure 4-16:
Figure 4-17:
Figure 4-18:
Figure 4-19:

Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:

Figure 5-10:
Figure 5-11:
Figure 5-12:

Figure 6-1:
Figure 6-2:

Package File Tree Organization

Data Stream File Layout for Distribution Media

Object File Format

32-Bit Data Types

ELF Header

e_ident[] Identification Indexes

Data Encoding ELFDATA2LSB

Data Encoding ELFDATA2VEB

Special Section Indexes

Section Header

Section Types, sh_t ype
Section Header Table Entry: Index O
Section Attribute Flags, sh_f | ags
sh_l'i nk and sh_i nf o Interpretation
Special Sections
String Table Indexes
Symbol Table Entry
Symbol Binding, ELF32_ST_BI ND
Symbol Types, ELF32_ST_TYPE
Symbol Table Entry: Index O
Relocation Entries

Program Header

Segment Types, p_t ype

Segment Flag Bits, p_f | ags

Segment Permissions

Text Segment

Data Segment

Note Information

Example Note Segment

Dynamic Structure
Dynamic Array Tags, d_t ag
Symbol Hash Table
Hashing Function

Shared Library Names

| i bsys Contents, Names with Synonyms

Table of Contents

2-2

4-1
4-3
4-4
4-7

4-9

4-10
4-12
4-13
4-15
4-16
4-17
4-17
4-21
4-22
4-23
4-24
4-26
4-27
5-2

5-3

5-6

5-7
5-7
5-8
5-9
5-15
5-15
5-21
5-22
6-2

Figure 6-3: | i bsys Contents, Names Without Synonyms 6-6
Figure 6-4: |i bsys Contents, Additional Services 6-6
Figure 6-5: | i bsys Contents, Global External Data Symbols 6-7
Figure 6-6: | i bc Contents, Names without Synonyms 6-10
Figure 6-7: |i bc Contents from XSH4.2, Names without Synonyms 6-11
Figure 6-8: | i bc Contents, Names with Synonyms 6-11
Figure 6-9: | i bc Contents from XSH4.2, Names with Synonyms 6-12
Figure 6-10: | i bc Contents, Names without Synonyms, non-ANSI 6-12
Figure 6-11: |i bc Contents, Global External Data Symbols 6-13
Figure 6-12: |i bnsl Contents, Part 1 of 3 6-15
Figure 6-13: |i bnsl Contents, Part 2 of 3 6-15
Figure 6-14: 1i bnsl Contents, Part 3 of 3 6-16
Figure 6-15: |i bnsl Contents, Global External Data Symbols 6-17
Figure 6-16: | i bsocket Contents, Part 1 of 2 6-18
Figure 6-18: | i bsocket Contents, Part 2 of 2 6-18
Figure 6-19: | i bcur ses Contents 6-19
Figure 6-20: |i bcur ses Contents, Global External Data Symbols 6-22
Figure 6-21: |i bX Contents 6-23
Figure 6-22: |i bX11 Contents, Callback Function Names 6-28
Figure 6-23: |i bXt Contents 6-29
Figure 6-24: |i bXt Contents, Global External Data Symbols 6-31
Figure 6-25: Minimum Sizes of Fundamental Data Objects 6-34
Figure 7-1: <ar. h> 7-2
Figure 7-2: Example String Table 7-4
Figure 7-3: Archive Word Encoding 7-4
Figure 7-4. Example Symbol Table 7-5
Figure 8-1: Commands required in an ABI Run-time Environment 8-1
Figure 8-2: XPG4.2 Commands required in an ABI Run-time Environment 8-2
Figure 9-1: Required Devices in an ABI Run-time Environment 9-4
Figure 11-1: Required | i bmFunctions 11-4
Figure 12-1: Required STREAMS Devices 12-2
Figure 12-2: Required STREAMS Modules 12-2
Figure 12-3: TLI-XTI Error Codes 12-4
Figure 12-4: t _| ook Events 12-4
Figure 12-5: XTI Flag Definitions 12-5
Figure 12-6: XTI Service Types 12-5
Figure 12-7: Flags to be used witht _al | oc 12-5
Figure 12-8: XTI Application States 12-5
Figure 12-9: XTI values for t_info flags member 12-6
Figure 12-10: TCP Options 12-10
Figure 12-11: IP Options 12-10
Figure 12-12: TCP Options 12-11
Figure 12-13: UDP Options 12-11
Figure 12-14: IP Options 12-12
Figure 12-15: Data Structures 12-13

Vi

Table of Contents

1 INTRODUCTION

System V Application Binary Interface 1-1
Foundations and Structure of the ABI 1-2
Conformance Rule 1-2
How to Use the System V ABI 1-4
Base and Optional Components of the ABI 1-6
Evolution of the ABI Specification 1-7
Definitions of Terms 1-8

Table of Contents

System V Application Binary Interface

The System V Application Binary Interface, or ABI, defines a system interface for
compiled application programs and a minimal environment for support of instal-
lation scripts. Its purpose is to document a standard binary interface for applica-
tion programs on systems that implement an operating system that complies with
the X/Open Common Application Environment Specification, Issue 4.2 and the System
V Interface Definition, Third Edition.

The ABI defines a binary interface for application programs that are compiled and
packaged for System V implementations on many different hardware architec-
tures. Since a binary specification must include information specific to the com-
puter processor architecture for which it is intended, it is not possible for a single
document to specify the interface for all possible System V implementations.
Therefore, the System V ABI is a family of specifications, rather than a single one.

The System V ABI is composed of two basic parts: A generic part of the
specification describes those parts of the interface that remain constant across all
hardware implementations of System V, and a processor-specific part of the
specification describes the parts of the specification that are specific to a particular
processor architecture. Together, the generic ABI and the processor-specific sup-
plement for a single hardware architecture provide a complete interface
specification for compiled application programs on systems that share a common
hardware architecture.

This document is the generic ABI. It must be used in conjunction with a supple-
mental specification containing processor-specific information. Whenever a sec-
tion of this specification must be supplemented by processor-specific information,
the text will reference the processor supplement. The processor supplement may
also contain additional information that is not referenced here.

System V Application Binary Interface 1-1

Foundations and Structure of the ABI

The System V ABI is based on several reference documents. Because it is a binary
interface, it includes the fundamental set of machine instructions for that proces-
sor to which the specification applies, and includes many other low-level
specifications that may be strongly affected by the characteristics of a given
processor’s architecture. It also includes higher-level information about System V.

The interfaces specified here were drawn from existing standards for operating
systems, user interfaces, programming languages, and networking, including
those on the following list and others.

The architecture manual for the target system’s processor.

The System V Interface Definition, Third Edition.

The IEEE POSIX 1003.1-1988 standard operating system specification.
The X/Open Common Application Environment Specification (CAE), Issue 4.2.

The International Standard, ISO/IEC 9899:1990 (E), Programming Languages -
C, 12/15/90.

The X Window System™, X Version 11, Release 5, graphical user interface
specification.

Conformance Rule

NOTE

All interfaces in the X/Open CAE Specification, Issue 4.2 (excluding those
marked Withdrawn) and certain interfaces in the System V Application Binary
Interface, Third Edition are contained in this document, the System V Applica-
tion Binary Interface, Edition 3.1 (System V ABI 3.1). Note that all interfaces in
the System V ABI are conformant to XPG4.2. Those interfaces that were ori-
ginally in the System V Application Binary Interface, Third Edition will also be
conformant to the System V Interface Definition, Third Edition in cases where
the SVID adds additional functionality over XPG4.2. In all cases where System
V Interface Definition, Third Edition functionality conflicts with X/Open CAE
Specification, Issue 4.2 functionality, X/Open CAE Specification, Issue 4.2 is fol-
lowed. For this reason certain libraries presented in Chapter 6 and Chapter 8
will be divided into two tables. The first table presents interfaces which are
governed by the specifications in the X/Open CAE Specification, Issue 4.2 and
the System V Interface Definition, Third Edition. The second tables presents
interfaces which were not originally in the System V Application Binary Interface,
Third Edition and are therefore only governed by the specifications in the
X/Open CAE Specification, Issue 4.2.

XXXXXXXXXXXXXXX

INTRODUCTION

m X

The ABI is divided into sections dealing with specific portions of the interface.
Some sections include a large amount of detailed information, while others con-
tain lists of interface components and pointers to other documents.

In general, this specification does not duplicate information that is available in
other standards documents. For example, the ABI section that describes system
service routines includes a list of the system routines supported in this interface,
formal declarations of the data structures they use that are visible to application
programs, and a pointer to the X/Open CAE Specification, Issue 4.2 and the System V
Interface Definition, Third Edition for information about the syntax and semantics of
each call. Only those routines not described in standards referenced by this docu-
ment are described in the ABI.

Other sections of the ABI are written using this same model. The ABI identifies
operating system components it includes, provides whatever information about
those components that is not available elsewhere, and furnishes a reference to
another document for further information. Information referenced in this way is
as much a part of the ABI specification as is the information explicitly included
here.

Foundations and Structure of the ABI 1-3

X X X

How to Use the System V ABI

The complete System V ABI is composed of this generic ABI specification and the
supplemental processor-specific specification for a particular processor architec-
ture. These two documents constitute a specification that should be used in con-
junction with the publicly-available standards documents it references (some of
these are listed above). The ABI enumerates the system components it includes,
but descriptions of those components may be included entirely in the ABI, partly
in the ABI and partly in other documents, or entirely in other reference docu-
ments.

Application programmers who wish to produce binary packages that will install
and run on any System V-based computer should follow this procedure:

1. Write programs using the X/Open CAE Specification, Issue 4.2 and the Level 1
interfaces in the System V Interface Definition, Third Edition in the following
sections. (See the Conformance Rule above.) Routines guaranteed to be
present on all ABI-conforming systems as dynamically-linkable resources
are listed below.

m BA_OS: All SVID Level 1 routines are available as shared
resources.

m BA_LIB: All SVID Level 1 routines are available as shared
resources except for the math routines which may be available as
an ABI compliant static archive (see Chapter 11):

acos acosh asin asinh atan
at an2 atanh cbrt ceil cos
cosh erf erfc exp f abs
f1 oor f mod gamma hypot jO
il jin | gamma logl0 log
natherr pow remai nder sin si nh
sgrt tan tanh y0 yl
yn

m KE_OS: AIlISVID Level 1 routines in this section are guaranteed to
be present as shared resources on an ABI-conforming system.

m RS_LIB: All SVID routines in this section are guaranteed to be
present as shared resources on ABI-conforming systems that
include networking facilities.

1-4 INTRODUCTION

The routines listed in the “System Library”, ““Network Services Library’’, E
and the “X Window System Library’’ (see: Chapter 6, 10) must be accessed E
as dynamically-linked resources. Other routines may be dynamically

linked, or may be statically bound into the application from an archive

library.

2. Use only the system utilities and environment information described in
Chapters 8 and 9 of the ABI.

3. Compile programs so that the resulting executable programs use the
specified interface to all system routines and services, and have the format

described in the ABI specification. The commands available on a system E
that also supports an ABI development environment is defined in Chapter E
11.

4. Package the application in the format and on the media described in the
ABI, and install or create files only in the specified locations provided for
this purpose when the application is installed. The packaging tools avail- E
able on a system that also supports an ABI development environment is E
defined in Chapter 11.

The manufacturers of System V-based computer systems who wish to provide the
system interface described in this specification must satisfy a complementary set
of requirements:

1. Their system must implement fully the architecture described in the
hardware manual for their target processor architecture.

2. The system must be capable of executing compiled programs having the
format described in this specification.

3. The system must provide libraries containing the routines specified by the
ABI, and must provide a dynamic linking mechanism that allows these rou-
tines to be attached to application programs at run time. All the system
routines must behave as specified by the X/Open CAE Specification, Issue 4.2 X
and the System V Interface Definition, Third Edition (see the Conformance
Rule above).

4. The system’s map of virtual memory must conform to the requirements of
the ABI.

5. The system’s low-level behavior with respect to function call linkage, sys-
tem traps, signals, and other such activities must conform to the formats
documented in the ABI.

How to Use the System V ABI 1-5

6. The system’s compilation system, if present, must compile source code into
executable files having the formats and characteristics specified in the ABI.

7. The system must provide all files and utilities specified as part of the ABI, in
the format defined here and in other referenced documents. All commands
and utilities must behave as documented in the X/Open CAE Specification,
Issue 4.2 and the System V Interface Definition, Third Edition (see the Confor-
mance Rule above). The system must also provide all other components of
an application’s run-time environment that are included or referenced in
the ABI specification.

8. The system must install packages using the formats and procedure
described in the ABI, and must be capable of accepting installable software
packages, either through physical media or through a network interface.

Base and Optional Components of the ABI

The ABI provides two levels of interface specification: Base and Optional. Base
components of the ABI are required to be present in all ABI-conforming systems.
Optional components may be absent on an ABI-conforming system, but, when
they are present, they must conform to the specification given in the ABI. All com-
ponents of the ABI are to be considered Base components unless they are explicitly
described as Optional like the one that follows.

THE FACILITIES AND INTERFACES DESCRIBED IN THIS SECTION ARE
NOTE | OPTIONAL COMPONENTS OF THE System V Application Binary Interface.

This distinction is necessary because some ABI capabilities depend on the presence
of hardware or other facilities that may not be present, such as integral graphics
displays or network connections and hardware. The absence of such facilities
does not prevent a System V-based system from conforming with the ABI
specification, though it may prevent applications that need these facilities from
running on those systems.

1-6 INTRODUCTION

Evolution of the ABI Specification

The System V Application Binary Interface will evolve over time to address new
technology and market requirements, and will be reissued at intervals of approxi-
mately three years. Each new edition of the specification is likely to contain exten-
sions and additions that will increase the potential capabilities of applications that
are written to conform to the ABI.

The System V Application Binary Interface, Edition 3.1 includes certain elements
marked as DEPRECATED. An interface, header, or command has been marked as
DEPRECATED if it is specified as To Be Withdrawn in the X/Open CAE
Specification, Issue 4.2, or if it is not present in the X/Open CAE Specification, Issue
4.2 and is designated as Level 2 in the System V Interface Definition, Third Edition.
Long term support for such functions can not be presumed.

How to Use the System V ABI 1-7

X X X X X

Definitions of Terms

The following terms are used throughout this document.

1-8

ABI or System V ABI: Refers to the specification that is the subject of this
document, the System V Application Binary Interface. The System V ABI for a
particular system is composed of the generic ABI and the Processor-specific
Supplement for the processor used in the system.

generic System V ABI or generic ABI: Consists of the processor-independent
portions of the System V Application Binary Interface.

Processor-specific ABI or Processor-specific Supplement: Consists of those por-
tions of the System V ABI that are specific to a particular processor architec-
ture. Together, the generic ABI and the appropriate Processor-specific Supple-
ment comprise the System V ABI for systems employing a particular proces-
sor architecture.

ABI-conforming system: A computer system that provides the binary sys-
tem interface for application programs described in the System V ABI.

ABI-conforming program: A program written to include only the system
routines, commands, and other resources included in the ABI, and a pro-
gram compiled into an executable file that has the formats and characteris-
tics specified for such files in the ABI, and a program whose behavior com-
plies with the rules given in the ABI.

ABI-nonconforming program: A program which has been written to
include system routines, commands, or other resources not included in the
ABI, or a program which has been compiled into a format different from
those specified in the ABI, or a program which does not behave as specified
in the ABI.

undefined behavior: Behavior that may vary from instance to instance or
may change at some time in the future. Some undesirable programming
practices are marked in the ABI as yielding undefined behavior.

unspecified property: A property of an entity that is not explicitly included
or referenced in this specification, and may change at some time in the
future. In general, it is not good practice to make a program depend on an
unspecified property.

INTRODUCTION

NOTE

Diffmarkings have been retained in the text of this book to indicate in which
revisions of System V certain modifications were made to the ABI.

A " character in the right hand margin indicates a corrective change in the
ABI made just after the Release 4 ABI was published.

An "E" character in the right hand margin indicates a change in the ABI made
in UNIX System V Release 4.1.

A "G" character in the right hand margin indicates a change in the ABI made
in UNIX System V Release 4.2.

A "X" character in the right hand margin indicates a change in the ABI made
to merge in XPG4.2 source API requirements.

Definitions of Terms

1-9

2 SOFTWARE INSTALLATION

Software Installation and Packaging 2-1
Installation Media 2-1
Physical Distribution Media and Formats 2-1
Media Format 2-1
Software Structure of the Physical Media 2-2
File Formats 2-7
m pkginfo File 2-7
m The pkgmap File 2-9
m The copyright File 2-10
m The space File 2-10
m The depend File 2-11
m The compver File 2-11
m Installation and Removal Scripts 2-11
File Tree for Add-on Software 2-15
Commands That Install, Remove and
Access Packages 2-16

Table of Contents

Software Installation and Packaging

Installation Media

This section of the ABI describes the media from which application software can
be installed on all ABI-conforming systems. It includes the following characteris-

tics of

supported media:

Physical Distribution Media and Formats: Specification of the physical
media that may be used to distribute ABI-conforming application software.

Media Format: Format of the software on the installation medium.

Software Structure of the Physical Media: A functional description of the
files contained on the physical media and their layout on the media.

File Formats: The format and interpretation of installation data files.

Physical Distribution Media and Formats

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

Media Format

Packages are stored as a continuous data stream on the distribution media. The
continuous data stream is valid for all media. The data stream can be created

using

dd and cpi o utilities.

Software Installation and Packaging 2-1

Software Structure of the Physical Media

Add-on application software is bundled and installed in units called packages.
Multiple packages can be delivered on a single volume of media or a package can
span multiple volumes of media. A package that spans multiple volumes of

media must be the only package in the distribution. cpi o always pads headersto E

a 512 byte boundary, and archives to an integral block size, set by the - Cor - B E
option. Each archive on the media is extended to the block size specified by null E
padding.

Software to be bundled as a package must be organized as a file tree subdirectory
as shown in Figure 2-1. The data stream from the distribution media is read onto
disk into a file subtree of this format before the actual installation begins. Figure
2-2 shows the sequence of files in the data stream stored on distribution media.

Figure 2-1: Package File Tree Organization

pkg

install pkginfo pkgmap reloc r oot

/NN

package package
objects objects

conpver copyright depend space 0 or more
scripts

2-2 SOFTWARE INSTALLATION

The following is a brief description of files and directories shown in Figure 2-1.
Entries in const ant wi dt h type are standard file or directory names; the names
of the other items are package-specific.

The following files are required:

pkgi nf o: describes the package.

pkgnmap: describes each package object (files, directories, and so on).

The following files and directories are optional:

conpver : describes previous versions of the package with which this ver-
sion is backward compatible.

copyri ght : copyright notice for the package.

depend: describes dependencies and incompatibilities across packages.

i nstal | : contains optional package information files.

package objects: executables, data files, and so on, belonging to the package.

rel oc: contains relocatable package objects (files whose pathnames on the
target system are determined at the time of installation rather than at the
time of package creation).

r oot : contains non-relocatable package objects.
space: describes space requirements beyond package objects.

scripts: zero or more scripts to handle package-specific installation and
removal requirements.

Software Installation and Packaging 2-3

Figure 2-2: Data Stream File Layout for Distribution Media

header:

special information
files (cpio archive):

package part
(cpio archive):

package part
(cpio archive):

package part
(cpio archive):

PaCkAgE DaTaStReAm[: type]
pkgA num_parts max_part_size [N ... N]
pkgB num_parts max_part_size [N ... N]

end of header

pkgA/pkginfo
pkgA/pkgmap
pkgB/pkginfo

pkgB/pkgmap

pkgA/pkginfo
pkgA/install/*
pkgA/root.1/*
pkgA/reloc.1/*

pkgA/pkginfo
pkgA/root.2/*
pkgA/reloc.2/*

pkgB/pkginfo
pkgB/install/*
pkgB/root.1/*
pkgB/reloc.1/*

2-4

SOFTWARE INSTALLATION

The data stream format begins with a header containing a series of new-line ter-
minated ASCII character strings. A special character string on the first line
identifies the start of the header. It should be in the following format:

PaCKAQE DaTaStReAm[: type]

When no type is defined, the data stream is continuous. Additional types of data
streams may be specified in a processor-specific ABI supplement. Such additional
types would deal with media-specific physical storage attributes, for example,
record size, blocking factors, or alignment of package parts on the media.

Next are one or more special lines, one for each package in the distribution. Each
line has the following format:

pkginstance num_parts max_part_size [N ... N]
where:

m pkginstance is the package identifier made up of the package abbreviation
(described later as the PKG parameter in the pkgi nf o file) and an optional
suffix.

m num_parts is the number of parts into which the package is divided. As
shown in Figure 2-2, a part is a collection of files contained in the cpi o
archive. A part is the atomic unit by which a package is processed. Each
part must fit entirely on a distribution media volume, that is, a part cannot
cross volumes. A developer chooses the criteria for grouping files into a
part.

m max_part_size is the maximum number of 512-byte blocks consumed by a
single part of the package.

m N...N are optional fields to indicate the number of parts stored on the
sequential volumes of media which contain the package. For example,

pkgA 62048 23 1

indicates that pkgA consists of six parts. The largest part is 2048 512-byte
blocks in size. The first two parts exist on the first volume, the next three
parts exist on the second volume, and the last part exists on the third, and
last, volume. These fields only apply where multiple volumes are needed to
distribute a package. Otherwise, these fields should not appear and any
process reading the header should assume that all parts of the package
reside on the current volume. When these fields are used, there can only be
one package in the data stream.

Software Installation and Packaging 2-5

E

A special new-line terminated character string on a separate line identifies the end
of the header. It should be in the following format:

end of header
The header must be padded to a 512-byte boundary.

Following the header is a cpi o0 archive containing special information files for
each package. The rest of the data stream consists of package parts. Note that a
given package may consist of one or more parts, that is, cpi o archives. A pack-
ages which requires multiple parts must meet the following conditions:

m Each part must contain the entire pkgi nf o file.

m Each part includes its own r oot and r el oc directories and these directories
are numbered. For example, a package that requires n parts hasr oot . 1 and
rel oc. 1throughroot.nandrel oc. n. nislimited to eight digits.

m Theinstall directory and its contents are only provided in the first part.

2-6 SOFTWARE INSTALLATION

File Formats

pkginfo File

The pkgi nf o file describes the package, as a whole. Each line is of the form
parameter=value. The list below describes defined parameters. These parameters
can be retrieved via pkgi nf o(AS_CMD) and/or have a specific meaning to the
package installation and removal commands (pkgadd(AS_CMD) and

pkgr mAS_CMD)). No specific ordering of parameters is required. Lines begin-
ning with # are treated as comments.

PKG Package abbreviation, limited to 9 characters. The first character must
be alphabetic; remaining characters can be alphabetic, numeric, or the char-
acters+and-. install,new, andal | are not valid package abbreviations.

NAME: Package name, limited to 256 ASCII characters.

ARCH A comma-separated list of identifiers that specify the architecture(s)
on which the package can run. Each architecture identifier is limited to 16
ASCII characters; the character ’, ’ is invalid.

VERS| ON Version identifier, limited to 256 ASCII characters. The first char-
acter can not be a left parenthesis due to the syntax of the depend file. This
identifier is vendor-specific information.

DESC. Descriptive text, limited to 256 ASCII characters.
VENDCR Vendor identifier, limited to 256 ASCII characters.

HOTLI NE: Phone number or mailing address where further information may
be requested or bugs reported. The value of this parameter is limited to 256
ASCII characters.

EMAl L: An electronic mail address, with the same purpose and length limita-
tion as the HOTLI NE parameter.

VSTQCK: Vendor stock number, limited to 256 ASCII characters.

CATEQCRY: A comma-separated list of categories to which the package
belongs. Add-on software packages must state their membership in the
appl i cati on category. Users can request information on all packages in
specific categories via pkgi nf o(AS_CMD). Category identifiers are case-
insensitive and are limited to 16 alphanumeric characters, excluding the
space and comma characters.

File Formats 2-7

PSTAMP: Production stamp, limited to 256 ASCII characters.

| STATES: Space-separated list of valid run-levels during which this package
can be installed. Run-levels are integers in the range 0 through 6, s and S
[see System V Interface Definition, Third Edition, i ni t (AS_CMD)].

RSTATES:. Same as | STATES, but applies to package removal.

ULI M T: Temporary file size limit to use during installation of this package
[seegetrlinit].

| NTO\LY: A parameter that indicates a package can only be installed interac-
tively by the pkgadd(AS_CMD) command. If this parameter is supplied and
set to any non-null value (for example, y or yes), the package can only be
installed interactively. Otherwise, the package can be installed in a nonin-
teractive mode using pkgask(AS_CMD) or pkgadd with the - n option.

MAXI NST: An integer that specifies the maximum number of instances of this
package that can be installed on a system at one time. If this parameter is
not supplied, a default of 1 is used (at most one copy of the package can be
installed on a system at any time).

BASED R The pathname to a default directory where “‘relocatable’” files may
be installed. If BASED Ris blank and the basedir variable in the admi n file is
set to “‘default,” the package is not considered relocatable. In this case, if
files have relative pathnames, package installation will fail. An administra-
tor can override BASEDI Rby setting the basedir variable in the adm n file.

CLASSES: A space-separated list of package object classes to be installed.
Every package object is assigned to one class (in the pkgmap file). Class
assignment can be used to control (for example, based on administrator
input at the time of installation) which objects are installed and to provide
specific actions to be taken to install or remove them. The value of this
parameter can be overridden at the time of installation.

PKG NAME, ARCH, VERSI QN, CATEGCRY and BASEDI Rare mandatory parameters,
that is, package developers must supply them. The rest are optional.

Other parameters may be defined in the pkgi nf o file. If they are used as part of
package object pathnames in the pkgnap file, the value supplied in the pkgi nf o
file is used as a default and may be overridden at the time of

installation. Other parameters will be made part of the environment in which ins-
tallation scripts execute.

2-8

SOFTWARE INSTALLATION

[y o |

The pkgmap File

Each line in the pkgmap file describes a package object or installation script (with
the exception of one pkgmap entry, described at the end of this section). The fol-
lowing list describes the space-separated fields in each pkgnap entry; their order
must be the same as in the list. Lines in the file that begin with # are ignored.

m part: A positive integer that indicates the part of a multi-part package in
which this pathname resides.

m ftype: A one-character file type identifier from the set below:
f afile
d a directory
i an installation or removal script
I a linked file

S a symbolic link

p a named pipe

b a block special device

c a character special device

e a file installed or removed by editing

% a volatile file, whose contents are expected to change as the
package is used on the system

X an exclusive directory, which should contain only files installed

as part of this or some other standard format package

m class: A package object class identifier, limited to 12 characters. none is used
to specify no class membership. This field is not specified for files whose
ftypeisi .

m pathname: The pathname describing the location of the file on the target
machine. For files of ftype, | or s, pathname must be of the form pathl=path2,
specifying the destination (pathl) and source (path2) files to be linked. Spe-
cial characters, such as an equal sign (=), are included in pathnames by sur-
rounding the entire pathname in single quotes (as in, for example,
"lusr/lib/™=").

The pathname may contain variables which support relocation of the file. A
$parameter may be embedded in the pathname structure. $BASED Rcan be
used to identify the parent directories of the path hierarchy, making the
entire package easily relocatable. Default values for parameter and BASEDI R
must be supplied in the pkgi nf o file and may be overridden at installation.

File Formats 2-9

m major: The major device number, applicable to files whose ftype isb or c.
m minor: The minor device number, applicable to files whose ftype isb or c.

m mode: The octal mode of the file. ? indicates that no particular mode is
required. This field is not provided for files whose ftypeis|,s ori .

m owner: The uid of the owner of the file; it must be a legal uid. ? indicates that
no particular owner is required. This field is not provided for files whose
ftypeisl,sori.

m group: The group to which the file belongs, limited to 14 characters. ? indi-
cates that no particular group is required. This field is not provided for files
whose ftypeisl,sori .

m size: The file size in bytes. This field is not provided for files whose ftype is d,
X,p,b,c,sorl.

m cksum: The checksum of the file contents, as calculated by sum This field is
not provided for files whose ftype isd, x, p, b, c,s orl.

m modtime: The time of last modification as reported by the function st at .
This field is not provided for files whose ftype isd, x, p,b,corl.

An additional line in the pkgnap file, beginning with a colon, provides informa-
tion about the media on which the package is distributed. Its format is:

: number_of _parts maximum_part_size

number_of parts specifies the number of parts which compose this package.
maximum_part_size specifies the size, in 512-byte blocks, of the largest part.

The copyright File

The contents of the copyri ght file will be displayed on stdout at the time of instal-
lation; there are no format requirements.

The space File

The space file describes disk block and inode requirements for the package
beyond files listed in the pkgmap file and provided on the media. Each line in the
file contains the following three space-separated fields:

m pathname: A directory name. Naming conventions (with respect to indicat-
ing relocatability) are the same as for the pathname field in the pkgmap file.

m blocks: The number of 512-byte blocks required.

2-10 SOFTWARE INSTALLATION

m inodes: The number of distinct files required.

The depend File

The depend file describes dependencies across packages. The format of each entry
is as follows:

type pkg name
(arch)version

The following field definitions and rules apply:

m type: Describes the type of dependency:

P a prerequisite for installation

I an incompatibility

R reverse dependency (the referenced package depends on this pack-

age)

m pkg: The package abbreviation, as defined in the pkgi nf o file.
m name: The package name, as defined in the pkgi nf o file.
m arch: The package architecture, as defined in the pkgi nf o file.
m version: The package version, as defined in the pkgi nf o file.
m There may be zero or more (arch)version lines.

m (arch)version lines must begin with white space.

The compver File

The conpver file specifies previous versions of the package with which this ver-
sion is backward compatible. It is used for dependency checking across packages,
in conjunction with the depend file. It consists of version identifiers, as defined in
the pkgi nf o file, one per line.

Installation and Removal Scripts

This section describes installation and removal scripts that may be provided by a
package to meet package-specific needs. Scripts are executed by the command sh
and therefore must be either shell scripts or executable programs. In the case of
recovery from an interrupted installation they may be re-executed; they should be
written so that multiple invocations produce the same results as a single invoca-
tion.

File Formats 2-11

Since substantive differences exist between the shell traditionally provided by
NOTE | System V systems and the new X/Open CAE Specification, Issue 4.2 shell, and
since many shell scripts are liable to be affected by these differences, it is
recommended that installation scripts and any other shell scripts that have
stringent compatibility requirements continue to use the traditional System V
shell. New shell scripts may wish to take advantage of the capabilities of the
X/Open CAE Specification, Issue 4.2 shell.

XX X X X

The request Script

Therequest script, if provided, is the first script executed at the time of package
installation. Its purpose is to interact with the user and modify details of the ins-
tallation process as a result of this interaction. The script writes shell variable
assignments to the file named by its only argument. It is executed with uid r oot
and gid sys. stdi n, stdout and stderr are all attached to/ dev/tty. The follow-
ing variables are defined as part of the installation procedure and may be set by
the r equest script:

m CLASSES: As defined in the pkgi nf o file.

Procedure Scripts

Four scripts may be provided by a package to handle package-specific require-
ments - prei nstal |, postinstal |, prerenmove and post r enove.

The following constraints apply to these procedure scripts:

m When the script is executed, st di n is attached to / dev/ tty; st dout and
stderr are attached to/dev/tty.

m Each pathname created or modified by a procedure script during installa-
tion or removal, and which should be considered part of the package, must
be logically added or removed from the package via the
i nstal | f (AS_CMD) or r enovef (AS_CMD) commands.

m Procedure scripts are executed with uid r oot and gid ot her .

Class Scripts

Class scripts provide non-standard installation and removal actions for classes of
package objects (the membership of objects in a class is specified in the pkgrmap
file). The following constraints apply:

m Each class included in the value of the CLASSES parameter is installed, in the
order in which they appear in that parameter. Obijects in class none are
installed first.

2-12 SOFTWARE INSTALLATION

m If an object belongs to class none or no class script is provided for the class,
the object is copied from the medium to the target system during installa-
tion, and removed during removal.

m Class script names are of the form operation.class, where operation is either i
(for install) or r (for remove), and class is the class name, limited to 12 char-
acters. Class names beginning with O are reserved.

m Class scripts will execute as uid r oot and gid ot her .

m During installation, the script is executed with either no arguments or the
single argument ENDCFCLASS. st di n contains a list of filename pairs, of the
form source_pathname destination_pathname. The source_pathname parameter
is either a pathname on the medium or/ dev/ nul | to indicate there is no file
to copy from the medium (for example, a directory). destination_pathname is
the target pathname. Only files that are members of the class and are not
identical to files already on the system are provided to the script.

m The script is invoked with the single argument ENDCFCLASS to indicate that
there are no more files belonging to the class once end of file is reached on
st di n during the current invocation of the script.

m During removal, the script is executed with no arguments. st di n contains a
list of filenames, including all members of the class except those shared by
other installed packages whose ftype in the pkgrap file is something other
than e.

m Two standard classes are defined: bui | d and sed. The name of the file on
the medium is the name of the file on the target system to be modified.

For the sed class, the file provided on the medium contains the command
sed instructions. Lines of the format!install and!renove mark the
beginning of instructions which apply to installation and removal, respec-
tively. The file on the target system will be modified by the output of sed,
using the provided data.

A file that belongs to the bui | d class is executed with a single argument,
i nstal | orrenove. Its output (on st dout) is written to the file it references
on the target system.

Exit Codes Used by Scripts

Scripts shall exit with an additive combination of one of the first four and one of
the last two exit codes listed below:

0: successful execution

File Formats 2-13

1 fatal error
2: warning
3: interruption

10: reboot after installation of all packages
20: reboot after installation of this package

For example, the exit code for a script resulting in a warning condition and that
requires an immediate reboot is 22.

2-14 SOFTWARE INSTALLATION

File Tree for Add-on Software

/opt,/var/opt and/etc/opt are reserved in the file tree for the installation of
application software packages. Each add-on software package should adhere to
the following rules:

m Static package objects should be installed in/ opt / pkg, where pkg is the
package abbreviation or instance.

m Package objects that change in normal operations (for example, log and
spool files) should be installed in / var / opt / pkg.

m Machine-specific configuration files should be installed in / et ¢/ opt / pkg.

m Executables that are directly invoked by users should be installed in
[/ opt / pkg/bin.

m Only package objects that must reside in specific locations within the system
file tree in order to function properly (for example, special files in / dev)
should be installed in those locations.

File Tree for Add-on Software 2-15

Commands That Install, Remove and Access
Packages

The following commands and library routines are used to install and remove
packages and to retrieve information about installed packages. They will be
included in every ABI-conforming system, and are defined in the System V Inter-
face Definition, Third Edition.

pkgadd(AS_CMD): installs packages

pkgr m(AS_CMD): removes packages

pkgchk(AS_CMD): checks installed packages

pkgi nf o(AS_CMD): display information about packages
pkgask(AS_CMD): runs the request script and stores output for later use
instal | f(AS_CMD): associates an installed file with a package

renovef (AS_CMD): removes a file’s association with a package

pkgpar am(AS_CMD): display the values of parameters defined by the package
in the pkgi nf o file

2-16 SOFTWARE INSTALLATION

3 LOW-LEVEL SYSTEM
INFORMATION

Introduction 3-1
Character Representations 3-2
Machine Interface (Processor-Specific) 3-3
Function Calling Sequence (Processor-

Specific) 3-4
Operating System Interface (Processor-

Specific) 3-5
Coding Examples (Processor-Specific) 3-6

Table of Contents

Introduction

This chapter defines low-level system information, much of which is processor-
specific. It gives the constraints imposed by the system on application programs,
and it describes how application programs use operating system services. ANSI C
serves as the ABI reference programming language. By defining the implementa-
tion of C data types, the ABI can give precise system interface information without
resorting to assembly language. Giving C language bindings for system services
does not preclude bindings for other programming languages. Moreover, the
examples given here are not intended to specify the C language available on the
processor.

According to ANSI C, a bit-field may have type i nt , unsi gned int , or

NOTE | Signed int. The Clanguage used in this ABI allows bit-fields of type char ,
short ,int,and!l ong (plus their si gned and unsi gned variants), and of

‘ type enum

This chapter’s major sections discuss the following topics.

m Character representations. This section defines the standard character set used
for external files that should be portable among systems.

m Machine interface. This section describes the processor architecture available
to programs. It also defines the reference language data types, giving the
foundation for system interface specifications.

m Function calling sequence. The standard function calling sequence accommo-
dates the operating system interface, including system calls, signals, and
stack management.

m Operating system interface. This section describes the operating system
mechanisms that are visible to application programs (such as signals, pro-
cess initialization, etc.).

m Coding examples. Finally, some C code fragments show how programming
languages may implement some fundamental operations under the ABI
specifications. These examples are not intended to give the only implemen-
tations, the optimal implementations, nor requirements for implementa-
tions.

Introduction 3-1

Character Representations

Several external file formats represent control information with characters (see
“Archive File” in Chapter 7, for example). These single-byte characters use the 7-
bit ASCII character set. In other words, when the ABI mentions character con-
stants,suchas’ /' or’\n’, their numerical values should follow the 7-bit ASCII
guidelines. For the previous character constants, the single-byte values would be
47 and 10, respectively.

Character values outside the range of 0 to 127 may occupy one or more bytes,
according to the character encoding. Applications can control their own character
sets, using different character set extensions for different languages as appropri-
ate. Although ABI-conformance does not restrict the character sets, they generally
should follow some simple guidelines.

m Character values between 0 and 127 should correspond to the 7-bit ASCII
code. That is, character sets with encodings above 127 should include the
7-bit ASCII code as a subset.

m Multibyte character encodings with values above 127 should contain only
bytes with values outside the range of 0 to 127. That is, a character set that
uses more than one byte per character should not ““embed’ a byte resem-
bling a 7-bit ASCII character within a multibyte, non-ASCII character.

m Multibyte characters should be self-identifying. That allows, for example,
any multibyte character to be inserted between any pair of multibyte charac-
ters, without changing the characters’ interpretations.

These cautions are particularly relevant for multilingual applications.

3-2 LOW-LEVEL SYSTEM INFORMATION

Machine Interface (Processor-Specific)

This section requires processor-specific information. The ABI supplement for
NoTE | the desired processor describes the details.

Machine Interface (Processor-Specific)

3-3

Function Calling Sequence (Processor-
Specific)

NOTE

3-4

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

LOW-LEVEL SYSTEM INFORMATION

Operating System Interface (Processor-
Specific)

This section requires processor-specific information. The ABI supplement for
NOTE | the desired processor describes the details.

Operating System Interface (Processor-Specific)

3-5

Coding Examples (Processor-Specific)

NOTE

3-6

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

LOW-LEVEL SYSTEM INFORMATION

4 OBJECT FILES

Introduction 4-1
File Format 4-1
Data Representation 4-3
ELF Header 4-4
ELF Identification 4-7
Machine Information (Processor-Specific) 4-9
Sections 4-10
Special Sections 4-17
String Table 4-21
Symbol Table 4-22
Symbol Values 4-26
Relocation 4-27
Relocation Types (Processor-Specific) 4-28

Table of Contents i

Introduction

This chapter describes the object file format, called ELF (Executable and Linking
Format). There are three main types of object files.

m A relocatable file holds code and data suitable for linking with other object
files to create an executable or a shared object file.

m An executable file holds a program suitable for execution; the file specifies
how the function exec creates a program’s process image.

m A shared object file holds code and data suitable for linking in two contexts.
First, the link editor [see | d(SD_CMD)] may process it with other relocat-
able and shared obiject files to create another object file. Second, the
dynamic linker combines it with an executable file and other shared objects
to create a process image.

Created by the assembler and link editor, object files are binary representations of
programs intended to execute directly on a processor. Programs that require
other abstract machines, such as shell scripts, are excluded.

After the introductory material, this chapter focuses on the file format and how it
pertains to building programs. Chapter 5 also describes parts of the object file,
concentrating on the information necessary to execute a program.

File Format
Obiject files participate in program linking (building a program) and program exe-
cution (running a program). For convenience and efficiency, the object file format

provides parallel views of a file’s contents, reflecting the differing needs of these
activities. Figure 4-1 shows an object file’s organization.

Introduction 4-1

Figure 4-1: Object File Format

Linking View Execution View
0 ELF header S 0 ELF header g
Ebrogram header table EProgram header table
0 optional 0O 0O 0
g Section 1 g o 0
= - 0O 0O Segment 1 0
1 0 1
0 Sectionn o 0O a
O - 0 0O Segment 2 0
= 0 g 0
O o O O
UsSection header table U U Section header table U
E H E optional H

An ELF header resides at the beginning and holds a “‘road map’’ describing the
file’s organization. Sections hold the bulk of object file information for the linking
view: instructions, data, symbol table, relocation information, and so on. Descrip-
tions of special sections appear later in the chapter. Chapter 5 discusses segments
and the program execution view of the file.

A program header table, if present, tells the system how to create a process image.
Files used to build a process image (execute a program) must have a program
header table; relocatable files do not need one. A section header table contains infor-
mation describing the file's sections. Every section has an entry in the table; each
entry gives information such as the section name, the section size, etc. Files used
during linking must have a section header table; other object files may or may not
have one.

Although the figure shows the program header table immediately after the
NoTE | ELF header, and the section header table following the sections, actual files
may differ. Moreover, sections and segments have no specified order. Only
the ELF header has a fixed position in the file.

4-2 OBJECT FILES

Data Representation

As described here, the object file format supports various processors with 8-bit
bytes and 32-bit architectures. Nevertheless, it is intended to be extensible to
larger (or smaller) architectures. Obiject files therefore represent some control data
with a machine-independent format, making it possible to identify object files and
interpret their contents in a common way. Remaining data in an object file use the
encoding of the target processor, regardless of the machine on which the file was
created.

Figure 4-2: 32-Bit Data Types

Name Size Alignment Purpose
B f 32_Addr g4 O 4 UUnsigned program address
Hf32 Hal f E 2 B 2 Unsigned medium integer
Bf32 Cf 04 0 4 Unsigned file offset
H f32_Sword 04 0O 4 Signed large integer
H f32 Wrd 04 0O 4 OUnsigned large integer
unsi gned char E 1 E 1 EUnsigned small integer

All data structures that the object file format defines follow the “‘natural’ size and
alignment guidelines for the relevant class. If necessary, data structures contain
explicit padding to ensure 4-byte alignment for 4-byte objects, to force structure
sizes to a multiple of 4, etc. Data also have suitable alignment from the beginning
of the file. Thus, for example, a structure containing an Bl f 32_Addr member will
be aligned on a 4-byte boundary within the file.

For portability reasons, ELF uses no bit-fields.

Introduction 4-3

ELF Header

Some obiject file control structures can grow, because the ELF header contains their
actual sizes. If the object file format changes, a program may encounter control
structures that are larger or smaller than expected. Programs might therefore
ignore “‘extra’” information. The treatment of “‘missing’’ information depends on

context and will be specified when and if extensions are defined.

Figure 4-3: ELF Header

f

N

#define El _NDENT 16
typedef struct {
unsi gned char e_ident[El _N DENT];
B f32_Hal f e_type;
Hf32 Hal f e_nachi ne;
Hf32_Wrd e_version;
H f 32_Addr e entry;
Bf32 Of e_phoff;
Bf32_Gf e_shof f;
B f32 Wrd e_flags;
B f32_Hal f e_ehsi ze;
B f32_Hal f e_phent si ze;
B f32_Hal f e_phnum
B f32_Hal f e_shent si ze;
Hf32_Hal f e_shnum
B f32_Hal f e_shst rndx;
} B f32_Ehdr; J
e _ident The initial bytes mark the file as an object file and provide

machine-independent data with which to decode and interpret
the file’s contents. Complete descriptions appear below, in
“ELF Identification.”

4-4

OBJECT FILES

e_type

e_rmachi ne

ELF Header

This member identifies the object file type.

Name Value Meaning
ET NN U 0 UNo file type
ET REL B 1 URelocatable file
ET_EXEC [2 Executable file
ET_DYN 0 3 [Shared object file
ET_CCRE O 4 [OCore file

ET_LCPROC Uoxf f 00
ET_H PRCC BOxffff

UProcessor-specific

BProcessor—specific

Although the core file contents are unspecified, type ET_CCORE is
reserved to mark the file. Values from ET_LCPRCC through
ET_H PRCC (inclusive) are reserved for processor-specific
semantics. If meanings are specified, the processor supplement
explains them. Other values are reserved and will be assigned
to new object file types as necessary.

This member’s value specifies the required architecture for an

individual file.

Name Value Meaning
EMNNE U 0 UNomachine
EM VB2 E 1 EAT&TWE 32100
EMSPARC [2 [SPARC
EM386 [3 [jntel 80386
EM68K O 4 [OMotorola 68000
EM8sK U 5 UMotorola 88000
EM 860 g 7 Elntel 80860
EMMPS g 8 gMIPSRS3000

Other values are reserved and will be assigned to new
machines as necessary. Processor-specific ELF names use the
machine name to distinguish them. For example, the flags
mentioned below use the prefix EF_; a flag named W DCGET for
the EM XYZ machine would be called EF_XYZ W DCET.

4-5

e _version

e entry

e _phof f

e _shoff

e flags

e _ehsi ze

e _phent si ze

e_phnum

e_shentsi ze

e_shnum

e_shst r ndx

This member identifies the object file version.

Name Value Meaning

EV_NONE O o Ulnvalid version

EV_ClRRENTB 1 ECurrentversion

The value 1 signifies the original file format; extensions will
create new versions with higher numbers. The value of
BEV_CURRENT, though given as 1 above, will change as necessary
to reflect the current version number.

This member gives the virtual address to which the system first
transfers control, thus starting the process. If the file has no
associated entry point, this member holds zero.

This member holds the program header table’s file offset in
bytes. If the file has no program header table, this member
holds zero.

This member holds the section header table’s file offset in bytes.
If the file has no section header table, this member holds zero.

This member holds processor-specific flags associated with the
file. Flag names take the form EF_machine_flag. See ‘“Machine
Information’ in the processor supplement for flag definitions.

This member holds the ELF header’s size in bytes.

This member holds the size in bytes of one entry in the file’s
program header table; all entries are the same size.

This member holds the number of entries in the program
header table. Thus the product of e_phent si ze and e_phnum
gives the table’s size in bytes. If a file has no program header
table, e_phnumholds the value zero.

This member holds a section header’s size in bytes. A section
header is one entry in the section header table; all entries are
the same size.

This member holds the number of entries in the section header
table. Thus the product of e_shent si ze and e_shnumgives
the section header table’s size in bytes. If a file has no section
header table, e_shnumholds the value zero.

This member holds the section header table index of the entry
associated with the section name string table. If the file has no
section name string table, this member holds the value
SHN_UNDEF. See “‘Sections’ and **String Table”” below for more

OBJECT FILES

information.

ELF Identification

As mentioned above, ELF provides an object file framework to support multiple
processors, multiple data encodings, and multiple classes of machines. To support
this object file family, the initial bytes of the file specify how to interpret the file,
independent of the processor on which the inquiry is made and independent of
the file’s remaining contents.

The initial bytes of an ELF header (and an object file) correspond to the e_i dent
member.

Figure 4-4: e_i dent[] Identification Indexes

Name Value Purpose
El _MAQD U 0o UFile identification
B MGl E 1 UFile identification
B _NAR o 2 File identification
B MG O 3 [gFileidentification
B _AASS 0O 4 (OFileclass
El _DATA U 5 Upataencoding
El _VERSI ON g 6 UFile version
El _PAD 0 7 pStartof padding bytes
El N DENT B 16 ESize ofe_ident[]

These indexes access bytes that hold the following values.

El _MAQD to E _MAG3
A file’s first 4 bytes hold a ““magic number,” identifying the file
as an ELF object file.

Name Value Position

ELFMAQD Uox7f Ue ident[Bl _MAQD]
ELFMAGL E = ge_i dent [El_MAGL]
ELFMAR 'L pe_ident[El _MAGZ]
ELFMAG3 §'F pge_ident[E MG

ELF Header 4-7

El_CLASS

El _DATA

Bl _VERSI ON

The next byte, e_i dent [El _CLASS] , identifies the file’s class, or
capacity.

Name Value Meaning

ELFOLASSNONE U 0 Ulnvalid class

ELFOLASS32 g 1 EBZ-bitobjects
ELFQLASS64 O 2 []64-bit objects

The file format is designed to be portable among machines of
various sizes, without imposing the sizes of the largest machine
on the smallest. Class ELFQLASS32 supports machines with files
and virtual address spaces up to 4 gigabytes; it uses the basic
types defined above.

Class ELFOLASS64 is reserved for 64-bit architectures. Its appear-
ance here shows how the object file may change, but the 64-bit
format is otherwise unspecified. Other classes will be defined as
necessary, with different basic types and sizes for object file data.

Byte e i dent[El _DATA] specifies the data encoding of the
processor-specific data in the object file. The following encodings
are currently defined.

Name Value Meaning

ELFDATANONE U 0 Ulnvalid data encoding

ELFDATAZLSBE 1 BSee below
ELFDATA2MBB [0 2 []See below

More information on these encodings appears below. Other
values are reserved and will be assigned to new encodings as
necessary.

Byte e ident[El _VERSI QN specifies the ELF header version
number. Currently, this value must be EV_CURRENT, as explained
above for e_versi on.

This value marks the beginning of the unused bytes ine_i dent .
These bytes are reserved and set to zero; programs that read
object files should ignore them. The value of EI _PAD will change
in the future if currently unused bytes are given meanings.

A file’s data encoding specifies how to interpret the basic objects in a file. As
described above, class ELFOLASS32 files use objects that occupy 1, 2, and 4 bytes.
Under the defined encodings, objects are represented as shown below. Byte
numbers appear in the upper left corners.

4-8

OBJECT FILES

Encoding ELFDATA2L SB specifies 2’s complement values, with the least significant
byte occupying the lowest address.

Figure 4-5: Data Encoding ELFDATA2LSB

ox01 |° o1
0 1
0x0102 02 01
0 1 2 3
0x01020304 04 03 02 01

Encoding ELFDATA2NMSB specifies 2’s complement values, with the most significant
byte occupying the lowest address.

Figure 4-6: Data Encoding ELFDATA2IVEB

oxo1 | o1
0 1
0x0102 01 02
0 1 2 3
0x01020304 01 02 03 04

Machine Information (Processor-Specific)

NOTE

ELF Header

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

4-9

Sections

An object file’s section header table lets one locate all the file’s sections. The sec-
tion header table is an array of B f 32_Shdr structures as described below. A sec-
tion header table index is a subscript into this array. The ELF header’s e_shof f
member gives the byte offset from the beginning of the file to the section header
table; e_shnumtells how many entries the section header table contains;

e_shent si ze gives the size in bytes of each entry.

Some section header table indexes are reserved; an object file will not have sec-
tions for these special indexes.

Figure 4-7: Special Section Indexes

Name Value
SHN_UNDEF 0 0
SHN LCRESERVE Joxf £ 00

SHN LCPRCC BOXf f00

SHN HPROC [jOxff 1f
SHN _ABS OOxf 1
SHN_COVWMIN Uoxfff2
SHN_H RESERVE BOxffff

SHN_ UNDEF This value marks an undefined, missing, irrelevant, or other-
wise meaningless section reference. For example, a symbol
“defined” relative to section number SHN_UNDEF is an
undefined symbol.

Although index 0O is reserved as the undefined value, the section header table

NOTE | contains an entry for index 0. That is, if the e_shnummember of the ELF

header says a file has 6 entries in the section header table, they have the

‘ indexes 0 through 5. The contents of the initial entry are specified later in this
section.

SHN LORESERVE This value specifies the lower bound of the range of reserved
indexes.

SHN LCPROCthrough SHN H PROC
Values in this inclusive range are reserved for processor-
specific semantics. If meanings are specified, the processor
supplement explains them.

4-10 OBJECT FILES

SHN ABS

SHN_COWON

SHN H RESERVE

This value specifies absolute values for the corresponding
reference. For example, symbols defined relative to section
number SHN_ABS have absolute values and are not affected by
relocation.

Symbols defined relative to this section are common symbols,
such as FORTRAN COMMON or unallocated C external vari-
ables.

This value specifies the upper bound of the range of reserved
indexes. The system reserves indexes between

SHN LCRESERVE and SHN_H RESERVE, inclusive; the values do
not reference the section header table. That is, the section
header table does not contain entries for the reserved indexes.

Sections contain all information in an object file, except the ELF header, the pro-
gram header table, and the section header table. Moreover, object files’ sections
satisfy several conditions.

m Every section in an object file has exactly one section header describing it.
Section headers may exist that do not have a section.

m Each section occupies one contiguous (possibly empty) sequence of bytes

within a file.

m Sections in a file may not overlap. No byte in a file resides in more than one

section.

m An object file may have inactive space. The various headers and the sec-
tions might not ‘““‘cover’ every byte in an object file. The contents of the
inactive data are unspecified.

A section header has the following structure.

Sections

4-11

sh_info This member holds extra information, whose interpretation
depends on the section type. A table below describes the
values.

sh_addral i gn Some sections have address alignment constraints. For exam-
ple, if a section holds a doubleword, the system must ensure
doubleword alignment for the entire section. That is, the value
of sh_addr must be congruent to 0, modulo the value of
sh_addral i gn. Currently, only 0 and positive integral powers
of two are allowed. Values 0 and 1 mean the section has no
alignment constraints.

sh_ent si ze Some sections hold a table of fixed-size entries, such as a sym-
bol table. For such a section, this member gives the size in
bytes of each entry. The member contains 0 if the section does
not hold a table of fixed-size entries.

A section header’s sh_t ype member specifies the section’s semantics.

Figure 4-9: Section Types, sh_type

Name Value
SHT NULL
SHT PRO@EBI TS
SHT SYMIAB
SHT STRTAB
SHT RELA
SHT HASH
SHT DYNAM C
SHT _NOTE
SHT NOBI TS
SHT REL
SHT SH IB
SHT DYNSYM

O©CoOoO~NOOULD WNPFPO

10
11

SHT_LOPROC
SHT_H PROC
SHT_LOUSER
SHT_H USER

OOooooooogooooggono

0x70000000
OOX7fffffff
(J0x80000000
%Oxf fEfffff

Sections

4-13

SHT_NULL

SHT_PROEI TS

This value marks the section header as inactive; it does not
have an associated section. Other members of the section
header have undefined values.

The section holds information defined by the program, whose
format and meaning are determined solely by the program.

SHT_SYMIAB and SHT_DYNSYM

SHT_STRTAB

SHT RELA

SHT_HASH

SHT_DYNAM C

SHT_NOTE

SHT_NCBI TS

4-14

These sections hold a symbol table. Currently, an object file
may have only one section of each type, but this restriction
may be relaxed in the future. Typically, SHT SYMI'AB provides
symbols for link editing, though it may also be used for
dynamic linking. As a complete symbol table, it may contain
many symbols unnecessary for dynamic linking. Conse-
quently, an object file may also contain a SHT_DYNSYMsection,
which holds a minimal set of dynamic linking symbols, to save
space. See ‘““Symbol Table” below for details.

The section holds a string table. An object file may have multi-
ple string table sections. See “‘String Table’ below for details.

The section holds relocation entries with explicit addends, such
as type H f 32_Rel a for the 32-bit class of object files. An
object file may have multiple relocation sections. See ‘“‘Reloca-
tion”” below for details.

The section holds a symbol hash table. All objects participating
in dynamic linking must contain a symbol hash table.
Currently, an object file may have only one hash table, but this
restriction may be relaxed in the future. See ‘“Hash Table” in
Chapter 5 for details.

The section holds information for dynamic linking. Currently,
an object file may have only one dynamic section, but this res-
triction may be relaxed in the future. See ““Dynamic Section”
in Chapter 5 for details.

The section holds information that marks the file in some way.
See ““Note Section” in Chapter 5 for details.

A section of this type occupies no space in the file but other-
wise resembles SHT_PROGBI TS. Although this section contains
no bytes, the sh_of f set member contains the conceptual file
offset.

OBJECT FILES

SHT_REL

SHT _SHLIB

The section holds relocation entries without explicit addends,
such as type B f 32_Rel for the 32-bit class of object files. An
object file may have multiple relocation sections. See “‘Reloca-
tion” below for details.

This section type is reserved but has unspecified semantics.
Programs that contain a section of this type do not conform to
the ABI.

SHT_LCPROC through SHT_H PROC

SHT_LQUSER

SHT_H USER

Values in this inclusive range are reserved for processor-
specific semantics. If meanings are specified, the processor
supplement explains them.

This value specifies the lower bound of the range of indexes
reserved for application programs.

This value specifies the upper bound of the range of indexes
reserved for application programs. Section types between
SHT_LQUSER and SHT_H USER may be used by the application,
without conflicting with current or future system-defined sec-
tion types.

Other section type values are reserved. As mentioned before, the section header
for index 0 (SHN_UNDEF) exists, even though the index marks undefined section
references. This entry holds the following.

Figure 4-10: Section Header Table Entry: Index 0

Name Value Note
sh_nane 0 0 UNo name
sh_type O SHT_NULL Ulnactive

O

sh_fl ags 0 0 No flags
sh_addr 0 0 No address
sh_of f set O 0 ONo file offset
sh_si ze 0 0 UNo size
sh_link BSI—N_U\I]EF UNo link information
sh_info 0 0 No auxiliary information
sh_addralign g 0 No alignment
sh_entsi ze E 0 ENO entries

Sections

4-15

A section header’s sh_f | ags member holds 1-bit flags that describe the section’s
attributes. Defined values appear below; other values are reserved.

Figure 4-11: Section Attribute Flags, sh_fl ags

Name Value
SHF WR TE U 0x1
SHE_ALLCC g 0x2
SH_EXEQI NSTR [0x4

SHF_NVASKPRCOC EOXf 0000000

If a flag bitis set in sh_f | ags, the attribute is *‘on’ for the section. Otherwise, the
attribute is ““off”’ or does not apply. Undefined attributes are set to zero.

SH WR TE The section contains data that should be writable during pro-
cess execution.

SHF ALLCC The section occupies memory during process execution.
Some control sections do not reside in the memory image of
an object file; this attribute is off for those sections.

SHF EXECI NSTR The section contains executable machine instructions.

SHF_MASKPROC All bits included in this mask are reserved for processor-
specific semantics. If meanings are specified, the processor
supplement explains them.

Two members in the section header, sh_| i nk and sh_i nf o, hold special informa-
tion, depending on section type.

4-16 OBJECT FILES

Figure 4-12: sh_li nk and sh_i nf o Interpretation

sh_type

sh_l'ink

sh_info

SHT_DYNAM C UThe section header index of [0

Uthe string table used by
pentries in the section.

HOod

SHT_HASH OThe section header index of [0
Uthe symbol table to which U
Ethe hash table applies. E
SHT _REL ﬁThe section header index of EThe section header index of
SHT _RELA Othe associated symbol table. Othe section to which the
O Urelocation applies.
SHT_SYMIAB EThe section header index of EOne greater than the sym-
SHT_DYNSYM [Jthe associated string table. bol table index of the last
O Olocal symbol (binding
0 USTB_LOCAL).
other ESI—N_U\[EF 50

Special Sections

Various sections hold program and control information. Sections in the list below
are used by the system and have the indicated types and attributes.

Figure 4-13: Special Sections

Name Type Attributes
. bss USHT NCBITS USHE ALLOC+SHE WR TE
. conment ESHT_PRCI—BI TS Dnone
.data SHT_PROGBI TS SHE_ALLOC+SHE_WRI TE
.datal OSHT_PROEBI TS SH-_ALLCC+SH-_WR TE
. debug OSHT_PRO®BI TS [none
.dynamic USHT DYNAM C Usee below
.dynstr DSHT_STRTAB BSI—F_ALLCI:
.dynsym 5SHT_DYNSYM SHF_ALLCC
fini OSHT_PROGBI TS SHF_ALLOC+SH-_EXEQ NSTR
. got OSHT_PROEBI TS Osee below

Sections

4-17

Figure 4-13: Special Sections (continued)

. hash OSHT _HASH
init USHT PROGBI TS
.interp ESHI’_PRCIBI TS
.line SHT_PRO&EI TS
.hote OSHT_NOTE
.plt OSHT_PROGEBI TS
.rel name USHT REL

. rel aname DSI-rI'_RELA

.rodata ESHI’_PRCIBI TS

.rodatal [SHT _PRO&EBI TS
.shstrtab [OSHT STRTAB
.strtab USHT_STRTAB
.syntab ESHI’_SYMI’AB
.text

FSHT_PROGBI TS

OSHF ALLCC
USHE ALLOC+SHE _EXEQ NSTR
Usee below
;none
[jnone
Osee below
Usee below
Dsee below
OSHE_ALLOC
OSH-_ALLCC
Inone
Usee below
see below

SSHFE_ALLOC+SHE_EXEQI NSTR

. bss

This section holds uninitialized data that contribute to the

program’s memory image. By definition, the system initializes the
data with zeros when the program begins to run. The section occu-
pies no file space, as indicated by the section type, SHT_NCBI TS.

. comment

.dataand. datal

This section holds version control information.

These sections hold initialized data that contribute to the program’s

memory image.

. debug
tents are unspecified.

. dynam c

This section holds information for symbolic debugging. The con-

This section holds dynamic linking information. The section’s attri-

butes will include the SH=_ALLQCbit. Whether the SH= WR TE bit is
set is processor specific. See Chapter 5 for more information.

.dynstr

This section holds strings needed for dynamic linking, most com-

monly the strings that represent the names associated with symbol
table entries. See Chapter 5 for more information.

.dynsym

This section holds the dynamic linking symbol table, as **Symbol

Table’ describes. See Chapter 5 for more information.

4-18

OBJECT FILES

Lfini

. got

. hash

.init

.interp

.line

.hote

.plt

. rel name and

.rodataand.

Sections

This section holds executable instructions that contribute to the pro-
cess termination code. That is, when a program exits normally, the
system arranges to execute the code in this section.

This section holds the global offset table. See ‘““Coding Examples”
in Chapter 3, “Special Sections’” in Chapter 4, and ““Global Offset
Table” in Chapter 5 of the processor supplement for more informa-
tion.

This section holds a symbol hash table. See ‘“Hash Table” in
Chapter 5 for more information.

This section holds executable instructions that contribute to the pro-
cess initialization code. That is, when a program starts to run, the
system arranges to execute the code in this section before calling the
main program entry point (called mai n for C programs).

This section holds the path name of a program interpreter. If the
file has a loadable segment that includes the section, the section’s
attributes will include the SH=_ALLQC bit; otherwise, that bit will be
off. See Chapter 5 for more information.

This section holds line number information for symbolic debug-
ging, which describes the correspondence between the source pro-
gram and the machine code. The contents are unspecified.

This section holds information in the format that ‘“‘Note Section’ in
Chapter 5 describes.

This section holds the procedure linkage table. See *‘Special Sec-
tions” in Chapter 4 and ““Procedure Linkage Table’ in Chapter 5 of
the processor supplement for more information.

. rel aname

These sections hold relocation information, as “‘Relocation’ below
describes. If the file has a loadable segment that includes reloca-
tion, the sections’ attributes will include the SH=_ALLCC bit; other-
wise, that bit will be off. Conventionally, name is supplied by the
section to which the relocations apply. Thus a relocation section for
. text normally would have the name .rel .text or.rela.text.

r odat al

These sections hold read-only data that typically contribute to a
non-writable segment in the process image. See “Program Header”
in Chapter 5 for more information.

4-19

.shstrtab This section holds section names.

.strtab This section holds strings, most commonly the strings that
represent the names associated with symbol table entries. If the file
has a loadable segment that includes the symbol string table, the
section’s attributes will include the SHF_ALLQC bit; otherwise, that
bit will be off.

. symt ab This section holds a symbol table, as ‘““Symbol Table’" in this chapter
describes. If the file has a loadable segment that includes the sym-
bol table, the section’s attributes will include the SHF_ALLCC bit;
otherwise, that bit will be off.

.text This section holds the ““text,” or executable instructions, of a pro-
gram.

Section names with a dot (.) prefix are reserved for the system, although applica-
tions may use these sections if their existing meanings are satisfactory. Applica-
tions may use names without the prefix to avoid conflicts with system sections.
The object file format lets one define sections not in the list above. An object file
may have more than one section with the same name.

Section names reserved for a processor architecture are formed by placing an
abbreviation of the architecture name ahead of the section name. The name
should be taken from the architecture names used for e_nachi ne. For instance
.FOO.psect is the psect section defined by the FOO architecture. Existing exten-
sions are called by their historical names.

Pre-existing Extensions

.sdata . tdesc

. Sbss dita
dit8 .reginfo
. gptab .liblist
.conflict

For information on processor-specific sections, see the ABI supplement for
NOTE | the desired processor.

4-20 OBJECT FILES

String Table

String table sections hold null-terminated character sequences, commonly called
strings. The object file uses these strings to represent symbol and section names.
One references a string as an index into the string table section. The first byte,
which is index zero, is defined to hold a null character. Likewise, a string table’s
last byte is defined to hold a null character, ensuring null termination for all
strings. A string whose index is zero specifies either no name or a null name,
depending on the context. An empty string table section is permitted; its section
header’s sh_si ze member would contain zero. Non-zero indexes are invalid for
an empty string table.

A section header’s sh_name member holds an index into the section header string
table section, as designated by the e_shst r ndx member of the ELF header. The
following figures show a string table with 25 bytes and the strings associated with
various indexes.

Index +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

0 0w Un Ua Om Oe O, Oio Ov Oa Oy g
10 i pa gb gl pe 0\0 ga ob ol e .
20 EB\0 F\O Ax Hx B\0H BH B H B &

Figure 4-14: String Table Indexes

Index String

0 Unone

1 nane.

7 DVari abl e
11 [pable
16 [able

24 Hnull string

As the example shows, a string table index may refer to any byte in the section. A
string may appear more than once; references to substrings may exist; and a single
string may be referenced multiple times. Unreferenced strings also are allowed.

String Table 4-21

Symbol Table

An object file’s symbol table holds information needed to locate and relocate a
program’s symbolic definitions and references. A symbol table index is a sub-
script into this array. Index 0 both designates the first entry in the table and serves
as the undefined symbol index. The contents of the initial entry are specified later
in this section.

Name Value
STN_UNDEF 0

g
U

A symbol table entry has the following format.

Figure 4-15: Symbol Table Entry

s N

typedef struct {
B f32_Wrd st _nane;
B f 32_Addr st _val ue;
B f32_Wrd st_si ze;
unsi gned char st_info;
unsi gned char st_ot her;
B f32_Hal f st _shndx;
} Bf32_Sym J
st _nane This member holds an index into the object file’s symbol string

table, which holds the character representations of the symbol
names. If the value is non-zero, it represents a string table index
that gives the symbol name. Otherwise, the symbol table entry

has no name.
External C symbols have the same names in C and object files’ symbol tables.
NOTE
st _val ue This member gives the value of the associated symbol. Depend-

ing on the context, this may be an absolute value, an address, etc.;
details appear below.

4-22 OBJECT FILES

st_size

st_info

Many symbols have associated sizes. For example, a data object’s
size is the number of bytes contained in the object. This member
holds 0 if the symbol has no size or an unknown size.

This member specifies the symbol’s type and binding attributes.
A list of the values and meanings appears below. The following
code shows how to manipulate the values.

#define ELF32_ST BINXi) ((i)>>4)
#def i ne ELF32_ST_TYPE(i) ((i)&0xf)
#def i ne ELF32_ST_INFQ(b, t) (((b)<<4)+((t)&Oxf))

st _ot her

st _shndx

This member currently holds 0 and has no defined meaning.

Every symbol table entry is ““‘defined’ in relation to some section;
this member holds the relevant section header table index. As
Figure 4-7 and the related text describe, some section indexes
indicate special meanings.

A symbol’s binding determines the linkage visibility and behavior.

Figure 4-16: Symbol Binding, ELF32_ST_BI ND

Name Value
StBLocAL U o
STB @.CBAL g 1
STB VEAK 2
STB LOPROC [13

STB HPROC [15

STB_LOCAL

STB_Q.CBAL

Symbol Table

Local symbols are not visible outside the object file containing
their definition. Local symbols of the same name may exist in
multiple files without interfering with each other.

Global symbols are visible to all object files being combined. One
file’s definition of a global symbol will satisfy another file’s
undefined reference to the same global symbol.

4-23

STB_WEAK Weak symbols resemble global symbols, but their definitions
have lower precedence.

STB_LCPROCthrough STB_H PROC
Values in this inclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement
explains them.

Global and weak symbols differ in two major ways.

m When the link editor combines several relocatable object files, it does not
allow multiple definitions of STB_A_OBAL symbols with the same name. On
the other hand, if a defined global symbol exists, the appearance of a weak
symbol with the same name will not cause an error. The link editor honors
the global definition and ignores the weak ones. Similarly, if a common
symbol exists (i.e., a symbol whose st_shndx field holds SHN COWN), the
appearance of a weak symbol with the same name will not cause an error.
The link editor honors the common definition and ignores the weak one.

m When the link editor searches archive libraries [see ““Archive File” in
Chapter 7], it extracts archive members that contain definitions of undefined
global symbols. The member’s definition may be either a global or a weak
symbol. The link editor does not extract archive members to resolve
undefined weak symbols. Unresolved weak symbols have a zero value.

In each symbol table, all symbols with STB_LOCAL binding precede the weak and
global symbols. As ““Sections’ above describes, a symbol table section’s sh_i nfo
section header member holds the symbol table index for the first non-local symbol.

A symbol’s type provides a general classification for the associated entity.

Figure 4-17: Symbol Types, ELF32_ST_TYPE

Name Value
STT_NOTYPE
STT_CBIJECT
STT_FUNC
STT_SECTION
STT _FILE
STT_LCPROC
STT_H PROC

Ooooooooog
gwdhwnNEFO

e

4-24 OBJECT FILES

STT_NOTYPE The symbol’s type is not specified.

STT_CBIECT The symbol is associated with a data object, such as a variable,
an array, etc.

STT_FUNC The symbol is associated with a function or other executable
code.

STT_SECTI ON The symbol is associated with a section. Symbol table entries of
this type exist primarily for relocation and normally have
STB LOCAL binding.

STT_FI LE Conventionally, the symbol’s name gives the name of the source
file associated with the object file. A file symbol has STB_LOCAL
binding, its section index is SHN_ABS, and it precedes the other
STB_LCCAL symbols for the file, if it is present.

STT_LCPRCCthrough STT_H PROC
Values in this inclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement
explains them.

Function symbols (those with type STT_FUNC) in shared object files have special
significance. When another object file references a function from a shared object,
the link editor automatically creates a procedure linkage table entry for

the referenced symbol. Shared object symbols with types other than STT_FUNC
will not be referenced automatically through the procedure linkage table.

If a symbol’s value refers to a specific location within a section, its section index
member, st _shndx, holds an index into the section header table. As the section
moves during relocation, the symbol’s value changes as well, and references to the
symbol continue to “point” to the same location in the program. Some special sec-
tion index values give other semantics.

SHN_ABS The symbol has an absolute value that will not change because of
relocation.

SHN_ COWON The symbol labels a common block that has not yet been allo-
cated. The symbol’s value gives alignment constraints, similar to
a section’s sh_addr al i gn member. That is, the link editor will
allocate the storage for the symbol at an address that is a multiple
of st _val ue. The symbol’s size tells how many bytes are
required.

SHN_UNDEF This section table index means the symbol is undefined. When
the link editor combines this object file with another that defines
the indicated symbol, this file’s references to the symbol will be
linked to the actual definition.

Symbol Table 4-25

As mentioned above, the symbol table entry for index 0 (STN_UNDEF) is reserved,; it
holds the following.

Figure 4-18: Symbol Table Entry: Index O

Name Value Note
st_name U 0 UNo name
st _val ue E 0 Uzero value
st_size [0 nNo size
st_info [0 No type, local binding
st_other O 0 O
st _shndx %SI—N_U\DEF ENO section

Symbol Values

Symbol table entries for different object file types have slightly different interpre-
tations for the st _val ue member.

m In relocatable files, st _val ue holds alignment constraints for a symbol
whose section index is SHN_ COWON.

m In relocatable files, st _val ue holds a section offset for a defined symbol.
That is, st _val ue is an offset from the beginning of the section that
st _shndx identifies.

m In executable and shared object files, st _val ue holds a virtual address. To
make these files’ symbols more useful for the dynamic linker, the section
offset (file interpretation) gives way to a virtual address (memory interpre-
tation) for which the section number is irrelevant.

Although the symbol table values have similar meanings for different object files,
the data allow efficient access by the appropriate programs.

4-26 OBJECT FILES

Relocation

Relocation is the process of connecting symbolic references with symbolic
definitions. For example, when a program calls a function, the associated call
instruction must transfer control to the proper destination address at execution.
In other words, relocatable files must have information that describes how to
modify their section contents, thus allowing executable and shared object files to
hold the right information for a process’s program image. Relocation entries are

these data.

Figure 4-19: Relocation Entries

f

typedef struct {

B f 32_Addr r_of fset;
B f32 Wrd r_info;
} Bf32_Rel;

typedef struct {

B f 32_Addr r_offset;

B f32_Wrd r_info;

B f32_Sword r _addend;
} Bf32_Rel g

N

)

r_of f set

r_info

Relocation

This member gives the location at which to apply the relocation
action. For a relocatable file, the value is the byte offset from the
beginning of the section to the storage unit affected by the relocation.
For an executable file or a shared object, the value is the virtual
address of the storage unit affected by the relocation.

This member gives both the symbol table index with respect to
which the relocation must be made, and the type of relocation to
apply. For example, a call instruction’s relocation entry would hold
the symbol table index of the function being called. If the index is
STN_UNDEF, the undefined symbol index, the relocation uses 0 as the
“symbol value.” Relocation types are processor-specific; descrip-
tions of their behavior appear in the processor supplement. When
the text in the processor supplement refers to a relocation entry’s
relocation type or symbol table index, it means the result of applying
ELF32_R TYPE or ELF32_R SYM respectively, to the entry’sr _i nfo
member.

4-27

#define ELF32_R SYMi) ((i)>>8)
#def i ne ELF32_R TYPE(i) ((unsigned char)(i))
#define ELF32_R INFQ(s,t) (((s)<<8)+(unsigned char)(t))

r _addend This member specifies a constant addend used to compute the value
to be stored into the relocatable field.

As shown above, only H f 32_Rel a entries contain an explicit addend. Entries of
type H f 32_Rel store an implicit addend in the location to be modified. Depend-
ing on the processor architecture, one form or the other might be necessary or
more convenient. Consequently, an implementation for a particular machine may
use one form exclusively or either form depending on context.

A relocation section references two other sections: a symbol table and a section to
modify. The section header’s sh_i nf o and sh_I i nk members, described in *““Sec-
tions™ above, specify these relationships. Relocation entries for different object
files have slightly different interpretations for ther _of f set member.

m Inrelocatable files, r _of f set holds a section offset. That is, the relocation
section itself describes how to modify another section in the file; relocation
offsets designate a storage unit within the second section.

m In executable and shared object files, r _of f set holds a virtual address. To
make these files’ relocation entries more useful for the dynamic linker, the
section offset (file interpretation) gives way to a virtual address (memory
interpretation).

Although the interpretation of r _of f set changes for different object files to allow
efficient access by the relevant programs, the relocation types’ meanings stay the
same.

Relocation Types (Processor-Specific)

4-28 OBJECT FILES

This section requires processor-specific information. The ABI supplement for
NoTE | the desired processor describes the details.

Relocation 4-29

5 PROGRAM LOADING AND
DYNAMIC LINKING

Introduction 5-1
Program Header 5-2
Base Address 5-5
Segment Permissions 5-5
Segment Contents 5-7
Note Section 5-8
Program Loading (Processor-Specific) 5-11
Dynamic Linking 5-12
Program Interpreter 5-12
Dynamic Linker 5-13
Dynamic Section 5-14
Shared Object Dependencies 5-19
Global Offset Table (Processor-Specific) 5-21
Procedure Linkage Table (Processor-Specific) 5-21
Hash Table 5-21
Initialization and Termination Functions 5-22

Table of Contents

Introduction

This chapter describes the object file information and system actions that create
running programs. Some information here applies to all systems; information
specific to one processor resides in sections marked accordingly.

Executable and shared object files statically represent programs. To execute such
programs, the system uses the files to create dynamic program representations, or
process images. As section ““Virtual Address Space’ in Chapter 3 of the processor
supplement describes, a process image has segments that hold its text, data, stack,
and so on. This chapter’s major sections discuss the following.

m Program header. This section complements Chapter 4, describing object file
structures that relate directly to program execution. The primary data
structure, a program header table, locates segment images within the file
and contains other information necessary to create the memory image for
the program.

m Program loading. Given an object file, the system must load it into memory
for the program to run.

m Dynamic linking. After the system loads the program, it must complete the
process image by resolving symbolic references among the object files that
compose the process.

The processor supplement defines a naming convention for ELF constants a
NoTE | that have processor ranges specified. Names such as DT_, PT_, for proces- g
sor specific extensions, incorporate the name of the processor: a
a
g

DT_M32_SPECIAL, for example. Pre—existing processor extensions not
using this convention will be supported.

Pre-existing Extensions

DT_JMP_REL

Introduction 5-1

Program Header

An executable or shared object file’s program header table is an array of struc-
tures, each describing a segment or other information the system needs to prepare
the program for execution. An object file segment contains one or more sections, as
“Segment Contents’” describes below. Program headers are meaningful only for
executable and shared object files. A file specifies its own program header size
with the ELF header’s e_phent si ze and e_phnummembers [see ““ELF Header” in

Chapter 4].

Figure 5-1: Program Header

f

typedef struct {

B 32 Wrd
Hf32 Of

H f32_Addr
B 32_Addr
B 32 Vord
B 32 Verd
B 32 Verd
B f32_Verd

} B 32 Phdr;

p_type;
p_offset;
p_vaddr;
p_paddr;
p_filesz;
p_nensz;
p_flags;
p_align;

N

w4

_type

p_of f set

p_vaddr

p_paddr

5-2

This member tells what kind of segment this array element
describes or how to interpret the array element’s information.
Type values and their meanings appear below.

This member gives the offset from the beginning of the file at
which the first byte of the segment resides.

This member gives the virtual address at which the first byte of
the segment resides in memory.

On systems for which physical addressing is relevant, this
member is reserved for the segment’s physical address. Because
System V ignores physical addressing for application programs,
this member has unspecified contents for executable files and
shared objects.

PROGRAM LOADING AND DYNAMIC LINKING

p_filesz This member gives the number of bytes in the file image of the
segment; it may be zero.

p_nensz This member gives the number of bytes in the memory image of
the segment; it may be zero.

p_flags This member gives flags relevant to the segment. Defined flag
values appear below.

p_align As “Program Loading” describes in this chapter of the processor
supplement, loadable process segments must have congruent
values for p_vaddr and p_of f set , modulo the page size. This
member gives the value to which the segments are aligned in
memory and in the file. Values 0 and 1 mean no alignment is
required. Otherwise, p_al i gn should be a positive, integral
power of 2, and p_vaddr should equal p_of f set , modulo

p_align.

Some entries describe process segments; others give supplementary information

and do not contribute to the process image. Segment entries may appear in any

order, except as explicitly noted below. Defined type values follow; other values
are reserved for future use.

Figure 5-2: Segment Types, p_type

Name Value
PT_NULL U 0
PT_LOAD g 1
PT_DYNAM C 2
PT_INTERP [3
PT_NOTE 0 4
PT SH.IB U 5
PT_PHDR g 6
PT_LCPROC 70x70000000

PT_H PRCC EOX?fffffff

PT_NULL The array element is unused; other members’ values are
undefined. This type lets the program header table have ignored
entries.

PT_LQAD The array element specifies a loadable segment, described by

p_filesz and p_nensz. The bytes from the file are mapped to
the beginning of the memory segment. If the segment’s memory
size (p_mrensz) is larger than the file size (p_fi | esz), the “extra”

Program Header 5-3

bytes are defined to hold the value 0 and to follow the segment’s
initialized area. The file size may not be larger than the memory
size. Loadable segment entries in the program header table
appear in ascending order, sorted on the p_vaddr member.

PT_DYNAM C The array element specifies dynamic linking information. See

“Dynamic Section’ below for more information.

PT_| NTERP The array element specifies the location and size of a null-

terminated path name to invoke as an interpreter. This segment
type is meaningful only for executable files (though it may occur
for shared objects); it may not occur more than once in a file. If it
is present, it must precede any loadable segment entry. See “‘Pro-
gram Interpreter” below for further information.

PT_NOTE The array element specifies the location and size of auxiliary
information. See ‘““Note Section” below for details.

PT_ SH.IB This segment type is reserved but has unspecified semantics. Pro-
grams that contain an array element of this type do not conform
to the ABI.

PT_PHDR The array element, if present, specifies the location and size of the

program header table itself, both in the file and in the memory
image of the program. This segment type may not occur more
than once in a file. Moreover, it may occur only if the program
header table is part of the memory image of the program. Ifitis
present, it must precede any loadable segment entry. See “‘Pro-
gram Interpreter”” below for further information.

PT_LOPRCC through PT_H PRCC

NOTE

5-4

Values in this inclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement
explains them.

Unless specifically required elsewhere, all program header segment types are
optional. That is, a file’'s program header table may contain only those ele-
ments relevant to its contents.

PROGRAM LOADING AND DYNAMIC LINKING

Base Address

As “Program Loading” in this chapter of the processor supplement describes, the
virtual addresses in the program headers might not represent the actual virtual
addresses of the program’s memory image. Executable files typically contain
absolute code. To let the process execute correctly, the segments must reside at
the virtual addresses used to build the executable file. On the other hand, shared
object segments typically contain position-independent code. This lets a segment’s
virtual address change from one process to another, without invalidating execu-
tion behavior. Though the system chooses virtual addresses for individual
processes, it maintains the segments’ relative positions. Because position-
independent code uses relative addressing between segments, the difference
between virtual addresses in memory must match the difference between virtual
addresses in the file. The difference between the virtual address of any segment in
memory and the corresponding virtual address in the file is thus a single constant
value for any one executable or shared object in a given process. This difference is
the base address. One use of the base address is to relocate the memory image of
the program during dynamic linking.

An executable or shared object file’s base address is calculated during execution
from three values: the memory load address, the maximum page size, and the
lowest virtual address of a program’s loadable segment. To compute the base
address, one determines the memory address associated with the lowest p_vaddr
value for a PT_LQAD segment. This address is truncated to the nearest multiple of
the maximum page size. The corresponding p_vaddr value itself is also truncated
to the nearest multiple of the maximum page size. The base address is the differ-
ence between the truncated memory address and the truncated p_vaddr value.

See this chapter in the processor supplement for more information and examples.
“Operating System Interface’” of Chapter 3 in the processor supplement contains
more information about the virtual address space and page size.

Segment Permissions
A program to be loaded by the system must must have at least one loadable seg-
ment (although this is not required by the file format). When the system creates

loadable segments’ memory images, it gives access permissions as specified in the
p_fl ags member.

Program Header 5-5

mmmmmmmmmmimimimimm

Figure 5-3: Segment Flag Bits, p_f | ags

Name Value Meaning
PF_X U 0x1 UExecute
PF W g 0x2 gWrite
PF R 0 0x4 DRead

PF_MASKPROC EOXf 0000000 EUnSpeCified

All bits included in the PF_MASKPROC mask are reserved for processor-specific
semantics. If meanings are specified, the processor supplement explains them.

If a permission bit is 0, that type of access is denied. Actual memory permissions
depend on the memory management unit, which may vary from one system to
another. Although all flag combinations are valid, the system may grant more
access than requested. In no case, however, will a segment have write permission
unless it is specified explicitly. The following table shows both the exact flag
interpretation and the allowable flag interpretation. ABI-conforming systems may
provide either.

Figure 5-4: Segment Permissions

Flags Value Exact Allowable

none U o UAllaccess denied UAII access denied
PF_X g 1 Execute only DRead, execute

PF W 0 2 OWrite only nRead, write, execute
PF W+PF_X 0o 3 OWrite, execute JRead, write, execute
PF R o 4 ORead only OORead, execute
PF_R+PF_X U 5 URead, execute URead, execute

PF R+PF W g 6 Read, write O Read, write, execute
PF R+PF W+PF X B 7 ERead, write, execute ERead, write, execute

For example, typical text segments have read and execute—but not write—
permissions. Data segments normally have read, write, and execute permissions.

5-6 PROGRAM LOADING AND DYNAMIC LINKING

Segment Contents

An object file segment comprises one or more sections, though this fact is tran-
sparent to the program header. Whether the file segment holds one or many sec-
tions also is immaterial to program loading. Nonetheless, various data must be
present for program execution, dynamic linking, and so on. The diagrams below
illustrate segment contents in general terms. The order and membership of sec-
tions within a segment may vary; moreover, processor-specific constraints may
alter the examples below. See the processor supplement for details.

Text segments contain read-only instructions and data, typically including the fol-
lowing sections described in Chapter 4. Other sections may also reside in loadable
segments; these examples are not meant to give complete and exclusive segment
contents.

Figure 5-5: Text Segment

U text U

D.rodata 0
O .hash O

Data segments contain writable data and instructions, typically including the fol-
lowing sections.

Figure 5-6: Data Segment

U data U

Ed—.D
i dynam ¢
0 .got

g
H bss H

A PT_DYNAM C program header element points at the . dynani ¢ section, explained
in “Dynamic Section” below. The. got and. pl t sections also hold information
related to position-independent code and dynamic linking. Although the . pl t
appears in a text segment above, it may reside in a text or a data segment,

Program Header 5-7

depending on the processor. See ‘““Global Offset Table”” and ““Procedure Linkage
Table” in this chapter of the processor supplement for details.

As ““Sections” in Chapter 4 describes, the . bss section has the type SHT_NCBI TS.
Although it occupies no space in the file, it contributes to the segment’s memory
image. Normally, these uninitialized data reside at the end of the segment,
thereby making p_mensz larger than p_fi |l esz in the associated program header
element.

Note Section

Sometimes a vendor or system builder needs to mark an object file with special
information that other programs will check for conformance, compatibility, etc.
Sections of type SHT _NOTE and program header elements of type PT_NOTE can be
used for this purpose. The note information in sections and program header ele-
ments holds any number of entries, each of which is an array of 4-byte words in
the format of the target processor. Labels appear below to help explain note infor-
mation organization, but they are not part of the specification.

Figure 5-7: Note Information

Chamesz U

gjescsz g

Otype O
o™ g
o g
Odesc 0O

namesz and nane
The first nanesz bytes in nane contain a null-terminated character
representation of the entry’s owner or originator. There is no formal
mechanism for avoiding name conflicts. By convention, vendors use
their own name, such as “XYZ Computer Company,” as the identifier.
If no name is present, nanesz contains 0. Padding is present, if neces-
sary, to ensure 4-byte alignment for the descriptor. Such padding is
not included in nanesz.

5-8 PROGRAM LOADING AND DYNAMIC LINKING

descsz and desc
The first descsz bytes in desc hold the note descriptor. The ABI
places no constraints on a descriptor’s contents. If no descriptor is
present, descsz contains 0. Padding is present, if necessary, to ensure
4-byte alignment for the next note entry. Such padding is not
included in descsz.

type This word gives the interpretation of the descriptor. Each originator
controls its own types; multiple interpretations of a single type value
may exist. Thus, a program must recognize both the name and the
type to “‘understand’’ a descriptor. Types currently must be non-
negative. The ABI does not define what descriptors mean.

To illustrate, the following note segment holds two entries.

Figure 5-8: Example Note Segment
+0 +1 +2 +3

nanesz U 7 g
descsz 0 rjNo descriptor
type 0 1 0
nave -Xx Oy Oz O H
= ||] ||
0C Oo [\O [Opad O
namesz U 7 g
]
descsz 8 0
type O 3 O
name Sx Oy Oz O U
0
0C 0o [\0 [pad [
desc U word 0 0
| {
0 word 1 0

The system reserves note information with no name (namesz==0) and with a
NOTE | zero-length name (name[0] =="\ 0’) but currently defines no types. All other
names must have at least one non-null character.

Program Header 5-9

Note information is optional. The presence of note information does not affect
a program’s ABI conformance, provided the information does not affect the

NOTE
program’s execution behavior. Otherwise, the program does not conform to

the ABI and has undefined behavior.

5-10 PROGRAM LOADING AND DYNAMIC LINKING

Program Loading (Processor-Specific)

This section requires processor-specific information. The ABI supplement for
NoTE | the desired processor describes the details.

Program Loading (Processor-Specific) 5-11

Dynamic Linking

Program Interpreter

An executable file that participates in dynamic linking shall have one PT_| NTERP
program header element. During the function exec, the system retrieves a path
name from the PT_| NTERP segment and creates the initial process image from the
interpreter file’s segments. That is, instead of using the original executable file’s
segment images, the system composes a memory image for the interpreter. It then
is the interpreter’s responsibility to receive control from the system and provide
an environment for the application program.

As “‘Process Initialization” in Chapter 3 of the processor supplement mentions, the
interpreter receives control in one of two ways. First, it may receive a file descrip-
tor to read the executable file, positioned at the beginning. It can use this file
descriptor to read and/or map the executable file’s segments into memory.
Second, depending on the executable file format, the system may load the execut-
able file into memory instead of giving the interpreter an open file descriptor.
With the possible exception of the file descriptor, the interpreter’s initial process
state matches what the executable file would have received. The interpreter itself
may not require a second interpreter. An interpreter may be either a shared object
or an executable file.

m A shared object (the normal case) is loaded as position-independent, with
addresses that may vary from one process to another; the system creates its
segments in the dynamic segment area used by the function mmap and
related services [see “Virtual Address Space” in Chapter 3 of the processor
supplement]. Consequently, a shared object interpreter typically will not
conflict with the original executable file’s original segment addresses.

m An executable file is loaded at fixed addresses; the system creates its seg-
ments using the virtual addresses from the program header table. Conse-
quently, an executable file interpreter’s virtual addresses may collide with
the first executable file; the interpreter is responsible for resolving conflicts.

5-12 PROGRAM LOADING AND DYNAMIC LINKING

Dynamic Linker

When building an executable file that uses dynamic linking, the link editor adds a
program header element of type PT_| NTERP to an executable file, telling the sys-
tem to invoke the dynamic linker as the program interpreter.

The locations of the system provided dynamic linkers are processor—specific. a
NOTE O

Exec and the dynamic linker cooperate to create the process image for the pro-
gram, which entails the following actions:

m Adding the executable file’s memory segments to the process image;
m Adding shared object memory segments to the process image;
m Performing relocations for the executable file and its shared objects;

m Closing the file descriptor that was used to read the executable file, if one
was given to the dynamic linker;

m Transferring control to the program, making it look as if the program had
received control directly from the function exec

The link editor also constructs various data that assist the dynamic linker for exe-
cutable and shared object files. As shown above in ‘““Program Header,” these data
reside in loadable segments, making them available during execution. (Once
again, recall the exact segment contents are processor-specific. See the processor
supplement for complete information.)

m A. dynam c section with type SHT _DYNAM C holds various data. The struc-
ture residing at the beginning of the section holds the addresses of other
dynamic linking information.

m The. hash section with type SHT HASH holds a symbol hash table.

m The.got and. plt sections with type SHT _PRO@I TS hold two separate
tables: the global offset table and the procedure linkage table. Chapter 3
discusses how programs use the global offset table for position-independent
code. Sections below explain how the dynamic linker uses and changes the
tables to create memory images for object files.

Dynamic Linking 5-13

Because every ABI-conforming program imports the basic system services from a
shared object library [see ““System Library’’ in Chapter 6], the dynamic linker par-
ticipates in every ABI-conforming program execution.

As “Program Loading” explains in the processor supplement, shared objects may
occupy virtual memory addresses that are different from the addresses recorded
in the file’s program header table. The dynamic linker relocates the memory
image, updating absolute addresses before the application gains control.
Although the absolute address values would be correct if the library were loaded
at the addresses specified in the program header table, this normally is not the
case.

If the process environment [see the function exec] contains a variable named
LD Bl ND_NONwith a non-null value, the dynamic linker processes all relocation
before transferring control to the program. For example, all the following
environment entries would specify this behavior.

m LD Bl ND NOAL
m LD Bl ND NOM&on
m LD Bl ND NOMof f

Otherwise, LD_BlI ND_NOWeither does not occur in the environment or has a null
value. The dynamic linker is permitted to evaluate procedure linkage table entries
lazily, thus avoiding symbol resolution and relocation overhead for functions that
are not called. See ““Procedure Linkage Table in this chapter of the processor
supplement for more information.

Dynamic Section
If an object file participates in dynamic linking, its program header table will have
an element of type PT_DYNAM C. This ““‘segment” contains the . dynam ¢ section.

A special symbol, DYNAM C, labels the section, which contains an array of the fol-
lowing structures.

5-14 PROGRAM LOADING AND DYNAMIC LINKING

Figure 5-9: Dynamic Structure

f

typedef struct {

extern Hf32_Dyn

_DNam]

B f32_Sword d_tag;
uni on {
B f32_Wrd d_val;
B f 32_Addr d_ptr;
} d_un;
} Bf32_Dyn;

)

For each object with this type, d_t ag controls the interpretation of d_un.

d val

interpretations.

d ptr

These Bl f 32_Wr d objects represent integer values with various

These B f 32_Addr objects represent program virtual addresses. As

mentioned previously, a file’s virtual addresses might not match the
memory virtual addresses during execution. When interpreting
addresses contained in the dynamic structure, the dynamic linker
computes actual addresses, based on the original file value and the
memory base address. For consistency, files do not contain relocation
entries to ““correct’” addresses in the dynamic structure.

The following table summarizes the tag requirements for executable and shared

object files. If atag is marked “mandatory,” then the dynamic linking array for an
ABI-conforming file must have an entry of that type. Likewise, “optional’” means
an entry for the tag may appear but is not required.

Figure 5-10: Dynamic Array Tags, d_t ag

Name Value d_un Executable Shared Object
DI_NULL O 0 Uignored Umandatory Umandatory
DI_NEEDED B 1 Ijd_val Doptional Doptional
DI_PLTRELSZ 2 d_val poptional foptional
DIr_PLTQOT 0 3 pd_ptr optional joptional
DI_HASH O 4 Q0Od_ptr Omandatory Omandatory
DI_STRTAB U 5 Ud_ptr Umandatory Umandatory
DI_SYMIAB H 6 gd_ptr mandatory Bmandatory

Dynamic Linking

5-15

Figure 5-10: Dynamic Array Tags, d_tag (continued)

Name Value d_un Executable Shared Object
DI_RELA g 7 Ud ptr Umandatory Uoptional
DI_RELASZ g 8 Bd_val mandatory —optional
DI_RELAENT 9 pd_val gmandatory optional
DI_STRSZ 0 10 [d_val Omandatory mandatory
DT_SYMENT O 11 0Od_val Omandatory Omandatory
DI INT g 12 Ud ptr Uoptional Uoptional
DI_FIN g 13 Bd_pt r Doptional Doptional
DT_SCNAME 0 14 pd_val nignored poptional
DT_RPATH 0 15 [d_val joptional nignored
Dr_SsymsCLIC O 16 Oignored dignored Ooptional
DI_REL g 17 Ud ptr Umandatory Uoptional
DI_RELSZ g 18 Bd_val mandatory —optional
DI_RELENT 0 19 pd_val gmandatory optional
DI_PLTREL 0 20 [d_val joptional poptional
Dr_DEBUG O 21 0Od_ptr Ooptional Oignored
DI _TEXTREL U 22 Uignored Uoptional Uoptional
Dr_JMPREL g 23 —d_ptr optional optional
DI_LOPROC ~ 70x70000000 unspecified Hunspecified Hunspecified
DI_H PRCC EOX?f fEffff aunspecified Eunspecified Eunspecified

DI_NULL An entry with a DT_NULL tag marks the end of the _DYNAM C
array.

DI_NEEDED This element holds the string table offset of a null-terminated
string, giving the name of a needed library. The offset is an index
into the table recorded in the DT_STRTAB entry. See ‘‘Shared
Object Dependencies’ for more information about these names.
The dynamic array may contain multiple entries with this type.
These entries’ relative order is significant, though their relation to
entries of other types is not.

DI_PLTRELSZ This element holds the total size, in bytes, of the relocation entries
associated with the procedure linkage table. If an entry of type
DT_JMPREL is present, a DT_PLTRELSZ must accompany it.

DI_PLTGOT This element holds an address associated with the procedure link-

5-16

age table and/or the global offset table. See this section in the
processor supplement for details.

PROGRAM LOADING AND DYNAMIC LINKING

DT_HASH

DT_STRTAB

DT_SYMIAB

DT_RELA

DT_RELASZ

DT_RELAENT

DT_STRSZ
DT_SYMENT
DI INT

DT_FIN

DT_SONAME

Dynamic Linking

This element holds the address of the symbol hash table,
described in **Hash Table.”” This hash table refers to the symbol
table referenced by the DT_SYMI'AB element.

This element holds the address of the string table, described in
Chapter 4. Symbol names, library names, and other strings reside
in this table.

This element holds the address of the symbol table, described in
Chapter 4, with H f 32_Symentries for the 32-bit class of files.

This element holds the address of a relocation table, described in
Chapter 4. Entries in the table have explicit addends, such as

B f 32_Rel a for the 32-bit file class. An object file may have mul-
tiple relocation sections. When building the relocation table for
an executable or shared object file, the link editor catenates those
sections to form a single table. Although the sections remain
independent in the object file, the dynamic linker sees a single
table. When the dynamic linker creates the process image for an
executable file or adds a shared object to the process image, it
reads the relocation table and performs the associated actions. If
this element is present, the dynamic structure must also have
DI_RELASZ and DT_RELAENT elements. When relocation is “‘man-
datory” for a file, either DT_RELA or DT_REL may occur (both are
permitted but not required).

This element holds the total size, in bytes, of the DT_RELA reloca-
tion table.

This element holds the size, in bytes, of the DT_RELA relocation
entry.

This element holds the size, in bytes, of the string table.
This element holds the size, in bytes, of a symbol table entry.

This element holds the address of the initialization function, dis-
cussed in “Initialization and Termination Functions’ below.

This element holds the address of the termination function, dis-
cussed in “Initialization and Termination Functions’ below.

This element holds the string table offset of a null-terminated
string, giving the name of the shared object. The offset is an index
into the table recorded in the DT_STRTAB entry. See ‘‘Shared
Object Dependencies’ below for more information about these
names.

5-17

DT_RPATH

DT_SYMBOLI C

DT_REL

DT_RELSZ

DT_RELENT

DT_PLTREL

DT_DEBUG

DT_TEXTREL

DT_JMPREL

5-18

This element holds the string table offset of a null-terminated
search library search path string, discussed in ““Shared Object
Dependencies.” The offset is an index into the table recorded in
the DT_STRTAB entry.

This element’s presence in a shared object library alters the
dynamic linker’s symbol resolution algorithm for references
within the library. Instead of starting a symbol search with the
executable file, the dynamic linker starts from the shared object
itself. If the shared object fails to supply the referenced symbol,
the dynamic linker then searches the executable file and other
shared objects as usual.

This element is similar to DT_RELA, except its table has implicit
addends, such as B f 32_Rel for the 32-bit file class. If this ele-
ment is present, the dynamic structure must also have DT_RELSZ
and DT_RELENT elements.

This element holds the total size, in bytes, of the DT_REL reloca-
tion table.

This element holds the size, in bytes, of the DT_REL relocation
entry.

This member specifies the type of relocation entry to which the
procedure linkage table refers. The d_val member holds DT_REL
or DT_RELA, as appropriate. All relocations in a procedure link-
age table must use the same relocation.

This member is used for debugging. Its contents are not specified
for the ABI; programs that access this entry are not ABI-
conforming.

This member’s absence signifies that no relocation entry should
cause a modification to a non-writable segment, as specified by
the segment permissions in the program header table. If this
member is present, one or more relocation entries might request
modifications to a non-writable segment, and the dynamic linker
can prepare accordingly.

If present, this entries’ d_pt r member holds the address of reloca-
tion entries associated solely with the procedure linkage table.
Separating these relocation entries lets the dynamic linker ignore
them during process initialization, if lazy binding is enabled. If
this entry is present, the related entries of types DT_PLTRELSZ and
DI_PLTREL must also be present.

PROGRAM LOADING AND DYNAMIC LINKING

DI_LCPRCCthrough DT_H PRCC
Values in this inclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement
explains them.

Except for the DT_NULL element at the end of the array, and the relative order of
DT_NEEDED elements, entries may appear in any order. Tag values not appearing
in the table are reserved.

Shared Object Dependencies

When the link editor processes an archive library, it extracts library members and
copies them into the output object file. These statically linked services are avail-
able during execution without involving the dynamic linker. Shared objects also
provide services, and the dynamic linker must attach the proper shared object files
to the process image for execution. Thus executable and shared object files
describe their specific dependencies.

When the dynamic linker creates the memory segments for an object file, the
dependencies (recorded in DT_NEEDED entries of the dynamic structure) tell what
shared objects are needed to supply the program’s services. By repeatedly con-
necting referenced shared objects and their dependencies, the dynamic linker
builds a complete process image. When resolving symbolic references, the
dynamic linker examines the symbol tables with a breadth-first search. That is, it
first looks at the symbol table of the executable program itself, then at the symbol
tables of the DT_NEEDED entries (in order), then at the second level DT_NEEDED
entries, and so on. Shared object files must be readable by the process; other per-
missions are not required.

Even when a shared object is referenced multiple times in the dependency
NoTE | list, the dynamic linker will connect the object only once to the process.

Names in the dependency list are copies either of the DT_SONAME strings or the
path names of the shared objects used to build the object file. For example, if the
link editor builds an executable file using one shared object with a DT_SONAME
entry of | i b1l and another shared object library with the path name
Jusr/1ib/lib2,the executable file will contain i bl and/usr/1ib/lib2 inits
dependency list.

Dynamic Linking 5-19

If a shared object name has one or more slash (/) characters anywhere in the
name, such as/usr/1ib/1ib2 above ordirectory/file,the dynamic linker
uses that string directly as the path name. If the name has no slashes, such as

I'i bl above, three facilities specify shared object path searching, with the follow-
ing precedence.

m First, the dynamic array tag DT_RPATH may give a string that holds a list of
directories, separated by colons (:). For example, the string
[home/dir/1ib:/home/dir2/lib: tellsthe dynamic linker to search first
the directory / horre/ di r/1i b, then/home/ di r2/1i b, and then the current
directory to find dependencies.

m Second, a variable called LD LI BRARY_PATH in the process environment [see
the function exec] may hold a list of directories as above, optionally fol-
lowed by a semicolon (;) and another directory list. The following values
would be equivalent to the previous example:

o LD LI BRARY _PATH=/ hore/ dir/1ib:/home/dir2/1ib:
o LD LI BRARY _PATH=/ hore/dir/1ib;/ home/dir2/1ib:
o LD LI BRARY_PATH=/ horre/ dir/1ib:/hone/dir2/1ib:;

AIlI LD _LI BRARY_PATH directories are searched after those from DI_RPATH.
Although some programs (such as the link editor) treat the lists before and
after the semicolon differently, the dynamic linker does not. Nevertheless,
the dynamic linker accepts the semicolon notation, with the semantics
described above.

m Finally, if the other two groups of directories fail to locate the desired
library, the dynamic linker searches/usr/1ib.

For security, the dynamic linker ignores environmental search specifications
NoTE | (such as LD LI BRARY_PATH) for set-user and set-group ID programs. It does,
however, search DT_RPATH directories and / usr/ 1 i b.

5-20 PROGRAM LOADING AND DYNAMIC LINKING

Global Offset Table (Processor-Specific)

This section requires processor-specific information. The ABI supplement for
NOTE | the desired processor describes the details.

Procedure Linkage Table (Processor-Specific)

This section requires processor-specific information. The ABI supplement for
NoTE | the desired processor describes the details.

Hash Table

A hash table of B f 32_Wr d objects supports symbol table access. Labels appear
below to help explain the hash table organization, but they are not part of the
specification.

Figure 5-11: Symbol Hash Table

N

nbucket
nchai n
bucket [0]

chai n[0]

mOoooooobooog

||

0

O

O S
H)ucket [nbucket - 1]
O

O

H

chai n[nchai n- 1]

The bucket array contains nbucket entries, and the chai n array contains nchai n
entries; indexes start at 0. Both bucket and chai n hold symbol table indexes.
Chain table entries parallel the symbol table. The number of symbol table entries
should equal nchai n; so symbol table indexes also select chain table entries. A
hashing function (shown below) accepts a symbol name and returns a value that
may be used to compute a bucket index. Consequently, if the hashing function
returns the value x for some name, bucket [x%bucket] gives an index, y, into

Dynamic Linking 5-21

both the symbol table and the chain table. If the symbol table entry is not the one
desired, chai n[y] gives the next symbol table entry with the same hash value.
One can follow the chai n links until either the selected symbol table entry holds

the desired name or the chai n entry contains the value STN_UNDEF.

Figure 5-12: Hashing Function

/?;5:

{

unsi gned | ong
el f _hash(const unsigned char *nane)

unsi gned | ong h =0, g

whi l e (*nane)
{
h = (h << 4) + *nanet+;
if (g = h & 0xf0000000)
h"=g > 24
h & ~g;

IQQN

}

return h;

\

)

Initialization and Termination Functions

After the dynamic linker has built the process image and performed the reloca-
tions, each shared object gets the opportunity to execute some initialization code.
These initialization functions are called in no specified order, but all shared object
initializations happen before the executable file gains control.

Similarly, shared objects may have termination functions, which are executed with
the function at exi t mechanism after the base process begins its termination
sequence. Once again, the order in which the dynamic linker calls termination

functions is unspecified.

Shared objects designate their initialization and termination functions through the
DT_IN T and DT_FI N entries in the dynamic structure, described in **Dynamic
Section’ above. Typically, the code for these functions resides in the . i nit and
.fini sections, mentioned in **Sections’” of Chapter 4.

5-22

PROGRAM LOADING AND DYNAMIC LINKING

Although the function at exi t termination processing normally will be done, it
NOTE | IS not guaranteed to have executed upon process death. In particular, the X
process will not execute the termination processing if it calls _exi t [see the
function exi t] or if the process dies because it received a signal that it nei-

ther caught nor ignored.

Dynamic Linking 5-23

6 LIBRARIES

Introduction 6-1
Shared Library Names 6-2
Dependencies Among Libraries 6-3
System Library 6-4
Additional Entry Points (Processor-Specific) 6-6
Support Routines (Processor-Specific) 6-7
Global Data Symbols 6-7
m Application Constraints 6-8
System Service Synonyms 6-8
Implementation of libsys Routines 6-9
Vendor Extensions 6-9
C Library 6-10
Global Data Symbols 6-13
m Application Constraints 6-14
Network Services Library 6-15
Socket Library 6-18

Table of Contents i

Curses Library 6-19
X Window System Library 6-23
X Toolkit Intrinsics Library 6-29
System Data Interfaces 6-33
Required Sizes for Some Data Objects 6-33
Data Definitions (Processor-Specific) 6-34

Table of Contents

Introduction

Every ABI-conforming system supports some general-purpose libraries. Facilities
in these libraries manipulate system data files, trap to the operating system, and so
on.

l'i bc The C library, containing various facilities defined by System V, ANSI
C, POSIX, and so on.

i bsys The system library, containing interfaces to basic system services.

l'i bnsl The networking services library, contains the transport layer interface
routines, as well as routines for machine-independent data representa-
tion, remote procedure calls, and other networking support. These
routines are described in the Networking Services volume of the
X/Open CAE Specification, Issue 4.2, and the BA_OS and RS_LIB sections
of the System V Interface Definition, Third Edition (see the Conformance
Rule in chapterl).

| i bsocket
A library containing the sockets routines as described in the Network-
ing Services volume of the X/Open CAE Specification, Issue 4.2.

l'i bcurses
This library provides routines for updating character screens as
described in the X/Open Curses, Issue 4 of the X/Open CAE
Specification, Issue 4.2.

The following libraries may be supported as extensions to the ABI.

li bX A library for building applications using the X Window System proto-
col described in the Graphics chapter.

li bXt A library for building applications using the X Toolkit Intrinsics.

As a binary specification, the ABI gives shared library organization; that is, it tells
what services reside in what shared libraries. Programs use the dynamic linking
mechanism described in Chapter 5 to access their services.

The ABI does not duplicate the descriptions available in the X/Open CAE
Specification, Issue 4.2 and the System V Interface Definition, Third Edition and other
references that tell what the facilities do, how to use them, and so on. However,
the interfaces to some services may have different names and syntax at the system
level than they do at the source level. When these differences exist, this document
(the System V ABI) specifies the name of the source-level services that must be

Introduction 6-1

X X X X X X

X X X XX

O OO0 O

supported on conforming systems, and the names and descriptions of these inter-
faces are given in each processor supplement to the ABI.

Shared libraries contribute to the application execution environment and thus
appear in the ABI. Functions that reside directly in application files are not
specified. For example, mathematical routines, such as si n, do not appear below.
They would be available in a System V development environment, but an
application’s executable file would contain the associated code. Assuming the
implementations of the functions themselves are ABI-conforming, their presence
does not affect the conformance of the application. Moreover, the absence of
shared library versions of particular services does not imply a deprecation of those
services.

The ABI requires conforming applications to use the dynamic linking mechanism
described in Chapter 5 to access the services provided in the System Library, | i b-
sys, the X Window System Library, | i bX, and in the Networking Services Library,
I'i bnsl . Use of the other shared libraries documented here is optional for applica-
tions; the services they contain may be obtained through the use of equivalent
archive library routines. An application that accesses ABI services from both the
shared library and the static archive version of the same library is not ABI con-
forming.

Shared Library Names

As Chapter 5 describes, executable and shared object files contain the names of
required shared libraries.

Figure 6-1: Shared Library Names

Library Reference Name
l'i bc U/usr/lib/libe.so.1
libsys Sfusr/lib/1d.so.1
l'i bnsl D/usr/lib/libnsl.so
l'i bsocket [/usr/lib/libsocket.so.?2
l'ibcurses [O/usr/lib/libcurses.so.1
li bX Ufusr/1ib/libx1l.so. 1
li bXxt H/usr/)ﬂlib/lib)(t.so.l

6-2 LIBRARIES

mm

Dependencies Among Libraries

Inter-library dependencies are processor-specific, and are described in each pro-
cessor supplement where this is appropriate. For example, | i bnsl may depend
onlibc;libXmay depend onbothlibnsl andlibc. Application executable and
shared object files must provide a complete dependency graph during execution.
Thus, for example, an executable file that uses a dynamically shared | i bns| that
depends on | i bc must ensure that a dynamically shared | i bc is present during
execution. Programs that fail to supply all the necessary libraries do not conform
to the ABI and have undefined behavior.

Introduction 6-3

E
E

System Library

The system library, | i bsys, contains the basic system services. Although special
instructions are necessary to change from user to kernel mode, the ABI explicitly
does not specify the correspondence of these instructions to system calls. The
table below contains routines that correspond to basic system services, as well as
to service routines that provide a functional interface to system data files. Each of
the routines listed in the table below is present in | i bsys in the listed form, as
well as in synonym form, as described in a following section, ““System Service
Synonyms”’.

Though all the function symbols listed in the tables below must be presentinl i b-
sys, not all of the functions they reference may actually be implemented. See the
“Implementation of | i bsys Routines’ section that follows for more detail.

6-4 LIBRARIES

Figure 6-2: |i bsys Contents, Names with Synonyms

access
acct #
alarm
cat cl ose
catgets
cat open
chdir
chnod
chown
chr oot

cl ose

cl osedir
cr eat
dup
execl
execl e
execl p
execv
execve
execvp
fattach
fchdir

f chrnod

f chown
fentl

f det ach
fork

f pat hconf
fstatvfs
fsync
nmakecont ext

ftok

get cont ext
get cwd
getegi d
geteui d
getgid
getgrgid
get gr nam
get gr oups
getlogin
get nsg
get pgi d
get pgr p
getpid
get pnsg
get ppi d
get pwnam
get pwui d
getrlimt
getsid
gett xt
getuid
grant pt

i ni tgroups
ioctl

i sastream
Kill

| chown
l'ink

| seek
swapcont ext

nmencnt
nkdi r
nknod

m ock
mmap
nount
npr ot ect
nsgct
nsgget
nsgrcv
nsgsnd
nsync
munl ock
nunnap
ni ce
open
opendi r
pat hconf
pause

pi pe
pol |
profil #
ptrace
pt sname
put nsg
put pnsg
read
readdi r
readl i nk
r eadv

r ename
rew nddir
rodir
seekdi r
senct |
senget
senop

set cont ext
setgid
set gr oups
set pgi d

set pgrp
setrlimt
setsid
setuid
shnat
shnet |
shndt
shnyget

si gaction
si gaddset
si gal t stack
si gdel set
si genpt yset
sigfillset
si ghol d

si gi gnore
si gi snenber
si gl ongj np
si gpause

si gpendi ng
si gpr ocrmask
sigrel se
si gsend

si gsendset
si gset

si gsetjnp
si gsuspend
statvfs
stime
sym i nk
sync
sysconf
telldir
time

times
ttynanme
ulimt
unask
unount
unl i nk

unl ockpt
utime

wai t

wai tid
wai t pi d
wite
witev

Function is DEPRECATED

The system library also includes some service routines that are present in the

library in their listed form, but are not also present in synonym form. These |l i b-

sys routines are listed in the table below.

System Library

6-5

1 A A [y O

Figure 6-3: | i bsys Contents, Names Without Synonyms

atexit free real |l oc si gnal strftine

calloc localeconv renove strcol | strxfrm

exit nal | oc setlocale strerror system

_exit

Other than for use in streams devices, the specific devices supported by a

NOTE | ioctl are processor specific.

Additional Entry Points (Processor-Specific)

ABI-conforming systems must provide al i bsys entry point for each of the
source-level services shown in the list below. The name and syntax of this entry
point may be the same as those characteristics of the source-level service or they
may vary across processor architectures. The actual names of the entry points are
specified in each processor’s supplement to the ABI, together with the entry
points’ syntax information if names differ from those of the source-level services.

This information is for the use of system implementors and compiler writers, and
does not affect the source-level system interface used by application programmers.

Figure 6-4: | i bsys Contents, Additional Services

fstat | st at nknod stat unane

This section requires processor-specific information. Consequently, the ABI
NOTE | supplement for the desired processor describes the details.

6-6 LIBRARIES

NOTE

Because the ABI specifies neither the correspondence of system calls to traps
nor the formats of system data files, ABI-conforming programs access | i bsys
services through dynamic linking.

See “*System Data Interfaces” later in this chapter for more information.

Support Routines (Processor-Specific)

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

Global Data Symbols

Thel i bsys library requires that some global external data objects be defined for

the routines to work properly. The data symbols listed in the table below must be
provided by the | i bsys library. Pairs of entries in the form name and _name label
the same object. The underscore synonyms are provided to satisfy the ANSI C

standard. An ANSI C-conforming application can define its own name symbols,

unrelated to the X/Open CAE Specification, Issue 4.2 and the System V Interface
Definition, Third Edition meanings. If the application intends those symbols to

have the X/Open CAE Specification, Issue 4.2 and the System V Interface Definition,

Third Edition semantics, it must also define the _name symbols so that both refer to
the same data object.

For formal declarations of the data objects represented by these symbols, see the
“Data Definitions” section of Chapter 6 in the appropriate processor supplement
to the System V ABI.

Figure 6-5: | i bsys Contents, Global External Data Symbols

_altzone daylight ti nezone t znarre
_ _ctype _daylight _tinezone _tznane
_huneric

System Library

6-7

time_t _altzone;
This variable contains the difference, in seconds, between Univer-
sal Coordinated Time and the alternate time zone, as established
with the function t zset .

unsi gned char _nuneric|[2];
This array holds local-specific information, as established by the
function set | ocal e. Specifically, nuneric[0] holds the
decimal-point character, and _nurreri c[1] holds the character
used to separate groups of digits to the left of the decimal-point
character in formatted non-monetary quantities. See the function
| ocal econv for more information.

Application Constraints

As described above, | i bsys provides symbols for applications. In a few cases,
however, an application is obliged to provide symbols for the library.

extern char **environ;
Normally, this symbol is synonymous with envi r on, as the function
exec describes. This isn’t always true, though, because ANSI C does
not define envi r on. Thus, an ANSI C-conforming application can
define its own envi r on symbol, unrelated to the process environ-
ment. If the application defines envi r on and intends it to have the
X/Open CAE Specification, Issue 4.2 and the System V Interface
Definition, Third Edition semantics, it must also define _envi ron so
that the two symbols refer to the same data object.

System Service Synonyms

In addition to the routine names listed in the tables above, the system library
includes synonyms for some of its services. These other symbols are available to
conform to language and system standards. As an example, System V defines
read as the name of an operating system facility. On the other hand, ANSI C does
not define r ead, and it prohibits a strictly conforming implementation from usurp-
ing application names without a leading underscore (_). Thus if a synonym for
read were not available, the system could not support a strictly conforming
implementation of the ANSI C language.

name This gives the traditional name, such asr ead.

6-8 LIBRARIES

_hame This gives a system service name that follows the ANSI C convention
of reserving symbols beginning with an underscore, such as _read.

Although many system services have two names, two exceptions exist to this
synonym convention. System V defines both exit and _exit as different facili-
ties. Consequently, the symbols exi t and _exit have no synonyms and refer to
different services.

Implementation of libsys Routines

All ABI-conforming systems must provide al i bsys entry point for all routines
listed as belonging to this library. However, only the routines necessary to pro-
vide the source-level programming interfaces required to be defined in the X/Open
CAE Specification, Issue 4.2 and defined in the System V Interface Definition, Third
Edition sections BA_OS, BA_LIB, and KE_OS, as described in the introduction to
the System V ABI, must be implemented on a conforming system (see the Confor-
mance Rule in chapter 1). For example, this means that the routine

nmentnt | (RT_OS) need not be fully implemented on an ABI-conforming system,
though the entry point for this function must be present in the library.

Routines not required for the System V Interface Definition, Third Edition sections
listed above or X/Open CAE Specification, Issue 4.2 may or may not be imple-
mented, at the discretion of the system implementor. Unimplemented routines
must be represented in the library by a stub that when called causes failure and
sets the global variable er r no to the value ENCBYS.

Vendor Extensions

Besides the services listed above, libsys may contain other symbols. An ABI-
conforming system vendor may add a symbol to the system library to provide
vendor-specific services. The ABI does not define these services, and programs
using these services are not ABI-conforming. Nonetheless, the ABI defines a
recommended extension mechanism, providing a way to avoid conflict among the
services from multiple vendors.

A symbol of the form _$vendor . company provides an operating system entry for
the vendor named company. The system library does not have unadorned alterna-
tives for these names. Conventionally, a vendor uses the single name to provide
multiple services, letting the first argument to _$vendor . company select among
the alternatives. As an example, the “*XYZ Computer Company’’ might add
_$vendor . xyz to the system library.

System Library 6-9

m m X

nt _ _flsbuf(int x, FILE *f);
This function flushes the output characters for f as if put c(x, f) had
been called and then appends the value of x to the resulting output
stream. It returns ECF if an error occurs and x otherwise.

int xftw(int, char *, int (*)(char *, struct stat *, int), int);
Calls to the f t wfunction are mapped to this function when applica-
tions are compiled. This function is identical to f t w, except that
_xftw() takes an interposed first argument, which must have the
value 2.

See this chapter’s other library sections for more SVID, ANSI C, and POSIX facili-
ties. See **System Data Interfaces” later in this chapter for more information.

Global Data Symbols

The |l i bc library requires that some global external data symbols be defined for its
routines to work properly. All the data symbols required for the | i bsys library
must be provided by | i bc, as well as the data symbols listed in the table below.

For formal declarations of the data objects represented by these symbols, see the
X/Open CAE Specification, Issue 4.2 and the System V Interface Definition, Third Edi-
tion (see the Conformance Rule in chapter 1) or the ““Data Definitions’ section of
Chapter 6 in the appropriate processor supplement to the System V ABI.

For entries in the following table that are in name - _name form, both symbols in
each pair represent the same data. The underscore synonyms are provided to
satisfy the ANSI C standard. If the application references a weak symbol that has
a global synonym, it must define both the weak symbol and the global synonym at
the same address.

Figure 6-11: |i bc Contents, Global External Data Symbols

_ _iob getdate err
_ _locl l ocl
_ _Xpg4d | oc2
_getdate err locs

Of the routines listed in the table above, the following are not defined elsewhere.

extern int _ _xpg4;
This variable’s value specifies the execution environment for the pro-
gram. If the value is 0 or unset, results are implementation-specific.
Otherwise, if the value is 1, the application will get System V

C Library 6-13

mm

XX X X X

Application Binary Interface, Edition 3.1 functionality. All other values
for __xpg4 are reserved for future use.

Typically, __xpg4 being initialized to 0 or uninitialized would X
NOTE | represent a backwards compatibility environment for System V

Application Binary Interface, Third Edition applications.

Application Constraints

As described above, | i bc provides symbols for applications. In a few cases, how-
ever, an application is obliged to provide symbols for the library.

extern const int _|ib_version;
This variable’s value specifies the compilation and execution mode
for the program. If the value is zero, the program wants to preserve
the semantics of older (pre-ANSI) C, where conflicts exist with
ANSI. Otherwise, the value is non-zero, and the program wants
ANSI C semantics.

6-14 LIBRARIES

XXX XXX XX

Network Services Library

The Network Services library, | i bnsl , contains library routines that provide a
transport-level interface to networking services for applications, facilities for
machine-independent data representation, a remote procedure call mechanism,
and other networking services useful for application programs. This library con-
tains two sets of interfaces: one conforming to the Transport Level Interface (TLI)
specification and another to the X/Open Transport Interface (XTI) Version 2
specification. The TLI interface allows for binary compatibility with systems that
conform to previous editions of the ABI. The following TLI functions reside in

I'i bnsl and must be provided on all ABI-conforming systems.

Figure 6-12: i bnsl Contents, Part 1 of 3

t _accept t listen t _rcvudata
t_alloc t | ook t _rcvuderr
t _bind t_open t _snd
t_close t _opt ngnt t _snddis

t _connect t_rcv t _sndrel
t_error t _rcvconnect t_sndudata
t free t rcvdis t_sync

t _getinfo t _rcvrel t _unbi nd
t_getstate

The following XTI interfaces also reside in| i bnsl and must be provided on all
ABI-conforming systems.

Figure 6-13: |i bnsl Contents, Part 2 of 3

_Xxti_accept _xti_getinfo _Xti_rcvconnect
_xti_alloc _Xxti_getprotaddr _xti_rcvdis
_xti_bind _Xti_getstate _Xxti_rcvrel
_Xxti_cl ose _xti_listen _Xti_rcvudata
_Xxti_connect _xti _| ook _Xxti_rcvuderr
_Xti_error _xti_open _xti_snd
_xti_free _Xti_rcv _Xti_snddis
_xti_sndrel _Xti_strerror _xti_unbind

Network Services Library 6-15

X X X X X

X X

XX X X X X X X

Figure 6-13: |i bnsl Contents, Part 2 of 3 (continued)

_xti_sndudata _xti_sync

In addition, the following functions must be provided in | i bnsl on all ABI-
conforming systems with a networking capability. Systems with no networking
capability are not required to implement these functions, but must provide an
entry pointinto | i bnsl for each of the following function names. Functions that
are present only as stubs and are not implemented must fail normally and per-
form no action other setting the external er r no variable to the value ENCSYS when
they are called by an application.

Figure 6-14: | i bnsl Contents, Part 3 of 3

6-16

aut hdes_get ucr ed
aut hdes_seccreat e
aut hnone_create
aut hsys_create

aut hsys_creat e_def aul t

clnt_create
clnt_dg_create

cl nt_pcreateerror
cl nt_perrno
clnt_perror
clnt_raw create
cl nt_spcreateerror
cl nt_sperrno
clnt_sperror

clnt _tli _create
clnt_tp_create
clnt_vc create
endnet confi g
endnet pat h
freenet conf i gent
get net confi g

get net conf i gent
get net name

get net pat h

get publ i ckey

net narme2host
net name2user

r pc_br oadcast
rpc_cal |
rpc_reg
rpcb_get addr
rpcb_get naps
rpcb_gettime
rpcb_rmcall
rpch_set
rpcb_unset

set net confi g
set net pat h
svc_create
svc_dg_create
svc_fd create
svc_getregset
svc_raw create
svc_reg
svc_run
svc_sendreply
svc_tli _create
svc_tp_create
svc_unreg
svc_vc_create

xdr _array

xdr _aut hsys_par ns
xdr_bool

xdr _bytes
xdr_cal | hdr

xdr _cal | msg
xdr_char
xdr_doubl e
xdr_enum

xdr_f1l oat
xdr_free
xdr_int
xdr _| ong

xdr _opaque

xdr _opaque_aut h
xdr _poi nt er
xdr_reference
xdr_rejected_reply
xdr _repl ynsg
xdr_short
xdr_string
xdr_u_char
xdr_u_l ong
xdr_u_short
xdr_uni on

LIBRARIES

I

get secr et key

host 2net nane
key_decrypt sessi on
key_encrypt sessi on
key_gendes

key_set secret
nc_perror
netdir_free

net di r _get byaddr
net di r _get bynare
netdi r_options

Figure 6-14: |i bnsl Contents, Part 3 of 3 (continued)

svcerr_auth
svcerr_decode
svcerr_noproc
svcerr_nopr og
svcerr_progvers
svcerr_systemerr
svcerr_weakaut h
t addr 2uaddr
uaddr 2t addr

user 2net narre
xdr_accepted_reply

xdr _vect or
xdr_void
xdr_wrapstring
xdrnem create
xdrrec_create
xdrrec_eof
xdrrec_ski precord
xdrstdio_create
Xprt_register
Xprt_unregi ster

Figure 6-15: |i bnsl Contents, Global External Data Symbols

OooOooooogoooogo o

m

_nderror
t_errno

rpc_createerr svc_fds

See ““Data Definitions’’ later in this chapter for more information.

Network Services Library 6-17

Socket Library

The socket library, | i bsocket , contains the socket functions as described in the
Networking Services volume of the X/Open CAE Specification, Issue 4.2. This
library is required for all ABI-conforming systems.

Figure 6-16: |i bsocket Contents, Part 1 of 2

accept listen sendnsg
bi nd pool sendt o
connect recv set sockopt

getpeername recvfrom shutdown
get sockname recvnsg socket
get sockopt send socket pai r

The socket library, | i bsocket , also contains these IP Address Resolution func-
tions as described in the Networking Services volume of the X/Open CAE
Specification, Issue 4.2.

Figure 6-18: | i bsocket Contents, Part 2 of 2

endhost ent get pr ot obynarre i net _makeaddr
endnet ent get pr ot obynunber i net _net of
endpr ot oent get pr ot oent i net _net wor k
endser vent get ser vbynarre i net _ntoa
get host byaddr get servbyport nt ohl

get host byname get servent nt ohs

get host ent ht onl set host ent
get host nane ht ons set net ent

get net byaddr i net _addr set pr ot oent
get net bynarre i net _| naof set servent
get net ent

6-18 LIBRARIES

X X X

XXX XXX X

X X X X

XXXXXXXXXXX X

Curses Library

The curses library, | i bcur ses, contains functions that update character screens as
described in the Curses volume of the X/Open CAE Specification, Issue 4.2.

Figure 6-19: |i bcur ses Contents

X X

addch getnstr nvget nstr
addchnstr getn_wstr nvget n_wstr
addchstr get par yx nvgetstr
addnstr getstr nvget _wch
addnwst r getwi n nvget _wstr
addstr get yx nvhl i ne
addwst r get _wch nvhl i ne_set
add_wch get_wstr nvi nch
add_wchnstr hal f del ay nvi nchnst r
add_wchstr has_col ors nvi nchstr
attroff has_ic nvi nnstr
attron has_i | nvi nnwst r
attrset hl i ne nvi nsch
attr_get hl i ne_set nvi nsnstr
attr_off i dcok nvi nsstr
attr_on i dl ok nvi nstr
attr_set i mredok nvi ns_nwstr
baudr at e i nch nvi ns_wch
beep i nchnstr nvi ns_wst r
bkgd i nchstr nvi nwst r
bkgdset initscr nvi n_wch
bkgr nd init_color nvi n_wchnstr
bkgr ndset init_pair nvi n_wchstr
bor der innstr nvprint w
bor der _set i nnwst r nvscanw
box i nsch nvvl i ne
box_set i nsdel I n nvvl i ne_set
can_change_col or insertln nvwaddch
cbr eak i nsnstr nvwaddchnst r
chgat i nsstr nvwaddchst r
cl ear instr nvwaddnst r
cl ear ok i ns_nwstr nvwaddnwst r

Curses Library

6-19

HXXXXXXXXHXXXXXXXHXXXXXXXXXXXXXXXXX X

Figure 6-19: | i bcur ses Contents (continued)

6-20

cl rt obot
clrtoeo

col or _cont ent
copyw n
curscr
curs_set
cur_term
def _prog_node
def _shel | _node
del ay_out put
del ch

del eteln

del screen
del wi n

del _curterm
derwi n
doupdat e
dupwi n

echo
echochar
echo_wchar
endwi n
erase
erasechar
erasewchar
filter

flash

f1 ushi np

get begyx

get bkgd

get bkgrnd
get cchar
getch

get maxyx
nvw! i ne
nvw! i ne_set
napns
newpad

ns_wch
ns_wstr
ntrflush
nwst r

n_wch
n_wchnstr

i n_wchstr

i sendwi n

i s_|linetouched
i s_wi nt ouched
keynane
keypad

key _nane

ki llchar

Ki | I wchar

| eaveok

| ongnane
net a

nove
nvaddch
nvaddchnst r
nvaddchstr
nvaddnstr
nvaddnwst r
nvaddstr
nvaddwst r
nvadd_wch
nvadd_wchnstr
nvadd_wchstr
nvchgat
nvcur
nvdel ch
nvder wi n
nvget ch

sl k_set

sl k_touch

sl k_wset

st andend

nvwaddst r
nvwaddwst r
nvwadd_wch
nvwadd_wchnst r
nvwadd_wchstr
nvwchgat
nvwdel ch
nvwget ch
nvwget nst r
nvwget n_wst r
nvwget st r
nvwget _wch
nvwget _wstr
nvwhl i ne
nvwhl i ne_set
nvw n

nmvwi nch

nvw nchnst r
nvwi nchstr
nvw nnstr
nvwi nnwst r
nvw nsch
nvwi nsnstr
nvwi nsstr
nvw nstr
nvwi ns_nwst r
nvw ns_wch
nvw ns_wst r
nvwi nwst r
nvwi n_wch
nvw n_wchnstr
nvwi n_wchstr
n/wWpr i nt w
nvwscanw
wbkgdset
wbkgr nd
wbkgr ndset
wbor der

LIBRARIES

HXXXXXXXXXXXXXXHXXXXXXXXXXXXXXXXXXXXXXXX X

newt er m
newai n

n

no

nocbr eak
nodel ay
noecho

nonl
nogqi fl ush
nor aw
not i meout
overl ay
overwite
pai r_cont ent
pechochar
pecho_wchar
pnout r ef resh
prefresh
printw

putp

putwi n

gi fl ush

raw
redrawni n
refresh
resetty
reset _prog_node
reset _shel |l _node
restartterm
ripoffline
savetty
scanw

scrl

scrol
scrol | ok
scr_dunp
scr_init
scr_restore

Curses Library

Figure 6-19: | i bcur ses Contents (continued)

st andout
start_col or
stdscr
subpad
subwi n
syncok
termattrs
t er mane
tgetent #
tgetflag#
t get num#
tgetstr#
tgoto#
tigetflag
tiget num
tigetstr
ti meout
touchl i ne
t ouchwi n
t par m

t puts

t ypeahead
unctrl
unget ch
unget _wch
unt ouchwi n
use_env
vidattr

vi dput s
vid_ attr
vid_puts
vline

vl i ne_set
vwpr i nt w#
vwscanwi#
VW _printw
VW_scanw
waddch

wbor der _set
wchgat

wel ear
wel rt obot
wel rtoeo
wcur syncup
wdel ch
wdel et el n
wechochar
wecho_wchar
wer ase

wget bkgr nd
wget ch

wget nst r
wget n_wstr
wget st r
wget _wch

whl i ne_set
nch
nchnstr
nchstr
nnst r
nnwst r
nsch
nsdel I n
nsertln
nsnstr
nsstr
nstr
ns_nwstr
ns_wch
ns_wstr
nwst r
n_wch
n_wchnstr
n_wchstr

S 2222 2222222222228

6-21

HXXXXXXXXXXXXXXXHXXXXXXXHXXXXXXXXXXXXXXXX X

Figure 6-19: | i bcur ses Contents (continued)

scr_set

set cchar
setscrreg
setupterm
set_curterm
set_term

sl k_attroff
slk_attron
sl k_attrset
slk_attr_off
slk_attr_on
slk_attr_set

sl k_cl ear
slk_init
sl k_| abel

sl k_noutrefresh

sl k_refresh
slk_restore

waddchnst r
waddchst r
waddnst r
waddnwst r
waddst r
waddwst r
wadd_wch
wadd_wchnstr
wadd_wchstr
wattrof f
wat t ron
wat t r set
wattr_get
wattr_off
wattr_on
wattr_set
wbkgd

wnhove
wnout r ef resh
Wor i ntw

w edrawl n

w ef resh
wscanw

wscr |

wset scrreg
wst andend
wst andout
wsyncdown
wsyncup

w i meout

wt ouchl n
wunctrl
wvl i ne
wvl i ne_set

Function is EDPRECATED

Figure 6-20: | i bcur ses Contents, Global External Data Symbols

bit _attributes

bool codes
bool f nanes
bool nanes
curs_errno
curs_parmerr
cur_bool s
cur_nuns

cur_strs
Mouse_st at us
nuntodes
nunf nanes
numanes

out chcount
SP

strcodes

strf names

st r names
TABSI ZE
termerrno
termparmerr
ttytype
wcol or _set

6-22

LIBRARIES

XXXXXXXXXXXXXXXXXX X

X

XX X X X X X X

X Window System Library

The X Window System library, | i bX, contains library routines that provide primi-
tives for the operation of the X Window System. This library is required for all
ABI-conforming systems that implement a graphical windowing terminal inter-
face. See Chapter 10 of the System V ABI, “Windowing and Terminal Interfaces”
for more information on windowing software requirements on ABI-conforming

systems.

The following functions reside in | i bX and must be provided on all ABI-

conforming systems.

Figure 6-21: |i bX Contents

XAct i vat eScr eenSaver
XAddExt ensi on
XAddHost

XAddHost s

XAddPi xel

XAddToExt ensi onLi st
XAddToSaveSet

XAl | ocd assH nt

XAl | ocCol or

XAl | ocCol orCel | s

XAl | ocCol or Pl anes
XAl | ocl conSi ze

XAl | ocl D

XAl | ocNarmedCol or

XAl | ocSi zeH nts

XAl | ocSt andar dCol or nap
XAl | ocWH nt's

XAl | onEvent s

XAl | Pl anes

XAut oRepeat C f

XAut oRepeat On
XBaseFont NaneLi st Of Font Set
XBel |

XBi t mapBi t O der

XBi t mapPad

X Window System Library

XBi t mapUni t

XB ackPi xel

XBl ackPi xel O Screen
XCel | sCOf Screen
XChangeAct i vePoi nt er G ab
XChangeGC
XChangeKeyboar dCont r ol
XChangeKeyboar dvappi ng
XChangePoi nt er Cont r ol
XChangePr operty
XChangeSaveSet
XChangeW ndowAt t ri but es
XCheckl f Event
XCheckMaskEvent
XCheckTypedEvent

XCheck Ty pedW ndowEvent
XCheckW ndowEvent

XQ rcul at eSubwi ndows
XQ rcul at eSubwi ndows Down
XA r cul at eSubwi ndowsUp
XA ear Area

XA ear W ndow

XA i pBox

XA oseDi spl ay

Xd osel M

XcnsAddCol or Space
XcnsAddFunct i onSet
XcnsAl | ocCol or

XcnsAl | ocNanedCol or
Xcms C0Cof Col or map
XcnsCQ ELabQuer yMaxC
XcnsQ ELabQuer yMaxL
XcnsCQ ELabQuer yMaxLC
XcnsQ ELabQuer yM nL
XcnsQ ELabTod EXYZ
Xcnsd ELuvQuer yMaxC
Xcnsd ELuvQuer yMaxL
Xcnsd ELuvQuer yMaxLC
XcnsQ ELuvQuer yM nL
Xcnsd ELuvTod EuvY
Xcnsd EuvYTod ELuv
Xcnsd EuvYTod EXYZ
XcnsQ EuvYToTekHVC
Xcnsd ExyYTod EXYZ
XcnsC EXYZTod ELab
Xcnsd EXYZTod EuvY
Xcnsd EXYZTod ExyY
XcnsCQ EXYZToRGBI
Xcnsd i ent Wi t ePoi nt &f GOC
XcnsConver t Col or s

6-23

MMMMMMMMMMMMMMMMMMMMmMMmMmMmMmMm

Figure 6-21: | i bX Contents (continued)

XcnsOr eat eCCC

XcnsDef aul t OCC

XcnsDi spl aycf OCC
XcnsFor mat O Prefi x
XcnsFreeCOC
XcnsLookupCol or

XcnsPr ef i xOf For mat
XcnsQuer yBl ack
XcnsQuer yBl ue

XcnsQuer yCol or
XcnsQuer yCol or s
XcnsQuer yG een
XcnsQuer yRed

XcnsQuer yWi t e
XcnsR@&Bi Tod EXYZ
XcnmsR&Bi ToRB

Xcns REBToRGBI

XcnsScr eenNunber O CCC
XcnsScr eenWii t ePoi nt O GCC
Xcns Set OC0Cof Col or map
XcnsSet Conpr essi onPr oc
XcnsSet Whi t eAdj ust Proc
XcnsSet Whi t ePoi nt
Xcns St or eCol or

XcnsSt or eCol or s

Xcns TekHVOQuer yVaxC
Xcns TekHVOQuer yMaxV
Xcns TekHVOQuer yMaxVC
Xcns TekHVOQuer yMaxVSanpl es
Xcns TekHVOQuer yM nV
Xcns TekHVCTod EuvY
XcnsMi sual O CCC

XConf i gur eW ndow
XConnect i onNunber

XCont ext Dependent Dr awi ng
XConvert Sel ecti on
XCopyAr ea

XCopy Col or mapAndFr ee

6-24

XCopyC

XCopyP! ane

XCr eat eBi t mapFr onDat a
XCr eat eCol or map

XOr eat eFont Cur sor

XOr eat eFont Set

XOr eat eQC

XCr eat e yphQur sor
XOreatel C

XO eat el nage

XCr eat ePi xmap

XCr eat ePi xmapQur sor

XOr eat ePi xmapFr onBi t mapDat a
XCr eat eRegi on

XCr eat eSi npl eW ndow

XCr eat eW ndow

XDef aul t Col or map

XDef aul t Col or napCf Scr een
XDef aul t Dept h

XDef aul t Dept hCf Scr een
XDef aul t GC

XDef aul t GOCf Scr een

XDef aul t Root W ndow

XDef aul t Screen

XDef aul t Scr eent Di spl ay
XDef aul t String

XDef aul t Vi sual

XDef aul t Vi sual O Screen
XDef i neCur sor

XDel et eCont ext

XDel et eModi fi er mapEntry
XDel et eProperty
XDestroyl C

XDest r oyl mage

XDest r oyRegi on

XDest r oy Subwi ndows
XDest r oyW ndow

XD sabl eAccessCont rol

XD spl ayCel | s

XD spl ayHei ght

XD spl ayHei ght MV
XD spl ayKeycodes
XD spl ayMot i onBuf fer Si ze
XD spl ayNane

XD spl ayF | M

XD spl ayF Scr een
XD spl ayPl anes

XD spl ayString

XD spl ayWdt h

XD spl ayW dt hMv
XDoesBacki ngSt or e
XDoesSavelnder s
XDr aw

XDr awAr ¢

XDr awAr cs

XDr awl mageStri ng
XDr awl mageStri ngl6
XDr awLi ne

XDr awLi nes

XDr awPoi nt

XDr awPoi nt s

XDr awRect angl e

XDr awRect angl es
XDr awSegrent s
XDrawstring

XDr awst ri ngl6

XDr awText

XDr awText 16

XEnpt yRegi on

XEnabl eAccessCont r ol
XEqual Regi on
XEvent MaskCF Scr een
XEvent sQueued

XExt ent sOf Font Set
XFet chBuf f er

XFet chByt es

LIBRARIES

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMmMmmMm

Figure 6-21: |i bXContents (continued)

XFet chNane
XFillAc
XFillArcs
XFi | | Pol ygon

XFi | | Rect angl e
XFi | | Rect angl es
XFi | t er Event

XFi ndCont ext

XFl ush

XFl ush@GC

XFont sOf Font Set
XFor ceScr eenSaver
XFree

XFr eeCol or map
XFreeCol or s

XFr eeCur sor

XFr eeExt ensi onLi st
XFr eeFont
XFreeFont | nf o
XFr eeFont Nanes
XFr eeFont Pat h
XFr eeFont Set
XFreeQC
XFreeModi fi er map
XFr eePi xmap
XFreeStringLi st
XQont ext Fr onC
XGeoret ry

XGet At onNane

XCGet d assH nt
XGet Comrand

XGet Def aul t

XGet Er r or Dat abaseText
XGet Er r or Text
XGet Font Pat h
XGet Font Property
XGet GCVal ues
XGet Geonet ry

X Window System Library

XGet | conNane

XCet | conSi zes

XCet | CVal ues

XGet | mage

XCet | Mal ues

XGet | nput Focus

XCet Keyboar dCont r ol
XCet Keyboar dVappi ng
XCet Modi f i er Mappi ng
XCet Mot i onEvent s
XCGet Normal H nt s

XCet Pi xel

XCet Poi nt er Cont r ol
XCet Poi nt er Mappi ng
XCGet R&BCol or maps
XGet Scr eenSaver

XCet Sel ect i onOaner
XCGet Si zeH nt's

XCet St andar dCol or nap
XCet Subl nage

XGet Text Property
XCet Tr ansi ent For H nt
XCet Vi sual I nfo

XCGet WndowAt t ri but es
XCGet W ndowPr oper ty
XCGet WO i ent Machi ne
XCGet VW0l or mapW ndows
XCGet WWH nt s

XGet WM conNane

XGet WNarre

XCGet WNor mal H nt s
XGet VWPr ot ocol s

XCGet WS zeH nt s

XCet ZoonH nt s

XG abButton

X@ abKey

X@ abKeyboar d

XG abPoi nt er

X@ abSer ver

XHei ght MMCF Scr een
XHei ght O Scr een

Xl coni f yW ndow

Xl f Event

Xl mageByt eQ der
XIMXIC

Xl ni t Ext ensi on

Xl nsert Modi fi ermapEntry
Xl nst al | Col or map
Xl nt er nAt om

Xl nt er sect Regi on
XKeycodeToKeysym
XKeysynToKeycode
XKeysynToStri ng
XKilldient

XLast KnownRequest Pr ocessed
XLi st Dept hs

XLi st Ext ensi ons

XLi st Font s

XLi st Font sWt hl nfo
XLi st Host s

XLi st | nst al | edCol or naps
XLi st Pi xmapFor mat s
XLi st Properties
XLoadFont

XLoadQuer yFont
XLocal et Font Set
XLocal e I M
XLookupCol or
XLookupKeysym
XLookupStri ng
XLower W ndow
XVapRai sed
XVapSubwi ndows
XVapW ndow
XVaskEvent

Xvat chVi sual | nf o

6-25

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMmMmMmMmMmMmMmMm

Figure 6-21: | i bX Contents (continued)

XMaxQOrapsCr Scr een
XMaxRequest Si ze
XnbDr awl mageStri ng
XnbDr awsSt ri ng
XrbDr awText
XnbLookupStri ng
XmbReset | C

XnbSet WWPr oper ti es
XnbText Escapenent
XnbText Ext ent s

XnbText Li st ToText Property

XnbText Per Char Ext ent s

XnbText Proper t yToText Li st

XM nQOrapsCF Screen
XMoveResi zeW ndow
XMoveW ndow
XNewhModi f i er map
XNext Event

XNext Request
XNoQp

X f set Regi on
XQpenD spl ay
XQpenl M

XPar seCol or

XPar seGeoret ry
XPeekEvent

XPeekl f Event
XPendi ng

Xper nal | oc

XPl anesCf Scr een
XPoi nt | nRegi on
XPol ygonRegi on
XPr ot ocol Revi si on
XPr ot ocol Ver si on
XPut BackEvent

XPut | mage

XPut Pi xel

XQengt h

6-26

XQuer yBest Qur sor
XQueryBest Si ze

XQuer yBest Sti ppl e
XQueryBestTil e

XQuer yCol or

XQuer yCol or s

XQuer yExt ensi on

XQuer yFont

XQuer yKeymap

XQuer yPoi nt er

XQuer yText Extent s
XQuer yText Ext ent s16
XQueryTree

XRai seW ndow

XReadBi t mapFi | e

XRebi ndKeysym

XRecol or Qur sor
XReconf i gur e WWN ndow
XRect | nRegi on

XRef r eshKeyboar dMappi ng
XRenoveFr onBaveSet
XRenoveHost
XRenoveHost s

XRepar ent W ndow
XReset Scr eenSaver
XResi zeW ndow
XResour ceManager Stri ng
XRest ackW ndows

Xr mConbi neDat abase

Xr mConbi neFi | eDat abase
Xr nDest r oyDat abase

Xr nEnunrer at eDat abase
Xr mCet Dat abase

Xr mCet Fi | eDat abase

Xr nGet Resour ce

XrmGet St ri ngDat abase
Xrmnitialize
XrmLocal e Dat abase

Xr mver geDat abases

Xr nPar seComrand

Xr mPer n8t ri ngToQuar k
Xr nPut Fi | eDat abase

Xr nPut Li neResour ce

Xr nPut Resour ce

XrmPut St ri ngResour ce
Xr mCet Resour ce

Xr mQCGet Sear chli st

Xr mQGet Sear chResour ce
Xr mPut Resour ce

Xr mQPut St ri ngResour ce
Xr mQuar kToStri ng

Xr nSet Dat abase

Xr Bt ri ngToBi ndi ngQuar kLi st
Xr Bt ri ngToQuar k

Xr gt ri ngToQuar kLi st
Xr nmuni queQuar k
XRoot W ndow

XRoot W ndowCr Scr een
XRot at eBuf fer s

XRot at eW ndowPr operti es
XSaveCont ext

XScr eenCount

XScr eenNunber O Scr een
XScreenCr D spl ay
XScreenResour ceString
XSel ect | nput
XSendEvent
XSer ver Vendor

XSet AccessCont r ol

XSet Af t er Functi on
XSet Ar cMode

XSet Backgr ound

XSet d assH nt

XSet d i pMask
XSetdipQigin

XSet d i pRect angl es

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMmMmmMm

LIBRARIES

Figure 6-21: |i bXContents (continued)

XSet A oseDownMode
XSet Comrand

XSet Dashes

XSet Er r or Handl er
XSetFillRule
XSetFill Style

XSet Font

XSet Font Pat h

XSet For egr ound

XSet Functi on

XSet G aphi csExposur es
XSet | CFocus

XSet | conNane

XSet | conSi zes

XSet | CVal ues

XSet | nput Focus

XSet | CEr r or Handl er
XSet Li neAttri but es
XSet Local eModi fiers
XSet Modi fi er Mappi ng
XSet Normal H nt s
XSet Pl aneMask

XSet Poi nt er Mappi ng
XSet Regi on

XSet R&@BCol or maps
XSet Scr eenSaver

XSet Sel ecti onOnner
XSet Si zeH nt's

XSet St andar dCol or map
XSet St andar dProperti es
XSet State

XSet Sti ppl e

XSet Subwi ndowhbde
XSet Text Property

XSetTile
XSet Tr ansi ent For H nt
XSet TSOigin

XSet W ndowBackgr ound
XSet W ndowBackgr oundPi xnmap
XSet W ndowBor der

XSet W ndowBor der Pi xmap
XSet W ndowBor der W dt h
XSet W ndowCol or map
XSet WO i ent Machi ne
XSet VWCol or mapW ndows
XSet WWH nt s

XSet WM conNane

XSet Wiarre

XSet WNor mal H nt s

XSet WWPr operti es

XSet WPr ot ocol s

XSet W/Si zeH nt s

XSet ZoonH nt s

XsShri nkRegi on

XSt or eBuf f er

XSt or eByt es

XSt or eCol or

XSt oreCol ors

XSt or eNarre

XSt or eNanedCol or
XStringLi st ToText Property
XSt ri ngToKeysym

XSubl nage

XSubt r act Regi on
XSuppor t sLocal e

XSync

XSynchroni ze

XText Extent s

XText Ext ent s16

XText PropertyToStri ngLi st
XText Wdt h

XText W dt h16

XTr ansl at eCoor di nat es
XUndef i neCur sor

XUngr abBut t on

XUngr abKey

XUngr abKeyboar d

XUngr abPoi nt er

XUngr abSer ver

XUni nst al | Col or nap
XUhi onRect Wt hRegi on
XUni onRegi on

XUni queCont ext

XUnl oadFont
XUnnmapSubwi ndows
XunnapW ndow

XUnset | GFocus

XVaCr eat eNest edLi st
XVendor Rel ease

XVi sual | DFr onM sual
XWr pPoi nt er

XwcDrawl mageStri ng
XweDrawstri ng

XweDr awText
XwcFreeStringli st
XwcLookupString
XwcReset | C

XwcText Escapenent
XwcText Extents
XwcText Li st ToText Property
XwcText Per Char Ext ent s
XwcText PropertyToText Li st
XWhi t ePi xel

XWhi t ePi xel O Scr een
XW dt hMVCF Scr een
XW dt hCf Screen

XW ndowEvent

XW't hdr awWW ndow
XWGeonet ry
XWiteBitnapFil e
XXor Regi on

X Window System Library

6-27

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMmMmMmMmMmMm

Figure 6-22: |i bX11 Contents, Callback Function Names

Geonet ryCal | back Pr eedi t Dr anCal | back
PreeditStartCal | back Preedit Caret Cal | back
Pr eedi t DoneCal | back StatusSt art Cal | back

St at usDoneCal | back
St at usDr anCal | back

6-28

LIBRARIES

mmm m

X Toolkit Intrinsics Library G
The X Toolkit Intrinsics library, | i bXt , contains library routines that provide G
primitives for the operation of the X Toolkit Intrinsics of the X Window System. G
This library is required for all ABI-conforming systems that implement a graphical G
windowing terminal interface. See Chapter 10 of the System V ABI, “Windowing G
and Terminal Interfaces” for more information on windowing software require- G
ments on ABI-conforming systems. G
The following functions reside in | i bXt and must be provided on all ABI- G
conforming systems that implement a graphical windowing terminal interface. G
Figure 6-23: |i bXt Contents G
Xt AddCal | back Xt AppSet Er r or Handl er Xt Conf i gur eW dget

Xt AddCal | backs Xt AppSet Er r or MsgHandl er Xt Conver t AndSt or e

Xt AddEvent Handl er Xt AppSet Fal | backResour ces Xt Convert Case

Xt AddExposur eToRegi on Xt AppSet Sel ect i onTi meout Xt O eat eAppl i cat i onCont ext
Xt ADd@ ab Xt AppSet TypeConvert er Xt O eat eManagedW dget
Xt AddRawEvent Handl er Xt AppSet Var ni ngHandl er Xt O eat ePopupShel |

Xt Al'l ocat eGC Xt AppSet Vr ni ngMsgHand| er Xt O eat eW dget

Xt AppAddAct i onHook Xt AppVér ni ng Xt O eat eW ndow

Xt AppAddAct i ons

Xt AppAddI nput

Xt AppAddTi meQut

Xt AppAddWér kPr oc

Xt AppCr eat eShel |

Xt AppError

Xt AppEr ror Msg

Xt AppGet Er r or Dat abase

Xt AppGet Er r or Dat abaseText
Xt AppGet Sel ect i onTi neout
Xt Applnitialize

Xt AppMai nLoop

Xt AppNext Event

Xt AppPeekEvent

Xt AppPendi ng

Xt AppPr ocessEvent

Xt AppRel easeCacheRef s

X Toolkit Intrinsics Library

Xt AppV¥r ni nghsg

Xt Augnent Tr ansl at i ons

Xt Bui | dEvent Mask

Xt Cal | Accept Focus

Xt Cal | Acti onProc

Xt Cal | backExcl usi ve

Xt Cal | backNone

Xt Cal | backNonexcl usi ve

Xt Cal | backPopdown

Xt Cal | backRel easeCacheRef
Xt Cal | backRel easeCacheRef Li st
Xt Cal | Cal | backLi st

Xt Cal | Cal | backs

Xt Cal | Converter

Xt Cal | oc

Xt d ass

Xt d oseD spl ay

Xt Qvt Col or ToPi xel

Xt vt | nt ToBool

Xt Qvt | nt ToBool ean

Xt Cvt | nt ToCol or

Xt Cvt | nt ToFl oat

Xt Cvt | nt ToFont

Xt Qvt | nt ToPi xel

Xt Qvt | nt ToPi xmap

Xt Qvt | nt ToShor t

Xt Qvt | nt ToUnsi gnedChar

NN NANANANANANANONONONONONONA)

Xt Qvt Stri ngToAccel er at or Tabl eG

Xt Qvt Stri ngToAt om

Xt Qvt Stri ngToBool

Xt Qvt Stri ngToBool ean
Xt Qvt Stri ngToQur sor

Xt Qvt Stri ngToD nensi on
Xt Qvt StringToD spl ay

6-29

OOOOOO

Figure 6-23: | i bXt Contents (continued)

Xt Qut StringToFi |l e

Xt Qvt Stri ngToFl oat

Xt Qvt Stri ngToFont

Xt Qvt Stri ngToFont Set

Xt Qvt Stri ngToFont Struct
XtQut StringTolnitial State
Xt Qvt Stri ngTol nt

Xt Qvt Stri ngToPi xel

Xt Qvt Stri ngToShor t

Xt Qvt StringToTransl ati onTabl e
Xt Qvt Stri ngToUnsi gnedChar
Xt Qvt Stri ngToVi sual

Xt Dat abase

Xt Dest r oyAppl i cat i onCont ext
Xt Dest r oyW dget

Xt D sownSel ection

Xt Di spat chEvent

Xt Di spl ay

Xt Displaylnitialize

Xt Di spl ayr oj ect

Xt Di spl ayStri ngConver si onVr ni ng

Xt Di spl ayToAppl i cat i onCont ext
XtFindFile

Xt Free

Xt Get Act i onKeysym

Xt Get Acti onlLi st

Xt Get Acti onlLi st

Xt Get Appl i cati onNanmeAndd ass
Xt Get Appl i cat i onResour ces

Xt Get Const r ai nt Resour celLi st
Xt Get CC

Xt Get KeysynTabl e

Xt Get Mul ti Qi ckTine

Xt Get Resour celLi st

Xt Get Sel ect i onRequest

Xt Get Sel ecti onVal ue

Xt Get Sel ecti onVal uel ncr enent al
Xt Get Sel ecti onVal ues

6-30

Xt Get Sel ect i onVal uesl ncr enent al
Xt Get Subr esour ces

Xt Get Subval ues

Xt Get Val ues

Xt G abBut t on

Xt G abKey

Xt G abKeyboar d

Xt @ apPoi nt er

Xt HasCal | backs
XtInitializeWdgetd ass
Xt | nsert Event Handl er

Xt | nser t RawEvent Handl er
XtInstal |l Accel erators
Xtlnstall Al Accel erators
Xt | sManaged

Xt | sChj ect

Xt|sReal i zed
Xt1sSensitive

Xt | sSubcl ass

Xt | sVendor Shel |

Xt KeysyniToKeycodeli st

Xt Last Ti mest anpPr ocessed
Xt MakeGeonet r yRequest

Xt MakeResi zeRequest

Xt Mal | oc

Xt ManageChi | d

Xt ManageChi | dren

Xt MapW dget

Xt MenuPopdown

Xt MenuPopup

Xt Mer geAr gLi sts

Xt MoveW dget

Xt Narre

Xt NanmeToW dget

Xt NewStri ng

Xt QpenDi spl ay

Xt OverrideTransl ati ons
Xt OnnSel ecti on

G

Xt OmnSel ecti onl ncr enent al

Xt Par ent

Xt Par seAccel er at or Tabl e
Xt Par seTr ansl ati onTabl e
Xt Popdown

Xt Popup

Xt PopupSpr i ngLoaded

Xt Quer yGeonetry

Xt Real i zeW dget

Xt Real | oc

Xt Regi st er CaseConvert er
Xt Regi st er @ abActi on

Xt Rel easeCC

Xt RenoveAct i onHook

Xt RenoveAl | Cal | backs

Xt RenoveCal | back

Xt RenoveCal | backs

Xt RenmoveEvent Handl er

Xt Renove@ ab

Xt Renovel nput

Xt RenmoveRawEvent Handl er
Xt RenoveTi neQut

Xt Resi zeW dget

Xt Resi zeW ndow

Xt Resol vePat hnare

Xt Screen

Xt Scr eenDat abase

Xt Scr eentf (hj ect

Xt Set Keyboar dFocus

Xt Set KeyTr ansl at or

Xt Set LanguagePr oc

Xt Set MappedWienManaged
Xt SetMul ti dickTine

Xt Set Sensi tive

Xt Set Subval ues

Xt Set TypeConverter

Xt Set Val ues

Xt Set WMol or mapW ndows

LIBRARIES

NoNoNNoNoNANONONANONONA NN NN N NN NANONONANONONANONONANONONANONON AN

The Data Symbols Xt Shel | Stri ngs and Xt St ri ngs may not be maintained
NOTE | in an upwardly compatible manner. Applications should not reference these
strings.

6-32 LIBRARIES

System Data Interfaces

Standard header files that describe system data are available for C application
developers to use. These files are referred to by their name in angle brackets:
<name. h>and <sys/ name. h>. Included in these headers are macro definitions,
data definitions, and function declarations. The parts of the header files specified
in the ANSI C standard are the only parts available to strictly-conforming ANSI C
applications. Similarly, only the portions of the header files defined in the POSIX
P1003.1 Operating System Standard are available to strictly POSIX-conforming
applications.

Some of the following header files define interfaces directly available to applica-
tions, and those interfaces will be common to systems on all processors. Other
header files show specific implementations of standard interfaces, where the
implementation or data definitions might change from one processor to another.
The ABI does not distinguish between these files. It gives data definitions to pro-
mote binary application portability, not to repeat source interface definitions
available elsewhere. System providers and application developers should use the
ABI to supplement—not to replace—source interface definition documents.

Some type and data definitions appear in multiple headers. Special
NoTe | definitions are included in the headers to avoid conflicts.

The application execution environment presents the interfaces described below,
but the ABI does not require the presence of the header files themselves. In other
words, an ABI-conforming system is not required to provide an application
development environment.

Required Sizes for Some Data Objects

The continued evolution of System V requires that some fundamental data objects
be centerexpanded so that the operating system will work more efficiently with
systems of different sizes and with networks of systems. To promote both binary
portability for applications and interoperability for networks of systems, the Sys-
tem V ABI requires that all conforming implementations use the expanded data
object sizes shown in the table below at a minimum.

System Data Interfaces 6-33

A given architecture may expand one or more of the following objects’ sizes, but
any such further expansion must be made explicit in the processor supplement to
the System V ABI for that processor architecture. Further, the sizes in the table
below should be considered as absolute (not minimal) for purposes of interopera-
tion among networks of heterogeneous systems.

Figure 6-25: Minimum Sizes of Fundamental Data Objects

Data Object Type Definition Size (bits)
User identifier uidt 32
Group ldentifier gid_t 32
Process identifier pid_t 32
Inode identifier ino_t 32
Device identifier dev_t 32
File system identifier dev_t 32
Error identifier i nt 32
Time tine_t 32
File mode indicator nmode_t 32
Link count nlink_t 32

Data Definitions (Processor-Specific)

NOTE

6-34

This section requires processor-specific information. The ABI supplement for

the desired processor describes the details.

LIBRARIES

7 FORMATS AND PROTOCOLS

Introduction 7-1
Archive File 7-2
Other Archive Formats 7-6
Terminfo Data Base 7-7
Formats and Protocols for Networking 7-10
XDR: External Data Representation 7-10
m XDR Data Types 7-11
Messaging Catalogues 7-22
RPC: Remote Procedure Call Protocol 7-22
m Terminology 7-22
m Transports and Semantics 7-22
m Binding and Rendezvous Independence 7-23
m Authentication 7-24
m Programs and Procedures 7-24
m Authentication 7-25
m Program Number Assignment 7-25
m Other Uses of the RPC Protocol 7-26
m Batching 7-26
m Broadcast RPC 7-26
m The RPC Message Protocol 7-27
m DES Authentication Protocol (in XDR language) 7-33
m Record Marking Standard 7-36

Table of Contents

m rpcbind Mechanism

7-37

Table of Contents

Introduction

This chapter describes file and data formats and protocols that are visible to appli-
cations or that must be portable across System V implementations. Although the
system provides standard programs to manipulate files in the formats described
here, portability is important enough to warrant descriptions of their formats.

This does not mean applications are encouraged to circumvent the system pro-
grams and manipulate the files directly. Instead, it means an ABI for any target
processor architecture must provide the system programs and library routines for
manipulating these file formats and implementing these protocols. Moreover,
those programs must accept formats compatible with the ones described here.

Some system file formats explicitly do not appear in this chapter. For example,
the mount table file, traditionally called / et ¢/ mt t ab, is not a documented for-
mat. For information such as this, the system libraries described in Chapter 6 pro-
vide functions that applications may use to access the data. Programs that depend
on undocumented formats—or that depend on the existence of undocumented
files—are not ABI-conforming. Other files, such as the password file in

/ et c/ passwd, have formats defined in other documents. These cases therefore do
not appear in the ABI, because the ABI does not replicate information available in
other standards documents. Nonetheless, an ABI-conforming program may use
the files when the file names and formats are defined implicitly for the ABI
through references to other documents.

Introduction 7-1

Archive File

Archives package multiple files into one. They are commonly used as libraries of
relocatable object files to be searched by the link editor. An archive file has the fol-
lowing format:

m An archive magic string, ARMAG below;

m An optional archive symbol table (created only if at least one member is an
object file that defines non-local symbols);

m An optional archive string table (created only if at least one archive
member’s name is more than 15 bytes long);

m For each “normal file in the archive, an archive header and the unchanged
contents of the file.

The archive file’s magic string contains SARVAG bytes and does not include a ter-
minating null byte.

Figure 7-1: <ar. h>

s N

#def i ne ARVAG "I <arch>\n"
#def i ne SARVAG 8
#def i ne ARFMAG "\n"

struct ar_hdr {

char ar_nare[16] ;
char ar_date[12];
char ar_uid[6];
char ar_gid[6];
char ar_node[8] ;
char ar_si ze[10] ;
char ar_fmag[2];

b

N)

All information in the member headers is printable ASCII.

ar_nane This member represents the member’s file name. If the name fits,
it resides in the member directly, terminated with slash (/) and
padded with blanks on the right. If the member’s name is too
long to fit, the member contains a slash, followed by the decimal
representation of the name’s offset in the archive string table.

7-2 FORMATS AND PROTOCOLS

ar_date This member holds the decimal representation of the
modification date of the file at the time of its insertion into the
archive. Stat andti nme describe the modification time value.

ar_uid This member holds the decimal representation of the member’s
user identification number.

ar_gid This member holds the decimal representation of the member’s
group identification number.

ar_node This member holds the octal representation of the file system
mode.

ar_si ze This member holds the decimal representation of the member’s
size in bytes.

ar_fnag This member holds the first two bytes of the ARFVAG string,

defined above.

Each member begins on an even byte boundary; a newline is inserted between
files if necessary. Nevertheless the ar _si ze member reflects the actual size of the
member exclusive of padding. There is no provision for empty areas in an archive
file.

If some archive member’s name is more than 15 bytes long, a special archive
member contains a table of file names, each followed by a slash and a newline.
This string table member, if present, will precede all ‘““normal’” archive members.
The special archive symbol table is not a ““‘normal’”” member, and must be first if it
exists (see below). The ar _nane entry of the string table’s member header holds a
zero length name (ar _name[0] ==" /"), followed by one trailing slash

(ar_nane[1] ==" /"), followed by blanks (ar _name[2] ==" ', and so on). Offsets
into the string table begin at zero. Example ar _nane values for short and long file
names appear below.

Offset +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
o Uf Uj 0 Oe Opn Oa Om Oe Os Ua

g

g B SN SRS S NS B B U
10 om pp pl pe po/f pg\npl po N 09
g

20 Oe Or Of 0Oi Ol DOe On Oa Om Oe

30 gx Ha gm Hp Hl He H/ HnH H

Archive File 7-3

Figure 7-2: Example String Table

Member Name ar_name Note
short - narme Ushort - name/ UNot in string table
fil enanesanpl e Uro Uoffset 0in string table
| ongerfil enamexanpl e [/ 16 OOffset 16 in string table

If an archive file has one or more object file members, its first member will be an
archive symbol table. This archive member has a zero length name, followed by
blanks (ar _name[0] =="/", ar_name[1]==" ', and soon). All words in this
symbol table have four bytes, using the machine-independent encoding shown
below.

All machines use the encoding described here for the symbol table, even if the
NOTE | machine’s “natural” byte order is different.

Figure 7-3: Archive Word Encoding

0x01020304 o 02 03 04

The symbol table holds the following:

m A word containing the number of symbols in the symbol table (which is the
same as the number of entries in the file offset array);

m An array of words, holding file offsets into the archive;

m The string table containing ar _si ze- 4* (number symbols+1) bytes, whose
initial byte is numbered 0 and whose last byte holds a 0 value.

Entries in the string table and in the file offset array exactly correspond to each
other, and they both parallel the order of archive members. Thus if two or more
archive members define symbols with the same name (which is allowed), their
string table entries will appear in the same order as their corresponding members
in the archive file. Each array entry associates a symbol with the archive member
that defines the symbol; the file offset is the location of the archive header for the
designated archive member.

7-4 FORMATS AND PROTOCOLS

As an example, the following symbol table defines 4 symbols. The archive
member at file offset 114 defines nane and obj ect . The archive member at file
offset 426 defines f unct i on and a second version of nare.

Figure 7-4: Example Symbol Table
Offset +0 +1 +2 +3

o U 4 U4 offset entries
4 g 114 Jname

8 O 114 Cobj ect
12 g 426 Hf uncti on
16 [426 name

20 Un Oa Om Oe O

24 5\0 So b o] o

28 0Oe Oc Ot MNO O

36 gt gt go gn g

40 Oho Op Oa Om O

4 He B0 0§ 1

Archive File

Other Archive Formats

ABI-conforming systems support archives created by the cpi o command. These
archives are commonly used as a vehicle for collecting ASCII files for storage or
transmission.

For more information about these archives see the cpi 0 manual page in the
X/Open CAE Specification, Issue 4.2 and the System V Interface Definition, Third Edi-
tion (see the Conformance Rule in chapter 1). The format of the archives the com-
mand creates is included in the IEEE POSIX P1003.1 specification. Also supported
are archives in the ASC/CRC format, created using the cpi o command with the
“-H crc” option.

7-6 FORMATS AND PROTOCOLS

Terminfo Data Base

Each terminal’s capabilities are stored in a separate file named
/usr/share/lib/term nfol L/ terminal_name, where terminal_name is the name of
the terminal, and L is the first letter of the terminal’s name. The specific capabili-
ties described in the database and their names are given in the System V Interface
Definition, Third Edition on the t er mi nf o(TI_ENV) pages. The format of this file is
given in the separate section that follows.

The t er m nf o database format is hardware-independent. An 8-bit byte is
assumed. Short integers are stored in two contiguous 8-bit bytes. The first byte
contains the least significant 8 bits of the value, and the second byte contains the
most significant 8 bits. (Thus, the value represented is 2565econd+first.) The
value -1 is represented by 0377, 0377, and the value -2 is represented by 0376,
0377; other negative values are illegal. Computers where this does not
correspond to the hardware read the integers as two bytes and compute the result,
making the compiled entries portable across machine types. A-1ora-2ina
capability field means that the capability is missing from a terminal.

The file contains six sections:

header The header contains six short integers in the format described
below. These integers are (1) the magic number (octal 0432);
(2) the size, in bytes, of the names section; (3) the number of
bytes in the boolean section; (4) the number of short integers in
the numbers section; (5) the number of offsets (short integers)
in the strings section; (6) the size, in bytes, of the string table.

terminal names The terminal names section contains the first line of the
t erm nf o(TI_ENV) description, listing the various names for
the terminal, separated by the ’| ’ character. The section is ter-
minated with an ASCII NUL character.

boolean flags The boolean flags contain one byte for each flag. This byte is
either O or 1 to indicate whether a capability is present or
absent. The terminal capabilities are stored here in the same
order in which that are listed under the Bool eans heading of
the capability table in the t er m nf o(TI_ENV) section of the
System V Interface Definition, Third Edition. The flag value of 2
means that the flag is invalid.

Terminfo Data Base 7-7

numbers

strings

string table

Between the boolean section and the number section, a null
byte will be inserted, if necessary, to insure that the number
section begins on a byte with an even-numbered address. All
short integers are aligned on a short word boundary.

The numbers section is similar to the preceding boolean flags
section. Each capability is stored in two bytes as a short
integer. Terminal capabilities are stored here in the same order
in which they are listed under the Numbers heading of the
capability table in the t er mi nf o(TI_ENV) section of the System
V Interface Definition, Third Edition. If the value represented is
—1 or —2, the capability is missing.

In the strings section, each capability is stored as a short
integer, in the same format given for preceding section. Termi-
nal capabilities are stored here in the same order in which they
are listed under the Strings heading of the capability table in
the t er mi nf o(TI_ENV) section of the System V Interface
Definition, Third Edition. A value of —1 or —2 means that a capa-
bility is missing. Otherwise, the value is taken as an offset
from the beginning of the string table.

The final section is the string table. It contains all the values of
string capabilities referenced in the string section. Each capa-
bility is stored as a null terminated string. Special characters in
" Xor\ notation are stored in their interpreted form, not the
printing representation. Padding information ($<nn>) and
parameter information (9&) are stored intact in uninterpreted
form.

As an example, an octal dump of the compiled description for an AT&T Model 37

KSR is included:

FORMATS AND PROTOCOLS

O

37| tty37| AT&T nodel

hc,

0s,

hu=\ E8,
0000000 032 001

0000020
0000040
0000060
0000100
0000120
0000140
0000160
0000200
0000220
*

0000520
0000540
0000560
*

0001160
0001200
0001220
0001240
0001260
0001261

t
3
\0
001
377

377
377
377

377
377
377

377
I
I
\n
\0

xon,
bel =G cr=\r,
i nd=\n,

y
7

\0
\0
377
\0
377
377
377

377
377
377

377
t

\0
\0

3

\0
\0
377
377

377

377
377
377

377
t

3
\n

37 tel etype,

\0
7

t
001
\0
377
377
\0
\0
377

377
377
377

377

y
7

\0

032
I
e
\0
\0
377
377
377
377
377

377
377
377

377
3

007

\0

A T

I
\0
\0

377
377
377
377
377

377
377
377

377
7

t
\0

cubl=\b, cudl=\n,

013

e
\0
377
377
377
377
377
377

377
377
377

377
I

e
\b

cuul=\E7, hd=\E9,

\0 021 001

&

t
\0
377
377
377
377
377
377

377
377
377

377
A

I
\0

T
y
\0
377
377
377
(
377
377

377
377
377

377
T
e
033

p
\0

377
377
377

\0
377
377

377
377
377

377

& T

t

3

m

e
\0
377
377
377
377
377
377

377
377
377

377

\0

\0
(0]
\0
001
377
377
377
377
377
377

377
377
377

377

p
033

3

d
\0
\0
377
377
377
377

377
377
377
377

377

m

e
9

7
e
\0
\0
377
377
377
377
\0
377

377
377
377

377
(0]
\0
\0

\0
\0

t

\0
\0

377 377

& \0
377 377
377 377
377 377
377 377

$

*

\0
\0

377 377

3

d
\r
033

Some limitations: total compiled entries cannot exceed 4096 bytes and all entries in

the name field cannot exceed 128 bytes.

Terminfo Data Base

7-9

7
e
\0
7

Formats and Protocols for Networking

This section describes a language for machine-independent data representation
and two protocols used in remote procedure call service. All ABI-conforming sys-
tems that provide these services must implement these formats and protocols in
the appropriate routines in the | i bnsl library. See Chapter 6 of the System VV ABI
for a list of the routines in this library.

XDR: External Data Representation

XDR is a method for the description and encoding of data. It is useful for transfer-
ring data between different computer architectures, where such characteristics as
internal byte-ordering may vary.

XDR uses a language to describe data formats. This language allows one to
describe intricate data formats in a concise manner.

The XDR language assumes that bytes (or octets) are portable, where a byte is
defined to be 8 bits of data. A given hardware device should encode the bytes
onto the various media in such a way that other hardware devices may decode the
bytes without loss of meaning.

Basic Block Size

The representation of all items requires a multiple of four bytes (or 32 bits) of data.
The bytes are numbered 0 through n-1. The bytes are read or written to some byte
stream such that byte m always precedes byte m+1. If the n bytes needed to con-
tain the data are not a multiple of four, then the n bytes are followed by enough (0
to 3) residual zero bytes, r, to make the total byte count a multiple of 4.

The familiar graphic box notation has been used for illustration and comparison.
In most illustrations, each box (delimited by a plus sign at the 4 corners and verti-
cal bars and dashes) depicts a byte. Ellipses (. . .) between boxes show zero or
more additional bytes where required.

A Block

o em - o - T oo T R +
| byte 0| byte 1 |...|byte n-1] o |...] 0o |
o em - o - T oo T R +
SRR n bytes---------- > <------ r bytes------ >|
[<---mmmmm-- n+r (where (n+r) nmod 4 = 0)>----------- >|

7-10 FORMATS AND PROTOCOLS

XDR Data Types

Each of the sections that follow describes a data type defined in the XDR language,
shows how it is declared in the language, and includes a graphic illustration of its
encoding.

For each defined data type we show a general paradigm declaration. Note that
angle brackets (< and >) denote variable length sequences of data and square
brackets ([and]) denote fixed-length sequences of data. “‘n”, “m’ and *‘r’’ denote
integers. For the full language specification and more formal definitions of terms
such as “identifier’” and “‘declaration,” refer to ““The XDR Language
Specification”, given in the System V Interface Definition, Third Edition.

For some data types, more specific examples are included below.

Integer

An XDR signed integer is a 32-bit datum that encodes an integer in the range
[-2147483648,2147483647]. The integer is represented in two’s complement nota-
tion. The most and least significant bytes are 0 and 3, respectively. Integers are
declared as follows:

Integer

(MsB) (LSB)
Fomea - - S R R R Fomea - - +
|byte O |byte 1 |byte 2 |byte 3 |
Fomea - - S R R R Fomea - - +
LR 32 bits------------ >

Unsigned Integer

An XDR unsigned integer is a 32-bit datum that encodes a nonnegative integer in
the range [0,4294967295]. It is represented by an unsigned binary number whose
most and least significant bytes are 0 and 3, respectively. An unsigned integer is
declared as follows:

Unsigned Integer

(MSB) (LSB)

Fomm o Fommm o Fomm o Fomm o +
|byte O |byte 1 |byte 2 |byte 3 |
Fomm o Fommm o Fomm o Fomm o +
S e 32 bits------------ >

Formats and Protocols for Networking 7-11

Enumeration

Enumerations have the same representation as signed integers. Enumerations are
handy for describing subsets of the integers. Enumerated data is declared as fol-
lows:

enum{ nane-identifier = constant, . . . } identifier;

For example, the three colors red, yellow, and blue could be described by an
enumerated type:

enum{ RED = 2, YELLON= 3, BLUE =5} colors;

It is an error to encode as an enum any other integer than those that have been
given assignments in the enum declaration.

Boolean

Booleans are important enough and occur frequently enough to warrant their own
explicit type in the language. Booleans are declared as follows:

bool identifier;
This is equivalent to:
enum{ FALSE =0, TRE =11} identifier;

Floating-point
XDR defines the floating-point data type “float’”” (32 bits or 4 bytes). The encoding

used is the IEEE standard for normalized single-precision floating-point numbers.
The following three fields describe the single-precision floating-point number:

S The sign of the number. Values 0 and 1 represent positive and
negative, respectively. One bit.

E The exponent of the number, base 2. 8 bits are devoted to this
field. The exponent is biased by 127.

F: The fractional part of the number’s mantissa, base 2. 23 bits are
devoted to this field.
Therefore, the floating-point number is described by:
(-1)**S * 2**(EBias) * 1.F

It is declared as follows:

7-12 FORMATS AND PROTOCOLS

Single-Precision Floating-Point

Fomm o Fomm o Fomm o Fomm o +
|byte O |byte 1 |byte 2 |byte 3 |
S E | F I
Fomm o Fomm o Fomm o Fomm o +
1< 8 -3 <------- 23 bits------ >|
S R 32 bits------------ >

Just as the most and least significant bytes of a number are 0 and 3, the most and
least significant bits of a single-precision floating- point number are 0 and 31. The
beginning bit (and most significant bit) offsets of S, E, and F are 0, 1, and 9, respec-
tively. Note that these numbers refer to the mathematical positions of the bits,
and NOT to their actual physical locations (which vary from medium to medium).

The IEEE specifications should be consulted concerning the encoding for signed
zero, signed infinity (overflow), and denormalized numbers (underflow). Accord-
ing to IEEE specifications, the ““NaN”’ (not a number) is system dependent and
should not be used externally.

Double-precision Floating-point

XDR defines the encoding for the double-precision floating- point data type ‘“dou-
ble” (64 bits or 8 bytes). The encoding used is the IEEE standard for normalized
double-precision floating-point numbers. XDR encodes the following three fields,
which describe the double-precision floating-point number:

S The sign of the number. Values 0 and 1 represent positive and
negative, respectively. One bit.

E The exponent of the number, base 2. 11 bits are devoted to this
field. The exponent is biased by 1023.

F: The fractional part of the number’s mantissa, base 2. 52 bits are
devoted to this field.

Therefore, the floating-point number is described by:
(-1)**S * 2**(E-Bias) * 1.F

It is declared as follows:

Formats and Protocols for Networking 7-13

Double-Precision Floating-Point

Fom e o - Fomm oo - g Fomm oo - g Fomm e o - [g Fom e o - +
| byte O] byte 1| byte 2| byte 3| byte 4| byte 5| byte 6| byte 7|
Sl E | F |
Fom e o - Fomm oo - g Fomm oo - g Fomm e o - [g Fom e o - +
1 <--11-->| <--mmmmmmme o - B2 bits-------cccccoaao-- >|
e T 64 bitS-----------mieeao oo >

Just as the most and least significant bytes of a number are 0 and 3, the most and
least significant bits of a double-precision floating- point number are 0 and 63.
The beginning bit (and most significant bit) offsets of S, E ,and Fare 0, 1, and 12,
respectively. Note that these numbers refer to the mathematical positions of the
bits, and NOT to their actual physical locations (which vary from medium to
medium).

The IEEE specifications should be consulted concerning the encoding for signed
zero, signed infinity (overflow), and denormalized numbers (underflow). Accord-
ing to IEEE specifications, the “NaN’’ (not a number) is system dependent and
should not be used externally.

Fixed-length Opaque Data
At times, fixed-length uninterpreted data needs to be passed among machines.
This data is called “opaque’ and is declared as follows:

opaque identifier[n];

where the constant n is the (static) number of bytes necessary to contain the
opaque data. If nis not a multiple of four, then the n bytes are followed by
enough (0 to 3) residual zero bytes, r, to make the total byte count of the opaque
object a multiple of four.

Fixed-Length Opaque

0 1

S S R - R R S R - +, - - +
| byte 0| byte 1 |...|byte n-1j 0o |...] 0 |
S S R - R R S R - +, - - +
| <----mo----- n bytes---------- >l <------ r bytes------ >|
| <----mo----- n+r (where (n+r) mod 4 = 0)------------ >|

Variable-length Opaque Data

XDR also provides for variable-length (counted) opaque data, defined as a
sequence of n (numbered 0 through n-1) arbitrary bytes to be the number n
encoded as an unsigned integer (as described below), and followed by the n bytes
of the sequence.

7-14 FORMATS AND PROTOCOLS

Byte m of the sequence always precedes byte m+1 of the sequence, and byte 0 of
the sequence always follows the sequence’s length (count). If nis not a multiple of
four, the the n bytes are followed by enough (0 to 3) residual zero bytes, r, to make
the total byte count a multiple of four. Variable-length opaque data is declared in
the following way:

opaque identifier<m>;
or

opaque identifier<>;

The constant m denotes an upper bound of the number of bytes that the sequence
may contain. If m is not specified, as in the second declaration, it is assumed to be
(2**32) - 1, the maximum length. The constant m would normally be found in a
protocol specification. For example, a filing protocol may state that the maximum
data transfer size is 8192 bytes, as follows:

opaque filedata<8192>;
This can be illustrated as follows:

Variable-Length Opaque

Fomoo- R Fomoo- R Fomoo- oo S S Foeoo- o +
| length n | byt eO| bytel|...| n-2 | O |...|] O |
Fomoo- R Fomoo- R Fomoo- oo S S Foeoo- o +
| <------- 4 bytes------- >l <------ n bytes------ >| <---r bytes--->|
| <----n+r (where (n+r) nod 4 = 0)---->]

It is an error to encode a length greater than the maximum described in the
specification.

String

XDR defines a string of n (numbered 0 through n-1) ASCII bytes to be the number
n encoded as an unsigned integer (as described above), and followed by the n
bytes of the string. Byte m of the string always precedes byte m+1 of the string,
and byte 0 of the string always follows the string’s length. If n is not a multiple of
four, then the n bytes are followed by enough (0 to 3) residual zero bytes, r, to
make the total byte count a multiple of four. Counted byte strings are declared as
follows:

string object<m>;
or

string object<>;

Formats and Protocols for Networking 7-15

The constant m denotes an upper bound of the number of bytes that a string may
contain. If mis not specified, as in the second declaration, it is assumed to be
(2**32) - 1, the maximum length. The constant m would normally be found in a
protocol specification. For example, a filing protocol may state that a file name
can be no longer than 255 bytes, as follows:

string filename<255>;

Which can be illustrated as:

A String

0 1 2 3 4 5

domnn- S domnn- S S e m- o S S S +
| length n | byteO] bytel|...| n-2 | O |...] O |
domnn- S domnn- S S e m- o S S S +
| <------- 4 bytes------- > <------ n bytes------ >| <---r bytes---3|
| <----n+r (where (n+r) mod 4 = 0)----3|

It is an error to encode a length greater than the maximum described in the
specification.

Fixed-length Array

Declarations for fixed-length arrays of homogeneous elements are in the following
form:

type-name identifier[n];

Fixed-length arrays of elements numbered 0 through n-1 are encoded by individu-
ally encoding the elements of the array in their natural order, 0 through n-1. Each
element’s size is a multiple of four bytes. Though all elements are of the same
type, the elements may have different sizes. For example, in a fixed-length array
of strings, all elements are of “‘type string,” yet each element will vary in its
length.

Fixed-Length Array

I S e SR S S

| element 0 | element 1 |...| element n-1 |
T e s T T e
[<---mmmme i nelements------------------- >|

7-16 FORMATS AND PROTOCOLS

Variable-length Array

Counted arrays provide the ability to encode variable-length arrays of homogene-
ous elements. The array is encoded as the element count n (an unsigned integer)
followed by the encoding of each of the array’s elements, starting with element 0
and progressing through element n- 1. The declaration for variable-length arrays
follows this form:

type-name identifier<m>;
or
type-name identifier<>;

The constant m specifies the maximum acceptable element count of an array; if m
is not specified, as in the second declaration, it is assumed to be (2**32) - 1.

Counted Array

01 2 3

B e T S S S S S
| n | element O | element 1 |...|element n-1|
B e T S S S S S
| <-4 bytes->|<-------------- n elements------------- >|

It is an error to encode a value of n that is greater than the maximum described in
the specification.

Structure
Structures are declared as follows:

struct {
conponent - decl arati on- A
conponent - decl ar ati on- B;

} identifier;

The components of the structure are encoded in the order of their declaration in
the structure. Each component’s size is a multiple of four bytes, though the com-
ponents may be different sizes.

Formats and Protocols for Networking 7-17

Structure

Discriminated Union

A discriminated union is a type composed of a discriminant followed by a type
selected from a set of prearranged types according to the value of the discrim-
inant. The type of discriminant is either ““int,” ““‘unsigned int,”” or an enumerated
type, such as “‘bool”’. The component types are called ‘‘arms’ of the union, and
are preceded by the value of the discriminant which implies their encoding.
Discriminated unions are declared as follows:

s N

uni on swi tch (discrimnant-declaration) {
case di scrimnant-val ue- A
armdecl aration- A
case di scrim nant-val ue-B:
arm decl arati on- B;

defaul t: defaul t-declaration;
} identifier;

w4

Each “‘case’” keyword is followed by a legal value of the discriminant. The default
arm is optional. If it is not specified, then a valid encoding of the union cannot
take on unspecified discriminant values. The size of the implied arm is always a
multiple of four bytes.

The discriminated union is encoded as its discriminant followed by the encoding
of the implied arm.

Discriminated Union

o 1 2 3
e T cupup
| discrimnant | inplied arm |

oo e e e e o - -
| <---4 bytes--->]

7-18 FORMATS AND PROTOCOLS

Void
An XDR void is a 0-byte quantity. Voids are useful for describing operations that
take no data as input or no data as output. They are also useful in unions, where
some arms may contain data and others do not. The declaration is simply as fol-
lows:

void;
Voids are illustrated as follows:

++

X
++

--><-- 0 bytes

Constant
The data declaration for a constant follows this form:

const name-identifier = n;

*“const” is used to define a symbolic name for a constant; it does not declare any
data. The symbolic constant may be used anywhere a regular constant may be
used. For example, the following defines a symbolic constant DOZEN, equal to
12.

const DOZEN =12,

Typedef

“"typedef”’ does not declare any data either, but serves to define new identifiers
for declaring data. The syntax is:

typedef declaration;

The new type name is actually the variable name in the declaration part of the
typedef. For example, the following defines a new type called ““eggbox’ using an
existing type called “‘egg™”:

typedef egg eggbox[DOZEN];

Variables declared using the new type name have the same type as the new type
name would have in the typedef, if it was considered a variable. For example, the
following two declarations are equivalent in declaring the variable “‘fresheggs’’

eggbox fresheggs;
egg fresheggs[DOZEN];

Formats and Protocols for Networking 7-19

Messaging Catalogues

An ABI conforming implementation will include the gencat utility to convert
message catalogues (as defined in the Commands and Ultilities volume of X/Open
CAE Specification, Issue 4.2) into a form understandable by the run-time system.
Applications that attempt to provide message catalogues in any other format are
not ABI conforming.

RPC: Remote Procedure Call Protocol

This section specifies the protocol to be used in the remote procedure call package
implemented by routines in the | i bnsl library described in Chapter 6. The proto-
col is specified with the external data representation (XDR) language partly
described in the preceding section of the System V ABI.

Terminology

This section discusses servers, services, programs, procedures, clients, and ver-
sions. A server is a piece of software where network services are implemented. A
network service is a collection of one or more remote programs. A remote pro-
gram implements one or more remote procedures; the procedures, their parame-
ters, and results are documented in the specific program’s protocol specification
(see the rpchind protocol, below, for an example). Network clients are pieces of
software that initiate remote procedure calls to services. A server may support
more than one version of a remote program in order to be forward compatible
with changing protocols.

Transports and Semantics

The RPC protocol is independent of transport protocols. That is, RPC does not
care how a message is passed from one process to another. The protocol deals
only with specification and interpretation of messages.

It is important to point out that RPC does not try to implement any kind of relia-
bility and that the application must be aware of the type of transport protocol
underneath RPC. If it knows it is running on top of a reliable transport such as
TCP/I1P, then most of the work is already done for it. On the other hand, if it is
running on top of an unreliable transport such as UDP/IP, it must implement is
own retransmission and time-out policy as the RPC layer does not provide this
service.

7-22 FORMATS AND PROTOCOLS

m

mimmm

Because of transport independence, the RPC protocol does not attach specific
semantics to the remote procedures or their execution. Semantics can be inferred
from (but should be explicitly specified by) the underlying transport protocol. For
example, consider RPC running on top of an unreliable transport such as UDP/IP.
If an application retransmits RPC messages after short time-outs, the only thing it
can infer if it receives no reply is that the procedure was executed zero or more
times. If it does receive a reply, then it can infer that the procedure was executed
at least once.

A server may wish to remember previously granted requests from a client and not
regrant them in order to insure some degree of execute-at-most-once semantics. A
server can do this by taking advantage of the transaction ID that is packaged with
every RPC request. The main use of this transaction is by the client RPC layer in
matching replies to requests. However, a client application may choose to reuse
its previous transaction ID when retransmitting a request. The server application,
knowing this fact, may choose to remember this ID after granting a request and
not regrant requests with the same ID in order to achieve some degree of execute-
at-most-once semantics. The server is not allowed to examine this ID in any other
way except as a test for equality.

On the other hand, if using a reliable transport such as TCP/IP, the application
can infer from a reply message that the procedure was executed exactly once, but
if it receives no reply message, it cannot assume the remote procedure was not
executed. Note that even if a connection-oriented protocol like TCP is used, an
application still needs time-outs and reconnection to handle server crashes.

There are other possibilities for transports besides datagram- or connection-
oriented protocols. For example, a request-reply protocol such as VMTP is
perhaps the most natural transport for RPC.

Binding and Rendezvous Independence

The act of binding a client to a service is NOT part of the remote procedure call
specification. This important and necessary function is left up to some higher-
level software. (The software may use RPC itself—see the rpchind protocol, below).

Implementors should think of the RPC protocol as the jump-subroutine instruc-
tion ("JSR") of a network; the loader (binder) makes JSR useful, and the loader
itself uses JSR to accomplish its task. Likewise, the network makes RPC useful,
using RPC to accomplish this task.

Formats and Protocols for Networking 7-23

Authentication

The RPC protocol provides the fields necessary for a client to identify itself to a
service and vice-versa. Security and access control mechanisms can be built on top
of the message authentication. Several different authentication protocols can be
supported. A field in the RPC header indicates which protocol is being used.
More information on specific authentication protocols can be found in the Authen-
tication Protocols, below.

Programs and Procedures

The RPC call message has three unsigned fields: remote program number, remote
program version number, and remote procedure number. The three fields
uniquely identify the procedure to be called. Program numbers are administered
by some central authority. Once an implementor has a program number, he can
implement his remote program; the first implementation would most likely have
the version number of 1. Because most new protocols evolve into better, stable,
and mature protocols, a version field of the call message identifies which version
of the protocol the caller is using. Version numbers make speaking old and new
protocols through the same server process possible.

The procedure number identifies the procedure to be called. These numbers are
documented in the specific program’s protocol specification. For example, a file
service’s protocol specification may state that its procedure number 5 is “‘read”
and procedure number 12 is “‘write”.

Just as remote program protocols may change over several versions, the actual
RPC message protocol could also change. Therefore, the call message also has in it
the RPC version number, which is equal to two for the version of RPC described
here.

The reply message to a request message has enough information to distinguish the
following error conditions:

1. The remote implementation of RPC does not speak the requested protocol
version number. The lowest and highest supported RPC version numbers
are returned.

2. The remote program is not available on the remote system.

3. The remote program does not support the requested version number. The
lowest and highest supported remote program version numbers are
returned.

4. The requested procedure number does not exist. (This is usually a caller
side protocol or programming error.)

7-24 FORMATS AND PROTOCOLS

m m

5. The parameters to the remote procedure appear to be garbage from the
server’s point of view. (Again, this is usually caused by a disagreement
about the protocol between client and service.)

The remote implementation of RPC supports protocol version 2.

Authentication

Provisions for authentication of caller to service and vice-versa are provided as a
part of the RPC protocol. The call message has two authentication fields, the
credentials and verifier. The reply message has one authentication field, the
response verifier. The RPC protocol specification defines all three fields to be the
following opaque type:

s)

enum aut h_fl avor {
AUTH NULL = 0,
AUTH SYS =1,
AUTHDES =3
/* and more to be defined */

b

struct opaque_auth {
aut h_flavor flavor;
opaque body<400>;

o J

Any opaque_aut h structure is an aut h_f I avor enumeration followed by bytes
which are opaque to the RPC protocol implementation.

The interpretation and semantics of the data contained within the authentication
fields is specified by individual, independent authentication protocol
specifications. (See Authentication Protocols, below, for definitions of the various
authentication protocols.)

If authentication parameters were rejected, the response message contains infor-
mation stating why they were rejected.

Program Number Assignment

Program numbers are given out in groups of 0x20000000 (decimal 536870912)
according to the following chart:

Formats and Protocols for Networking 7-25

L

Program Numbers Description

0 - IffFffff Defined by a central authority
20000000 - 3fffffff Defined by user
(40000000 - Sfffffff Transient
LB0000000 - 7fffffff Reserved
0000000 - Oofffffff Reserved
(fO000000 - bfffffff Reserved
£0000000 - dfffffff Reserved
0000000 - ffffffff Reserved

0 o s

The first group is a range of numbers administered by a central authority and
should be identical for all sites. The second range is for applications peculiar to a
particular site. This range is intended primarily for debugging new programs.
When a site develops an application that might be of general interest, that applica-
tion should be given an assigned number in the first range. The third group is for
applications that generate program numbers dynamically. The final groups are
reserved for future use, and should not be used.

Other Uses of the RPC Protocol

The intended use of this protocol is for calling remote procedures. That is, each
call message is matched with a response message. However, the protocol itself is a
message-passing protocol with which other (non-RPC) protocols can be imple-
mented. Here are two examples:

Batching

Batching allows a client to send an arbitrarily large sequence of call messages to a
server; batching typically uses reliable byte stream protocols (like TCP/IP) for its
transport. In the case of batching, the client never waits for a reply from the
server, and the server does not send replies to batch requests. A sequence of batch
calls is usually terminated by a legitimate RPC in order to flush the pipeline (with
positive acknowledgement).

Broadcast RPC

In broadcast RPC-based protocols, the client sends a broadcast packet to the net-
work and waits for numerous replies. Broadcast RPC uses unreliable, packet-
based protocols (like UDP/IP) as its transports. Servers that support broadcast
protocols only respond when the request is successfully processed, and are silent
in the face of errors. Broadcast RPC uses the r pcbi nd service to achieve its
semantics. See the rpchind protocol, below, for more information.

7-26 FORMATS AND PROTOCOLS

The RPC Message Protocol

This section defines the RPC message protocol in the XDR data description
language. The message is defined in a top-down style.

f

enum nsg_t ype {
CALL =0,
REPLY = 1
b

/*
* A reply to a call message can take on two forms:
* The message was either accepted or rejected.
*/
enumreply_stat {
MSG_ACCEPTED = 0,
MBGDENED =1
h

/*
* Given that a call message was accepted, the following is the
* status of an attempt to call a remote procedure.

*/

enum accept _stat {
SUGCCESS = 0, /* RPC executed successfully x|
PROG UNAVAIL = 1, /* remote hasn’t exported program */
PROG M SMATCH = 2, /* remote can’t support version # */
PROC UNAVAIL = 3, /* program can’t support procedure */
GARBAGE_ARGS = 4 /* procedure can’t decode params */

h

/*

* Reasons why a call message was rejected:

*/

enumreject_stat {
RPC_M SVATCH = 0, /* RPC version number !=2*/
AUTH ERROR = 1 /* remote can’t authenticate caller */

Iy
/*
* Why authentication failed:
*/
enumaut h_stat {
AUTH_BADCRED =1, /* bad credentials*/
AUTH REJECTEDCRED = 2, /* client must begin new session */
AUTH_BADVERF =3, /* bad verifier */
AUTH REJECTEDVERF = 4, /* verifier expired or replayed */
AUTH_TCONEAK =5 /* rejected for security reasons */
b

o

N

)

Formats and Protocols for Networking

(continued on next page)

7-27

f

/*
* The RPC message:
* All messages start with a transaction identifier, xid,
* followed by a two-armed discriminated union. The union’s
* discriminant is a msg_type which switches to one of the two
* types of the message. The xid of a REPLY message always
* matches that of the initiating CALL message. NB: The xid
* field is only used for clients matching reply messages with
* call messages or for servers detecting retransmissions; the
* service side cannot treat this id as any type of sequence
* number.
*
struct rpc_nsg {

unsi gned int xid;

union sw tch (nsg_type mype) {

case CALL:
cal | _body cbody;
case REPLY:
repl y_body rbody;
} body;
h
/*

* Body of an RPC request call:
* rpcvers may
* be equal to 2 or 3. The fields prog, vers, and proc specify the
* remote program, its version number, and the procedure within
* the remote program to be called. After these fields are two
* authentication parameters: cred (authentication credentials)
*and verf (authentication verifier). The two authentication
* parameters are followed by the parameters to the remote
* procedure, which are specified by the specific program
* protocol.
*
struct call_body {
unsi gned int rpcvers; /* mustbe equal to two (2) */
unsi gned int prog;
unsi gned int vers;
unsi gned int proc;
opaque_aut h cred;
opaque_aut h verf;
/* procedure specific parameters start here */

N

)

7-28

(continued on next page)

FORMATS AND PROTOCOLS

f

/*
* Body of a reply to an RPC request:
* The call message was either accepted or rejected.
*/
union reply_body switch (reply_stat stat) {
case MBG ACCEPTED:
accepted_reply areply;
case MSG DEN ED
rejected_reply rreply;
} reply;

/*
* Reply to an RPC request that was accepted by the server:
* there could be an error even though the request was accepted.
* The first field is an authentication verifier that the server
* generates in order to validate itself to the caller. It is
* followed by a union whose discriminant is an enum
* accept_stat. The SUCCESS arm of the union is protocol
* specific. The PROG_UNAVAI L, PROC_ UNAVAI L, and GARBACE_ARGP
*arms of the union are void. The PROG_M SMATCH arm specifies
* the lowest and highest version numbers of the remote program
* supported by the server.
*/
struct accepted_reply {
opaque_aut h verf;
uni on swtch (accept_stat stat) {
case SUQCESS:
opaque resul ts[0O];
/* procedure-specific results start here */
case PROG M SVATCH
struct {
unsigned int |ow
unsi gned int high;
} msnatch_info;
defaul t:
/*
*Void. Cases include PROG UNAVAI L, PROC_UNAVAI L,
* and GARBACE_ARGS.
*/
voi d;
} reply_data;
IS

o

)

Formats and Protocols for Networking

(continued on next page)

7-29

s N

/*
* Reply to an RPC request that was rejected by the server:
* The request can be rejected for two reasons: either the
* server is not running a compatible version of the RPC
* protocol (RPC_M SMVATCH), or the server refuses to
* authenticate the caller (AUTH_ERRCR). In case of an RPC
* version mismatch, the server returns the lowest and highest
* supported RPC version numbers. In case of refused
* authentication, failure status is returned.
*
union rejected_reply switch (reject_stat stat) {
case RPC_M SVATCH
struct {
unsigned int |ow
unsi gned int high;
} misnatch_info;
case AUTH ERRCR
auth_stat stat;

\ J

Authentication Protocols

As previously stated, authentication parameters are opaque, but open-ended to
the rest of the RPC protocol. This section defines some *‘flavors’ of authentication
which are already implemented. Other sites are free to invent new authentication
types, with the same rules of flavor number assignment as there is for program
number assignment.

Null Authentication

Often calls must be made where the caller does not know who he is or the server
does not care who the caller is. In this case, the flavor value (the discriminant of
the opaque_aut h’s union) of the RPC message’s credentials, verifier, and response
verifier is AUTH NULL. The bytes of the opaque_auth’s body are undefined. It is
recommended that the opaque length be zero.

Basic Authentication for UNIX Systems

The callers of a remote procedure may wish to identify themselves as they are
identified on a UNIX system. The value of the credential’s discriminant of an RPC
call message is AUTH_SYS. The bytes of the credential’s opaque body encode the
following structure:

7-30 FORMATS AND PROTOCOLS

s)

struct authsys_parns {
u_long aup_tine;
char *aup_nachnane;
uid_t aup_uid;
gid_t aup_gid;
uint aup_len;
gid_t *aup_gids;

o J

The aup_machnarre is the name of the caller’s machine (like “‘krypton”). The
aup_ui d is the caller’s effective user ID. The aup_gi d is the caller’s effective
group ID. The aup_gi ds is a counted array of groups which contain the caller as a
member. The verifier accompanying the credentials should be of AUTH NULL
(defined above).

The value of the discriminant of the response verifier received in the reply mes-
sage from the server may be AUTH NULL.

DES Authentication
Basic authentication for UNIX systems suffers from two major problems:

1. The naming is oriented for UNIX systems.
2. There is no verifier, so credentials can easily be faked.

DES authentication attempts to fix these two problems.

Naming

The first problem is handled by addressing the caller by a simple string of charac-
ters instead of by an operating system specific integer. This string of characters is
known as the “‘netname’’ or network name of the caller. The server is not allowed
to interpret the contents of the caller’s name in any other way except to identify
the caller. Thus, netnames should be unique for every caller in the naming
domain.

It is up to each operating system’s implementation of DES authentication to gen-
erate netnames for its users that insure this uniqueness when they call upon
remote servers. Operating systems already know how to distinguish users local to
their systems. It is usually a simple matter to extend this mechanism to the net-
work. For example, a user with a user ID of 515 might be assigned the following
netname: “‘unix.515@sun.com”. This netname contains three items that serve to
insure it is unique. Going backwards, there is only one naming domain called
“sun.com’ in the internet. Within this domain, there is only one user with user ID
515. However, there may be another user on another operating system within the
same naming domain that, by coincidence, happens to have the same user ID. To

Formats and Protocols for Networking 7-31

[i

insure that these two users can be distinguished we add the operating system
name. So one user is “‘unix.515@sun.com’ and the other could be
“vms.515@sun.com”.

The first field is actually a naming method rather than an operating system name.
It just happens that today there is almost a one-to-one correspondence between
naming methods and operating systems. If the world could agree on a naming
standard, the first field could be the name of that standard, instead of an operating
system name.

DES Authentication Verifiers

Unlike authentication for UNIX systems, DES authentication does have a verifier
so the server can validate the client’s credential (and vice-versa). The contents of
this verifier is primarily an encrypted timestamp. The server can decrypt this
timestamp, and if it is close to what the real time is, then the client must have
encrypted it correctly. The only way the client could encrypt it correctly is to
know the ““‘conversation key’’ of the RPC session. And if the client knows the
conversation key, then it must be the real client.

The conversation key is a DES key which the client generates and notifies the
server of in its first RPC call. The conversation key is encrypted using a public key
scheme in this first transaction. The particular public key scheme used in DES
authentication is Diffie-Hellman with 192-bit keys. The details of this encryption
method are described later.

The client and the server need the same notion of the current time in order for all
of this to work. If network time synchronization cannot be guaranteed, then client
can synchronize with the server before beginning the conversation.

The way a server determines if a client timestamp is valid is somewhat compli-
cated. For any other transaction but the first, the server just checks for two things:

1. The timestamp is greater than the one previously seen from the same client.
2. The timestamp has not expired.

A timestamp is expired if the server’s time is later than the sum of the client’s
timestamp plus what is known as the client’s "window". The “window” is a
number the client passes (encrypted) to the server in its first transaction. It can be
thought of as a lifetime for the credential.

This explains everything but the first transaction. In the first transaction, the
server checks only that the timestamp has not expired. If this was all that was
done though, then it would be quite easy for the client to send random data in
place of the timestamp with a fairly good chance of succeeding. As an added
check, the client sends an encrypted item in the first transaction known as the
“window verifier’’ which must be equal to the window minus 1, or the server will
reject the credential.

7-32 FORMATS AND PROTOCOLS

The client too must check the verifier returned from the server to be sure it is legi-
timate. The server sends back to the client the encrypted timestamp it received
from the client, minus one second. If the client gets anything different than this, it
will reject it.

Nicknames and Clock Synchronization

After the first transaction, the server’s DES authentication subsystem returns in its
verifier to the client an integer ‘‘nickname’” which the client may use in its further
transactions instead of passing its netname, encrypted DES key and window every
time. The nickname is most likely an index into a table on the server which stores
for each client its netname, decrypted DES key and window.

Though they originally were synchronized, the client’s and server’s clocks can get
out of sync again. When this happens the client RPC subsystem most likely will
get back RPC_AUTHERRCR at which point it should resynchronize.

A client may still get the RPC_AUTHERRCR error even though it is synchronized
with the server. The reason is that the server’s nickname table is a limited size,
and it may flush entries whenever it wants. A client should resend its original
credential in this case and the server will give it a new nickname. If a server
crashes, the entire nickname table gets flushed, and all clients will have to resend
their original credentials.

DES Authentication Protocol (in XDR language)

s)

/*
* There are two kinds of credentials: one in which the client uses
* jts full network name, and one in which it uses its ""nickname"
* (just an unsigned integer) given to it by the server. The
* client must use its fullname in its first transaction with the
* server, in which the server will return to the client its
* nickname. The client may use its nickname in all further
* transactions with the server. There is no requirement to use the
* nickname, but it is wise to use it for performance reasons.
*/
enum aut hdes_nareki nd {
ADN_FULLNAME = 0,
ADN N CKNAME = 1

b

/'k

* A 64-bit block of encrypted DES data
*

/

typedef opaque des_bl ock][8] ;

-)

(continued on next page)

Formats and Protocols for Networking 7-33

r N

/*

* Maximum length of a network user’s name
*

const MAXNETNAMELEN = 255;

/*
* A fullname contains the network name of the client, an encrypted
* conversation key and the window. The window is actually a
* lifetime for the credential. If the time indicated in the
* verifier timestamp plus the window has past, then the server
* should expire the request and not grant it. To insure that
* requests are not replayed, the server should insist that
* timestamps are greater than the previous one seen, unless it is
* the first transaction. In the first transaction, the server
* checks instead that the window verifier is one less than the
* window.
*
struct aut hdes_ful | name {
string nane<MAXNETNAMELEN>; /* name of client */

des_bl ock key; /* PK encrypted conversation key */
unsi gned int w ndow /* encrypted window */

H

/*

* A credential is either a fullname or a nickname

*/

uni on aut hdes_cred sw tch (aut hdes_naneki nd adc_naneki nd) {
case ADN FULLNAMVE
aut hdes_f ul | name adc_f ul | nane;
case ADN N CKNAME
unsi gned i nt adc_ni cknane;

h
/*
* A timestamp encodes the time since midnight, January 1, 1970.
*/
struct timestanp {
unsi gned int seconds; /* seconds */
unsi gned i nt useconds; /* and microseconds */
h
/*

* Verifier: client variety

* The window verifier is only used in the first transaction. In

* conjunction with a fullname credential, these items are packed
* into the following structure before being encrypted:

*

*struct {
* adv_timestanp; -- one DES block
* adv_ful | nane. wi ndow, -- one half DES block

;N)

(continued on next page)

7-34 FORMATS AND PROTOCOLS

s)

* adv_w nverf; -- one half DES block

*}

* This structure is encrypted using CBC mode encryption with an

* input vector of zero. All other encryptions of timestamps use

* ECB mode encryption.

*/

struct authdes_verf_clnt {
timestanp adv_ti nestanp; /* encrypted timestamp ~ */
unsi gned int adv_wi nverf; /* encrypted window verifier */

b

/*

* Verifier: server variety

* The server returns (encrypted) the same timestamp the client

* gave it minus one second. It also tells the client its nickname

* 10 be used in future transactions (unencrypted).

*/

struct aut hdes_verf_svr {
timestanp adv_tineverf; /* encrypted verifier ~ */
unsi gned int adv_ni ckname; /* new nickname for client */

}

-)

Diffie-Hellman Encryption

In this scheme, there are two constants, BASE and MODULUS. The particular values
chosen for these for the DES authentication protocol are:

const BASE = 3;
const MODULUS =
" d4a0ba0250b6f d2ec626e7ef d637df 76c716e22d0944b88b" ;

The way this scheme works is best explained by an example. Suppose there are
two persons “A’” and ‘B’ who want to send encrypted messages to each other.
So, A and B both generate *‘secret” keys at random which they do not reveal to
anyone. Let these keys be represented as SK(A) and SK(B). They also publish in a
public directory their “public” keys. These keys are computed as follows:

PK(A) = (BASE ** SK(A)) nod MODULUS
PK(B) = (BASE ** SK(B)) mod MDULUS

The *“**” notation is used here to represent exponentiation. Now, both A and B
can arrive at the “‘common’ key between them, represented here as CK(A, B),
without revealing their secret keys.

A computes:
CK(A B) = (PK(B) ** SK(A)) mod MODULUS

Formats and Protocols for Networking 7-35

rpcbind Mechanism

Anr pcbi nd mechanism maps RPC program and version numbers to universal
addresses, thus making dynamic binding of remote programs possible. This
mechanism should run at a well-known address, and other programs register their
dynamically allocated network addresses with it. It then makes those addresses
publically available. Universal addresses are defined by the addressing authority
of the given transport. They are NULL-terminated strings.

r pchi nd also aids in broadcast RPC. There is no fixed relationship between the
addresses which a given RPC program will have on different machines, so there’s
no way to directly broadcast to all of these programs. The r pcbi nd mechanism,
however, has a well-known address. So, to broadcast to a given program, the
client actually sends its message to the r pcbi nd process on the machine it wishes
to reach. r pcbi nd picks up the broadcast and calls the local service specified by
the client. Whenr pchi nd gets a reply from the local service, it passes it on to the
client.

rpcbind Protocol Specification (in RPC Language)

s)

/*
* rpchind procedures
*/
pr ogr am RPCBPROG {
ver si on RPCBVERS {
voi d
RPCBPROC_NULL(void) = 0;

bool
RPCBPRCC SET(rpcbh) = 1;

bool
RPCBPROC_UNSET(rpch) = 2;

string
RPCBPROC_GETADDR(rpch) = 3;

rpcbli st
RPCBPRCC_DUMP(voi d) = 4;

rpch_rntcal lres
RPCBPROC CALLI T(rpcb_rntcal l args) = 5;

unsi gned i nt
RPCBPROC_GETTI ME(voi d) = 6;
} =3
} = 100000;

Formats and Protocols for Networking 7-37

rpchind Operation

The r pcbi nd mechanism is contacted by way of an assigned address specific to
the transport which is used. In case of IP, for example, it is port number 111. Each
transport has such an assigned well known address. The following is a descrip-
tion of each of the procedures supported by r pcbhi nd:

RPCBPROC_NULL:
This procedure does no work. By convention, procedure zero of any pro-
tocol takes no parameters and returns no results.

RPCBPRCC_SET:
When a program first becomes available on a machine, it registers itself
with the r pcbi nd program running on the same machine. The program
passes its program number, version number, network identifier and the
universal address on which it awaits service requests. The procedure
returns a boolean response whose value is TRUE if the procedure success-
fully established the mapping and FALSE otherwise. The procedure
refuses to establish a mapping if one already exists for the tuple. Note
that neither network identifier nor universal address can be NULL, and
that network identifier should be valid on the machine making the call.

RPCBPROC_UNSET:
When a program becomes unavailable, it should unregister itself with the
r pcbi nd program on the same machine. The parameters and results have
meanings identical to those of RPCBPROC _SET. The mapping of the pro-
gram number, version number and network identifier tuple with univer-
sal address is deleted. If network identifier is NULL, all mappings
specified by the tuple (program number, version number, *) and the
corresponding universal addresses are deleted.

RPCBPROC_GETADDR
Given a program number, version number and network identifier, this
procedure returns the universal address on which the program is awaiting
call requests.

RPCBPRCC_DUWP:
This procedure enumerates all entries in r pcbi nd’s database. The pro-
cedure takes no parameters and returns a list of program, version, netid,
and universal addresses.

RPCBPROC_CALLIT:
This procedure allows a caller to call another remote procedure on the
same machine without knowing the remote procedure’s universal
address. It is intended for supporting broadcasts to arbitrary remote pro-
grams via r pcbi nd’s well-known address.

7-38 FORMATS AND PROTOCOLS

The parameters and the argument pointer are the program number, ver-
sion number, procedure number, and parameters of the remote pro-
cedure. Note:

1. This procedure only sends a response if the procedure was suc-
cessfully executed and is silent (no response) otherwise.

2. rpcbi nd can communicates with remote programs only by
using connectionless transports.

The procedure returns the remote program’s universal address, and the
results of the remote procedure.

RPCBPROC_CGETTI ME:
This procedure returns the local time on its own machine.

r pcbi nd can also supports version 2 of the r pcbi nd (port napper) program proto- E
col; version 3 should be used.

Formats and Protocols for Networking 7-39

8 SYSTEM COMMANDS

Commands for Application Programs 8-1

Table of Contents

Commands for Application Programs

Programs running on ABI-conforming system are capable of creating new
processes and executing programs provided by the system. They can also execute
a shell in a new process, and then use that shell to interpret a script that causes
many system programs to be executed.

The system commands listed below must be available to applications executing on
an ABI-conforming system. They include commands from the X/Open CAE
Specification, Issue 4.2 and the System V Interface Definition, Third Edition, Basic and
Advanced Utilities Extensions (see Conformance Rule in chapter 1).

The following commands are available to application programs running on ABI-
conforming systems. All the commands must be accessible through the default
PATH environment variable provided by the system (see, section 2.5.3 of the
Commands and Utilities volume of the X/Open CAE Specification, Issue 4.2 or the
envvar (BA_ENV) manual page in the System V Interface Definition, Third Edition,
for more information on execution environment variables).

Figure 8-1: Commands required in an ABI Run-time Environment

cat fal se pg # t est

cd find pr touch
chgrp fminsg# priocntl tr
chnod gettxt pwd true
chown grep rm tty

cnp id rndir unask
cp Kill sed unarre
cpio# line# sh uucp
date In sl eep uul og
dd | ognane sort uust at
df Ip stty uux
echo I's su Vi

ed nkdi r tail wai t

ex nv tee who
expr passwd conpress unconpress
nmake ar basename dirnane
gencat Sum# WC

Command is DEPRECATED

Commands for Application Programs 8-1

9 EXECUTION ENVIRONMENT

Application Environment 9-1
File System Structure and Contents 9-3
Root subtree 9-3
The /etc subtree 9-4
The /opt subtree 9-5
The /usr subtree 9-5
The /var subtree 9-6

Table of Contents

Application Environment

This section specifies the execution environment information available to applica-
tion programs running on ABI-conforming computers. It also specifies the pro-
grams’ interface to that information.

The execution environment contains certain information that is provided by the
operating system and is available to executing application programs. Generally
speaking, this includes system-wide environment information and per-process
information that is meaningful and accessible only to the single process to which it
applies. This environment information and the utilities used to retrieve it are
specified in detail in the X/Open CAE Specification, Issue 4.2 and the System V Inter-
face Definition, Third Edition (see the Conformance Rule in chapter 1).

The environment information available to application programs on an ABI-
conforming system includes the following:

m System identification

Application programs may obtain system identification information
through the uname function or the system command unane.

m Date and time

The current calendar date and time are available to application programs
through the dat e system command and the t i me function.

m Numerical Limits

This refers to the maximum and minimum values of operating system vari-
ables and C language limits that application programs require. Most impor-
tant values are accessible through the sysconf and pat hconf functions
defined in the X/Open CAE Specification, Issue 4.2 and the System V Interface
Definition, Third Edition and in the POSIX P1003.1 Portable Operating System
Specification (see the Conformance Rule in chapter 1) . These interfaces are
the correct method for application programs to retrieve numerical values
related to the configuration of their host system. Guaranteed minimum
values for these parameters are specified in the ‘“Data Definition’ section in
Chapter 6 of the ABI. Other system parameters are accessible through the
getrlimt function.

Application Environment 9-1

m Per-process environment information

When an application program first begins execution an environment is
made available to it. The X/Open CAE Specification, Issue 4.2 and the System
V Interface Definition, Third Edition (see the Conformance Rule in Chapter 1)
pages for envvar , exec, and syst emcontain detailed descriptions of this
information.

The X/Open CAE Specification, Issue 4.2 and the System V Interface Definition, Third
Edition (see the Conformance Rule in Chapter 1) are the definitive reference for
information about the execution environment of System V processes; all of this
information applies to ABI-conforming systems. The specific references given
above will lead an interested reader to all appropriate information, but are not
exhaustive in themselves.

9-2 EXECUTION ENVIRONMENT

File System Structure and Contents

The file system on an ABI-conforming system is a tree-like structure. All ABI-
conforming systems have a ‘“‘root” (or /) directory that contains a/ usr directory,
al/var directory, a/ et c directory, and a/ opt directory.

The following are primary characteristics of the file system tree:

/ This directory contains machine-specific files and executable files
required to boot the system, to check, and to repair file systems.
It also contains other directories. No application may install files
in the/ directory.

letc This directory subtree contains machine-specific configuration
files and some executable files, including one command used
during application package installation. Application programs
should never execute applications in this directory subtree, and
should never access directly any data files in this subtree, except
for the files they install themselves in the / et ¢/ opt directory.

/ opt This subtree contains add-on software application packages.

/tnp This directory contains temporary files created by system utili-
ties.

I usr This subtree contains only sharable files and executable files pro-

vided by the system.
/ var This subtree contains files that change.

Applications should install or create files only in designated places within the tree,
as noted below.

This section describes those aspects of the root, user and var file systems that
application programs can rely on being present.

Root subtree

The/ directory contains executable programs and other files necessary to boot the
system, check and repair file systems, and files describing the identity of a particu-
lar machine. The following components must be present in the root file system:

File System Structure and Contents 9-3

/ dev

The root directory of the file system.

The top directory of the devices subtree containing block and
character device files. All terminal and terminal-related
device files must be in the / dev directory or in subdirectories
of / dev. The following files are required to be present in the
/ dev directory.

Figure 9-1: Required Devices in an ABI Run-time Environment

Hdev/tty /dev/null /dev/IpX H

letc
/ opt
[usr

[var

Where X may be any integer value. Note that further devices
specifically required for networking support are defined in
Chapter 12. The following sub-directories of / dev are
required to be present.

m /dev/irm
m /dev/m

The names of other files present in / dev and naming conven-
tions for sub-directories of / dev are processor-specific.

The top directory of the Zetc subtree.
The top directory of the Zopt subtree.
The top directory of the Zusr subtree.
The top directory of the /var subtree.

The/dev, / usr, and/ t np directories are for the use of the system. Applications
should never create files in any of these directories, though they contain subdirec-
tories that may be used by applications, as described below.

The /etc subtree

The directory / et c of the/ file system is the point of access to the / et ¢ subtree.
This directory contains machine-specific configuration files.

The following describes the structure of the / et ¢ subtree:

9-4

EXECUTION ENVIRONMENT

/etc The top directory of the / et ¢ subtree.

/et c/ opt/ pkg This directory contains machine-specific configuration files
provided by application packages.

The /opt subtree

The directory / opt of the/ file system is the point of access to the / opt subtree.
This directory subtree contains files installed by add-on application packages.
The following describes the structure of the / opt subtree:

/ opt The top directory of the / opt subtree.

/ opt / pkg/ bi n Executable files provided by application packages and
invoked directly by users.

/ opt / pkg Where pkg is the abbreviated name of an add-on software
package, contains all the static files installed on the system as
part of that package.

The /usr subtree

The directory / usr of the/ file system is the point of access to the / usr subtree.

The following describes the structure of the / usr subtree:

[usr The top directory in the /usr subtree.

[usr/bin Utility programs and commands for the use of all applications
and users.

[usr/share The architecture-independent sharable files.

lusr/share/lib Architecture-independent databases.

/usr/ X The directory where X11 Window System files reside.

lfusr/X/1ib The directory where X11 Window System libraries reside.

fusr/ X/'lib/local e
The directory where X11 Window System localization pack-
ages are installed.

File System Structure and Contents 9-5

OO0 O O O

[usr/ X/'|iblapp-defaults
The directory where X11 Window System default application
resource files are installed.

Application programs may execute commands in the / usr/ bi n directory.

The /var subtree

The directory / var of the/ file system is the point of access to the / var subtree.
The / var subtree contains all files that vary in size or presence during normal sys-
tem operations, including logging, accounting and temporary files created by the
system and applications.

The following components of the / var subtree are important for application pro-
grams:

[var/ opt/ pkg The top level directory used by application packages.

[var/tnp Directory for temporary files created by applications.

Applications should always use / var / t np for creation of temporary files.

9-6 EXECUTION ENVIRONMENT

G
G

1 WINDOWING AND TERMINAL
INTERFACES

The System V Window System 10-1
X Window System Overview 10-2
NeWS Overview 10-2
System V Window System Components 10-3
Summary of Requirements 10-4

Table of Contents

The System V Window System

This chapter, “Windowing and Terminal Interfaces”, describes the optional
NoTE | ABI extension for the System V Window System.

The System V window system is a graphical window system, and is used as an
interface for high-resolution bitmapped display devices. The window system
allows multiple cooperating applications to appear on a display screen simultane-
ously. A server process arbitrates a shared display, a keyboard, and a pointing
device, and performs I/0 on behalf of one or more client applications. Client
applications may execute in the local processor’s memory space, or may run on a
remote processor and communicate with the server through a network connec-
tion.

The System V window system supports concurrent, overlapping windows, and
windows can be created within other windows. The system supports text, two-
dimensional graphics, and imaging.

The System V window system is completely network-transparent, in that a client
program can be running on any machine in a network and the client and server
programs need not be executing on machines sharing a common architecture.
When the client and server reside on different machines, messages are transmitted
over the network. When the client and server reside on the same machine, mes-
sages are transmitted using a local inter-process communication (IPC) mechanism.

Applications for the System V window system may be written to either the X11
Window System interface, the X11 Toolkit Intrinsics, or the NeWS interface.

This functionality, the NeWS Window System, has been DEPRECATED. X
NOTE

The conceptual models of the two facilities are very different, with the X window
server acting more as a passive communications gateway and deferring
application-related interaction to the applications themselves, while the NeWS
server is capable of maintaining more of the user interface locally. Applications
written to either interface may be used on the same screen simultaneously.

The System V Window System 10-1

The X11 interface contains mandatory parts of the System V Window System; all
implementations that include a window system extension must support
the X11 interface, and the X Toolkit Intrinsics interface.

The MotifD) Graphical User Interface Release 1.2 will be supported in an G
NOTE | upcoming release of the ABI. Motif is a trademark of the Open Software
Foundation Inc.

Note that both the X11 and NeWS interfaces have base and optional components.

X Window System Overview

A client application communicates with the X capabilities of the System V window
system server using the X11 protocol. The X11 protocol specifies exchange format,
rules for data exchange, and message semantics, but is policy-free and does not
impose any specific appearance on the interface. The look and feel of a particular
interface is defined by the window manager and different toolkits that define a
higher-level program interface to the X capabilities.

The X Version 11 protocol defines the format, syntax, common types, errors codes,
keyboard keycodes, pointers, predefined atoms, connection setup, requests, con-
nection close, and events. A detailed description of these can be found in the X
Window System Protocol, Version 11 Specification (Massachusetts Institute of Tech-
nology, 1987, 1988).

NeWS Overview

The Network extensible Window System (NeWS) is based on the PostScript
language. NeWS capabilities are realized through the presence of an extended
PostScript interpreter which resides in the System V window system server.

The NeWS server program interprets the language sent to it by NeWS client pro-
grams and paints images on the display screen, thus making PostScript an exten-
sion language for the window system. The server program also collects input
from the keyboard and pointing device and returns it to the client programs.

The PostScript language is defined in PostScript Language Reference Manual,
(Adobe Systems, Inc., Addison-Wesley, 1985). The PostScript operator extensions
are defined in the NeWS Manual, (Sun Microsystems, Inc., 1987).

10-2 WINDOWING AND TERMINAL INTERFACES

System V Window System Components

The System V Window System includes the following components. Some com-
ponents of the window system are base components of the ABI and must be
present, and others are optional components. Because of this mixture, each
component’s status has been explicitly marked in the list below, together with the
component’s description.

libX

The | i bXlibrary is a base ABI component and must be
NOTE | present on an ABI-conforming system which has a win-
dow system extension.

The X library, | i bX, generates the X11 protocol and buffers
traffic between each client application and the server. A full
specification of the libX library and its contents can be found
in Xlib - C Language Interface, X Window System, X Version 11,
Release 5, (Massachusetts Institute of Technology, 1991). The
ABI will track upward-compatible future releases of the X
library.

X Toolkit Intrinsics
The X Toolkit Intrinsics is a base component of the ABI. The X
Toolkit Intrinsics library | i bXt provides a framework for
building X-based toolkits. A full specification of the X Toolkit
Intrinsics can be found in X Toolkit Intrinsics - C Language X
Interface, X Window System, X Version 11, Release 5, (Mas-
sachusetts Institute of Technology, 1991).

NeWsS Library

The NeW\ library is an optional ABI component and
NOTE | must be present on an ABI-conforming system which
supports the NeWS environment in its window system.

A NeWS client application interface is based upon an
extended version of PostScript. The NeWS client interface is
defined in the NeWS Manual (Sun Microsystems, Inc., 1987).

The following programs are not required to be present on an ABI-conforming sys-
tem. However, the protocols that these programs use to communicate are con-
sidered part of the ABI and must be present in an environment which supports
window systems. Hence all ABI-conforming systems which offer these services
must provide them as follows.

System V Window System Components 10-3

server The server controls the user’s display. As such, a server is usually
available for each type of display that can be connected to a system. It
manages device dependencies, enabling client applications to be
device-independent, although some client applications may need to be
aware of the resolution, aspect ratio, or depth of the display device
being used. Servers include protocol interpretation facilities for X,
PostScript, and PostScript-based NeWS extensions. All ABI-conforming
window servers which support X must support the entire X protocol
referenced above. (The server side of X protocol communicates with
I'i bX). All ABI-conforming window servers which support NeWS must
support the entire NeWS protocol referenced above. (The server side of
NeWS protocol communicates with the NeWS Library).

window manager
The window manager program allows a user to manipulate (for exam-
ple, move and resize) windows. All client applications that use the win-
dowing system use the facilities of the window manager. Well-behaved
clients must follow the ICCCM. All ABI-conforming window managers
which support X must support the entire X window manager protocol.
All ABI-conforming window managers which support NeWS must sup-
port the entire NeWS window manager protocol. All ABI-conforming
window managers for use on a system with merged X11/NeWS servers
must know how to handle both protocols in their entirety at the same
time, for the same display.

Summary of Requirements

The “Windowing and Terminal Interfaces” section of the System V ABI has a lay-
ered set of requirements for conforming systems. Those requirements are sum-
marized here.

m The presence of a windowing system is optional on an ABI-conforming sys-
tem.

m If a windowing system is present on a conforming system, | i bXand | i bXxt
must be provided.

m |f a windowing system is present on a conforming system, the NeWS Library
may be supported in addition to support for the X 11 Window System.

10-4 WINDOWING AND TERMINAL INTERFACES

1 DEVELOPMENT ENVIRONMENTS

FOR AN ABI SYSTEM

Development Environments
Commands

Software Packaging Tools

Static Archives

Table of Contents

11-1
11-1
11-3
11-4

Development Environments

THE FACILITIES AND INTERFACES DESCRIBED IN THIS SECTION ARE
NoTE| OPTIONAL COMPONENTS OF THE System V Application Binary Interface.

This chapter is new, but will not be marked with diff-marks.
NOTE

Any system may be used to provide a development environment for ABI con-
forming applications. This chapter describes the commands, options, libraries,
and path mechanisms necessary to produce an ABI conforming application. This
development environment need not be hosted on an ABI conforming implementa-
tion.

Commands

The following commands, defined in the X/Open CAE Specification, Issue 4.2 and
the SD_CMD section of the System V Interface Definition, Third Edition (see the Con-
formance Rule of Chapter 1) are a part of an ABI development environment. All
commands defined here are mandatory in ABI Development Environments,
except that the command as need not be present when ABI conformance code is
generated directly by the compiler.

ABI Development Commands

as# cc# Id
4 I ex yacc
c89t

Command is DEPRECATED

tAs defined in the Commands and Utilities volume of the X/Open CAE Specification, Issue
4.2.

Each command shall accept the following required options and provide the func-
tionality and options required for each option listed, in the X/Open CAE
Specification, Issue 4.2 and the System V Interface Definition, Third Edition (see the
Conformance Rule in chapter 1).

Development Environments 11-1

as

SVID Third Edition Options to AS
0 m

The as command if present shall produce output compliant to chapters 4 and 5 of
this document, and chapters 4 and 5 of the appropriate Processor-specific Supple-
ment.

cc
SVID Third Edition Options to CC

B c d D
G I K L
o] (@] U Y

The cc command shall generate output compliant to Chapter 4 and 5 of this docu-
ment and Chapter 4 and 5 of the appropriate Processor-specific Supplement.

I d
SVID Third Edition Optionsto | d

a B d e
G h | 0
r S u L
Y Z

The command | d shall generate output compliant to Chapters 4 and 5 of this
document and Chapters 4 and 5 of the appropriate Processor-specific Supplement.

i

SVID Third Edition Options to n%
S D]

| ex

SVID Third Edition Options to | ex
c t % n

11-2 DEVELOPMENT ENVIRONMENTS FOR AN ABI SYSTEM

yacc

SVID Third Edition Options to yacc
% d I t

As there may be multiple development environments hosted on a system, dif-
ferent values for PATH may be required to access each development environment,
but all required commands shall be accessible by at least one value of PATH. The
processor supplement for each architecture shall state how the value of PATH is to
be used to find the location of a development environment for that architecture
when it is not the native development environment. If the system is itself ABI con-
forming and hosts a development environment for its run-time system, the
development environment for the run-time system shall be accessible using the
system default value for PATH.

To enable the System V Application Binary Interface, Edition 3.1 environment and
functionality, applications must use the cc compiler driver. This driver will have
an implementation-specific sequence of -D directives, include files or libraries to
enable access to System V Application Binary Interface, Edition 3.1 features. As a
result the executable created will have the __xpg4 flag set to a value appropriate
to the base API the application wishes to conform to.

All .0’s should be compiled such that they either don’t assume any specific X
NoTE | shell (or other syntactic feature), or they presume the same shell (or other X
syntactic feature) across all .0’s. Information is contained in linked execut-

‘ ables, not in individual .0’s.

Software Packaging Tools

A development environment for ABI applications shall include each of the follow-
ing commands as defined in the AS_QvDsection of SVID Third Edition.
pkgprot o pkgtrans pkgrk

The pkgt r ans command shall generate output compliant with Chapter 2 of this
document.

Development Environments 11-3

X X X X X

Static Archives

Frequently applications must rely on groups of object files not required to be
present on an ABI conforming implementation. These may be provided in static
archives provided with the development environment. If each member of the
archive is itself ABI conforming, then an ABI conforming application may stati-
cally link members from this archive and still be ABI conforming. If extensions to
an archive are not ABI conforming, then an ABI conforming application may not
include that extension in an executable.

All development environments for ABI applications shall contain ABI conforming
versions of each of the following libraries.
I'i bm

The relevant processor supplement for each architecture shall define the path to
the directory that contains these libraries. The following are entry-points that
must be defined for each respective library as defined in SVID Third Edition.

Figure 11-1: Required | i bmFunctions

acos atanh erfc hypot | 0g10
acosh chbrt exp jo pow

asin ceil f abs j1 r enai nder
asinh cos f1 oor jn sin

at an cosh f mod # | gamma sinh
atan2 erf gamma# | og sgrt

Function is DEPRECATED

11-4 DEVELOPMENT ENVIRONMENTS FOR AN ABI SYSTEM

12 NETWORKING

Networking 12-1

Required STREAMS Devices and Modules 122

Required Interprocess Communication

Support 12-3
Pseudo Terminal Support 12-3
STREAM Based Pipe Support 12-3
Required Transport Layer Support 12-4
Required Transport Loopback Support 12-7
Optional Internet Transport Support 12-8
Address Format 12-8
Programming Interfaces 12-8
m t_accept 12-8
m t_bind 12-8
m t_connect 12-8
m t_getinfo 12-9
m t listen 12-9
m t_open 12-9
m t_optmgmt 12-10

Table of Contents i

t_rcv
t_rcvconnect
t rcvudata
t_rcvuderr

t snd
t_snddis
t_sndrel

t sndudata

Data Structures

12-12
12-12
12-12
12-12
12-12
12-13
12-13
12-13
12-13

Table of Contents

Networking

This chapter is new to the System V Application Binary Interface, Third Edition.
NOTE

ABI-conforming systems may support some level of networking, ranging from
peer-to-peer to loopback networks. This section describes the network transport
level services needed to support the Internet and ISO transport protocols. In addi-
tion, it defines required support for basic process to process communication over a
network.

Networking 12-1

Required STREAMS Devices and Modules

The following device drivers must exist on an ABl-conforming system. Their
required functionality shall be that specified in the System V Interface Definition,
Third Edition and the DDN Protocol Handbook, DARPA Internet Protocols.

Figure 12-1: Required STREAMS Devices

dev/ticlts /dev/ticots /dev/ticotsord transport loopback support U
dev/tcp / dev/ udp internet support E
dev/ pt nx / dev/ pt s/ digits pseudo terminal support

Where digits are decimal numbers.

The following required STREAMS modules shall be present on conforming sys-
tems and their functionality shall be that defined in section BA_DEV of the System
V Interface Definition, Third Edition.

Figure 12-2: Required STREAMS Modules

Ldterm ptem pckt pseudo terminal support U
irdw tinod transport level support g
rconnld pi penod IPC support 0

Binary interface support for these modules and drivers are defined in the follow-
ing sections.

12-2 NETWORKING

Required Interprocess Communication Support

Pseudo Terminal Support

There shall be an appropriate entry in the / dev/ pt s directory for each slave-side
pseudo-terminal available on the implementation. Conforming systems shall pro-
vide a minimum of 16 pseudo-terminals. The default initial state of a pseudo-
terminal, as reported by t cget at t r, shall be the same as the default initial state of
a terminal as specified int er m o(BA_DEV).

The default baud rate as specified by t er m o(BA_DEV) is 300 baud. As this
NOTE | may be inappropriate for pseudo terminals, there are exceptions.

STREAM Based Pipe Support

Functionality for interprocess communication by way of STREAMS-based pipes
shall be supported by ABI-conforming systems. STREAMS modules connl d and
pi permmod must be present in support of this.

Required Interprocess Communication Support 12-3

Required Transport Layer Support

A transport layer application may access transport services through the ISO or
Internet frameworks. This document supports transport access via the XTI inter-
face as it makes use of the timod module. The required functionality for these
modules is defined in the BA_DEV section of the System V Interface Definition,
Third Edition. The definition of XTI is described in the Networking Services
volume of the X/Open CAE Specification, Issue 4.

In order to improve standards conformance and take advantage of the latest tech-
nology in XTI interfaces, the TLI interfaces have been DEPRECATED. Applica-
tions which make use of TLI should migrate to XTI as a replacement. TLI is a sub-
set of XTI except where noted.

To achieve binary interoperability, an ABI-conforming system must consistently
define variables and data structures. The next few displays contain mnemonics
required on ABI-conforming systems. Their associated values are specified in the
processor specific ABI.

Figure 12-3: TLI-XTI Error Codes

UrAcCES TBADQLEN* TNCDATA TPROTO* U
CraDDRBUSY* TBADSEQ — TNCDI'S TPROVM SNATCH* g
BTBADNIR TBUFOVFLW TNOREL TQFULL * 0
CTBADDATA TFLOW TNOSTRUCTYPE* TRESADDR* 0
[TBADF TINDQUT* TNOTSUPPCRT TRESQLEN* O
UrBADFLAG TLOXK TNOUDERR TSTATECHNG g
CrBADNAME* TNOADDR TOUTSTATE TSYSERR O
HreaDcPT o
d d

*Function is new to System V ABI Edition 3.1.

Figure 12-4: t _| ook Events

Ur LI STEN T_EXDATA T UDERR T _CONNECT U

DI SOONNECT T_CRDREL T DATA T _ERRR E
ET_EVENTS 0
FT_GCDATA T_GOEXDATA g

12-4 NETWORKING

Figure 12-5: XTI Flag Definitions

Ur MORE T _NEQOTI ATE T _DEFAULT T_EXPED TED U
Br oHEOK T_SUOCESS T FAI LURE g
ST_QRRENT T_NOTSUPPCRT T_PARTSUCCESS T_READCNLY 0

Figure 12-6: XTI Service Types

Br_oors TOQOISCRD T.ATS H

The following are required structure types and bit fields used when dynamically
allocating XTI structures via the functiont _al | oc call:

Figure 12-7: Flags to be used witht_al |l oc

Or BND T _OPTMGVT T _CALL
Cros T N TDATA T_UDERRCR
Br INFO T_ADDR T OPT

O
O
O
O
F_UDATA T_ALL g

Figure 12-8: XTI Application States

Or NNT T _UNBND T IDLE T_QUTOON
INOON T DATAXFER T QUTREL T INREL
%T_FAKE T_NOSTATES

1

Required Transport Layer Support 12-5

Figure 12-9: XTIl values for t_info flags member

Hr senozero H

12-6 NETWORKING

Required Transport Loopback Support

An ABI-conforming system shall support a transport level loopback facility. The
device driver support is as defined by ti cl t s(BA_DEV), ticots(BA DEV) and
ticot sord(BA DEV) of the System V Application Binary Interface, Third Edition.

Required Transport Loopback Support 12-7

Optional Internet Transport Support

At cp implementation conforming to RFC 793 (as revised by by RFC 1122) shall
support a device driver implementing the T_COT'S_CRDservice type. A udp imple-
mentation conforming to RFC 768 shall support a device driver implementing the
T _CLTSservice type. These services shall be available to the TLI /7 XTI functions
and the provided functionality shall be consistent with TCP (RFC 793) and UDP
(RFC 768).

Address Format

The XTI net buf structure is used to pass TCP/IP addresses. The addr . buf com-
ponent should point to astruct sockaddr i n. When used by XTI requests, the
si n_zer o field of this structure shall be zero and the si n_f am | y field shall con-
tain AF_| NET.

Programming Interfaces

A conforming TCP/IP implementation shall implement the following transport
provider-specific functionality in addition to that required by RFC 793 and 791 (as
revised by RFC 1122 and RFC 1349).

t_accept

Under TLI no options shall be supported. The returned udat a length shall be
zero.

t bind

The | NADDR_ANY address may be used. If | NADDR_ANY is supplied as the address,
then the loopback or a local address will be used.

t_connect

No data shall be sent with the connection. The si n_addr field of the st r uct
sockaddr _i n pointed to by sndcal | - >addr . buf may contain a valid TCP/IP
address. Ifrcvcal | is not NULL, then the buffer identified by rcvcal | -
>addr . buf shall be filled in with a sockaddr _i n structure.

12-8 NETWORKING

t_getinfo

The following default values shall be returned from the devices associated with
the TCP/IP transport provider.

Values Returned by / dev/ t cp

Caddr Uvaries g
ptions Ovaries g
sdu 10 (byte stream) 0

et sdu -1 0

Ctonnect -2 (not supported) O

Lhi scon U-2 (not supported) U
ervtype BT_CDTS_CRD g
| ags DT_SEI\DZERO O
Values Returned by / dev/ udp

Caddr Uvaries g
ptions Ovaries E
sdu varies 0

et sdu -2 (not supported)

Ctonnect -2 (not supported) O

Ldi scon -2 (not supported) U
ervtype DT_CLTS E
| ags OT_SENDZERO 0

t_listen

The result udat a variable shall have zero length. Under TLI the result opt vari-
able shall have zero length. The buffer identified by cal | - >addr . buf shall
receive astruct sockaddr i n that identifies the host originating the connection.

t_open

The returned transport characteristics shall be the same as those returned by
t_getinfo.

Optional Internet Transport Support 12-9

X X X

t_optmgmt
TLI
Under TLI the following options may be accessible through t _opt ngnt :

Figure 12-10: TCP Options

O
ETCP_NGJELAY H

Figure 12-11: IP Options

4 PCPT_ EQL End of options list
PCPT_NCP No operation
PCPT_LSRR Loose source and record route

Q PCPT_SSRR Strict source and record route B

Oodood

Options are specified in an options buffer with the opt hdr data structure format.
An options buffer contains one or more options, with each followed by 0 or more
values. The len field of opt hdr specifies the length of the option value in bytes.
This length must be a multiple of sizeof(long)

Options may be manipulated at the TCP level and the IP level via the TLI

t _opt ngnt call. To manipulate options at the TCP level, | PPROTO_TCPR is specified
tot_opt ngnt . For the IP level, | PPROTO | P should be specified fort _opt mgnt .
The header <net i net/t cp. h> contains the definitions for TCP level options,
while the IP level options are defined in <neti net/i p. h>.

All TCP level options are 4 bytes long. A bool ean option is either set or reset.
Any non-zero value will assert (set) the option while only zero will clear the
option.

The IP options consist of a string of | PCPT_* values. These options will be set in
every outgoing datagram. Options whose function is not explicitly specified
above are copied directly into the output. See IP and RFC 1122 for details.

TCP Level Options If the TCP_NCDELAY option is set, a conforming system shall not
delay sending data in order to coalesce small packets. When the option is reset, a
system may defer sending data in an effort to coalesce small packets to conserve
network bandwidth.

12-10 NETWORKING

IP Level Options

| PCPT_LSRR The |l PCPT_LSRRoption enables the loose source and record route
option as specified in RFC 1122,

| PCPT_SSRR The | PCPT_SSRRoption enables the strict source and record route
option as specified in RFC 1122,

| PCPT_NCP The | PCPT_NCP does nothing. Since the length of the IP options
must be a multiple of 4, this option is useful as a pad.

| POPT_ECL This option identifies the end of an IP option sequence.

XTI

The following information is relevant under XTI. The following options may be
accessible through t _opt ngnt :

Figure 12-12: TCP Options

Urop Level INET_TCP g

ETCP Level Cptions TCP_NODELAY g

0 TCP_MAXSEG

E TCP_KEEPALIVE F
Figure 12-13: UDP Options

LUDP Level INET_UDP g

HoP Level Options UDP_CHECKSUM

Optional Internet Transport Support 12-11

X X

X X X X

Figure 12-14: IP Options

0 P Level
Level

I o

ot i ons

INET_IP
IP_OPTIONS
IP_TTL

IP_TOS

IP_ REUSEADDR [J
IP. DONTROUTE U
IP_BROADCAST 7

Oooood

t rcv

TCP/IP urgent data shall be returned as expedited data with the semantics
described in the functiont _r cv for expedited data.

t rcvconnect

The result udat a variable shall have zero length. Under TLI, the result opt vari-

able shall have zero length.

t_rcvudata

If opt is non NULL and there were IP or UDP options sent with the datagram, the
IP or UDP options should be returned in opt . Under TLI if opt is NULL and IP
options were sent, they should be silently discarded. Under TLI, UDP will not

send options.

t_rcvuderr

Under TLI the returned length of the opt variable shall be zero.

t snd

If T_EXPED TEDis set in the flags argument, TCP will send the data as urgent data.
The TCP urgent data pointer will point to the first byte of data in the next data

sentbyt snd.

12-12

NETWORKING

XXX X XXX X

t snddis

Data shall not be sent with the disconnect request.

t_sndrel

The T_GOTS_CRDservice of the transport provider (TCP) shall support this func-
tion.

t sndudata

Under TLI, for / dev/ udp, the opt field may contain | PPROTO | P options. The
UDP protocol shall support sending zero length data.

Data Structures

To support interoperability between networked machines, an ABI-conforming
system supporting the Internet family protocols must support the following data
structures.

There must exist a sockaddr _i n data structure containing at least the following
elements. Under TLI there must exist a opt hdr data structure containing at least
the following elements.

Figure 12-15: Data Structures

s)

struct sockaddr_in {
short sin_famly;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

b

struct opthdr {

| ong | evel ;
| ong nane;
| ong len;

o J

Optional Internet Transport Support 12-13

IN Index

Index IN-1

Table of Contents i

Index

2'scomplement 4:8

A

ab4l 6:12
ABI
generic 1:1,4,8
processor specific 1:1,4,8
ABI conformance 1:5,8, 3:2, 4:15,

5:4,6,10,15,18, 6:2,4,7,9, 7:1, 22,

8:1, 10: 4, 11:1,4
ABI Conformance 12:4
abort 6:10

abs 6:10

absolute symbols 4: 11
accept 6:18
accepted_reply 7:29
accept _stat 7:27
access 6:5

access control mechanisms 7: 24
accounting files 9:6
acct 65

addch 6:22
addchnstr 6:22
addchstr 6:22
addnstr 6:22
addnwstr 6:22
addseverity 6:11
addstr 6:22

add wch 6:22
add_wchnstr 6:22
add wchstr 6:22
addwstr 6:22

ADN FULLNAME 7:33-34
ADN Nl CKNAME 7: 33-34
AF INET 12:8

alarm 6:5

Index

alignment, section 4:13
_altzone 6:7-8
ANSIC 3:1, 6:1,8,13,33
application environment 9:1
appl i cati onShel | d assRec 6:32
appl i cati onShel | Wdget d ass
6: 32
archive file 4:24, 5:19, 7:2, 11: 4
archive header 7:2
string table 7:2
archive formats, other 7:6
archive header, see archive file 7:2
archive symbol table 7:2,4-5
archive word encoding 7:4
ARFMAG 7:3
ar.h 7.2
ar.hdr 7:2
as 11:1
ASCIl 2:5,3:2, 7:2
asctime 6:10
assembler 4:1, 11:1
symbol names 4: 22
__assert 6:12
atexit 5:22-23, 6:6

atof 6:10
atoi 6:10
atol 6:10

attr_get 6:22
attr_off 6:22
attroff 6:22
attr_on 6:22
attron 6:22
attr_set 6:22
attrset 6:22
AUTH BADCRED 7:27
AUTH BADVERF 7:27
aut hdes _cred 7:34

IN-1

aut hdes_ful | name 7:34

aut hdes_get ucred 6:17

aut hdes_naneki nd 7:33

aut hdes_seccreate 6:17
aut hdes_verf 7:35

aut hdes_verf _svr 7:35
authentication protocol 7: 24-25
AUTH ERRCR 7:27, 30
auth_flavor 7:25

aut hnone_create 6:17

AUTH NULL 7:30-31

AUTH REJECTEDCRED 7:27
AUTH REJECTEDVERF 7:27
auth _stat 7:27

AUTH SYS 7:30

aut hsys_create 6:17

aut hsys _create default 6:17
auth_sysparns 7:31

AUTH TOONEAK 7: 27

B

BASE 7:35

base address 5: 15
definition 5:5
BASEDIR 2:9
basenanme 6:12

basic system service 6:4
baudrate 6:22

bcnp 6:12

bcopy 6:12

beep 6:22

bind 6:18

bit _attributes 6:22
bit-field 3:1

bkgd 6:22

bkgdset 6:22
bkgrnd 6:22
bkgrndset 6:22
bool codes 6: 22
bool f names 6: 22

IN-2

bool nanes 6: 22
border 6:22
border _set 6:22
box 6:22

box_set 6:22
brk 6:12
broadcast packet 7:26
broadcast RPC 7:37
bsd_signal 6:12
bsearch 6:10
byte order 4:8
bzero 6:12

C

C language

ABI reference language 3:1
ANSI 1:2, 3:1,6:8
assembly names 4: 22
calling sequence 3:4
library (see library)

C library 6:10

CALL 7:27-28

call _body 7:28
calling sequence 3:1,4
signals 1:5

system traps 1:5
calloc 6:6
can_change_col or 6:22
catclose 65
catgets 6:5
catopen 65

cbreak 6:22

cc 11:1
cfgetispeed 6:11
cfget ospeed 6:11
cfsetispeed 6:11
cfsetospeed 6:11
character sets 3:2, 7:2
chdir e6:5

chgat 6:22

Index

chnod 6:5

chown 6:5

chroot 6:5

_cleanup 6:12

clear 6:22

clearerr 6:10

clearok 6:22
clnt_create 6:17
clnt_dg _create 6:17
clnt_pcreateerror 6:17
clnt_perrno 6:17
clnt_perror 6:17
clnt_raw create 6:17
clnt_spcreateerror 6:17
clnt_sperrno 6:17
clnt_sperror 6:17
clnt_tli _create 617
clnt_tp create 6:17
clnt_vc _create 6:17
clock 6:10

close 6:5,18

closedir 65

closelog 6:12

clrtobot 6:22

clrtoeol 6:22

code generation 3:6

code sequences 3:6
color_content 6:22

col orConvert Args 6:32
common symbols 4: 11
conposi ted assRec 6:32
conposi teWdget d ass 6:32
conpver 2:3,11

confstr 6:12

connect 6:18

connld 12:2

constrai ntd assRec 6:32
constrai nt Wdget d ass 6:32
conversation key 7:32
copyright 2:3,10

copywi n 6:22

core file 4:5

Index

coreWdgetd ass 6:32
Cpio 2:1,4-6, 7:6
creat 6:5
ctermd 6:11
ctine 6:10

_ _ctype 67
cur_bools 6:22
cur_nums 6:22
curscr 6:22
curs_errno 6:22
curs_parmerr 6:22
curs_set 6:22
cur_strs 6:22
cur_term 6:22
cuserid 6:11

D

DARPA 12:2

data object sizes 6:34

data representation 4:3,8

date 91

date and time 9:1

_daylight 67

daylight 67

dbmcl earerr 6:12

dbmcl ose 6:12

dbmdel ete 6:12

dobmerror 6:12

domfetch 6:12

dbmfirstkey 6:12

dbm nextkey 6:12

dbm open 6:12

dbmstore 6:12

dd 2:1

DDN Protocol Handbook, DARPA
Internet Protocols 12: 2

def _prog_node 6:22

def _shell node 6:22

del ay output 6:22

delch 6:22

IN-3

envvar 8:1, 9:2
erase 6:22

erasechar 6:22

erasewchar 6:22

errno 6:7,9, 16

/etc 9:3-4

/etc subtree 9:4
/etc/mttab 7:1

/etc/opt 2:15, 9:3
letc/opt/pkg 9:5
/etc/passwd 7:1

exec 4:1, 5:12-14,20, 6:8, 9:2
execl 6:5

execle 6:5

execlp 6:5

executable file 4:1

execv 6:5

execve 6:5

execvp 6:5

exit b5:23, 6:6,9

External Data Representation 7: 10

F

fattach 6:5
fchdir 65
fchnod 6:5
fchown 6:5
fclose 6:10
fentl 6:5,18
fecvt 612
fdetach 6:5
fdopen 6:11
feof 6:10
ferror 6:10
fflush 6:10
ffs 6:12
fgetc 6:10
fgetpos 6:10,18
fgets 6:10
fgetwe 6:11

Index

fgetws 6:11
_ _filbuf 612
file

archive (see archive file)
object (see object file)

file formats 7:1

file system structure and contents 9:3

fileno 6:11
filepriv 6:5
filter 6:22
flash 622
_ _flsbuf 6 12-13
flushinp 6:22
fmnsg 6:11
fnmatch 6:12
fopen 6:10
fork 65
formats

archive file 7:2

object file 4:1

formats and protocols for networking

7:10
FORTRAN 4:11
f pat hconf 6:5
fprintf 6:10
fputc 610
fputs 6:10
fputwe 6:11
fputws 6:11
fread 6:10
free 66
freenet confi gent
freopen 6:10
frexp 610
fscanf 6:10
fseek 6:10
fsetpos 6:10,18
fstat 66
fstatvfs 6:5
fsync 65
ftell 610,18
ftime 612

6: 17

IN-5

ftok 6:5

ftruncate 6:12

ftw 6:12-13

function linkage (see calling
sequence)

fwite 6:10

G

GARBACGE ARGS 7:27,29
gevt 6:12

Geonet ryCal | back 6:28
get begyx 6:22

get bkgd 6:22

get bkgrnd 6:22
getc 6:10
getcchar 6:22
getch 6:22
getchar 6:10
getcontext 65
getcwd 6:5
getdate 6:11
_getdate_err 6:13
getdate err 6:13
get dt abl esi ze 6:12
getegid 6:5
getenv 6:10
geteuid 6:5
getgid 6:5
getgrent 6:12
getgrgid 6:5
getgrnam 6:5
getgroups 6:5

get host byaddr 6: 18
get host bynane 6: 18
gethostent 6:18
gethostid 6:12
get host name 6: 18
getitimer 612
getlogin 6:5

get maxyx 6:22

IN-6

getnsg 6:5

get net byaddr 6:18
get net bynane 6:18
getnetconfig 6:17
getnetconfigent 6:17
getnetent 6:18
get net nane &: 17
getnetpath 6:17
getnstr 622
getn_wstr 6:22
getopt 6:11

get pagesi ze 6:12
getparyx 6:22
getpass 6:11

get peernane 6: 18
getpgid 6:5
getpgrp 65
getpid 6:5
getpnsg 6:5
getppid 6:5
getpriority 6:12
get pr ot obynane 6: 18
get pr ot obynunber 6: 18
getprotoent 6:18
get publ i ckey 6:17
getpvent 6:12

get pwnam 6:5
getpwid 6:5
getrlimt 2:8 6:5 9:1
getrusage 6:12
gets 6:10
getsecretkey 6:17
get servbynane 6:18
get servbyport 6:18
getservent 6:18
getsid 6:5

get socknanme 6:18
get sockopt 6:18
getstr 6:22

get subopt 6:11
gettineofday 6:12
gettxt 65

Index

getuid 6:5

getut xent 6:12
getutxid 6:12
getutxline 6:12

getw 6:11

getwe 6:11

get_wch 6:22

getwchar 6:11

getwd 6:12

getwin 6:22

get_wstr 6:22

getyx 6:22

glob 612

global data symbols 6:7, 13
global offset table 4: 19, 5:13,21
gl obfree 6:12

gntine 6:10

grantpt 6:5

F{

hal fdel ay 6:22
has_colors 6:22
hash function 5:21
hash table 4:16, 19, 5: 13,17, 21
has ic 6:22
has_il 6:22
hcreate 6:11
hdestroy 6:11
header files 6:33
hline 622
hline_set 6:22
host 2net nane 6: 17
hsearch 6:11
htonl 6:18
htons 6:18

iconv 6:12
i conv_cl ose 6:12

Index

i conv_open 6:12

i dcok 6:22

idlok e6:22

IEEE POSIX P1003.1 (see POSIX)
ilogb 6:12

i mmedok 6:22

implementation of libsys routines 6:9

| NADDR_ANY 12:8
inch 6:22

nchnstr 6:22
nchstr 6:22

ndex 6:12

net _addr 6:18
net | naof 6:18
net _makeaddr 6:18
net _netof 6:18
net _network 6:18
net _ntoa 6:18
nit 2:8
nit_color 6:22
nitgroups 6:5
nit_pair 6:22
nitscr 6:22
nitstate 612

nnstr 6:22
nnwstr 6:22
nsch 6:22

nsdelIn 622
nsertin 622
nsnstr 6:22
ns_nwstr 6:22
nsque 6:12
nsstr 6:22
nstall 2:3,6
installation and removal scripts
class scripts 2:12
exit codes 2:13
postinstall 2:12
postrenmove 2:12
preinstall 2:12
prerenove 2:12
request 2:11

IN-7

installation media
file formats 2:1
format 2:1
software structure 2:1
installf 2:12 16
instr 6:22
ins_wch 622
ins_wstr 6:22
Internet 12:2,4

interpreter, see program interpreter

5:12
intrflush 622
in_wh 6:22

in_wchnstr 6:22
in_wchstr 6:22

inwstr 6:22
_ _iob 613
ioctl 6:5

IP Level Options 12: 11
I PCPT_EQL 12:11
| PCPT_LSRR 12:11
I POPT_NCP 12:11
| POPT_SSRR 12:11
i sal num 6:10

sal pha 6:10
sascii 6:11
sastream 6:5
satty 6:11
scntrl 6:10
sdigit 6:10
sendwi n 6:22
sgraph 6:10
s_linetouched 6:22
sl ower 6:10
snan 6:11

snand 6:11

ISO 12:4

isprint 610

i spunct 6:10

i sspace 6:10

i supper 6:10

i swal num 6:11

IN-8

swal pha 6:11
swentrl 6:11
swectype 6:11
swdigit 6:11
swgraph 6:11
S_Wi ntouched 6:22
sw ower 6:11
swprint 6:11
swpunct 611
swspace 6:11
swupper 6:11
swkdigit 6:11
sxdigit 6:10

K

key decrypt session 6:17
key encrypt session 6:17

key gendes 6:17
key_nane 6:22
keyname 6:22
keypad 6:22

key setsecret 6:17
kill 6:5

Killchar 6:22
killpg 612
Killwchar 6:22

L

| 64a 6:12

| abs 6:10

lazy binding 5: 14

| chown 6:5

Id 11:1

LD Bl ND_NOWN 5:14

| dexp 6:10

Idiv 6:10

LD LI BRARY PATH s5:20

| d(SD_CMD) (see link editor)

Idterm 12:2

| eaveok 6:22
lex 11:1
Ifind 611
libc 6:1-2,13
see also library 6:1
l'i bc contents 6:10-11, 13
libcurses 6:1
see also library 6:1
| i bcur ses contents 6: 19, 22
libm 11:4
libnsl 6:1-2,15, 7:10
see also library 6:1
l'i bnsl contents 6:15-17
library
dynamic (see shared object file)
see also archive file 7:2
seealsolibc 6:1
seealsolibcurses 6:1
seealsolibnsl 6:1
seealsol i bsocket 6:1
seealsolibsys 6:1
seealsolibX 6:1
shared (see shared object file)
| i bsocket 6:1
see also library 6:1
| i bsocket contents 6:18
l'i bsys 6:1-2,4-7,9-10, 13
see also library 6:1
| i bsys contents 6:5-7
i bX 6:1-3,23, 10:3-4
see also library 6:1
| i bXcontents 6:23
libXt 6:1,29
see also library 6:1
l'i bXt contents 6: 29,31
link 6:5
link editor 4:1, 24-25, 5:13,17, 20, 7: 2,
11:1
see also dynamic linker 5:13
linkage, function (see calling
sequence)
listen 6:18

Index

locl 6:12

| ocal econv 6:6,8
localtine e6:10

| ockf 6:11

locs 6:12

loglp 6:12

logb 6:11

logging files 9:6
longjnp 610

_longjnp 6:12

| ongnane 6: 22
loopback 12:2
| search 6:11
| seek 6:5,18
|stat 6:6

M

ml 11:1

magic number 4:5,7
nmain 4:19
makecont ext 6:5
malloc 6:6
MAXNETNAMELEN 7: 34
nbl en 6:10

nbst owcs 6: 10

nbt owc 6: 10

media, format 2:4
nmentcpy 6:11

menchr 6:10

mentnp 6:10

mencnt| 6:5,9
mentpy 6:10

menmove 6: 10

memory management 5:6
menset 6:10

message catalogues 7:22
nmeta 6:22

nkdir 6:5
nkfifo 6:11
nknod 6:5-6

IN-9

nkstenp 6:12
nktenp 6:11
nktinme 6:10
mock 6:5

mmap 5:12, 6:5
mnttab file 7:1
modf 6:10
MDULUS 7:35
monitor 611
nmount 6:5
Muuse_status 6:22
nove 6:22
nprotect 6:5
MG ACCEPTED 7:27, 29
megctl 6:5

MSG DEN ED 7:27, 29
nmsgget 6:5
nsgrcv 6:5
msgsnd 6:5
nsg_type 7:27
nsync 6:5
multibyte characters 3:2
munl ock 6:5
munnmap 6:5
nvaddch 6:22
nvaddchnstr 6:22
nvaddchstr 6:22
nvaddnstr 6:22
nvaddnwstr 6: 22
nvaddstr 622
nvadd_wch 6:22
nvadd_wchnstr 6:22
nvadd_wchstr 6:22
nvaddwstr 6:22
nvchgat 622
nvcur 6:22

nvdel ch 6:22
nvderwi n 6:22
nvgetch 622
nvgetnstr 6:22
nvgetn wstr 6:22
nvgetstr 6:22

IN-10

nvget _wch 6:22
nvget _wstr 6:22
nvhline 6:22
nvhline_set 6:22
nvi nch 6:22

nvi nchnstr 6:22
nvi nchstr 6:22
nvi nnstr 6:22

nvi nnwstr 6:22
nvi nsch 6:22

nvi nsnstr 6:22
nvins_nwstr 6:22
nvi nsstr 6:22
nvinstr 6:22
nvins_wch 6:22

3

ins_wstr 622
nvi n_wch 6:22

i n_wchnstr 6:22
nvi n_wchstr 6:22
nvi nwstr 6:22
nvprintw 6:22
nvscanw 6:22
nvvline 622
nvvline_set 6:22
nvwaddch 6: 22
nvwaddchnstr 6: 22
nvwaddchstr 6: 22
nvwaddnstr 6: 22
nvwaddnwst r 6: 22
nvwaddstr 6:22
nvwadd_wch 6:22
nvwadd_wchnstr 6:22
nvwadd_wchstr 6:22
nvwaddwst r 6: 22
nvwchgat 6:22
nvwdel ch 6:22
nvwget ch 6:22
nvwget nstr 622
nvwget n_wstr 6:22
nvwget str 6:22
nvwget _wch 622
nvwget _wstr 6:22

22

Index

format 4:1
hash table 5:13,17,21
program header 4:2, 5:2
program loading 5:2
relocation 4: 16,27, 5:17
section 4:2,10
section alignment 4: 13
section attributes 4: 16
section header 4:2,10
section names 4: 20
section types 4:13
see also archive file 4:1
see also dynamic linking 5: 12
see also executable file 4:1
see also relocatable file 4:1
see also shared object file 4:1
segment 5:1-2
shared object file 5:13
special sections 4: 17
string table 4: 16, 21-22
symbol table 4: 16, 22
type 4:5
version 4:6

objectdass 6:32

obj ect d assRec 6:32

opaque_auth 7:25,30

open 6:5

opendir 6:5

openl og 6:12

[opt 2:15, 9:3-5

/opt subtree 9:5

optarg 6:13

opterr 6:13

optind 6:13

optopt 6:13

[opt/pkg/bin 95

out chcount 6:22

overlay 6:22

overri deShel | A assRec 6:32

overri deShel | Wdget d ass 6:32

overwite 622

IN-12

P

package installation 9:3

packages 2:2-16

pair_content 6:22

password file 7:1

PATH s8:1, 11:3

pat hconf 6:5, 9:1

pause 6:5

pckt 12:2

pcl ose 6:11

pechochar 6:22

pecho_wchar 6:22

permissions, process segments (see
segment permissions)

per-process environment information
9:2

perror 6:10

pi pe 6:5

pipemod 12:2

pkgadd 2:7-8,16

pkgask 2:8,16

pkgchk 2:16

pkgi nfo 2:3,5-9,11-12, 16

pkgmap 2:3,8-10, 12

pkgnk 11:3

pkgparam 2:16

pkgproto 11:3

pkgrm 2:7,16

pkgtrans 11:3

pnout refresh 6:22

poll 65
pool 6:18
popen 6:11

position-independent code 5: 13
POSIX 1:2, 6:1,13,33, 7:6, 9:1
PostScript 10: 3-4

PostScript interpreter 10: 2
PostScript language 10:2
Preedit Caret Cal | back 6:28
Pr eedi t DoneCal | back 6: 28
Preedi t DrawCal | back 6:28

Index

PreeditStartCal | back 6:28

prefresh 6:22
printf 6:10
printw 6:22

procedure linkage table 4: 19, 25, 5: 13,

16, 18, 21
process

entry point 4:6, 19, 5: 22

image 4:1, 5:1-2

virtual addressing 5:2
processor-specific 5: 13
processor-specific information 3: 1,

3-6, 4:5-6, 8-10, 15-16, 20, 24-25, 27,
29, 5:1, 4,6-7,11, 13,19, 21, 6: 7, 34,

9:4, 11:2-4
procpriv 6:5

PROC UNAVAI L 7:27,29

profil 65

PROG M SVATCH 7: 27, 29

program header 5:2

program interpreter 4:19, 5:12-13
program loading 5:1, 11
programming language, ABI refer-

ence 3:1

PROG UNAVAI L 7:27,29
protocol version 2 7:25
pseudo terminal 12:2

ptem 12:2
ptrace 6:5
ptsnane 6:5
putc 6:10,13
put char 6:10
putenv 6:11
putnsg 6:5
putp 6:22

put pmsg 6:5
puts 6:10
pututxline 6:12
putw 6:11
putwc 6:11
putwchar 6:11
putwin 6:22

Index

Q

giflush 6:22
gsort 6:10

R

raise 6:10
rand 6:10
random 6:12
raw 6:22
read 6:5,18
readdir 6:5
readlink 6:5
readv 6:5
realloc e6:6
real path 6:12
re conp 6:12

rect Chj d ass 6:32
rect (hj d assRec 6:32

recv 6:18
recvfrom e6:18
recvnsg 6:18
redrawni n 6:22
re_exec 612
refresh 6:22
regcnp 6:12
regconp 6:12
regex 6:12
regexp 6:12

rejected reply 7:30

reject stat 7:27

reliable byte stream protocols 7: 26

reloc 2:3,6
relocatable file 4:1

relocation, see object file 4: 27

renove 6:6
renovef 2:12, 16
rengue 6:12
renane 6:5
REPLY 7:27-28
reply_body 7:29

IN-13

reply_stat 7:27
required sizes for some data objects
6: 33
requirements, summary 10: 4
reset _prog_node 6:22
reset_shell rnode 6:22
resetty 622
restartterm 6:22
rewind 6:10
rewinddir 65
rindex e6:12
rint 6:12
ripoffline 6:22
rmdir 6:5
root 2:3,6
root subtree 9:3
RPC
authentication 7: 24-25
authentication protocols 7: 30
basic authentication for UNIX Sys-
tems 7:30
batching 7:26
binding and rendezvous indepen-
dence 7:23
broadcast 7:26
DES authentication 7:31
DES authentication verifiers 7:32

DES nicknames and clock synchroni-

zation 7:33
message protocol 7: 27
naming 7:31
null authentication 7: 30
program number assignment 7: 25
programs and procedures 7:24
record marking standard 7: 36
transports and semantics 7: 22
uses of the RPC protocol 7: 26
RPC AUTHERRCR 7:33
rpcb_getaddr 6:17
rpcb_get maps 6:17
rpcb_gettine 6:17
rpchi nd 7:22, 26, 37-38

IN-14

mechanism 7:37
operation 7:38

protocol 7:23

protocol specification 7: 37
RPCBPROC_CALLIT 7:37-38
RPCBPRCC_DUWP 7: 37-38
RPCBPROC_CGETADDR 7: 37-38
RPCBPROC_CETTI ME 7:37, 39
RPCBPROC NULL 7:37
RPCBPROC_SET 7:37-38
RPCBPROC_UNSET 7: 37-38
RPCBPROG 7:37

rpcb rmcall 6:17
rpc_broadcast 6:17
rpcb_set 6:17
rpcb_unset 6:17
RPCBVERS 7:37

rpc_call 6:17
rpc_createerr 6:17
RPC_M SNVATCH 7:27, 30
rpc_nsg 7:28

rpc_reg 6:17

S

SARMAG 7:2
savetty 6:22
sbrk 6:12

scalb 6:11
scanf 6:10
scanw 6: 22
scr_dunp 6:22
screenConvert Arg 6:32
scr_init 622
scripts 2:3

scrl 6:22
scroll 6:22
scroll ok 6:22
scr_restore 6:22
scr_set 6:22
SD CMD 11:1

Index

security control mechanisms 7: 24
sed 2:13

seekdir 6:5

segment

dynamic 5:12, 14

object file 5:1-2

process 5:1,12-13, 19

program header s:2

segment permissions 5:5

sel ect 6:12,18

senct!l 6:5
senget 6:5
senop 6:5
send 6:18

sendnsg 6:18
sendto 6:18
server 7:22, 10:4
set buf 6:10
setcchar 6:22
setcontext 6:5
set_curterm 6:22
setgid 6:5
setgrent 6:12
setgroups 6:5
set hostent 6:18
setitimer 612
setjnp 6:10
_setjnp 612
setlocale 6:6,8
set | ogmask 6:12
setnetconfig 6:17
setnetent 6:18
setnetpath 6:17
setpgid 6:5
setpgrp 6:5
setpriority 6:12
setprotoent 6:18
setpwent 6:12
setregid 6:12
setreuid 6:12
setrlimt 65
setscrreg 6:22

Index

setservent 6:18

setsid 6:5

set sockopt 6:18

setstate 6:12

set_term 6:22

setuid 6:5

setupterm 6:22

set-user ID programs 5: 20

setutxent 6:12

setvbuf 6:10

sh 2:11

shared library (see shared object file)

shared library names 6:2

shared object file 4:1, 6:1
functions 4:25
see also dynamic linking 5: 13
see also object file 5:13

shell scripts 4:1

shel | d assRec 6:32

shel | Wdget d ass 6:32

shmat 6:5
shret!l 6:5
shmdt 6:5
shnget 6:5

shut down 6:18
sigaction 6:5
si gaddset 6:5
sigaltstack 6:5
sigdel set 6:5
si genptyset 6:5
sigfillset 6:5
sighold 6:5
sigignore 6:5
siginterrupt 6:12
si gi smenber 6:5
siglongjnp 6:5
signal 6:6

si gngam 6: 12

Si gpause 6:5
sigpending 6:5
sigprocrmask 6:5
sigrelse 65

IN-15

sigsend 6:5
sigsendset 6:5
sigset 6:5
sigsetjnmp 6:5
sigstack 6:12

si gsuspend 6:5

sin 62

sleep 6:11
slk_attr_off 622

slk attroff 6:22
slk_attr_on 6:22

slk _attron 6:22

slk attr_set 6:22

slk _ attrset 6:22
slk_clear 6:22
slk_init 622

sl k_| abel 6:22
slk_noutrefresh 6:22
slk refresh 6:22

slk restore 6:22

sl k_set 6:22
slk_touch 6:22

sl k_wset 622

socket 6:18
socketpair 6:18
software structure 2:2-16
SP 6:22

space 2:3,10

sprintf 6:10

srand 6:10

srandom 6: 12

sscanf 6:10

standend 6:22
standout 6:22
start_color 6:22
stat 2:10, 6:6, 7:3

St at usDoneCal | back 6: 28
St at usDrawCal | back 6: 28
StatusStart Cal | back 6:28
statvfs 6:5

stdscr 6:22

stime 65

IN-16

strcasecnp 6:12
strcat 6:10
strchr 6:10
strcnp 6:10
strcodes 6:22
strcoll 6:6
strcpy 6:10
strcspn 6:10
strdup 6:11
STREAMS-based pipe
strerror 6:6
strfrmon 6:12
strfnames 6:22
strftime 6:6
string table

see archive file 7:2

see object file 4:21
strlen 6:10
strnanes 6:22
strncasecnp 6:12
strncat 6:10
strncnp 6:10
strncpy 6:10
strpbrk 6:10
strptime 6:12
strrchr 6:10
strspn 6:10
strstr 6:10
strtod 6:10
strtok 6:10
strtol 6:10
strtoul 6:10
strxfrm 6:6
subpad 6:22
subwin 6:22
SUCCESS 7:27,29
sum 2:10
svCc_create 6:17
svc_dg create 6:17
svcerr_auth 6:17
svcerr_decode 6:17
Svcerr_noproc 6:17

12: 3

Index

svcerr_noprog 6:17
svcerr_progvers 6:17
svcerr_systenerr 6:17
svcerr_weakauth 6:17
svc_fd create 6:17
svc_fds 6:17
svc_getargs 6:17
svc_getreqgset 6:17
svc_raw create 6:17
svc_reg 6:17

svc_run 6:17
svc_sendreply 6:17
svc_tli_create 6:17
svc_tp_create 6:17
svc_unreg 6:17
svCc_vc_create 6:17
SVID 11:1,3-4, 12:2

swab 6:11

swapcont ext 6:5,12
symbol names, C and assembly 4: 22
symbol table, see object file 4:22
symbols

absolute 4:11

binding 4: 23

common 4:11

see also hash table 4: 19
shared object file functions 4: 25
type 4:24

undefined 4: 10

value 4: 24,26

symink 6:5

sync 6:5

syncok 6:22

sysconf 6:5, 9:1

syslog 6:12

system 6:6, 9:2
systemcalls 6:4
extensions 6:9
seealsolibsys 6:4
_$vendor. company 6:9
system data interfaces 6: 33
system identification 9:1

Index

system library 6:4

T

TABSI ZE 6: 22

t_accept 6:15, 12:8

T_ACCEPT1 12:5
T_ACCEPT2 12:5
T _ACCEPT3 12:5
TACCES 12:4
T _ADDR 12:5

t addr 2uaddr 6: 17

TADDRBUSY 12: 4
T AL 125

t _alloc 6:15
TBADADDR 12: 4
TBADDATA 12: 4
TBADF 12:4
TBADFLAG 12: 4
TBADNAME 12: 4
TBADCPT 12: 4
TBADQLEN 12:4
TBADSEQ 12: 4
t_bind 6:15
T BIND 12:5
t_bind 12:8
TBUFOVFLW 12: 4
T CALL 12:5
tcdrain 6:11
tcflow 6:11
tcflush 6:11
tcgetattr 6:11
tcgetpgrp 6:11
tcgetsid 6:11
T GEX 12:4
t _close 6:15
T CQCBE 12:5
T ATS 12:4,8
t_connect 6:15
T CONNECT 12: 4
t_connect 12:8

IN-17

T _CONNECT1 12:5
T _CONNECT2 12:5
T OOTS 12:4

T QOIS CRD 12:4,8
TCP/IP 7:22,26,36
tcsendbreak 6:11
tcsetattr 611
tcsetpgrp 611

T DATA 12:4

T _DATAXFER 12:5
T _DEFAULT 12:4
tdelete 6:11

T DS 12:5

T D SCONNECT 12: 4
tell 611
telldir 65
tenpnam 6: 11
temporary files 9:6
ternmattrs 622
termerrno 6:22
termnfo(TI_ENV) 7:7
termane 6:22
termparmerr 6:22
t_errno 6:17
t_error 6:15

T ERRCR 12:4
T_EVENTS 12:4

T _EXDATA 12:4

T EXPEDI TED 12: 4
T FAILURE 12:4

T _FAKE 12:5
tfind 611
TFLON 12: 4

t free 6:15
tgetent 6:22
tgetflag 6:22

t _getinfo 6:15 12:9
tget num 6:22
t_getstate 6:15
tgetstr 6:22

tgoto 6:22
T IDLE 12:5
IN-18

tigetflag 622
tigetnum 6:22
tigetstr 6:22
time 65 7:3 91
timeout 6:22
times 65
timestanp 7:34
_timezone 6:7

ti mezone 6:7
timod 12:2,4

T INCON 12:5
TINDQUT 12:4

T INFO 12:5

T INREL 12:5
tirdwr 12:2,4

t listen 6:15

T LISTEN 12:4
t_listen 12:9

T _LISTN 12:5

t _look 6:15
TLOK 12:4

T MRE 12:4
tnpfile 6:10

t npnam 6: 10
T_NEQOTI ATE 12:4
TNQADDR 12: 4
TNCDATA 12: 4
TNCDI'S 12:4
TNCREL 12:4

T _NCSTATES 12:5
TNCSTRUCTYPE 12: 4
TNOTSUPPCRT 12: 4
TNOUDERR 12: 4
toascii 6:11

tol ower 6:10
_tolower 6:12
t_open 6:15

T OPEN 12:5
t_open 12:9

t opLevel Shel | A assRec 6:32
t opLevel Shel | Wdget d ass 6: 32
T OPT 12:5

Index

t_optngm 6:15 t snd 615

T CGPTMEMI 12:5 T SND 12:5
t_optmgnt 12:10 t_snd 12:12

T CRDREL 12:4 t_snddis 6:15, 12:13
touchline 6:22 T _SNDDI S1 125
touchwi n 6:22 T _SNDDI S2 125
t oupper 6:10 t_sndrel 6:15
_toupper 6:12 T SNDREL 12:5
T QUTAON 12:5 t_sndrel 12:13
T QUTREL 12:5 t_sndudata 6:15
TQUTSTATE 12:4 T_SNDUDATA 12:5
tow ower 6:11 t_sndudata 12:13
towupper 6:11 TSTATECHNG 12: 4
tparm 6:22 T_SUCCESS 12:4
T_PASSCON 12:5 t_sync 6:15
TPROTO 12:4 TSYSERR 12:4
TPROVM SVATCH 12: 4 ttynane 6:5
tputs 622 ttyslot 6:12
TQFULL 12:4 ttytype 6:22
transi ent Shel | d assRec 6: 32 T_UDATA 12:5
transi ent Shel | Wdget d ass 6: 32 T _UDERR 12:4
transport 12:2 T_UDERRCR 125
t_rcv 615 t_unbind 6:15
T ROV 12:5 T UBIND 12:5
t_rcv 12:12 T _UNBND 12:5
t_rcvconnect 6:15 TUNNT 12:5
T_ROVOONNECT 12:5 T_UN TDATA 12:5
t_rcvconnect 12:12 twal k 611
t_rcvdis 6:15 typeahead 6:22
T RO S 12:5 _tznane 6:7

T ROVMD 2 12:5 tzname 6:7

T ROVDI S3 12:5 tzset 6:8,11

t _rcvrel 6:15

T ROVREL 12:5

t_rcvudata 6:15 @)

T_ROVUDATA 12:5
t rcvudata 12:12
t_rcvuderr 6:15
T_ROVWUDERR 12:5

uaddr 2t addr 6: 17
ualarm 6:12
UDP/IP 7:22,26

ulimt 65
t rcvuderr 12:12
- umask 6:5
truncate 6:12
umount 6:5

tsearch 6:11

Index IN-19

unane 6:6, 9:1

unctrl 6:22

undefined behavior 1:8, 4: 14, 5: 10,
6:3,9

undefined symbols 4: 10

ungetc 6:10

ungetch 6:22

ungetwc 6:11

unget _wch 6:22

unlink 6:5

unl ockpt 6:5

unspecified property 4: 2,5, 10-11,

15-16, 18-19, 24-25, 5:2,4, 6, 9, 18-19,

22, 6:4,7
unt ouchwi n 6:22

use env 6:22

user 2net nane 6:17

usleep 6:12

/usr 9:3-5

/usr subtree 9:5

fusr/bin 9:5

[usr/share 9:5
/usr/share/lib 9:5
lusr/share/lib/termnfo/ 7:7
fusr/ X 9:5

fusr/X/lib 95

[usr/ X/'liblapp-defaults 9:6
fusr/X/lib/locale 9:5

utime 6:5

utimes 6:12

V

valloc 6:12

[var 9:3-4

[var subtree 9:6
/var/opt 2:15
[var/opt/pkg 9:6
[var/tnp 9:6

vendor extensions 6:9
_$vendor. company 6:9

IN-20

vendor Shel | d assRec 6:32
vendor Shel | Wdget d ass 6: 32

vfork 6:12
viprintf 6:10
vid_attr 6:22
vidattr 6:22
vid_puts 6:22
vidputs 6:22
virtual addressing 5:2
vline 622
vline_set 622
VMTP 7:23
vprintf 6:10
vsprintf 6:10
VW printw 622
vwWprintw 6:22
VW _scanw 6: 22
vwscanw 6: 22
W
waddch 6:22
waddchnstr 6: 22
waddchstr 6: 22
waddnstr 6:22
waddnwstr 6: 22
waddstr 6:22
wadd_wch 6:22

wadd_wchnstr 6:22
wadd_wchstr 622

waddwst r
wait 6:5

6: 22

wait3 6:12

waitid 6
wai t pi d
wat tr_get
wat tr_of f
wat t r of f
wattr_on
wat tron
wattr_set

:5

6:5
6: 22
6: 22
6: 22
6: 22
6: 22
6: 22

Index

wattrset 6:22 Werase 6:22

wbkgd 6:22 wget bkgrnd 6: 22
wbkgdset 6:22 wget ch 6:22
wbkgrnd 6:22 wgetnstr 6:22
wbkgr ndset 6: 22 wget n_wstr 6:22
wbor der 6: 22 wgetstr 6:22
wbor der _set 6:22 wget _wch 6:22
wchgat 6:22 wget _wstr 6:22

wcl ear 6:22 whline 6:22

wcl rtobot 6:22 whline_set 6:22
wcl rtoeol 6:22 wi dget d ass 6: 32
wcol or _set 6:22 wi dget d assRec 6:32
wcscat 6:11 winch 622

weschr 6:11 wi nchnstr 6:22
wescnp 6: 11 w nchstr 6:22
wescol | 6:11 window manager 10: 4
WCcscpy 6:11 window system 10: 1
wcscspn 6: 11 components 10: 3
wesftine 6:11 wnnstr 6:22

wesl en 6:11 W nnwstr 6:22
wesncat 6:11 w nsch 6:22
wesnenp 6: 11 winsdel I n 6:22
wesncpy 6: 11 winsertln 6:22
wespbrk 6:11 W nsnstr 6:22
wesrchr 6:11 W ns_nwstr 6:22
Wcsspn - 6: 11 W nsstr 6:22
wecstod 6:11 Wnstr 6:22

wcst ok 6:11 W ns_wch 6:22
wcstol 6:11 W ns_wstr 6:22
wcst onbs 6: 10 w n_wch 6:22
westoul 6:11 W n_wchnstr 6:22
WCSWCS 6: 12 W n_wchstr 6:22
weswi dth 6:12 W nwstr 6:22
wesxfrm 6:11 wrove 6:22

wct onb 6:10 wrBhel | d assRec 6: 32
wctype 6:11 wrBhel | Wdget d ass 6:32
WCur syncup 6:22 wnout refresh 6:22
wewi dth 6: 12 wor dexp 6:12

wdel ch 6:22 wordfree 6:12

wdel etel n 6:22 wprintw 6:22
wechochar 6:22 wedraw n 6:22
wecho_wchar 6:22 wefresh 6:22

Index IN-21

wite 65,18
witev 65
wscanw 6: 22
wscrl 6:22
wsetscrreg 6:22
wst andend 6: 22
wst andout 6: 22
wsyncdown 6: 22
wsyncup 6:22
wineout 6:22
wtouchln 6:22
wunctrl 6:22
wline 622
wvline_set 6:22

X

X Toolkit Intrinsics 6: 1, 29
X toolkit intrinsics 10: 3
X Toolkit Intrinsics Library 6: 29
X Window System 1:2, 6:1, 23
X Window System Library 1:5, 6:2,
23
X11 protocol 10:2
X11 Toolkit Intrinsics, interface 10: 1
X11 Window System 9:5, 10: 4
interface 10:1
overview 10:2
XAct i vat eScreenSaver 6: 27
XAddExt ensi on 6: 27
XAddHost 6: 27
XAddHosts 6: 27
XAddPi xel 6:27
XAddToExt ensi onLi st 6: 27
XAddToSaveSet 6: 27
XAl ocd assH nt 6:27
XAl |l ocCol or 6:27
XAl locColorCells 6:27
XAl | ocCol or Pl anes 6: 27
XAl |l ocl conSi ze 6:27
XAl | ocNarmedCol or 6: 27

IN-22

XAl ocSizeH nts 6:27

XAl | ocSt andar dCol ormap 6: 27
XAl ocWH nts 6:27

XAl | owEvents 6:27

XAl M anes 6:27

XAut oRepeat OF f 6: 27

XAut oRepeat On 6: 27
XBaseFont NaneLi st f Font Set 6: 27
XBell 6:27

XBi t napBi t Or der 6: 27

XBi t napPad 6: 27

XBitnapnit 627

XB ackPi xel 6:27

XBl ackPi xel f Screen 6: 27
XCel | sCf Screen 6: 27
XChangeActi vePoi nterGab 6:27
XChangeQC 6: 27
XChangeKeyboar dControl 6: 27
XChangeKeyboar dMVappi ng 6: 27
XChangePoi nt er Control 6: 27
XChangeProperty 6:27
XChangeSaveSet 6:27
XChangeWndowAt tri butes 6:27
XCheckl f Event 6: 27
XCheckMaskEvent 6: 27
XCheckTypedEvent 6: 27
XCheckTypedW ndowEvent 6: 27
XCheckW ndowEvent 6: 27

XA rcul at eSubwi ndows 6: 27
XA rcul at eSubwi ndowsDown 6: 27
X4 rcul at eSubwi ndowsU 6: 27
Xd earArea 6:27

Xd ear Wndow 6: 27

XdipBox 627

Xd oseD spl ay 6:27

Xd osel M 6: 27

XcrmsAddCol or Space 6: 27
XcmsAddFuncti onSet 6: 27
XcmsAl | ocCol or 6: 27

XcrsAl | ocNanedCol or 6: 27
XensOOCof Col or map 6: 27
Xcmsd ELabQuer yMaxC 6: 27

Index

XcnsC ELabQuer yMaxL 6: 27
XcnsC ELabQuer yMaxLC 6: 27
XcnsC ELabQueryM nL 6: 27
XcnsC ELabTod EXYZ 6: 27
Xcnsd ELuvQuer yNaxC 6: 27
Xcnsd ELuvQuer yNaxL 6: 27
Xcnsd ELuvQuer yMaxLC 6: 27
XcnsCO ELuvQueryM nL 6:27

Xcnsd ELuvTod EuvY 6: 27
Xcnsd EuvYTod ELuv 6:27
Xcnsd BEuvYTod EXYZ 6: 27
Xcnsd EuvYToTekHVC 6: 27
Xcns A ExyYToO EXYZ 6: 27
Xcrs O EXYZTod ELab 6: 27
Xcnsd EXYZTod EuvY 6: 27
Xcnsd EXYZToQ ExyY 6:27

Xcrs QO EXYZTOR@I 6: 27
Xcrsd i ent Whi t ePoi nt OF QOC 6: 27
XcrsConvert Col ors 6:27
XcnsOreat eCCC 6: 27

XcrsDef aul t OOC 6: 27

XcnsD spl ay GOC 6: 27
XcrsFormat CfF Prefix 6:27
XcnsFreeQOC 6: 27
XcnsLookupCol or 6: 27
XcrsPref i xCOf Format — 6: 27
XcnsQueryBl ack 6: 27
XcnsQuer yBl ue 6: 27
XcnsQueryCol or 6: 27
XensQueryQol ors 6: 27
XcmsQueryQ een 6:27
XensQueryRed 6: 27
XcnsQueryWite 6:27
XcmsR@Bi Tod EXYZ 6: 27
XcmsREBi TOR@®B 6: 27
XcmrsREBTOR@BI 6: 27

XcnsScr eenNunber OF QOC 6: 27
XcrsScr eenWii t ePoi nt OF QOC 6: 27
XcnsSet COCof Col or map 6: 27
XcnsSet Conpr essi onProc 6: 27
XcnsSet Wi t eAdj ust Proc 6: 27
XcrsSet Whi t ePoi nt 6: 27

Index

XcnsSt oreCol or 6: 27

XcnsStoreCol ors 6:27

XcensTekHVQQuer yMaxC 6: 27

XcnsTekHVQQuer yNaxV 6: 27

Xcns TekHVOQQuer yMaxVC 6: 27

Xens TekHVQQuer yMaxVSanpl es 6: 27

XcensTekHVOQuer yM nV 6: 27

XcnsTekHVCTod EuvY 6: 27

XensMi sual OF GCC 6: 27

XConf i gur eWndow 6: 27

XConnect i onNunber 6: 27

XCont ext Dependent Drawi ng 6: 27

XConvert Sel ection 6:27

XCopyArea 6:27

XCopyCol or mapAndFree 6: 27

XCopyL 6: 27

XCopyPl ane 6: 27

XOr eat eBi t napFronData 6: 27

XOr eat eCol ormap 6:27

XCOr eat eFont Qur sor 6: 27

XCOr eat eFont Set 6: 27

XOreate@C 6:27

XOr eat ed yphQursor 6: 27

XOreatel C 6:27

XCr eat el mage 6: 27

XOr eat ePi xnap 6:27

XOr eat ePi xnapQur sor 6: 27

XOr eat ePi xnapFr onBi t mapDat a
6: 27

XOr eat eRegi on 6: 27

XOr eat eSi npl eWndow 6: 27

XOr eat eWndow 6: 27

XDef aul t Col or map 6: 27

XDef aul t Col or mapCf Screen 6: 27

XDef aul t Depth 6: 27

XDef aul t Dept hCf Screen 6: 27

XDef aul t GC 6: 27

XDef aul t GOf Screen 6: 27

XDef aul t Root Wndow 6: 27

XDef aul t Screen 6: 27

XDef aul t ScreenCr D spl ay 6: 27

XDefaultString 6:27

IN-23

XDef aul t Vi sual 6: 27
XDef aul t Vi sual O Screen 6: 27
XDef i neQur sor 6: 27
XDel et eCont ext 6: 27
XDel et eModi fi ermapEntry 6:27
XDel et eProperty 6:27
XDestroyl C 6:27
XDest royl mage 6: 27
XDest r oyRegi on 6: 27
XDest r oySubwi ndows 6: 27
XDest r oyW ndow 6: 27
XDi sabl eAccessControl 6:27
XD spl ayCel | s 6: 27
XDi spl ayHei ght 6: 27
XD spl ayHei ght MM 6: 27
XDi spl ayKeycodes 6: 27
XDi spl ayMoti onBuf ferSi ze 6:27
XD spl ayNae 6: 27
XD splay> M 6: 27
XDi spl ayCf Screen 6: 27
XDi spl ayPl anes 6: 27
XDi spl ayString 6:27
XD spl ayWdth 6:27
XD spl ayWdt hMM 6: 27
XDoesBacki ngStore 6:27
XDoesSaveUnders 6:27
XDR
array, fixed length 7: 16
array, variable length 7:17
basic block size 7:10
block size 7:10
boolean 7:12
constant 7:19
data, optional 7:20
datatypes 7:11
discriminated union 7:18
double-precision floating-point
integer 7:13
enumeration 7:12
fixed-length array 7: 16
fixed-length opaque data 7: 14
floating-point integer 7:12

IN-24

integer 711

integer, double-precision floating
point 7:13

integer, floating point 7: 12

integers 7:36

opaque data, fixed length 7:14

opaque data, variable length 7: 14

optional data 7: 20

protocol specification 7: 10

string 7:15

structure 7:17

typedef 7:19

union discriminated 7: 18

unsigned integer 7:11

variable-length array 7: 17

variable-length opaque data 7: 14

void 7:19

xdr_accepted reply 6:17
xdr_array 6:17

xdr _aut hsys_parns 6:17
XDrawArc 6:27
XDrawArcs 6:27

XDr aml mageString 6:27
XDr am nmageStri nglé 6:27
XDr awLi ne 6:27

XDrawLi nes 6:27
XDrawPoi nt 6: 27
XDrawPoi nts 6:27

XDr awRect angl e 6: 27
XDr awRect angl es 6: 27
XDr anSegrent s 6: 27
XDrawstring 6:27
XDrawsStri nglé 6: 27

XDr awText 6:27

XDr awText 16 6: 27
xdr_bool 617

xdr _bytes 6:17

xdr_cal | hdr 6:17
xdr_call msg 6:17
xdr_char 617

xdr _doubl e 6:17
xdr_enum 6:17

Index

xdr_float 6:17
xdr_free 6:17

xdr_int 6:17

xdr_long 6:17
xdrmemcreate 6:17
xdr_opaque 6:17
xdr_opaque_auth 6:17
xdr _poi nter 6:17
xdrrec_create 6:17
xdrrec_eof 6:17
xdrrec_skiprecord 6:17
xdr_reference 6:17
xdr_rejected reply 6:17
xdr _repl ynsg 6:17
xdr_short 6:17

xdrstdio create 6:17
xdr_string 6:17

xdr _u_char 6:17
xdr_u_long 6:17

xdr _union 6:17

xdr _u_short 6:17
xdr_vector 6:17
xdr_void 6:17
xdr_wrapstring 6:17
XEHeadCr Ext ensi onLi st 6: 27
XEnpt yRegi on 6: 27
XEnabl eAccessControl 6: 27
XEqual Regi on 6:27
XESet A oseDi spl ay 6:27
XESet CopyGC 6: 27
XESet O eat eFont 6: 27
XESet O eat eQC 6: 27
XESet Error 6:27
XESetErrorString 6:27
XESet Event ToWre 6:27
XESet Fl ush@QC 6: 27
XESet FreeFont 6: 27
XESet FreeQC 6: 27

XESet Print ErrorVal ues 6:27
XESet Wr eToEvent 6:27
XEvent MaskCf Screen 6: 27
XEvent sQueued 6: 27

Index

XExt ent sCf Font Set 6: 27
XFetchBuffer 6:27
XFet chBytes 6:27
XFet chName 6: 27
XFillArc 6:27
XFillArcs 627

XFi || Pol ygon 6:27
XFillRectangl e 6:27
XFill Rectangl es 627
XFilterEvent 6:27
XFi ndCont ext 6:27

XFi ndOnExt ensi onLi st 6:27

XFl ush 6:27

XFl ush@GC 6:27

XFont sCf Font Set 6: 27
XFor ceScreenSaver 6:27
XFree 6:27

XFreeCol ornap 6:27
XFreeCol ors 6:27
XFreeQursor 6:27

XFr eeExt ensi onLi st 6: 27

XFreeFont 6:27
XFreeFontInfo 6:27
XFr eeFont Nanes 6: 27
XFreeFont Path 6:27
XFreeFont Set 6: 27
XFreeGC 6:27
XFreeModi fiermap 6:27
XFr eePi xmap 6:27
XFreeStringlist 627
xftw 6:12-13

XQont ext FronGC 6: 27
XGonetry 6:27

XCGet At omiNane 6: 27
XGtd assH nt 6:27
XGet Command 6: 27

XGet Default 6:27

XGet Er r or Dat abaseText
XGet Error Text 6:27
XGet Font Path 6: 27
XGet Font Property 6:27
XGt QCVal ues 6: 27

6: 27

IN-25

XGet Geonetry 6:27

XCGet | conNane 6: 27

XGet | conSi zes 6:27

XGet | Cval ues 6: 27

XGet | mrage 6:27

XGet | Mal ues 6: 27

XGet | nput Focus 6: 27

XGet Keyboar dControl 6:27
XGet Keyboar dMappi ng 6: 27
XGet Modi fi er Mappi ng 6:27
XGet Mot i onEvents 6:27
XGtNormal Hnts 6:27

XGet Pi xel 6:27

XGet Poi nterControl 6:27
XGet Poi nt er Mappi ng 6: 27
XGet REBCol or maps 6: 27
XCGet ScreenSaver 6:27

XGet Sel ecti onOnner 6:27
XGet SizeH nts 6:27

XGet St andar dCol or map 6: 27
XGet Subl mage 6: 27

XGet Text Property 6:27
XCGet Transi ent ForH nt 6: 27
XGtVisual Info 6:27

XGet WndowAttri butes 6:27
XGet WndowPr operty 6:27
XGet WO i ent Machi ne 6: 27

XGet WMol or mapW ndows 6: 27

XGtWWH nts 6:27

XGet VWM conNane 6: 27
XCGet WNarre 6: 27
XGtWWNormal Hnts 6:27
XGet WWPr ot ocol s 6: 27
XGt WEB zeH nts 6:27
XGet ZoonH nts 6:27
X&GabButton 6:27

X& abKey 6:27

X@& abKeyboard 6:27
X& abPoi nter 6:27

X& abServer 6:27

XHei ght MO Screen 6: 27
XHei ght Cf Screen 6: 27

IN-26

Xl coni f yWndow 6: 27
X fEvent 6:27

Xl mageByt eQr der 6: 27
XMIIC 627

Xl ni t Extension 6:27

Xl nsertMdifiermapEntry 6:27

Xinstal |l Col ormap 6:27
Xl nternAtom 6:27

Xl nt er sect Regi on 6:27
XKeycodeToKeysym 6: 27
XKeysynToKeycode 6: 27
XKeysynToString 6:27
XKilldient 627

XLast KnownRequest Processed 6: 27

XLi st Dept hs 6: 27

XLi st Ext ensi ons 6: 27
XLi st Fonts 6:27

XLi st FontsWthinfo 6:27
XLi st Hosts 6:27

XLi stInstal | edCol ormaps 6: 27

XLi st Pi xmapFormats 6:27
XLi st Properties 6:27
XLoadFont &:27
XLoadQuer yFont 6:27
XLocal eCX Font Set 6: 27
XLocal e I M 6: 27
XLookupCol or 6: 27
XLookupKeysym 6: 27
XLookupString 6:27
XLower Wndow 6: 27
XMapRai sed 6: 27
XMapSubwi ndows 6: 27
XMVapW ndow 6: 27
XMaskEvent 6: 27

XMat chvi sual I nfo 6:27
XMVaxQrapsOf Screen 6: 27
XMVaxRequest Sl ze 6: 27
XnbDr awl mageString 6:27
XnbDrawstring 6:27
XbDr awText 6: 27
XnbLookupString 6:27
XnmbReset | C 6: 27

XnbSet WWPr operties 6:27
XnbText Escaperent 6: 27

XnbText Extents 6: 27

XnbText Li st ToText Property 6:27
XnbText Per Char Extents 6: 27
XnbText Propert yToText Li st
XM nQrapsCf Screen 6: 27
XMoveResi zeW ndow 6: 27
XMoveW ndow 6: 27

XNewModi fiermap 627

6: 27

XNext Event 6: 27
XNext Request 6: 27
XNoQp 6:27

XOf f set Regi on 6: 27

X/0Open CAE Specification 7:22

X/0pen Common Application
Environment Specification, Issue
42 1:1

X/0pen Common Application
Environment Specification (CAE),
Issue4.2 1:2

XQpenD spl ay 6:27

XOpenl M 6: 27

XPar seCol or 6:27

XPar seGeonetry 6:27

XPeekEvent 6:27

XPeekl f Event 6: 27

XPendi ng 6:27

Xpernal l oc 6:27

XPG3 7:22

_ _Xpg4 6:13

XPl anesCf Screen 6: 27

XPoi nt | nRegi on 6: 27

XPol ygonRegi on 6: 27

XPr ot ocol Revi sion 6:27

XPr ot ocol Version 6:27

Xprt_register 6:17
Xprt_unregi ster 6:17
XPut BackEvent 6: 27

XPut | mage 6: 27
XPut Pi xel 6:27
XQength 6:27

Index

XQueryBest Qursor 6:27
XQueryBest Si ze 6: 27
XQueryBest Stipple 6:27
XQueryBestTil e 6:27
XQueryQol or 6:27
XQueryCol ors 6:27

XQuer yExt ensi on 6: 27
XQueryFont 6:27

XQuer yKeymap 6:27
XQueryPoi nter 6:27
XQueryText Extents 6:27
XQuer yText Extent s16 6: 27
XQueryTree 6:27

XRai seWndow 6: 27
XReadBi t mapFi |l e 6:27
XRebi ndKeysym 6: 27
XRecol or Qursor 6:27
XReconf i gur eWAN ndow 6: 27
XRect | nRegi on 6: 27

XRef r eshKeyboar dVappi ng 6: 27

XRenoveFr onBaveSet
XRenoveHost 6: 27
XRenoveHosts 6: 27
XRepar ent Wndow 6: 27

XReset ScreenSaver 6:27
XResi zeWndow 6: 27

XResour ceManager String 6:27
XRest ackWndows 6: 27

Xr mConbi neDat abase 6: 27

Xr mConbi neFi | eDat abase 6: 27
Xr nDest r oyDat abase 6: 27

Xr nEnurrer at eDat abase 6: 27
Xr mGet Dat abase 6: 27

XrmGet Fi | eDat abase 6: 27
XrnGet Resour ce 6: 27

XrnCGet Stri ngbat abase 6: 27
Xrmnitialize 6:27

XrmLocal eCf Dat abase 6: 27

Xr mver geDat abases 6: 27

Xr nPar seCommand 6: 27

XrnPer Bt ri ngToQuark 6: 27
XrnPut Fi | eDat abase 6: 27

6: 27

IN-27

XrmPut Li neResource 6: 27

XrnPut Resource 6:27

XrmPut St ri ngResour ce 6: 27

XrnQGet Resource 6:27

XrmQGet Sear chli st 6:27

Xr mQGet Sear chResource 6: 27

Xrn(Put Resource 6:27

XrmQPut St ri ngResour ce 6: 27

XrmQuar kToString 6:27

Xr nBet Dat abase 6: 27

Xrn&t ri ngToBi ndi ngQuar kLi st
6: 27

XrngtringToQuark 6:27

Xrngtri ngToQuar kLi st 6: 27

Xrmuni queQuark 6: 27

XRoot Wndow 6: 27

XRoot W ndowCf Screen 6: 27

XRot at eBuffers 6:27

XRot at eW ndowProperties 6:27

XSaveCont ext 6:27

XScreenCount 6: 27

XScreenNunber Cf Screen 6: 27

XScreenCr O spl ay 6:27

XScreenResourceString 6:27

XSel ect | nput 6:27

XSendEvent 6:27

XServer Vendor 6: 27

XSet AccessControl 6:27

XSet After Function 6:27

XSet ArcMbde 6: 27

XSet Background 6: 27

XSetd assH nt 6:27

XSetd i pMask 6:27

XSetdipQigin 627

XSetd i pRectangl es 6:27

XSet d oseDownMbde 6: 27

XSet Command 6: 27

XSet Dashes 6: 27

XSet Error Handl er 6: 27

XSetFillRule 6:27

XSetFillStyle 6:27

XSet Font 6:27

IN-28

XSet Font Pat h 6: 27

XSet For eground 6: 27

XSet Function 6:27

XSet @ aphi csExposures 6: 27
XSet | CFocus 6: 27

XSet | conNane 6: 27

XSet | conSi zes 6:27

XSet | Cval ues 6: 27

XSet | nput Focus 6: 27

XSet | CerrorHandl er 6:27
XSet LineAttributes 6:27
XSet Local eModi fiers 6:27
XSet Modi fi er Mappi ng 6:27
XSet Normal H nts 6:27

XSet Pl aneMask 6: 27

XSet Poi nt er Mappi ng 6: 27
XSet Regi on 6: 27

XSet R@BCol or maps 6: 27

XSet ScreenSaver 6:27

XSet Sel ecti onOamner 6:27
XSet SizeH nts 6:27

XSet St andar dCol or nap 6: 27
XSet St andar dProperties 6:27
XSetState 6:27

XSet Stipple 6:27

XSet Subwi ndowhbde 6: 27
XSet Text Property 6:27
XSetTile 6:27

XSet Transi ent ForH nt 6: 27
XSet TSOrigin 627

XSet W ndowBackground 6: 27
XSet W ndowBackgr oundPi xnap
XSet W ndowBor der 6: 27

XSet W ndowBor der Pi xmap 6: 27
XSet W ndowBor der Wdt h 6: 27
XSet W ndowCol or map 6: 27
XSet W i ent Machi ne 6: 27
XSet WMol or mapW ndows 6: 27
XSet WH nts 6:27

XSet WM conNane 6: 27

XSet WNarnre 6: 27

XSet WWNor mal H nts 6: 27

6: 27

Index

XSet WProperties 6: 27

XSet WPr ot ocol s 6: 27

XSet WBi zeH nts 627

XSet ZoonH nts 6: 27

XShri nkRegi on 6: 27
XStoreBuffer 6:27

XSt oreBytes 6:27

XSt oreCol or 6:27

XStoreCol ors 6:27

XSt oreNane 6: 27

XSt or eNamedCol or 6: 27

XStri ngToKeysym 6:27
XStringToText Property 6:27
XSubl nage 6: 27

XSubt ract Regi on 6: 27
XSupportsLocal e 6:27

XSync 6:27

XSynchroni ze 6:27

Xt AddCal | back 6:31

Xt AddCal | backs 6:31

Xt AddEvent Handl er 6:31

Xt AddExposur eToRegi on 6: 31
Xt AddG ab 6:31

Xt AddRawEvent Handl er 6: 31
Xt Al'l ocateCC 6:31

Xt AppAddAct i onHook 6: 31

Xt AppAddActions 6:31

Xt AppAdd! nput 6: 31

Xt AppAddTi neQut 6:31

Xt AppAddVér kProc 6: 31

Xt AppCreat eShel | 6:31

Xt AppError 6:31

Xt AppError Msg 6:31

Xt AppCet Er r or Dat abase 6:31
Xt AppCet Er r or Dat abaseText 6:31
Xt AppCet Sel ecti onTi meout 6: 31
XtApplnitialize 631

Xt AppMai nLoop 6: 31

Xt AppNext Event 6: 31

Xt AppPeekEvent 6: 31

Xt AppPendi ng 6: 31

Xt AppProcessEvent 6:31

Index

Xt AppRel easeCacheRefs 6:31
Xt AppSet Error Handl er 6: 31
Xt AppSet Err or MsgHandl er 6:31
Xt AppSet Fal | backResources 6:31
Xt AppSet Sel ecti onTi meout 6: 31
Xt AppSet TypeConverter 6:31
Xt AppSet Vér ni ngHandl er 6: 31
Xt AppSet Vér ni ngMsgHandl er 6: 31
Xt AppVér ni ng 6:31
Xt AppVér ni ngMsg 6: 31
Xt Augrent Transl ati ons 6:31
Xt Bui | dEvent Mask 6: 31
Xt Cal | Accept Focus 6:31
Xt Cal | ActionProc 6:31
Xt Cal | backExcl usi ve 6:31
Xt Cal | backNone 6: 31
Xt Cal | backNonexcl usi ve 6:31
Xt Cal | backPopdown 6: 31
Xt Cal | backRel easeCacheRef 6:31
Xt Cal | backRel easeCacheRef Li st
6: 31
Xt Cal | Cal | backLi st 6:31
Xt Cal | Cal | backs 6:31
Xt Cal | Converter 6:31
XtCalloc 6:31
Xt CheckSubcl assFl ag 6:31

Xtdass 6:31

Xt d oseDi splay 6:31

Xt Confi gureWdget 6:31

Xt Convert AndStore 6:31

Xt Convert Case 6:31

Xt Oreat eAppl i cati onCont ext 6:31
Xt O eat eManagedWdget 6: 31
Xt O eat ePopupShel | 6:31

Xt Oreat eWdget 6:31

Xt Or eat eWndow 6:31

Xt Cvt Col or ToPRi xel 6:31

Xt Qvt I nt ToBool 6:31

Xt Qvt | nt ToBool ean 6: 31

Xt CQvtlnt ToCol or 6:31

Xt Cvtlnt ToFl oat 6:31

Xt Qvt I nt ToFont 6:31

IN-29

Xt Qvt I nt ToPi xel 6:31

Xt Qvt | nt ToPi xmap 6:31

Xt Qvt I nt ToShort 6:31

Xt Qvt | nt ToUnsi gnedChar 6: 31

Xt Qvt StringToAccel erat or Tabl e
6: 31

Xt Qvt StringToAtom 6:31

Xt Qvt StringToBool 6:31

Xt Qvt Stri ngToBool ean 6: 31

Xt Qvt StringToQursor 6:31

Xt Qvt StringToD mensi on 6:31

Xt Qvt StringToD splay 6:31

XtovtStringToFile 6:31

Xt Qvt StringToFl oat 6:31

Xt Qvt StringToFont 6:31

Xt Qvt StringToFont Set 6: 31

Xt Qvt StringToFont Struct 6:31

XtovtStringTolnitial State 6:31

XtQvt StringTolnt 6:31

Xt Qvt StringToPi xel 6:31

Xt Qvt StringTosShort 6:31

Xt Qvt StringToTransl ati onTabl e
6: 31

Xt Qvt Stri ngToUnsi gnedChar 6: 31

Xt Qvt StringToVi sual 6:31

XtCXt Tool kitError 6:32

Xt Dat abase 6:31

Xt Dest royAppl i cat i onCont ext
6: 31

Xt DestroyWdget 6:31

Xt D sownSel ection 6:31

Xt Di spat chEvent 6:31

XtDisplay 6:31

XtDisplaylnitialize 6:31

Xt Di spl ayf (hj ect 6:31

Xt Di spl aySt ri ngConver si onVér n-
ing 631

Xt Di spl ayToAppl i cati onCont ext
6: 31

XText Extents 6:27

XText Extents16 6:27

XText PropertyToStri ngLi st 6:27

IN-30

XTextWdth 6:27

XText Wdt h16 6:27

XtFndFile 6:31

XtFree 6:31

Xt Get Act i onKeysym 6: 31

Xt Get ActionList 6:31

Xt Get Appl i cati onNaneAndd ass
6: 31

Xt Get Appl i cati onResources 6:31

Xt Get Const rai nt Resour celLi st
6: 31

Xt Gt 6:31

Xt Get KeysynTabl e 6:31

XtGtMltidickTime 6:31

Xt Get Resour celLi st 6:31

Xt Get Sel ecti onRequest 6: 31

Xt Get Sel ectionVal ue 6:31

Xt Get Sel ecti onVal uel ncr enent al
6: 31

Xt Get Sel ecti onVal ues 6:31

Xt Get Sel ecti onVal uesl ncr enen-
tal 631

Xt Get Subresources 6:31

Xt Get Subval ues 6:31

Xt Get Val ues 6:31

Xt GabButton 6:31

Xt G abKey 6:31

Xt G abKeyboard 6:31

Xt G apPoi nter 6:31

Xt HasCal | backs 6:31

XTI 12:4

_Xti_accept 6:16

_xti_alloc 6:16

_Xxti_bind 6:16

_Xti_close 6:16

_Xti_connect 6:16

_Xti_error 6:16

_Xxti_free 6:16

_Xxti_getinfo 6: 16

_Xti_getprotaddr 6: 16

_Xxti_getstate 6: 16

_Xxti_listen 6: 16

Index

_xti_look 6:16
XtlnitializeWdgetd ass 6:31
Xt I nsert Event Handl er 6: 31
Xt | nsert RawEvent Handl er 6:31
XtInstall Accelerators 6:31
Xtinstall Al Accelerators 6:31
_Xti_open 6:16

_Xti_rcv 6:16

_xti_rcvconnect 6:16
_Xti_rcvdis 6: 16

_Xti_rcvrel 6:16

_Xti_rcvudata 6: 16
_Xxti_rcvuderr 6:16

Xt | shManaged 6:31

_Xti_snd 6:16

_xti_snddis 6:16

_xti_sndrel 6:16
_Xxti_sndudata 6: 16
Xt1sChject 6:31
Xt1sRealized 6:31
Xt1sSensitive 6:31

Xt | sSubcl ass 6:31
_Xxti_strerror 6:16

Xt 1 sVendor Shel | 6:31
_Xti_sync 6:16

_Xxti_unbind 6: 16

Xt KeysyniToKeycodeLi st 6:31
Xt Last Ti mest anpProcessed 6:31
Xt MakeCGeonet r yRequest 6: 31
Xt MakeResi zeRequest 6: 31
XtMall oc 6:31

Xt ManageChil d 6:31

Xt ManageChi | dren 6:31

Xt MapW dget 6:31

Xt MenuPopdown 6: 31

Xt MenuPopup 6:31

Xt MergeArgLists 6:31

Xt MoveW dget 6:31

Xt Nane 6:31

Xt NaneToW dget 6: 31

Xt NewString 6:31

Xt QpenDi spl ay 6:31

Index

Xt OverrideTransl ations 6:31
Xt OmnSel ection 6:31

Xt OmnSel ectionl ncrenental 6:31
Xt Parent 6:31

Xt Par seAccel erat or Tabl e 6:31
Xt ParseTransl ati onTabl e 6:31
Xt Popdown 6: 31

Xt Popup 6:31

Xt PopupSpri ngLoaded 6: 31

Xt QueryGeonetry 6:31

XTransl at eCoor di nates 6: 27
Xt Real i zeWdget 6:31
XtRealloc 6:31

Xt Regi st er CaseConverter 6:31
Xt Regi ster G abAction 6:31

Xt Rel ease@C 6:31

Xt RenmoveAct i onHook 6: 31

Xt RenoveAl | Cal | backs 6:31

Xt RenoveCal | back 6:31

Xt RenoveCal | backs 6:31

Xt RenmoveEvent Handl er 6: 31

Xt Remove@ ab 6:31

Xt Renovel nput 6:31

Xt RenmoveRawEvent Handl er 6: 31
Xt RenoveTi meQut 6:31

Xt Resi zeWdget 6:31

Xt Resi zeWndow 6:31

Xt Resol vePat hnane 6:31

Xt Screen 6:31

Xt Scr eenDat abase 6: 31

Xt Screentf Chj ect 6:31

Xt Set Keyboar dFocus 6: 31

Xt Set KeyTransl ator 6:31

Xt Set LanguageProc 6:31

Xt Set MappedWienManaged 6: 31
XtSetMultidickTine 6:31

Xt Set Sensitive 6:31

Xt Set Subval ues 6:31

Xt Set TypeConverter 6:31

Xt Set Val ues 6:31

Xt Set WMCol or mapW ndows 6: 31
Xt Shel | Strings 6:32

IN-31

