
SYSTEM V
APPLICATION BINARY INTERFACE

Edition 3.1

Contents

Table of Contents
Table of Contents
INTRODUCTION
SOFTWARE INSTALLATION
LOW-LEVEL SYSTEM INFORMATION
OBJECT FILES
PROGRAM LOADING AND DYNAMIC LINKING
LIBRARIES
FORMATS AND PROTOCOLS
SYSTEM COMMANDS
EXECUTION ENVIRONMENT
WINDOWING AND TERMINAL INTERFACES
DEVELOPMENT ENVIRONMENTS FOR AN ABI SYSTEM
NETWORKING
Index

1 INTRODUCTION
System V Application Binary Interface 1-1
Foundations and Structure of the ABI 1-2
How to Use the System V ABI 1-4
Definitions of Terms 1-8

2 SOFTWARE INSTALLATION
Software Installation and Packaging 2-1
File Formats 2-7
File Tree for Add-on Software 2-15
Commands That Install, Remove and Access Packages 2-16

Table of Contents i

3 LOW-LEVEL SYSTEM INFORMATION
Introduction 3-1
Character Representations 3-2
Machine Interface (Processor-Specific) 3-3
Function Calling Sequence (Processor-Specific) 3-4
Operating System Interface (Processor-Specific) 3-5
Coding Examples (Processor-Specific) 3-6

4 OBJECT FILES
Introduction 4-1
ELF Header 4-4
Sections 4-10
String Table 4-21
Symbol Table 4-22
Relocation 4-27

5 PROGRAM LOADING AND DYNAMIC
LINKING
Introduction 5-1
Program Header 5-2
Program Loading (Processor-Specific) 5-11
Dynamic Linking 5-12

6 LIBRARIES
Introduction 6-1
System Library 6-4
C Library 6-10
Network Services Library 6-15
Socket Library 6-18
Curses Library 6-19
X Window System Library 6-23
X Toolkit Intrinsics Library 6-29
System Data Interfaces 6-33

ii Table of Contents

7 FORMATS AND PROTOCOLS
Introduction 7-1
Archive File 7-2
Other Archive Formats 7-6
Terminfo Data Base 7-7
Formats and Protocols for Networking 7-10

8 SYSTEM COMMANDS
Commands for Application Programs 8-1

9 EXECUTION ENVIRONMENT
Application Environment 9-1
File System Structure and Contents 9-3

10 WINDOWING AND TERMINAL INTERFACES
The System V Window System 10-1
System V Window System Components 10-3

11 DEVELOPMENT ENVIRONMENTS FOR AN
ABI SYSTEM
Development Environments 11-1

12 NETWORKING
Networking 12-1
Required STREAMS Devices and Modules 12-2
Required Interprocess Communication Support 12-3
Required Transport Layer Support 12-4
Required Transport Loopback Support 12-7
Optional Internet Transport Support 12-8

Table of Contents iii

IN Index
Index IN-1

iv Table of Contents

Figures and Tables

Figure 2-1: Package File Tree Organization 2-2
Figure 2-2: Data Stream File Layout for Distribution Media 2-4
Figure 4-1: Object File Format 4-1
Figure 4-2: 32-Bit Data Types 4-3
Figure 4-3: ELF Header 4-4
Figure 4-4: e _ i d e n t [] Identification Indexes 4-7
Figure 4-5: Data Encoding E L F D A T A 2 L S B 4-9
Figure 4-6: Data Encoding E L F D A T A 2 M S B 4-9
Figure 4-7: Special Section Indexes 4-10
Figure 4-8: Section Header 4-12
Figure 4-9: Section Types, s h _ t y p e 4-13
Figure 4-10: Section Header Table Entry: Index 0 4-15
Figure 4-11: Section Attribute Flags, s h _ f l a g s 4-16
Figure 4-12: s h _ l i n k and s h _ i n f o Interpretation 4-17
Figure 4-13: Special Sections 4-17
Figure 4-14: String Table Indexes 4-21
Figure 4-15: Symbol Table Entry 4-22
Figure 4-16: Symbol Binding, E L F 3 2 _ S T _ B I N D 4-23
Figure 4-17: Symbol Types, E L F 3 2 _ S T _ T Y P E 4-24
Figure 4-18: Symbol Table Entry: Index 0 4-26
Figure 4-19: Relocation Entries 4-27
Figure 5-1: Program Header 5-2
Figure 5-2: Segment Types, p _ t y p e 5-3
Figure 5-3: Segment Flag Bits, p _ f l a g s 5-6
Figure 5-4: Segment Permissions 5-6
Figure 5-5: Text Segment 5-7
Figure 5-6: Data Segment 5-7
Figure 5-7: Note Information 5-8
Figure 5-8: Example Note Segment 5-9
Figure 5-9: Dynamic Structure 5-15
Figure 5-10: Dynamic Array Tags, d _ t a g 5-15
Figure 5-11: Symbol Hash Table 5-21
Figure 5-12: Hashing Function 5-22
Figure 6-1: Shared Library Names 6-2
Figure 6-2: l i b s y s Contents, Names with Synonyms 6-5

Table of Contents v

Figure 6-3: l i b s y s Contents, Names Without Synonyms 6-6
Figure 6-4: l i b s y s Contents, Additional Services 6-6
Figure 6-5: l i b s y s Contents, Global External Data Symbols 6-7
Figure 6-6: l i b c Contents, Names without Synonyms 6-10
Figure 6-7: l i b c Contents from XSH4.2, Names without Synonyms 6-11
Figure 6-8: l i b c Contents, Names with Synonyms 6-11
Figure 6-9: l i b c Contents from XSH4.2, Names with Synonyms 6-12
Figure 6-10: l i b c Contents, Names without Synonyms, non-ANSI 6-12
Figure 6-11: l i b c Contents, Global External Data Symbols 6-13
Figure 6-12: l i b n s l Contents, Part 1 of 3 6-15
Figure 6-13: l i b n s l Contents, Part 2 of 3 6-15
Figure 6-14: l i b n s l Contents, Part 3 of 3 6-16
Figure 6-15: l i b n s l Contents, Global External Data Symbols 6-17
Figure 6-16: l i b s o c k e t Contents, Part 1 of 2 6-18
Figure 6-18: l i b s o c k e t Contents, Part 2 of 2 6-18
Figure 6-19: l i b c u r s e s Contents 6-19
Figure 6-20: l i b c u r s e s Contents, Global External Data Symbols 6-22
Figure 6-21: l i b X Contents 6-23
Figure 6-22: l i b X 1 1 Contents, Callback Function Names 6-28
Figure 6-23: l i b X t Contents 6-29
Figure 6-24: l i b X t Contents, Global External Data Symbols 6-31
Figure 6-25: Minimum Sizes of Fundamental Data Objects 6-34
Figure 7-1: < a r . h > 7-2
Figure 7-2: Example String Table 7-4
Figure 7-3: Archive Word Encoding 7-4
Figure 7-4: Example Symbol Table 7-5
Figure 8-1: Commands required in an ABI Run-time Environment 8-1
Figure 8-2: XPG4.2 Commands required in an ABI Run-time Environment 8-2
Figure 9-1: Required Devices in an ABI Run-time Environment 9-4
Figure 11-1: Required l i b m Functions 11-4
Figure 12-1: Required STREAMS Devices 12-2
Figure 12-2: Required STREAMS Modules 12-2
Figure 12-3: TLI-XTI Error Codes 12-4
Figure 12-4: t _ l o o k Events 12-4
Figure 12-5: XTI Flag Definitions 12-5
Figure 12-6: XTI Service Types 12-5
Figure 12-7: Flags to be used with t _ a l l o c 12-5
Figure 12-8: XTI Application States 12-5
Figure 12-9: XTI values for t_info flags member 12-6
Figure 12-10: TCP Options 12-10
Figure 12-11: IP Options 12-10
Figure 12-12: TCP Options 12-11
Figure 12-13: UDP Options 12-11
Figure 12-14: IP Options 12-12
Figure 12-15: Data Structures 12-13

vi Table of Contents

1 INTRODUCTION

System V Application Binary Interface 1-1

Foundations and Structure of the ABI 1-2
Conformance Rule 1-2

How to Use the System V ABI 1-4
Base and Optional Components of the ABI 1-6
Evolution of the ABI Specification 1-7

Definitions of Terms 1-8

Table of Contents i

System V Application Binary Interface

The System V Application Binary Interface , or ABI, defines a system interface for
compiled application programs and a minimal environment for support of instal- E
lation scripts. Its purpose is to document a standard binary interface for applica-
tion programs on systems that implement an operating system that complies with X
the X/Open Common Application Environment Specification, Issue 4.2 and the System X
V Interface Definition, Third Edition .

The ABI defines a binary interface for application programs that are compiled and
packaged for System V implementations on many different hardware architec-
tures. Since a binary specification must include information specific to the com-
puter processor architecture for which it is intended, it is not possible for a single
document to specify the interface for all possible System V implementations.
Therefore, the System V ABI is a family of specifications, rather than a single one.

The System V ABI is composed of two basic parts: A generic part of the
specification describes those parts of the interface that remain constant across all
hardware implementations of System V, and a processor-specific part of the
specification describes the parts of the specification that are specific to a particular
processor architecture. Together, the generic ABI and the processor-specific sup-
plement for a single hardware architecture provide a complete interface
specification for compiled application programs on systems that share a common
hardware architecture.

This document is the generic ABI. It must be used in conjunction with a supple-
mental specification containing processor-specific information. Whenever a sec-
tion of this specification must be supplemented by processor-specific information,
the text will reference the processor supplement. The processor supplement may
also contain additional information that is not referenced here.

System V Application Binary Interface 1-1

Foundations and Structure of the ABI

The System V ABI is based on several reference documents. Because it is a binary
interface, it includes the fundamental set of machine instructions for that proces-
sor to which the specification applies, and includes many other low-level
specifications that may be strongly affected by the characteristics of a given
processor’s architecture. It also includes higher-level information about System V.

The interfaces specified here were drawn from existing standards for operating
systems, user interfaces, programming languages, and networking, including
those on the following list and others.

The architecture manual for the target system’s processor.

The System V Interface Definition, Third Edition .

The IEEE POSIX 1003.1-1988 standard operating system specification. E

The X/Open Common Application Environment Specification (CAE), Issue 4.2 . X

The International Standard, ISO/IEC 9899:1990 (E), Programming Languages - E
C, 12/15/90.

The X Window SystemTM, X Version 11, Release 5, graphical user interface G
specification.

Conformance Rule

NOTE

All interfaces in the X/Open CAE Specification, Issue 4.2 (excluding those X
marked Withdrawn) and certain interfaces in the System V Application Binary X
Interface, Third Edition are contained in this document, the System V Applica- X
tion Binary Interface, Edition 3.1 (System V ABI 3.1). Note that all interfaces in X
the System V ABI are conformant to XPG4.2. Those interfaces that were ori- X
ginally in the System V Application Binary Interface, Third Edition will also be X
conformant to the System V Interface Definition, Third Edition in cases where X
the SVID adds additional functionality over XPG4.2. In all cases where System X
V Interface Definition, Third Edition functionality conflicts with X/Open CAE X
Specification, Issue 4.2 functionality, X/Open CAE Specification, Issue 4.2 is fol- X
lowed. For this reason certain libraries presented in Chapter 6 and Chapter 8 X
will be divided into two tables. The first table presents interfaces which are X
governed by the specifications in the X/Open CAE Specification, Issue 4.2 and X
the System V Interface Definition, Third Edition. The second tables presents X
interfaces which were not originally in the System V Application Binary Interface, X
Third Edition and are therefore only governed by the specifications in the
X/Open CAE Specification, Issue 4.2.

1-2 INTRODUCTION

The ABI is divided into sections dealing with specific portions of the interface.
Some sections include a large amount of detailed information, while others con-
tain lists of interface components and pointers to other documents.

In general, this specification does not duplicate information that is available in
other standards documents. For example, the ABI section that describes system
service routines includes a list of the system routines supported in this interface,
formal declarations of the data structures they use that are visible to application
programs, and a pointer to the X/Open CAE Specification, Issue 4.2 and the System V X
Interface Definition, Third Edition for information about the syntax and semantics of X
each call. Only those routines not described in standards referenced by this docu- X
ment are described in the ABI.

Other sections of the ABI are written using this same model. The ABI identifies
operating system components it includes, provides whatever information about
those components that is not available elsewhere, and furnishes a reference to
another document for further information. Information referenced in this way is
as much a part of the ABI specification as is the information explicitly included
here.

Foundations and Structure of the ABI 1-3

How to Use the System V ABI

The complete System V ABI is composed of this generic ABI specification and the
supplemental processor-specific specification for a particular processor architec-
ture. These two documents constitute a specification that should be used in con-
junction with the publicly-available standards documents it references (some of
these are listed above). The ABI enumerates the system components it includes,
but descriptions of those components may be included entirely in the ABI, partly
in the ABI and partly in other documents, or entirely in other reference docu-
ments.

Application programmers who wish to produce binary packages that will install
and run on any System V-based computer should follow this procedure:

1 . Write programs using the X/Open CAE Specification, Issue 4.2 and the Level 1 X
interfaces in the System V Interface Definition, Third Edition in the following
sections. (See the Conformance Rule above.) Routines guaranteed to be
present on all ABI-conforming systems as dynamically-linkable resources
are listed below.

BA_OS: All SVID Level 1 routines are available as shared E
resources.

BA_LIB: All SVID Level 1 routines are available as shared E
resources except for the math routines which may be available as E
an ABI compliant static archive (see Chapter 11):

a c o s a c o s h a s i n a s i n h a t a n
a t a n 2 a t a n h c b r t c e i l c o s
c o s h e r f e r f c e x p f a b s
f l o o r f m o d g a m m a h y p o t j 0
j 1 j n l g a m m a l o g 1 0 l o g
m a t h e r r p o w r e m a i n d e r s i n s i n h *
s q r t t a n t a n h y 0 y 1
y n

KE_OS: All SVID Level 1 routines in this section are guaranteed to E
be present as shared resources on an ABI-conforming system.

RS_LIB: All SVID routines in this section are guaranteed to be
present as shared resources on ABI-conforming systems that
include networking facilities.

1-4 INTRODUCTION

The routines listed in the ‘‘System Library’’ , ‘‘Network Services Library’’ , E
and the ‘‘X Window System Library’’ (see: Chapter 6, 10) must be accessed E
as dynamically-linked resources. Other routines may be dynamically
linked, or may be statically bound into the application from an archive
library.

2 . Use only the system utilities and environment information described in
Chapters 8 and 9 of the ABI.

3 . Compile programs so that the resulting executable programs use the
specified interface to all system routines and services, and have the format
described in the ABI specification. The commands available on a system E
that also supports an ABI development environment is defined in Chapter E
11.

4 . Package the application in the format and on the media described in the
ABI, and install or create files only in the specified locations provided for
this purpose when the application is installed. The packaging tools avail- E
able on a system that also supports an ABI development environment is E
defined in Chapter 11.

The manufacturers of System V-based computer systems who wish to provide the
system interface described in this specification must satisfy a complementary set
of requirements:

1 . Their system must implement fully the architecture described in the
hardware manual for their target processor architecture.

2 . The system must be capable of executing compiled programs having the
format described in this specification.

3 . The system must provide libraries containing the routines specified by the
ABI, and must provide a dynamic linking mechanism that allows these rou-
tines to be attached to application programs at run time. All the system
routines must behave as specified by the X/Open CAE Specification, Issue 4.2 X
and the System V Interface Definition, Third Edition (see the Conformance
Rule above).

4 . The system’s map of virtual memory must conform to the requirements of
the ABI.

5 . The system’s low-level behavior with respect to function call linkage, sys-
tem traps, signals, and other such activities must conform to the formats
documented in the ABI.

How to Use the System V ABI 1-5

6 . The system’s compilation system, if present, must compile source code into
executable files having the formats and characteristics specified in the ABI.

7 . The system must provide all files and utilities specified as part of the ABI, in
the format defined here and in other referenced documents. All commands
and utilities must behave as documented in the X/Open CAE Specification, X
Issue 4.2 and the System V Interface Definition, Third Edition (see the Confor- X
mance Rule above). The system must also provide all other components of
an application’s run-time environment that are included or referenced in
the ABI specification.

8 . The system must install packages using the formats and procedure
described in the ABI, and must be capable of accepting installable software
packages, either through physical media or through a network interface.

Base and Optional Components of the ABI

The ABI provides two levels of interface specification: Base and Optional. Base
components of the ABI are required to be present in all ABI-conforming systems.
Optional components may be absent on an ABI-conforming system, but, when
they are present, they must conform to the specification given in the ABI. All com-
ponents of the ABI are to be considered Base components unless they are explicitly
described as Optional like the one that follows.

NOTE

THE FACILITIES AND INTERFACES DESCRIBED IN THIS SECTION ARE
OPTIONAL COMPONENTS OF THE System V Application Binary Interface.

This distinction is necessary because some ABI capabilities depend on the presence
of hardware or other facilities that may not be present, such as integral graphics
displays or network connections and hardware. The absence of such facilities
does not prevent a System V-based system from conforming with the ABI
specification, though it may prevent applications that need these facilities from
running on those systems.

1-6 INTRODUCTION

Evolution of the ABI Specification

The System V Application Binary Interface will evolve over time to address new
technology and market requirements, and will be reissued at intervals of approxi-
mately three years. Each new edition of the specification is likely to contain exten-
sions and additions that will increase the potential capabilities of applications that
are written to conform to the ABI.

The System V Application Binary Interface, Edition 3.1 includes certain elements X
marked as DEPRECATED. An interface, header, or command has been marked as X
DEPRECATED if it is specified as To Be Withdrawn in the X/Open CAE X
Specification, Issue 4.2 , or if it is not present in the X/Open CAE Specification, Issue X
4.2 and is designated as Level 2 in the System V Interface Definition, Third Edition . X
Long term support for such functions can not be presumed.

How to Use the System V ABI 1-7

Definitions of Terms

The following terms are used throughout this document.

ABI or System V ABI: Refers to the specification that is the subject of this
document, the System V Application Binary Interface . The System V ABI for a
particular system is composed of the generic ABI and the Processor-specific
Supplement for the processor used in the system.

generic System V ABI or generic ABI: Consists of the processor-independent
portions of the System V Application Binary Interface.

Processor-specific ABI or Processor-specific Supplement: Consists of those por-
tions of the System V ABI that are specific to a particular processor architec-
ture. Together, the generic ABI and the appropriate Processor-specific Supple-
ment comprise the System V ABI for systems employing a particular proces-
sor architecture.

ABI-conforming system: A computer system that provides the binary sys-
tem interface for application programs described in the System V ABI.

ABI-conforming program: A program written to include only the system
routines, commands, and other resources included in the ABI, and a pro-
gram compiled into an executable file that has the formats and characteris-
tics specified for such files in the ABI, and a program whose behavior com-
plies with the rules given in the ABI.

ABI-nonconforming program: A program which has been written to
include system routines, commands, or other resources not included in the
ABI, or a program which has been compiled into a format different from
those specified in the ABI, or a program which does not behave as specified
in the ABI.

undefined behavior: Behavior that may vary from instance to instance or
may change at some time in the future. Some undesirable programming
practices are marked in the ABI as yielding undefined behavior.

unspecified property: A property of an entity that is not explicitly included
or referenced in this specification, and may change at some time in the
future. In general, it is not good practice to make a program depend on an
unspecified property.

1-8 INTRODUCTION

NOTE

Diffmarkings have been retained in the text of this book to indicate in which
revisions of System V certain modifications were made to the ABI.

A "" character in the right hand margin indicates a corrective change in the
ABI made just after the Release 4 ABI was published.

An "E" character in the right hand margin indicates a change in the ABI made
in UNIX System V Release 4.1.

A "G" character in the right hand margin indicates a change in the ABI made
in UNIX System V Release 4.2.

A "X" character in the right hand margin indicates a change in the ABI made X
to merge in XPG4.2 source API requirements.

Definitions of Terms 1-9

2 SOFTWARE INSTALLATION

Software Installation and Packaging 2-1
Installation Media 2-1
Physical Distribution Media and Formats 2-1
Media Format 2-1
Software Structure of the Physical Media 2-2

File Formats 2-7
pkginfo File 2-7
The pkgmap File 2-9
The copyright File 2-10
The space File 2-10
The depend File 2-11
The compver File 2-11
Installation and Removal Scripts 2-11

File Tree for Add-on Software 2-15

Commands That Install, Remove and
Access Packages 2-16

Table of Contents i

Software Installation and Packaging

Installation Media

This section of the ABI describes the media from which application software can
be installed on all ABI-conforming systems. It includes the following characteris-
tics of supported media:

Physical Distribution Media and Formats: Specification of the physical
media that may be used to distribute ABI-conforming application software.

Media Format: Format of the software on the installation medium.

Software Structure of the Physical Media: A functional description of the
files contained on the physical media and their layout on the media.

File Formats: The format and interpretation of installation data files.

Physical Distribution Media and Formats

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

Media Format

Packages are stored as a continuous data stream on the distribution media. The
continuous data stream is valid for all media. The data stream can be created X
using d d and c p i o utilities.

Software Installation and Packaging 2-1

Software Structure of the Physical Media

Add-on application software is bundled and installed in units called packages.
Multiple packages can be delivered on a single volume of media or a package can
span multiple volumes of media. A package that spans multiple volumes of
media must be the only package in the distribution. c p i o always pads headers to E
a 512 byte boundary, and archives to an integral block size, set by the - C or - B E
option. Each archive on the media is extended to the block size specified by null E
padding.

Software to be bundled as a package must be organized as a file tree subdirectory
as shown in Figure 2-1. The data stream from the distribution media is read onto
disk into a file subtree of this format before the actual installation begins. Figure
2-2 shows the sequence of files in the data stream stored on distribution media.

Figure 2-1: Package File Tree Organization

/

p k g i n f o p k g m a p

c o p y r i g h t 0 or more
scripts

c o m p v e r d e p e n d s p a c e

package
objects

r e l o c r o o t

package
objects

i n s t a l l

pkg

.

.

.

2-2 SOFTWARE INSTALLATION

The following is a brief description of files and directories shown in Figure 2-1.
Entries in c o n s t a n t w i d t h type are standard file or directory names; the names
of the other items are package-specific.

The following files are required:

p k g i n f o: describes the package.

p k g m a p: describes each package object (files, directories, and so on).

The following files and directories are optional:

c o m p v e r: describes previous versions of the package with which this ver-
sion is backward compatible.

c o p y r i g h t: copyright notice for the package.

d e p e n d: describes dependencies and incompatibilities across packages.

i n s t a l l: contains optional package information files.

package objects: executables, data files, and so on, belonging to the package.

r e l o c: contains relocatable package objects (files whose pathnames on the
target system are determined at the time of installation rather than at the
time of package creation).

r o o t: contains non-relocatable package objects.

s p a c e: describes space requirements beyond package objects.

scripts: zero or more scripts to handle package-specific installation and
removal requirements.

Software Installation and Packaging 2-3

Figure 2-2: Data Stream File Layout for Distribution Media

package part
(cpio archive):

.

.

.

.

.

.

.

.

.

pkgB/pkgmap
pkgB/pkginfo
pkgA/pkgmap
pkgA/pkginfo

pkgA/root.1/*
pkgA/install/*
pkgA/pkginfo

pkgA/reloc.1/*

pkgB/reloc.1/*
pkgB/root.1/*
pkgB/install/*
pkgB/pkginfo

pkgA/pkginfo
pkgA/root.2/*
pkgA/reloc.2/*

end of header

.

.

.

pkgB num_parts max_part_size [N ... N]
pkgA num_parts max_part_size [N ... N]

PaCkAgE DaTaStReAm[: type]header:

special information
files (cpio archive):

package part
(cpio archive):

package part
(cpio archive):

2-4 SOFTWARE INSTALLATION

The data stream format begins with a header containing a series of new-line ter- E
minated ASCII character strings. A special character string on the first line
identifies the start of the header. It should be in the following format:

PaCkAgE DaTaStReAm[: type]

When no type is defined, the data stream is continuous. Additional types of data
streams may be specified in a processor-specific ABI supplement. Such additional
types would deal with media-specific physical storage attributes, for example,
record size, blocking factors, or alignment of package parts on the media.

Next are one or more special lines, one for each package in the distribution. Each
line has the following format:

pkginstance num_parts max_part_size [N . . . N]

where:

pkginstance is the package identifier made up of the package abbreviation
(described later as the P K G parameter in the p k g i n f o file) and an optional
suffix.

num_parts is the number of parts into which the package is divided. As
shown in Figure 2-2, a part is a collection of files contained in the c p i o X
archive. A part is the atomic unit by which a package is processed. Each
part must fit entirely on a distribution media volume, that is, a part cannot
cross volumes. A developer chooses the criteria for grouping files into a
part.

max_part_size is the maximum number of 512-byte blocks consumed by a
single part of the package.

N . . . N are optional fields to indicate the number of parts stored on the
sequential volumes of media which contain the package. For example,

pkgA 6 2048 2 3 1

indicates that pkgA consists of six parts. The largest part is 2048 512-byte
blocks in size. The first two parts exist on the first volume, the next three
parts exist on the second volume, and the last part exists on the third, and
last, volume. These fields only apply where multiple volumes are needed to
distribute a package. Otherwise, these fields should not appear and any
process reading the header should assume that all parts of the package
reside on the current volume. When these fields are used, there can only be
one package in the data stream.

Software Installation and Packaging 2-5

A special new-line terminated character string on a separate line identifies the end E
of the header. It should be in the following format:

end of header

The header must be padded to a 512-byte boundary.

Following the header is a c p i o archive containing special information files for
each package. The rest of the data stream consists of package parts. Note that a
given package may consist of one or more parts, that is, c p i o archives. A pack-
ages which requires multiple parts must meet the following conditions:

Each part must contain the entire p k g i n f o file.

Each part includes its own r o o t and r e l o c directories and these directories
are numbered. For example, a package that requires n parts has r o o t . 1 and
r e l o c . 1 through r o o t .n and r e l o c .n. n is limited to eight digits.

The i n s t a l l directory and its contents are only provided in the first part.

2-6 SOFTWARE INSTALLATION

File Formats

pkginfo File

The p k g i n f o file describes the package, as a whole. Each line is of the form
parameter=value. The list below describes defined parameters. These parameters
can be retrieved via p k g i n f o(AS_CMD) and/or have a specific meaning to the
package installation and removal commands (p k g a d d(AS_CMD) and
p k g r m(AS_CMD)). No specific ordering of parameters is required. Lines begin-
ning with # are treated as comments.

P K G: Package abbreviation, limited to 9 characters. The first character must
be alphabetic; remaining characters can be alphabetic, numeric, or the char-
acters + and -. i n s t a l l, n e w, and a l l are not valid package abbreviations.

N A M E: Package name, limited to 256 ASCII characters.

A R C H: A comma-separated list of identifiers that specify the architecture(s)
on which the package can run. Each architecture identifier is limited to 16
ASCII characters; the character ’,’ is invalid.

V E R S I O N: Version identifier, limited to 256 ASCII characters. The first char-
acter can not be a left parenthesis due to the syntax of the d e p e n d file. This
identifier is vendor-specific information.

D E S C: Descriptive text, limited to 256 ASCII characters.

V E N D O R: Vendor identifier, limited to 256 ASCII characters.

H O T L I N E: Phone number or mailing address where further information may
be requested or bugs reported. The value of this parameter is limited to 256
ASCII characters.

E M A I L: An electronic mail address, with the same purpose and length limita-
tion as the H O T L I N E parameter.

V S T O C K: Vendor stock number, limited to 256 ASCII characters.

C A T E G O R Y: A comma-separated list of categories to which the package
belongs. Add-on software packages must state their membership in the
a p p l i c a t i o n category. Users can request information on all packages in
specific categories via p k g i n f o(AS_CMD). Category identifiers are case-
insensitive and are limited to 16 alphanumeric characters, excluding the
space and comma characters.

File Formats 2-7

P S T A M P: Production stamp, limited to 256 ASCII characters.

I S T A T E S: Space-separated list of valid run-levels during which this package
can be installed. Run-levels are integers in the range 0 through 6, s and S
[see System V Interface Definition, Third Edition , i n i t(AS_CMD)].

R S T A T E S: Same as I S T A T E S, but applies to package removal.

U L I M I T: Temporary file size limit to use during installation of this package
[see g e t r l i m i t].

I N T O N L Y: A parameter that indicates a package can only be installed interac-
tively by the p k g a d d(AS_CMD) command. If this parameter is supplied and
set to any non-null value (for example, y or y e s), the package can only be
installed interactively. Otherwise, the package can be installed in a nonin-
teractive mode using p k g a s k (A S _ C M D) or p k g a d d with the - n option.

M A X I N S T: An integer that specifies the maximum number of instances of this
package that can be installed on a system at one time. If this parameter is
not supplied, a default of 1 is used (at most one copy of the package can be
installed on a system at any time).

B A S E D I R: The pathname to a default directory where ‘‘relocatable’’ files may 
be installed. If B A S E D I R is blank and the basedir variable in the a d m i n file is 
set to ‘‘default,’’ the package is not considered relocatable. In this case, if 
files have relative pathnames, package installation will fail. An administra- 
tor can override B A S E D I R by setting the basedir variable in the a d m i n file.

C L A S S E S: A space-separated list of package object classes to be installed.
Every package object is assigned to one class (in the p k g m a p file). Class
assignment can be used to control (for example, based on administrator
input at the time of installation) which objects are installed and to provide
specific actions to be taken to install or remove them. The value of this
parameter can be overridden at the time of installation.

P K G, N A M E, A R C H, V E R S I O N, C A T E G O R Y and B A S E D I R are mandatory parameters, E
that is, package developers must supply them. The rest are optional.

Other parameters may be defined in the p k g i n f o file. If they are used as part of
package object pathnames in the p k g m a p file, the value supplied in the p k g i n f o
file is used as a default and may be overridden at the time of
installation. Other parameters will be made part of the environment in which ins-
tallation scripts execute.

2-8 SOFTWARE INSTALLATION

The pkgmap File

Each line in the p k g m a p file describes a package object or installation script (with
the exception of one p k g m a p entry, described at the end of this section). The fol-
lowing list describes the space-separated fields in each p k g m a p entry; their order
must be the same as in the list. Lines in the file that begin with # are ignored.

part: A positive integer that indicates the part of a multi-part package in
which this pathname resides.

ftype: A one-character file type identifier from the set below:

f a file

d a directory

i an installation or removal script

l a linked file

s a symbolic link

p a named pipe

b a block special device

c a character special device

e a file installed or removed by editing

v a volatile file, whose contents are expected to change as the
package is used on the system

x an exclusive directory, which should contain only files installed
as part of this or some other standard format package

class: A package object class identifier, limited to 12 characters. n o n e is used
to specify no class membership. This field is not specified for files whose
ftype is i.

pathname: The pathname describing the location of the file on the target
machine. For files of ftype, l or s, pathname must be of the form path1=path2,
specifying the destination (path1) and source (path2) files to be linked. Spe-
cial characters, such as an equal sign (=), are included in pathnames by sur-
rounding the entire pathname in single quotes (as in, for example,
’ / u s r / l i b / ̃ = ’).

The pathname may contain variables which support relocation of the file. A
$parameter may be embedded in the pathname structure. $ B A S E D I R can be
used to identify the parent directories of the path hierarchy, making the
entire package easily relocatable. Default values for parameter and B A S E D I R
must be supplied in the p k g i n f o file and may be overridden at installation.

File Formats 2-9

major: The major device number, applicable to files whose ftype is b or c.

minor: The minor device number, applicable to files whose ftype is b or c.

mode: The octal mode of the file. ? indicates that no particular mode is
required. This field is not provided for files whose ftype is l, s or i.

owner: The uid of the owner of the file; it must be a legal uid. ? indicates that
no particular owner is required. This field is not provided for files whose
ftype is l, s or i.

group: The group to which the file belongs, limited to 14 characters. ? indi-
cates that no particular group is required. This field is not provided for files
whose ftype is l, s or i.

size: The file size in bytes. This field is not provided for files whose ftype is d,
x, p, b, c, s or l.

cksum: The checksum of the file contents, as calculated by s u m. This field is
not provided for files whose ftype is d, x, p, b, c, s or l.

modtime: The time of last modification as reported by the function s t a t. X
This field is not provided for files whose ftype is d, x, p, b, c or l.

An additional line in the p k g m a p file, beginning with a colon, provides informa-
tion about the media on which the package is distributed. Its format is:

:number_of_parts maximum_part_size

number_of_parts specifies the number of parts which compose this package.
maximum_part_size specifies the size, in 512-byte blocks, of the largest part.

The copyright File

The contents of the c o p y r i g h t file will be displayed on stdout at the time of instal-
lation; there are no format requirements.

The space File

The s p a c e file describes disk block and inode requirements for the package
beyond files listed in the p k g m a p file and provided on the media. Each line in the
file contains the following three space-separated fields:

pathname: A directory name. Naming conventions (with respect to indicat-
ing relocatability) are the same as for the pathname field in the p k g m a p file.

blocks: The number of 512-byte blocks required.

2-10 SOFTWARE INSTALLATION

inodes: The number of distinct files required.

The depend File

The d e p e n d file describes dependencies across packages. The format of each entry
is as follows:

type pkg name
(arch)version

The following field definitions and rules apply:

type: Describes the type of dependency:

P a prerequisite for installation

I an incompatibility

R reverse dependency (the referenced package depends on this pack-
age)

pkg: The package abbreviation, as defined in the p k g i n f o file.

name: The package name, as defined in the p k g i n f o file.

arch: The package architecture, as defined in the p k g i n f o file.

version: The package version, as defined in the p k g i n f o file.

There may be zero or more (arch)version lines.

(arch)version lines must begin with white space.

The compver File

The c o m p v e r file specifies previous versions of the package with which this ver-
sion is backward compatible. It is used for dependency checking across packages,
in conjunction with the d e p e n d file. It consists of version identifiers, as defined in
the p k g i n f o file, one per line.

Installation and Removal Scripts

This section describes installation and removal scripts that may be provided by a
package to meet package-specific needs. Scripts are executed by the command s h
and therefore must be either shell scripts or executable programs. In the case of
recovery from an interrupted installation they may be re-executed; they should be
written so that multiple invocations produce the same results as a single invoca-
tion.

File Formats 2-11

NOTE

Since substantive differences exist between the shell traditionally provided by X
System V systems and the new X/Open CAE Specification, Issue 4.2 shell, and X
since many shell scripts are liable to be affected by these differences, it is X
recommended that installation scripts and any other shell scripts that have X
stringent compatibility requirements continue to use the traditional System V X
shell. New shell scripts may wish to take advantage of the capabilities of the
X/Open CAE Specification, Issue 4.2 shell.

The request Script

The r e q u e s t script, if provided, is the first script executed at the time of package
installation. Its purpose is to interact with the user and modify details of the ins-
tallation process as a result of this interaction. The script writes shell variable
assignments to the file named by its only argument. It is executed with uid r o o t E
and gid s y s. s t d i n, s t d o u t and s t d e r r are all attached to / d e v / t t y. The follow-
ing variables are defined as part of the installation procedure and may be set by
the r e q u e s t script:

C L A S S E S: As defined in the p k g i n f o file.

Procedure Scripts

Four scripts may be provided by a package to handle package-specific require-
ments - p r e i n s t a l l, p o s t i n s t a l l, p r e r e m o v e and p o s t r e m o v e.

The following constraints apply to these procedure scripts:

When the script is executed, s t d i n is attached to / d e v / t t y; s t d o u t and E
s t d e r r are attached to / d e v / t t y.

Each pathname created or modified by a procedure script during installa-
tion or removal, and which should be considered part of the package, must
be logically added or removed from the package via the
i n s t a l l f(AS_CMD) or r e m o v e f(AS_CMD) commands.

Procedure scripts are executed with uid r o o t and gid o t h e r.

Class Scripts

Class scripts provide non-standard installation and removal actions for classes of
package objects (the membership of objects in a class is specified in the p k g m a p
file). The following constraints apply:

Each class included in the value of the C L A S S E S parameter is installed, in the
order in which they appear in that parameter. Objects in class n o n e are
installed first.

2-12 SOFTWARE INSTALLATION

If an object belongs to class n o n e or no class script is provided for the class,
the object is copied from the medium to the target system during installa-
tion, and removed during removal.

Class script names are of the form operation.class, where operation is either i
(for install) or r (for remove), and class is the class name, limited to 12 char-
acters. Class names beginning with 0 are reserved.

Class scripts will execute as uid r o o t and gid o t h e r.

During installation, the script is executed with either no arguments or the
single argument E N D O F C L A S S. s t d i n contains a list of filename pairs, of the
form source_pathname destination_pathname. The source_pathname parameter
is either a pathname on the medium or / d e v / n u l l to indicate there is no file
to copy from the medium (for example, a directory). destination_pathname is
the target pathname. Only files that are members of the class and are not
identical to files already on the system are provided to the script.

The script is invoked with the single argument E N D O F C L A S S to indicate that
there are no more files belonging to the class once end of file is reached on
s t d i n during the current invocation of the script.

During removal, the script is executed with no arguments. s t d i n contains a
list of filenames, including all members of the class except those shared by
other installed packages whose ftype in the p k g m a p file is something other
than e.

Two standard classes are defined: b u i l d and s e d. The name of the file on 
the medium is the name of the file on the target system to be modified.

For the s e d class, the file provided on the medium contains the command 
s e d instructions. Lines of the format ! i n s t a l l and ! r e m o v e mark the
beginning of instructions which apply to installation and removal, respec- 
tively. The file on the target system will be modified by the output of s e d, 
using the provided data.

A file that belongs to the b u i l d class is executed with a single argument,
i n s t a l l or r e m o v e. Its output (on s t d o u t) is written to the file it references
on the target system.

Exit Codes Used by Scripts

Scripts shall exit with an additive combination of one of the first four and one of E
the last two exit codes listed below:

0: successful execution

File Formats 2-13

1: fatal error
2: warning
3: interruption
1 0: reboot after installation of all packages
2 0: reboot after installation of this package

For example, the exit code for a script resulting in a warning condition and that
requires an immediate reboot is 2 2.

2-14 SOFTWARE INSTALLATION

File Tree for Add-on Software

/ o p t, / v a r / o p t and / e t c / o p t are reserved in the file tree for the installation of
application software packages. Each add-on software package should adhere to
the following rules:

Static package objects should be installed in / o p t /pkg, where pkg is the
package abbreviation or instance.

Package objects that change in normal operations (for example, log and
spool files) should be installed in / v a r / o p t /pkg.

Machine-specific configuration files should be installed in / e t c / o p t /pkg.

Executables that are directly invoked by users should be installed in
/ o p t /pkg/bin.

Only package objects that must reside in specific locations within the system
file tree in order to function properly (for example, special files in / d e v)
should be installed in those locations.

File Tree for Add-on Software 2-15

Commands That Install, Remove and Access
Packages

The following commands and library routines are used to install and remove
packages and to retrieve information about installed packages. They will be
included in every ABI-conforming system, and are defined in the System V Inter-
face Definition, Third Edition .

p k g a d d(AS_CMD): installs packages

p k g r m(AS_CMD): removes packages

p k g c h k(AS_CMD): checks installed packages

p k g i n f o(AS_CMD): display information about packages

p k g a s k(AS_CMD): runs the request script and stores output for later use

i n s t a l l f(AS_CMD): associates an installed file with a package

r e m o v e f(AS_CMD): removes a file’s association with a package

p k g p a r a m(AS_CMD): display the values of parameters defined by the package
in the p k g i n f o file

2-16 SOFTWARE INSTALLATION

3 LOW-LEVEL SYSTEM
INFORMATION

Introduction 3-1

Character Representations 3-2

Machine Interface (Processor-Specific) 3-3

Function Calling Sequence (Processor-
Specific) 3-4

Operating System Interface (Processor-
Specific) 3-5

Coding Examples (Processor-Specific) 3-6

Table of Contents i

Introduction

This chapter defines low-level system information, much of which is processor-
specific. It gives the constraints imposed by the system on application programs,
and it describes how application programs use operating system services. ANSI C
serves as the ABI reference programming language. By defining the implementa-
tion of C data types, the ABI can give precise system interface information without
resorting to assembly language. Giving C language bindings for system services
does not preclude bindings for other programming languages. Moreover, the
examples given here are not intended to specify the C language available on the
processor.

NOTE

According to ANSI C, a bit-field may have type i n t, u n s i g n e d i n t, or
s i g n e d i n t. The C language used in this ABI allows bit-fields of type c h a r,
s h o r t, i n t, and l o n g (plus their s i g n e d and u n s i g n e d variants), and of
type e n u m.

This chapter’s major sections discuss the following topics.

Character representations. This section defines the standard character set used
for external files that should be portable among systems.

Machine interface. This section describes the processor architecture available
to programs. It also defines the reference language data types, giving the
foundation for system interface specifications.

Function calling sequence. The standard function calling sequence accommo-
dates the operating system interface, including system calls, signals, and
stack management.

Operating system interface. This section describes the operating system
mechanisms that are visible to application programs (such as signals, pro-
cess initialization, etc.).

Coding examples. Finally, some C code fragments show how programming
languages may implement some fundamental operations under the ABI
specifications. These examples are not intended to give the only implemen-
tations, the optimal implementations, nor requirements for implementa-
tions.

Introduction 3-1

Character Representations

Several external file formats represent control information with characters (see
‘‘Archive File’’ in Chapter 7, for example). These single-byte characters use the 7-
bit ASCII character set. In other words, when the ABI mentions character con-
stants, such as ’ / ’ or ’ \ n ’, their numerical values should follow the 7-bit ASCII
guidelines. For the previous character constants, the single-byte values would be
47 and 10, respectively.

Character values outside the range of 0 to 127 may occupy one or more bytes,
according to the character encoding. Applications can control their own character
sets, using different character set extensions for different languages as appropri-
ate. Although ABI-conformance does not restrict the character sets, they generally
should follow some simple guidelines.

Character values between 0 and 127 should correspond to the 7-bit ASCII
code. That is, character sets with encodings above 127 should include the
7-bit ASCII code as a subset.

Multibyte character encodings with values above 127 should contain only
bytes with values outside the range of 0 to 127. That is, a character set that
uses more than one byte per character should not ‘‘embed’’ a byte resem-
bling a 7-bit ASCII character within a multibyte, non-ASCII character.

Multibyte characters should be self-identifying. That allows, for example,
any multibyte character to be inserted between any pair of multibyte charac-
ters, without changing the characters’ interpretations.

These cautions are particularly relevant for multilingual applications.

3-2 LOW-LEVEL SYSTEM INFORMATION

Machine Interface (Processor-Specific)

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

Machine Interface (Processor-Specific) 3-3

Function Calling Sequence (Processor-
Specific)

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

3-4 LOW-LEVEL SYSTEM INFORMATION

Operating System Interface (Processor-
Specific)

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

Operating System Interface (Processor-Specific) 3-5

Coding Examples (Processor-Specific)

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

3-6 LOW-LEVEL SYSTEM INFORMATION

4 OBJECT FILES

Introduction 4-1
File Format 4-1
Data Representation 4-3

ELF Header 4-4
ELF Identification 4-7
Machine Information (Processor-Specific) 4-9

Sections 4-10
Special Sections 4-17

String Table 4-21

Symbol Table 4-22
Symbol Values 4-26

Relocation 4-27
Relocation Types (Processor-Specific) 4-28

Table of Contents i

Introduction

This chapter describes the object file format, called ELF (Executable and Linking
Format). There are three main types of object files.

A relocatable file holds code and data suitable for linking with other object
files to create an executable or a shared object file.

An executable file holds a program suitable for execution; the file specifies
how the function e x e c creates a program’s process image. X

A shared object file holds code and data suitable for linking in two contexts.
First, the link editor [see l d(SD_CMD)] may process it with other relocat-
able and shared object files to create another object file. Second, the
dynamic linker combines it with an executable file and other shared objects
to create a process image.

Created by the assembler and link editor, object files are binary representations of
programs intended to execute directly on a processor. Programs that require
other abstract machines, such as shell scripts, are excluded.

After the introductory material, this chapter focuses on the file format and how it
pertains to building programs. Chapter 5 also describes parts of the object file,
concentrating on the information necessary to execute a program.

File Format

Object files participate in program linking (building a program) and program exe-
cution (running a program). For convenience and efficiency, the object file format
provides parallel views of a file’s contents, reflecting the differing needs of these
activities. Figure 4-1 shows an object file’s organization.

Introduction 4-1

Figure 4-1: Object File Format

Linking View Execution View_ _____________________ _ ______________________
ELF header ELF header_ _____________________ _ ______________________

Program header table Program header table
optional_ _____________________ _ ______________________

Section 1_ _____________________
. . . Segment 1

_ _____________________ _ ______________________
Section n_ _____________________

. . . Segment 2
_ _____________________ _ ______________________

.
_ _____________________ _ ______________________

Section header table Section header table
optional_ _____________________ _ ______________________ 
























































An ELF header resides at the beginning and holds a ‘‘road map’’ describing the
file’s organization. Sections hold the bulk of object file information for the linking
view: instructions, data, symbol table, relocation information, and so on. Descrip-
tions of special sections appear later in the chapter. Chapter 5 discusses segments
and the program execution view of the file.

A program header table , if present, tells the system how to create a process image.
Files used to build a process image (execute a program) must have a program
header table; relocatable files do not need one. A section header table contains infor-
mation describing the file’s sections. Every section has an entry in the table; each
entry gives information such as the section name, the section size, etc. Files used
during linking must have a section header table; other object files may or may not
have one.

NOTE

Although the figure shows the program header table immediately after the
ELF header, and the section header table following the sections, actual files
may differ. Moreover, sections and segments have no specified order. Only
the ELF header has a fixed position in the file.

4-2 OBJECT FILES

Data Representation

As described here, the object file format supports various processors with 8-bit
bytes and 32-bit architectures. Nevertheless, it is intended to be extensible to
larger (or smaller) architectures. Object files therefore represent some control data
with a machine-independent format, making it possible to identify object files and
interpret their contents in a common way. Remaining data in an object file use the
encoding of the target processor, regardless of the machine on which the file was
created.

Figure 4-2: 32-Bit Data Types

Name Size Alignment Purpose_ __
E l f 3 2 _ A d d r 4 4 Unsigned program address
E l f 3 2 _ H a l f 2 2 Unsigned medium integer
E l f 3 2 _ O f f 4 4 Unsigned file offset
E l f 3 2 _ S w o r d 4 4 Signed large integer
E l f 3 2 _ W o r d 4 4 Unsigned large integer
u n s i g n e d c h a r 1 1 Unsigned small integer_ __ 



























All data structures that the object file format defines follow the ‘‘natural’’ size and
alignment guidelines for the relevant class. If necessary, data structures contain
explicit padding to ensure 4-byte alignment for 4-byte objects, to force structure
sizes to a multiple of 4, etc. Data also have suitable alignment from the beginning
of the file. Thus, for example, a structure containing an E l f 3 2 _ A d d r member will
be aligned on a 4-byte boundary within the file.

For portability reasons, ELF uses no bit-fields.

Introduction 4-3

ELF Header

Some object file control structures can grow, because the ELF header contains their
actual sizes. If the object file format changes, a program may encounter control
structures that are larger or smaller than expected. Programs might therefore
ignore ‘‘extra’’ information. The treatment of ‘‘missing’’ information depends on
context and will be specified when and if extensions are defined.

Figure 4-3: ELF Header

d e f i n e E I _ N I D E N T 1 6

t y p e d e f s t r u c t {
u n s i g n e d c h a r e _ i d e n t [E I _ N I D E N T] ;
E l f 3 2 _ H a l f e _ t y p e ;
E l f 3 2 _ H a l f e _ m a c h i n e ;
E l f 3 2 _ W o r d e _ v e r s i o n ;
E l f 3 2 _ A d d r e _ e n t r y ;
E l f 3 2 _ O f f e _ p h o f f ;
E l f 3 2 _ O f f e _ s h o f f ;
E l f 3 2 _ W o r d e _ f l a g s ;
E l f 3 2 _ H a l f e _ e h s i z e ;
E l f 3 2 _ H a l f e _ p h e n t s i z e ;
E l f 3 2 _ H a l f e _ p h n u m ;
E l f 3 2 _ H a l f e _ s h e n t s i z e ;
E l f 3 2 _ H a l f e _ s h n u m ;
E l f 3 2 _ H a l f e _ s h s t r n d x ;

} E l f 3 2 _ E h d r ;

e _ i d e n t The initial bytes mark the file as an object file and provide
machine-independent data with which to decode and interpret
the file’s contents. Complete descriptions appear below, in
‘‘ELF Identification.’’

4-4 OBJECT FILES

e _ t y p e This member identifies the object file type.

Name Value Meaning_ ______________________________________
E T _ N O N E 0 No file type
E T _ R E L 1 Relocatable file
E T _ E X E C 2 Executable file
E T _ D Y N 3 Shared object file
E T _ C O R E 4 Core file
E T _ L O P R O C 0 x f f 0 0 Processor-specific
E T _ H I P R O C 0 x f f f f Processor-specific_ ______________________________________ 




















Although the core file contents are unspecified, type E T _ C O R E is
reserved to mark the file. Values from E T _ L O P R O C through
E T _ H I P R O C (inclusive) are reserved for processor-specific
semantics. If meanings are specified, the processor supplement
explains them. Other values are reserved and will be assigned
to new object file types as necessary.

e _ m a c h i n e This member’s value specifies the required architecture for an
individual file.

Name Value Meaning_ __________________________________
E M _ N O N E 0 No machine
E M _ M 3 2 1 AT&T WE 32100
E M _ S P A R C 2 SPARC
E M _ 3 8 6 3 Intel 80386
E M _ 6 8 K 4 Motorola 68000
E M _ 8 8 K 5 Motorola 88000
E M _ 8 6 0 7 Intel 80860
E M _ M I P S 8 MIPS RS3000_ __________________________________ 






















Other values are reserved and will be assigned to new
machines as necessary. Processor-specific ELF names use the
machine name to distinguish them. For example, the flags
mentioned below use the prefix E F _; a flag named W I D G E T for
the E M _ X Y Z machine would be called E F _ X Y Z _ W I D G E T.

ELF Header 4-5

e _ v e r s i o n This member identifies the object file version.

Name Value Meaning_ ____________________________________
E V _ N O N E 0 Invalid version
E V _ C U R R E N T 1 Current version_ ____________________________________ 








The value 1 signifies the original file format; extensions will
create new versions with higher numbers. The value of
E V _ C U R R E N T, though given as 1 above, will change as necessary
to reflect the current version number.

e _ e n t r y This member gives the virtual address to which the system first
transfers control, thus starting the process. If the file has no
associated entry point, this member holds zero.

e _ p h o f f This member holds the program header table’s file offset in
bytes. If the file has no program header table, this member
holds zero.

e _ s h o f f This member holds the section header table’s file offset in bytes.
If the file has no section header table, this member holds zero.

e _ f l a g s This member holds processor-specific flags associated with the
file. Flag names take the form E F _machine_flag. See ‘‘Machine
Information’’ in the processor supplement for flag definitions.

e _ e h s i z e This member holds the ELF header’s size in bytes.

e _ p h e n t s i z e This member holds the size in bytes of one entry in the file’s
program header table; all entries are the same size.

e _ p h n u m This member holds the number of entries in the program
header table. Thus the product of e _ p h e n t s i z e and e _ p h n u m
gives the table’s size in bytes. If a file has no program header
table, e _ p h n u m holds the value zero.

e _ s h e n t s i z e This member holds a section header’s size in bytes. A section
header is one entry in the section header table; all entries are
the same size.

e _ s h n u m This member holds the number of entries in the section header
table. Thus the product of e _ s h e n t s i z e and e _ s h n u m gives
the section header table’s size in bytes. If a file has no section
header table, e _ s h n u m holds the value zero.

e _ s h s t r n d x This member holds the section header table index of the entry
associated with the section name string table. If the file has no
section name string table, this member holds the value
S H N _ U N D E F. See ‘‘Sections’’ and ‘‘String Table’’ below for more

4-6 OBJECT FILES

information.

ELF Identification

As mentioned above, ELF provides an object file framework to support multiple
processors, multiple data encodings, and multiple classes of machines. To support
this object file family, the initial bytes of the file specify how to interpret the file,
independent of the processor on which the inquiry is made and independent of
the file’s remaining contents.

The initial bytes of an ELF header (and an object file) correspond to the e _ i d e n t
member.

Figure 4-4: e _ i d e n t [] Identification Indexes

Name Value Purpose_ ___
E I _ M A G 0 0 File identification
E I _ M A G 1 1 File identification
E I _ M A G 2 2 File identification
E I _ M A G 3 3 File identification
E I _ C L A S S 4 File class
E I _ D A T A 5 Data encoding
E I _ V E R S I O N 6 File version
E I _ P A D 7 Start of padding bytes
E I _ N I D E N T 1 6 Size of e _ i d e n t []_ ___ 
























These indexes access bytes that hold the following values.

E I _ M A G 0 to E I _ M A G 3
A file’s first 4 bytes hold a ‘‘magic number,’’ identifying the file
as an ELF object file.

Name Value Position_ ____________________________________
E L F M A G 0 0 x 7 f e _ i d e n t [E I _ M A G 0]
E L F M A G 1 ’ E ’ e _ i d e n t [E I _ M A G 1]
E L F M A G 2 ’ L ’ e _ i d e n t [E I _ M A G 2]
E L F M A G 3 ’ F ’ e _ i d e n t [E I _ M A G 3]_ ____________________________________ 












ELF Header 4-7

E I _ C L A S S The next byte, e _ i d e n t [E I _ C L A S S], identifies the file’s class, or
capacity.

Name Value Meaning_ ___________________________________
E L F C L A S S N O N E 0 Invalid class
E L F C L A S S 3 2 1 32-bit objects
E L F C L A S S 6 4 2 64-bit objects_ ___________________________________ 










The file format is designed to be portable among machines of
various sizes, without imposing the sizes of the largest machine
on the smallest. Class E L F C L A S S 3 2 supports machines with files
and virtual address spaces up to 4 gigabytes; it uses the basic
types defined above.

Class E L F C L A S S 6 4 is reserved for 64-bit architectures. Its appear-
ance here shows how the object file may change, but the 64-bit
format is otherwise unspecified. Other classes will be defined as
necessary, with different basic types and sizes for object file data.

E I _ D A T A Byte e _ i d e n t [E I _ D A T A] specifies the data encoding of the
processor-specific data in the object file. The following encodings
are currently defined.

Name Value Meaning_ __
E L F D A T A N O N E 0 Invalid data encoding
E L F D A T A 2 L S B 1 See below
E L F D A T A 2 M S B 2 See below_ __ 










More information on these encodings appears below. Other
values are reserved and will be assigned to new encodings as
necessary.

E I _ V E R S I O N Byte e _ i d e n t [E I _ V E R S I O N] specifies the ELF header version
number. Currently, this value must be E V _ C U R R E N T, as explained
above for e _ v e r s i o n.

E I _ P A D This value marks the beginning of the unused bytes in e _ i d e n t.
These bytes are reserved and set to zero; programs that read
object files should ignore them. The value of E I _ P A D will change
in the future if currently unused bytes are given meanings.

A file’s data encoding specifies how to interpret the basic objects in a file. As
described above, class E L F C L A S S 3 2 files use objects that occupy 1, 2, and 4 bytes.
Under the defined encodings, objects are represented as shown below. Byte
numbers appear in the upper left corners.

4-8 OBJECT FILES

Encoding E L F D A T A 2 L S B specifies 2’s complement values, with the least significant
byte occupying the lowest address.

Figure 4-5: Data Encoding E L F D A T A 2 L S B

0 1
0

0 x 0 1

0 2
0

0 1
1

0 x 0 1 0 2

0 4
0

0 3
1

0 2
2

0 1
3

0 x 0 1 0 2 0 3 0 4

Encoding E L F D A T A 2 M S B specifies 2’s complement values, with the most significant
byte occupying the lowest address.

Figure 4-6: Data Encoding E L F D A T A 2 M S B

0 1
0

0 x 0 1

0 1
0

0 2
1

0 x 0 1 0 2

0 1
0

0 2
1

0 3
2

0 4
3

0 x 0 1 0 2 0 3 0 4

Machine Information (Processor-Specific)

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

ELF Header 4-9

Sections

An object file’s section header table lets one locate all the file’s sections. The sec-
tion header table is an array of E l f 3 2 _ S h d r structures as described below. A sec-
tion header table index is a subscript into this array. The ELF header’s e _ s h o f f
member gives the byte offset from the beginning of the file to the section header
table; e _ s h n u m tells how many entries the section header table contains;
e _ s h e n t s i z e gives the size in bytes of each entry.

Some section header table indexes are reserved; an object file will not have sec-
tions for these special indexes.

Figure 4-7: Special Section Indexes

Name Value_ _______________________
S H N _ U N D E F 0
S H N _ L O R E S E R V E 0 x f f 0 0
S H N _ L O P R O C 0 x f f 0 0
S H N _ H I P R O C 0 x f f 1 f
S H N _ A B S 0 x f f f 1
S H N _ C O M M O N 0 x f f f 2
S H N _ H I R E S E R V E 0 x f f f f_ _______________________ 










S H N _ U N D E F This value marks an undefined, missing, irrelevant, or other-
wise meaningless section reference. For example, a symbol
‘‘defined’’ relative to section number S H N _ U N D E F is an
undefined symbol.

NOTE

Although index 0 is reserved as the undefined value, the section header table
contains an entry for index 0. That is, if the e _ s h n u m member of the ELF
header says a file has 6 entries in the section header table, they have the
indexes 0 through 5. The contents of the initial entry are specified later in this
section.

S H N _ L O R E S E R V E This value specifies the lower bound of the range of reserved
indexes.

S H N _ L O P R O C through S H N _ H I P R O C
Values in this inclusive range are reserved for processor-
specific semantics. If meanings are specified, the processor
supplement explains them.

4-10 OBJECT FILES

S H N _ A B S This value specifies absolute values for the corresponding
reference. For example, symbols defined relative to section
number S H N _ A B S have absolute values and are not affected by
relocation.

S H N _ C O M M O N Symbols defined relative to this section are common symbols,
such as FORTRAN C O M M O N or unallocated C external vari-
ables.

S H N _ H I R E S E R V E This value specifies the upper bound of the range of reserved
indexes. The system reserves indexes between
S H N _ L O R E S E R V E and S H N _ H I R E S E R V E, inclusive; the values do
not reference the section header table. That is, the section
header table does not contain entries for the reserved indexes.

Sections contain all information in an object file, except the ELF header, the pro-
gram header table, and the section header table. Moreover, object files’ sections
satisfy several conditions.

Every section in an object file has exactly one section header describing it.
Section headers may exist that do not have a section.

Each section occupies one contiguous (possibly empty) sequence of bytes
within a file.

Sections in a file may not overlap. No byte in a file resides in more than one
section.

An object file may have inactive space. The various headers and the sec-
tions might not ‘‘cover’’ every byte in an object file. The contents of the
inactive data are unspecified.

A section header has the following structure.

Sections 4-11

s h _ i n f o This member holds extra information, whose interpretation
depends on the section type. A table below describes the
values.

s h _ a d d r a l i g n Some sections have address alignment constraints. For exam-
ple, if a section holds a doubleword, the system must ensure
doubleword alignment for the entire section. That is, the value
of s h _ a d d r must be congruent to 0, modulo the value of
s h _ a d d r a l i g n. Currently, only 0 and positive integral powers
of two are allowed. Values 0 and 1 mean the section has no
alignment constraints.

s h _ e n t s i z e Some sections hold a table of fixed-size entries, such as a sym-
bol table. For such a section, this member gives the size in
bytes of each entry. The member contains 0 if the section does
not hold a table of fixed-size entries.

A section header’s s h _ t y p e member specifies the section’s semantics.

Figure 4-9: Section Types, s h _ t y p e

Name Value_ ___________________________
S H T _ N U L L 0
S H T _ P R O G B I T S 1
S H T _ S Y M T A B 2
S H T _ S T R T A B 3
S H T _ R E L A 4
S H T _ H A S H 5
S H T _ D Y N A M I C 6
S H T _ N O T E 7
S H T _ N O B I T S 8
S H T _ R E L 9
S H T _ S H L I B 1 0
S H T _ D Y N S Y M 1 1
S H T _ L O P R O C 0 x 7 0 0 0 0 0 0 0
S H T _ H I P R O C 0 x 7 f f f f f f f
S H T _ L O U S E R 0 x 8 0 0 0 0 0 0 0
S H T _ H I U S E R 0 x f f f f f f f f_ ___________________________ 





















Sections 4-13

S H T _ N U L L This value marks the section header as inactive; it does not
have an associated section. Other members of the section
header have undefined values.

S H T _ P R O G B I T S The section holds information defined by the program, whose
format and meaning are determined solely by the program.

S H T _ S Y M T A B and S H T _ D Y N S Y M
These sections hold a symbol table. Currently, an object file
may have only one section of each type, but this restriction
may be relaxed in the future. Typically, S H T _ S Y M T A B provides
symbols for link editing, though it may also be used for
dynamic linking. As a complete symbol table, it may contain
many symbols unnecessary for dynamic linking. Conse-
quently, an object file may also contain a S H T _ D Y N S Y M section,
which holds a minimal set of dynamic linking symbols, to save
space. See ‘‘Symbol Table’’ below for details.

S H T _ S T R T A B The section holds a string table. An object file may have multi-
ple string table sections. See ‘‘String Table’’ below for details.

S H T _ R E L A The section holds relocation entries with explicit addends, such
as type E l f 3 2 _ R e l a for the 32-bit class of object files. An
object file may have multiple relocation sections. See ‘‘Reloca-
tion’’ below for details.

S H T _ H A S H The section holds a symbol hash table. All objects participating
in dynamic linking must contain a symbol hash table.
Currently, an object file may have only one hash table, but this
restriction may be relaxed in the future. See ‘‘Hash Table’’ in
Chapter 5 for details.

S H T _ D Y N A M I C The section holds information for dynamic linking. Currently,
an object file may have only one dynamic section, but this res-
triction may be relaxed in the future. See ‘‘Dynamic Section’’
in Chapter 5 for details.

S H T _ N O T E The section holds information that marks the file in some way.
See ‘‘Note Section’’ in Chapter 5 for details.

S H T _ N O B I T S A section of this type occupies no space in the file but other-
wise resembles S H T _ P R O G B I T S. Although this section contains
no bytes, the s h _ o f f s e t member contains the conceptual file
offset.

4-14 OBJECT FILES

S H T _ R E L The section holds relocation entries without explicit addends,
such as type E l f 3 2 _ R e l for the 32-bit class of object files. An
object file may have multiple relocation sections. See ‘‘Reloca-
tion’’ below for details.

S H T _ S H L I B This section type is reserved but has unspecified semantics.
Programs that contain a section of this type do not conform to
the ABI.

S H T _ L O P R O C through S H T _ H I P R O C
Values in this inclusive range are reserved for processor-
specific semantics. If meanings are specified, the processor
supplement explains them.

S H T _ L O U S E R This value specifies the lower bound of the range of indexes
reserved for application programs.

S H T _ H I U S E R This value specifies the upper bound of the range of indexes
reserved for application programs. Section types between
S H T _ L O U S E R and S H T _ H I U S E R may be used by the application,
without conflicting with current or future system-defined sec-
tion types.

Other section type values are reserved. As mentioned before, the section header
for index 0 (S H N _ U N D E F) exists, even though the index marks undefined section
references. This entry holds the following.

Figure 4-10: Section Header Table Entry: Index 0

Name Value Note_ ___
s h _ n a m e 0 No name
s h _ t y p e S H T _ N U L L Inactive
s h _ f l a g s 0 No flags
s h _ a d d r 0 No address
s h _ o f f s e t 0 No file offset
s h _ s i z e 0 No size
s h _ l i n k S H N _ U N D E F No link information
s h _ i n f o 0 No auxiliary information
s h _ a d d r a l i g n 0 No alignment
s h _ e n t s i z e 0 No entries_ ___ 


























Sections 4-15

A section header’s s h _ f l a g s member holds 1-bit flags that describe the section’s
attributes. Defined values appear below; other values are reserved.

Figure 4-11: Section Attribute Flags, s h _ f l a g s

Name Value_ ____________________________
S H F _ W R I T E 0 x 1
S H F _ A L L O C 0 x 2
S H F _ E X E C I N S T R 0 x 4
S H F _ M A S K P R O C 0 x f 0 0 0 0 0 0 0_ ____________________________ 






If a flag bit is set in s h _ f l a g s, the attribute is ‘‘on’’ for the section. Otherwise, the
attribute is ‘‘off’’ or does not apply. Undefined attributes are set to zero.

S H F _ W R I T E The section contains data that should be writable during pro-
cess execution.

S H F _ A L L O C The section occupies memory during process execution.
Some control sections do not reside in the memory image of
an object file; this attribute is off for those sections.

S H F _ E X E C I N S T R The section contains executable machine instructions.

S H F _ M A S K P R O C All bits included in this mask are reserved for processor-
specific semantics. If meanings are specified, the processor
supplement explains them.

Two members in the section header, s h _ l i n k and s h _ i n f o, hold special informa-
tion, depending on section type.

4-16 OBJECT FILES

Figure 4-12: s h _ l i n k and s h _ i n f o Interpretation

s h _ t y p e s h _ l i n k s h _ i n f o_ __
S H T _ D Y N A M I C 0The section header index of

the string table used by
entries in the section._ __

S H T _ H A S H 0The section header index of
the symbol table to which
the hash table applies._ __

S H T _ R E L
S H T _ R E L A

The section header index of
the associated symbol table.

The section header index of
the section to which the
relocation applies._ __

S H T _ S Y M T A B
S H T _ D Y N S Y M

The section header index of
the associated string table.

One greater than the sym-
bol table index of the last
local symbol (binding
S T B _ L O C A L)._ __

other S H N _ U N D E F 0_ __ 





































Special Sections

Various sections hold program and control information. Sections in the list below
are used by the system and have the indicated types and attributes.

Figure 4-13: Special Sections

Name Type Attributes_ ___
. b s s S H T _ N O B I T S S H F _ A L L O C + S H F _ W R I T E
. c o m m e n t S H T _ P R O G B I T S none
. d a t a S H T _ P R O G B I T S S H F _ A L L O C + S H F _ W R I T E
. d a t a 1 S H T _ P R O G B I T S S H F _ A L L O C + S H F _ W R I T E
. d e b u g S H T _ P R O G B I T S none
. d y n a m i c S H T _ D Y N A M I C see below
. d y n s t r S H T _ S T R T A B S H F _ A L L O C
. d y n s y m S H T _ D Y N S Y M S H F _ A L L O C
. f i n i S H T _ P R O G B I T S S H F _ A L L O C + S H F _ E X E C I N S T R
. g o t S H T _ P R O G B I T S see below


























Sections 4-17

Figure 4-13: Special Sections (continued)

. h a s h S H T _ H A S H S H F _ A L L O C

. i n i t S H T _ P R O G B I T S S H F _ A L L O C + S H F _ E X E C I N S T R

. i n t e r p S H T _ P R O G B I T S see below

. l i n e S H T _ P R O G B I T S none

. n o t e S H T _ N O T E none

. p l t S H T _ P R O G B I T S see below

. r e lname S H T _ R E L see below

. r e l aname S H T _ R E L A see below

. r o d a t a S H T _ P R O G B I T S S H F _ A L L O C

. r o d a t a 1 S H T _ P R O G B I T S S H F _ A L L O C

. s h s t r t a b S H T _ S T R T A B none

. s t r t a b S H T _ S T R T A B see below

. s y m t a b S H T _ S Y M T A B see below

. t e x t S H T _ P R O G B I T S S H F _ A L L O C + S H F _ E X E C I N S T R_ ___ 



































. b s s This section holds uninitialized data that contribute to the
program’s memory image. By definition, the system initializes the
data with zeros when the program begins to run. The section occu-
pies no file space, as indicated by the section type, S H T _ N O B I T S.

. c o m m e n t This section holds version control information.

. d a t a and . d a t a 1
These sections hold initialized data that contribute to the program’s
memory image.

. d e b u g This section holds information for symbolic debugging. The con-
tents are unspecified.

. d y n a m i c This section holds dynamic linking information. The section’s attri-
butes will include the S H F _ A L L O C bit. Whether the S H F _ W R I T E bit is
set is processor specific. See Chapter 5 for more information.

. d y n s t r This section holds strings needed for dynamic linking, most com-
monly the strings that represent the names associated with symbol
table entries. See Chapter 5 for more information.

. d y n s y m This section holds the dynamic linking symbol table, as ‘‘Symbol
Table’’ describes. See Chapter 5 for more information.

4-18 OBJECT FILES

. f i n i This section holds executable instructions that contribute to the pro-
cess termination code. That is, when a program exits normally, the
system arranges to execute the code in this section.

. g o t This section holds the global offset table. See ‘‘Coding Examples’’
in Chapter 3, ‘‘Special Sections’’ in Chapter 4, and ‘‘Global Offset
Table’’ in Chapter 5 of the processor supplement for more informa-
tion.

. h a s h This section holds a symbol hash table. See ‘‘Hash Table’’ in
Chapter 5 for more information.

. i n i t This section holds executable instructions that contribute to the pro-
cess initialization code. That is, when a program starts to run, the
system arranges to execute the code in this section before calling the
main program entry point (called m a i n for C programs).

. i n t e r p This section holds the path name of a program interpreter. If the
file has a loadable segment that includes the section, the section’s
attributes will include the S H F _ A L L O C bit; otherwise, that bit will be
off. See Chapter 5 for more information.

. l i n e This section holds line number information for symbolic debug-
ging, which describes the correspondence between the source pro-
gram and the machine code. The contents are unspecified.

. n o t e This section holds information in the format that ‘‘Note Section’’ in
Chapter 5 describes.

. p l t This section holds the procedure linkage table. See ‘‘Special Sec-
tions’’ in Chapter 4 and ‘‘Procedure Linkage Table’’ in Chapter 5 of
the processor supplement for more information.

. r e lname and . r e l aname
These sections hold relocation information, as ‘‘Relocation’’ below
describes. If the file has a loadable segment that includes reloca-
tion, the sections’ attributes will include the S H F _ A L L O C bit; other-
wise, that bit will be off. Conventionally, name is supplied by the
section to which the relocations apply. Thus a relocation section for
. t e x t normally would have the name . r e l . t e x t or . r e l a . t e x t.

. r o d a t a and . r o d a t a 1
These sections hold read-only data that typically contribute to a
non-writable segment in the process image. See ‘‘Program Header’’
in Chapter 5 for more information.

Sections 4-19

. s h s t r t a b This section holds section names.

. s t r t a b This section holds strings, most commonly the strings that
represent the names associated with symbol table entries. If the file
has a loadable segment that includes the symbol string table, the
section’s attributes will include the S H F _ A L L O C bit; otherwise, that
bit will be off.

. s y m t a b This section holds a symbol table, as ‘‘Symbol Table’’ in this chapter
describes. If the file has a loadable segment that includes the sym-
bol table, the section’s attributes will include the S H F _ A L L O C bit;
otherwise, that bit will be off.

. t e x t This section holds the ‘‘text,’’ or executable instructions, of a pro-
gram.

Section names with a dot (.) prefix are reserved for the system, although applica-
tions may use these sections if their existing meanings are satisfactory. Applica-
tions may use names without the prefix to avoid conflicts with system sections.
The object file format lets one define sections not in the list above. An object file
may have more than one section with the same name.

Section names reserved for a processor architecture are formed by placing an
abbreviation of the architecture name ahead of the section name. The name
should be taken from the architecture names used for e _ m a c h i n e. For instance
.FOO.psect is the psect section defined by the FOO architecture. Existing exten-
sions are called by their historical names.

Pre-existing Extensions_ _____________________

. s d a t a . t d e s c

. s b s s . l i t 4

. l i t 8 . r e g i n f o

. g p t a b . l i b l i s t

. c o n f l i c t

NOTE

For information on processor-specific sections, see the ABI supplement for
the desired processor.

4-20 OBJECT FILES

String Table

String table sections hold null-terminated character sequences, commonly called
strings. The object file uses these strings to represent symbol and section names.
One references a string as an index into the string table section. The first byte,
which is index zero, is defined to hold a null character. Likewise, a string table’s
last byte is defined to hold a null character, ensuring null termination for all
strings. A string whose index is zero specifies either no name or a null name,
depending on the context. An empty string table section is permitted; its section
header’s s h _ s i z e member would contain zero. Non-zero indexes are invalid for
an empty string table.

A section header’s s h _ n a m e member holds an index into the section header string
table section, as designated by the e _ s h s t r n d x member of the ELF header. The
following figures show a string table with 25 bytes and the strings associated with
various indexes.

Index + 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9_ ___
0 \ 0 n a m e . \ 0 V a r_ ___

10 i a b l e \ 0 a b l e_ ___
20 \ 0 \ 0 x x \ 0_ ___ 























































Figure 4-14: String Table Indexes

Index String_ ________________
0 none
1 n a m e .
7 V a r i a b l e

11 a b l e
16 a b l e
24 null string_ ________________ 








As the example shows, a string table index may refer to any byte in the section. A
string may appear more than once; references to substrings may exist; and a single
string may be referenced multiple times. Unreferenced strings also are allowed.

String Table 4-21

Symbol Table

An object file’s symbol table holds information needed to locate and relocate a
program’s symbolic definitions and references. A symbol table index is a sub-
script into this array. Index 0 both designates the first entry in the table and serves
as the undefined symbol index. The contents of the initial entry are specified later
in this section.

Name Value_ __________________
S T N _ U N D E F 0_ __________________ 



A symbol table entry has the following format.

Figure 4-15: Symbol Table Entry

t y p e d e f s t r u c t {
E l f 3 2 _ W o r d s t _ n a m e ;
E l f 3 2 _ A d d r s t _ v a l u e ;
E l f 3 2 _ W o r d s t _ s i z e ;
u n s i g n e d c h a r s t _ i n f o ;
u n s i g n e d c h a r s t _ o t h e r ;
E l f 3 2 _ H a l f s t _ s h n d x ;

} E l f 3 2 _ S y m ;

s t _ n a m e This member holds an index into the object file’s symbol string
table, which holds the character representations of the symbol
names. If the value is non-zero, it represents a string table index
that gives the symbol name. Otherwise, the symbol table entry
has no name.

NOTE

External C symbols have the same names in C and object files’ symbol tables.

s t _ v a l u e This member gives the value of the associated symbol. Depend-
ing on the context, this may be an absolute value, an address, etc.;
details appear below.

4-22 OBJECT FILES

s t _ s i z e Many symbols have associated sizes. For example, a data object’s
size is the number of bytes contained in the object. This member
holds 0 if the symbol has no size or an unknown size.

s t _ i n f o This member specifies the symbol’s type and binding attributes.
A list of the values and meanings appears below. The following
code shows how to manipulate the values.

d e f i n e E L F 3 2 _ S T _ B I N D (i) ((i) > > 4)
d e f i n e E L F 3 2 _ S T _ T Y P E (i) ((i) & 0 x f)
d e f i n e E L F 3 2 _ S T _ I N F O (b , t) (((b) < < 4) + ((t) & 0 x f))

s t _ o t h e r This member currently holds 0 and has no defined meaning.

s t _ s h n d x Every symbol table entry is ‘‘defined’’ in relation to some section;
this member holds the relevant section header table index. As
Figure 4-7 and the related text describe, some section indexes
indicate special meanings.

A symbol’s binding determines the linkage visibility and behavior.

Figure 4-16: Symbol Binding, E L F 3 2 _ S T _ B I N D

Name Value_ ___________________
S T B _ L O C A L 0
S T B _ G L O B A L 1
S T B _ W E A K 2
S T B _ L O P R O C 1 3
S T B _ H I P R O C 1 5_ ___________________ 







S T B _ L O C A L Local symbols are not visible outside the object file containing
their definition. Local symbols of the same name may exist in
multiple files without interfering with each other.

S T B _ G L O B A L Global symbols are visible to all object files being combined. One
file’s definition of a global symbol will satisfy another file’s
undefined reference to the same global symbol.

Symbol Table 4-23

S T B _ W E A K Weak symbols resemble global symbols, but their definitions
have lower precedence.

S T B _ L O P R O C through S T B _ H I P R O C
Values in this inclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement
explains them.

Global and weak symbols differ in two major ways.

When the link editor combines several relocatable object files, it does not
allow multiple definitions of S T B _ G L O B A L symbols with the same name. On
the other hand, if a defined global symbol exists, the appearance of a weak
symbol with the same name will not cause an error. The link editor honors
the global definition and ignores the weak ones. Similarly, if a common
symbol exists (i.e., a symbol whose st_shndx field holds S H N _ C O M M O N), the
appearance of a weak symbol with the same name will not cause an error.
The link editor honors the common definition and ignores the weak one.

When the link editor searches archive libraries [see ‘‘Archive File’’ in
Chapter 7], it extracts archive members that contain definitions of undefined
global symbols. The member’s definition may be either a global or a weak
symbol. The link editor does not extract archive members to resolve
undefined weak symbols. Unresolved weak symbols have a zero value.

In each symbol table, all symbols with S T B _ L O C A L binding precede the weak and
global symbols. As ‘‘Sections’’ above describes, a symbol table section’s s h _ i n f o
section header member holds the symbol table index for the first non-local symbol.

A symbol’s type provides a general classification for the associated entity.

Figure 4-17: Symbol Types, E L F 3 2 _ S T _ T Y P E

Name Value_ ____________________
S T T _ N O T Y P E 0
S T T _ O B J E C T 1
S T T _ F U N C 2
S T T _ S E C T I O N 3
S T T _ F I L E 4
S T T _ L O P R O C 1 3
S T T _ H I P R O C 1 5_ ____________________ 










4-24 OBJECT FILES

S T T _ N O T Y P E The symbol’s type is not specified.

S T T _ O B J E C T The symbol is associated with a data object, such as a variable,
an array, etc.

S T T _ F U N C The symbol is associated with a function or other executable
code.

S T T _ S E C T I O N The symbol is associated with a section. Symbol table entries of
this type exist primarily for relocation and normally have
S T B _ L O C A L binding.

S T T _ F I L E Conventionally, the symbol’s name gives the name of the source
file associated with the object file. A file symbol has S T B _ L O C A L
binding, its section index is S H N _ A B S, and it precedes the other
S T B _ L O C A L symbols for the file, if it is present.

S T T _ L O P R O C through S T T _ H I P R O C
Values in this inclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement
explains them.

Function symbols (those with type S T T _ F U N C) in shared object files have special
significance. When another object file references a function from a shared object,
the link editor automatically creates a procedure linkage table entry for
the referenced symbol. Shared object symbols with types other than S T T _ F U N C
will not be referenced automatically through the procedure linkage table.

If a symbol’s value refers to a specific location within a section, its section index
member, s t _ s h n d x, holds an index into the section header table. As the section
moves during relocation, the symbol’s value changes as well, and references to the
symbol continue to ‘‘point’’ to the same location in the program. Some special sec-
tion index values give other semantics.

S H N _ A B S The symbol has an absolute value that will not change because of
relocation.

S H N _ C O M M O N The symbol labels a common block that has not yet been allo-
cated. The symbol’s value gives alignment constraints, similar to
a section’s s h _ a d d r a l i g n member. That is, the link editor will
allocate the storage for the symbol at an address that is a multiple
of s t _ v a l u e. The symbol’s size tells how many bytes are
required.

S H N _ U N D E F This section table index means the symbol is undefined. When
the link editor combines this object file with another that defines
the indicated symbol, this file’s references to the symbol will be
linked to the actual definition.

Symbol Table 4-25

As mentioned above, the symbol table entry for index 0 (S T N _ U N D E F) is reserved; it
holds the following.

Figure 4-18: Symbol Table Entry: Index 0

Name Value Note_ __
s t _ n a m e 0 No name
s t _ v a l u e 0 Zero value
s t _ s i z e 0 No size
s t _ i n f o 0 No type, local binding
s t _ o t h e r 0
s t _ s h n d x S H N _ U N D E F No section_ __ 


















Symbol Values

Symbol table entries for different object file types have slightly different interpre-
tations for the s t _ v a l u e member.

In relocatable files, s t _ v a l u e holds alignment constraints for a symbol
whose section index is S H N _ C O M M O N.

In relocatable files, s t _ v a l u e holds a section offset for a defined symbol.
That is, s t _ v a l u e is an offset from the beginning of the section that
s t _ s h n d x identifies.

In executable and shared object files, s t _ v a l u e holds a virtual address. To
make these files’ symbols more useful for the dynamic linker, the section
offset (file interpretation) gives way to a virtual address (memory interpre-
tation) for which the section number is irrelevant.

Although the symbol table values have similar meanings for different object files,
the data allow efficient access by the appropriate programs.

4-26 OBJECT FILES

Relocation

Relocation is the process of connecting symbolic references with symbolic
definitions. For example, when a program calls a function, the associated call
instruction must transfer control to the proper destination address at execution.
In other words, relocatable files must have information that describes how to
modify their section contents, thus allowing executable and shared object files to
hold the right information for a process’s program image. Relocation entries are
these data.

Figure 4-19: Relocation Entries

t y p e d e f s t r u c t {
E l f 3 2 _ A d d r r _ o f f s e t ;
E l f 3 2 _ W o r d r _ i n f o ;

} E l f 3 2 _ R e l ;

t y p e d e f s t r u c t {
E l f 3 2 _ A d d r r _ o f f s e t ;
E l f 3 2 _ W o r d r _ i n f o ;
E l f 3 2 _ S w o r d r _ a d d e n d ;

} E l f 3 2 _ R e l a ;

r _ o f f s e t This member gives the location at which to apply the relocation
action. For a relocatable file, the value is the byte offset from the
beginning of the section to the storage unit affected by the relocation.
For an executable file or a shared object, the value is the virtual
address of the storage unit affected by the relocation.

r _ i n f o This member gives both the symbol table index with respect to
which the relocation must be made, and the type of relocation to
apply. For example, a call instruction’s relocation entry would hold
the symbol table index of the function being called. If the index is
S T N _ U N D E F, the undefined symbol index, the relocation uses 0 as the
‘‘symbol value.’’ Relocation types are processor-specific; descrip-
tions of their behavior appear in the processor supplement. When
the text in the processor supplement refers to a relocation entry’s
relocation type or symbol table index, it means the result of applying
E L F 3 2 _ R _ T Y P E or E L F 3 2 _ R _ S Y M, respectively, to the entry’s r _ i n f o
member.

Relocation 4-27

d e f i n e E L F 3 2 _ R _ S Y M (i) ((i) > > 8)
d e f i n e E L F 3 2 _ R _ T Y P E (i) ((u n s i g n e d c h a r) (i))
d e f i n e E L F 3 2 _ R _ I N F O (s , t) (((s) < < 8) + (u n s i g n e d c h a r) (t))

r _ a d d e n d This member specifies a constant addend used to compute the value
to be stored into the relocatable field.

As shown above, only E l f 3 2 _ R e l a entries contain an explicit addend. Entries of
type E l f 3 2 _ R e l store an implicit addend in the location to be modified. Depend-
ing on the processor architecture, one form or the other might be necessary or
more convenient. Consequently, an implementation for a particular machine may
use one form exclusively or either form depending on context.

A relocation section references two other sections: a symbol table and a section to
modify. The section header’s s h _ i n f o and s h _ l i n k members, described in ‘‘Sec-
tions’’ above, specify these relationships. Relocation entries for different object
files have slightly different interpretations for the r _ o f f s e t member.

In relocatable files, r _ o f f s e t holds a section offset. That is, the relocation
section itself describes how to modify another section in the file; relocation
offsets designate a storage unit within the second section.

In executable and shared object files, r _ o f f s e t holds a virtual address. To
make these files’ relocation entries more useful for the dynamic linker, the
section offset (file interpretation) gives way to a virtual address (memory
interpretation).

Although the interpretation of r _ o f f s e t changes for different object files to allow
efficient access by the relevant programs, the relocation types’ meanings stay the
same.

Relocation Types (Processor-Specific)

4-28 OBJECT FILES

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

Relocation 4-29

5 PROGRAM LOADING AND
DYNAMIC LINKING

Introduction 5-1

Program Header 5-2
Base Address 5-5
Segment Permissions 5-5
Segment Contents 5-7
Note Section 5-8

Program Loading (Processor-Specific) 5-11

Dynamic Linking 5-12
Program Interpreter 5-12
Dynamic Linker 5-13
Dynamic Section 5-14
Shared Object Dependencies 5-19
Global Offset Table (Processor-Specific) 5-21
Procedure Linkage Table (Processor-Specific) 5-21
Hash Table 5-21
Initialization and Termination Functions 5-22

Table of Contents i

Introduction

This chapter describes the object file information and system actions that create
running programs. Some information here applies to all systems; information
specific to one processor resides in sections marked accordingly.

Executable and shared object files statically represent programs. To execute such
programs, the system uses the files to create dynamic program representations, or
process images. As section ‘‘Virtual Address Space’’ in Chapter 3 of the processor
supplement describes, a process image has segments that hold its text, data, stack,
and so on. This chapter’s major sections discuss the following.

Program header. This section complements Chapter 4, describing object file
structures that relate directly to program execution. The primary data
structure, a program header table, locates segment images within the file
and contains other information necessary to create the memory image for
the program.

Program loading. Given an object file, the system must load it into memory
for the program to run.

Dynamic linking. After the system loads the program, it must complete the
process image by resolving symbolic references among the object files that
compose the process.

NOTE 
The processor supplement defines a naming convention for ELF constants 
that have processor ranges specified. Names such as DT_, PT_, for proces- 
sor specific extensions, incorporate the name of the processor: 
DT_M32_SPECIAL, for example. Pre–existing processor extensions not 
using this convention will be supported. 

Pre-existing Extensions _ ____________________ 

D T _ J M P _ R E L 

Introduction 5-1

Program Header

An executable or shared object file’s program header table is an array of struc-
tures, each describing a segment or other information the system needs to prepare
the program for execution. An object file segment contains one or more sections , as
‘‘Segment Contents’’ describes below. Program headers are meaningful only for
executable and shared object files. A file specifies its own program header size
with the ELF header’s e _ p h e n t s i z e and e _ p h n u m members [see ‘‘ELF Header’’ in
Chapter 4].

Figure 5-1: Program Header

t y p e d e f s t r u c t {
E l f 3 2 _ W o r d p _ t y p e ;
E l f 3 2 _ O f f p _ o f f s e t ;
E l f 3 2 _ A d d r p _ v a d d r ;
E l f 3 2 _ A d d r p _ p a d d r ;
E l f 3 2 _ W o r d p _ f i l e s z ;
E l f 3 2 _ W o r d p _ m e m s z ;
E l f 3 2 _ W o r d p _ f l a g s ;
E l f 3 2 _ W o r d p _ a l i g n ;

} E l f 3 2 _ P h d r ;

p _ t y p e This member tells what kind of segment this array element
describes or how to interpret the array element’s information.
Type values and their meanings appear below.

p _ o f f s e t This member gives the offset from the beginning of the file at
which the first byte of the segment resides.

p _ v a d d r This member gives the virtual address at which the first byte of
the segment resides in memory.

p _ p a d d r On systems for which physical addressing is relevant, this
member is reserved for the segment’s physical address. Because
System V ignores physical addressing for application programs,
this member has unspecified contents for executable files and
shared objects.

5-2 PROGRAM LOADING AND DYNAMIC LINKING

p _ f i l e s z This member gives the number of bytes in the file image of the
segment; it may be zero.

p _ m e m s z This member gives the number of bytes in the memory image of
the segment; it may be zero.

p _ f l a g s This member gives flags relevant to the segment. Defined flag
values appear below.

p _ a l i g n As ‘‘Program Loading’’ describes in this chapter of the processor
supplement, loadable process segments must have congruent
values for p _ v a d d r and p _ o f f s e t, modulo the page size. This
member gives the value to which the segments are aligned in
memory and in the file. Values 0 and 1 mean no alignment is
required. Otherwise, p _ a l i g n should be a positive, integral
power of 2, and p _ v a d d r should equal p _ o f f s e t, modulo
p _ a l i g n.

Some entries describe process segments; others give supplementary information
and do not contribute to the process image. Segment entries may appear in any
order, except as explicitly noted below. Defined type values follow; other values
are reserved for future use.

Figure 5-2: Segment Types, p _ t y p e

Name Value_________________________
P T _ N U L L 0
P T _ L O A D 1
P T _ D Y N A M I C 2
P T _ I N T E R P 3
P T _ N O T E 4
P T _ S H L I B 5
P T _ P H D R 6
P T _ L O P R O C 0 x 7 0 0 0 0 0 0 0
P T _ H I P R O C 0 x 7 f f f f f f f_________________________ 












P T _ N U L L The array element is unused; other members’ values are
undefined. This type lets the program header table have ignored
entries.

P T _ L O A D The array element specifies a loadable segment, described by
p _ f i l e s z and p _ m e m s z. The bytes from the file are mapped to
the beginning of the memory segment. If the segment’s memory
size (p _ m e m s z) is larger than the file size (p _ f i l e s z), the ‘‘extra’’

Program Header 5-3

bytes are defined to hold the value 0 and to follow the segment’s
initialized area. The file size may not be larger than the memory
size. Loadable segment entries in the program header table
appear in ascending order, sorted on the p _ v a d d r member.

P T _ D Y N A M I C The array element specifies dynamic linking information. See
‘‘Dynamic Section’’ below for more information.

P T _ I N T E R P The array element specifies the location and size of a null-
terminated path name to invoke as an interpreter. This segment
type is meaningful only for executable files (though it may occur
for shared objects); it may not occur more than once in a file. If it
is present, it must precede any loadable segment entry. See ‘‘Pro-
gram Interpreter’’ below for further information.

P T _ N O T E The array element specifies the location and size of auxiliary
information. See ‘‘Note Section’’ below for details.

P T _ S H L I B This segment type is reserved but has unspecified semantics. Pro-
grams that contain an array element of this type do not conform
to the ABI.

P T _ P H D R The array element, if present, specifies the location and size of the
program header table itself, both in the file and in the memory
image of the program. This segment type may not occur more
than once in a file. Moreover, it may occur only if the program
header table is part of the memory image of the program. If it is
present, it must precede any loadable segment entry. See ‘‘Pro-
gram Interpreter’’ below for further information.

P T _ L O P R O C through P T _ H I P R O C
Values in this inclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement
explains them.

NOTE

Unless specifically required elsewhere, all program header segment types are
optional. That is, a file’s program header table may contain only those ele-
ments relevant to its contents.

5-4 PROGRAM LOADING AND DYNAMIC LINKING

Base Address

As ‘‘Program Loading’’ in this chapter of the processor supplement describes, the E
virtual addresses in the program headers might not represent the actual virtual E
addresses of the program’s memory image. Executable files typically contain E
absolute code. To let the process execute correctly, the segments must reside at E
the virtual addresses used to build the executable file. On the other hand, shared E
object segments typically contain position-independent code. This lets a segment’s E
virtual address change from one process to another, without invalidating execu- E
tion behavior. Though the system chooses virtual addresses for individual E
processes, it maintains the segments’ relative positions . Because position- E
independent code uses relative addressing between segments, the difference E
between virtual addresses in memory must match the difference between virtual E
addresses in the file. The difference between the virtual address of any segment in E
memory and the corresponding virtual address in the file is thus a single constant E
value for any one executable or shared object in a given process. This difference is E
the base address . One use of the base address is to relocate the memory image of E
the program during dynamic linking.

An executable or shared object file’s base address is calculated during execution
from three values: the memory load address, the maximum page size, and the
lowest virtual address of a program’s loadable segment. To compute the base E
address, one determines the memory address associated with the lowest p _ v a d d r
value for a P T _ L O A D segment. This address is truncated to the nearest multiple of E
the maximum page size. The corresponding p _ v a d d r value itself is also truncated E
to the nearest multiple of the maximum page size. The base address is the differ- E
ence between the truncated memory address and the truncated p _ v a d d r value.

See this chapter in the processor supplement for more information and examples.
‘‘Operating System Interface’’ of Chapter 3 in the processor supplement contains
more information about the virtual address space and page size.

Segment Permissions

A program to be loaded by the system must must have at least one loadable seg-
ment (although this is not required by the file format). When the system creates
loadable segments’ memory images, it gives access permissions as specified in the
p _ f l a g s member.

Program Header 5-5

Figure 5-3: Segment Flag Bits, p _ f l a g s

Name Value Meaning_ _______________________________________
P F _ X 0 x 1 Execute
P F _ W 0 x 2 Write
P F _ R 0 x 4 Read
P F _ M A S K P R O C 0 x f 0 0 0 0 0 0 0 Unspecified_ _______________________________________ 












All bits included in the P F _ M A S K P R O C mask are reserved for processor-specific
semantics. If meanings are specified, the processor supplement explains them.

If a permission bit is 0, that type of access is denied. Actual memory permissions
depend on the memory management unit, which may vary from one system to
another. Although all flag combinations are valid, the system may grant more
access than requested. In no case, however, will a segment have write permission
unless it is specified explicitly. The following table shows both the exact flag
interpretation and the allowable flag interpretation. ABI-conforming systems may
provide either.

Figure 5-4: Segment Permissions

Flags Value Exact Allowable_ __
none 0 All access denied All access denied
P F _ X 1 Execute only Read, execute
P F _ W 2 Write only Read, write, execute
P F _ W + P F _ X 3 Write, execute Read, write, execute
P F _ R 4 Read only Read, execute
P F _ R + P F _ X 5 Read, execute Read, execute
P F _ R + P F _ W 6 Read, write Read, write, execute
P F _ R + P F _ W + P F _ X 7 Read, write, execute Read, write, execute_ __ 

































For example, typical text segments have read and execute—but not write—
permissions. Data segments normally have read, write, and execute permissions.

5-6 PROGRAM LOADING AND DYNAMIC LINKING

Segment Contents

An object file segment comprises one or more sections, though this fact is tran-
sparent to the program header. Whether the file segment holds one or many sec-
tions also is immaterial to program loading. Nonetheless, various data must be
present for program execution, dynamic linking, and so on. The diagrams below
illustrate segment contents in general terms. The order and membership of sec-
tions within a segment may vary; moreover, processor-specific constraints may
alter the examples below. See the processor supplement for details.

Text segments contain read-only instructions and data, typically including the fol-
lowing sections described in Chapter 4. Other sections may also reside in loadable
segments; these examples are not meant to give complete and exclusive segment
contents.

Figure 5-5: Text Segment
_ __________

. t e x t_ __________
. r o d a t a_ __________
. h a s h_ __________
. d y n s y m_ __________
. d y n s t r_ __________
. p l t_ __________

. r e l . g o t_ __________ 





















Data segments contain writable data and instructions, typically including the fol-
lowing sections.

Figure 5-6: Data Segment
_ __________

. d a t a_ __________
. d y n a m i c_ __________
. g o t_ __________
. b s s_ __________ 












A P T _ D Y N A M I C program header element points at the . d y n a m i c section, explained
in ‘‘Dynamic Section’’ below. The . g o t and . p l t sections also hold information
related to position-independent code and dynamic linking. Although the . p l t
appears in a text segment above, it may reside in a text or a data segment,

Program Header 5-7

depending on the processor. See ‘‘Global Offset Table’’ and ‘‘Procedure Linkage
Table’’ in this chapter of the processor supplement for details.

As ‘‘Sections’’ in Chapter 4 describes, the . b s s section has the type S H T _ N O B I T S.
Although it occupies no space in the file, it contributes to the segment’s memory
image. Normally, these uninitialized data reside at the end of the segment,
thereby making p _ m e m s z larger than p _ f i l e s z in the associated program header
element.

Note Section

Sometimes a vendor or system builder needs to mark an object file with special
information that other programs will check for conformance, compatibility, etc.
Sections of type S H T _ N O T E and program header elements of type P T _ N O T E can be
used for this purpose. The note information in sections and program header ele-
ments holds any number of entries, each of which is an array of 4-byte words in
the format of the target processor. Labels appear below to help explain note infor-
mation organization, but they are not part of the specification.

Figure 5-7: Note Information
_ ________
n a m e s z_ ________
d e s c s z_ ________
t y p e_ ________
n a m e
. . .

_ ________
d e s c
. . .

_ ________ 



















n a m e s z and n a m e
The first n a m e s z bytes in n a m e contain a null-terminated character
representation of the entry’s owner or originator. There is no formal
mechanism for avoiding name conflicts. By convention, vendors use
their own name, such as ‘‘XYZ Computer Company,’’ as the identifier.
If no name is present, n a m e s z contains 0. Padding is present, if neces-
sary, to ensure 4-byte alignment for the descriptor. Such padding is
not included in n a m e s z.

5-8 PROGRAM LOADING AND DYNAMIC LINKING

d e s c s z and d e s c
The first d e s c s z bytes in d e s c hold the note descriptor. The ABI
places no constraints on a descriptor’s contents. If no descriptor is
present, d e s c s z contains 0. Padding is present, if necessary, to ensure
4-byte alignment for the next note entry. Such padding is not
included in d e s c s z.

t y p e This word gives the interpretation of the descriptor. Each originator
controls its own types; multiple interpretations of a single type value
may exist. Thus, a program must recognize both the name and the
type to ‘‘understand’’ a descriptor. Types currently must be non-
negative. The ABI does not define what descriptors mean.

To illustrate, the following note segment holds two entries.

Figure 5-8: Example Note Segment

+0 +1 +2 +3_ _____________________
n a m e s z 7_ _____________________
d e s c s z 0 No descriptor_ _____________________
t y p e 1_ _____________________
n a m e X Y Z_ _____________________

C 


o 



\ 0 




pad_ ______________________ _____________________
n a m e s z 7_ _____________________
d e s c s z 8_ _____________________
t y p e 3_ _____________________
n a m e X Y Z_ _____________________

C 


o 



\ 0 




pad_ _____________________
d e s c word 0_ _____________________

word 1_ _____________________ 



































NOTE

The system reserves note information with no name (n a m e s z = = 0) and with a
zero-length name (n a m e [0] = = ’ \ 0 ’) but currently defines no types. All other
names must have at least one non-null character.

Program Header 5-9

NOTE

Note information is optional. The presence of note information does not affect
a program’s ABI conformance, provided the information does not affect the
program’s execution behavior. Otherwise, the program does not conform to
the ABI and has undefined behavior.

5-10 PROGRAM LOADING AND DYNAMIC LINKING

Program Loading (Processor-Specific)

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

Program Loading (Processor-Specific) 5-11

Dynamic Linking

Program Interpreter

An executable file that participates in dynamic linking shall have one P T _ I N T E R P E
program header element. During the function e x e c, the system retrieves a path X
name from the P T _ I N T E R P segment and creates the initial process image from the
interpreter file’s segments. That is, instead of using the original executable file’s
segment images, the system composes a memory image for the interpreter. It then
is the interpreter’s responsibility to receive control from the system and provide
an environment for the application program.

As ‘‘Process Initialization’’ in Chapter 3 of the processor supplement mentions, the
interpreter receives control in one of two ways. First, it may receive a file descrip-
tor to read the executable file, positioned at the beginning. It can use this file
descriptor to read and/or map the executable file’s segments into memory.
Second, depending on the executable file format, the system may load the execut-
able file into memory instead of giving the interpreter an open file descriptor.
With the possible exception of the file descriptor, the interpreter’s initial process
state matches what the executable file would have received. The interpreter itself
may not require a second interpreter. An interpreter may be either a shared object
or an executable file.

A shared object (the normal case) is loaded as position-independent, with
addresses that may vary from one process to another; the system creates its
segments in the dynamic segment area used by the function m m a p and X
related services [see ‘‘Virtual Address Space’’ in Chapter 3 of the processor
supplement]. Consequently, a shared object interpreter typically will not
conflict with the original executable file’s original segment addresses.

An executable file is loaded at fixed addresses; the system creates its seg-
ments using the virtual addresses from the program header table. Conse-
quently, an executable file interpreter’s virtual addresses may collide with
the first executable file; the interpreter is responsible for resolving conflicts.

5-12 PROGRAM LOADING AND DYNAMIC LINKING

Dynamic Linker

When building an executable file that uses dynamic linking, the link editor adds a
program header element of type P T _ I N T E R P to an executable file, telling the sys-
tem to invoke the dynamic linker as the program interpreter. 

NOTE 
The locations of the system provided dynamic linkers are processor–specific. 

E x e c and the dynamic linker cooperate to create the process image for the pro-
gram, which entails the following actions:

Adding the executable file’s memory segments to the process image;

Adding shared object memory segments to the process image;

Performing relocations for the executable file and its shared objects;

Closing the file descriptor that was used to read the executable file, if one
was given to the dynamic linker;

Transferring control to the program, making it look as if the program had
received control directly from the function e x e c X

The link editor also constructs various data that assist the dynamic linker for exe-
cutable and shared object files. As shown above in ‘‘Program Header,’’ these data
reside in loadable segments, making them available during execution. (Once
again, recall the exact segment contents are processor-specific. See the processor
supplement for complete information.)

A . d y n a m i c section with type S H T _ D Y N A M I C holds various data. The struc-
ture residing at the beginning of the section holds the addresses of other
dynamic linking information.

The . h a s h section with type S H T _ H A S H holds a symbol hash table.

The . g o t and . p l t sections with type S H T _ P R O G B I T S hold two separate
tables: the global offset table and the procedure linkage table. Chapter 3
discusses how programs use the global offset table for position-independent
code. Sections below explain how the dynamic linker uses and changes the
tables to create memory images for object files.

Dynamic Linking 5-13

Because every ABI-conforming program imports the basic system services from a
shared object library [see ‘‘System Library’’ in Chapter 6], the dynamic linker par-
ticipates in every ABI-conforming program execution.

As ‘‘Program Loading’’ explains in the processor supplement, shared objects may
occupy virtual memory addresses that are different from the addresses recorded
in the file’s program header table. The dynamic linker relocates the memory
image, updating absolute addresses before the application gains control.
Although the absolute address values would be correct if the library were loaded
at the addresses specified in the program header table, this normally is not the
case.

If the process environment [see the function e x e c] contains a variable named X
L D _ B I N D _ N O W with a non-null value, the dynamic linker processes all relocation
before transferring control to the program. For example, all the following
environment entries would specify this behavior.

L D _ B I N D _ N O W = 1

L D _ B I N D _ N O W = o n

L D _ B I N D _ N O W = o f f

Otherwise, L D _ B I N D _ N O W either does not occur in the environment or has a null
value. The dynamic linker is permitted to evaluate procedure linkage table entries
lazily, thus avoiding symbol resolution and relocation overhead for functions that
are not called. See ‘‘Procedure Linkage Table’’ in this chapter of the processor
supplement for more information.

Dynamic Section

If an object file participates in dynamic linking, its program header table will have
an element of type P T _ D Y N A M I C. This ‘‘segment’’ contains the . d y n a m i c section.
A special symbol, _ D Y N A M I C, labels the section, which contains an array of the fol-
lowing structures.

5-14 PROGRAM LOADING AND DYNAMIC LINKING

Figure 5-9: Dynamic Structure

t y p e d e f s t r u c t {
E l f 3 2 _ S w o r d d _ t a g ;
u n i o n {

E l f 3 2 _ W o r d d _ v a l ;
E l f 3 2 _ A d d r d _ p t r ;

} d _ u n ;
} E l f 3 2 _ D y n ;

e x t e r n E l f 3 2 _ D y n _ D Y N A M I C [] ;

For each object with this type, d _ t a g controls the interpretation of d _ u n.

d _ v a l These E l f 3 2 _ W o r d objects represent integer values with various
interpretations.

d _ p t r These E l f 3 2 _ A d d r objects represent program virtual addresses. As
mentioned previously, a file’s virtual addresses might not match the
memory virtual addresses during execution. When interpreting
addresses contained in the dynamic structure, the dynamic linker
computes actual addresses, based on the original file value and the
memory base address. For consistency, files do not contain relocation
entries to ‘‘correct’’ addresses in the dynamic structure.

The following table summarizes the tag requirements for executable and shared
object files. If a tag is marked ‘‘mandatory,’’ then the dynamic linking array for an
ABI-conforming file must have an entry of that type. Likewise, ‘‘optional’’ means
an entry for the tag may appear but is not required.

Figure 5-10: Dynamic Array Tags, d _ t a g

Name Value d _ u n Executable Shared Object_ ___
D T _ N U L L 0 ignored mandatory mandatory
D T _ N E E D E D 1 d _ v a l optional optional
D T _ P L T R E L S Z 2 d _ v a l optional optional
D T _ P L T G O T 3 d _ p t r optional optional
D T _ H A S H 4 d _ p t r mandatory mandatory
D T _ S T R T A B 5 d _ p t r mandatory mandatory
D T _ S Y M T A B 6 d _ p t r mandatory mandatory




































Dynamic Linking 5-15

Figure 5-10: Dynamic Array Tags, d _ t a g (continued)

Name Value d _ u n Executable Shared Object_ ___
D T _ R E L A 7 d _ p t r mandatory optional
D T _ R E L A S Z 8 d _ v a l mandatory optional
D T _ R E L A E N T 9 d _ v a l mandatory optional
D T _ S T R S Z 1 0 d _ v a l mandatory mandatory
D T _ S Y M E N T 1 1 d _ v a l mandatory mandatory
D T _ I N I T 1 2 d _ p t r optional optional
D T _ F I N I 1 3 d _ p t r optional optional
D T _ S O N A M E 1 4 d _ v a l ignored optional
D T _ R P A T H 1 5 d _ v a l optional ignored
D T _ S Y M B O L I C 1 6 ignored ignored optional
D T _ R E L 1 7 d _ p t r mandatory optional
D T _ R E L S Z 1 8 d _ v a l mandatory optional
D T _ R E L E N T 1 9 d _ v a l mandatory optional
D T _ P L T R E L 2 0 d _ v a l optional optional
D T _ D E B U G 2 1 d _ p t r optional ignored
D T _ T E X T R E L 2 2 ignored optional optional
D T _ J M P R E L 2 3 d _ p t r optional optional
D T _ L O P R O C 0 x 7 0 0 0 0 0 0 0 unspecified unspecified unspecified
D T _ H I P R O C 0 x 7 f f f f f f f unspecified unspecified unspecified_ ___ 
































































































D T _ N U L L An entry with a D T _ N U L L tag marks the end of the _ D Y N A M I C
array.

D T _ N E E D E D This element holds the string table offset of a null-terminated
string, giving the name of a needed library. The offset is an index
into the table recorded in the D T _ S T R T A B entry. See ‘‘Shared
Object Dependencies’’ for more information about these names.
The dynamic array may contain multiple entries with this type.
These entries’ relative order is significant, though their relation to
entries of other types is not.

D T _ P L T R E L S Z This element holds the total size, in bytes, of the relocation entries
associated with the procedure linkage table. If an entry of type
D T _ J M P R E L is present, a D T _ P L T R E L S Z must accompany it.

D T _ P L T G O T This element holds an address associated with the procedure link-
age table and/or the global offset table. See this section in the
processor supplement for details.

5-16 PROGRAM LOADING AND DYNAMIC LINKING

D T _ H A S H This element holds the address of the symbol hash table, 
described in ‘‘Hash Table.’’ This hash table refers to the symbol 
table referenced by the D T _ S Y M T A B element.

D T _ S T R T A B This element holds the address of the string table, described in
Chapter 4. Symbol names, library names, and other strings reside
in this table.

D T _ S Y M T A B This element holds the address of the symbol table, described in
Chapter 4, with E l f 3 2 _ S y m entries for the 32-bit class of files.

D T _ R E L A This element holds the address of a relocation table, described in
Chapter 4. Entries in the table have explicit addends, such as
E l f 3 2 _ R e l a for the 32-bit file class. An object file may have mul-
tiple relocation sections. When building the relocation table for
an executable or shared object file, the link editor catenates those
sections to form a single table. Although the sections remain
independent in the object file, the dynamic linker sees a single
table. When the dynamic linker creates the process image for an
executable file or adds a shared object to the process image, it
reads the relocation table and performs the associated actions. If
this element is present, the dynamic structure must also have
D T _ R E L A S Z and D T _ R E L A E N T elements. When relocation is ‘‘man-
datory’’ for a file, either D T _ R E L A or D T _ R E L may occur (both are
permitted but not required).

D T _ R E L A S Z This element holds the total size, in bytes, of the D T _ R E L A reloca-
tion table.

D T _ R E L A E N T This element holds the size, in bytes, of the D T _ R E L A relocation
entry.

D T _ S T R S Z This element holds the size, in bytes, of the string table.

D T _ S Y M E N T This element holds the size, in bytes, of a symbol table entry.

D T _ I N I T This element holds the address of the initialization function, dis-
cussed in ‘‘Initialization and Termination Functions’’ below.

D T _ F I N I This element holds the address of the termination function, dis-
cussed in ‘‘Initialization and Termination Functions’’ below.

D T _ S O N A M E This element holds the string table offset of a null-terminated
string, giving the name of the shared object. The offset is an index
into the table recorded in the D T _ S T R T A B entry. See ‘‘Shared
Object Dependencies’’ below for more information about these
names.

Dynamic Linking 5-17

D T _ R P A T H This element holds the string table offset of a null-terminated
search library search path string, discussed in ‘‘Shared Object
Dependencies.’’ The offset is an index into the table recorded in
the D T _ S T R T A B entry.

D T _ S Y M B O L I C This element’s presence in a shared object library alters the
dynamic linker’s symbol resolution algorithm for references
within the library. Instead of starting a symbol search with the
executable file, the dynamic linker starts from the shared object
itself. If the shared object fails to supply the referenced symbol,
the dynamic linker then searches the executable file and other
shared objects as usual.

D T _ R E L This element is similar to D T _ R E L A, except its table has implicit
addends, such as E l f 3 2 _ R e l for the 32-bit file class. If this ele-
ment is present, the dynamic structure must also have D T _ R E L S Z
and D T _ R E L E N T elements.

D T _ R E L S Z This element holds the total size, in bytes, of the D T _ R E L reloca-
tion table.

D T _ R E L E N T This element holds the size, in bytes, of the D T _ R E L relocation
entry.

D T _ P L T R E L This member specifies the type of relocation entry to which the
procedure linkage table refers. The d _ v a l member holds D T _ R E L
or D T _ R E L A, as appropriate. All relocations in a procedure link-
age table must use the same relocation.

D T _ D E B U G This member is used for debugging. Its contents are not specified
for the ABI; programs that access this entry are not ABI-
conforming.

D T _ T E X T R E L This member’s absence signifies that no relocation entry should
cause a modification to a non-writable segment, as specified by
the segment permissions in the program header table. If this
member is present, one or more relocation entries might request
modifications to a non-writable segment, and the dynamic linker
can prepare accordingly.

D T _ J M P R E L If present, this entries’ d _ p t r member holds the address of reloca-
tion entries associated solely with the procedure linkage table.
Separating these relocation entries lets the dynamic linker ignore
them during process initialization, if lazy binding is enabled. If
this entry is present, the related entries of types D T _ P L T R E L S Z and
D T _ P L T R E L must also be present.

5-18 PROGRAM LOADING AND DYNAMIC LINKING

D T _ L O P R O C through D T _ H I P R O C
Values in this inclusive range are reserved for processor-specific
semantics. If meanings are specified, the processor supplement
explains them.

Except for the D T _ N U L L element at the end of the array, and the relative order of
D T _ N E E D E D elements, entries may appear in any order. Tag values not appearing
in the table are reserved.

Shared Object Dependencies

When the link editor processes an archive library, it extracts library members and
copies them into the output object file. These statically linked services are avail-
able during execution without involving the dynamic linker. Shared objects also
provide services, and the dynamic linker must attach the proper shared object files
to the process image for execution. Thus executable and shared object files
describe their specific dependencies.

When the dynamic linker creates the memory segments for an object file, the
dependencies (recorded in D T _ N E E D E D entries of the dynamic structure) tell what
shared objects are needed to supply the program’s services. By repeatedly con-
necting referenced shared objects and their dependencies, the dynamic linker
builds a complete process image. When resolving symbolic references, the
dynamic linker examines the symbol tables with a breadth-first search. That is, it
first looks at the symbol table of the executable program itself, then at the symbol
tables of the D T _ N E E D E D entries (in order), then at the second level D T _ N E E D E D
entries, and so on. Shared object files must be readable by the process; other per-
missions are not required.

NOTE

Even when a shared object is referenced multiple times in the dependency
list, the dynamic linker will connect the object only once to the process.

Names in the dependency list are copies either of the D T _ S O N A M E strings or the
path names of the shared objects used to build the object file. For example, if the
link editor builds an executable file using one shared object with a D T _ S O N A M E
entry of l i b 1 and another shared object library with the path name
/ u s r / l i b / l i b 2, the executable file will contain l i b 1 and / u s r / l i b / l i b 2 in its
dependency list.

Dynamic Linking 5-19

If a shared object name has one or more slash (/) characters anywhere in the
name, such as / u s r / l i b / l i b 2 above or d i r e c t o r y / f i l e, the dynamic linker
uses that string directly as the path name. If the name has no slashes, such as
l i b 1 above, three facilities specify shared object path searching, with the follow-
ing precedence.

First, the dynamic array tag D T _ R P A T H may give a string that holds a list of
directories, separated by colons (:). For example, the string
/ h o m e / d i r / l i b : / h o m e / d i r 2 / l i b : tells the dynamic linker to search first
the directory / h o m e / d i r / l i b, then / h o m e / d i r 2 / l i b, and then the current
directory to find dependencies.

Second, a variable called L D _ L I B R A R Y _ P A T H in the process environment [see X
the function e x e c] may hold a list of directories as above, optionally fol-
lowed by a semicolon (;) and another directory list. The following values
would be equivalent to the previous example:

L D _ L I B R A R Y _ P A T H = / h o m e / d i r / l i b : / h o m e / d i r 2 / l i b :

L D _ L I B R A R Y _ P A T H = / h o m e / d i r / l i b ; / h o m e / d i r 2 / l i b :

L D _ L I B R A R Y _ P A T H = / h o m e / d i r / l i b : / h o m e / d i r 2 / l i b : ;

All L D _ L I B R A R Y _ P A T H directories are searched after those from D T _ R P A T H.
Although some programs (such as the link editor) treat the lists before and
after the semicolon differently, the dynamic linker does not. Nevertheless,
the dynamic linker accepts the semicolon notation, with the semantics
described above.

Finally, if the other two groups of directories fail to locate the desired
library, the dynamic linker searches / u s r / l i b.

NOTE

For security, the dynamic linker ignores environmental search specifications
(such as L D _ L I B R A R Y _ P A T H) for set-user and set-group ID programs. It does,
however, search D T _ R P A T H directories and / u s r / l i b.

5-20 PROGRAM LOADING AND DYNAMIC LINKING

Global Offset Table (Processor-Specific)

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

Procedure Linkage Table (Processor-Specific)

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

Hash Table

A hash table of E l f 3 2 _ W o r d objects supports symbol table access. Labels appear
below to help explain the hash table organization, but they are not part of the
specification.

Figure 5-11: Symbol Hash Table
_ _____________________

n b u c k e t_ _____________________
n c h a i n_ _____________________

b u c k e t [0]
. . .

b u c k e t [n b u c k e t - 1]_ _____________________
c h a i n [0]
. . .

c h a i n [n c h a i n - 1]_ _____________________ 





















The b u c k e t array contains n b u c k e t entries, and the c h a i n array contains n c h a i n
entries; indexes start at 0. Both b u c k e t and c h a i n hold symbol table indexes.
Chain table entries parallel the symbol table. The number of symbol table entries
should equal n c h a i n; so symbol table indexes also select chain table entries. A
hashing function (shown below) accepts a symbol name and returns a value that
may be used to compute a b u c k e t index. Consequently, if the hashing function
returns the value x for some name, b u c k e t [x% n b u c k e t] gives an index, y , into

Dynamic Linking 5-21

both the symbol table and the chain table. If the symbol table entry is not the one
desired, c h a i n [y] gives the next symbol table entry with the same hash value.
One can follow the c h a i n links until either the selected symbol table entry holds
the desired name or the c h a i n entry contains the value S T N _ U N D E F.

Figure 5-12: Hashing Function

u n s i g n e d l o n g
e l f _ h a s h (c o n s t u n s i g n e d c h a r * n a m e)
{

u n s i g n e d l o n g h = 0 , g ;

w h i l e (* n a m e)
{

h = (h < < 4) + * n a m e + + ;
i f (g = h & 0 x f 0 0 0 0 0 0 0)

h ̂ = g > > 2 4 ;
h & = ̃ g ;

}
r e t u r n h ;

}

Initialization and Termination Functions

After the dynamic linker has built the process image and performed the reloca-
tions, each shared object gets the opportunity to execute some initialization code.
These initialization functions are called in no specified order, but all shared object
initializations happen before the executable file gains control.

Similarly, shared objects may have termination functions, which are executed with
the function a t e x i t mechanism after the base process begins its termination X
sequence. Once again, the order in which the dynamic linker calls termination
functions is unspecified.

Shared objects designate their initialization and termination functions through the
D T _ I N I T and D T _ F I N I entries in the dynamic structure, described in ‘‘Dynamic
Section’’ above. Typically, the code for these functions resides in the . i n i t and
. f i n i sections, mentioned in ‘‘Sections’’ of Chapter 4.

5-22 PROGRAM LOADING AND DYNAMIC LINKING

NOTE

Although the function a t e x i t termination processing normally will be done, it
is not guaranteed to have executed upon process death. In particular, the X
process will not execute the termination processing if it calls _ e x i t [see the
function e x i t] or if the process dies because it received a signal that it nei-
ther caught nor ignored.

Dynamic Linking 5-23

6 LIBRARIES

Introduction 6-1
Shared Library Names 6-2
Dependencies Among Libraries 6-3

System Library 6-4
Additional Entry Points (Processor-Specific) 6-6
Support Routines (Processor-Specific) 6-7
Global Data Symbols 6-7

Application Constraints 6-8
System Service Synonyms 6-8
Implementation of libsys Routines 6-9
Vendor Extensions 6-9

C Library 6-10
Global Data Symbols 6-13

Application Constraints 6-14

Network Services Library 6-15

Socket Library 6-18

Table of Contents i

Curses Library 6-19

X Window System Library 6-23

X Toolkit Intrinsics Library 6-29

System Data Interfaces 6-33
Required Sizes for Some Data Objects 6-33
Data Definitions (Processor-Specific) 6-34

ii Table of Contents

Introduction

Every ABI-conforming system supports some general-purpose libraries. Facilities
in these libraries manipulate system data files, trap to the operating system, and so
on.

l i b c The C library, containing various facilities defined by System V, ANSI
C, POSIX, and so on.

l i b s y s The system library, containing interfaces to basic system services.

l i b n s l The networking services library, contains the transport layer interface X
routines, as well as routines for machine-independent data representa- X
tion, remote procedure calls, and other networking support. These X
routines are described in the Networking Services volume of the X
X/Open CAE Specification, Issue 4.2 , and the BA_OS and RS_LIB sections X
of the System V Interface Definition, Third Edition (see the Conformance X
Rule in chapter1).

l i b s o c k e t
A library containing the sockets routines as described in the Network- X
ing Services volume of the X/Open CAE Specification, Issue 4.2 . X

l i b c u r s e s X
This library provides routines for updating character screens as X
described in the X/Open Curses, Issue 4 of the X/Open CAE X
Specification, Issue 4.2 .

The following libraries may be supported as extensions to the ABI. G

l i b X G A library for building applications using the X Window System proto- G
col described in the Graphics chapter. G

l i b X t G A library for building applications using the X Toolkit Intrinsics. G

As a binary specification, the ABI gives shared library organization; that is, it tells
what services reside in what shared libraries. Programs use the dynamic linking
mechanism described in Chapter 5 to access their services.

The ABI does not duplicate the descriptions available in the X/Open CAE X
Specification, Issue 4.2 and the System V Interface Definition, Third Edition and other
references that tell what the facilities do, how to use them, and so on. However,
the interfaces to some services may have different names and syntax at the system
level than they do at the source level. When these differences exist, this document
(the System V ABI) specifies the name of the source-level services that must be

Introduction 6-1

supported on conforming systems, and the names and descriptions of these inter-
faces are given in each processor supplement to the ABI.

Shared libraries contribute to the application execution environment and thus
appear in the ABI. Functions that reside directly in application files are not
specified. For example, mathematical routines, such as s i n , do not appear below.
They would be available in a System V development environment, but an
application’s executable file would contain the associated code. Assuming the
implementations of the functions themselves are ABI-conforming, their presence
does not affect the conformance of the application. Moreover, the absence of
shared library versions of particular services does not imply a deprecation of those
services.

The ABI requires conforming applications to use the dynamic linking mechanism
described in Chapter 5 to access the services provided in the System Library, l i b -
s y s, the X Window System Library, l i b X, and in the Networking Services Library, E
l i b n s l. Use of the other shared libraries documented here is optional for applica-
tions; the services they contain may be obtained through the use of equivalent
archive library routines. An application that accesses ABI services from both the E
shared library and the static archive version of the same library is not ABI con- E
forming.

Shared Library Names

As Chapter 5 describes, executable and shared object files contain the names of
required shared libraries.

Figure 6-1: Shared Library Names

Library Reference Name_ ______________________________________
l i b c / u s r / l i b / l i b c . s o . 1
l i b s y s / u s r / l i b / l d . s o . 1
l i b n s l / u s r / l i b / l i b n s l . s o
l i b s o c k e t / u s r / l i b / l i b s o c k e t . s o . 2 X
l i b c u r s e s / u s r / l i b / l i b c u r s e s . s o . 1 X
l i b X / u s r / l i b / l i b X 1 1 . s o . 1
l i b X t / u s r / X / l i b / l i b X t . s o . 1 G_ ______________________________________ 









6-2 LIBRARIES

Dependencies Among Libraries

Inter-library dependencies are processor-specific, and are described in each pro-
cessor supplement where this is appropriate. For example, l i b n s l may depend
on l i b c; l i b X may depend on both l i b n s l and l i b c. Application executable and
shared object files must provide a complete dependency graph during execution.
Thus, for example, an executable file that uses a dynamically shared l i b n s l that E
depends on l i b c must ensure that a dynamically shared l i b c is present during E
execution. Programs that fail to supply all the necessary libraries do not conform
to the ABI and have undefined behavior.

Introduction 6-3

System Library

The system library, l i b s y s, contains the basic system services. Although special
instructions are necessary to change from user to kernel mode, the ABI explicitly
does not specify the correspondence of these instructions to system calls. The
table below contains routines that correspond to basic system services, as well as
to service routines that provide a functional interface to system data files. Each of
the routines listed in the table below is present in l i b s y s in the listed form, as
well as in synonym form, as described in a following section, ‘‘System Service
Synonyms’’ .

Though all the function symbols listed in the tables below must be present in l i b -
s y s, not all of the functions they reference may actually be implemented. See the
‘‘Implementation of l i b s y s Routines’’ section that follows for more detail.

6-4 LIBRARIES

Figure 6-2: l i b s y s Contents, Names with Synonyms 

a c c e s s f t o k m e m c n t l r e n a m e s i g p e n d i n g 
a c c t# g e t c o n t e x t m k d i r r e w i n d d i r s i g p r o c m a s k 
a l a r m g e t c w d m k n o d r m d i r s i g r e l s e 
c a t c l o s e g e t e g i d m l o c k s e e k d i r s i g s e n d 
c a t g e t s g e t e u i d m m a p s e m c t l s i g s e n d s e t 
c a t o p e n g e t g i d m o u n t s e m g e t s i g s e t 
c h d i r g e t g r g i d m p r o t e c t s e m o p s i g s e t j m p 
c h m o d g e t g r n a m m s g c t l s e t c o n t e x t s i g s u s p e n d 
c h o w n g e t g r o u p s m s g g e t s e t g i d s t a t v f s 
c h r o o t g e t l o g i n m s g r c v s e t g r o u p s s t i m e 
c l o s e g e t m s g m s g s n d s e t p g i d s y m l i n k 
c l o s e d i r g e t p g i d m s y n c s e t p g r p s y n c 
c r e a t g e t p g r p m u n l o c k s e t r l i m i t s y s c o n f 
d u p g e t p i d m u n m a p s e t s i d t e l l d i r 
e x e c l g e t p m s g n i c e s e t u i d t i m e 
e x e c l e g e t p p i d o p e n s h m a t t i m e s 
e x e c l p g e t p w n a m o p e n d i r s h m c t l t t y n a m e 
e x e c v g e t p w u i d p a t h c o n f s h m d t u l i m i t 
e x e c v e g e t r l i m i t p a u s e s h m g e t u m a s k 
e x e c v p g e t s i d p i p e s i g a c t i o n u m o u n t 
f a t t a c h g e t t x t p o l l s i g a d d s e t u n l i n k 
f c h d i r g e t u i d p r o f i l# s i g a l t s t a c k u n l o c k p t 
f c h m o d g r a n t p t p t r a c e s i g d e l s e t u t i m e 
f c h o w n i n i t g r o u p s p t s n a m e s i g e m p t y s e t w a i t 
f c n t l i o c t l p u t m s g s i g f i l l s e t w a i t i d 
f d e t a c h i s a s t r e a m p u t p m s g s i g h o l d w a i t p i d 
f o r k k i l l r e a d s i g i g n o r e w r i t e 
f p a t h c o n f l c h o w n r e a d d i r s i g i s m e m b e r w r i t e v 
f s t a t v f s l i n k r e a d l i n k s i g l o n g j m p 
f s y n c l s e e k r e a d v s i g p a u s e 
m a k e c o n t e x t s w a p c o n t e x t E

Function is DEPRECATED X

The system library also includes some service routines that are present in the
library in their listed form, but are not also present in synonym form. These l i b -
s y s routines are listed in the table below.

System Library 6-5

Figure 6-3: l i b s y s Contents, Names Without Synonyms

a t e x i t f r e e r e a l l o c s i g n a l s t r f t i m e
c a l l o c l o c a l e c o n v r e m o v e s t r c o l l s t r x f r m
e x i t m a l l o c s e t l o c a l e s t r e r r o r s y s t e m
_ e x i t

NOTE 
Other than for use in streams devices, the specific devices supported by 
i o c t l are processor specific. 

Additional Entry Points (Processor-Specific) ∗

ABI-conforming systems must provide a l i b s y s entry point for each of the
source-level services shown in the list below. The name and syntax of this entry
point may be the same as those characteristics of the source-level service or they
may vary across processor architectures. The actual names of the entry points are
specified in each processor’s supplement to the ABI, together with the entry
points’ syntax information if names differ from those of the source-level services.

This information is for the use of system implementors and compiler writers, and
does not affect the source-level system interface used by application programmers.

Figure 6-4: l i b s y s Contents, Additional Services

f s t a t l s t a t m k n o d s t a t u n a m e

NOTE

This section requires processor-specific information. Consequently, the ABI
supplement for the desired processor describes the details.

6-6 LIBRARIES

NOTE

Because the ABI specifies neither the correspondence of system calls to traps
nor the formats of system data files, ABI-conforming programs access l i b s y s
services through dynamic linking.

See ‘‘System Data Interfaces’’ later in this chapter for more information.

Support Routines (Processor-Specific)

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

Global Data Symbols

The l i b s y s library requires that some global external data objects be defined for
the routines to work properly. The data symbols listed in the table below must be
provided by the l i b s y s library. Pairs of entries in the form name and _name label
the same object. The underscore synonyms are provided to satisfy the ANSI C
standard. An ANSI C-conforming application can define its own name symbols,
unrelated to the X/Open CAE Specification, Issue 4.2 and the System V Interface X
Definition, Third Edition meanings. If the application intends those symbols to X
have the X/Open CAE Specification, Issue 4.2 and the System V Interface Definition,
Third Edition semantics, it must also define the _name symbols so that both refer to
the same data object.

For formal declarations of the data objects represented by these symbols, see the
‘‘Data Definitions’’ section of Chapter 6 in the appropriate processor supplement
to the System V ABI.

Figure 6-5: l i b s y s Contents, Global External Data Symbols

_ a l t z o n e d a y l i g h t t i m e z o n e t z n a m e
_ _ c t y p e _ d a y l i g h t _ t i m e z o n e _ t z n a m e
_ n u m e r i c E

System Library 6-7

t i m e _ t _ a l t z o n e ;
This variable contains the difference, in seconds, between Univer-
sal Coordinated Time and the alternate time zone, as established
with the function t z s e t. X

u n s i g n e d c h a r _ n u m e r i c [2] ;
This array holds local-specific information, as established by the
function s e t l o c a l e . Specifically, _ n u m e r i c [0] holds the X
decimal-point character, and _ n u m e r i c [1] holds the character
used to separate groups of digits to the left of the decimal-point
character in formatted non-monetary quantities. See the function X
l o c a l e c o n v for more information.

Application Constraints

As described above, l i b s y s provides symbols for applications. In a few cases,
however, an application is obliged to provide symbols for the library.

e x t e r n c h a r * * e n v i r o n;
Normally, this symbol is synonymous with e n v i r o n, as the function X
e x e c describes. This isn’t always true, though, because ANSI C does
not define e n v i r o n. Thus, an ANSI C-conforming application can
define its own e n v i r o n symbol, unrelated to the process environ-
ment. If the application defines e n v i r o n and intends it to have the X
X/Open CAE Specification, Issue 4.2 and the System V Interface
Definition, Third Edition semantics, it must also define _ e n v i r o n so
that the two symbols refer to the same data object.

System Service Synonyms

In addition to the routine names listed in the tables above, the system library
includes synonyms for some of its services. These other symbols are available to
conform to language and system standards. As an example, System V defines
r e a d as the name of an operating system facility. On the other hand, ANSI C does
not define r e a d, and it prohibits a strictly conforming implementation from usurp-
ing application names without a leading underscore (_). Thus if a synonym for
r e a d were not available, the system could not support a strictly conforming
implementation of the ANSI C language.

name This gives the traditional name, such as r e a d.

6-8 LIBRARIES

_name This gives a system service name that follows the ANSI C convention
of reserving symbols beginning with an underscore, such as _ r e a d.

Although many system services have two names, two exceptions exist to this
synonym convention. System V defines both e x i t and _ e x i t as different facili-
ties. Consequently, the symbols e x i t and _ e x i t have no synonyms and refer to
different services.

Implementation of libsys Routines

All ABI-conforming systems must provide a l i b s y s entry point for all routines
listed as belonging to this library. However, only the routines necessary to pro-
vide the source-level programming interfaces required to be defined in the X/Open X
CAE Specification, Issue 4.2 and defined in the System V Interface Definition, Third
Edition sections BA_OS, BA_LIB, and KE_OS, as described in the introduction to
the System V ABI, must be implemented on a conforming system (see the Confor-
mance Rule in chapter 1). For example, this means that the routine
m e m c n t l(RT_OS) need not be fully implemented on an ABI-conforming system,
though the entry point for this function must be present in the library.

Routines not required for the System V Interface Definition, Third Edition sections
listed above or X/Open CAE Specification, Issue 4.2 may or may not be imple- X
mented, at the discretion of the system implementor. Unimplemented routines E
must be represented in the library by a stub that when called causes failure and E
sets the global variable e r r n o to the value E N O S Y S.

Vendor Extensions

Besides the services listed above, libsys may contain other symbols. An ABI-
conforming system vendor may add a symbol to the system library to provide
vendor-specific services. The ABI does not define these services, and programs
using these services are not ABI-conforming. Nonetheless, the ABI defines a E
recommended extension mechanism , providing a way to avoid conflict among the
services from multiple vendors.

A symbol of the form _ $ v e n d o r .company provides an operating system entry for
the vendor named company . The system library does not have unadorned alterna-
tives for these names. Conventionally, a vendor uses the single name to provide
multiple services, letting the first argument to _ $ v e n d o r .company select among
the alternatives. As an example, the ‘‘XYZ Computer Company’’ might add
_ $ v e n d o r . x y z to the system library.

System Library 6-9

i n t _ _ f l s b u f (i n t x , F I L E * f) ;
This function flushes the output characters for f as if p u t c (x , f) had
been called and then appends the value of x to the resulting output
stream. It returns E O F if an error occurs and x otherwise.

i n t _ x f t w (i n t , c h a r * , i n t (*) (c h a r * , s t r u c t s t a t * , i n t) , i n t) ;
Calls to the f t w function are mapped to this function when applica-
tions are compiled. This function is identical to f t w, except that
_ x f t w () takes an interposed first argument, which must have the
value 2.

See this chapter’s other library sections for more SVID, ANSI C, and POSIX facili-
ties. See ‘‘System Data Interfaces’’ later in this chapter for more information.

Global Data Symbols

The l i b c library requires that some global external data symbols be defined for its
routines to work properly. All the data symbols required for the l i b s y s library
must be provided by l i b c, as well as the data symbols listed in the table below.

For formal declarations of the data objects represented by these symbols, see the X
X/Open CAE Specification, Issue 4.2 and the System V Interface Definition, Third Edi-
tion (see the Conformance Rule in chapter 1) or the ‘‘Data Definitions’’ section of
Chapter 6 in the appropriate processor supplement to the System V ABI.

For entries in the following table that are in name - _name form, both symbols in
each pair represent the same data. The underscore synonyms are provided to
satisfy the ANSI C standard. If the application references a weak symbol that has E
a global synonym, it must define both the weak symbol and the global synonym at E
the same address.

Figure 6-11: l i b c Contents, Global External Data Symbols

_ _ i o b g e t d a t e _ e r r
_ _ l o c 1 l o c 1
_ _ x p g 4 l o c 2
_ g e t d a t e _ e r r l o c s

Of the routines listed in the table above, the following are not defined elsewhere. X

e x t e r n i n t _ _ x p g 4 ; X
This variable’s value specifies the execution environment for the pro- X
gram. If the value is 0 or unset, results are implementation-specific. X
Otherwise, if the value is 1, the application will get System V X

C Library 6-13

Application Binary Interface, Edition 3.1 functionality. All other values X
for _ _xpg4 are reserved for future use.

NOTE

Typically, _ _xpg4 being initialized to 0 or uninitialized would X
represent a backwards compatibility environment for System V
Application Binary Interface, Third Edition applications.

Application Constraints

As described above, l i b c provides symbols for applications. In a few cases, how- X
ever, an application is obliged to provide symbols for the library. X

e x t e r n c o n s t i n t _ l i b _ v e r s i o n ; X
This variable’s value specifies the compilation and execution mode X
for the program. If the value is zero, the program wants to preserve X
the semantics of older (pre-ANSI) C, where conflicts exist with X
ANSI. Otherwise, the value is non-zero, and the program wants X
ANSI C semantics. X

6-14 LIBRARIES

Network Services Library

The Network Services library, l i b n s l, contains library routines that provide a
transport-level interface to networking services for applications, facilities for
machine-independent data representation, a remote procedure call mechanism,
and other networking services useful for application programs. This library con- X
tains two sets of interfaces: one conforming to the Transport Level Interface (TLI) X
specification and another to the X/Open Transport Interface (XTI) Version 2 X
specification . The TLI interface allows for binary compatibility with systems that X
conform to previous editions of the ABI. The following TLI functions reside in X
l i b n s l and must be provided on all ABI-conforming systems.

Figure 6-12: l i b n s l Contents, Part 1 of 3

t _ a c c e p t t _ l i s t e n t _ r c v u d a t a
t _ a l l o c t _ l o o k t _ r c v u d e r r
t _ b i n d t _ o p e n t _ s n d
t _ c l o s e t _ o p t m g m t t _ s n d d i s
t _ c o n n e c t t _ r c v t _ s n d r e l
t _ e r r o r t _ r c v c o n n e c t t _ s n d u d a t a
t _ f r e e t _ r c v d i s t _ s y n c
t _ g e t i n f o t _ r c v r e l t _ u n b i n d
t _ g e t s t a t e

The following XTI interfaces also reside in l i b n s l and must be provided on all X
ABI-conforming systems. X

Figure 6-13: l i b n s l Contents, Part 2 of 3

_ x t i _ a c c e p t _ x t i _ g e t i n f o _ x t i _ r c v c o n n e c t X
_ x t i _ a l l o c _ x t i _ g e t p r o t a d d r _ x t i _ r c v d i s X
_ x t i _ b i n d _ x t i _ g e t s t a t e _ x t i _ r c v r e l X
_ x t i _ c l o s e _ x t i _ l i s t e n _ x t i _ r c v u d a t a X
_ x t i _ c o n n e c t _ x t i _ l o o k _ x t i _ r c v u d e r r X
_ x t i _ e r r o r _ x t i _ o p e n _ x t i _ s n d X
_ x t i _ f r e e _ x t i _ r c v _ x t i _ s n d d i s X
_ x t i _ s n d r e l _ x t i _ s t r e r r o r _ x t i _ u n b i n d X

Network Services Library 6-15

Figure 6-13: l i b n s l Contents, Part 2 of 3 (continued) X

_ x t i _ s n d u d a t a _ x t i _ s y n c X

In addition, the following functions must be provided in l i b n s l on all ABI-
conforming systems with a networking capability. Systems with no networking
capability are not required to implement these functions, but must provide an
entry point into l i b n s l for each of the following function names. Functions that
are present only as stubs and are not implemented must fail normally and per- E
form no action other setting the external e r r n o variable to the value E N O S Y S when
they are called by an application.

Figure 6-14: l i b n s l Contents, Part 3 of 3

a u t h d e s _ g e t u c r e d n e t n a m e 2 h o s t x d r _ a r r a y 
a u t h d e s _ s e c c r e a t e n e t n a m e 2 u s e r x d r _ a u t h s y s _ p a r m s 
a u t h n o n e _ c r e a t e r p c _ b r o a d c a s t x d r _ b o o l 
a u t h s y s _ c r e a t e r p c _ c a l l x d r _ b y t e s 
a u t h s y s _ c r e a t e _ d e f a u l t r p c _ r e g x d r _ c a l l h d r 
c l n t _ c r e a t e r p c b _ g e t a d d r x d r _ c a l l m s g 
c l n t _ d g _ c r e a t e r p c b _ g e t m a p s x d r _ c h a r 
c l n t _ p c r e a t e e r r o r r p c b _ g e t t i m e x d r _ d o u b l e 
c l n t _ p e r r n o r p c b _ r m t c a l l x d r _ e n u m 
c l n t _ p e r r o r r p c b _ s e t x d r _ f l o a t 
c l n t _ r a w _ c r e a t e r p c b _ u n s e t x d r _ f r e e 
c l n t _ s p c r e a t e e r r o r s e t n e t c o n f i g x d r _ i n t 
c l n t _ s p e r r n o s e t n e t p a t h x d r _ l o n g 
c l n t _ s p e r r o r s v c _ c r e a t e x d r _ o p a q u e 
c l n t _ t l i _ c r e a t e s v c _ d g _ c r e a t e x d r _ o p a q u e _ a u t h 
c l n t _ t p _ c r e a t e s v c _ f d _ c r e a t e x d r _ p o i n t e r 
c l n t _ v c _ c r e a t e s v c _ g e t r e q s e t x d r _ r e f e r e n c e 
e n d n e t c o n f i g s v c _ r a w _ c r e a t e x d r _ r e j e c t e d _ r e p l y 
e n d n e t p a t h s v c _ r e g x d r _ r e p l y m s g 
f r e e n e t c o n f i g e n t s v c _ r u n x d r _ s h o r t 
g e t n e t c o n f i g s v c _ s e n d r e p l y x d r _ s t r i n g 
g e t n e t c o n f i g e n t s v c _ t l i _ c r e a t e x d r _ u _ c h a r 
g e t n e t n a m e s v c _ t p _ c r e a t e x d r _ u _ l o n g 
g e t n e t p a t h s v c _ u n r e g x d r _ u _ s h o r t 
g e t p u b l i c k e y s v c _ v c _ c r e a t e x d r _ u n i o n 

6-16 LIBRARIES

Figure 6-14: l i b n s l Contents, Part 3 of 3 (continued) 

g e t s e c r e t k e y s v c e r r _ a u t h x d r _ v e c t o r 
h o s t 2 n e t n a m e s v c e r r _ d e c o d e x d r _ v o i d 
k e y _ d e c r y p t s e s s i o n s v c e r r _ n o p r o c x d r _ w r a p s t r i n g 
k e y _ e n c r y p t s e s s i o n s v c e r r _ n o p r o g x d r m e m _ c r e a t e 
k e y _ g e n d e s s v c e r r _ p r o g v e r s x d r r e c _ c r e a t e 
k e y _ s e t s e c r e t s v c e r r _ s y s t e m e r r x d r r e c _ e o f 
n c _ p e r r o r s v c e r r _ w e a k a u t h x d r r e c _ s k i p r e c o r d 
n e t d i r _ f r e e t a d d r 2 u a d d r x d r s t d i o _ c r e a t e 
n e t d i r _ g e t b y a d d r u a d d r 2 t a d d r x p r t _ r e g i s t e r 
n e t d i r _ g e t b y n a m e u s e r 2 n e t n a m e x p r t _ u n r e g i s t e r 
n e t d i r _ o p t i o n s x d r _ a c c e p t e d _ r e p l y 

Figure 6-15: l i b n s l Contents, Global External Data Symbols E

_ n d e r r o r r p c _ c r e a t e e r r s v c _ f d s E
t _ e r r n o E

See ‘‘Data Definitions’’ later in this chapter for more information.

Network Services Library 6-17

Socket Library

The socket library, l i b s o c k e t, contains the socket functions as described in the X
Networking Services volume of the X/Open CAE Specification, Issue 4.2 . This X
library is required for all ABI-conforming systems. X

Figure 6-16: l i b s o c k e t Contents, Part 1 of 2 X

a c c e p t l i s t e n s e n d m s g X
b i n d p o o l s e n d t o X
c o n n e c t r e c v s e t s o c k o p t X
g e t p e e r n a m e r e c v f r o m s h u t d o w n X
g e t s o c k n a m e r e c v m s g s o c k e t X
g e t s o c k o p t s e n d s o c k e t p a i r X

The socket library, l i b s o c k e t, also contains these IP Address Resolution func- X
tions as described in the Networking Services volume of the X/Open CAE X
Specification, Issue 4.2 . X

X

Figure 6-18: l i b s o c k e t Contents, Part 2 of 2 X

e n d h o s t e n t g e t p r o t o b y n a m e i n e t _ m a k e a d d r X
e n d n e t e n t g e t p r o t o b y n u m b e r i n e t _ n e t o f X
e n d p r o t o e n t g e t p r o t o e n t i n e t _ n e t w o r k X
e n d s e r v e n t g e t s e r v b y n a m e i n e t _ n t o a X
g e t h o s t b y a d d r g e t s e r v b y p o r t n t o h l X
g e t h o s t b y n a m e g e t s e r v e n t n t o h s X
g e t h o s t e n t h t o n l s e t h o s t e n t X
g e t h o s t n a m e h t o n s s e t n e t e n t X
g e t n e t b y a d d r i n e t _ a d d r s e t p r o t o e n t X
g e t n e t b y n a m e i n e t _ l n a o f s e t s e r v e n t X
g e t n e t e n t X

6-18 LIBRARIES

Curses Library

The curses library, l i b c u r s e s, contains functions that update character screens as X
described in the Curses volume of the X/Open CAE Specification, Issue 4.2 . X

Figure 6-19: l i b c u r s e s Contents X

a d d c h g e t n s t r m v g e t n s t r X
a d d c h n s t r g e t n _ w s t r m v g e t n _ w s t r X
a d d c h s t r g e t p a r y x m v g e t s t r X
a d d n s t r g e t s t r m v g e t _ w c h X
a d d n w s t r g e t w i n m v g e t _ w s t r X
a d d s t r g e t y x m v h l i n e X
a d d w s t r g e t _ w c h m v h l i n e _ s e t X
a d d _ w c h g e t _ w s t r m v i n c h X
a d d _ w c h n s t r h a l f d e l a y m v i n c h n s t r X
a d d _ w c h s t r h a s _ c o l o r s m v i n c h s t r X
a t t r o f f h a s _ i c m v i n n s t r X
a t t r o n h a s _ i l m v i n n w s t r X
a t t r s e t h l i n e m v i n s c h X
a t t r _ g e t h l i n e _ s e t m v i n s n s t r X
a t t r _ o f f i d c o k m v i n s s t r X
a t t r _ o n i d l o k m v i n s t r X
a t t r _ s e t i m m e d o k m v i n s _ n w s t r X
b a u d r a t e i n c h m v i n s _ w c h X
b e e p i n c h n s t r m v i n s _ w s t r X
b k g d i n c h s t r m v i n w s t r X
b k g d s e t i n i t s c r m v i n _ w c h X
b k g r n d i n i t _ c o l o r m v i n _ w c h n s t r X
b k g r n d s e t i n i t _ p a i r m v i n _ w c h s t r X
b o r d e r i n n s t r m v p r i n t w X
b o r d e r _ s e t i n n w s t r m v s c a n w X
b o x i n s c h m v v l i n e X
b o x _ s e t i n s d e l l n m v v l i n e _ s e t X
c a n _ c h a n g e _ c o l o r i n s e r t l n m v w a d d c h X
c b r e a k i n s n s t r m v w a d d c h n s t r X
c h g a t i n s s t r m v w a d d c h s t r X
c l e a r i n s t r m v w a d d n s t r X
c l e a r o k i n s _ n w s t r m v w a d d n w s t r X

Curses Library 6-19

Figure 6-19: l i b c u r s e s Contents (continued) X

c l r t o b o t i n s _ w c h m v w a d d s t r X
c l r t o e o l i n s _ w s t r m v w a d d w s t r X
c o l o r _ c o n t e n t i n t r f l u s h m v w a d d _ w c h X
c o p y w i n i n w s t r m v w a d d _ w c h n s t r X
c u r s c r i n _ w c h m v w a d d _ w c h s t r X
c u r s _ s e t i n _ w c h n s t r m v w c h g a t X
c u r _ t e r m i n _ w c h s t r m v w d e l c h X
d e f _ p r o g _ m o d e i s e n d w i n m v w g e t c h X
d e f _ s h e l l _ m o d e i s _ l i n e t o u c h e d m v w g e t n s t r X
d e l a y _ o u t p u t i s _ w i n t o u c h e d m v w g e t n _ w s t r X
d e l c h k e y n a m e m v w g e t s t r X
d e l e t e l n k e y p a d m v w g e t _ w c h X
d e l s c r e e n k e y _ n a m e m v w g e t _ w s t r X
d e l w i n k i l l c h a r m v w h l i n e X
d e l _ c u r t e r m k i l l w c h a r m v w h l i n e _ s e t X
d e r w i n l e a v e o k m v w i n X
d o u p d a t e l o n g n a m e m v w i n c h X
d u p w i n m e t a m v w i n c h n s t r X
e c h o m o v e m v w i n c h s t r X
e c h o c h a r m v a d d c h m v w i n n s t r X
e c h o _ w c h a r m v a d d c h n s t r m v w i n n w s t r X
e n d w i n m v a d d c h s t r m v w i n s c h X
e r a s e m v a d d n s t r m v w i n s n s t r X
e r a s e c h a r m v a d d n w s t r m v w i n s s t r X
e r a s e w c h a r m v a d d s t r m v w i n s t r X
f i l t e r m v a d d w s t r m v w i n s _ n w s t r X
f l a s h m v a d d _ w c h m v w i n s _ w c h X
f l u s h i n p m v a d d _ w c h n s t r m v w i n s _ w s t r X
g e t b e g y x m v a d d _ w c h s t r m v w i n w s t r X
g e t b k g d m v c h g a t m v w i n _ w c h X
g e t b k g r n d m v c u r m v w i n _ w c h n s t r X
g e t c c h a r m v d e l c h m v w i n _ w c h s t r X
g e t c h m v d e r w i n m v w p r i n t w X
g e t m a x y x m v g e t c h m v w s c a n w X
m v w v l i n e s l k _ s e t w b k g d s e t X
m v w v l i n e _ s e t s l k _ t o u c h w b k g r n d X
n a p m s s l k _ w s e t w b k g r n d s e t X
n e w p a d s t a n d e n d w b o r d e r X

6-20 LIBRARIES

Figure 6-19: l i b c u r s e s Contents (continued) X

n e w t e r m s t a n d o u t w b o r d e r _ s e t X
n e w w i n s t a r t _ c o l o r w c h g a t X
n l s t d s c r w c l e a r X
n o s u b p a d w c l r t o b o t X
n o c b r e a k s u b w i n w c l r t o e o l X
n o d e l a y s y n c o k w c u r s y n c u p X
n o e c h o t e r m a t t r s w d e l c h X
n o n l t e r m n a m e w d e l e t e l n X
n o q i f l u s h t g e t e n t# w e c h o c h a r X
n o r a w t g e t f l a g# w e c h o _ w c h a r X
n o t i m e o u t t g e t n u m# w e r a s e X
o v e r l a y t g e t s t r# w g e t b k g r n d X
o v e r w r i t e t g o t o# w g e t c h X
p a i r _ c o n t e n t t i g e t f l a g w g e t n s t r X
p e c h o c h a r t i g e t n u m w g e t n _ w s t r X
p e c h o _ w c h a r t i g e t s t r w g e t s t r X
p n o u t r e f r e s h t i m e o u t w g e t _ w c h X
p r e f r e s h t o u c h l i n e w g e t _ w s t r X
p r i n t w t o u c h w i n w h l i n e X
p u t p t p a r m w h l i n e _ s e t X
p u t w i n t p u t s w i n c h X
q i f l u s h t y p e a h e a d w i n c h n s t r X
r a w u n c t r l w i n c h s t r X
r e d r a w w i n u n g e t c h w i n n s t r X
r e f r e s h u n g e t _ w c h w i n n w s t r X
r e s e t t y u n t o u c h w i n w i n s c h X
r e s e t _ p r o g _ m o d e u s e _ e n v w i n s d e l l n X
r e s e t _ s h e l l _ m o d e v i d a t t r w i n s e r t l n X
r e s t a r t t e r m v i d p u t s w i n s n s t r X
r i p o f f l i n e v i d _ a t t r w i n s s t r X
s a v e t t y v i d _ p u t s w i n s t r X
s c a n w v l i n e w i n s _ n w s t r X
s c r l v l i n e _ s e t w i n s _ w c h X
s c r o l l v w p r i n t w# w i n s _ w s t r X
s c r o l l o k v w s c a n w# w i n w s t r X
s c r _ d u m p v w _ p r i n t w w i n _ w c h X
s c r _ i n i t v w _ s c a n w w i n _ w c h n s t r X
s c r _ r e s t o r e w a d d c h w i n _ w c h s t r X

Curses Library 6-21

Figure 6-19: l i b c u r s e s Contents (continued) X

s c r _ s e t w a d d c h n s t r w m o v e X
s e t c c h a r w a d d c h s t r w n o u t r e f r e s h X
s e t s c r r e g w a d d n s t r w p r i n t w X
s e t u p t e r m w a d d n w s t r w r e d r a w l n X
s e t _ c u r t e r m w a d d s t r w r e f r e s h X
s e t _ t e r m w a d d w s t r w s c a n w X
s l k _ a t t r o f f w a d d _ w c h w s c r l X
s l k _ a t t r o n w a d d _ w c h n s t r w s e t s c r r e g X
s l k _ a t t r s e t w a d d _ w c h s t r w s t a n d e n d X
s l k _ a t t r _ o f f w a t t r o f f w s t a n d o u t X
s l k _ a t t r _ o n w a t t r o n w s y n c d o w n X
s l k _ a t t r _ s e t w a t t r s e t w s y n c u p X
s l k _ c l e a r w a t t r _ g e t w t i m e o u t X
s l k _ i n i t w a t t r _ o f f w t o u c h l n X
s l k _ l a b e l w a t t r _ o n w u n c t r l X
s l k _ n o u t r e f r e s h w a t t r _ s e t w v l i n e X
s l k _ r e f r e s h w b k g d w v l i n e _ s e t X
s l k _ r e s t o r e X

Function is EDPRECATED X

Figure 6-20: l i b c u r s e s Contents, Global External Data Symbols

b i t _ a t t r i b u t e s c u r _ s t r s s t r f n a m e s X
b o o l c o d e s M o u s e _ s t a t u s s t r n a m e s X
b o o l f n a m e s n u m c o d e s T A B S I Z E X
b o o l n a m e s n u m f n a m e s t e r m _ e r r n o X
c u r s _ e r r n o n u m n a m e s t e r m _ p a r m _ e r r X
c u r s _ p a r m _ e r r o u t c h c o u n t t t y t y p e X
c u r _ b o o l s S P w c o l o r _ s e t X
c u r _ n u m s s t r c o d e s X

6-22 LIBRARIES

X Window System Library

The X Window System library, l i b X, contains library routines that provide primi-
tives for the operation of the X Window System. This library is required for all
ABI-conforming systems that implement a graphical windowing terminal inter-
face. See Chapter 10 of the System V ABI , ‘‘Windowing and Terminal Interfaces’’
for more information on windowing software requirements on ABI-conforming
systems.

The following functions reside in l i b X and must be provided on all ABI-
conforming systems.

Figure 6-21: l i b X Contents

X A c t i v a t e S c r e e n S a v e r X B i t m a p U n i t X c m s A d d C o l o r S p a c e E
X A d d E x t e n s i o n X B l a c k P i x e l X c m s A d d F u n c t i o n S e t E
X A d d H o s t X B l a c k P i x e l O f S c r e e n X c m s A l l o c C o l o r E
X A d d H o s t s X C e l l s O f S c r e e n X c m s A l l o c N a m e d C o l o r E
X A d d P i x e l X C h a n g e A c t i v e P o i n t e r G r a b X c m s C C C o f C o l o r m a p E
X A d d T o E x t e n s i o n L i s t X C h a n g e G C X c m s C I E L a b Q u e r y M a x C E
X A d d T o S a v e S e t X C h a n g e K e y b o a r d C o n t r o l X c m s C I E L a b Q u e r y M a x L E
X A l l o c C l a s s H i n t X C h a n g e K e y b o a r d M a p p i n g X c m s C I E L a b Q u e r y M a x L C E
X A l l o c C o l o r X C h a n g e P o i n t e r C o n t r o l X c m s C I E L a b Q u e r y M i n L E
X A l l o c C o l o r C e l l s X C h a n g e P r o p e r t y X c m s C I E L a b T o C I E X Y Z E
X A l l o c C o l o r P l a n e s X C h a n g e S a v e S e t X c m s C I E L u v Q u e r y M a x C E
X A l l o c I c o n S i z e X C h a n g e W i n d o w A t t r i b u t e s X c m s C I E L u v Q u e r y M a x L E
X A l l o c I D X C h e c k I f E v e n t X c m s C I E L u v Q u e r y M a x L C E
X A l l o c N a m e d C o l o r X C h e c k M a s k E v e n t X c m s C I E L u v Q u e r y M i n L E
X A l l o c S i z e H i n t s X C h e c k T y p e d E v e n t X c m s C I E L u v T o C I E u v Y E
X A l l o c S t a n d a r d C o l o r m a p X C h e c k T y p e d W i n d o w E v e n t X c m s C I E u v Y T o C I E L u v E
X A l l o c W M H i n t s X C h e c k W i n d o w E v e n t X c m s C I E u v Y T o C I E X Y Z E
X A l l o w E v e n t s X C i r c u l a t e S u b w i n d o w s X c m s C I E u v Y T o T e k H V C E
X A l l P l a n e s X C i r c u l a t e S u b w i n d o w s D o w n X c m s C I E x y Y T o C I E X Y Z E
X A u t o R e p e a t O f f X C i r c u l a t e S u b w i n d o w s U p X c m s C I E X Y Z T o C I E L a b E
X A u t o R e p e a t O n X C l e a r A r e a X c m s C I E X Y Z T o C I E u v Y E
X B a s e F o n t N a m e L i s t O f F o n t S e t X C l e a r W i n d o w X c m s C I E X Y Z T o C I E x y Y E
X B e l l X C l i p B o x X c m s C I E X Y Z T o R G B i E
X B i t m a p B i t O r d e r X C l o s e D i s p l a y X c m s C l i e n t W h i t e P o i n t O f C C C E
X B i t m a p P a d X C l o s e I M X c m s C o n v e r t C o l o r s E

X Window System Library 6-23

Figure 6-21: l i b X Contents (continued) E

X c m s C r e a t e C C C X C o p y G C X D i s p l a y C e l l s E
X c m s D e f a u l t C C C X C o p y P l a n e X D i s p l a y H e i g h t E
X c m s D i s p l a y O f C C C X C r e a t e B i t m a p F r o m D a t a X D i s p l a y H e i g h t M M E
X c m s F o r m a t O f P r e f i x X C r e a t e C o l o r m a p X D i s p l a y K e y c o d e s E
X c m s F r e e C C C X C r e a t e F o n t C u r s o r X D i s p l a y M o t i o n B u f f e r S i z e E
X c m s L o o k u p C o l o r X C r e a t e F o n t S e t X D i s p l a y N a m e E
X c m s P r e f i x O f F o r m a t X C r e a t e G C X D i s p l a y O f I M E
X c m s Q u e r y B l a c k X C r e a t e G l y p h C u r s o r X D i s p l a y O f S c r e e n E
X c m s Q u e r y B l u e X C r e a t e I C X D i s p l a y P l a n e s E
X c m s Q u e r y C o l o r X C r e a t e I m a g e X D i s p l a y S t r i n g E
X c m s Q u e r y C o l o r s X C r e a t e P i x m a p X D i s p l a y W i d t h E
X c m s Q u e r y G r e e n X C r e a t e P i x m a p C u r s o r X D i s p l a y W i d t h M M E
X c m s Q u e r y R e d X C r e a t e P i x m a p F r o m B i t m a p D a t a X D o e s B a c k i n g S t o r e E
X c m s Q u e r y W h i t e X C r e a t e R e g i o n X D o e s S a v e U n d e r s E
X c m s R G B i T o C I E X Y Z X C r e a t e S i m p l e W i n d o w X D r a w E
X c m s R G B i T o R G B X C r e a t e W i n d o w X D r a w A r c E
X c m s R G B T o R G B i X D e f a u l t C o l o r m a p X D r a w A r c s E
X c m s S c r e e n N u m b e r O f C C C X D e f a u l t C o l o r m a p O f S c r e e n X D r a w I m a g e S t r i n g E
X c m s S c r e e n W h i t e P o i n t O f C C C X D e f a u l t D e p t h X D r a w I m a g e S t r i n g 1 6 E
X c m s S e t C C C o f C o l o r m a p X D e f a u l t D e p t h O f S c r e e n X D r a w L i n e E
X c m s S e t C o m p r e s s i o n P r o c X D e f a u l t G C X D r a w L i n e s E
X c m s S e t W h i t e A d j u s t P r o c X D e f a u l t G C O f S c r e e n X D r a w P o i n t E
X c m s S e t W h i t e P o i n t X D e f a u l t R o o t W i n d o w X D r a w P o i n t s E
X c m s S t o r e C o l o r X D e f a u l t S c r e e n X D r a w R e c t a n g l e E
X c m s S t o r e C o l o r s X D e f a u l t S c r e e n O f D i s p l a y X D r a w R e c t a n g l e s E
X c m s T e k H V C Q u e r y M a x C X D e f a u l t S t r i n g X D r a w S e g m e n t s E
X c m s T e k H V C Q u e r y M a x V X D e f a u l t V i s u a l X D r a w S t r i n g E
X c m s T e k H V C Q u e r y M a x V C X D e f a u l t V i s u a l O f S c r e e n X D r a w S t r i n g 1 6 E
X c m s T e k H V C Q u e r y M a x V S a m p l e s X D e f i n e C u r s o r X D r a w T e x t E
X c m s T e k H V C Q u e r y M i n V X D e l e t e C o n t e x t X D r a w T e x t 1 6 E
X c m s T e k H V C T o C I E u v Y X D e l e t e M o d i f i e r m a p E n t r y X E m p t y R e g i o n E
X c m s V i s u a l O f C C C X D e l e t e P r o p e r t y X E n a b l e A c c e s s C o n t r o l E
X C o n f i g u r e W i n d o w X D e s t r o y I C X E q u a l R e g i o n E
X C o n n e c t i o n N u m b e r X D e s t r o y I m a g e X E v e n t M a s k O f S c r e e n E
X C o n t e x t D e p e n d e n t D r a w i n g X D e s t r o y R e g i o n X E v e n t s Q u e u e d E
X C o n v e r t S e l e c t i o n X D e s t r o y S u b w i n d o w s X E x t e n t s O f F o n t S e t E
X C o p y A r e a X D e s t r o y W i n d o w X F e t c h B u f f e r E
X C o p y C o l o r m a p A n d F r e e X D i s a b l e A c c e s s C o n t r o l X F e t c h B y t e s E

6-24 LIBRARIES

Figure 6-21: l i b X Contents (continued) E

X F e t c h N a m e X G e t I c o n N a m e X G r a b S e r v e r E
X F i l l A r c X G e t I c o n S i z e s X H e i g h t M M O f S c r e e n E
X F i l l A r c s X G e t I C V a l u e s X H e i g h t O f S c r e e n E
X F i l l P o l y g o n X G e t I m a g e X I c o n i f y W i n d o w E
X F i l l R e c t a n g l e X G e t I M V a l u e s X I f E v e n t E
X F i l l R e c t a n g l e s X G e t I n p u t F o c u s X I m a g e B y t e O r d e r E
X F i l t e r E v e n t X G e t K e y b o a r d C o n t r o l X I M O f I C E
X F i n d C o n t e x t X G e t K e y b o a r d M a p p i n g X I n i t E x t e n s i o n E
X F l u s h X G e t M o d i f i e r M a p p i n g X I n s e r t M o d i f i e r m a p E n t r y E
X F l u s h G C X G e t M o t i o n E v e n t s X I n s t a l l C o l o r m a p E
X F o n t s O f F o n t S e t X G e t N o r m a l H i n t s X I n t e r n A t o m E
X F o r c e S c r e e n S a v e r X G e t P i x e l X I n t e r s e c t R e g i o n E
X F r e e X G e t P o i n t e r C o n t r o l X K e y c o d e T o K e y s y m E
X F r e e C o l o r m a p X G e t P o i n t e r M a p p i n g X K e y s y m T o K e y c o d e E
X F r e e C o l o r s X G e t R G B C o l o r m a p s X K e y s y m T o S t r i n g E
X F r e e C u r s o r X G e t S c r e e n S a v e r X K i l l C l i e n t E
X F r e e E x t e n s i o n L i s t X G e t S e l e c t i o n O w n e r X L a s t K n o w n R e q u e s t P r o c e s s e d E
X F r e e F o n t X G e t S i z e H i n t s X L i s t D e p t h s E
X F r e e F o n t I n f o X G e t S t a n d a r d C o l o r m a p X L i s t E x t e n s i o n s E
X F r e e F o n t N a m e s X G e t S u b I m a g e X L i s t F o n t s E
X F r e e F o n t P a t h X G e t T e x t P r o p e r t y X L i s t F o n t s W i t h I n f o E
X F r e e F o n t S e t X G e t T r a n s i e n t F o r H i n t X L i s t H o s t s E
X F r e e G C X G e t V i s u a l I n f o X L i s t I n s t a l l e d C o l o r m a p s E
X F r e e M o d i f i e r m a p X G e t W i n d o w A t t r i b u t e s X L i s t P i x m a p F o r m a t s E
X F r e e P i x m a p X G e t W i n d o w P r o p e r t y X L i s t P r o p e r t i e s E
X F r e e S t r i n g L i s t X G e t W M C l i e n t M a c h i n e X L o a d F o n t E
X G C o n t e x t F r o m G C X G e t W M C o l o r m a p W i n d o w s X L o a d Q u e r y F o n t E
X G e o m e t r y X G e t W M H i n t s X L o c a l e O f F o n t S e t E
X G e t A t o m N a m e X G e t W M I c o n N a m e X L o c a l e O f I M E
X G e t C l a s s H i n t X G e t W M N a m e X L o o k u p C o l o r E
X G e t C o m m a n d X G e t W M N o r m a l H i n t s X L o o k u p K e y s y m E
X G e t D e f a u l t X G e t W M P r o t o c o l s X L o o k u p S t r i n g E
X G e t E r r o r D a t a b a s e T e x t X G e t W M S i z e H i n t s X L o w e r W i n d o w E
X G e t E r r o r T e x t X G e t Z o o m H i n t s X M a p R a i s e d E
X G e t F o n t P a t h X G r a b B u t t o n X M a p S u b w i n d o w s E
X G e t F o n t P r o p e r t y X G r a b K e y X M a p W i n d o w E
X G e t G C V a l u e s X G r a b K e y b o a r d X M a s k E v e n t E
X G e t G e o m e t r y X G r a b P o i n t e r X M a t c h V i s u a l I n f o E

X Window System Library 6-25

Figure 6-21: l i b X Contents (continued) E

X M a x C m a p s O f S c r e e n X Q u e r y B e s t C u r s o r X r m M e r g e D a t a b a s e s E
X M a x R e q u e s t S i z e X Q u e r y B e s t S i z e X r m P a r s e C o m m a n d E
X m b D r a w I m a g e S t r i n g X Q u e r y B e s t S t i p p l e X r m P e r m S t r i n g T o Q u a r k E
X m b D r a w S t r i n g X Q u e r y B e s t T i l e X r m P u t F i l e D a t a b a s e E
X m b D r a w T e x t X Q u e r y C o l o r X r m P u t L i n e R e s o u r c e E
X m b L o o k u p S t r i n g X Q u e r y C o l o r s X r m P u t R e s o u r c e E
X m b R e s e t I C X Q u e r y E x t e n s i o n X r m P u t S t r i n g R e s o u r c e E
X m b S e t W M P r o p e r t i e s X Q u e r y F o n t X r m Q G e t R e s o u r c e E
X m b T e x t E s c a p e m e n t X Q u e r y K e y m a p X r m Q G e t S e a r c h L i s t E
X m b T e x t E x t e n t s X Q u e r y P o i n t e r X r m Q G e t S e a r c h R e s o u r c e E
X m b T e x t L i s t T o T e x t P r o p e r t y X Q u e r y T e x t E x t e n t s X r m Q P u t R e s o u r c e E
X m b T e x t P e r C h a r E x t e n t s X Q u e r y T e x t E x t e n t s 1 6 X r m Q P u t S t r i n g R e s o u r c e E
X m b T e x t P r o p e r t y T o T e x t L i s t X Q u e r y T r e e X r m Q u a r k T o S t r i n g E
X M i n C m a p s O f S c r e e n X R a i s e W i n d o w X r m S e t D a t a b a s e E
X M o v e R e s i z e W i n d o w X R e a d B i t m a p F i l e X r m S t r i n g T o B i n d i n g Q u a r k L i s tE
X M o v e W i n d o w X R e b i n d K e y s y m X r m S t r i n g T o Q u a r k E
X N e w M o d i f i e r m a p X R e c o l o r C u r s o r X r m S t r i n g T o Q u a r k L i s t E
X N e x t E v e n t X R e c o n f i g u r e W M W i n d o w X r m U n i q u e Q u a r k E
X N e x t R e q u e s t X R e c t I n R e g i o n X R o o t W i n d o w E
X N o O p X R e f r e s h K e y b o a r d M a p p i n g X R o o t W i n d o w O f S c r e e n E
X O f f s e t R e g i o n X R e m o v e F r o m S a v e S e t X R o t a t e B u f f e r s E
X O p e n D i s p l a y X R e m o v e H o s t X R o t a t e W i n d o w P r o p e r t i e s E
X O p e n I M X R e m o v e H o s t s X S a v e C o n t e x t E
X P a r s e C o l o r X R e p a r e n t W i n d o w X S c r e e n C o u n t E
X P a r s e G e o m e t r y X R e s e t S c r e e n S a v e r X S c r e e n N u m b e r O f S c r e e n E
X P e e k E v e n t X R e s i z e W i n d o w X S c r e e n O f D i s p l a y E
X P e e k I f E v e n t X R e s o u r c e M a n a g e r S t r i n g X S c r e e n R e s o u r c e S t r i n g E
X P e n d i n g X R e s t a c k W i n d o w s X S e l e c t I n p u t E
X p e r m a l l o c X r m C o m b i n e D a t a b a s e X S e n d E v e n t E
X P l a n e s O f S c r e e n X r m C o m b i n e F i l e D a t a b a s e X S e r v e r V e n d o r E
X P o i n t I n R e g i o n X r m D e s t r o y D a t a b a s e X S e t A c c e s s C o n t r o l E
X P o l y g o n R e g i o n X r m E n u m e r a t e D a t a b a s e X S e t A f t e r F u n c t i o n E
X P r o t o c o l R e v i s i o n X r m G e t D a t a b a s e X S e t A r c M o d e E
X P r o t o c o l V e r s i o n X r m G e t F i l e D a t a b a s e X S e t B a c k g r o u n d E
X P u t B a c k E v e n t X r m G e t R e s o u r c e X S e t C l a s s H i n t E
X P u t I m a g e X r m G e t S t r i n g D a t a b a s e X S e t C l i p M a s k E
X P u t P i x e l X r m I n i t i a l i z e X S e t C l i p O r i g i n E
X Q L e n g t h X r m L o c a l e O f D a t a b a s e X S e t C l i p R e c t a n g l e s E

6-26 LIBRARIES

Figure 6-21: l i b X Contents (continued) E

X S e t C l o s e D o w n M o d e X S e t W i n d o w B a c k g r o u n d X U n g r a b B u t t o n E
X S e t C o m m a n d X S e t W i n d o w B a c k g r o u n d P i x m a p X U n g r a b K e y E
X S e t D a s h e s X S e t W i n d o w B o r d e r X U n g r a b K e y b o a r d E
X S e t E r r o r H a n d l e r X S e t W i n d o w B o r d e r P i x m a p X U n g r a b P o i n t e r E
X S e t F i l l R u l e X S e t W i n d o w B o r d e r W i d t h X U n g r a b S e r v e r E
X S e t F i l l S t y l e X S e t W i n d o w C o l o r m a p X U n i n s t a l l C o l o r m a p E
X S e t F o n t X S e t W M C l i e n t M a c h i n e X U n i o n R e c t W i t h R e g i o n E
X S e t F o n t P a t h X S e t W M C o l o r m a p W i n d o w s X U n i o n R e g i o n E
X S e t F o r e g r o u n d X S e t W M H i n t s X U n i q u e C o n t e x t E
X S e t F u n c t i o n X S e t W M I c o n N a m e X U n l o a d F o n t E
X S e t G r a p h i c s E x p o s u r e s X S e t W M N a m e X U n m a p S u b w i n d o w s E
X S e t I C F o c u s X S e t W M N o r m a l H i n t s X U n m a p W i n d o w E
X S e t I c o n N a m e X S e t W M P r o p e r t i e s X U n s e t I C F o c u s E
X S e t I c o n S i z e s X S e t W M P r o t o c o l s X V a C r e a t e N e s t e d L i s t E
X S e t I C V a l u e s X S e t W M S i z e H i n t s X V e n d o r R e l e a s e E
X S e t I n p u t F o c u s X S e t Z o o m H i n t s X V i s u a l I D F r o m V i s u a l E
X S e t I O E r r o r H a n d l e r X S h r i n k R e g i o n X W a r p P o i n t e r E
X S e t L i n e A t t r i b u t e s X S t o r e B u f f e r X w c D r a w I m a g e S t r i n g E
X S e t L o c a l e M o d i f i e r s X S t o r e B y t e s X w c D r a w S t r i n g E
X S e t M o d i f i e r M a p p i n g X S t o r e C o l o r X w c D r a w T e x t E
X S e t N o r m a l H i n t s X S t o r e C o l o r s X w c F r e e S t r i n g L i s t E
X S e t P l a n e M a s k X S t o r e N a m e X w c L o o k u p S t r i n g E
X S e t P o i n t e r M a p p i n g X S t o r e N a m e d C o l o r X w c R e s e t I C E
X S e t R e g i o n X S t r i n g L i s t T o T e x t P r o p e r t y X w c T e x t E s c a p e m e n t E
X S e t R G B C o l o r m a p s X S t r i n g T o K e y s y m X w c T e x t E x t e n t s E
X S e t S c r e e n S a v e r X S u b I m a g e X w c T e x t L i s t T o T e x t P r o p e r t y E
X S e t S e l e c t i o n O w n e r X S u b t r a c t R e g i o n X w c T e x t P e r C h a r E x t e n t s E
X S e t S i z e H i n t s X S u p p o r t s L o c a l e X w c T e x t P r o p e r t y T o T e x t L i s t E
X S e t S t a n d a r d C o l o r m a p X S y n c X W h i t e P i x e l E
X S e t S t a n d a r d P r o p e r t i e s X S y n c h r o n i z e X W h i t e P i x e l O f S c r e e n E
X S e t S t a t e X T e x t E x t e n t s X W i d t h M M O f S c r e e n E
X S e t S t i p p l e X T e x t E x t e n t s 1 6 X W i d t h O f S c r e e n E
X S e t S u b w i n d o w M o d e X T e x t P r o p e r t y T o S t r i n g L i s t X W i n d o w E v e n t E
X S e t T e x t P r o p e r t y X T e x t W i d t h X W i t h d r a w W i n d o w E
X S e t T i l e X T e x t W i d t h 1 6 X W M G e o m e t r y E
X S e t T r a n s i e n t F o r H i n t X T r a n s l a t e C o o r d i n a t e s X W r i t e B i t m a p F i l e E
X S e t T S O r i g i n X U n d e f i n e C u r s o r X X o r R e g i o n E

X Window System Library 6-27

Figure 6-22: l i b X 1 1 Contents, Callback Function Names E

G e o m e t r y C a l l b a c k P r e e d i t D r a w C a l l b a c k S t a t u s D o n e C a l l b a c k E
P r e e d i t S t a r t C a l l b a c k P r e e d i t C a r e t C a l l b a c k S t a t u s D r a w C a l l b a c k E
P r e e d i t D o n e C a l l b a c k S t a t u s S t a r t C a l l b a c k E

6-28 LIBRARIES

X Toolkit Intrinsics Library G

The X Toolkit Intrinsics library, l i b X t, contains library routines that provide G
primitives for the operation of the X Toolkit Intrinsics of the X Window System. G
This library is required for all ABI-conforming systems that implement a graphical G
windowing terminal interface. See Chapter 10 of the System V ABI , ‘‘Windowing G
and Terminal Interfaces’’ for more information on windowing software require- G
ments on ABI-conforming systems. G

The following functions reside in l i b X t and must be provided on all ABI- G
conforming systems that implement a graphical windowing terminal interface. G

Figure 6-23: l i b X t Contents G

X t A d d C a l l b a c k X t A p p S e t E r r o r H a n d l e r X t C o n f i g u r e W i d g e t G
X t A d d C a l l b a c k s X t A p p S e t E r r o r M s g H a n d l e r X t C o n v e r t A n d S t o r e G
X t A d d E v e n t H a n d l e r X t A p p S e t F a l l b a c k R e s o u r c e s X t C o n v e r t C a s e G
X t A d d E x p o s u r e T o R e g i o n X t A p p S e t S e l e c t i o n T i m e o u t X t C r e a t e A p p l i c a t i o n C o n t e x t G
X t A d d G r a b X t A p p S e t T y p e C o n v e r t e r X t C r e a t e M a n a g e d W i d g e t G
X t A d d R a w E v e n t H a n d l e r X t A p p S e t W a r n i n g H a n d l e r X t C r e a t e P o p u p S h e l l G
X t A l l o c a t e G C X t A p p S e t W a r n i n g M s g H a n d l e r X t C r e a t e W i d g e t G
X t A p p A d d A c t i o n H o o k X t A p p W a r n i n g X t C r e a t e W i n d o w G
X t A p p A d d A c t i o n s X t A p p W a r n i n g M s g X t C v t C o l o r T o P i x e l G
X t A p p A d d I n p u t X t A u g m e n t T r a n s l a t i o n s X t C v t I n t T o B o o l G
X t A p p A d d T i m e O u t X t B u i l d E v e n t M a s k X t C v t I n t T o B o o l e a n G
X t A p p A d d W o r k P r o c X t C a l l A c c e p t F o c u s X t C v t I n t T o C o l o r G
X t A p p C r e a t e S h e l l X t C a l l A c t i o n P r o c X t C v t I n t T o F l o a t G
X t A p p E r r o r X t C a l l b a c k E x c l u s i v e X t C v t I n t T o F o n t G
X t A p p E r r o r M s g X t C a l l b a c k N o n e X t C v t I n t T o P i x e l G
X t A p p G e t E r r o r D a t a b a s e X t C a l l b a c k N o n e x c l u s i v e X t C v t I n t T o P i x m a p G
X t A p p G e t E r r o r D a t a b a s e T e x t X t C a l l b a c k P o p d o w n X t C v t I n t T o S h o r t G
X t A p p G e t S e l e c t i o n T i m e o u t X t C a l l b a c k R e l e a s e C a c h e R e f X t C v t I n t T o U n s i g n e d C h a r G
X t A p p I n i t i a l i z e X t C a l l b a c k R e l e a s e C a c h e R e f L i s t X t C v t S t r i n g T o A c c e l e r a t o r T a b l eG
X t A p p M a i n L o o p X t C a l l C a l l b a c k L i s t X t C v t S t r i n g T o A t o m G
X t A p p N e x t E v e n t X t C a l l C a l l b a c k s X t C v t S t r i n g T o B o o l G
X t A p p P e e k E v e n t X t C a l l C o n v e r t e r X t C v t S t r i n g T o B o o l e a n G
X t A p p P e n d i n g X t C a l l o c X t C v t S t r i n g T o C u r s o r G
X t A p p P r o c e s s E v e n t X t C l a s s X t C v t S t r i n g T o D i m e n s i o n G
X t A p p R e l e a s e C a c h e R e f s X t C l o s e D i s p l a y X t C v t S t r i n g T o D i s p l a y G

X Toolkit Intrinsics Library 6-29

Figure 6-23: l i b X t Contents (continued) G

X t C v t S t r i n g T o F i l e X t G e t S e l e c t i o n V a l u e s I n c r e m e n t a l X t O w n S e l e c t i o n I n c r e m e n t a l G
X t C v t S t r i n g T o F l o a t X t G e t S u b r e s o u r c e s X t P a r e n t G
X t C v t S t r i n g T o F o n t X t G e t S u b v a l u e s X t P a r s e A c c e l e r a t o r T a b l e G
X t C v t S t r i n g T o F o n t S e t X t G e t V a l u e s X t P a r s e T r a n s l a t i o n T a b l e G
X t C v t S t r i n g T o F o n t S t r u c t X t G r a b B u t t o n X t P o p d o w n G
X t C v t S t r i n g T o I n i t i a l S t a t e X t G r a b K e y X t P o p u p G
X t C v t S t r i n g T o I n t X t G r a b K e y b o a r d X t P o p u p S p r i n g L o a d e d G
X t C v t S t r i n g T o P i x e l X t G r a p P o i n t e r X t Q u e r y G e o m e t r y G
X t C v t S t r i n g T o S h o r t X t H a s C a l l b a c k s X t R e a l i z e W i d g e t G
X t C v t S t r i n g T o T r a n s l a t i o n T a b l e X t I n i t i a l i z e W i d g e t C l a s s X t R e a l l o c G
X t C v t S t r i n g T o U n s i g n e d C h a r X t I n s e r t E v e n t H a n d l e r X t R e g i s t e r C a s e C o n v e r t e r G
X t C v t S t r i n g T o V i s u a l X t I n s e r t R a w E v e n t H a n d l e r X t R e g i s t e r G r a b A c t i o n G
X t D a t a b a s e X t I n s t a l l A c c e l e r a t o r s X t R e l e a s e G C G
X t D e s t r o y A p p l i c a t i o n C o n t e x t X t I n s t a l l A l l A c c e l e r a t o r s X t R e m o v e A c t i o n H o o k G
X t D e s t r o y W i d g e t X t I s M a n a g e d X t R e m o v e A l l C a l l b a c k s G
X t D i s o w n S e l e c t i o n X t I s O b j e c t X t R e m o v e C a l l b a c k G
X t D i s p a t c h E v e n t X t I s R e a l i z e d X t R e m o v e C a l l b a c k s G
X t D i s p l a y X t I s S e n s i t i v e X t R e m o v e E v e n t H a n d l e r G
X t D i s p l a y I n i t i a l i z e X t I s S u b c l a s s X t R e m o v e G r a b G
X t D i s p l a y O f O b j e c t X t I s V e n d o r S h e l l X t R e m o v e I n p u t G
X t D i s p l a y S t r i n g C o n v e r s i o n W a r n i n g X t K e y s y m T o K e y c o d e L i s t X t R e m o v e R a w E v e n t H a n d l e r G
X t D i s p l a y T o A p p l i c a t i o n C o n t e x t X t L a s t T i m e s t a m p P r o c e s s e d X t R e m o v e T i m e O u t G
X t F i n d F i l e X t M a k e G e o m e t r y R e q u e s t X t R e s i z e W i d g e t G
X t F r e e X t M a k e R e s i z e R e q u e s t X t R e s i z e W i n d o w G
X t G e t A c t i o n K e y s y m X t M a l l o c X t R e s o l v e P a t h n a m e G
X t G e t A c t i o n L i s t X t M a n a g e C h i l d X t S c r e e n G
X t G e t A c t i o n L i s t X t M a n a g e C h i l d r e n X t S c r e e n D a t a b a s e G
X t G e t A p p l i c a t i o n N a m e A n d C l a s s X t M a p W i d g e t X t S c r e e n O f O b j e c t G
X t G e t A p p l i c a t i o n R e s o u r c e s X t M e n u P o p d o w n X t S e t K e y b o a r d F o c u s G
X t G e t C o n s t r a i n t R e s o u r c e L i s t X t M e n u P o p u p X t S e t K e y T r a n s l a t o r G
X t G e t G C X t M e r g e A r g L i s t s X t S e t L a n g u a g e P r o c G
X t G e t K e y s y m T a b l e X t M o v e W i d g e t X t S e t M a p p e d W h e n M a n a g e d G
X t G e t M u l t i C l i c k T i m e X t N a m e X t S e t M u l t i C l i c k T i m e G
X t G e t R e s o u r c e L i s t X t N a m e T o W i d g e t X t S e t S e n s i t i v e G
X t G e t S e l e c t i o n R e q u e s t X t N e w S t r i n g X t S e t S u b v a l u e s G
X t G e t S e l e c t i o n V a l u e X t O p e n D i s p l a y X t S e t T y p e C o n v e r t e r G
X t G e t S e l e c t i o n V a l u e I n c r e m e n t a l X t O v e r r i d e T r a n s l a t i o n s X t S e t V a l u e s G
X t G e t S e l e c t i o n V a l u e s X t O w n S e l e c t i o n X t S e t W M C o l o r m a p W i n d o w s G

6-30 LIBRARIES

NOTE

The Data Symbols X t S h e l l S t r i n g s and X t S t r i n g s may not be maintained
in an upwardly compatible manner. Applications should not reference these
strings.

6-32 LIBRARIES

System Data Interfaces

Standard header files that describe system data are available for C application
developers to use. These files are referred to by their name in angle brackets:
<name. h > and < s y s /name. h >. Included in these headers are macro definitions,
data definitions, and function declarations. The parts of the header files specified
in the ANSI C standard are the only parts available to strictly-conforming ANSI C
applications. Similarly, only the portions of the header files defined in the POSIX
P1003.1 Operating System Standard are available to strictly POSIX-conforming
applications.

Some of the following header files define interfaces directly available to applica-
tions, and those interfaces will be common to systems on all processors. Other
header files show specific implementations of standard interfaces, where the
implementation or data definitions might change from one processor to another.
The ABI does not distinguish between these files. It gives data definitions to pro-
mote binary application portability, not to repeat source interface definitions
available elsewhere. System providers and application developers should use the
ABI to supplement—not to replace—source interface definition documents.

NOTE

Some type and data definitions appear in multiple headers. Special
definitions are included in the headers to avoid conflicts.

The application execution environment presents the interfaces described below,
but the ABI does not require the presence of the header files themselves. In other
words, an ABI-conforming system is not required to provide an application
development environment.

Required Sizes for Some Data Objects

The continued evolution of System V requires that some fundamental data objects
be centerexpanded so that the operating system will work more efficiently with
systems of different sizes and with networks of systems. To promote both binary
portability for applications and interoperability for networks of systems, the Sys-
tem V ABI requires that all conforming implementations use the expanded data
object sizes shown in the table below at a minimum.

System Data Interfaces 6-33

A given architecture may expand one or more of the following objects’ sizes, but
any such further expansion must be made explicit in the processor supplement to
the System V ABI for that processor architecture. Further, the sizes in the table
below should be considered as absolute (not minimal) for purposes of interopera-
tion among networks of heterogeneous systems.

Figure 6-25: Minimum Sizes of Fundamental Data Objects

Data Object Type Definition Size (bits)_ ___
User identifier u i d _ t 32
Group Identifier g i d _ t 32
Process identifier p i d _ t 32
Inode identifier i n o _ t 32
Device identifier d e v _ t 32
File system identifier d e v _ t 32
Error identifier i n t 32
Time t i m e _ t 32
File mode indicator m o d e _ t 32
Link count n l i n k _ t 32_ ___

Data Definitions (Processor-Specific)

NOTE

This section requires processor-specific information. The ABI supplement for
the desired processor describes the details.

6-34 LIBRARIES

7 FORMATS AND PROTOCOLS

Introduction 7-1

Archive File 7-2

Other Archive Formats 7-6

Terminfo Data Base 7-7

Formats and Protocols for Networking 7-10
XDR: External Data Representation 7-10

XDR Data Types 7-11
Messaging Catalogues 7-22
RPC: Remote Procedure Call Protocol 7-22

Terminology 7-22
Transports and Semantics 7-22
Binding and Rendezvous Independence 7-23
Authentication 7-24
Programs and Procedures 7-24
Authentication 7-25
Program Number Assignment 7-25
Other Uses of the RPC Protocol 7-26
Batching 7-26
Broadcast RPC 7-26
The RPC Message Protocol 7-27
DES Authentication Protocol (in XDR language) 7-33
Record Marking Standard 7-36

Table of Contents i

rpcbind Mechanism 7-37

ii Table of Contents

Introduction

This chapter describes file and data formats and protocols that are visible to appli-
cations or that must be portable across System V implementations. Although the
system provides standard programs to manipulate files in the formats described
here, portability is important enough to warrant descriptions of their formats.

This does not mean applications are encouraged to circumvent the system pro-
grams and manipulate the files directly. Instead, it means an ABI for any target
processor architecture must provide the system programs and library routines for
manipulating these file formats and implementing these protocols. Moreover,
those programs must accept formats compatible with the ones described here.

Some system file formats explicitly do not appear in this chapter. For example,
the mount table file, traditionally called / e t c / m n t t a b, is not a documented for-
mat. For information such as this, the system libraries described in Chapter 6 pro-
vide functions that applications may use to access the data. Programs that depend
on undocumented formats—or that depend on the existence of undocumented
files—are not ABI-conforming. Other files, such as the password file in
/ e t c / p a s s w d, have formats defined in other documents. These cases therefore do
not appear in the ABI, because the ABI does not replicate information available in
other standards documents. Nonetheless, an ABI-conforming program may use
the files when the file names and formats are defined implicitly for the ABI
through references to other documents.

Introduction 7-1

Archive File

Archives package multiple files into one. They are commonly used as libraries of
relocatable object files to be searched by the link editor. An archive file has the fol-
lowing format:

An archive magic string, A R M A G below;

An optional archive symbol table (created only if at least one member is an
object file that defines non-local symbols);

An optional archive string table (created only if at least one archive
member’s name is more than 15 bytes long);

For each ‘‘normal’’ file in the archive, an archive header and the unchanged
contents of the file.

The archive file’s magic string contains S A R M A G bytes and does not include a ter-
minating null byte.

Figure 7-1: < a r . h >

d e f i n e A R M A G " ! < a r c h > \ n "
d e f i n e S A R M A G 8
d e f i n e A R F M A G " ‘ \ n "

s t r u c t a r _ h d r {
c h a r a r _ n a m e [1 6] ;
c h a r a r _ d a t e [1 2] ;
c h a r a r _ u i d [6] ;
c h a r a r _ g i d [6] ;
c h a r a r _ m o d e [8] ;
c h a r a r _ s i z e [1 0] ;
c h a r a r _ f m a g [2] ;

} ;

All information in the member headers is printable ASCII.

a r _ n a m e This member represents the member’s file name. If the name fits,
it resides in the member directly, terminated with slash (/) and
padded with blanks on the right. If the member’s name is too
long to fit, the member contains a slash, followed by the decimal
representation of the name’s offset in the archive string table.

7-2 FORMATS AND PROTOCOLS

a r _ d a t e This member holds the decimal representation of the
modification date of the file at the time of its insertion into the
archive. S t a t and t i m e describe the modification time value. X

a r _ u i d This member holds the decimal representation of the member’s
user identification number.

a r _ g i d This member holds the decimal representation of the member’s
group identification number.

a r _ m o d e This member holds the octal representation of the file system
mode.

a r _ s i z e This member holds the decimal representation of the member’s
size in bytes.

a r _ f m a g This member holds the first two bytes of the A R F M A G string,
defined above.

Each member begins on an even byte boundary; a newline is inserted between
files if necessary. Nevertheless the a r _ s i z e member reflects the actual size of the
member exclusive of padding. There is no provision for empty areas in an archive
file.

If some archive member’s name is more than 15 bytes long, a special archive
member contains a table of file names, each followed by a slash and a newline.
This string table member, if present, will precede all ‘‘normal’’ archive members.
The special archive symbol table is not a ‘‘normal’’ member, and must be first if it
exists (see below). The a r _ n a m e entry of the string table’s member header holds a
zero length name (a r _ n a m e [0] = = ’ / ’), followed by one trailing slash
(a r _ n a m e [1] = = ’ / ’), followed by blanks (a r _ n a m e [2] = = ’ ’, and so on). Offsets
into the string table begin at zero. Example a r _ n a m e values for short and long file
names appear below.

Offset +0 +1 +2 +3 +4 +5 +6 +7 +8 +9_ __
0 f i l e n a m e s a_ __

10 m p l e / \ n l o n g_ __
20 e r f i l e n a m e_ __
30 x a m p l e / \ n_ __ 


































































Archive File 7-3

Figure 7-2: Example String Table

Member Name a r _ n a m e Note_ __
s h o r t - n a m e s h o r t - n a m e / Not in string table
f i l e n a m e s a m p l e / 0 Offset 0 in string table
l o n g e r f i l e n a m e x a m p l e / 1 6 Offset 16 in string table_ __ 










If an archive file has one or more object file members, its first member will be an
archive symbol table. This archive member has a zero length name, followed by
blanks (a r _ n a m e [0] = = ’ / ’ , a r _ n a m e [1] = = ’ ’, and so on). All words in this
symbol table have four bytes, using the machine-independent encoding shown
below.

NOTE

All machines use the encoding described here for the symbol table, even if the
machine’s ‘‘natural’’ byte order is different.

Figure 7-3: Archive Word Encoding

0 1
0

0 2
1

0 3
2

0 4
3

0 x 0 1 0 2 0 3 0 4

The symbol table holds the following:

A word containing the number of symbols in the symbol table (which is the
same as the number of entries in the file offset array);

An array of words, holding file offsets into the archive;

The string table containing a r _ s i z e - 4 * (number symbols+ 1) bytes, whose
initial byte is numbered 0 and whose last byte holds a 0 value.

Entries in the string table and in the file offset array exactly correspond to each
other, and they both parallel the order of archive members. Thus if two or more
archive members define symbols with the same name (which is allowed), their
string table entries will appear in the same order as their corresponding members
in the archive file. Each array entry associates a symbol with the archive member
that defines the symbol; the file offset is the location of the archive header for the
designated archive member.

7-4 FORMATS AND PROTOCOLS

As an example, the following symbol table defines 4 symbols. The archive
member at file offset 114 defines n a m e and o b j e c t. The archive member at file
offset 426 defines f u n c t i o n and a second version of n a m e.

Figure 7-4: Example Symbol Table

Offset +0 +1 +2 +3_ ____________________
0 4 4 offset entries_ ____________________
4 1 1 4 n a m e_ ____________________
8 1 1 4 o b j e c t_ ____________________

12 4 2 6 f u n c t i o n_ ____________________
16 4 2 6 n a m e_ ____________________
20 n a m e_ ____________________
24 \ 0 o b j_ ____________________
28 e c t \ 0_ ____________________
32 f u n c_ ____________________
36 t i o n_ ____________________
40 \ 0 n a m_ ____________________
44 e \ 0_ ____________________ 





































































Archive File 7-5

Other Archive Formats

ABI-conforming systems support archives created by the c p i o command. These
archives are commonly used as a vehicle for collecting ASCII files for storage or
transmission.

For more information about these archives see the c p i o manual page in the X
X/Open CAE Specification, Issue 4.2 and the System V Interface Definition, Third Edi- X
tion (see the Conformance Rule in chapter 1). The format of the archives the com-
mand creates is included in the IEEE POSIX P1003.1 specification. Also supported E
are archives in the ASC/CRC format, created using the c p i o command with the E
‘‘- H c r c’’ option.

7-6 FORMATS AND PROTOCOLS

Terminfo Data Base

Each terminal’s capabilities are stored in a separate file named
/ u s r / s h a r e / l i b / t e r m i n f o /L/terminal_name, where terminal_name is the name of 
the terminal, and L is the first letter of the terminal’s name. The specific capabili-
ties described in the database and their names are given in the System V Interface
Definition, Third Edition on the t e r m i n f o(TI_ENV) pages. The format of this file is
given in the separate section that follows.

The t e r m i n f o database format is hardware-independent. An 8-bit byte is
assumed. Short integers are stored in two contiguous 8-bit bytes. The first byte
contains the least significant 8 bits of the value, and the second byte contains the
most significant 8 bits. (Thus, the value represented is 256∗second+first.) The
value – 1 is represented by 0 3 7 7 , 0 3 7 7, and the value – 2 is represented by 0 3 7 6 ,
0 3 7 7; other negative values are illegal. Computers where this does not
correspond to the hardware read the integers as two bytes and compute the result,
making the compiled entries portable across machine types. A – 1 or a – 2 in a
capability field means that the capability is missing from a terminal.

The file contains six sections:

header The header contains six short integers in the format described
below. These integers are (1) the magic number (octal 0 4 3 2);
(2) the size, in bytes, of the names section; (3) the number of
bytes in the boolean section; (4) the number of short integers in
the numbers section; (5) the number of offsets (short integers)
in the strings section; (6) the size, in bytes, of the string table.

terminal names The terminal names section contains the first line of the
t e r m i n f o(TI_ENV) description, listing the various names for
the terminal, separated by the ’|’ character. The section is ter-
minated with an ASCII NUL character.

boolean flags The boolean flags contain one byte for each flag. This byte is
either 0 or 1 to indicate whether a capability is present or
absent. The terminal capabilities are stored here in the same
order in which that are listed under the B o o l e a n s heading of
the capability table in the t e r m i n f o(TI_ENV) section of the
System V Interface Definition, Third Edition . The flag value of 2
means that the flag is invalid.

Terminfo Data Base 7-7

Between the boolean section and the number section, a null
byte will be inserted, if necessary, to insure that the number
section begins on a byte with an even-numbered address. All
short integers are aligned on a short word boundary.

numbers The numbers section is similar to the preceding boolean flags
section. Each capability is stored in two bytes as a short
integer. Terminal capabilities are stored here in the same order
in which they are listed under the Numbers heading of the
capability table in the t e r m i n f o(TI_ENV) section of the System
V Interface Definition, Third Edition . If the value represented is
– 1 or – 2, the capability is missing.

strings In the strings section, each capability is stored as a short
integer, in the same format given for preceding section. Termi-
nal capabilities are stored here in the same order in which they
are listed under the Strings heading of the capability table in
the t e r m i n f o(TI_ENV) section of the System V Interface
Definition, Third Edition . A value of – 1 or – 2 means that a capa-
bility is missing. Otherwise, the value is taken as an offset
from the beginning of the string table. ∗

string table The final section is the string table. It contains all the values of
string capabilities referenced in the string section. Each capa- 
bility is stored as a null terminated string. Special characters in 
ˆ X or \ notation are stored in their interpreted form, not the 
printing representation. Padding information ($ < n n >) and 
parameter information (% x) are stored intact in uninterpreted 
form.

As an example, an octal dump of the compiled description for an AT&T Model 37
KSR is included:

7-8 FORMATS AND PROTOCOLS

3 7 | t t y 3 7 | A T & T m o d e l 3 7 t e l e t y p e ,
h c , o s , x o n ,
b e l = ̂ G , c r = \ r , c u b 1 = \ b , c u d 1 = \ n , c u u 1 = \ E 7 , h d = \ E 9 ,
h u = \ E 8 , i n d = \ n ,

0 0 0 0 0 0 0 0 3 2 0 0 1 \ 0 0 3 2 \ 0 0 1 3 \ 0 0 2 1 0 0 1 3 \ 0 3 7 | t
0 0 0 0 0 2 0 t y 3 7 | A T & T m o d e l
0 0 0 0 0 4 0 3 7 t e l e t y p e \ 0 \ 0 \ 0 \ 0 \ 0
0 0 0 0 0 6 0 \ 0 \ 0 \ 0 0 0 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 0 0 1 \ 0 \ 0 \ 0 \ 0
0 0 0 0 1 0 0 0 0 1 \ 0 \ 0 \ 0 \ 0 \ 0 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7
0 0 0 0 1 2 0 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 & \ 0
0 0 0 0 1 4 0 \ 0 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7
0 0 0 0 1 6 0 3 7 7 3 7 7 " \ 0 3 7 7 3 7 7 3 7 7 3 7 7 (\ 0 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7
0 0 0 0 2 0 0 3 7 7 3 7 7 0 \ 0 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 - \ 0 3 7 7 3 7 7
0 0 0 0 2 2 0 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7
*
0 0 0 0 5 2 0 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 $ \ 0
0 0 0 0 5 4 0 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 * \ 0
0 0 0 0 5 6 0 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7
*
0 0 0 1 1 6 0 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7 7 3 7
0 0 0 1 2 0 0 | t t y 3 7 | A T & T m o d e
0 0 0 1 2 2 0 l 3 7 t e l e t y p e \ 0 \ r \ 0
0 0 0 1 2 4 0 \ n \ 0 \ n \ 0 0 0 7 \ 0 \ b \ 0 0 3 3 8 \ 0 0 3 3 9 \ 0 0 3 3 7
0 0 0 1 2 6 0 \ 0 \ 0
0 0 0 1 2 6 1

Some limitations: total compiled entries cannot exceed 4096 bytes and all entries in
the name field cannot exceed 128 bytes.

Terminfo Data Base 7-9

Formats and Protocols for Networking

This section describes a language for machine-independent data representation
and two protocols used in remote procedure call service. All ABI-conforming sys-
tems that provide these services must implement these formats and protocols in
the appropriate routines in the l i b n s l library. See Chapter 6 of the System V ABI
for a list of the routines in this library.

XDR: External Data Representation

XDR is a method for the description and encoding of data. It is useful for transfer-
ring data between different computer architectures, where such characteristics as
internal byte-ordering may vary.

XDR uses a language to describe data formats. This language allows one to
describe intricate data formats in a concise manner.

The XDR language assumes that bytes (or octets) are portable, where a byte is
defined to be 8 bits of data. A given hardware device should encode the bytes
onto the various media in such a way that other hardware devices may decode the
bytes without loss of meaning.

Basic Block Size

The representation of all items requires a multiple of four bytes (or 32 bits) of data.
The bytes are numbered 0 through n-1. The bytes are read or written to some byte
stream such that byte m always precedes byte m+1. If the n bytes needed to con-
tain the data are not a multiple of four, then the n bytes are followed by enough (0
to 3) residual zero bytes, r, to make the total byte count a multiple of 4.

The familiar graphic box notation has been used for illustration and comparison.
In most illustrations, each box (delimited by a plus sign at the 4 corners and verti-
cal bars and dashes) depicts a byte. Ellipses (. . .) between boxes show zero or
more additional bytes where required.

A Block

+ - - - - - - - - + - - - - - - - - + . . . + - - - - - - - - + - - - - - - - - + . . . + - - - - - - - - +
| b y t e 0 | b y t e 1 | . . . | b y t e n - 1 | 0 | . . . | 0 |
+ - - - - - - - - + - - - - - - - - + . . . + - - - - - - - - + - - - - - - - - + . . . + - - - - - - - - +
| < - - - - - - - - - - - n b y t e s - - - - - - - - - - > | < - - - - - - r b y t e s - - - - - - > |
| < - - - - - - - - - - - n + r (w h e r e (n + r) m o d 4 = 0) > - - - - - - - - - - - > |

7-10 FORMATS AND PROTOCOLS

XDR Data Types

Each of the sections that follow describes a data type defined in the XDR language,
shows how it is declared in the language, and includes a graphic illustration of its
encoding.

For each defined data type we show a general paradigm declaration. Note that
angle brackets (< and >) denote variable length sequences of data and square
brackets ([and]) denote fixed-length sequences of data. ‘‘n’’, ‘‘m’’ and ‘‘r’’ denote
integers. For the full language specification and more formal definitions of terms
such as ‘‘identifier’’ and ‘‘declaration,’’ refer to ‘‘The XDR Language
Specification’’ , given in the System V Interface Definition, Third Edition .

For some data types, more specific examples are included below.

Integer

An XDR signed integer is a 32-bit datum that encodes an integer in the range
[-2147483648,2147483647]. The integer is represented in two’s complement nota-
tion. The most and least significant bytes are 0 and 3, respectively. Integers are
declared as follows:

Integer

(M S B) (L S B)
+ - - - - - - - + - - - - - - - + - - - - - - - + - - - - - - - +
| b y t e 0 | b y t e 1 | b y t e 2 | b y t e 3 |
+ - - - - - - - + - - - - - - - + - - - - - - - + - - - - - - - +
< - - - - - - - - - - - - 3 2 b i t s - - - - - - - - - - - - >

Unsigned Integer

An XDR unsigned integer is a 32-bit datum that encodes a nonnegative integer in
the range [0,4294967295]. It is represented by an unsigned binary number whose
most and least significant bytes are 0 and 3, respectively. An unsigned integer is
declared as follows:

Unsigned Integer

(M S B) (L S B)
+ - - - - - - - + - - - - - - - + - - - - - - - + - - - - - - - +
| b y t e 0 | b y t e 1 | b y t e 2 | b y t e 3 |
+ - - - - - - - + - - - - - - - + - - - - - - - + - - - - - - - +
< - - - - - - - - - - - - 3 2 b i t s - - - - - - - - - - - - >

Formats and Protocols for Networking 7-11

Enumeration

Enumerations have the same representation as signed integers. Enumerations are
handy for describing subsets of the integers. Enumerated data is declared as fol-
lows:

e n u m { n a m e - i d e n t i f i e r = c o n s t a n t , . . . } i d e n t i f i e r ;

For example, the three colors red, yellow, and blue could be described by an
enumerated type:

e n u m { R E D = 2 , Y E L L O W = 3 , B L U E = 5 } c o l o r s ;

It is an error to encode as an enum any other integer than those that have been
given assignments in the enum declaration.

Boolean

Booleans are important enough and occur frequently enough to warrant their own
explicit type in the language. Booleans are declared as follows:

b o o l i d e n t i f i e r ;

This is equivalent to:

e n u m { F A L S E = 0 , T R U E = 1 } i d e n t i f i e r ;

Floating-point

XDR defines the floating-point data type ‘‘float’’ (32 bits or 4 bytes). The encoding
used is the IEEE standard for normalized single-precision floating-point numbers.
The following three fields describe the single-precision floating-point number:

S: The sign of the number. Values 0 and 1 represent positive and
negative, respectively. One bit.

E: The exponent of the number, base 2. 8 bits are devoted to this
field. The exponent is biased by 127.

F: The fractional part of the number’s mantissa, base 2. 23 bits are
devoted to this field.

Therefore, the floating-point number is described by:

(- 1) * * S * 2 * * (E - B i a s) * 1 . F

It is declared as follows:

7-12 FORMATS AND PROTOCOLS

Single-Precision Floating-Point

+ - - - - - - - + - - - - - - - + - - - - - - - + - - - - - - - +
| b y t e 0 | b y t e 1 | b y t e 2 | b y t e 3 |
S | E | F |
+ - - - - - - - + - - - - - - - + - - - - - - - + - - - - - - - +
1 | < - 8 - > | < - - - - - - - 2 3 b i t s - - - - - - > |
< - - - - - - - - - - - - 3 2 b i t s - - - - - - - - - - - - >

Just as the most and least significant bytes of a number are 0 and 3, the most and
least significant bits of a single-precision floating- point number are 0 and 31. The
beginning bit (and most significant bit) offsets of S, E, and F are 0, 1, and 9, respec-
tively. Note that these numbers refer to the mathematical positions of the bits,
and NOT to their actual physical locations (which vary from medium to medium).

The IEEE specifications should be consulted concerning the encoding for signed
zero, signed infinity (overflow), and denormalized numbers (underflow). Accord-
ing to IEEE specifications, the ‘‘NaN’’ (not a number) is system dependent and
should not be used externally.

Double-precision Floating-point

XDR defines the encoding for the double-precision floating- point data type ‘‘dou-
ble’’ (64 bits or 8 bytes). The encoding used is the IEEE standard for normalized
double-precision floating-point numbers. XDR encodes the following three fields,
which describe the double-precision floating-point number:

S: The sign of the number. Values 0 and 1 represent positive and
negative, respectively. One bit.

E: The exponent of the number, base 2. 11 bits are devoted to this
field. The exponent is biased by 1023.

F: The fractional part of the number’s mantissa, base 2. 52 bits are
devoted to this field.

Therefore, the floating-point number is described by:

(- 1) * * S * 2 * * (E - B i a s) * 1 . F

It is declared as follows:

Formats and Protocols for Networking 7-13

Double-Precision Floating-Point

+ - - - - - - + - - - - - - + - - - - - - + - - - - - - + - - - - - - + - - - - - - + - - - - - - + - - - - - - +
| b y t e 0 | b y t e 1 | b y t e 2 | b y t e 3 | b y t e 4 | b y t e 5 | b y t e 6 | b y t e 7 |
S | E | F |
+ - - - - - - + - - - - - - + - - - - - - + - - - - - - + - - - - - - + - - - - - - + - - - - - - + - - - - - - +
1 | < - - 1 1 - - > | < - - - - - - - - - - - - - - - - - 5 2 b i t s - - - - - - - - - - - - - - - - - - - > |
< - 6 4 b i t s - >

Just as the most and least significant bytes of a number are 0 and 3, the most and
least significant bits of a double-precision floating- point number are 0 and 63.
The beginning bit (and most significant bit) offsets of S, E , and F are 0, 1, and 12,
respectively. Note that these numbers refer to the mathematical positions of the
bits, and NOT to their actual physical locations (which vary from medium to
medium).

The IEEE specifications should be consulted concerning the encoding for signed
zero, signed infinity (overflow), and denormalized numbers (underflow). Accord-
ing to IEEE specifications, the ‘‘NaN’’ (not a number) is system dependent and
should not be used externally.

Fixed-length Opaque Data

At times, fixed-length uninterpreted data needs to be passed among machines.
This data is called ‘‘opaque’’ and is declared as follows:

opaque identifier[n];

where the constant n is the (static) number of bytes necessary to contain the
opaque data. If n is not a multiple of four, then the n bytes are followed by
enough (0 to 3) residual zero bytes, r, to make the total byte count of the opaque
object a multiple of four.

Fixed-Length Opaque

0 1 . . .
+ - - - - - - - - + - - - - - - - - + . . . + - - - - - - - - + - - - - - - - - + . . . + - - - - - - - - +
| b y t e 0 | b y t e 1 | . . . | b y t e n - 1 | 0 | . . . | 0 |
+ - - - - - - - - + - - - - - - - - + . . . + - - - - - - - - + - - - - - - - - + . . . + - - - - - - - - +
| < - - - - - - - - - - - n b y t e s - - - - - - - - - - > | < - - - - - - r b y t e s - - - - - - > |
| < - - - - - - - - - - - n + r (w h e r e (n + r) m o d 4 = 0) - - - - - - - - - - - - > |

Variable-length Opaque Data

XDR also provides for variable-length (counted) opaque data, defined as a
sequence of n (numbered 0 through n-1) arbitrary bytes to be the number n
encoded as an unsigned integer (as described below), and followed by the n bytes
of the sequence.

7-14 FORMATS AND PROTOCOLS

Byte m of the sequence always precedes byte m+1 of the sequence, and byte 0 of
the sequence always follows the sequence’s length (count). If n is not a multiple of
four, the the n bytes are followed by enough (0 to 3) residual zero bytes, r, to make
the total byte count a multiple of four. Variable-length opaque data is declared in
the following way:

opaque identifier<m>;

or

opaque identifier<>;

The constant m denotes an upper bound of the number of bytes that the sequence
may contain. If m is not specified, as in the second declaration, it is assumed to be
(2**32) - 1, the maximum length. The constant m would normally be found in a
protocol specification. For example, a filing protocol may state that the maximum
data transfer size is 8192 bytes, as follows:

opaque filedata<8192>;

This can be illustrated as follows:

Variable-Length Opaque

0 1 2 3 4 5 . . .
+ - - - - - + - - - - - + - - - - - + - - - - - + - - - - - + - - - - - + . . . + - - - - - + - - - - - + . . . + - - - - - +
| l e n g t h n | b y t e 0 | b y t e 1 | . . . | n - 1 | 0 | . . . | 0 |
+ - - - - - + - - - - - + - - - - - + - - - - - + - - - - - + - - - - - + . . . + - - - - - + - - - - - + . . . + - - - - - +
| < - - - - - - - 4 b y t e s - - - - - - - > | < - - - - - - n b y t e s - - - - - - > | < - - - r b y t e s - - - > |
| < - - - - n + r (w h e r e (n + r) m o d 4 = 0) - - - - > |

It is an error to encode a length greater than the maximum described in the
specification.

String

XDR defines a string of n (numbered 0 through n-1) ASCII bytes to be the number
n encoded as an unsigned integer (as described above), and followed by the n
bytes of the string. Byte m of the string always precedes byte m+1 of the string,
and byte 0 of the string always follows the string’s length. If n is not a multiple of
four, then the n bytes are followed by enough (0 to 3) residual zero bytes, r, to
make the total byte count a multiple of four. Counted byte strings are declared as
follows:

string object<m>;

or

string object<>;

Formats and Protocols for Networking 7-15

The constant m denotes an upper bound of the number of bytes that a string may
contain. If m is not specified, as in the second declaration, it is assumed to be
(2**32) - 1, the maximum length. The constant m would normally be found in a
protocol specification. For example, a filing protocol may state that a file name
can be no longer than 255 bytes, as follows:

string filename<255>;

Which can be illustrated as:

A String

0 1 2 3 4 5 . . .
+ - - - - - + - - - - - + - - - - - + - - - - - + - - - - - + - - - - - + . . . + - - - - - + - - - - - + . . . + - - - - - +
| l e n g t h n | b y t e 0 | b y t e 1 | . . . | n - 1 | 0 | . . . | 0 |
+ - - - - - + - - - - - + - - - - - + - - - - - + - - - - - + - - - - - + . . . + - - - - - + - - - - - + . . . + - - - - - +
| < - - - - - - - 4 b y t e s - - - - - - - > | < - - - - - - n b y t e s - - - - - - > | < - - - r b y t e s - - - > |
| < - - - - n + r (w h e r e (n + r) m o d 4 = 0) - - - - > |

It is an error to encode a length greater than the maximum described in the
specification.

Fixed-length Array

Declarations for fixed-length arrays of homogeneous elements are in the following
form:

type-name identifier[n];

Fixed-length arrays of elements numbered 0 through n-1 are encoded by individu-
ally encoding the elements of the array in their natural order, 0 through n-1. Each
element’s size is a multiple of four bytes. Though all elements are of the same
type, the elements may have different sizes. For example, in a fixed-length array
of strings, all elements are of ‘‘type string,’’ yet each element will vary in its
length.

Fixed-Length Array

+ - - - + - - - + - - - + - - - + - - - + - - - + - - - + - - - + . . . + - - - + - - - + - - - + - - - +
| e l e m e n t 0 | e l e m e n t 1 | . . . | e l e m e n t n - 1 |
+ - - - + - - - + - - - + - - - + - - - + - - - + - - - + - - - + . . . + - - - + - - - + - - - + - - - +
| < - n e l e m e n t s - - - - - - - - - - - - - - - - - - - > |

7-16 FORMATS AND PROTOCOLS

Variable-length Array

Counted arrays provide the ability to encode variable-length arrays of homogene-
ous elements. The array is encoded as the element count n (an unsigned integer)
followed by the encoding of each of the array’s elements, starting with element 0
and progressing through element n- 1. The declaration for variable-length arrays
follows this form:

type-name identifier<m>;

or

type-name identifier<>;

The constant m specifies the maximum acceptable element count of an array; if m
is not specified, as in the second declaration, it is assumed to be (2**32) - 1.

Counted Array

0 1 2 3
+ - - + - - + - - + - - + - - + - - + - - + - - + - - + - - + - - + - - + . . . + - - + - - + - - + - - +
| n | e l e m e n t 0 | e l e m e n t 1 | . . . | e l e m e n t n - 1 |
+ - - + - - + - - + - - + - - + - - + - - + - - + - - + - - + - - + - - + . . . + - - + - - + - - + - - +
| < - 4 b y t e s - > | < - - - - - - - - - - - - - - n e l e m e n t s - - - - - - - - - - - - - > |

It is an error to encode a value of n that is greater than the maximum described in
the specification.

Structure

Structures are declared as follows:

s t r u c t {
c o m p o n e n t - d e c l a r a t i o n - A ;
c o m p o n e n t - d e c l a r a t i o n - B ;
. . .

} i d e n t i f i e r ;

The components of the structure are encoded in the order of their declaration in
the structure. Each component’s size is a multiple of four bytes, though the com-
ponents may be different sizes.

Formats and Protocols for Networking 7-17

Structure

+ - - - - - - - - - - - - - + - - - - - - - - - - - - - + . . .
| c o m p o n e n t A | c o m p o n e n t B | . . .
+ - - - - - - - - - - - - - + - - - - - - - - - - - - - + . . .

Discriminated Union

A discriminated union is a type composed of a discriminant followed by a type
selected from a set of prearranged types according to the value of the discrim-
inant. The type of discriminant is either ‘‘int,’’ ‘‘unsigned int,’’ or an enumerated
type, such as ‘‘bool’’. The component types are called ‘‘arms’’ of the union, and
are preceded by the value of the discriminant which implies their encoding.
Discriminated unions are declared as follows:

u n i o n s w i t c h (d i s c r i m i n a n t - d e c l a r a t i o n) {
c a s e d i s c r i m i n a n t - v a l u e - A :
a r m - d e c l a r a t i o n - A ;
c a s e d i s c r i m i n a n t - v a l u e - B :
a r m - d e c l a r a t i o n - B ;
. . .
d e f a u l t : d e f a u l t - d e c l a r a t i o n ;

} i d e n t i f i e r ;

Each ‘‘case’’ keyword is followed by a legal value of the discriminant. The default
arm is optional. If it is not specified, then a valid encoding of the union cannot
take on unspecified discriminant values. The size of the implied arm is always a
multiple of four bytes.

The discriminated union is encoded as its discriminant followed by the encoding
of the implied arm.

Discriminated Union

0 1 2 3
+ - - - + - - - + - - - + - - - + - - - + - - - + - - - + - - - +
| d i s c r i m i n a n t | i m p l i e d a r m |
+ - - - + - - - + - - - + - - - + - - - + - - - + - - - + - - - +
| < - - - 4 b y t e s - - - > |

7-18 FORMATS AND PROTOCOLS

Void

An XDR void is a 0-byte quantity. Voids are useful for describing operations that
take no data as input or no data as output. They are also useful in unions, where
some arms may contain data and others do not. The declaration is simply as fol-
lows:

void;

Voids are illustrated as follows:

++

++
--><-- 0 bytes

Constant

The data declaration for a constant follows this form:

const name-identifier = n;

‘‘const’’ is used to define a symbolic name for a constant; it does not declare any
data. The symbolic constant may be used anywhere a regular constant may be
used. For example, the following defines a symbolic constant DOZEN, equal to
12.

const DOZEN = 12;

Typedef

‘‘"typedef’’ does not declare any data either, but serves to define new identifiers
for declaring data. The syntax is:

typedef declaration;

The new type name is actually the variable name in the declaration part of the
typedef. For example, the following defines a new type called ‘‘eggbox’’ using an
existing type called ‘‘egg’’:

typedef egg eggbox[DOZEN];

Variables declared using the new type name have the same type as the new type
name would have in the typedef, if it was considered a variable. For example, the
following two declarations are equivalent in declaring the variable ‘‘fresheggs’’:

eggbox fresheggs;
egg fresheggs[DOZEN];

Formats and Protocols for Networking 7-19

Messaging Catalogues E

An ABI conforming implementation will include the g e n c a t utility to convert E
message catalogues (as defined in the Commands and Utilities volume of X/Open E
CAE Specification, Issue 4.2) into a form understandable by the run-time system. E
Applications that attempt to provide message catalogues in any other format are E
not ABI conforming.

RPC: Remote Procedure Call Protocol

This section specifies the protocol to be used in the remote procedure call package
implemented by routines in the l i b n s l library described in Chapter 6. The proto-
col is specified with the external data representation (XDR) language partly
described in the preceding section of the System V ABI .

Terminology

This section discusses servers, services, programs, procedures, clients, and ver-
sions. A server is a piece of software where network services are implemented. A
network service is a collection of one or more remote programs. A remote pro-
gram implements one or more remote procedures; the procedures, their parame-
ters, and results are documented in the specific program’s protocol specification
(see the rpcbind protocol, below, for an example). Network clients are pieces of
software that initiate remote procedure calls to services. A server may support
more than one version of a remote program in order to be forward compatible
with changing protocols.

Transports and Semantics

The RPC protocol is independent of transport protocols. That is, RPC does not
care how a message is passed from one process to another. The protocol deals
only with specification and interpretation of messages.

It is important to point out that RPC does not try to implement any kind of relia-
bility and that the application must be aware of the type of transport protocol
underneath RPC. If it knows it is running on top of a reliable transport such as
TCP/IP, then most of the work is already done for it. On the other hand, if it is
running on top of an unreliable transport such as UDP/IP, it must implement is
own retransmission and time-out policy as the RPC layer does not provide this
service.

7-22 FORMATS AND PROTOCOLS

Because of transport independence, the RPC protocol does not attach specific
semantics to the remote procedures or their execution. Semantics can be inferred
from (but should be explicitly specified by) the underlying transport protocol. For
example, consider RPC running on top of an unreliable transport such as UDP/IP.
If an application retransmits RPC messages after short time-outs, the only thing it
can infer if it receives no reply is that the procedure was executed zero or more
times. If it does receive a reply, then it can infer that the procedure was executed
at least once.

A server may wish to remember previously granted requests from a client and not
regrant them in order to insure some degree of execute-at-most-once semantics. A
server can do this by taking advantage of the transaction ID that is packaged with
every RPC request. The main use of this transaction is by the client RPC layer in
matching replies to requests. However, a client application may choose to reuse
its previous transaction ID when retransmitting a request. The server application,
knowing this fact, may choose to remember this ID after granting a request and
not regrant requests with the same ID in order to achieve some degree of execute-
at-most-once semantics. The server is not allowed to examine this ID in any other
way except as a test for equality.

On the other hand, if using a reliable transport such as TCP/IP, the application
can infer from a reply message that the procedure was executed exactly once, but
if it receives no reply message, it cannot assume the remote procedure was not
executed. Note that even if a connection-oriented protocol like TCP is used, an
application still needs time-outs and reconnection to handle server crashes.

There are other possibilities for transports besides datagram- or connection-
oriented protocols. For example, a request-reply protocol such as VMTP is
perhaps the most natural transport for RPC.

Binding and Rendezvous Independence

The act of binding a client to a service is NOT part of the remote procedure call
specification. This important and necessary function is left up to some higher-
level software. (The software may use RPC itself—see the rpcbind protocol, below).

Implementors should think of the RPC protocol as the jump-subroutine instruc-
tion ("JSR") of a network; the loader (binder) makes JSR useful, and the loader
itself uses JSR to accomplish its task. Likewise, the network makes RPC useful,
using RPC to accomplish this task.

Formats and Protocols for Networking 7-23

Authentication

The RPC protocol provides the fields necessary for a client to identify itself to a
service and vice-versa. Security and access control mechanisms can be built on top
of the message authentication. Several different authentication protocols can be
supported. A field in the RPC header indicates which protocol is being used.
More information on specific authentication protocols can be found in the Authen-
tication Protocols, below.

Programs and Procedures

The RPC call message has three unsigned fields: remote program number, remote
program version number, and remote procedure number. The three fields
uniquely identify the procedure to be called. Program numbers are administered
by some central authority. Once an implementor has a program number, he can
implement his remote program; the first implementation would most likely have
the version number of 1. Because most new protocols evolve into better, stable,
and mature protocols, a version field of the call message identifies which version
of the protocol the caller is using. Version numbers make speaking old and new
protocols through the same server process possible.

The procedure number identifies the procedure to be called. These numbers are
documented in the specific program’s protocol specification. For example, a file
service’s protocol specification may state that its procedure number 5 is ‘‘read’’
and procedure number 12 is ‘‘write’’.

Just as remote program protocols may change over several versions, the actual
RPC message protocol could also change. Therefore, the call message also has in it E
the RPC version number, which is equal to two for the version of RPC described E
here.

The reply message to a request message has enough information to distinguish the
following error conditions:

1 . The remote implementation of RPC does not speak the requested protocol E
version number. The lowest and highest supported RPC version numbers E
are returned.

2 . The remote program is not available on the remote system.

3 . The remote program does not support the requested version number. The
lowest and highest supported remote program version numbers are
returned.

4 . The requested procedure number does not exist. (This is usually a caller
side protocol or programming error.)

7-24 FORMATS AND PROTOCOLS

5 . The parameters to the remote procedure appear to be garbage from the
server’s point of view. (Again, this is usually caused by a disagreement
about the protocol between client and service.)

The remote implementation of RPC supports protocol version 2. E

Authentication

Provisions for authentication of caller to service and vice-versa are provided as a
part of the RPC protocol. The call message has two authentication fields, the
credentials and verifier. The reply message has one authentication field, the
response verifier. The RPC protocol specification defines all three fields to be the
following opaque type:

e n u m a u t h _ f l a v o r {
A U T H _ N U L L = 0 ,
A U T H _ S Y S = 1 ,
A U T H _ D E S = 3
/ * and more to be defined * /

} ;

s t r u c t o p a q u e _ a u t h {
a u t h _ f l a v o r f l a v o r ;
o p a q u e b o d y < 4 0 0 > ;

} ;

Any o p a q u e _ a u t h structure is an a u t h _ f l a v o r enumeration followed by bytes
which are opaque to the RPC protocol implementation.

The interpretation and semantics of the data contained within the authentication
fields is specified by individual, independent authentication protocol
specifications. (See Authentication Protocols, below, for definitions of the various
authentication protocols.)

If authentication parameters were rejected, the response message contains infor-
mation stating why they were rejected.

Program Number Assignment

Program numbers are given out in groups of 0 x 2 0 0 0 0 0 0 0 (decimal 536870912)
according to the following chart:

Formats and Protocols for Networking 7-25

_ __
Program Numbers Description_ __

0 - 1 f f f f f f f Defined by a central authority
2 0 0 0 0 0 0 0 - 3 f f f f f f f Defined by user
4 0 0 0 0 0 0 0 - 5 f f f f f f f Transient
6 0 0 0 0 0 0 0 - 7 f f f f f f f Reserved
8 0 0 0 0 0 0 0 - 9 f f f f f f f Reserved
a 0 0 0 0 0 0 0 - b f f f f f f f Reserved
c 0 0 0 0 0 0 0 - d f f f f f f f Reserved
e 0 0 0 0 0 0 0 - f f f f f f f f Reserved_ __ 
























The first group is a range of numbers administered by a central authority and
should be identical for all sites. The second range is for applications peculiar to a
particular site. This range is intended primarily for debugging new programs.
When a site develops an application that might be of general interest, that applica-
tion should be given an assigned number in the first range. The third group is for
applications that generate program numbers dynamically. The final groups are
reserved for future use, and should not be used.

Other Uses of the RPC Protocol

The intended use of this protocol is for calling remote procedures. That is, each
call message is matched with a response message. However, the protocol itself is a
message-passing protocol with which other (non-RPC) protocols can be imple-
mented. Here are two examples:

Batching

Batching allows a client to send an arbitrarily large sequence of call messages to a
server; batching typically uses reliable byte stream protocols (like TCP/IP) for its
transport. In the case of batching, the client never waits for a reply from the
server, and the server does not send replies to batch requests. A sequence of batch
calls is usually terminated by a legitimate RPC in order to flush the pipeline (with
positive acknowledgement).

Broadcast RPC

In broadcast RPC-based protocols, the client sends a broadcast packet to the net-
work and waits for numerous replies. Broadcast RPC uses unreliable, packet-
based protocols (like UDP/IP) as its transports. Servers that support broadcast
protocols only respond when the request is successfully processed, and are silent
in the face of errors. Broadcast RPC uses the r p c b i n d service to achieve its
semantics. See the rpcbind protocol, below, for more information.

7-26 FORMATS AND PROTOCOLS

The RPC Message Protocol

This section defines the RPC message protocol in the XDR data description
language. The message is defined in a top-down style.

e n u m m s g _ t y p e {
C A L L = 0 ,
R E P L Y = 1

} ;

/*
* A reply to a call message can take on two forms:
* The message was either accepted or rejected.
*/
e n u m r e p l y _ s t a t {

M S G _ A C C E P T E D = 0 ,
M S G _ D E N I E D = 1

} ;

/*
* Given that a call message was accepted, the following is the
* status of an attempt to call a remote procedure.
*/
e n u m a c c e p t _ s t a t {

S U C C E S S = 0 , / * RPC executed successfully * /
P R O G _ U N A V A I L = 1 , / * remote hasn’t exported program * /
P R O G _ M I S M A T C H = 2 , / * remote can’t support version # * /
P R O C _ U N A V A I L = 3 , / * program can’t support procedure * /
G A R B A G E _ A R G S = 4 / * procedure can’t decode params * /

} ;
/*
* Reasons why a call message was rejected:
*/
e n u m r e j e c t _ s t a t {

R P C _ M I S M A T C H = 0 , / * RPC version number != 2* /
A U T H _ E R R O R = 1 / * remote can’t authenticate caller * /

} ;

/*
* Why authentication failed:
*/
e n u m a u t h _ s t a t {

A U T H _ B A D C R E D = 1 , / * bad credentials * /
A U T H _ R E J E C T E D C R E D = 2 , / * client must begin new session * /
A U T H _ B A D V E R F = 3 , / * bad verifier * /
A U T H _ R E J E C T E D V E R F = 4 , / * verifier expired or replayed * /
A U T H _ T O O W E A K = 5 / * rejected for security reasons * /

} ;

(continued on next page)

Formats and Protocols for Networking 7-27

/*
* The RPC message:
* All messages start with a transaction identifier, xid,
* followed by a two-armed discriminated union. The union’s
* discriminant is a msg_type which switches to one of the two
* types of the message. The xid of a R E P L Y message always
* matches that of the initiating C A L L message. NB: The xid
* field is only used for clients matching reply messages with
* call messages or for servers detecting retransmissions; the
* service side cannot treat this id as any type of sequence
* number.
*/
s t r u c t r p c _ m s g {

u n s i g n e d i n t x i d ;
u n i o n s w i t c h (m s g _ t y p e m t y p e) {

c a s e C A L L :
c a l l _ b o d y c b o d y ;

c a s e R E P L Y :
r e p l y _ b o d y r b o d y ;

} b o d y ;
} ;

/*
* Body of an RPC request call:
* rpcvers may
* be equal to 2 or 3. The fields prog, vers, and proc specify the E
* remote program, its version number, and the procedure within
* the remote program to be called. After these fields are two
* authentication parameters: cred (authentication credentials)
* and verf (authentication verifier). The two authentication
* parameters are followed by the parameters to the remote
* procedure, which are specified by the specific program
* protocol.
*/
s t r u c t c a l l _ b o d y {

u n s i g n e d i n t r p c v e r s ; / * must be equal to two (2) * /
u n s i g n e d i n t p r o g ;
u n s i g n e d i n t v e r s ;
u n s i g n e d i n t p r o c ;
o p a q u e _ a u t h c r e d ;
o p a q u e _ a u t h v e r f ;
/ * procedure specific parameters start here * /

} ;

(continued on next page)

7-28 FORMATS AND PROTOCOLS

/*
* Body of a reply to an RPC request:
* The call message was either accepted or rejected.
*/
u n i o n r e p l y _ b o d y s w i t c h (r e p l y _ s t a t s t a t) {

c a s e M S G _ A C C E P T E D :
a c c e p t e d _ r e p l y a r e p l y ;

c a s e M S G _ D E N I E D :
r e j e c t e d _ r e p l y r r e p l y ;

} r e p l y ;

/*
* Reply to an RPC request that was accepted by the server:
* there could be an error even though the request was accepted.
* The first field is an authentication verifier that the server
* generates in order to validate itself to the caller. It is
* followed by a union whose discriminant is an enum
* accept_stat. The S U C C E S S arm of the union is protocol
* specific. The P R O G _ U N A V A I L, P R O C _ U N A V A I L, and G A R B A G E _ A R G P
* arms of the union are void. The P R O G _ M I S M A T C H arm specifies
* the lowest and highest version numbers of the remote program
* supported by the server.
*/
s t r u c t a c c e p t e d _ r e p l y {

o p a q u e _ a u t h v e r f ;
u n i o n s w i t c h (a c c e p t _ s t a t s t a t) {

c a s e S U C C E S S :
o p a q u e r e s u l t s [0] ;
/ * procedure-specific results start here * /

c a s e P R O G _ M I S M A T C H :
s t r u c t {

u n s i g n e d i n t l o w ;
u n s i g n e d i n t h i g h ;

} m i s m a t c h _ i n f o ;
d e f a u l t :

/*
* Void. Cases include P R O G _ U N A V A I L , P R O C _ U N A V A I L,
* and G A R B A G E _ A R G S.
*/

v o i d ;
} r e p l y _ d a t a ;

} ;

(continued on next page)

Formats and Protocols for Networking 7-29

/*
* Reply to an RPC request that was rejected by the server:
* The request can be rejected for two reasons: either the
* server is not running a compatible version of the RPC
* protocol (R P C _ M I S M A T C H), or the server refuses to
* authenticate the caller (A U T H _ E R R O R). In case of an RPC
* version mismatch, the server returns the lowest and highest
* supported RPC version numbers. In case of refused
* authentication, failure status is returned.
*/
u n i o n r e j e c t e d _ r e p l y s w i t c h (r e j e c t _ s t a t s t a t) {

c a s e R P C _ M I S M A T C H :
s t r u c t {

u n s i g n e d i n t l o w ;
u n s i g n e d i n t h i g h ;

} m i s m a t c h _ i n f o ;
c a s e A U T H _ E R R O R :

a u t h _ s t a t s t a t ;
} ;

Authentication Protocols

As previously stated, authentication parameters are opaque, but open-ended to
the rest of the RPC protocol. This section defines some ‘‘flavors’’ of authentication
which are already implemented. Other sites are free to invent new authentication
types, with the same rules of flavor number assignment as there is for program
number assignment.

Null Authentication

Often calls must be made where the caller does not know who he is or the server
does not care who the caller is. In this case, the flavor value (the discriminant of
the o p a q u e _ a u t h’s union) of the RPC message’s credentials, verifier, and response
verifier is A U T H _ N U L L. The bytes of the opaque_auth’s body are undefined. It is
recommended that the opaque length be zero.

Basic Authentication for UNIX Systems

The callers of a remote procedure may wish to identify themselves as they are
identified on a UNIX system. The value of the credential’s discriminant of an RPC
call message is A U T H _ S Y S. The bytes of the credential’s opaque body encode the 
following structure:

7-30 FORMATS AND PROTOCOLS

s t r u c t a u t h s y s _ p a r m s { 
u _ l o n g a u p _ t i m e ; 
c h a r * a u p _ m a c h n a m e ; 
u i d _ t a u p _ u i d ; 
g i d _ t a u p _ g i d ; 
u _ i n t a u p _ l e n ; 
g i d _ t * a u p _ g i d s ; 

} ;

The a u p _ m a c h n a m e is the name of the caller’s machine (like ‘‘krypton’’). The
a u p _ u i d is the caller’s effective user ID. The a u p _ g i d is the caller’s effective
group ID. The a u p _ g i d s is a counted array of groups which contain the caller as a
member. The verifier accompanying the credentials should be of A U T H _ N U L L
(defined above).

The value of the discriminant of the response verifier received in the reply mes-
sage from the server may be A U T H _ N U L L.

DES Authentication

Basic authentication for UNIX systems suffers from two major problems:

1 . The naming is oriented for UNIX systems.

2 . There is no verifier, so credentials can easily be faked.

DES authentication attempts to fix these two problems.

Naming

The first problem is handled by addressing the caller by a simple string of charac-
ters instead of by an operating system specific integer. This string of characters is
known as the ‘‘netname’’ or network name of the caller. The server is not allowed
to interpret the contents of the caller’s name in any other way except to identify
the caller. Thus, netnames should be unique for every caller in the naming
domain.

It is up to each operating system’s implementation of DES authentication to gen-
erate netnames for its users that insure this uniqueness when they call upon
remote servers. Operating systems already know how to distinguish users local to
their systems. It is usually a simple matter to extend this mechanism to the net-
work. For example, a user with a user ID of 515 might be assigned the following
netname: ‘‘unix.515@sun.com’’. This netname contains three items that serve to
insure it is unique. Going backwards, there is only one naming domain called
‘‘sun.com’’ in the internet. Within this domain, there is only one user with user ID
515. However, there may be another user on another operating system within the
same naming domain that, by coincidence, happens to have the same user ID. To

Formats and Protocols for Networking 7-31

insure that these two users can be distinguished we add the operating system
name. So one user is ‘‘unix.515@sun.com’’ and the other could be
‘‘vms.515@sun.com’’.

The first field is actually a naming method rather than an operating system name.
It just happens that today there is almost a one-to-one correspondence between
naming methods and operating systems. If the world could agree on a naming
standard, the first field could be the name of that standard, instead of an operating
system name.

DES Authentication Verifiers

Unlike authentication for UNIX systems, DES authentication does have a verifier
so the server can validate the client’s credential (and vice-versa). The contents of
this verifier is primarily an encrypted timestamp. The server can decrypt this
timestamp, and if it is close to what the real time is, then the client must have
encrypted it correctly. The only way the client could encrypt it correctly is to
know the ‘‘conversation key’’ of the RPC session. And if the client knows the
conversation key, then it must be the real client.

The conversation key is a DES key which the client generates and notifies the
server of in its first RPC call. The conversation key is encrypted using a public key
scheme in this first transaction. The particular public key scheme used in DES
authentication is Diffie-Hellman with 192-bit keys. The details of this encryption
method are described later.

The client and the server need the same notion of the current time in order for all
of this to work. If network time synchronization cannot be guaranteed, then client
can synchronize with the server before beginning the conversation.

The way a server determines if a client timestamp is valid is somewhat compli-
cated. For any other transaction but the first, the server just checks for two things:

1 . The timestamp is greater than the one previously seen from the same client.

2 . The timestamp has not expired.

A timestamp is expired if the server’s time is later than the sum of the client’s
timestamp plus what is known as the client’s "window". The ‘‘window’’ is a
number the client passes (encrypted) to the server in its first transaction. It can be
thought of as a lifetime for the credential.

This explains everything but the first transaction. In the first transaction, the
server checks only that the timestamp has not expired. If this was all that was
done though, then it would be quite easy for the client to send random data in
place of the timestamp with a fairly good chance of succeeding. As an added
check, the client sends an encrypted item in the first transaction known as the
‘‘window verifier’’ which must be equal to the window minus 1, or the server will
reject the credential.

7-32 FORMATS AND PROTOCOLS

The client too must check the verifier returned from the server to be sure it is legi-
timate. The server sends back to the client the encrypted timestamp it received
from the client, minus one second. If the client gets anything different than this, it
will reject it.

Nicknames and Clock Synchronization

After the first transaction, the server’s DES authentication subsystem returns in its
verifier to the client an integer ‘‘nickname’’ which the client may use in its further
transactions instead of passing its netname, encrypted DES key and window every
time. The nickname is most likely an index into a table on the server which stores
for each client its netname, decrypted DES key and window.

Though they originally were synchronized, the client’s and server’s clocks can get
out of sync again. When this happens the client RPC subsystem most likely will
get back R P C _ A U T H E R R O R at which point it should resynchronize.

A client may still get the R P C _ A U T H E R R O R error even though it is synchronized
with the server. The reason is that the server’s nickname table is a limited size,
and it may flush entries whenever it wants. A client should resend its original
credential in this case and the server will give it a new nickname. If a server
crashes, the entire nickname table gets flushed, and all clients will have to resend
their original credentials.

DES Authentication Protocol (in XDR language)

/*
* There are two kinds of credentials: one in which the client uses
* its full network name, and one in which it uses its "nickname"
* (just an unsigned integer) given to it by the server. The
* client must use its fullname in its first transaction with the
* server, in which the server will return to the client its
* nickname. The client may use its nickname in all further
* transactions with the server. There is no requirement to use the
* nickname, but it is wise to use it for performance reasons.
*/
e n u m a u t h d e s _ n a m e k i n d {

A D N _ F U L L N A M E = 0 ,
A D N _ N I C K N A M E = 1

} ;

/*
* A 64-bit block of encrypted DES data
*/
t y p e d e f o p a q u e d e s _ b l o c k [8] ;

(continued on next page)

Formats and Protocols for Networking 7-33

/*
* Maximum length of a network user’s name
*/
c o n s t M A X N E T N A M E L E N = 2 5 5 ;

/*
* A fullname contains the network name of the client, an encrypted
* conversation key and the window. The window is actually a
* lifetime for the credential. If the time indicated in the
* verifier timestamp plus the window has past, then the server
* should expire the request and not grant it. To insure that
* requests are not replayed, the server should insist that
* timestamps are greater than the previous one seen, unless it is
* the first transaction. In the first transaction, the server
* checks instead that the window verifier is one less than the
* window.
*/
s t r u c t a u t h d e s _ f u l l n a m e {

s t r i n g n a m e < M A X N E T N A M E L E N > ; / * name of client * /
d e s _ b l o c k k e y ; / * PK encrypted conversation key * /
u n s i g n e d i n t w i n d o w ; / * encrypted window * /

} ;

/*
* A credential is either a fullname or a nickname
*/
u n i o n a u t h d e s _ c r e d s w i t c h (a u t h d e s _ n a m e k i n d a d c _ n a m e k i n d) {

c a s e A D N _ F U L L N A M E :
a u t h d e s _ f u l l n a m e a d c _ f u l l n a m e ;

c a s e A D N _ N I C K N A M E :
u n s i g n e d i n t a d c _ n i c k n a m e ;

} ;

/*
* A timestamp encodes the time since midnight, January 1, 1970.
*/
s t r u c t t i m e s t a m p {

u n s i g n e d i n t s e c o n d s ; / * seconds * /
u n s i g n e d i n t u s e c o n d s ; / * and microseconds * /

} ;

/*
* Verifier: client variety
* The window verifier is only used in the first transaction. In
* conjunction with a fullname credential, these items are packed
* into the following structure before being encrypted:
*
* s t r u c t {
* a d v _ t i m e s t a m p ; -- one DES block
* a d v _ f u l l n a m e . w i n d o w ; -- one half DES block

(continued on next page)

7-34 FORMATS AND PROTOCOLS

* a d v _ w i n v e r f ; -- one half DES block
* }
* This structure is encrypted using CBC mode encryption with an
* input vector of zero. All other encryptions of timestamps use
* ECB mode encryption.
*/
s t r u c t a u t h d e s _ v e r f _ c l n t {

t i m e s t a m p a d v _ t i m e s t a m p ; / * encrypted timestamp * /
u n s i g n e d i n t a d v _ w i n v e r f ; / * encrypted window verifier * /

} ;

/*
* Verifier: server variety
* The server returns (encrypted) the same timestamp the client
* gave it minus one second. It also tells the client its nickname
* to be used in future transactions (unencrypted).
*/
s t r u c t a u t h d e s _ v e r f _ s v r {

t i m e s t a m p a d v _ t i m e v e r f ; / * encrypted verifier * /
u n s i g n e d i n t a d v _ n i c k n a m e ; / * new nickname for client * /

} ;

Diffie-Hellman Encryption

In this scheme, there are two constants, B A S E and M O D U L U S. The particular values
chosen for these for the DES authentication protocol are:

c o n s t B A S E = 3 ;
c o n s t M O D U L U S =

" d 4 a 0 b a 0 2 5 0 b 6 f d 2 e c 6 2 6 e 7 e f d 6 3 7 d f 7 6 c 7 1 6 e 2 2 d 0 9 4 4 b 8 8 b " ;

The way this scheme works is best explained by an example. Suppose there are
two persons ‘‘A’’ and ‘‘B’’ who want to send encrypted messages to each other.
So, A and B both generate ‘‘secret’’ keys at random which they do not reveal to
anyone. Let these keys be represented as SK(A) and SK(B). They also publish in a
public directory their ‘‘public’’ keys. These keys are computed as follows:

P K (A) = (B A S E * * S K (A)) m o d M O D U L U S
P K (B) = (B A S E * * S K (B)) m o d M O D U L U S

The ‘‘**’’ notation is used here to represent exponentiation. Now, both A and B
can arrive at the ‘‘common’’ key between them, represented here as CK(A, B),
without revealing their secret keys.

A computes:

C K (A , B) = (P K (B) * * S K (A)) m o d M O D U L U S

Formats and Protocols for Networking 7-35

rpcbind Mechanism

An r p c b i n d mechanism maps RPC program and version numbers to universal
addresses, thus making dynamic binding of remote programs possible. This
mechanism should run at a well-known address, and other programs register their
dynamically allocated network addresses with it. It then makes those addresses
publically available. Universal addresses are defined by the addressing authority
of the given transport. They are NULL-terminated strings.

r p c b i n d also aids in broadcast RPC. There is no fixed relationship between the
addresses which a given RPC program will have on different machines, so there’s
no way to directly broadcast to all of these programs. The r p c b i n d mechanism,
however, has a well-known address. So, to broadcast to a given program, the
client actually sends its message to the r p c b i n d process on the machine it wishes
to reach. r p c b i n d picks up the broadcast and calls the local service specified by
the client. When r p c b i n d gets a reply from the local service, it passes it on to the
client.

rpcbind Protocol Specification (in RPC Language)

/*
* rpcbind procedures
*/
p r o g r a m R P C B P R O G {

v e r s i o n R P C B V E R S {
v o i d
R P C B P R O C _ N U L L (v o i d) = 0 ;

b o o l
R P C B P R O C _ S E T (r p c b) = 1 ;

b o o l
R P C B P R O C _ U N S E T (r p c b) = 2 ;

s t r i n g
R P C B P R O C _ G E T A D D R (r p c b) = 3 ;

r p c b l i s t
R P C B P R O C _ D U M P (v o i d) = 4 ;

r p c b _ r m t c a l l r e s
R P C B P R O C _ C A L L I T (r p c b _ r m t c a l l a r g s) = 5 ;

u n s i g n e d i n t
R P C B P R O C _ G E T T I M E (v o i d) = 6 ;

} = 3 ;
} = 1 0 0 0 0 0 ;

Formats and Protocols for Networking 7-37

rpcbind Operation

The r p c b i n d mechanism is contacted by way of an assigned address specific to
the transport which is used. In case of IP, for example, it is port number 111. Each
transport has such an assigned well known address. The following is a descrip-
tion of each of the procedures supported by r p c b i n d:

R P C B P R O C _ N U L L :
This procedure does no work. By convention, procedure zero of any pro-
tocol takes no parameters and returns no results.

R P C B P R O C _ S E T :
When a program first becomes available on a machine, it registers itself
with the r p c b i n d program running on the same machine. The program
passes its program number, version number, network identifier and the
universal address on which it awaits service requests. The procedure
returns a boolean response whose value is T R U E if the procedure success-
fully established the mapping and F A L S E otherwise. The procedure
refuses to establish a mapping if one already exists for the tuple. Note
that neither network identifier nor universal address can be N U L L, and
that network identifier should be valid on the machine making the call.

R P C B P R O C _ U N S E T :
When a program becomes unavailable, it should unregister itself with the
r p c b i n d program on the same machine. The parameters and results have
meanings identical to those of R P C B P R O C _ S E T. The mapping of the pro-
gram number, version number and network identifier tuple with univer-
sal address is deleted. If network identifier is N U L L, all mappings
specified by the tuple (program number, version number, *) and the
corresponding universal addresses are deleted.

R P C B P R O C _ G E T A D D R :
Given a program number, version number and network identifier, this
procedure returns the universal address on which the program is awaiting
call requests.

R P C B P R O C _ D U M P :
This procedure enumerates all entries in r p c b i n d’s database. The pro-
cedure takes no parameters and returns a list of program, version, netid,
and universal addresses.

R P C B P R O C _ C A L L I T :
This procedure allows a caller to call another remote procedure on the
same machine without knowing the remote procedure’s universal
address. It is intended for supporting broadcasts to arbitrary remote pro-
grams via r p c b i n d’s well-known address.

7-38 FORMATS AND PROTOCOLS

The parameters and the argument pointer are the program number, ver-
sion number, procedure number, and parameters of the remote pro-
cedure. Note:

1 . This procedure only sends a response if the procedure was suc-
cessfully executed and is silent (no response) otherwise.

2 . r p c b i n d can communicates with remote programs only by
using connectionless transports.

The procedure returns the remote program’s universal address, and the
results of the remote procedure.

R P C B P R O C _ G E T T I M E :
This procedure returns the local time on its own machine.

r p c b i n d can also supports version 2 of the r p c b i n d (p o r t m a p p e r) program proto- E
col; version 3 should be used.

Formats and Protocols for Networking 7-39

8 SYSTEM COMMANDS

Commands for Application Programs 8-1

Table of Contents i

Commands for Application Programs

Programs running on ABI-conforming system are capable of creating new
processes and executing programs provided by the system. They can also execute
a shell in a new process, and then use that shell to interpret a script that causes
many system programs to be executed.

The system commands listed below must be available to applications executing on
an ABI-conforming system. They include commands from the X/Open CAE X
Specification, Issue 4.2 and the System V Interface Definition, Third Edition , Basic and
Advanced Utilities Extensions (see Conformance Rule in chapter 1).

The following commands are available to application programs running on ABI-
conforming systems. All the commands must be accessible through the default
PATH environment variable provided by the system (see, section 2.5.3 of the X
Commands and Utilities volume of the X/Open CAE Specification, Issue 4.2 or the
e n v v a r(BA_ENV) manual page in the System V Interface Definition, Third Edition ,
for more information on execution environment variables).

Figure 8-1: Commands required in an ABI Run-time Environment

c a t f a l s e p g# t e s t
c d f i n d p r t o u c h
c h g r p f m t m s g# p r i o c n t l t r
c h m o d g e t t x t p w d t r u e
c h o w n g r e p r m t t y
c m p i d r m d i r u m a s k
c p k i l l s e d u n a m e
c p i o# l i n e# s h u u c p
d a t e l n s l e e p u u l o g
d d l o g n a m e s o r t u u s t a t
d f l p s t t y u u x
e c h o l s s u v i
e d m k d i r t a i l w a i t
e x m v t e e w h o
e x p r p a s s w d c o m p r e s s u n c o m p r e s s
m a k e a r b a s e n a m e d i r n a m e
g e n c a t s u m# w c

Command is DEPRECATED X

Commands for Application Programs 8-1

9 EXECUTION ENVIRONMENT

Application Environment 9-1

File System Structure and Contents 9-3
Root subtree 9-3
The /etc subtree 9-4
The /opt subtree 9-5
The /usr subtree 9-5
The /var subtree 9-6

Table of Contents i

Application Environment

This section specifies the execution environment information available to applica-
tion programs running on ABI-conforming computers. It also specifies the pro-
grams’ interface to that information.

The execution environment contains certain information that is provided by the
operating system and is available to executing application programs. Generally
speaking, this includes system-wide environment information and per-process
information that is meaningful and accessible only to the single process to which it
applies. This environment information and the utilities used to retrieve it are
specified in detail in the X/Open CAE Specification, Issue 4.2 and the System V Inter- X
face Definition, Third Edition (see the Conformance Rule in chapter 1).

The environment information available to application programs on an ABI-
conforming system includes the following:

System identification

Application programs may obtain system identification information
through the u n a m e function or the system command u n a m e.

Date and time

The current calendar date and time are available to application programs
through the d a t e system command and the t i m e function.

Numerical Limits

This refers to the maximum and minimum values of operating system vari-
ables and C language limits that application programs require. Most impor-
tant values are accessible through the s y s c o n f and p a t h c o n f functions
defined in the X/Open CAE Specification, Issue 4.2 and the System V Interface X
Definition, Third Edition and in the POSIX P1003.1 Portable Operating System X
Specification (see the Conformance Rule in chapter 1) . These interfaces are
the correct method for application programs to retrieve numerical values
related to the configuration of their host system. Guaranteed minimum
values for these parameters are specified in the ‘‘Data Definition’’ section in
Chapter 6 of the ABI. Other system parameters are accessible through the
g e t r l i m i t function.

Application Environment 9-1

Per-process environment information

When an application program first begins execution an environment is
made available to it. The X/Open CAE Specification, Issue 4.2 and the System X
V Interface Definition, Third Edition (see the Conformance Rule in Chapter 1)
pages for e n v v a r, e x e c, and s y s t e m contain detailed descriptions of this
information.

The X/Open CAE Specification, Issue 4.2 and the System V Interface Definition, Third X
Edition (see the Conformance Rule in Chapter 1) are the definitive reference for
information about the execution environment of System V processes; all of this
information applies to ABI-conforming systems. The specific references given
above will lead an interested reader to all appropriate information, but are not
exhaustive in themselves.

9-2 EXECUTION ENVIRONMENT

File System Structure and Contents

The file system on an ABI-conforming system is a tree-like structure. All ABI-
conforming systems have a ‘‘root’’ (or /) directory that contains a / u s r directory,
a / v a r directory, a / e t c directory, and a / o p t directory.

The following are primary characteristics of the file system tree:

/ This directory contains machine-specific files and executable files
required to boot the system, to check, and to repair file systems.
It also contains other directories. No application may install files
in the / directory.

/ e t c This directory subtree contains machine-specific configuration
files and some executable files, including one command used
during application package installation. Application programs
should never execute applications in this directory subtree, and
should never access directly any data files in this subtree, except
for the files they install themselves in the / e t c / o p t directory.

/ o p t This subtree contains add-on software application packages. E

/ t m p E This directory contains temporary files created by system utili- E
ties.

/ u s r This subtree contains only sharable files and executable files pro-
vided by the system.

/ v a r This subtree contains files that change.

Applications should install or create files only in designated places within the tree,
as noted below.

This section describes those aspects of the root, user and var file systems that
application programs can rely on being present.

Root subtree

The / directory contains executable programs and other files necessary to boot the
system, check and repair file systems, and files describing the identity of a particu-
lar machine. The following components must be present in the root file system:

File System Structure and Contents 9-3

/ The root directory of the file system.

/ d e v The top directory of the devices subtree containing block and
character device files. All terminal and terminal-related
device files must be in the / d e v directory or in subdirectories 
of / d e v. The following files are required to be present in the E
/ d e v directory.

Figure 9-1: Required Devices in an ABI Run-time Environment
_ ___________________________________
/ d e v / t t y / d e v / n u l l / d e v / l p X E_ ___________________________________  

Where X may be any integer value. Note that further devices E
specifically required for networking support are defined in E
Chapter 12. The following sub-directories of / d e v are
required to be present.

/ d e v / r m t

/ d e v / m t

The names of other files present in / d e v and naming conven-
tions for sub-directories of / d e v are processor-specific.

/ e t c The top directory of the /etc subtree.

/ o p t The top directory of the /opt subtree.

/ u s r The top directory of the /usr subtree.

/ v a r The top directory of the /var subtree.

The / d e v, / u s r, and / t m p directories are for the use of the system. Applications
should never create files in any of these directories, though they contain subdirec-
tories that may be used by applications, as described below.

The /etc subtree

The directory / e t c of the / file system is the point of access to the / e t c subtree.
This directory contains machine-specific configuration files.

The following describes the structure of the / e t c subtree:

9-4 EXECUTION ENVIRONMENT

/ e t c The top directory of the / e t c subtree. E

/ e t c / o p t /pkg E This directory contains machine-specific configuration files E
provided by application packages.

The /opt subtree

The directory / o p t of the / file system is the point of access to the / o p t subtree.
This directory subtree contains files installed by add-on application packages.

The following describes the structure of the / o p t subtree:

/ o p t The top directory of the / o p t subtree. E

/ o p t /pkg/ b i n E Executable files provided by application packages and E
invoked directly by users.

/ o p t /pkg Where pkg is the abbreviated name of an add-on software
package, contains all the static files installed on the system as
part of that package.

The /usr subtree

The directory / u s r of the / file system is the point of access to the / u s r subtree.

The following describes the structure of the / u s r subtree:

/ u s r The top directory in the /usr subtree.

/ u s r / b i n Utility programs and commands for the use of all applications
and users.

/ u s r / s h a r e The architecture-independent sharable files.

/ u s r / s h a r e / l i b Architecture-independent databases. G

/ u s r / X G The directory where X11 Window System files reside. G

/ u s r / X / l i b G The directory where X11 Window System libraries reside. G

/ u s r / X / l i b / l o c a l e G
The directory where X11 Window System localization pack- G
ages are installed. G

File System Structure and Contents 9-5

/ u s r / X / l i b / a p p - d e f a u l t s G
The directory where X11 Window System default application G
resource files are installed.

Application programs may execute commands in the / u s r / b i n directory.

The /var subtree

The directory / v a r of the / file system is the point of access to the / v a r subtree.
The / v a r subtree contains all files that vary in size or presence during normal sys-
tem operations, including logging, accounting and temporary files created by the
system and applications.

The following components of the / v a r subtree are important for application pro-
grams:

/ v a r / o p t /pkg E The top level directory used by application packages.

/ v a r / t m p Directory for temporary files created by applications.

Applications should always use / v a r / t m p for creation of temporary files. E

9-6 EXECUTION ENVIRONMENT

10 WINDOWING AND TERMINAL
INTERFACES

The System V Window System 10-1
X Window System Overview 10-2
NeWS Overview 10-2

System V Window System Components 10-3
Summary of Requirements 10-4

Table of Contents i

The System V Window System

NOTE

This chapter, ‘‘Windowing and Terminal Interfaces’’ , describes the optional
ABI extension for the System V Window System.

The System V window system is a graphical window system, and is used as an
interface for high-resolution bitmapped display devices. The window system
allows multiple cooperating applications to appear on a display screen simultane-
ously. A server process arbitrates a shared display, a keyboard, and a pointing
device, and performs I/O on behalf of one or more client applications. Client
applications may execute in the local processor’s memory space, or may run on a
remote processor and communicate with the server through a network connec-
tion.

The System V window system supports concurrent, overlapping windows, and
windows can be created within other windows. The system supports text, two-
dimensional graphics, and imaging.

The System V window system is completely network-transparent, in that a client
program can be running on any machine in a network and the client and server
programs need not be executing on machines sharing a common architecture. E
When the client and server reside on different machines, messages are transmitted E
over the network. When the client and server reside on the same machine, mes-
sages are transmitted using a local inter-process communication (IPC) mechanism.

Applications for the System V window system may be written to either the X11
Window System interface, the X11 Toolkit Intrinsics, or the NeWS interface. E

NOTE

This functionality, the NeWS Window System, has been DEPRECATED. X

The conceptual models of the two facilities are very different, with the X window
server acting more as a passive communications gateway and deferring
application-related interaction to the applications themselves, while the NeWS
server is capable of maintaining more of the user interface locally. Applications
written to either interface may be used on the same screen simultaneously.

The System V Window System 10-1

The X11 interface contains mandatory parts of the System V Window System; all
implementations that include a window system extension must support
the X11 interface, and the X Toolkit Intrinsics interface. G

NOTE

The Motif Graphical User Interface Release 1.2 will be supported in an G
upcoming release of the ABI. Motif is a trademark of the Open Software
Foundation Inc.

Note that both the X11 and NeWS interfaces have base and optional components.

X Window System Overview

A client application communicates with the X capabilities of the System V window
system server using the X11 protocol. The X11 protocol specifies exchange format,
rules for data exchange, and message semantics, but is policy-free and does not
impose any specific appearance on the interface. The look and feel of a particular
interface is defined by the window manager and different toolkits that define a
higher-level program interface to the X capabilities.

The X Version 11 protocol defines the format, syntax, common types, errors codes,
keyboard keycodes, pointers, predefined atoms, connection setup, requests, con-
nection close, and events. A detailed description of these can be found in the X
Window System Protocol, Version 11 Specification (Massachusetts Institute of Tech-
nology, 1987, 1988).

NeWS Overview

The Network extensible Window System (NeWS) is based on the PostScript
language. NeWS capabilities are realized through the presence of an extended
PostScript interpreter which resides in the System V window system server.

The NeWS server program interprets the language sent to it by NeWS client pro-
grams and paints images on the display screen, thus making PostScript an exten-
sion language for the window system. The server program also collects input
from the keyboard and pointing device and returns it to the client programs.

The PostScript language is defined in PostScript Language Reference Manual ,
(Adobe Systems, Inc., Addison-Wesley, 1985). The PostScript operator extensions
are defined in the NeWS Manual , (Sun Microsystems, Inc., 1987).

10-2 WINDOWING AND TERMINAL INTERFACES

System V Window System Components

The System V Window System includes the following components. Some com-
ponents of the window system are b a s e components of the ABI and must be
present, and others are optional components. Because of this mixture, each
component’s status has been explicitly marked in the list below, together with the
component’s description.

libX

NOTE

The l i b X library is a base ABI component and must be
present on an ABI-conforming system which has a win-
dow system extension.

The X library, l i b X, generates the X11 protocol and buffers
traffic between each client application and the server. A full
specification of the libX library and its contents can be found
in Xlib - C Language Interface, X Window System, X Version 11, G
Release 5, (Massachusetts Institute of Technology, 1991). The
ABI will track upward-compatible future releases of the X
library.

X Toolkit Intrinsics
The X Toolkit Intrinsics is a base component of the ABI. The X G
Toolkit Intrinsics library l i b X t provides a framework for
building X-based toolkits. A full specification of the X Toolkit
Intrinsics can be found in X Toolkit Intrinsics - C Language X G
Interface, X Window System, X Version 11, Release 5, (Mas-
sachusetts Institute of Technology, 1991). 

NeWS Library

NOTE

The N e W S library is an optional ABI component and
must be present on an ABI-conforming system which
supports the NeWS environment in its window system.

A NeWS client application interface is based upon an
extended version of PostScript. The NeWS client interface is
defined in the NeWS Manual (Sun Microsystems, Inc., 1987).

The following programs are not required to be present on an ABI-conforming sys-
tem. However, the protocols that these programs use to communicate are con-
sidered part of the ABI and must be present in an environment which supports
window systems. Hence all ABI-conforming systems which offer these services
must provide them as follows.

System V Window System Components 10-3

server The server controls the user’s display. As such, a server is usually
available for each type of display that can be connected to a system. It
manages device dependencies, enabling client applications to be
device-independent, although some client applications may need to be
aware of the resolution, aspect ratio, or depth of the display device
being used. Servers include protocol interpretation facilities for X,
PostScript, and PostScript-based NeWS extensions. All ABI-conforming
window servers which support X must support the entire X protocol
referenced above. (The server side of X protocol communicates with
l i b X). All ABI-conforming window servers which support NeWS must
support the entire NeWS protocol referenced above. (The server side of
NeWS protocol communicates with the NeWS Library).

window manager
The window manager program allows a user to manipulate (for exam-
ple, move and resize) windows. All client applications that use the win-
dowing system use the facilities of the window manager. Well-behaved E
clients must follow the ICCCM. All ABI-conforming window managers
which support X must support the entire X window manager protocol.
All ABI-conforming window managers which support NeWS must sup-
port the entire NeWS window manager protocol. All ABI-conforming
window managers for use on a system with merged X11/NeWS servers
must know how to handle both protocols in their entirety at the same
time, for the same display.

Summary of Requirements

The ‘‘Windowing and Terminal Interfaces’’ section of the System V ABI has a lay-
ered set of requirements for conforming systems. Those requirements are sum-
marized here.

The presence of a windowing system is optional on an ABI-conforming sys-
tem.

If a windowing system is present on a conforming system, l i b X and l i b X t G
must be provided.

If a windowing system is present on a conforming system, the NeWS Library
may be supported in addition to support for the X 11 Window System. *

10-4 WINDOWING AND TERMINAL INTERFACES

11 DEVELOPMENT ENVIRONMENTS
FOR AN ABI SYSTEM

Development Environments 11-1
Commands 11-1
Software Packaging Tools 11-3
Static Archives 11-4

Table of Contents i

Development Environments

NOTE

THE FACILITIES AND INTERFACES DESCRIBED IN THIS SECTION ARE
OPTIONAL COMPONENTS OF THE System V Application Binary Interface.

NOTE

This chapter is new, but will not be marked with diff-marks.

Any system may be used to provide a development environment for ABI con-
forming applications. This chapter describes the commands, options, libraries,
and path mechanisms necessary to produce an ABI conforming application. This
development environment need not be hosted on an ABI conforming implementa-
tion.

Commands

The following commands, defined in the X/Open CAE Specification, Issue 4.2 and X
the SD_CMD section of the System V Interface Definition, Third Edition (see the Con- X
formance Rule of Chapter 1) are a part of an ABI development environment. All
commands defined here are mandatory in ABI Development Environments,
except that the command a s need not be present when ABI conformance code is
generated directly by the compiler.

ABI Development Commands_ __________________________
a s# c c# l d
m 4 l e x y a c c
c 8 9† X

Command is DEPRECATED X

†As defined in the Commands and Utilities volume of the X/Open CAE Specification, Issue X
4.2 .

Each command shall accept the following required options and provide the func-
tionality and options required for each option listed, in the X/Open CAE X
Specification, Issue 4.2 and the System V Interface Definition, Third Edition (see the X
Conformance Rule in chapter 1).

Development Environments 11-1

a s

SVID Third Edition Options to AS_ ______________________________
o m

The a s command if present shall produce output compliant to chapters 4 and 5 of
this document, and chapters 4 and 5 of the appropriate Processor-specific Supple-
ment.

c c

SVID Third Edition Options to CC_ ______________________________
B c d D
G I K L
o O U Y

The c c command shall generate output compliant to Chapter 4 and 5 of this docu-
ment and Chapter 4 and 5 of the appropriate Processor-specific Supplement.

l d

SVID Third Edition Options to l d_ _____________________________
a B d e
G h l o
r s u L
Y z

The command l d shall generate output compliant to Chapters 4 and 5 of this
document and Chapters 4 and 5 of the appropriate Processor-specific Supplement.

m 4

SVID Third Edition Options to m 4_ _____________________________
s D U

l e x

SVID Third Edition Options to l e x_ ______________________________
c t v n

11-2 DEVELOPMENT ENVIRONMENTS FOR AN ABI SYSTEM

y a c c

SVID Third Edition Options to y a c c________________________________
v d l t

As there may be multiple development environments hosted on a system, dif-
ferent values for PATH may be required to access each development environment,
but all required commands shall be accessible by at least one value of PATH. The
processor supplement for each architecture shall state how the value of PATH is to
be used to find the location of a development environment for that architecture
when it is not the native development environment. If the system is itself ABI con-
forming and hosts a development environment for its run-time system, the
development environment for the run-time system shall be accessible using the
system default value for PATH.

To enable the System V Application Binary Interface, Edition 3.1 environment and X
functionality, applications must use the cc compiler driver. This driver will have X
an implementation-specific sequence of -D directives, include files or libraries to X
enable access to System V Application Binary Interface, Edition 3.1 features. As a X
result the executable created will have the _ _xpg4 flag set to a value appropriate X
to the base API the application wishes to conform to.

NOTE

All .o’s should be compiled such that they either don’t assume any specific X
shell (or other syntactic feature), or they presume the same shell (or other X
syntactic feature) across all .o’s. Information is contained in linked execut-
ables, not in individual .o’s.

Software Packaging Tools

A development environment for ABI applications shall include each of the follow-
ing commands as defined in the A S _ C M D section of SVID Third Edition.

p k g p r o t o p k g t r a n s p k g m k

The p k g t r a n s command shall generate output compliant with Chapter 2 of this
document.

Development Environments 11-3

Static Archives

Frequently applications must rely on groups of object files not required to be
present on an ABI conforming implementation. These may be provided in static
archives provided with the development environment. If each member of the
archive is itself ABI conforming, then an ABI conforming application may stati-
cally link members from this archive and still be ABI conforming. If extensions to
an archive are not ABI conforming, then an ABI conforming application may not
include that extension in an executable.

All development environments for ABI applications shall contain ABI conforming
versions of each of the following libraries.

l i b m

The relevant processor supplement for each architecture shall define the path to
the directory that contains these libraries. The following are entry-points that
must be defined for each respective library as defined in SVID Third Edition.

Figure 11-1: Required l i b m Functions

a c o s a t a n h e r f c h y p o t l o g 1 0
a c o s h c b r t e x p j 0 p o w
a s i n c e i l f a b s j 1 r e m a i n d e r
a s i n h c o s f l o o r j n s i n
a t a n c o s h f m o d# l g a m m a s i n h
a t a n 2 e r f g a m m a# l o g s q r t

Function is DEPRECATED X

11-4 DEVELOPMENT ENVIRONMENTS FOR AN ABI SYSTEM

12 NETWORKING

Networking 12-1

Required STREAMS Devices and Modules 12-2

Required Interprocess Communication
Support 12-3
Pseudo Terminal Support 12-3
STREAM Based Pipe Support 12-3

Required Transport Layer Support 12-4

Required Transport Loopback Support 12-7

Optional Internet Transport Support 12-8
Address Format 12-8
Programming Interfaces 12-8

t_accept 12-8
t_bind 12-8
t_connect 12-8
t_getinfo 12-9
t_listen 12-9
t_open 12-9
t_optmgmt 12-10

Table of Contents i

t_rcv 12-12
t_rcvconnect 12-12
t_rcvudata 12-12
t_rcvuderr 12-12
t_snd 12-12
t_snddis 12-13
t_sndrel 12-13
t_sndudata 12-13

Data Structures 12-13

ii Table of Contents

Networking

NOTE

This chapter is new to the System V Application Binary Interface, Third Edition.

ABI-conforming systems may support some level of networking, ranging from
peer-to-peer to loopback networks. This section describes the network transport
level services needed to support the Internet and ISO transport protocols. In addi-
tion, it defines required support for basic process to process communication over a
network.

Networking 12-1

Required STREAMS Devices and Modules

The following device drivers must exist on an ABI-conforming system. Their
required functionality shall be that specified in the System V Interface Definition,
Third Edition and the DDN Protocol Handbook, DARPA Internet Protocols .

Figure 12-1: Required STREAMS Devices
_ ___
/ d e v / t i c l t s / d e v / t i c o t s / d e v / t i c o t s o r d transport loopback support
/ d e v / t c p / d e v / u d p internet support
/ d e v / p t m x / d e v / p t s /digits pseudo terminal support_ ___ 










Where digits are decimal numbers.

The following required STREAMS modules shall be present on conforming sys-
tems and their functionality shall be that defined in section BA_DEV of the System
V Interface Definition, Third Edition .

Figure 12-2: Required STREAMS Modules
_ ___
l d t e r m p t e m p c k t pseudo terminal support
t i r d w r t i m o d transport level support
c o n n l d p i p e m o d IPC support_ ___ 










Binary interface support for these modules and drivers are defined in the follow-
ing sections.

12-2 NETWORKING

Required Interprocess Communication Support

Pseudo Terminal Support

There shall be an appropriate entry in the / d e v / p t s directory for each slave-side
pseudo-terminal available on the implementation. Conforming systems shall pro-
vide a minimum of 16 pseudo-terminals. The default initial state of a pseudo-
terminal, as reported by t c g e t a t t r, shall be the same as the default initial state of
a terminal as specified in t e r m i o(BA_DEV).

NOTE

The default baud rate as specified by t e r m i o(BA_DEV) is 300 baud. As this
may be inappropriate for pseudo terminals, there are exceptions.

STREAM Based Pipe Support

Functionality for interprocess communication by way of STREAMS-based pipes
shall be supported by ABI-conforming systems. STREAMS modules c o n n l d and
p i p e m o d must be present in support of this.

Required Interprocess Communication Support 12-3

Required Transport Layer Support

A transport layer application may access transport services through the ISO or
Internet frameworks. This document supports transport access via the XTI inter-
face as it makes use of the timod module. The required functionality for these
modules is defined in the BA_DEV section of the System V Interface Definition, X
Third Edition . The definition of XTI is described in the Networking Services X
volume of the X/Open CAE Specification, Issue 4 .

In order to improve standards conformance and take advantage of the latest tech-
nology in XTI interfaces, the TLI interfaces have been DEPRECATED. Applica-
tions which make use of TLI should migrate to XTI as a replacement. TLI is a sub-
set of XTI except where noted.

To achieve binary interoperability, an ABI-conforming system must consistently
define variables and data structures. The next few displays contain mnemonics
required on ABI-conforming systems. Their associated values are specified in the
processor specific ABI.

Figure 12-3: TLI-XTI Error Codes
_ ___
T A C C E S T B A D Q L E N * T N O D A T A T P R O T O *
T A D D R B U S Y * T B A D S E Q T N O D I S T P R O V M I S M A T C H *
T B A D A D D R T B U F O V F L W T N O R E L T Q F U L L *
T B A D D A T A T F L O W T N O S T R U C T Y P E * T R E S A D D R *
T B A D F T I N D O U T * T N O T S U P P O R T T R E S Q L E N *
T B A D F L A G T L O O K T N O U D E R R T S T A T E C H N G
T B A D N A M E * T N O A D D R T O U T S T A T E T S Y S E R R
T B A D O P T_ ___ 






















*Function is new to System V ABI Edition 3.1. X

Figure 12-4: t _ l o o k Events
_ __
T _ L I S T E N T _ E X D A T A T _ U D E R R T _ C O N N E C T
T _ D I S C O N N E C T T _ O R D R E L T _ D A T A T _ E R R O R
T _ E V E N T S
T _ G O D A T A T _ G O E X D A T A M_ __ 












12-4 NETWORKING

Figure 12-5: XTI Flag Definitions
_ ___
T _ M O R E T _ N E G O T I A T E T _ D E F A U L T T _ E X P E D I T E D
T _ C H E C K T _ S U C C E S S T _ F A I L U R E
T _ C U R R E N T T _ N O T S U P P O R T T _ P A R T S U C C E S S T _ R E A D O N L Y X_ ___ 










Figure 12-6: XTI Service Types
_ ___________________________________
T _ C O T S T _ C O T S _ O R D T _ C L T S_ ___________________________________ 





The following are required structure types and bit fields used when dynamically
allocating XTI structures via the function t _ a l l o c call: X

Figure 12-7: Flags to be used with t _ a l l o c
_ ____________________________________
T _ B I N D T _ O P T M G M T T _ C A L L
T _ D I S T _ U N I T D A T A T _ U D E R R O R
T _ I N F O T _ A D D R T _ O P T
T _ U D A T A T _ A L L_ ____________________________________ 












Figure 12-8: XTI Application States
_ __
T _ U N I N I T T _ U N B N D T _ I D L E T _ O U T C O N
T _ I N C O N T _ D A T A X F E R T _ O U T R E L T _ I N R E L
T _ F A K E T _ N O S T A T E S_ __ 










Required Transport Layer Support 12-5

Figure 12-9: XTI values for t_info flags member

T _ S E N D Z E R O_____________ 





12-6 NETWORKING

Required Transport Loopback Support

An ABI-conforming system shall support a transport level loopback facility. The
device driver support is as defined by t i c l t s (B A _ D E V) , t i c o t s (B A _ D E V) and
t i c o t s o r d (B A _ D E V) of the System V Application Binary Interface, Third Edition . X

Required Transport Loopback Support 12-7

Optional Internet Transport Support

A t c p implementation conforming to RFC 793 (as revised by by RFC 1122) shall
support a device driver implementing the T _ C O T S _ O R D service type. A u d p imple-
mentation conforming to RFC 768 shall support a device driver implementing the
T _ C L T S service type. These services shall be available to the TLI / XTI functions
and the provided functionality shall be consistent with TCP (RFC 793) and UDP
(RFC 768).

Address Format

The XTI n e t b u f structure is used to pass TCP/IP addresses. The a d d r . b u f com-
ponent should point to a s t r u c t s o c k a d d r _ i n. When used by XTI requests, the
s i n _ z e r o field of this structure shall be zero and the s i n _ f a m i l y field shall con-
tain A F _ I N E T.

Programming Interfaces

A conforming TCP/IP implementation shall implement the following transport
provider-specific functionality in addition to that required by RFC 793 and 791 (as
revised by RFC 1122 and RFC 1349).

t_accept

Under TLI no options shall be supported. The returned u d a t a length shall be X
zero.

t_bind

The I N A D D R _ A N Y address may be used. If I N A D D R _ A N Y is supplied as the address,
then the loopback or a local address will be used.

t_connect

No data shall be sent with the connection. The s i n _ a d d r field of the s t r u c t
s o c k a d d r _ i n pointed to by s n d c a l l - > a d d r . b u f may contain a valid TCP/IP
address. If r c v c a l l is not NULL, then the buffer identified by r c v c a l l -
> a d d r . b u f shall be filled in with a s o c k a d d r _ i n structure.

12-8 NETWORKING

t_getinfo

The following default values shall be returned from the devices associated with
the TCP/IP transport provider.

Values Returned by / d e v / t c p
_ ______________________________
a d d r varies X
o p t i o n s varies X
t s d u 0 (byte stream)
e t s d u –1
c o n n e c t –2 (not supported)
d i s c o n –2 (not supported)
s e r v t y p e T _ C O T S _ O R D
f l a g s T _ S E N D Z E R O_ ______________________________ 

































Values Returned by / d e v / u d p
_ ______________________________
a d d r varies X
o p t i o n s varies X
t s d u varies X
e t s d u –2 (not supported)
c o n n e c t –2 (not supported)
d i s c o n –2 (not supported)
s e r v t y p e T _ C L T S
f l a g s T _ S E N D Z E R O_ ______________________________ 

































t_listen

The result u d a t a variable shall have zero length. Under TLI the result o p t vari- X
able shall have zero length. The buffer identified by c a l l - > a d d r . b u f shall
receive a s t r u c t s o c k a d d r _ i n that identifies the host originating the connection.

t_open

The returned transport characteristics shall be the same as those returned by
t _ g e t i n f o.

Optional Internet Transport Support 12-9

t_optmgmt

TLI

Under TLI the following options may be accessible through t _ o p t m g m t: X

Figure 12-10: TCP Options
_ _________________
T C P _ N O D E L A Y_ _________________ 





Figure 12-11: IP Options
_ __
I P O P T _ E O L End of options list
I P O P T _ N O P No operation
I P O P T _ L S R R Loose source and record route
I P O P T _ S S R R Strict source and record route_ __ 












Options are specified in an options buffer with the o p t h d r data structure format.
An options buffer contains one or more options, with each followed by 0 or more
values. The len field of o p t h d r specifies the length of the option value in bytes.
This length must be a multiple of sizeof(long)

Options may be manipulated at the TCP level and the IP level via the TLI
t _ o p t m g m t call. To manipulate options at the TCP level, I P P R O T O _ T C P is specified
to t _ o p t m g m t. For the IP level, I P P R O T O _ I P should be specified for t _ o p t m g m t.
The header <n e t i n e t / t c p . h> contains the definitions for TCP level options,
while the IP level options are defined in <n e t i n e t / i p .h>.

All TCP level options are 4 bytes long. A b o o l e a n option is either set or reset.
Any non-zero value will assert (set) the option while only zero will clear the
option.

The IP options consist of a string of I P O P T _* values. These options will be set in
every outgoing datagram. Options whose function is not explicitly specified
above are copied directly into the output. See IP and RFC 1122 for details.

TCP Level Options If the T C P _ N O D E L A Y option is set, a conforming system shall not
delay sending data in order to coalesce small packets. When the option is reset, a
system may defer sending data in an effort to coalesce small packets to conserve
network bandwidth.

12-10 NETWORKING

IP Level Options

I P O P T _ L S R R The I P O P T _ L S R R option enables the loose source and record route
option as specified in RFC 1122.

I P O P T _ S S R R The I P O P T _ S S R R option enables the strict source and record route
option as specified in RFC 1122.

I P O P T _ N O P The I P O P T _ N O P does nothing. Since the length of the IP options
must be a multiple of 4, this option is useful as a pad.

I P O P T _ E O L This option identifies the end of an IP option sequence.

XTI

The following information is relevant under XTI. The following options may be X
accessible through t _ o p t m g m t: X

Figure 12-12: TCP Options
_ _______________________________________
T C P L e v e l INET_TCP X
T C P L e v e l O p t i o n s TCP_NODELAY X

TCP_MAXSEG X
TCP_KEEPALIVE X_ _______________________________________ 












Figure 12-13: UDP Options X
_ __
U D P L e v e l INET_UDP X
U D P L e v e l O p t i o n s UDP_CHECKSUM X_ __ 








Optional Internet Transport Support 12-11

Figure 12-14: IP Options X
_ _______________________________________
I P L e v e l INET_IP X
U D P L e v e l O p t i o n s IP_OPTIONS X

IP_TTL X
IP_TOS X
IP_REUSEADDR X
IP_DONTROUTE X
IP_BROADCAST X_ _______________________________________ 




















t_rcv

TCP/IP urgent data shall be returned as expedited data with the semantics
described in the function t _ r c v for expedited data.

t_rcvconnect

The result u d a t a variable shall have zero length. Under TLI, the result o p t vari- X
able shall have zero length.

t_rcvudata

If o p t is non NULL and there were IP or UDP options sent with the datagram, the X
IP or UDP options should be returned in o p t. Under TLI if o p t is NULL and IP X
options were sent, they should be silently discarded. Under TLI, UDP will not X
send options.

t_rcvuderr

Under TLI the returned length of the o p t variable shall be zero. X

t_snd

If T _ E X P E D I T E D is set in the flags argument, TCP will send the data as urgent data.
The TCP urgent data pointer will point to the first byte of data in the next data
sent by t _ s n d.

12-12 NETWORKING

t_snddis

Data shall not be sent with the disconnect request.

t_sndrel

The T _ C O T S _ O R D service of the transport provider (TCP) shall support this func-
tion.

t_sndudata

Under TLI, for / d e v / u d p, the o p t field may contain I P P R O T O _ I P options. The X
UDP protocol shall support sending zero length data.

Data Structures

To support interoperability between networked machines, an ABI-conforming
system supporting the Internet family protocols must support the following data
structures.

There must exist a s o c k a d d r _ i n data structure containing at least the following
elements. Under TLI there must exist a o p t h d r data structure containing at least X
the following elements.

Figure 12-15: Data Structures

s t r u c t s o c k a d d r _ i n {
s h o r t s i n _ f a m i l y ;
u _ s h o r t s i n _ p o r t ;
s t r u c t i n _ a d d r s i n _ a d d r ;
c h a r s i n _ z e r o [8] ;

} ;

s t r u c t o p t h d r {
l o n g l e v e l ;
l o n g n a m e ;
l o n g l e n ;

} ;

Optional Internet Transport Support 12-13

IN Index

Index IN-1

Table of Contents i

Index

2’s complement 4: 8

A
a 6 4 l 6: 12

ABI
generic 1: 1, 4, 8

processor specific 1: 1, 4, 8

ABI conformance 1: 5, 8, 3: 2, 4: 15,

5: 4, 6, 10, 15, 18, 6: 2, 4, 7, 9, 7: 1, 22,

8: 1, 10: 4, 11: 1, 4

ABI Conformance 12: 4

a b o r t 6: 10

a b s 6: 10

absolute symbols 4: 11

a c c e p t 6: 18

a c c e p t e d _ r e p l y 7: 29

a c c e p t _ s t a t 7: 27

a c c e s s 6: 5

access control mechanisms 7: 24

accounting files 9: 6

a c c t 6: 5

a d d c h 6: 22

a d d c h n s t r 6: 22

a d d c h s t r 6: 22

a d d n s t r 6: 22

a d d n w s t r 6: 22

a d d s e v e r i t y 6: 11

a d d s t r 6: 22

a d d _ w c h 6: 22

a d d _ w c h n s t r 6: 22

a d d _ w c h s t r 6: 22

a d d w s t r 6: 22

A D N _ F U L L N A M E 7: 33–34

A D N _ N I C K N A M E 7: 33–34

A F _ I N E T 12: 8

a l a r m 6: 5

alignment, section 4: 13

_ a l t z o n e 6: 7–8

ANSI C 3: 1, 6: 1, 8, 13, 33

application environment 9: 1

a p p l i c a t i o n S h e l l C l a s s R e c 6: 32

a p p l i c a t i o n S h e l l W i d g e t C l a s s
6: 32

archive file 4: 24, 5: 19, 7: 2, 11: 4

archive header 7: 2

string table 7: 2

archive formats, other 7: 6

archive header, see archive file 7: 2

archive symbol table 7: 2, 4–5

archive word encoding 7: 4

ARFMAG 7: 3

a r . h 7: 2

a r . h d r 7: 2

a s 11: 1

ASCII 2: 5, 3: 2, 7: 2

a s c t i m e 6: 10

assembler 4: 1, 11: 1

symbol names 4: 22

_ _ a s s e r t 6: 12

a t e x i t 5: 22–23, 6: 6

a t o f 6: 10

a t o i 6: 10

a t o l 6: 10

a t t r _ g e t 6: 22

a t t r _ o f f 6: 22

a t t r o f f 6: 22

a t t r _ o n 6: 22

a t t r o n 6: 22

a t t r _ s e t 6: 22

a t t r s e t 6: 22

A U T H _ B A D C R E D 7: 27

A U T H _ B A D V E R F 7: 27

a u t h d e s _ c r e d 7: 34

Index IN-1

a u t h d e s _ f u l l n a m e 7: 34

a u t h d e s _ g e t u c r e d 6: 17

a u t h d e s _ n a m e k i n d 7: 33

a u t h d e s _ s e c c r e a t e 6: 17

a u t h d e s _ v e r f 7: 35

a u t h d e s _ v e r f _ s v r 7: 35

authentication protocol 7: 24–25

A U T H _ E R R O R 7: 27, 30

a u t h _ f l a v o r 7: 25

a u t h n o n e _ c r e a t e 6: 17

A U T H _ N U L L 7: 30–31

A U T H _ R E J E C T E D C R E D 7: 27

A U T H _ R E J E C T E D V E R F 7: 27

a u t h _ s t a t 7: 27

A U T H _ S Y S 7: 30

a u t h s y s _ c r e a t e 6: 17

a u t h s y s _ c r e a t e _ d e f a u l t 6: 17

a u t h _ s y s p a r m s 7: 31

A U T H _ T O O W E A K 7: 27

B
B A S E 7: 35

base address 5: 15

definition 5: 5

B A S E D I R 2: 9

b a s e n a m e 6: 12

basic system service 6: 4

b a u d r a t e 6: 22

b c m p 6: 12

b c o p y 6: 12

b e e p 6: 22

b i n d 6: 18

b i t _ a t t r i b u t e s 6: 22

bit-field 3: 1

b k g d 6: 22

b k g d s e t 6: 22

b k g r n d 6: 22

b k g r n d s e t 6: 22

b o o l c o d e s 6: 22

b o o l f n a m e s 6: 22

b o o l n a m e s 6: 22

b o r d e r 6: 22

b o r d e r _ s e t 6: 22

b o x 6: 22

b o x _ s e t 6: 22

b r k 6: 12

broadcast packet 7: 26

broadcast RPC 7: 37

b s d _ s i g n a l 6: 12

b s e a r c h 6: 10

byte order 4: 8

b z e r o 6: 12

C
C language

ABI reference language 3: 1

ANSI 1: 2, 3: 1, 6: 8

assembly names 4: 22

calling sequence 3: 4

library (see library)
C library 6: 10

C A L L 7: 27–28

c a l l _ b o d y 7: 28

calling sequence 3: 1, 4

signals 1: 5

system traps 1: 5

c a l l o c 6: 6

c a n _ c h a n g e _ c o l o r 6: 22

c a t c l o s e 6: 5

c a t g e t s 6: 5

c a t o p e n 6: 5

c b r e a k 6: 22

c c 11: 1

c f g e t i s p e e d 6: 11

c f g e t o s p e e d 6: 11

c f s e t i s p e e d 6: 11

c f s e t o s p e e d 6: 11

character sets 3: 2, 7: 2

c h d i r 6: 5

c h g a t 6: 22

IN-2 Index

c h m o d 6: 5

c h o w n 6: 5

c h r o o t 6: 5

_ c l e a n u p 6: 12

c l e a r 6: 22

c l e a r e r r 6: 10

c l e a r o k 6: 22

c l n t _ c r e a t e 6: 17

c l n t _ d g _ c r e a t e 6: 17

c l n t _ p c r e a t e e r r o r 6: 17

c l n t _ p e r r n o 6: 17

c l n t _ p e r r o r 6: 17

c l n t _ r a w _ c r e a t e 6: 17

c l n t _ s p c r e a t e e r r o r 6: 17

c l n t _ s p e r r n o 6: 17

c l n t _ s p e r r o r 6: 17

c l n t _ t l i _ c r e a t e 6: 17

c l n t _ t p _ c r e a t e 6: 17

c l n t _ v c _ c r e a t e 6: 17

c l o c k 6: 10

c l o s e 6: 5, 18

c l o s e d i r 6: 5

c l o s e l o g 6: 12

c l r t o b o t 6: 22

c l r t o e o l 6: 22

code generation 3: 6

code sequences 3: 6

c o l o r _ c o n t e n t 6: 22

c o l o r C o n v e r t A r g s 6: 32

common symbols 4: 11

c o m p o s i t e C l a s s R e c 6: 32

c o m p o s i t e W i d g e t C l a s s 6: 32

c o m p v e r 2: 3, 11

c o n f s t r 6: 12

c o n n e c t 6: 18

connld 12: 2

c o n s t r a i n t C l a s s R e c 6: 32

c o n s t r a i n t W i d g e t C l a s s 6: 32

conversation key 7: 32

c o p y r i g h t 2: 3, 10

c o p y w i n 6: 22

core file 4: 5

c o r e W i d g e t C l a s s 6: 32

c p i o 2: 1, 4–6, 7: 6

c r e a t 6: 5

c t e r m i d 6: 11

c t i m e 6: 10

_ _ c t y p e 6: 7

c u r _ b o o l s 6: 22

c u r _ n u m s 6: 22

c u r s c r 6: 22

c u r s _ e r r n o 6: 22

c u r s _ p a r m _ e r r 6: 22

c u r s _ s e t 6: 22

c u r _ s t r s 6: 22

c u r _ t e r m 6: 22

c u s e r i d 6: 11

D
DARPA 12: 2

data object sizes 6: 34

data representation 4: 3, 8

d a t e 9: 1

date and time 9: 1

_ d a y l i g h t 6: 7

d a y l i g h t 6: 7

d b m _ c l e a r e r r 6: 12

d b m _ c l o s e 6: 12

d b m _ d e l e t e 6: 12

d b m _ e r r o r 6: 12

d b m _ f e t c h 6: 12

d b m _ f i r s t k e y 6: 12

d b m _ n e x t k e y 6: 12

d b m _ o p e n 6: 12

d b m _ s t o r e 6: 12

d d 2: 1

DDN Protocol Handbook, DARPA
Internet Protocols 12: 2

d e f _ p r o g _ m o d e 6: 22

d e f _ s h e l l _ m o d e 6: 22

d e l a y _ o u t p u t 6: 22

d e l c h 6: 22

Index IN-3

e n v v a r 8: 1, 9: 2

e r a s e 6: 22

e r a s e c h a r 6: 22

e r a s e w c h a r 6: 22

e r r n o 6: 7, 9, 16

/ e t c 9: 3–4

/ e t c s u b t r e e 9: 4

/ e t c / m n t t a b 7: 1

/ e t c / o p t 2: 15, 9: 3

/ e t c / o p t /pkg 9: 5

/ e t c / p a s s w d 7: 1

e x e c 4: 1, 5: 12–14, 20, 6: 8, 9: 2

e x e c l 6: 5

e x e c l e 6: 5

e x e c l p 6: 5

executable file 4: 1

e x e c v 6: 5

e x e c v e 6: 5

e x e c v p 6: 5

e x i t 5: 23, 6: 6, 9

External Data Representation 7: 10

F
f a t t a c h 6: 5

f c h d i r 6: 5

f c h m o d 6: 5

f c h o w n 6: 5

f c l o s e 6: 10

f c n t l 6: 5, 18

f c v t 6: 12

f d e t a c h 6: 5

f d o p e n 6: 11

f e o f 6: 10

f e r r o r 6: 10

f f l u s h 6: 10

f f s 6: 12

f g e t c 6: 10

f g e t p o s 6: 10, 18

f g e t s 6: 10

f g e t w c 6: 11

f g e t w s 6: 11

_ _ f i l b u f 6: 12

file
archive (see archive file)
object (see object file)

file formats 7: 1

file system structure and contents 9: 3

f i l e n o 6: 11

f i l e p r i v 6: 5

f i l t e r 6: 22

f l a s h 6: 22

_ _ f l s b u f 6: 12–13

f l u s h i n p 6: 22

f m t m s g 6: 11

f n m a t c h 6: 12

f o p e n 6: 10

f o r k 6: 5

formats
archive file 7: 2

object file 4: 1

formats and protocols for networking
7: 10

FORTRAN 4: 11

f p a t h c o n f 6: 5

f p r i n t f 6: 10

f p u t c 6: 10

f p u t s 6: 10

f p u t w c 6: 11

f p u t w s 6: 11

f r e a d 6: 10

f r e e 6: 6

f r e e n e t c o n f i g e n t 6: 17

f r e o p e n 6: 10

f r e x p 6: 10

f s c a n f 6: 10

f s e e k 6: 10

f s e t p o s 6: 10, 18

f s t a t 6: 6

f s t a t v f s 6: 5

f s y n c 6: 5

f t e l l 6: 10, 18

f t i m e 6: 12

Index IN-5

f t o k 6: 5

f t r u n c a t e 6: 12

f t w 6: 12–13

function linkage (see calling
sequence)

f w r i t e 6: 10

G
G A R B A G E _ A R G S 7: 27, 29

g c v t 6: 12

G e o m e t r y C a l l b a c k 6: 28

g e t b e g y x 6: 22

g e t b k g d 6: 22

g e t b k g r n d 6: 22

g e t c 6: 10

g e t c c h a r 6: 22

g e t c h 6: 22

g e t c h a r 6: 10

g e t c o n t e x t 6: 5

g e t c w d 6: 5

g e t d a t e 6: 11

_ g e t d a t e _ e r r 6: 13

g e t d a t e _ e r r 6: 13

g e t d t a b l e s i z e 6: 12

g e t e g i d 6: 5

g e t e n v 6: 10

g e t e u i d 6: 5

g e t g i d 6: 5

g e t g r e n t 6: 12

g e t g r g i d 6: 5

g e t g r n a m 6: 5

g e t g r o u p s 6: 5

g e t h o s t b y a d d r 6: 18

g e t h o s t b y n a m e 6: 18

g e t h o s t e n t 6: 18

g e t h o s t i d 6: 12

g e t h o s t n a m e 6: 18

g e t i t i m e r 6: 12

g e t l o g i n 6: 5

g e t m a x y x 6: 22

g e t m s g 6: 5

g e t n e t b y a d d r 6: 18

g e t n e t b y n a m e 6: 18

g e t n e t c o n f i g 6: 17

g e t n e t c o n f i g e n t 6: 17

g e t n e t e n t 6: 18

g e t n e t n a m e 6: 17

g e t n e t p a t h 6: 17

g e t n s t r 6: 22

g e t n _ w s t r 6: 22

g e t o p t 6: 11

g e t p a g e s i z e 6: 12

g e t p a r y x 6: 22

g e t p a s s 6: 11

g e t p e e r n a m e 6: 18

g e t p g i d 6: 5

g e t p g r p 6: 5

g e t p i d 6: 5

g e t p m s g 6: 5

g e t p p i d 6: 5

g e t p r i o r i t y 6: 12

g e t p r o t o b y n a m e 6: 18

g e t p r o t o b y n u m b e r 6: 18

g e t p r o t o e n t 6: 18

g e t p u b l i c k e y 6: 17

g e t p w e n t 6: 12

g e t p w n a m 6: 5

g e t p w u i d 6: 5

g e t r l i m i t 2: 8, 6: 5, 9: 1

g e t r u s a g e 6: 12

g e t s 6: 10

g e t s e c r e t k e y 6: 17

g e t s e r v b y n a m e 6: 18

g e t s e r v b y p o r t 6: 18

g e t s e r v e n t 6: 18

g e t s i d 6: 5

g e t s o c k n a m e 6: 18

g e t s o c k o p t 6: 18

g e t s t r 6: 22

g e t s u b o p t 6: 11

g e t t i m e o f d a y 6: 12

g e t t x t 6: 5

IN-6 Index

g e t u i d 6: 5

g e t u t x e n t 6: 12

g e t u t x i d 6: 12

g e t u t x l i n e 6: 12

g e t w 6: 11

g e t w c 6: 11

g e t _ w c h 6: 22

g e t w c h a r 6: 11

g e t w d 6: 12

g e t w i n 6: 22

g e t _ w s t r 6: 22

g e t y x 6: 22

g l o b 6: 12

global data symbols 6: 7, 13

global offset table 4: 19, 5: 13, 21

g l o b f r e e 6: 12

g m t i m e 6: 10

g r a n t p t 6: 5

H
h a l f d e l a y 6: 22

h a s _ c o l o r s 6: 22

hash function 5: 21

hash table 4: 16, 19, 5: 13, 17, 21

h a s _ i c 6: 22

h a s _ i l 6: 22

h c r e a t e 6: 11

h d e s t r o y 6: 11

header files 6: 33

h l i n e 6: 22

h l i n e _ s e t 6: 22

h o s t 2 n e t n a m e 6: 17

h s e a r c h 6: 11

h t o n l 6: 18

h t o n s 6: 18

I
i c o n v 6: 12

i c o n v _ c l o s e 6: 12

i c o n v _ o p e n 6: 12

i d c o k 6: 22

i d l o k 6: 22

IEEE POSIX P1003.1 (see POSIX)
i l o g b 6: 12

i m m e d o k 6: 22

implementation of libsys routines 6: 9

I N A D D R _ A N Y 12: 8

i n c h 6: 22

i n c h n s t r 6: 22

i n c h s t r 6: 22

i n d e x 6: 12

i n e t _ a d d r 6: 18

i n e t _ l n a o f 6: 18

i n e t _ m a k e a d d r 6: 18

i n e t _ n e t o f 6: 18

i n e t _ n e t w o r k 6: 18

i n e t _ n t o a 6: 18

i n i t 2: 8

i n i t _ c o l o r 6: 22

i n i t g r o u p s 6: 5

i n i t _ p a i r 6: 22

i n i t s c r 6: 22

i n i t s t a t e 6: 12

i n n s t r 6: 22

i n n w s t r 6: 22

i n s c h 6: 22

i n s d e l l n 6: 22

i n s e r t l n 6: 22

i n s n s t r 6: 22

i n s _ n w s t r 6: 22

i n s q u e 6: 12

i n s s t r 6: 22

i n s t a l l 2: 3, 6

installation and removal scripts
class scripts 2: 12

exit codes 2: 13

p o s t i n s t a l l 2: 12

p o s t r e m o v e 2: 12

p r e i n s t a l l 2: 12

p r e r e m o v e 2: 12

r e q u e s t 2: 11

Index IN-7

installation media
file formats 2: 1

format 2: 1

software structure 2: 1

i n s t a l l f 2: 12, 16

i n s t r 6: 22

i n s _ w c h 6: 22

i n s _ w s t r 6: 22

Internet 12: 2, 4

interpreter, see program interpreter
5: 12

i n t r f l u s h 6: 22

i n _ w c h 6: 22

i n _ w c h n s t r 6: 22

i n _ w c h s t r 6: 22

i n w s t r 6: 22

_ _ i o b 6: 13

i o c t l 6: 5

IP Level Options 12: 11

I P O P T _ E O L 12: 11

I P O P T _ L S R R 12: 11

I P O P T _ N O P 12: 11

I P O P T _ S S R R 12: 11

i s a l n u m 6: 10

i s a l p h a 6: 10

i s a s c i i 6: 11

i s a s t r e a m 6: 5

i s a t t y 6: 11

i s c n t r l 6: 10

i s d i g i t 6: 10

i s e n d w i n 6: 22

i s g r a p h 6: 10

i s _ l i n e t o u c h e d 6: 22

i s l o w e r 6: 10

i s n a n 6: 11

i s n a n d 6: 11

ISO 12: 4

i s p r i n t 6: 10

i s p u n c t 6: 10

i s s p a c e 6: 10

i s u p p e r 6: 10

i s w a l n u m 6: 11

i s w a l p h a 6: 11

i s w c n t r l 6: 11

i s w c t y p e 6: 11

i s w d i g i t 6: 11

i s w g r a p h 6: 11

i s _ w i n t o u c h e d 6: 22

i s w l o w e r 6: 11

i s w p r i n t 6: 11

i s w p u n c t 6: 11

i s w s p a c e 6: 11

i s w u p p e r 6: 11

i s w x d i g i t 6: 11

i s x d i g i t 6: 10

K
k e y _ d e c r y p t s e s s i o n 6: 17

k e y _ e n c r y p t s e s s i o n 6: 17

k e y _ g e n d e s 6: 17

k e y _ n a m e 6: 22

k e y n a m e 6: 22

k e y p a d 6: 22

k e y _ s e t s e c r e t 6: 17

k i l l 6: 5

k i l l c h a r 6: 22

k i l l p g 6: 12

k i l l w c h a r 6: 22

L
l 6 4 a 6: 12

l a b s 6: 10

lazy binding 5: 14

l c h o w n 6: 5

l d 11: 1

L D _ B I N D _ N O W 5: 14

l d e x p 6: 10

l d i v 6: 10

L D _ L I B R A R Y _ P A T H 5: 20

l d(SD_CMD) (see link editor)
ldterm 12: 2

IN-8 Index

l e a v e o k 6: 22

l e x 11: 1

l f i n d 6: 11

l i b c 6: 1–2, 13

see also library 6: 1

l i b c contents 6: 10–11, 13

l i b c u r s e s 6: 1

see also library 6: 1

l i b c u r s e s contents 6: 19, 22

libm 11: 4

l i b n s l 6: 1–2, 15, 7: 10

see also library 6: 1

l i b n s l contents 6: 15–17

library
dynamic (see shared object file)
see also archive file 7: 2

see also l i b c 6: 1

see also l i b c u r s e s 6: 1

see also l i b n s l 6: 1

see also l i b s o c k e t 6: 1

see also l i b s y s 6: 1

see also l i b X 6: 1

shared (see shared object file)
l i b s o c k e t 6: 1

see also library 6: 1

l i b s o c k e t contents 6: 18

l i b s y s 6: 1–2, 4–7, 9–10, 13

see also library 6: 1

l i b s y s contents 6: 5–7

l i b X 6: 1–3, 23, 10: 3–4

see also library 6: 1

l i b X contents 6: 23

l i b X t 6: 1, 29

see also library 6: 1

l i b X t contents 6: 29, 31

l i n k 6: 5

link editor 4: 1, 24–25, 5: 13, 17, 20, 7: 2,

11: 1

see also dynamic linker 5: 13

linkage, function (see calling
sequence)

l i s t e n 6: 18

l o c 1 6: 12

l o c a l e c o n v 6: 6, 8

l o c a l t i m e 6: 10

l o c k f 6: 11

l o c s 6: 12

l o g 1 p 6: 12

l o g b 6: 11

logging files 9: 6

l o n g j m p 6: 10

_ l o n g j m p 6: 12

l o n g n a m e 6: 22

loopback 12: 2

l s e a r c h 6: 11

l s e e k 6: 5, 18

l s t a t 6: 6

M
m 4 11: 1

magic number 4: 5, 7

m a i n 4: 19

m a k e c o n t e x t 6: 5

m a l l o c 6: 6

M A X N E T N A M E L E N 7: 34

m b l e n 6: 10

m b s t o w c s 6: 10

m b t o w c 6: 10

media, format 2: 4

m e m c c p y 6: 11

m e m c h r 6: 10

m e m c m p 6: 10

m e m c n t l 6: 5, 9

m e m c p y 6: 10

m e m m o v e 6: 10

memory management 5: 6

m e m s e t 6: 10

message catalogues 7: 22

m e t a 6: 22

m k d i r 6: 5

m k f i f o 6: 11

m k n o d 6: 5–6

Index IN-9

m k s t e m p 6: 12

m k t e m p 6: 11

m k t i m e 6: 10

m l o c k 6: 5

m m a p 5: 12, 6: 5

mnttab file 7: 1

m o d f 6: 10

M O D U L U S 7: 35

m o n i t o r 6: 11

m o u n t 6: 5

M o u s e _ s t a t u s 6: 22

m o v e 6: 22

m p r o t e c t 6: 5

M S G _ A C C E P T E D 7: 27, 29

m s g c t l 6: 5

M S G _ D E N I E D 7: 27, 29

m s g g e t 6: 5

m s g r c v 6: 5

m s g s n d 6: 5

m s g _ t y p e 7: 27

m s y n c 6: 5

multibyte characters 3: 2

m u n l o c k 6: 5

m u n m a p 6: 5

m v a d d c h 6: 22

m v a d d c h n s t r 6: 22

m v a d d c h s t r 6: 22

m v a d d n s t r 6: 22

m v a d d n w s t r 6: 22

m v a d d s t r 6: 22

m v a d d _ w c h 6: 22

m v a d d _ w c h n s t r 6: 22

m v a d d _ w c h s t r 6: 22

m v a d d w s t r 6: 22

m v c h g a t 6: 22

m v c u r 6: 22

m v d e l c h 6: 22

m v d e r w i n 6: 22

m v g e t c h 6: 22

m v g e t n s t r 6: 22

m v g e t n _ w s t r 6: 22

m v g e t s t r 6: 22

m v g e t _ w c h 6: 22

m v g e t _ w s t r 6: 22

m v h l i n e 6: 22

m v h l i n e _ s e t 6: 22

m v i n c h 6: 22

m v i n c h n s t r 6: 22

m v i n c h s t r 6: 22

m v i n n s t r 6: 22

m v i n n w s t r 6: 22

m v i n s c h 6: 22

m v i n s n s t r 6: 22

m v i n s _ n w s t r 6: 22

m v i n s s t r 6: 22

m v i n s t r 6: 22

m v i n s _ w c h 6: 22

m v i n s _ w s t r 6: 22

m v i n _ w c h 6: 22

m v i n _ w c h n s t r 6: 22

m v i n _ w c h s t r 6: 22

m v i n w s t r 6: 22

m v p r i n t w 6: 22

m v s c a n w 6: 22

m v v l i n e 6: 22

m v v l i n e _ s e t 6: 22

m v w a d d c h 6: 22

m v w a d d c h n s t r 6: 22

m v w a d d c h s t r 6: 22

m v w a d d n s t r 6: 22

m v w a d d n w s t r 6: 22

m v w a d d s t r 6: 22

m v w a d d _ w c h 6: 22

m v w a d d _ w c h n s t r 6: 22

m v w a d d _ w c h s t r 6: 22

m v w a d d w s t r 6: 22

m v w c h g a t 6: 22

m v w d e l c h 6: 22

m v w g e t c h 6: 22

m v w g e t n s t r 6: 22

m v w g e t n _ w s t r 6: 22

m v w g e t s t r 6: 22

m v w g e t _ w c h 6: 22

m v w g e t _ w s t r 6: 22

IN-10 Index

format 4: 1

hash table 5: 13, 17, 21

program header 4: 2, 5: 2

program loading 5: 2

relocation 4: 16, 27, 5: 17

section 4: 2, 10

section alignment 4: 13

section attributes 4: 16

section header 4: 2, 10

section names 4: 20

section types 4: 13

see also archive file 4: 1

see also dynamic linking 5: 12

see also executable file 4: 1

see also relocatable file 4: 1

see also shared object file 4: 1

segment 5: 1–2

shared object file 5: 13

special sections 4: 17

string table 4: 16, 21–22

symbol table 4: 16, 22

type 4: 5

version 4: 6

o b j e c t C l a s s 6: 32

o b j e c t C l a s s R e c 6: 32

o p a q u e _ a u t h 7: 25, 30

o p e n 6: 5

o p e n d i r 6: 5

o p e n l o g 6: 12

/ o p t 2: 15, 9: 3–5

/ o p t s u b t r e e 9: 5

o p t a r g 6: 13

o p t e r r 6: 13

o p t i n d 6: 13

o p t o p t 6: 13

/ o p t /pkg/ b i n 9: 5

o u t c h c o u n t 6: 22

o v e r l a y 6: 22

o v e r r i d e S h e l l C l a s s R e c 6: 32

o v e r r i d e S h e l l W i d g e t C l a s s 6: 32

o v e r w r i t e 6: 22

P
package installation 9: 3

packages 2: 2–16

p a i r _ c o n t e n t 6: 22

password file 7: 1

PATH 8: 1, 11: 3

p a t h c o n f 6: 5, 9: 1

p a u s e 6: 5

pckt 12: 2

p c l o s e 6: 11

p e c h o c h a r 6: 22

p e c h o _ w c h a r 6: 22

permissions, process segments (see
segment permissions)

per-process environment information
9: 2

p e r r o r 6: 10

p i p e 6: 5

pipemod 12: 2

p k g a d d 2: 7–8, 16

p k g a s k 2: 8, 16

p k g c h k 2: 16

p k g i n f o 2: 3, 5–9, 11–12, 16

p k g m a p 2: 3, 8–10, 12

p k g m k 11: 3

p k g p a r a m 2: 16

p k g p r o t o 11: 3

p k g r m 2: 7, 16

p k g t r a n s 11: 3

p n o u t r e f r e s h 6: 22

p o l l 6: 5

p o o l 6: 18

p o p e n 6: 11

position-independent code 5: 13

POSIX 1: 2, 6: 1, 13, 33, 7: 6, 9: 1

PostScript 10: 3–4

PostScript interpreter 10: 2

PostScript language 10: 2

P r e e d i t C a r e t C a l l b a c k 6: 28

P r e e d i t D o n e C a l l b a c k 6: 28

P r e e d i t D r a w C a l l b a c k 6: 28

IN-12 Index

P r e e d i t S t a r t C a l l b a c k 6: 28

p r e f r e s h 6: 22

p r i n t f 6: 10

p r i n t w 6: 22

procedure linkage table 4: 19, 25, 5: 13,

16, 18, 21

process
entry point 4: 6, 19, 5: 22

image 4: 1, 5: 1–2

virtual addressing 5: 2

processor-specific 5: 13

processor-specific information 3: 1,

3–6, 4: 5–6, 8–10, 15–16, 20, 24–25, 27,

29, 5: 1, 4, 6–7, 11, 13, 19, 21, 6: 7, 34,

9: 4, 11: 2–4

p r o c p r i v 6: 5

P R O C _ U N A V A I L 7: 27, 29

p r o f i l 6: 5

P R O G _ M I S M A T C H 7: 27, 29

program header 5: 2

program interpreter 4: 19, 5: 12–13

program loading 5: 1, 11

programming language, ABI refer-
ence 3: 1

P R O G _ U N A V A I L 7: 27, 29

protocol version 2 7: 25

pseudo terminal 12: 2

ptem 12: 2

p t r a c e 6: 5

p t s n a m e 6: 5

p u t c 6: 10, 13

p u t c h a r 6: 10

p u t e n v 6: 11

p u t m s g 6: 5

p u t p 6: 22

p u t p m s g 6: 5

p u t s 6: 10

p u t u t x l i n e 6: 12

p u t w 6: 11

p u t w c 6: 11

p u t w c h a r 6: 11

p u t w i n 6: 22

Q
q i f l u s h 6: 22

q s o r t 6: 10

R
r a i s e 6: 10

r a n d 6: 10

r a n d o m 6: 12

r a w 6: 22

r e a d 6: 5, 18

r e a d d i r 6: 5

r e a d l i n k 6: 5

r e a d v 6: 5

r e a l l o c 6: 6

r e a l p a t h 6: 12

r e _ c o m p 6: 12

r e c t O b j C l a s s 6: 32

r e c t O b j C l a s s R e c 6: 32

r e c v 6: 18

r e c v f r o m 6: 18

r e c v m s g 6: 18

r e d r a w w i n 6: 22

r e _ e x e c 6: 12

r e f r e s h 6: 22

r e g c m p 6: 12

r e g c o m p 6: 12

r e g e x 6: 12

r e g e x p 6: 12

r e j e c t e d _ r e p l y 7: 30

r e j e c t _ s t a t 7: 27

reliable byte stream protocols 7: 26

r e l o c 2: 3, 6

relocatable file 4: 1

relocation, see object file 4: 27

r e m o v e 6: 6

r e m o v e f 2: 12, 16

r e m q u e 6: 12

r e n a m e 6: 5

R E P L Y 7: 27–28

r e p l y _ b o d y 7: 29

Index IN-13

r e p l y _ s t a t 7: 27

required sizes for some data objects
6: 33

requirements, summary 10: 4

r e s e t _ p r o g _ m o d e 6: 22

r e s e t _ s h e l l _ m o d e 6: 22

r e s e t t y 6: 22

r e s t a r t t e r m 6: 22

r e w i n d 6: 10

r e w i n d d i r 6: 5

r i n d e x 6: 12

r i n t 6: 12

r i p o f f l i n e 6: 22

r m d i r 6: 5

r o o t 2: 3, 6

root subtree 9: 3

RPC
authentication 7: 24–25

authentication protocols 7: 30

basic authentication for UNIX Sys-
tems 7: 30

batching 7: 26

binding and rendezvous indepen-
dence 7: 23

broadcast 7: 26

DES authentication 7: 31

DES authentication verifiers 7: 32

DES nicknames and clock synchroni-
zation 7: 33

message protocol 7: 27

naming 7: 31

null authentication 7: 30

program number assignment 7: 25

programs and procedures 7: 24

record marking standard 7: 36

transports and semantics 7: 22

uses of the RPC protocol 7: 26

R P C _ A U T H E R R O R 7: 33

r p c b _ g e t a d d r 6: 17

r p c b _ g e t m a p s 6: 17

r p c b _ g e t t i m e 6: 17

r p c b i n d 7: 22, 26, 37–38

mechanism 7: 37

operation 7: 38

protocol 7: 23

protocol specification 7: 37

R P C B P R O C _ C A L L I T 7: 37–38

R P C B P R O C _ D U M P 7: 37–38

R P C B P R O C _ G E T A D D R 7: 37–38

R P C B P R O C _ G E T T I M E 7: 37, 39

R P C B P R O C _ N U L L 7: 37

R P C B P R O C _ S E T 7: 37–38

R P C B P R O C _ U N S E T 7: 37–38

R P C B P R O G 7: 37

r p c b _ r m t c a l l 6: 17

r p c _ b r o a d c a s t 6: 17

r p c b _ s e t 6: 17

r p c b _ u n s e t 6: 17

R P C B V E R S 7: 37

r p c _ c a l l 6: 17

r p c _ c r e a t e e r r 6: 17

R P C _ M I S M A T C H 7: 27, 30

r p c _ m s g 7: 28

r p c _ r e g 6: 17

S
SARMAG 7: 2

s a v e t t y 6: 22

s b r k 6: 12

s c a l b 6: 11

s c a n f 6: 10

s c a n w 6: 22

s c r _ d u m p 6: 22

s c r e e n C o n v e r t A r g 6: 32

s c r _ i n i t 6: 22

scripts 2: 3

s c r l 6: 22

s c r o l l 6: 22

s c r o l l o k 6: 22

s c r _ r e s t o r e 6: 22

s c r _ s e t 6: 22

SD_CMD 11: 1

IN-14 Index

security control mechanisms 7: 24

s e d 2: 13

s e e k d i r 6: 5

segment
dynamic 5: 12, 14

object file 5: 1–2

process 5: 1, 12–13, 19

program header 5: 2

segment permissions 5: 5

s e l e c t 6: 12, 18

s e m c t l 6: 5

s e m g e t 6: 5

s e m o p 6: 5

s e n d 6: 18

s e n d m s g 6: 18

s e n d t o 6: 18

server 7: 22, 10: 4

s e t b u f 6: 10

s e t c c h a r 6: 22

s e t c o n t e x t 6: 5

s e t _ c u r t e r m 6: 22

s e t g i d 6: 5

s e t g r e n t 6: 12

s e t g r o u p s 6: 5

s e t h o s t e n t 6: 18

s e t i t i m e r 6: 12

s e t j m p 6: 10

_ s e t j m p 6: 12

s e t l o c a l e 6: 6, 8

s e t l o g m a s k 6: 12

s e t n e t c o n f i g 6: 17

s e t n e t e n t 6: 18

s e t n e t p a t h 6: 17

s e t p g i d 6: 5

s e t p g r p 6: 5

s e t p r i o r i t y 6: 12

s e t p r o t o e n t 6: 18

s e t p w e n t 6: 12

s e t r e g i d 6: 12

s e t r e u i d 6: 12

s e t r l i m i t 6: 5

s e t s c r r e g 6: 22

s e t s e r v e n t 6: 18

s e t s i d 6: 5

s e t s o c k o p t 6: 18

s e t s t a t e 6: 12

s e t _ t e r m 6: 22

s e t u i d 6: 5

s e t u p t e r m 6: 22

set-user ID programs 5: 20

s e t u t x e n t 6: 12

s e t v b u f 6: 10

s h 2: 11

shared library (see shared object file)
shared library names 6: 2

shared object file 4: 1, 6: 1

functions 4: 25

see also dynamic linking 5: 13

see also object file 5: 13

shell scripts 4: 1

s h e l l C l a s s R e c 6: 32

s h e l l W i d g e t C l a s s 6: 32

s h m a t 6: 5

s h m c t l 6: 5

s h m d t 6: 5

s h m g e t 6: 5

s h u t d o w n 6: 18

s i g a c t i o n 6: 5

s i g a d d s e t 6: 5

s i g a l t s t a c k 6: 5

s i g d e l s e t 6: 5

s i g e m p t y s e t 6: 5

s i g f i l l s e t 6: 5

s i g h o l d 6: 5

s i g i g n o r e 6: 5

s i g i n t e r r u p t 6: 12

s i g i s m e m b e r 6: 5

s i g l o n g j m p 6: 5

s i g n a l 6: 6

s i g n g a m 6: 12

s i g p a u s e 6: 5

s i g p e n d i n g 6: 5

s i g p r o c m a s k 6: 5

s i g r e l s e 6: 5

Index IN-15

s i g s e n d 6: 5

s i g s e n d s e t 6: 5

s i g s e t 6: 5

s i g s e t j m p 6: 5

s i g s t a c k 6: 12

s i g s u s p e n d 6: 5

s i n 6: 2

s l e e p 6: 11

s l k _ a t t r _ o f f 6: 22

s l k _ a t t r o f f 6: 22

s l k _ a t t r _ o n 6: 22

s l k _ a t t r o n 6: 22

s l k _ a t t r _ s e t 6: 22

s l k _ a t t r s e t 6: 22

s l k _ c l e a r 6: 22

s l k _ i n i t 6: 22

s l k _ l a b e l 6: 22

s l k _ n o u t r e f r e s h 6: 22

s l k _ r e f r e s h 6: 22

s l k _ r e s t o r e 6: 22

s l k _ s e t 6: 22

s l k _ t o u c h 6: 22

s l k _ w s e t 6: 22

s o c k e t 6: 18

s o c k e t p a i r 6: 18

software structure 2: 2–16

S P 6: 22

s p a c e 2: 3, 10

s p r i n t f 6: 10

s r a n d 6: 10

s r a n d o m 6: 12

s s c a n f 6: 10

s t a n d e n d 6: 22

s t a n d o u t 6: 22

s t a r t _ c o l o r 6: 22

s t a t 2: 10, 6: 6, 7: 3

S t a t u s D o n e C a l l b a c k 6: 28

S t a t u s D r a w C a l l b a c k 6: 28

S t a t u s S t a r t C a l l b a c k 6: 28

s t a t v f s 6: 5

s t d s c r 6: 22

s t i m e 6: 5

s t r c a s e c m p 6: 12

s t r c a t 6: 10

s t r c h r 6: 10

s t r c m p 6: 10

s t r c o d e s 6: 22

s t r c o l l 6: 6

s t r c p y 6: 10

s t r c s p n 6: 10

s t r d u p 6: 11

STREAMS-based pipe 12: 3

s t r e r r o r 6: 6

s t r f m o n 6: 12

s t r f n a m e s 6: 22

s t r f t i m e 6: 6

string table
see archive file 7: 2

see object file 4: 21

s t r l e n 6: 10

s t r n a m e s 6: 22

s t r n c a s e c m p 6: 12

s t r n c a t 6: 10

s t r n c m p 6: 10

s t r n c p y 6: 10

s t r p b r k 6: 10

s t r p t i m e 6: 12

s t r r c h r 6: 10

s t r s p n 6: 10

s t r s t r 6: 10

s t r t o d 6: 10

s t r t o k 6: 10

s t r t o l 6: 10

s t r t o u l 6: 10

s t r x f r m 6: 6

s u b p a d 6: 22

s u b w i n 6: 22

S U C C E S S 7: 27, 29

s u m 2: 10

s v c _ c r e a t e 6: 17

s v c _ d g _ c r e a t e 6: 17

s v c e r r _ a u t h 6: 17

s v c e r r _ d e c o d e 6: 17

s v c e r r _ n o p r o c 6: 17

IN-16 Index

s v c e r r _ n o p r o g 6: 17

s v c e r r _ p r o g v e r s 6: 17

s v c e r r _ s y s t e m e r r 6: 17

s v c e r r _ w e a k a u t h 6: 17

s v c _ f d _ c r e a t e 6: 17

s v c _ f d s 6: 17

s v c _ g e t a r g s 6: 17

s v c _ g e t r e q s e t 6: 17

s v c _ r a w _ c r e a t e 6: 17

s v c _ r e g 6: 17

s v c _ r u n 6: 17

s v c _ s e n d r e p l y 6: 17

s v c _ t l i _ c r e a t e 6: 17

s v c _ t p _ c r e a t e 6: 17

s v c _ u n r e g 6: 17

s v c _ v c _ c r e a t e 6: 17

SVID 11: 1, 3–4, 12: 2

s w a b 6: 11

s w a p c o n t e x t 6: 5, 12

symbol names, C and assembly 4: 22

symbol table, see object file 4: 22

symbols
absolute 4: 11

binding 4: 23

common 4: 11

see also hash table 4: 19

shared object file functions 4: 25

type 4: 24

undefined 4: 10

value 4: 24, 26

s y m l i n k 6: 5

s y n c 6: 5

s y n c o k 6: 22

s y s c o n f 6: 5, 9: 1

s y s l o g 6: 12

s y s t e m 6: 6, 9: 2

system calls 6: 4

extensions 6: 9

see also l i b s y s 6: 4

_ $ v e n d o r .company 6: 9

system data interfaces 6: 33

system identification 9: 1

system library 6: 4

T
T A B S I Z E 6: 22

t _ a c c e p t 6: 15, 12: 8

T _ A C C E P T 1 12: 5

T _ A C C E P T 2 12: 5

T _ A C C E P T 3 12: 5

T A C C E S 12: 4

T _ A D D R 12: 5

t a d d r 2 u a d d r 6: 17

T A D D R B U S Y 12: 4

T _ A L L 12: 5

t _ a l l o c 6: 15

T B A D A D D R 12: 4

T B A D D A T A 12: 4

T B A D F 12: 4

T B A D F L A G 12: 4

T B A D N A M E 12: 4

T B A D O P T 12: 4

T B A D Q L E N 12: 4

T B A D S E Q 12: 4

t _ b i n d 6: 15

T _ B I N D 12: 5

t _ b i n d 12: 8

T B U F O V F L W 12: 4

T _ C A L L 12: 5

t c d r a i n 6: 11

t c f l o w 6: 11

t c f l u s h 6: 11

t c g e t a t t r 6: 11

t c g e t p g r p 6: 11

t c g e t s i d 6: 11

T _ C H E C K 12: 4

t _ c l o s e 6: 15

T _ C L O S E 12: 5

T _ C L T S 12: 4, 8

t _ c o n n e c t 6: 15

T _ C O N N E C T 12: 4

t _ c o n n e c t 12: 8

Index IN-17

T _ C O N N E C T 1 12: 5

T _ C O N N E C T 2 12: 5

T _ C O T S 12: 4

T _ C O T S _ O R D 12: 4, 8

TCP/IP 7: 22, 26, 36

t c s e n d b r e a k 6: 11

t c s e t a t t r 6: 11

t c s e t p g r p 6: 11

T _ D A T A 12: 4

T _ D A T A X F E R 12: 5

T _ D E F A U L T 12: 4

t d e l e t e 6: 11

T _ D I S 12: 5

T _ D I S C O N N E C T 12: 4

t e l l 6: 11

t e l l d i r 6: 5

t e m p n a m 6: 11

temporary files 9: 6

t e r m a t t r s 6: 22

t e r m _ e r r n o 6: 22

t e r m i n f o(TI_ENV) 7: 7

t e r m n a m e 6: 22

t e r m _ p a r m _ e r r 6: 22

t _ e r r n o 6: 17

t _ e r r o r 6: 15

T _ E R R O R 12: 4

T _ E V E N T S 12: 4

T _ E X D A T A 12: 4

T _ E X P E D I T E D 12: 4

T _ F A I L U R E 12: 4

T _ F A K E 12: 5

t f i n d 6: 11

T F L O W 12: 4

t _ f r e e 6: 15

t g e t e n t 6: 22

t g e t f l a g 6: 22

t _ g e t i n f o 6: 15, 12: 9

t g e t n u m 6: 22

t _ g e t s t a t e 6: 15

t g e t s t r 6: 22

t g o t o 6: 22

T _ I D L E 12: 5

t i g e t f l a g 6: 22

t i g e t n u m 6: 22

t i g e t s t r 6: 22

t i m e 6: 5, 7: 3, 9: 1

t i m e o u t 6: 22

t i m e s 6: 5

t i m e s t a m p 7: 34

_ t i m e z o n e 6: 7

t i m e z o n e 6: 7

timod 12: 2, 4

T _ I N C O N 12: 5

T I N D O U T 12: 4

T _ I N F O 12: 5

T _ I N R E L 12: 5

tirdwr 12: 2, 4

t _ l i s t e n 6: 15

T _ L I S T E N 12: 4

t _ l i s t e n 12: 9

T _ L I S T N 12: 5

t _ l o o k 6: 15

T L O O K 12: 4

T _ M O R E 12: 4

t m p f i l e 6: 10

t m p n a m 6: 10

T _ N E G O T I A T E 12: 4

T N O A D D R 12: 4

T N O D A T A 12: 4

T N O D I S 12: 4

T N O R E L 12: 4

T _ N O S T A T E S 12: 5

T N O S T R U C T Y P E 12: 4

T N O T S U P P O R T 12: 4

T N O U D E R R 12: 4

t o a s c i i 6: 11

t o l o w e r 6: 10

_ t o l o w e r 6: 12

t _ o p e n 6: 15

T _ O P E N 12: 5

t _ o p e n 12: 9

t o p L e v e l S h e l l C l a s s R e c 6: 32

t o p L e v e l S h e l l W i d g e t C l a s s 6: 32

T _ O P T 12: 5

IN-18 Index

t _ o p t m g m t 6: 15

T _ O P T M G M T 12: 5

t _ o p t m g m t 12: 10

T _ O R D R E L 12: 4

t o u c h l i n e 6: 22

t o u c h w i n 6: 22

t o u p p e r 6: 10

_ t o u p p e r 6: 12

T _ O U T C O N 12: 5

T _ O U T R E L 12: 5

T O U T S T A T E 12: 4

t o w l o w e r 6: 11

t o w u p p e r 6: 11

t p a r m 6: 22

T _ P A S S C O N 12: 5

T P R O T O 12: 4

T P R O V M I S M A T C H 12: 4

t p u t s 6: 22

T Q F U L L 12: 4

t r a n s i e n t S h e l l C l a s s R e c 6: 32

t r a n s i e n t S h e l l W i d g e t C l a s s 6: 32

transport 12: 2

t _ r c v 6: 15

T _ R C V 12: 5

t _ r c v 12: 12

t _ r c v c o n n e c t 6: 15

T _ R C V C O N N E C T 12: 5

t _ r c v c o n n e c t 12: 12

t _ r c v d i s 6: 15

T _ R C V D I S 1 12: 5

T _ R C V D I S 2 12: 5

T _ R C V D I S 3 12: 5

t _ r c v r e l 6: 15

T _ R C V R E L 12: 5

t _ r c v u d a t a 6: 15

T _ R C V U D A T A 12: 5

t _ r c v u d a t a 12: 12

t _ r c v u d e r r 6: 15

T _ R C V U D E R R 12: 5

t _ r c v u d e r r 12: 12

t r u n c a t e 6: 12

t s e a r c h 6: 11

t _ s n d 6: 15

T _ S N D 12: 5

t _ s n d 12: 12

t _ s n d d i s 6: 15, 12: 13

T _ S N D D I S 1 12: 5

T _ S N D D I S 2 12: 5

t _ s n d r e l 6: 15

T _ S N D R E L 12: 5

t _ s n d r e l 12: 13

t _ s n d u d a t a 6: 15

T _ S N D U D A T A 12: 5

t _ s n d u d a t a 12: 13

T S T A T E C H N G 12: 4

T _ S U C C E S S 12: 4

t _ s y n c 6: 15

T S Y S E R R 12: 4

t t y n a m e 6: 5

t t y s l o t 6: 12

t t y t y p e 6: 22

T _ U D A T A 12: 5

T _ U D E R R 12: 4

T _ U D E R R O R 12: 5

t _ u n b i n d 6: 15

T _ U N B I N D 12: 5

T _ U N B N D 12: 5

T _ U N I N I T 12: 5

T _ U N I T D A T A 12: 5

t w a l k 6: 11

t y p e a h e a d 6: 22

_ t z n a m e 6: 7

t z n a m e 6: 7

t z s e t 6: 8, 11

U
u a d d r 2 t a d d r 6: 17

u a l a r m 6: 12

UDP/IP 7: 22, 26

u l i m i t 6: 5

u m a s k 6: 5

u m o u n t 6: 5

Index IN-19

u n a m e 6: 6, 9: 1

u n c t r l 6: 22

undefined behavior 1: 8, 4: 14, 5: 10,

6: 3, 9

undefined symbols 4: 10

u n g e t c 6: 10

u n g e t c h 6: 22

u n g e t w c 6: 11

u n g e t _ w c h 6: 22

u n l i n k 6: 5

u n l o c k p t 6: 5

unspecified property 4: 2, 5, 10–11,

15–16, 18–19, 24–25, 5: 2, 4, 6, 9, 18–19,

22, 6: 4, 7

u n t o u c h w i n 6: 22

u s e _ e n v 6: 22

u s e r 2 n e t n a m e 6: 17

u s l e e p 6: 12

/ u s r 9: 3–5

/ u s r s u b t r e e 9: 5

/ u s r / b i n 9: 5

/ u s r / s h a r e 9: 5

/ u s r / s h a r e / l i b 9: 5

/ u s r / s h a r e / l i b / t e r m i n f o / 7: 7

/ u s r / X 9: 5

/ u s r / X / l i b 9: 5

/ u s r / X / l i b / a p p - d e f a u l t s 9: 6

/ u s r / X / l i b / l o c a l e 9: 5

u t i m e 6: 5

u t i m e s 6: 12

V
v a l l o c 6: 12

/ v a r 9: 3–4

/ v a r s u b t r e e 9: 6

/ v a r / o p t 2: 15

/ v a r / o p t /pkg 9: 6

/ v a r / t m p 9: 6

vendor extensions 6: 9

_ $ v e n d o r .company 6: 9

v e n d o r S h e l l C l a s s R e c 6: 32

v e n d o r S h e l l W i d g e t C l a s s 6: 32

v f o r k 6: 12

v f p r i n t f 6: 10

v i d _ a t t r 6: 22

v i d a t t r 6: 22

v i d _ p u t s 6: 22

v i d p u t s 6: 22

virtual addressing 5: 2

v l i n e 6: 22

v l i n e _ s e t 6: 22

VMTP 7: 23

v p r i n t f 6: 10

v s p r i n t f 6: 10

v w _ p r i n t w 6: 22

v w p r i n t w 6: 22

v w _ s c a n w 6: 22

v w s c a n w 6: 22

W
w a d d c h 6: 22

w a d d c h n s t r 6: 22

w a d d c h s t r 6: 22

w a d d n s t r 6: 22

w a d d n w s t r 6: 22

w a d d s t r 6: 22

w a d d _ w c h 6: 22

w a d d _ w c h n s t r 6: 22

w a d d _ w c h s t r 6: 22

w a d d w s t r 6: 22

w a i t 6: 5

w a i t 3 6: 12

w a i t i d 6: 5

w a i t p i d 6: 5

w a t t r _ g e t 6: 22

w a t t r _ o f f 6: 22

w a t t r o f f 6: 22

w a t t r _ o n 6: 22

w a t t r o n 6: 22

w a t t r _ s e t 6: 22

IN-20 Index

w a t t r s e t 6: 22

w b k g d 6: 22

w b k g d s e t 6: 22

w b k g r n d 6: 22

w b k g r n d s e t 6: 22

w b o r d e r 6: 22

w b o r d e r _ s e t 6: 22

w c h g a t 6: 22

w c l e a r 6: 22

w c l r t o b o t 6: 22

w c l r t o e o l 6: 22

w c o l o r _ s e t 6: 22

w c s c a t 6: 11

w c s c h r 6: 11

w c s c m p 6: 11

w c s c o l l 6: 11

w c s c p y 6: 11

w c s c s p n 6: 11

w c s f t i m e 6: 11

w c s l e n 6: 11

w c s n c a t 6: 11

w c s n c m p 6: 11

w c s n c p y 6: 11

w c s p b r k 6: 11

w c s r c h r 6: 11

w c s s p n 6: 11

w c s t o d 6: 11

w c s t o k 6: 11

w c s t o l 6: 11

w c s t o m b s 6: 10

w c s t o u l 6: 11

w c s w c s 6: 12

w c s w i d t h 6: 12

w c s x f r m 6: 11

w c t o m b 6: 10

w c t y p e 6: 11

w c u r s y n c u p 6: 22

w c w i d t h 6: 12

w d e l c h 6: 22

w d e l e t e l n 6: 22

w e c h o c h a r 6: 22

w e c h o _ w c h a r 6: 22

w e r a s e 6: 22

w g e t b k g r n d 6: 22

w g e t c h 6: 22

w g e t n s t r 6: 22

w g e t n _ w s t r 6: 22

w g e t s t r 6: 22

w g e t _ w c h 6: 22

w g e t _ w s t r 6: 22

w h l i n e 6: 22

w h l i n e _ s e t 6: 22

w i d g e t C l a s s 6: 32

w i d g e t C l a s s R e c 6: 32

w i n c h 6: 22

w i n c h n s t r 6: 22

w i n c h s t r 6: 22

window manager 10: 4

window system 10: 1

components 10: 3

w i n n s t r 6: 22

w i n n w s t r 6: 22

w i n s c h 6: 22

w i n s d e l l n 6: 22

w i n s e r t l n 6: 22

w i n s n s t r 6: 22

w i n s _ n w s t r 6: 22

w i n s s t r 6: 22

w i n s t r 6: 22

w i n s _ w c h 6: 22

w i n s _ w s t r 6: 22

w i n _ w c h 6: 22

w i n _ w c h n s t r 6: 22

w i n _ w c h s t r 6: 22

w i n w s t r 6: 22

w m o v e 6: 22

w m S h e l l C l a s s R e c 6: 32

w m S h e l l W i d g e t C l a s s 6: 32

w n o u t r e f r e s h 6: 22

w o r d e x p 6: 12

w o r d f r e e 6: 12

w p r i n t w 6: 22

w r e d r a w l n 6: 22

w r e f r e s h 6: 22

Index IN-21

w r i t e 6: 5, 18

w r i t e v 6: 5

w s c a n w 6: 22

w s c r l 6: 22

w s e t s c r r e g 6: 22

w s t a n d e n d 6: 22

w s t a n d o u t 6: 22

w s y n c d o w n 6: 22

w s y n c u p 6: 22

w t i m e o u t 6: 22

w t o u c h l n 6: 22

w u n c t r l 6: 22

w v l i n e 6: 22

w v l i n e _ s e t 6: 22

X
X Toolkit Intrinsics 6: 1, 29

X toolkit intrinsics 10: 3

X Toolkit Intrinsics Library 6: 29

X Window System 1: 2, 6: 1, 23

X Window System Library 1: 5, 6: 2,

23

X11 protocol 10: 2

X11 Toolkit Intrinsics, interface 10: 1

X11 Window System 9: 5, 10: 4

interface 10: 1

overview 10: 2

X A c t i v a t e S c r e e n S a v e r 6: 27

X A d d E x t e n s i o n 6: 27

X A d d H o s t 6: 27

X A d d H o s t s 6: 27

X A d d P i x e l 6: 27

X A d d T o E x t e n s i o n L i s t 6: 27

X A d d T o S a v e S e t 6: 27

X A l l o c C l a s s H i n t 6: 27

X A l l o c C o l o r 6: 27

X A l l o c C o l o r C e l l s 6: 27

X A l l o c C o l o r P l a n e s 6: 27

X A l l o c I c o n S i z e 6: 27

X A l l o c N a m e d C o l o r 6: 27

X A l l o c S i z e H i n t s 6: 27

X A l l o c S t a n d a r d C o l o r m a p 6: 27

X A l l o c W M H i n t s 6: 27

X A l l o w E v e n t s 6: 27

X A l l P l a n e s 6: 27

X A u t o R e p e a t O f f 6: 27

X A u t o R e p e a t O n 6: 27

X B a s e F o n t N a m e L i s t O f F o n t S e t 6: 27

X B e l l 6: 27

X B i t m a p B i t O r d e r 6: 27

X B i t m a p P a d 6: 27

X B i t m a p U n i t 6: 27

X B l a c k P i x e l 6: 27

X B l a c k P i x e l O f S c r e e n 6: 27

X C e l l s O f S c r e e n 6: 27

X C h a n g e A c t i v e P o i n t e r G r a b 6: 27

X C h a n g e G C 6: 27

X C h a n g e K e y b o a r d C o n t r o l 6: 27

X C h a n g e K e y b o a r d M a p p i n g 6: 27

X C h a n g e P o i n t e r C o n t r o l 6: 27

X C h a n g e P r o p e r t y 6: 27

X C h a n g e S a v e S e t 6: 27

X C h a n g e W i n d o w A t t r i b u t e s 6: 27

X C h e c k I f E v e n t 6: 27

X C h e c k M a s k E v e n t 6: 27

X C h e c k T y p e d E v e n t 6: 27

X C h e c k T y p e d W i n d o w E v e n t 6: 27

X C h e c k W i n d o w E v e n t 6: 27

X C i r c u l a t e S u b w i n d o w s 6: 27

X C i r c u l a t e S u b w i n d o w s D o w n 6: 27

X C i r c u l a t e S u b w i n d o w s U p 6: 27

X C l e a r A r e a 6: 27

X C l e a r W i n d o w 6: 27

X C l i p B o x 6: 27

X C l o s e D i s p l a y 6: 27

X C l o s e I M 6: 27

X c m s A d d C o l o r S p a c e 6: 27

X c m s A d d F u n c t i o n S e t 6: 27

X c m s A l l o c C o l o r 6: 27

X c m s A l l o c N a m e d C o l o r 6: 27

X c m s C C C o f C o l o r m a p 6: 27

X c m s C I E L a b Q u e r y M a x C 6: 27

IN-22 Index

X c m s C I E L a b Q u e r y M a x L 6: 27

X c m s C I E L a b Q u e r y M a x L C 6: 27

X c m s C I E L a b Q u e r y M i n L 6: 27

X c m s C I E L a b T o C I E X Y Z 6: 27

X c m s C I E L u v Q u e r y M a x C 6: 27

X c m s C I E L u v Q u e r y M a x L 6: 27

X c m s C I E L u v Q u e r y M a x L C 6: 27

X c m s C I E L u v Q u e r y M i n L 6: 27

X c m s C I E L u v T o C I E u v Y 6: 27

X c m s C I E u v Y T o C I E L u v 6: 27

X c m s C I E u v Y T o C I E X Y Z 6: 27

X c m s C I E u v Y T o T e k H V C 6: 27

X c m s C I E x y Y T o C I E X Y Z 6: 27

X c m s C I E X Y Z T o C I E L a b 6: 27

X c m s C I E X Y Z T o C I E u v Y 6: 27

X c m s C I E X Y Z T o C I E x y Y 6: 27

X c m s C I E X Y Z T o R G B i 6: 27

X c m s C l i e n t W h i t e P o i n t O f C C C 6: 27

X c m s C o n v e r t C o l o r s 6: 27

X c m s C r e a t e C C C 6: 27

X c m s D e f a u l t C C C 6: 27

X c m s D i s p l a y O f C C C 6: 27

X c m s F o r m a t O f P r e f i x 6: 27

X c m s F r e e C C C 6: 27

X c m s L o o k u p C o l o r 6: 27

X c m s P r e f i x O f F o r m a t 6: 27

X c m s Q u e r y B l a c k 6: 27

X c m s Q u e r y B l u e 6: 27

X c m s Q u e r y C o l o r 6: 27

X c m s Q u e r y C o l o r s 6: 27

X c m s Q u e r y G r e e n 6: 27

X c m s Q u e r y R e d 6: 27

X c m s Q u e r y W h i t e 6: 27

X c m s R G B i T o C I E X Y Z 6: 27

X c m s R G B i T o R G B 6: 27

X c m s R G B T o R G B i 6: 27

X c m s S c r e e n N u m b e r O f C C C 6: 27

X c m s S c r e e n W h i t e P o i n t O f C C C 6: 27

X c m s S e t C C C o f C o l o r m a p 6: 27

X c m s S e t C o m p r e s s i o n P r o c 6: 27

X c m s S e t W h i t e A d j u s t P r o c 6: 27

X c m s S e t W h i t e P o i n t 6: 27

X c m s S t o r e C o l o r 6: 27

X c m s S t o r e C o l o r s 6: 27

X c m s T e k H V C Q u e r y M a x C 6: 27

X c m s T e k H V C Q u e r y M a x V 6: 27

X c m s T e k H V C Q u e r y M a x V C 6: 27

X c m s T e k H V C Q u e r y M a x V S a m p l e s 6: 27

X c m s T e k H V C Q u e r y M i n V 6: 27

X c m s T e k H V C T o C I E u v Y 6: 27

X c m s V i s u a l O f C C C 6: 27

X C o n f i g u r e W i n d o w 6: 27

X C o n n e c t i o n N u m b e r 6: 27

X C o n t e x t D e p e n d e n t D r a w i n g 6: 27

X C o n v e r t S e l e c t i o n 6: 27

X C o p y A r e a 6: 27

X C o p y C o l o r m a p A n d F r e e 6: 27

X C o p y G C 6: 27

X C o p y P l a n e 6: 27

X C r e a t e B i t m a p F r o m D a t a 6: 27

X C r e a t e C o l o r m a p 6: 27

X C r e a t e F o n t C u r s o r 6: 27

X C r e a t e F o n t S e t 6: 27

X C r e a t e G C 6: 27

X C r e a t e G l y p h C u r s o r 6: 27

X C r e a t e I C 6: 27

X C r e a t e I m a g e 6: 27

X C r e a t e P i x m a p 6: 27

X C r e a t e P i x m a p C u r s o r 6: 27

X C r e a t e P i x m a p F r o m B i t m a p D a t a
6: 27

X C r e a t e R e g i o n 6: 27

X C r e a t e S i m p l e W i n d o w 6: 27

X C r e a t e W i n d o w 6: 27

X D e f a u l t C o l o r m a p 6: 27

X D e f a u l t C o l o r m a p O f S c r e e n 6: 27

X D e f a u l t D e p t h 6: 27

X D e f a u l t D e p t h O f S c r e e n 6: 27

X D e f a u l t G C 6: 27

X D e f a u l t G C O f S c r e e n 6: 27

X D e f a u l t R o o t W i n d o w 6: 27

X D e f a u l t S c r e e n 6: 27

X D e f a u l t S c r e e n O f D i s p l a y 6: 27

X D e f a u l t S t r i n g 6: 27

Index IN-23

X D e f a u l t V i s u a l 6: 27

X D e f a u l t V i s u a l O f S c r e e n 6: 27

X D e f i n e C u r s o r 6: 27

X D e l e t e C o n t e x t 6: 27

X D e l e t e M o d i f i e r m a p E n t r y 6: 27

X D e l e t e P r o p e r t y 6: 27

X D e s t r o y I C 6: 27

X D e s t r o y I m a g e 6: 27

X D e s t r o y R e g i o n 6: 27

X D e s t r o y S u b w i n d o w s 6: 27

X D e s t r o y W i n d o w 6: 27

X D i s a b l e A c c e s s C o n t r o l 6: 27

X D i s p l a y C e l l s 6: 27

X D i s p l a y H e i g h t 6: 27

X D i s p l a y H e i g h t M M 6: 27

X D i s p l a y K e y c o d e s 6: 27

X D i s p l a y M o t i o n B u f f e r S i z e 6: 27

X D i s p l a y N a m e 6: 27

X D i s p l a y O f I M 6: 27

X D i s p l a y O f S c r e e n 6: 27

X D i s p l a y P l a n e s 6: 27

X D i s p l a y S t r i n g 6: 27

X D i s p l a y W i d t h 6: 27

X D i s p l a y W i d t h M M 6: 27

X D o e s B a c k i n g S t o r e 6: 27

X D o e s S a v e U n d e r s 6: 27

XDR
array, fixed length 7: 16

array, variable length 7: 17

basic block size 7: 10

block size 7: 10

boolean 7: 12

constant 7: 19

data, optional 7: 20

data types 7: 11

discriminated union 7: 18

double-precision floating-point
integer 7: 13

enumeration 7: 12

fixed-length array 7: 16

fixed-length opaque data 7: 14

floating-point integer 7: 12

integer 7: 11

integer, double-precision floating
point 7: 13

integer, floating point 7: 12

integers 7: 36

opaque data, fixed length 7: 14

opaque data, variable length 7: 14

optional data 7: 20

protocol specification 7: 10

string 7: 15

structure 7: 17

typedef 7: 19

union discriminated 7: 18

unsigned integer 7: 11

variable-length array 7: 17

variable-length opaque data 7: 14

void 7: 19

x d r _ a c c e p t e d _ r e p l y 6: 17

x d r _ a r r a y 6: 17

x d r _ a u t h s y s _ p a r m s 6: 17

X D r a w A r c 6: 27

X D r a w A r c s 6: 27

X D r a w I m a g e S t r i n g 6: 27

X D r a w I m a g e S t r i n g 1 6 6: 27

X D r a w L i n e 6: 27

X D r a w L i n e s 6: 27

X D r a w P o i n t 6: 27

X D r a w P o i n t s 6: 27

X D r a w R e c t a n g l e 6: 27

X D r a w R e c t a n g l e s 6: 27

X D r a w S e g m e n t s 6: 27

X D r a w S t r i n g 6: 27

X D r a w S t r i n g 1 6 6: 27

X D r a w T e x t 6: 27

X D r a w T e x t 1 6 6: 27

x d r _ b o o l 6: 17

x d r _ b y t e s 6: 17

x d r _ c a l l h d r 6: 17

x d r _ c a l l m s g 6: 17

x d r _ c h a r 6: 17

x d r _ d o u b l e 6: 17

x d r _ e n u m 6: 17

IN-24 Index

x d r _ f l o a t 6: 17

x d r _ f r e e 6: 17

x d r _ i n t 6: 17

x d r _ l o n g 6: 17

x d r m e m _ c r e a t e 6: 17

x d r _ o p a q u e 6: 17

x d r _ o p a q u e _ a u t h 6: 17

x d r _ p o i n t e r 6: 17

x d r r e c _ c r e a t e 6: 17

x d r r e c _ e o f 6: 17

x d r r e c _ s k i p r e c o r d 6: 17

x d r _ r e f e r e n c e 6: 17

x d r _ r e j e c t e d _ r e p l y 6: 17

x d r _ r e p l y m s g 6: 17

x d r _ s h o r t 6: 17

x d r s t d i o _ c r e a t e 6: 17

x d r _ s t r i n g 6: 17

x d r _ u _ c h a r 6: 17

x d r _ u _ l o n g 6: 17

x d r _ u n i o n 6: 17

x d r _ u _ s h o r t 6: 17

x d r _ v e c t o r 6: 17

x d r _ v o i d 6: 17

x d r _ w r a p s t r i n g 6: 17

X E H e a d O f E x t e n s i o n L i s t 6: 27

X E m p t y R e g i o n 6: 27

X E n a b l e A c c e s s C o n t r o l 6: 27

X E q u a l R e g i o n 6: 27

X E S e t C l o s e D i s p l a y 6: 27

X E S e t C o p y G C 6: 27

X E S e t C r e a t e F o n t 6: 27

X E S e t C r e a t e G C 6: 27

X E S e t E r r o r 6: 27

X E S e t E r r o r S t r i n g 6: 27

X E S e t E v e n t T o W i r e 6: 27

X E S e t F l u s h G C 6: 27

X E S e t F r e e F o n t 6: 27

X E S e t F r e e G C 6: 27

X E S e t P r i n t E r r o r V a l u e s 6: 27

X E S e t W i r e T o E v e n t 6: 27

X E v e n t M a s k O f S c r e e n 6: 27

X E v e n t s Q u e u e d 6: 27

X E x t e n t s O f F o n t S e t 6: 27

X F e t c h B u f f e r 6: 27

X F e t c h B y t e s 6: 27

X F e t c h N a m e 6: 27

X F i l l A r c 6: 27

X F i l l A r c s 6: 27

X F i l l P o l y g o n 6: 27

X F i l l R e c t a n g l e 6: 27

X F i l l R e c t a n g l e s 6: 27

X F i l t e r E v e n t 6: 27

X F i n d C o n t e x t 6: 27

X F i n d O n E x t e n s i o n L i s t 6: 27

X F l u s h 6: 27

X F l u s h G C 6: 27

X F o n t s O f F o n t S e t 6: 27

X F o r c e S c r e e n S a v e r 6: 27

X F r e e 6: 27

X F r e e C o l o r m a p 6: 27

X F r e e C o l o r s 6: 27

X F r e e C u r s o r 6: 27

X F r e e E x t e n s i o n L i s t 6: 27

X F r e e F o n t 6: 27

X F r e e F o n t I n f o 6: 27

X F r e e F o n t N a m e s 6: 27

X F r e e F o n t P a t h 6: 27

X F r e e F o n t S e t 6: 27

X F r e e G C 6: 27

X F r e e M o d i f i e r m a p 6: 27

X F r e e P i x m a p 6: 27

X F r e e S t r i n g L i s t 6: 27

_ x f t w 6: 12–13

X G C o n t e x t F r o m G C 6: 27

X G e o m e t r y 6: 27

X G e t A t o m N a m e 6: 27

X G e t C l a s s H i n t 6: 27

X G e t C o m m a n d 6: 27

X G e t D e f a u l t 6: 27

X G e t E r r o r D a t a b a s e T e x t 6: 27

X G e t E r r o r T e x t 6: 27

X G e t F o n t P a t h 6: 27

X G e t F o n t P r o p e r t y 6: 27

X G e t G C V a l u e s 6: 27

Index IN-25

X G e t G e o m e t r y 6: 27

X G e t I c o n N a m e 6: 27

X G e t I c o n S i z e s 6: 27

X G e t I C V a l u e s 6: 27

X G e t I m a g e 6: 27

X G e t I M V a l u e s 6: 27

X G e t I n p u t F o c u s 6: 27

X G e t K e y b o a r d C o n t r o l 6: 27

X G e t K e y b o a r d M a p p i n g 6: 27

X G e t M o d i f i e r M a p p i n g 6: 27

X G e t M o t i o n E v e n t s 6: 27

X G e t N o r m a l H i n t s 6: 27

X G e t P i x e l 6: 27

X G e t P o i n t e r C o n t r o l 6: 27

X G e t P o i n t e r M a p p i n g 6: 27

X G e t R G B C o l o r m a p s 6: 27

X G e t S c r e e n S a v e r 6: 27

X G e t S e l e c t i o n O w n e r 6: 27

X G e t S i z e H i n t s 6: 27

X G e t S t a n d a r d C o l o r m a p 6: 27

X G e t S u b I m a g e 6: 27

X G e t T e x t P r o p e r t y 6: 27

X G e t T r a n s i e n t F o r H i n t 6: 27

X G e t V i s u a l I n f o 6: 27

X G e t W i n d o w A t t r i b u t e s 6: 27

X G e t W i n d o w P r o p e r t y 6: 27

X G e t W M C l i e n t M a c h i n e 6: 27

X G e t W M C o l o r m a p W i n d o w s 6: 27

X G e t W M H i n t s 6: 27

X G e t W M I c o n N a m e 6: 27

X G e t W M N a m e 6: 27

X G e t W M N o r m a l H i n t s 6: 27

X G e t W M P r o t o c o l s 6: 27

X G e t W M S i z e H i n t s 6: 27

X G e t Z o o m H i n t s 6: 27

X G r a b B u t t o n 6: 27

X G r a b K e y 6: 27

X G r a b K e y b o a r d 6: 27

X G r a b P o i n t e r 6: 27

X G r a b S e r v e r 6: 27

X H e i g h t M M O f S c r e e n 6: 27

X H e i g h t O f S c r e e n 6: 27

X I c o n i f y W i n d o w 6: 27

X I f E v e n t 6: 27

X I m a g e B y t e O r d e r 6: 27

X I M O f I C 6: 27

X I n i t E x t e n s i o n 6: 27

X I n s e r t M o d i f i e r m a p E n t r y 6: 27

X I n s t a l l C o l o r m a p 6: 27

X I n t e r n A t o m 6: 27

X I n t e r s e c t R e g i o n 6: 27

X K e y c o d e T o K e y s y m 6: 27

X K e y s y m T o K e y c o d e 6: 27

X K e y s y m T o S t r i n g 6: 27

X K i l l C l i e n t 6: 27

X L a s t K n o w n R e q u e s t P r o c e s s e d 6: 27

X L i s t D e p t h s 6: 27

X L i s t E x t e n s i o n s 6: 27

X L i s t F o n t s 6: 27

X L i s t F o n t s W i t h I n f o 6: 27

X L i s t H o s t s 6: 27

X L i s t I n s t a l l e d C o l o r m a p s 6: 27

X L i s t P i x m a p F o r m a t s 6: 27

X L i s t P r o p e r t i e s 6: 27

X L o a d F o n t 6: 27

X L o a d Q u e r y F o n t 6: 27

X L o c a l e O f F o n t S e t 6: 27

X L o c a l e O f I M 6: 27

X L o o k u p C o l o r 6: 27

X L o o k u p K e y s y m 6: 27

X L o o k u p S t r i n g 6: 27

X L o w e r W i n d o w 6: 27

X M a p R a i s e d 6: 27

X M a p S u b w i n d o w s 6: 27

X M a p W i n d o w 6: 27

X M a s k E v e n t 6: 27

X M a t c h V i s u a l I n f o 6: 27

X M a x C m a p s O f S c r e e n 6: 27

X M a x R e q u e s t S i z e 6: 27

X m b D r a w I m a g e S t r i n g 6: 27

X m b D r a w S t r i n g 6: 27

X m b D r a w T e x t 6: 27

X m b L o o k u p S t r i n g 6: 27

X m b R e s e t I C 6: 27

IN-26 Index

X m b S e t W M P r o p e r t i e s 6: 27

X m b T e x t E s c a p e m e n t 6: 27

X m b T e x t E x t e n t s 6: 27

X m b T e x t L i s t T o T e x t P r o p e r t y 6: 27

X m b T e x t P e r C h a r E x t e n t s 6: 27

X m b T e x t P r o p e r t y T o T e x t L i s t 6: 27

X M i n C m a p s O f S c r e e n 6: 27

X M o v e R e s i z e W i n d o w 6: 27

X M o v e W i n d o w 6: 27

X N e w M o d i f i e r m a p 6: 27

X N e x t E v e n t 6: 27

X N e x t R e q u e s t 6: 27

X N o O p 6: 27

X O f f s e t R e g i o n 6: 27

X/Open CAE Specification 7: 22

X/Open Common Application
Environment Specification, Issue
4.2 1: 1

X/Open Common Application
Environment Specification (CAE),
Issue 4.2 1: 2

X O p e n D i s p l a y 6: 27

X O p e n I M 6: 27

X P a r s e C o l o r 6: 27

X P a r s e G e o m e t r y 6: 27

X P e e k E v e n t 6: 27

X P e e k I f E v e n t 6: 27

X P e n d i n g 6: 27

X p e r m a l l o c 6: 27

XPG3 7: 22

_ _ x p g 4 6: 13

X P l a n e s O f S c r e e n 6: 27

X P o i n t I n R e g i o n 6: 27

X P o l y g o n R e g i o n 6: 27

X P r o t o c o l R e v i s i o n 6: 27

X P r o t o c o l V e r s i o n 6: 27

x p r t _ r e g i s t e r 6: 17

x p r t _ u n r e g i s t e r 6: 17

X P u t B a c k E v e n t 6: 27

X P u t I m a g e 6: 27

X P u t P i x e l 6: 27

X Q L e n g t h 6: 27

X Q u e r y B e s t C u r s o r 6: 27

X Q u e r y B e s t S i z e 6: 27

X Q u e r y B e s t S t i p p l e 6: 27

X Q u e r y B e s t T i l e 6: 27

X Q u e r y C o l o r 6: 27

X Q u e r y C o l o r s 6: 27

X Q u e r y E x t e n s i o n 6: 27

X Q u e r y F o n t 6: 27

X Q u e r y K e y m a p 6: 27

X Q u e r y P o i n t e r 6: 27

X Q u e r y T e x t E x t e n t s 6: 27

X Q u e r y T e x t E x t e n t s 1 6 6: 27

X Q u e r y T r e e 6: 27

X R a i s e W i n d o w 6: 27

X R e a d B i t m a p F i l e 6: 27

X R e b i n d K e y s y m 6: 27

X R e c o l o r C u r s o r 6: 27

X R e c o n f i g u r e W M W i n d o w 6: 27

X R e c t I n R e g i o n 6: 27

X R e f r e s h K e y b o a r d M a p p i n g 6: 27

X R e m o v e F r o m S a v e S e t 6: 27

X R e m o v e H o s t 6: 27

X R e m o v e H o s t s 6: 27

X R e p a r e n t W i n d o w 6: 27

X R e s e t S c r e e n S a v e r 6: 27

X R e s i z e W i n d o w 6: 27

X R e s o u r c e M a n a g e r S t r i n g 6: 27

X R e s t a c k W i n d o w s 6: 27

X r m C o m b i n e D a t a b a s e 6: 27

X r m C o m b i n e F i l e D a t a b a s e 6: 27

X r m D e s t r o y D a t a b a s e 6: 27

X r m E n u m e r a t e D a t a b a s e 6: 27

X r m G e t D a t a b a s e 6: 27

X r m G e t F i l e D a t a b a s e 6: 27

X r m G e t R e s o u r c e 6: 27

X r m G e t S t r i n g D a t a b a s e 6: 27

X r m I n i t i a l i z e 6: 27

X r m L o c a l e O f D a t a b a s e 6: 27

X r m M e r g e D a t a b a s e s 6: 27

X r m P a r s e C o m m a n d 6: 27

X r m P e r m S t r i n g T o Q u a r k 6: 27

X r m P u t F i l e D a t a b a s e 6: 27

Index IN-27

X r m P u t L i n e R e s o u r c e 6: 27

X r m P u t R e s o u r c e 6: 27

X r m P u t S t r i n g R e s o u r c e 6: 27

X r m Q G e t R e s o u r c e 6: 27

X r m Q G e t S e a r c h L i s t 6: 27

X r m Q G e t S e a r c h R e s o u r c e 6: 27

X r m Q P u t R e s o u r c e 6: 27

X r m Q P u t S t r i n g R e s o u r c e 6: 27

X r m Q u a r k T o S t r i n g 6: 27

X r m S e t D a t a b a s e 6: 27

X r m S t r i n g T o B i n d i n g Q u a r k L i s t
6: 27

X r m S t r i n g T o Q u a r k 6: 27

X r m S t r i n g T o Q u a r k L i s t 6: 27

X r m U n i q u e Q u a r k 6: 27

X R o o t W i n d o w 6: 27

X R o o t W i n d o w O f S c r e e n 6: 27

X R o t a t e B u f f e r s 6: 27

X R o t a t e W i n d o w P r o p e r t i e s 6: 27

X S a v e C o n t e x t 6: 27

X S c r e e n C o u n t 6: 27

X S c r e e n N u m b e r O f S c r e e n 6: 27

X S c r e e n O f D i s p l a y 6: 27

X S c r e e n R e s o u r c e S t r i n g 6: 27

X S e l e c t I n p u t 6: 27

X S e n d E v e n t 6: 27

X S e r v e r V e n d o r 6: 27

X S e t A c c e s s C o n t r o l 6: 27

X S e t A f t e r F u n c t i o n 6: 27

X S e t A r c M o d e 6: 27

X S e t B a c k g r o u n d 6: 27

X S e t C l a s s H i n t 6: 27

X S e t C l i p M a s k 6: 27

X S e t C l i p O r i g i n 6: 27

X S e t C l i p R e c t a n g l e s 6: 27

X S e t C l o s e D o w n M o d e 6: 27

X S e t C o m m a n d 6: 27

X S e t D a s h e s 6: 27

X S e t E r r o r H a n d l e r 6: 27

X S e t F i l l R u l e 6: 27

X S e t F i l l S t y l e 6: 27

X S e t F o n t 6: 27

X S e t F o n t P a t h 6: 27

X S e t F o r e g r o u n d 6: 27

X S e t F u n c t i o n 6: 27

X S e t G r a p h i c s E x p o s u r e s 6: 27

X S e t I C F o c u s 6: 27

X S e t I c o n N a m e 6: 27

X S e t I c o n S i z e s 6: 27

X S e t I C V a l u e s 6: 27

X S e t I n p u t F o c u s 6: 27

X S e t I O E r r o r H a n d l e r 6: 27

X S e t L i n e A t t r i b u t e s 6: 27

X S e t L o c a l e M o d i f i e r s 6: 27

X S e t M o d i f i e r M a p p i n g 6: 27

X S e t N o r m a l H i n t s 6: 27

X S e t P l a n e M a s k 6: 27

X S e t P o i n t e r M a p p i n g 6: 27

X S e t R e g i o n 6: 27

X S e t R G B C o l o r m a p s 6: 27

X S e t S c r e e n S a v e r 6: 27

X S e t S e l e c t i o n O w n e r 6: 27

X S e t S i z e H i n t s 6: 27

X S e t S t a n d a r d C o l o r m a p 6: 27

X S e t S t a n d a r d P r o p e r t i e s 6: 27

X S e t S t a t e 6: 27

X S e t S t i p p l e 6: 27

X S e t S u b w i n d o w M o d e 6: 27

X S e t T e x t P r o p e r t y 6: 27

X S e t T i l e 6: 27

X S e t T r a n s i e n t F o r H i n t 6: 27

X S e t T S O r i g i n 6: 27

X S e t W i n d o w B a c k g r o u n d 6: 27

X S e t W i n d o w B a c k g r o u n d P i x m a p 6: 27

X S e t W i n d o w B o r d e r 6: 27

X S e t W i n d o w B o r d e r P i x m a p 6: 27

X S e t W i n d o w B o r d e r W i d t h 6: 27

X S e t W i n d o w C o l o r m a p 6: 27

X S e t W M C l i e n t M a c h i n e 6: 27

X S e t W M C o l o r m a p W i n d o w s 6: 27

X S e t W M H i n t s 6: 27

X S e t W M I c o n N a m e 6: 27

X S e t W M N a m e 6: 27

X S e t W M N o r m a l H i n t s 6: 27

IN-28 Index

X S e t W M P r o p e r t i e s 6: 27

X S e t W M P r o t o c o l s 6: 27

X S e t W M S i z e H i n t s 6: 27

X S e t Z o o m H i n t s 6: 27

X S h r i n k R e g i o n 6: 27

X S t o r e B u f f e r 6: 27

X S t o r e B y t e s 6: 27

X S t o r e C o l o r 6: 27

X S t o r e C o l o r s 6: 27

X S t o r e N a m e 6: 27

X S t o r e N a m e d C o l o r 6: 27

X S t r i n g T o K e y s y m 6: 27

X S t r i n g T o T e x t P r o p e r t y 6: 27

X S u b I m a g e 6: 27

X S u b t r a c t R e g i o n 6: 27

X S u p p o r t s L o c a l e 6: 27

X S y n c 6: 27

X S y n c h r o n i z e 6: 27

X t A d d C a l l b a c k 6: 31

X t A d d C a l l b a c k s 6: 31

X t A d d E v e n t H a n d l e r 6: 31

X t A d d E x p o s u r e T o R e g i o n 6: 31

X t A d d G r a b 6: 31

X t A d d R a w E v e n t H a n d l e r 6: 31

X t A l l o c a t e G C 6: 31

X t A p p A d d A c t i o n H o o k 6: 31

X t A p p A d d A c t i o n s 6: 31

X t A p p A d d I n p u t 6: 31

X t A p p A d d T i m e O u t 6: 31

X t A p p A d d W o r k P r o c 6: 31

X t A p p C r e a t e S h e l l 6: 31

X t A p p E r r o r 6: 31

X t A p p E r r o r M s g 6: 31

X t A p p G e t E r r o r D a t a b a s e 6: 31

X t A p p G e t E r r o r D a t a b a s e T e x t 6: 31

X t A p p G e t S e l e c t i o n T i m e o u t 6: 31

X t A p p I n i t i a l i z e 6: 31

X t A p p M a i n L o o p 6: 31

X t A p p N e x t E v e n t 6: 31

X t A p p P e e k E v e n t 6: 31

X t A p p P e n d i n g 6: 31

X t A p p P r o c e s s E v e n t 6: 31

X t A p p R e l e a s e C a c h e R e f s 6: 31

X t A p p S e t E r r o r H a n d l e r 6: 31

X t A p p S e t E r r o r M s g H a n d l e r 6: 31

X t A p p S e t F a l l b a c k R e s o u r c e s 6: 31

X t A p p S e t S e l e c t i o n T i m e o u t 6: 31

X t A p p S e t T y p e C o n v e r t e r 6: 31

X t A p p S e t W a r n i n g H a n d l e r 6: 31

X t A p p S e t W a r n i n g M s g H a n d l e r 6: 31

X t A p p W a r n i n g 6: 31

X t A p p W a r n i n g M s g 6: 31

X t A u g m e n t T r a n s l a t i o n s 6: 31

X t B u i l d E v e n t M a s k 6: 31

X t C a l l A c c e p t F o c u s 6: 31

X t C a l l A c t i o n P r o c 6: 31

X t C a l l b a c k E x c l u s i v e 6: 31

X t C a l l b a c k N o n e 6: 31

X t C a l l b a c k N o n e x c l u s i v e 6: 31

X t C a l l b a c k P o p d o w n 6: 31

X t C a l l b a c k R e l e a s e C a c h e R e f 6: 31

X t C a l l b a c k R e l e a s e C a c h e R e f L i s t
6: 31

X t C a l l C a l l b a c k L i s t 6: 31

X t C a l l C a l l b a c k s 6: 31

X t C a l l C o n v e r t e r 6: 31

X t C a l l o c 6: 31

_ X t C h e c k S u b c l a s s F l a g 6: 31

X t C l a s s 6: 31

X t C l o s e D i s p l a y 6: 31

X t C o n f i g u r e W i d g e t 6: 31

X t C o n v e r t A n d S t o r e 6: 31

X t C o n v e r t C a s e 6: 31

X t C r e a t e A p p l i c a t i o n C o n t e x t 6: 31

X t C r e a t e M a n a g e d W i d g e t 6: 31

X t C r e a t e P o p u p S h e l l 6: 31

X t C r e a t e W i d g e t 6: 31

X t C r e a t e W i n d o w 6: 31

X t C v t C o l o r T o P i x e l 6: 31

X t C v t I n t T o B o o l 6: 31

X t C v t I n t T o B o o l e a n 6: 31

X t C v t I n t T o C o l o r 6: 31

X t C v t I n t T o F l o a t 6: 31

X t C v t I n t T o F o n t 6: 31

Index IN-29

X t C v t I n t T o P i x e l 6: 31

X t C v t I n t T o P i x m a p 6: 31

X t C v t I n t T o S h o r t 6: 31

X t C v t I n t T o U n s i g n e d C h a r 6: 31

X t C v t S t r i n g T o A c c e l e r a t o r T a b l e
6: 31

X t C v t S t r i n g T o A t o m 6: 31

X t C v t S t r i n g T o B o o l 6: 31

X t C v t S t r i n g T o B o o l e a n 6: 31

X t C v t S t r i n g T o C u r s o r 6: 31

X t C v t S t r i n g T o D i m e n s i o n 6: 31

X t C v t S t r i n g T o D i s p l a y 6: 31

X t C v t S t r i n g T o F i l e 6: 31

X t C v t S t r i n g T o F l o a t 6: 31

X t C v t S t r i n g T o F o n t 6: 31

X t C v t S t r i n g T o F o n t S e t 6: 31

X t C v t S t r i n g T o F o n t S t r u c t 6: 31

X t C v t S t r i n g T o I n i t i a l S t a t e 6: 31

X t C v t S t r i n g T o I n t 6: 31

X t C v t S t r i n g T o P i x e l 6: 31

X t C v t S t r i n g T o S h o r t 6: 31

X t C v t S t r i n g T o T r a n s l a t i o n T a b l e
6: 31

X t C v t S t r i n g T o U n s i g n e d C h a r 6: 31

X t C v t S t r i n g T o V i s u a l 6: 31

X t C X t T o o l k i t E r r o r 6: 32

X t D a t a b a s e 6: 31

X t D e s t r o y A p p l i c a t i o n C o n t e x t
6: 31

X t D e s t r o y W i d g e t 6: 31

X t D i s o w n S e l e c t i o n 6: 31

X t D i s p a t c h E v e n t 6: 31

X t D i s p l a y 6: 31

X t D i s p l a y I n i t i a l i z e 6: 31

X t D i s p l a y O f O b j e c t 6: 31

X t D i s p l a y S t r i n g C o n v e r s i o n W a r n -
i n g 6: 31

X t D i s p l a y T o A p p l i c a t i o n C o n t e x t
6: 31

X T e x t E x t e n t s 6: 27

X T e x t E x t e n t s 1 6 6: 27

X T e x t P r o p e r t y T o S t r i n g L i s t 6: 27

X T e x t W i d t h 6: 27

X T e x t W i d t h 1 6 6: 27

X t F i n d F i l e 6: 31

X t F r e e 6: 31

X t G e t A c t i o n K e y s y m 6: 31

X t G e t A c t i o n L i s t 6: 31

X t G e t A p p l i c a t i o n N a m e A n d C l a s s
6: 31

X t G e t A p p l i c a t i o n R e s o u r c e s 6: 31

X t G e t C o n s t r a i n t R e s o u r c e L i s t
6: 31

X t G e t G C 6: 31

X t G e t K e y s y m T a b l e 6: 31

X t G e t M u l t i C l i c k T i m e 6: 31

X t G e t R e s o u r c e L i s t 6: 31

X t G e t S e l e c t i o n R e q u e s t 6: 31

X t G e t S e l e c t i o n V a l u e 6: 31

X t G e t S e l e c t i o n V a l u e I n c r e m e n t a l
6: 31

X t G e t S e l e c t i o n V a l u e s 6: 31

X t G e t S e l e c t i o n V a l u e s I n c r e m e n -
t a l 6: 31

X t G e t S u b r e s o u r c e s 6: 31

X t G e t S u b v a l u e s 6: 31

X t G e t V a l u e s 6: 31

X t G r a b B u t t o n 6: 31

X t G r a b K e y 6: 31

X t G r a b K e y b o a r d 6: 31

X t G r a p P o i n t e r 6: 31

X t H a s C a l l b a c k s 6: 31

XTI 12: 4

_xti_accept 6: 16

_xti_alloc 6: 16

_xti_bind 6: 16

_xti_close 6: 16

_xti_connect 6: 16

_xti_error 6: 16

_xti_free 6: 16

_xti_getinfo 6: 16

_xti_getprotaddr 6: 16

_xti_getstate 6: 16

_xti_listen 6: 16

IN-30 Index

_xti_look 6: 16

X t I n i t i a l i z e W i d g e t C l a s s 6: 31

X t I n s e r t E v e n t H a n d l e r 6: 31

X t I n s e r t R a w E v e n t H a n d l e r 6: 31

X t I n s t a l l A c c e l e r a t o r s 6: 31

X t I n s t a l l A l l A c c e l e r a t o r s 6: 31

_xti_open 6: 16

_xti_rcv 6: 16

_xti_rcvconnect 6: 16

_xti_rcvdis 6: 16

_xti_rcvrel 6: 16

_xti_rcvudata 6: 16

_xti_rcvuderr 6: 16

X t I s M a n a g e d 6: 31

_xti_snd 6: 16

_xti_snddis 6: 16

_xti_sndrel 6: 16

_xti_sndudata 6: 16

X t I s O b j e c t 6: 31

X t I s R e a l i z e d 6: 31

X t I s S e n s i t i v e 6: 31

X t I s S u b c l a s s 6: 31

_xti_strerror 6: 16

X t I s V e n d o r S h e l l 6: 31

_xti_sync 6: 16

_xti_unbind 6: 16

X t K e y s y m T o K e y c o d e L i s t 6: 31

X t L a s t T i m e s t a m p P r o c e s s e d 6: 31

X t M a k e G e o m e t r y R e q u e s t 6: 31

X t M a k e R e s i z e R e q u e s t 6: 31

X t M a l l o c 6: 31

X t M a n a g e C h i l d 6: 31

X t M a n a g e C h i l d r e n 6: 31

X t M a p W i d g e t 6: 31

X t M e n u P o p d o w n 6: 31

X t M e n u P o p u p 6: 31

X t M e r g e A r g L i s t s 6: 31

X t M o v e W i d g e t 6: 31

X t N a m e 6: 31

X t N a m e T o W i d g e t 6: 31

X t N e w S t r i n g 6: 31

X t O p e n D i s p l a y 6: 31

X t O v e r r i d e T r a n s l a t i o n s 6: 31

X t O w n S e l e c t i o n 6: 31

X t O w n S e l e c t i o n I n c r e m e n t a l 6: 31

X t P a r e n t 6: 31

X t P a r s e A c c e l e r a t o r T a b l e 6: 31

X t P a r s e T r a n s l a t i o n T a b l e 6: 31

X t P o p d o w n 6: 31

X t P o p u p 6: 31

X t P o p u p S p r i n g L o a d e d 6: 31

X t Q u e r y G e o m e t r y 6: 31

X T r a n s l a t e C o o r d i n a t e s 6: 27

X t R e a l i z e W i d g e t 6: 31

X t R e a l l o c 6: 31

X t R e g i s t e r C a s e C o n v e r t e r 6: 31

X t R e g i s t e r G r a b A c t i o n 6: 31

X t R e l e a s e G C 6: 31

X t R e m o v e A c t i o n H o o k 6: 31

X t R e m o v e A l l C a l l b a c k s 6: 31

X t R e m o v e C a l l b a c k 6: 31

X t R e m o v e C a l l b a c k s 6: 31

X t R e m o v e E v e n t H a n d l e r 6: 31

X t R e m o v e G r a b 6: 31

X t R e m o v e I n p u t 6: 31

X t R e m o v e R a w E v e n t H a n d l e r 6: 31

X t R e m o v e T i m e O u t 6: 31

X t R e s i z e W i d g e t 6: 31

X t R e s i z e W i n d o w 6: 31

X t R e s o l v e P a t h n a m e 6: 31

X t S c r e e n 6: 31

X t S c r e e n D a t a b a s e 6: 31

X t S c r e e n O f O b j e c t 6: 31

X t S e t K e y b o a r d F o c u s 6: 31

X t S e t K e y T r a n s l a t o r 6: 31

X t S e t L a n g u a g e P r o c 6: 31

X t S e t M a p p e d W h e n M a n a g e d 6: 31

X t S e t M u l t i C l i c k T i m e 6: 31

X t S e t S e n s i t i v e 6: 31

X t S e t S u b v a l u e s 6: 31

X t S e t T y p e C o n v e r t e r 6: 31

X t S e t V a l u e s 6: 31

X t S e t W M C o l o r m a p W i n d o w s 6: 31

X t S h e l l S t r i n g s 6: 32

Index IN-31

