
SYSTEM V
APPLICATION BINARY INTERFACE

MIPS RISC Processor
Supplement
3rd Edition

 1990-1996 The Santa Cruz Operation, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated into any
human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual, or otherwise, without the prior written permission of the copyright owner, The Santa Cruz
Operation, Inc., 400 Encinal Street, Santa Cruz, California, 95060,USA. Copyright infringement is a serious
matter under the United States and foreign Copyright Laws.

Information in this document is subject to change without notice and does not represent a commitment on the
part of The Santa Cruz Operation, Inc.

SCO, theSCOlogo, The Santa Cruz Operation, and UnixWare are trademarks or registered trademarks of The
Santa Cruz Operation, Inc. in theUSA and other countries.UNIX is a registered trademark in theUSA and
other countries, licensed exclusively through X/Open Company Limited. All other brand and product names
are or may be trademarks of, and are used to identify products or services of, their respective owners.

SCO® UnixWare® is commercial computer software and, together with any related documentation, is subject
to the restrictions on US Government use as set forth below. If this procurement is for aDOD agency, the
following DFAR Restricted Rights Legend applies:

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of Rights in Technical Data and Computer Software Clause atDFARS

252.227-7013. Contractor/Manufacturer is The Santa Cruz Operation, Inc., 400 Encinal Street, Santa Cruz,
CA 95060.

If this procurement is for a civilian government agency, this FAR Restricted Rights Legend applies:

RESTRICTED RIGHTS LEGEND: This computer software is submitted with restricted rights under Government
Contract No. _________ (and Subcontract No. ________, if appropriate). It may not be used, reproduced,
or disclosed by the Government except as provided in paragraph (g)(3)(i) ofFAR Clause 52.227-14 alt III or
as otherwise expressly stated in the contract. Contractor/Manufacturer is The Santa Cruz Operation, Inc., 400
Encinal Street, Santa Cruz, CA 95060.

If any copyrighted software accompanies this publication, it is licensed to the End User only for use in strict
accordance with the End User License Agreement, which should be read carefully before commencing use of
the software.

Document Version: 3
February 1996

TABLE OF CONTENTS i

Table of Contents

The MIPS Processor and System V ABI 1-1
How to Use the MIPS ABI Supplement 1-2
Evolution of the ABI Specification 1-2
Software Distribution Formats 2-1
Physical Distribution Media 2-1
Machine Interface 3-1
Processor Architecture 3-1
Data Representation 3-2

Byte Ordering 3-2
Fundamental Types 3-4
Aggregates and Unions 3-4
Bit–Fields 3-7

Function Calling Sequence 3-11
CPU Registers 3-11
Floating–Point Registers 3-13
The Stack Frame 3-15
Standard Called Function Rules 3-16
Argument Passing 3-17
Function Return Values 3-21
Operating System Interface 3-22
Virtual Address Space 3-22

Page Size 3-22
Virtual Address Assignments 3-22
Managing the Process Stack 3-24
Coding Guidelines 3-25

Exception Interface 3-25
Stack Backtracing 3-27

Process Initialization 3-28
Special Registers 3-29
Process Stack 3-30

Coding Examples 3-36
Code Model Overview 3-37
Position–Independent Function Prologue 3-38

ii TABLE OF CONTENTS

Data Objects 3-38
 Position-Independent Load and Store
Function Calls 3-40
Branching 3-42
C Stack Frame 3-46
Variable Argument List 3-46
Dynamic Allocation of Stack Space 3-49
ELF Header 4-1
Machine Information 4-1
Sections 4-3
Special Sections 4-6
Symbol Table 4-10
Symbol Values 4-10
Global Data Area 4-11
Register Information 4-14
Relocation 4-16
Relocation Types 4-16
Program Loading 5-1
Program Header 5-4
Segment Contents 5-4
Dynamic Linking 5-6
Dynamic Section 5-6
Shared Object Dependencies 5-8
Global Offset Table 5-8
Calling Position–Independent Functions 5-12
Symbols 5-13
Relocations 5-13
Ordering 5-14
Quickstart 5-15
Shared Object List 5-15
Conflict Section 5-17
System Library 6-1
Additional Entry Points 6-1
Support Routines 6-2
Global Data Symbols 6-3

Application Constraints 6-4
System Data Interfaces 6-5

TABLE OF CONTENTS iii

Data Definitions 6-5
X Window Data Definitions 6-87
TCP/IP Data Definitions 6-152
Development Environment 7-1
Development Commands 7-1

PATH Access to Development Tools 7-1
Software Packaging Tools 7-1

System Headers 7-1
Static Archives 7-2

Execution Environment 8-1
Application Environment 8-1

The /dev Subtree 8-1

iv TABLE OF CONTENTS

INTRODUCTION 1-1

The MIPS Processor and System V ABI

The System V Application Binary Interface (ABI) defines a system interface for
compiled application programs. It establishes a standard binary interface for ap-
plication programs on systems that implement the interfaces defined in the System
V Interface Definition, Third Edition. This includes systems that have implemented
UNIX System V, Release 4.

This document supplements the generic System V ABI, and it contains information
specific to System V implementations built on the MIPS RISC processor architec-
ture. These two documents constitute the complete System V Application Binary
Interface specification for systems that implement the MIPS RISC processor archi-
tecture.

1-2 MIPS ABI SUPPLEMEN T

How to Use the MIPS ABI Supplement

This document contains information referenced in the generic System V ABI that
may differ when System V is implemented on different processors. Therefore, the
generic Application Binary Interface is the prime reference document, and this
supplement is provided to fill gaps in that specification.

As with the System V ABI, this specification references other available reference
documents, especially MIPS RISC Architecture (Copyright  1990, MIPS Computer
Systems, Inc., ISBN 0-13-584749-4). All the information referenced by this supple-
ment is part of this specification, and just as binding as the requirements and data
explicitly included here.

Evolution of the ABI Specification
The System V Application Binary Interface will evolve over time to address new tech-
nology and market requirements, and will be reissued at three-year intervals.
Each new edition will contain extensions and additions to increase the capabilities
of applications that conform to the ABI.

As with the System V Interface Definition, the ABI implements Level 1 and Level 2
support for its constituent parts. Level 1 support indicates a portion of the speci-
fication that will be supported indefinitely, while Level 2 support indicates a por-
tion of the specification that may be withdrawn or altered when the next edition of
the System V ABI is made available.

All components of this document and the generic System V ABI have Level 1 sup-
port unless they are explicitly labeled as Level 2.

SOFTWARE INSTALLATION 2-1

Software Distribution Formats

Physical Distribution Media
The approved media for physical distribution of ABI-conforming software are list-
ed below. ABI-conforming systems are not required to accept any of these media.
A conforming system can install all software through its network connection.

■ 60 MByte 1/4-inch cartridge tape in QIC-24 format1

■ 20 MByte 1/4-inch cartridge tape in QIC-120 format 2

■ 1/2-inch, 9-track magnetic tape recorded at 1600 bpi

■ 1.44 MByte 3 1/2-inch floppy disk: double-sided, 80 cylinders/side, 18
sectors/cylinder, 512 bytes/sector

■ DDS Recording Format for Digital Audio Tape (DAT) DDS01 Rev E - Jan-
uary, 1990 3

■ CD-ROM, ISO 9660 with Rockridge extensions

1. The QIC-24 cartridge tape data format is described in Serial Re-
corded Magnetic Tape Cartridge for Information Interchange (9 tracks,
10,000 FTPI, GCR, 60MB), Revision D, April 22, 1983. This docu-
ment is available from the Quarter-Inch Committee (QIC) through
Freeman Associates, 311 East Carillo St., Santa Barbara, CA 93101.

2. The QIC-120 cartridge tape data format is described in Serial Mag-
netic Tape Cartridge for Information Interchange, Fifteen Track, 0.250
in (6.30mm), 10,000 bpi (394 bpmm) Streaming Mode Group Code Re-
cording, Revision D, February 12, 1987. This document is available
from the Quarter-Inch Committee (QIC) through Freeman Associ-
ates, 311 East Carillo St., Santa Barbara, CA 93101

3. The DDS recording format is specified in ANSI Standard X3B5/
88-185A, DDS Recording Format.

2-# MIPS ABI SUPPLEMENT

LOW-LEVEL SYSTEM INFORMATION 3-1

Machine Interface

Processor Architecture
MIPS RISC Architecture processor (Copyright  1990, MIPS Computer Systems,
Inc., ISBN 0-13-584749-4) defines the processor architecture for two separate In-
struction Set Architectures (ISA), MIPS I and MIPS II. The MIPS I Instruction Set
Architecture provides the architectural basis for this processor supplement to the
generic ABI. Programs intended to execute directly on a processor that imple-
ments this ISA use the instruction set, instruction encodings, and instruction se-
mantics of the architecture. Extensions available in the MIPS II ISA are explicitly
not a part of this specification.

Three points deserve explicit mention.

■ A program can assume all documented instructions exist.

■ A program can assume all documented instructions work.

■ A program can use only the instructions defined by the MIPS I ISA. In oth-
er words, from a program’s perspective, the execution environment provides
a complete and working implementation of the MIPS I ISA.

This does not mean that the underlying implementation provides all instructions
in hardware, only that the instructions perform the specified operations and pro-
duce the specified results. The ABI neither places performance constraints on sys-
tems nor specifies what instructions must be implemented in hardware.

Some processors might support the MIPS I ISA as a subset, providing additional
instructions or capabilities, e.g., the R6000 processor. Programs that use those ca-
pabilities explicitly do not conform to the MIPS ABI. Executing those programs on
machines without the additional capabilities gives undefined behavior.

3-2 MIPS ABI SUPPLEMENT

Data Representation

Byte Ordering

The architecture defines an 8-bit byte , 16-bit halfword , a 32-bit word , and a 64-
bit doubleword . By convention there is also a 128-bit quadword . Byte ordering
defines how the bytes that make up halfwords, words, doublewords, and quad-
words are ordered in memory. Most significant byte (MSB) byte ordering, or big
endian as it is sometimes called, means that the most significant byte is located in
the lowest addressed byte position in a storage unit (byte 0).

Although the MIPS processor supports either big endian or little endian byte or-
dering, an ABI-conforming system must support big endian byte ordering.

The figures below illustrate the conventions for bit and byte numbering within
various width storage units. These conventions hold for both integer data and
floating-point data, where the most significant byte of a floating-point value holds
the sign and at least the start of the exponent.

Figure 3-1: Bit and Byte Numbering in Halfwords

Figure 3-2: Bit and Byte Numbering in Words

Figure 3-3: Bit and Byte Numbering in Doublewords

 0
msb lsb1

8 7

0

15

1631 24
msb

8

30 1

15 07

2

23
lsb

0

1516

16

msb0 1

08 7

2

2331 24

lsb
4 5

15 8 7

6 7

2331 24

3

LOW-LEVEL SYSTEM INFORMATION 3-3

Figure 3-4: Bit and Byte Numbering in Quadwords

15

2

16

15

6

16

15

10

16

lsb
15 08 7

14

2331 24 16

msb
0 1

08 7

3

2331 24
4 5

08 7

7

2331 24
8 9

08 7

11

2331 24
12 13 15

3-4 MIPS ABI SUPPLEMENT

Fundamental Types

Figure 3-5 shows the correspondence between ANSI C’s scalar types and the pro-
cessor’s.

Figure 3-5: Scalar Types

A null pointer (for all types) has the value zero.

Aggregates and Unions

Aggregates (structures and arrays) and unions assume the alignment of their most
strictly aligned components. The size of any object, including aggregates and
unions, is always a multiple of the alignment of the object. An array uses the same
alignment as its elements. Structure and union objects can require padding to meet
size and alignment constraints. The contents of any padding is undefined.

■ An entire structure or union object is aligned on the same boundary as its

Alignment
Type C sizeof (bytes) MIPS

char
unsigned char

signed char

short
signed short

unsigned short

int
signed int
long
signed long
enum

unsigned int
unsigned long

any-type *
any-type (*)()

float

double

long double

Integral

unsigned byte

unsigned word

unsigned word

2

4

4

1

2

4

4

1

Pointer

1 1 signed byte

unsigned halfword2 2

signed halfword

signed word4 4

single-precision4 4

double-precision8 8

double-precision8 8

Floating-
point

LOW-LEVEL SYSTEM INFORMATION 3-5

most strictly aligned member.

■ Each member is assigned to the lowest available offset with the appropri-
ate alignment. This may require internal padding, depending on the previ-
ous member.

■ If necessary, a structure’s size is increased to make it a multiple of the
alignment. This may require tail padding, depending on the last member.

In the following examples, byte offsets of the members appear in the upper left cor-
ners.

Figure 3-6: Structure Smaller Than a Word

Figure 3-7: No Padding

struct {
 char c;
};

Byte aligned, sizeof is 1

0 c

struct {
 char c;
 char d;
 short s;
 long n;
};

Word aligned, sizeof is 8

0 c 1 2

4

d s

n

3-6 MIPS ABI SUPPLEMENT

Figure 3-8: Internal Padding

Figure 3-9: Internal and Tail Padding

Figure 3-10: union Allocation

Halfword aligned, sizeof is 4

0 c

2 s

pad1

struct {
 char c;
 short s;
};

struct {
 char c;
 double d;
 short s;
};

1

d

s

8

16

20

d

18

pad

pad

pad

Doubleword aligned, sizeof is 24

pad

0 c

4

12

Word aligned, sizeof is 4union {
 char c;
 short s;
 int j;
};

c

2s

pad1

pad

j

0

0

0

LOW-LEVEL SYSTEM INFORMATION 3-7

Bit–Fields

C struct and union definitions can have bit-fields, defining integral objects with a
specified number of bits. Figure 3-11 lists the bit-field ranges.

Figure 3-11: Bit–Field Ranges

Plain bit-fields always have signed or unsigned values depending on whether the
basic type is signed or unsigned. In particular, char bit-fields are unsigned while
short, int, and long bit-fields are signed. A signed or unsigned modifier overrides
the default type.

In a signed bit-field, the most significant bit is the sign bit; sign bit extension occurs
when the bit-field is used in an expression. Unsigned bit-fields are treated as sim-
ple unsigned values.

Bit-fields follow the same size and alignment rules as other structure and union
members, with the following additions:

■ Bit-fields are allocated from left to right (most to least significant).

signed char -2w-1 to 2w-1-1
char 1 to 8 0 to 2w-1

unsigned char 0 to 2w-1

signed short -2-1 to 2w-1-1
short 1 to 16 -2w-1 to 2w-1-1
unsigned short 0 to 2w-1

signed int -2w-1 to 2w-1-1
int 1 to 32 -2w-1 to 2w-1-1
unsigned int 0 to 2w-1

signed long -2w-1 to 2w-1-1
long 1 to 32 -2w-1 to 2w-1-1
unsigned long 0 to 2w-1

Width wBit-field Type Range

3-8 MIPS ABI SUPPLEMENT

■ A bit-field must reside entirely in a storage unit that is appropriate for
its declared type. Thus a bit-field never crosses its unit boundary.
However, an unnamed bit-field of non-zero width is allocated in the
smallest storage unit sufficient to hold the field, regardless of the de-
fined type.

■ Bit-fields can share a storage unit with other struct/union members,
including members that are not bit-fields. Of course, struct members
occupy different parts of the storage unit.

■ Unnamed types of bit-fields do not affect the alignment of a structure or
union, although member offsets of individual bit-fields follow the align-
ment constraints.

Figures 3-12 through 3-17 provide examples that show the byte offsets of struct
and union members in the upper left corners.

Figure 3-12: Bit Numbering

Figure 3-13: Left-to-Right Allocation

The X3J11 ANSI C specification only allows bit–fields of type int, with or without
a signed or unsigned modifier.NOTE

31
0x01020304 01 02 03 04

0 1

15 08 7

2 3

2324 16

struct {
 int j:5;
 int k:6;
 int m:7;
};

Word aligned, sizeof is 4

padj k m0

20 014 132631 27 21

LOW-LEVEL SYSTEM INFORMATION 3-9

Figure 3-14: Boundary Alignment

Figure 3-15: Storage Unit Sharing

Figure 3-16: union Allocation

Word aligned, sizeof is 12

0

padj0

014 132223

pad pad

pad

s

t

d

c

14 15 02223 u

3

4

8

6
7 6

8 731

31

3

struct {
 short s:9;
 int j:9;
 char c;
 short t:9;
 short u:9;
 char d;
}; 24 23

struct {
 char c;
 short s:8;
};

Halfword aligned, sizeof is 2

c s0 1

15 08 7

union {
 char c;
 short s:8;
};

Halfword aligned, sizeof is 2

c0 1

15 08 7

s
0 1

15 08 7

pad

pad

3-10 MIPS ABI SUPPLEMENT

Figure 3-17: Unnamed Bit-Fields

As the examples show, int bit-fields (including signed and unsigned) pack more
densely than smaller base types. One can use char and short bit-fields to force par-
ticular alignments, but int generally works better.

struct {
 char c;
 int :0;
 char d;
 short :9;
 char e;
 char :0;
};

Byte aligned, sizeof is 9

c
0 1

0

0
padpad

24

31

31

31

4 5 6

8

d

e

:0

:9
24 23 16 15 7 6

24 23

LOW-LEVEL SYSTEM INFORMATION 3-11

Function Calling Sequence

This section describes the standard function calling sequence, including stack
frame layout, register usage, parameter passing, etc. The system libraries de-
scribed in Chapter 6 require this calling sequence.

CPU Registers
The MIPS I ISA specifies 32 general purpose 32-bit registers; two special 32-bit reg-
isters that hold the results of multiplication and division instructions; and a 32-bit
program counter register. The general registers have the names $0..$31. By con-
vention, there is also a set of software names for some of the general registers. Fig-
ure 3-18 describes the conventions that constrain register usage. Figure 3-19 de-
scribes special CPU registers.

Not all register usage conventions are described. In particular, register usage con
ventions in languages other than C are not included, nor are the effects of high
optimization levels. These conventions do not affect the interface to the system
libraries described in Chapter 6.

NOTE

3-12 MIPS ABI SUPPLEMENT

Figure 3-18: General CPU Registers

$0 zero always has the value 0.
$at AT temporary generally used by assembler.
$2..$3 v0–v1 used for expression evaluations and to hold the integer

and pointer type function return values.
$4..$7 a0–a3 used for passing arguments to functions; values are not

preserved across function calls. Additional arguments
are passed on the stack, as described below.

$8-$15 t0–t7 temporary registers used for expression evaluation; val-
ues are not preserved across function calls.

$16-$23 s0–s7 saved registers; values are preserved across function
calls.

$24..$25 t8–t9 temporary registers used for expression evaluations;
values are not preserved across function calls. When
calling position independent functions $25 must contain
the address of the called function.

$26-$27 kt0–kt1 used only by the operating system.
$28 or $gp gp global pointer and context pointer.
$29 or $sp sp stack pointer.
$30 s8 saved register (like s0-s7).
$31 ra return address. The return address is the location to

which a function should return control.

Register
Name

Software
Name

Use

LOW-LEVEL SYSTEM INFORMATION 3-13

Figure 3-19: Special CPU Registers

Floating–Point Registers
The MIPS ISA provides instruction encodings to move, load, and store values for
up to four co-processors. Only co-processor 1 is specified in a MIPS ABI compliant
system; the effect of moves, loads and stores to the other co-processors (0, 2, and 3)
is unspecified.

Co-processor 1 adds 32 32-bit floating-point general registers and a 32-bit control/
status register. Each even/odd pair of the 32 floating-point general registers can
be used as either a 32-bit single-precision floating-point register or as a 64-bit dou-
ble-precision floating-point register. For single-precision values, the even-num-
bered floating-point register holds the value. For double-precision values, the
even-numbered floating-point register holds the least significant 32 bits of the val-
ue and the odd-numbered floating-point register holds the most significant 32 bits
of the value. This is always true, regardless of the byte ordering conventions in use
(big endian or little endian).

Floating-point data representation is that specified in IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985.

Figure 3-20 describes the conventions for using the floating-point registers.

Register
Name Use
pc program counter

hi multiply/divide special register. Holds the most
significant 32 bits of multiply or the remainder of
a divide

lo multiply/divide special register. Holds the least
significant 32 bits of multiply or the quotient of a
divide

Only registers $16..$23 and registers $28.$30 are preserved across a function
call. Register $28 is not preserved, however, when calling position independent
code.

NOTE

3-14 MIPS ABI SUPPLEMENT

Figure 3-20: Floating Point Registers

Register
Name Use
$f0..$f2 used to hold floating-point type function re-

sults; single-precision uses $f0 and double-pre-
cision uses the register pair $f0..$f1. $f2..$f3 re-
turn values that are not used in any part of this
specification.

$f4..$f10 temporary registers.

$f12..$f14 used to pass the first two single- or double-pre-
cision actual arguments.

$f16..$f18 temporary registers.

$f20..$f30 saved registers; their values are preserved
across function calls.

fcr31 control/status register. Contains control and
status data for floating-point operations, in-
cluding arithmetic rounding mode and the en-
abling of floating-point exceptions; it also indi-
cates floating-point exceptions that occurred in
the most recently executed instruction and all
floating-point exceptions that have occurred
since the register was cleared. This register is
read/write and is described more fully in the

Only registers $f20.$f30 are preserved across a function call. All other float-
ing-point registers can change across a function call. However, functions
that use any of $f20.$f30 for single-precision operations only must still save
and restore the corresponding odd-numbered register since the odd-num-
bered register contents are left undefined by single-precision operations.

NOTE

LOW-LEVEL SYSTEM INFORMATION 3-15

The Stack Frame
Each called function in a program allocates a stack frame on the run-time stack, if
necessary. A frame is allocated for each non-leaf function and for each leaf func-
tion that requires stack storage. A non-leaf function is one that calls other func-
tion(s); a leaf function is one that does not itself make any function calls. Stack
frames are allocated on the run-time stack; the stack grows downward from high
addresses to low addresses.

Each stack frame has sufficient space allocated for:

■ local variables and temporaries.

■ saved general registers. Space is allocated only for those registers that
need to be saved. For non-leaf function, $31 must be saved. If any of
$16..$23 or $29..$31 is changed within the called function, it must be saved
in the stack frame before use and restored from the stack frame before re-
turn from the function. Registers are saved in numerical order, with high-
er numbered registers saved in higher memory addresses. The register
save area must be doubleword (8 byte) aligned.

■ saved floating-point registers. Space is allocated only for those registers
that need to be saved. If any of $f20..$f30 is changed within the called func-
tion, it must be saved in the stack frame before use and restored from the
stack frame before return from the function. Both even- and odd-num-
bered registers must be saved and restored, even if only single-precision
operations are performed since the single-precision operations leave the
odd-numbered register contents undefined. The floating-point register
save area must be doubleword (8 byte) aligned.

■ function call argument area. In a non-leaf function the maximum number
of bytes of arguments used to call other functions from the non-leaf func-
tion must be allocated. However, at least four words (16 bytes) must al-
ways be reserved, even if the maximum number of arguments to any
called function is fewer than four words.

■ alignment. Although the architecture requires only word alignment, soft-

There are other user visible registers in some implementations of the architec-
ture, but these are explicitly not part of this processor supplement. A program that
uses these registers is not ABI compliant and its behavior is undefined.

NOTE

3-16 MIPS ABI SUPPLEMENT

ware convention and the operating system require every stack frame to be
doubleword (8 byte) aligned.

A function allocates a stack frame by subtracting the size of the stack frame from
$sp on entry to the function. This $sp adjustment must occur before $sp is used
within the function and prior to any jump or branch instructions.

Figure 3-21: Stack Frame

The corresponding restoration of $sp at the end of a function must occur after any
jump or branch instructions except prior to the jump instruction that returns from
the function. It can also occupy the branch delay slot of the jump instruction that
returns from the function.

Standard Called Function Rules
By convention, there is a set of rules that must be followed by every function that
allocates a stack frame. Following this set of rules ensures that, given an arbitrary
program counter, return address register $31, and stack pointer, there is a deter-
ministic way of performing stack backtracing. These rules also make possible pro-
grams that translate already compiled absolute code into position-independent

Base Offset Contents Frame
unspecified High addresses

. . .
variable size
(if present)

incoming arguments Previous
+16 passed in stack frame

space for incoming
old $sp +0 arguments 1-4

locals and
temporaries

general register
save area Current

floating-point
register save area

argument
$sp +0 build area Low addresses

LOW-LEVEL SYSTEM INFORMATION 3-1 7

code. See Coding Examples in this chapter.

Within a function that allocates a stack frame, the following rules must be ob-
served:

■ In position-independent code that calculates a new value for the gp regis-
ter, the calculation must occur in the first three instructions of the function.
One possible optimization is the total elimination of this calculation; a lo-
cal function called from within a position-independent module guaran-
tees that the context pointer gp already points to the global offset table.
The calculation must occur in the first basic block of the function.

■ The stack pointer must be adjusted to allocate the stack frame before any
other use of the stack pointer register.

■ At most, one frame pointer can be used in the function. Use of a frame
pointer is identified if the stack pointer value is moved into another regis-
ter, after the stack pointer has been adjusted to allocate the stack frame.
This use of a frame pointer must occur within the first basic block of the
function before any branch or jump instructions, or in the delay slot of the
first branch or jump instruction in the function.

■ There is only one exit from a function that contains a stack adjustment: a
jump register instruction that transfers control to the location in the return
address register $31. This instruction, including the contents of its branch
delay slot, mark the end of function.

■ The deallocation of the stack frame, which is done by adjusting the stack
pointer value, must occur once and in the last basic block of the function.
The last basic block of a function includes all of the non control-transfer in-
structions immediately prior to the function exit, including the branch de-
lay slot.

Argument Passing
Arguments are passed to a function in a combination of integer general registers,
floating-point registers, and the stack. The number of arguments, their type, and
their relative position in the argument list of the calling function determines the
mix of registers and memory used to pass arguments. General registers $4..$7 and
floating-point registers $f12 and $f14 pass the first few arguments in registers.
Double-precision floating-point arguments are passed in the register pairs $f12,
$f13 and $f14, $f15; single-precision floating-point arguments are passed in regis-
ters $f12 and $f14.

3-18 MIPS ABI SUPPLEMENT

In determining which register, if any, an argument goes into, take into account the
following considerations:

■ All integer-valued arguments are passed as 32-bit words, with signed or
unsigned bytes and halfwords expanded (promoted) as necessary.

■ If the called function returns a structure or union, the caller passes the ad-
dress of an area that is large enough to hold the structure to the function
in $4. The called function copies the returned structure into this area be-
fore it returns. This address becomes the first argument to the function for
the purposes of argument register allocation and all user arguments are
shifted down by one.

■ Despite the fact that some or all of the arguments to a function are passed
in registers, always allocate space on the stack for all arguments. This
stack space should be a structure large enough to contain all the argu-
ments, aligned according to normal structure rules (after promotion and
structure return pointer insertion). The locations within the stack frame
used for arguments are called the home locations.

■ At the call site to a function defined with an ellipsis in its prototype, the
normal calling conventions apply up until the first argument correspond-
ing to where the ellipsis occurs in the parameter list. If, in the absence of
the prototype, this argument and any following arguments would have
been passed in floating-point registers, they are instead passed in integer
registers. Arguments passed in integer registers are not affected by the el-
lipsis.

This is the case only for calls to functions which have prototypes contain-
ing an ellipsis. A function without a prototype or without an ellipsis in a
prototype is called using the normal argument passing conventions.

These argument passing rules apply only to languages such as C that do not do
dynamic stack allocation of structures and arrays. Ada is an example of a lan-
guage that does dynamic stack allocation of structures and arrays.

NOTE

LOW-LEVEL SYSTEM INFORMATION 3-1 9

■ When the first argument is integral, the remaining arguments are passed
in the integer registers.

■ Structures are passed as if they were very wide integers with their size
rounded up to an integral number of words. The fill bits necessary for
rounding up are undefined.

■ A structure can be split so a portion is passed in registers and the remain-
der passed on the stack. In this case, the first words are passed in $4, $5,
$6, and $7 as needed, with additional words passed on the stack.

■ Unions are considered structures.

The rules that determine which arguments go into registers and which ones must
be passed on the stack are most easily explained by considering the list of argu-
ments as a structure, aligned according to normal structure rules. Mapping of this
structure into the combination of stack and registers is as follows: up to two lead-
ing floating-point arguments can be passed in $f12 and $f14; everything else with
a structure offset greater than or equal to 16 is passed on the stack. The remainder
of the arguments are passed in $4..$7 based on their structure offset. Holes left in
the structure for alignment are unused, whether in registers or in the stack.

The following examples in Figure 3-22 give a representative sampling of the mix
of registers and stack used for passing arguments, where d represents double-pre-
cision floating-point values, s represents single-precision floating-point values,
and n represents integers or pointers. This list is not exhaustive.

See the section “Variable Argument List” later in this section for more information
about variable argument lists.

3-20 MIPS ABI SUPPLEMENT

Figure 3-22: Examples of Argument Passing

d1, d2 $f12, $f14
s1, s2 $f12, $f14
s1, d1 $f12, $f14
d1, s1 $f12, $f14
n1, n2, n3, n4 $4, $5, $6, $7
d1, n1, d2 $f12, $6, stack
d1, n1, n2 $f12, $6, $7
s1, n1, n2 $f12, $5, $6
n1, n2, n3, d1 $4, $5, $6, stack
n1, n2, n3, s1 $4, $5, $6, $7
n1, n2, d1 $4, $5, ($6, $7)
n1, d1 $4, ($6, $7)
s1, s2, s3, s4 $f12, $f14, $6, $7
s1, n1, s2, n2 $f12, $5, $6, $7
d1, s1, s2 $f12, $f14, $6
s1, s2, d1 $f12, $f14, ($6, $7)
n1, s1, n2, s2 $4, $5, $6, $7
n1, s1, n2, n3 $4, $5, $6, $7
n1, n2, s1, n3 $4, $5, $6, $7

In the following examples, an ellipsis appears in the second argu-
ment slot.
n1, d1, d2 $4, ($6, $7), stack
s1, n1 $f12, $5
s1, n1, d1 $f12, $5, ($6, $7)
d1, n1 $f12, f6
d1, n1, d2 $f12,$6, stack

Argument List Register and Stack Assignments

LOW-LEVEL SYSTEM INFORMATION 3-21

Function Return Values
A function can return no value, an integral or pointer value, a floating-point value
(single- or double-precision), or a structure; unions are treated the same as struc-
tures.

A function that returns no value (also called procedures or void functions) puts no
particular value in any register.

A function that returns an integral or pointer value places its result in register $2.

A function that returns a floating-point value places its result in floating-point reg-
ister $f0. Floating-point registers can hold single- or double-precision values.

The caller to a function that returns a structure or a union passes the address of an
area large enough to hold the structure in register $4. Before the function returns
to its caller, it will typically copy the return structure to the area in memory point-
ed to by $4; the function also returns a pointer to the returned structure in register
$2. Having the caller supply the return object’s space allows re-entrancy.

Both the calling and the called function must cooperate to pass the return value
successfully:

■ The calling function must supply space for the return value and pass its
address in the stack frame.

■ The called function must use the address from the frame and copy the re-
turn value to the object so supplied.

Failure of either side to meet its obligations leads to undefined program behavior.

Structures and unions in this context have fixed sizes. The ABI does not specify
how to handle variable sized objects.NOTE

These rules for function return values apply to languages such as C, but do not
necessarily apply to other languages. Ada is one language to which the rules do
not apply.

NOTE

3-22 MIPS ABI SUPPLEMENT

Operating System Interface

Virtual Address Space
Processes execute in a 31-bit virtual address space with addresses from 0 to 231 - 1.
Memory management hardware translates virtual addresses to physical address-
es, which hides physical addressing and allows a process to run anywhere in the
real memory of the system. Processes typically begin with three logical segments,
commonly called text, data, and stack. As Chapter 5 describes, dynamic linking
creates more segments during execution, and a process can create additional seg-
ments for itself with system services.

Page Size

Memory is organized by pages, which are the smallest units of memory allocation
in the system. Page size can vary from one system to another, depending on the
processor, memory management unit, and system configuration. Processes can
call sysconf(BA_OS) to determine the current page size.

Virtual Address Assignments

Although processes have the full 31-bit address space available, several factors
limit the size of a process.

■ The system reserves a configuration-dependent amount of virtual space.

■ A tunable configuration parameter limits process size.

■ A process that requires more memory than is available in system physical
memory and secondary storage cannot run. Although some physical
memory must be present to run any process, the system can execute pro-
cesses that are bigger than physical memory, paging them to and from sec-
ondary storage. Nonetheless, both physical memory and secondary stor-
age are shared resources. System load, which can vary from one program
execution to the next, affects the available amount of memory.

LOW-LEVEL SYSTEM INFORMATION 3-23

Figure 3-23 shows virtual address configuration. The terms used in the figure are:

■ The loadable segments of the processes can begin at 0. The exact address-
es depend on the executable file format [see Chapters 4 and 5].

■ The stack and dynamic segments reside below the reserved area. Process-
es can control the amount of virtual memory allotted for stack space, as de-
scribed below.

■ The reserved area resides at the top of virtual space.

Figure 3-23: Virtual Address Configuration

End of memory

Beginning of memory

0x7fffffff
Stack and dynamic

segments

Reserved

...

Loadable segments0

...

...

3-24 MIPS ABI SUPPLEMENT

As Figure 3-23 shows, the system reserves the high end of virtual space, with the
stack and dynamic segments of a process below that. Although the exact bound-
ary between the reserved area and a process depends on system configuration, the
reserved area will not consume more than 4 MBytes from the virtual address
space. Thus the user virtual address range has a minimum upper bound of 0x7f-
bfffff. Individual systems can reserve less space, increasing the processes virtual
memory range. More information follows in ‘Managing the Process Stack.’

Although applications can control their memory assignments, the typical arrange-
ment follows the diagram in Figure 3-23. Loadable segments reside at low ad-
dresses; dynamic segments occupy the higher range. When applications let the
system choose addresses for dynamic segments (including shared object seg-
ments), it chooses high addresses. This leaves the midrange of the address spec-
trum available for dynamic memory allocation with facilities such as
malloc(BA_OS).

Managing the Process Stack

‘Process Initialization’ in this chapter describes the initial system management
contents. Stack addresses change from system to system or from execution to ex-
ecution. Processes, therefore, should not depend on finding their stack at a partic-
ular virtual address.

A tunable configuration parameter controls the system maximum stack size. A
process also can use setrlimit(BA_OS), to set its own maximum stack size, up to the
system limit. On MIPS, the stack segment has read, write, and execute permis-
sions.

Programs that dereference null pointers are erroneous, although an implementa-
tion is not obliged to detect such erroneous behavior. Such programs may or
mya not fall on a particular system. To enhance portability, programmers are
strongly cautioned not to rely on this behavior.

CAUTION

Although application programs can begin at virtual address 0, they do not neces-
sarily do so. On some platforms application programs conventionally begin at
0x400000 (4 MBytes), leaving the initial 4 MBytes with an invalid address map-
ping. Processes on such systems that reference this invalid memory (for exam-
ple, by dereferencing a null pointer) generate a TLB miss exception, as described
in Exception Interface in this chapter. A process can, however, establish a valid
mapping for this area using the mmap(KE_OS) facilities.

NOTE

LOW-LEVEL SYSTEM INFORMATION 3-25

Coding Guidelines

Operating system facilities, such as mmap(KE_OS), allow a process to establish ad-
dress mappings in two ways. First, the program can let the system choose an ad-
dress. Second, the program can force the system to use an address the program
supplies. This second alternative can cause application portability problems, be-
cause the requested address might not always be available. Differences in virtual
address space between different architectures can be particularly troublesome, al-
though the same problems can arise within a single architecture.

Process address spaces typically have three segment areas that can change size
from one execution to the next: the stack [through setrlimit(BA_OS)], the data seg-
ment [through malloc(BA_OS)], and the dynamic segment area [through mmap(-
KE_OS)]. Changes in one area can affect the virtual addresses available for anoth-
er. Consequently, an address that is available in one process execution might not
be available in the next. A program that uses mmap(KE_OS) to request a mapping
at a specific address could work in some environments and fail in others. For this
reason, programs that establish a mapping in their address space should use an ad-
dress provided by the system.

Despite these warnings about requesting specific addresses, the facility can be
used properly. For example, a multiprocess application can map several files into
the address space of each process and build relative pointers among the data in the
files. This is done by having each process specify a certain amount of memory at
an address chosen by the system. After each process receives its own address from
the system, it can map the desired files into memory, at specific addresses within
the original area. This collection of mappings could be at different addresses in
each process but their relative positions would be fixed. Without the ability to spec-
ify addresses, the application cannot build shared data structures, because the rel-
ative positions for files in each process would be unpredictable.

Exception Interface
In MIPS architecture, there are two execution modes: user and kernel. Processes
run in user mode and the operating system kernel runs in kernel mode. The pro-
cessor changes mode to handle precise or interrupting exceptions. Precise excep-
tions, which result from instruction execution, are explicitly generated by a pro-
cess. This section, therefore, specifies those exception types with defined behavior.

An exception results in the operating system kernel taking some action. After han-
dling the exception the kernel restarts the user process. It is not possible to deter-
mine that an exception took place, except by apparent slower execution. Some ex-
ceptions are considered errors, however, and cannot be handled by the operating
system kernel. These exceptions cause either process termination or, if signal

3-26 MIPS ABI SUPPLEMENT

catching is enabled, send a signal to the user process (see signal(BA_OS)).

Figure 3-24 lists the correspondence between exceptions and the signals specified
by signal(BA_OS).

Figure 3-24: Hardware Exceptions and Signals

Floating-point instructions exist in the architecture, and can be implemented either
in hardware or software. If the Coprocessor Unusable exception occurs because of
a coprocessor 1 instruction, the process receives no signal. Instead, the system in-
tercepts the exception, emulates the instruction, and returns control to the process.
A process receives SIGILL for the Coprocessor Unusable exception only when the

TLB modification SIGBUS
Read TLB miss SIGSEGV
Read TLB miss SIGBUS
Write TLB miss SIGSEGV
Read Address Error SIGBUS
Write Address Error SIGBUS
Instruction Bus Error SIGBUS
Data Bus Error SIGBUS
Syscall SIGSYS
Breakpoint SIGTRAP
Reserved Instruction SIGILL
Coprocessor Unusable SIGILL
Arithmetic Overflow SIGFPE

 Exception Signal

A Read TLB miss generates a SIGSEGV signal when unmapped memory is
accessed. A Read TLB miss generates a SIGBUS signal when mapped, but oth-
erwise inaccessible memory is accessed. In other words, a SIGBUS is gener-
ated on a protection fault while a SIGSEGV is generated on a segmentation fault.

NOTE

LOW-LEVEL SYSTEM INFORMATION 3-2 7

accessed coprocessor is not present and when it is not coprocessor 1.

System calls, or requests for operating system services, use the Syscall exception
for low level implementation. Normally, system calls do not generate a signal, but
SIGSYS can occur in some error conditions.

Stack Backtracing

There are standard called function rules for functions that allocate a stack frame
and because the operating system kernel initializes the return address register $31
to zero when starting a user program it is possible to trace back through any arbi-
trarily nested function calls. The following algorithm, which takes the set of gen-
eral registers plus the program counter as input, produces the values the registers
had at the most recent function call. Of course, only the saved registers plus gp, sp,
ra, and pc can be reconstructed.

■ Scan each instruction starting at the current program counter, going back-
wards. The compiler and linker must guarantee that a jump register to re-
turn address instruction will always precede each text section.

■ If the instruction is of the form “move $r, sp” or “addu $r, $sp, $0, then
the register $r may be a frame pointer. The algorithm remembers the
current instruction so it can continue its backward scan.

Then, it scans forward until it sees the “jr ra” instruction that marks the
end of the current function.

Next, it scans backwards searching for an instruction of the form
”move sp, $r” or “addu $sp, $r, $0”. This scan terminates when such an
instruction is found or the branch or jump instruction that marks the
beginning of the last basic block.

If a move or addu instruction of the kind described above was found,
remember the register number of $r as the frame pointer. Otherwise,
$r is not the frame pointer.

The algorithm should return to its original backwards scan starting
with the instruction preceding the one remembered above.

■ If the instruction is a stack pointer decrement, exit the scan.

The ABI does not define the implementation of individual system calls. Instead,
programs should use the system libraries described in Chapter 6. Programs with
embedded system call instructions do not conform to the ABI.

NOTE

3-28 MIPS ABI SUPPLEMENT

■ If the instruction is a jump register to return address, exit the scan.

■ If the last examined instruction is a jump register to the return address, it
is the end of the previous function and no stack frame has yet been allocat-
ed for the current function. The address from which the current function
was called is in the return address register minus eight. The other save
registers had their current values when this function was called, so just re-
turn their current values.

■ The stack decrement instruction must occur in the first basic block of the
function. The amount of stack decrement is the size of the stack frame.

■ Examine each instruction at increasing program addresses. If any instruc-
tion is a store of save registers $16-$23, $28, $30, or $31 through the frame
pointer (or stack pointer if no frame pointer was used), then record its val-
ue by reading from the stack frame.

■ Stop after examining the instruction in the first branch delay slot encoun-
tered. This marks the end of the first basic block.

■ The frame pointer is the stack pointer value at the time the current func-
tion was called (or the stack pointer if no frame pointer was used) plus the
size of the stack frame.

■ The address from which the function is called is either the return address
register value minus eight or, if the return address was saved on the stack,
the saved value minus eight.

Process Initialization
This section describes the machine state that exec(BA_OS) creates for “infant” pro-
cesses, including argument passing, register usage, stack frame layout, etc. Pro-
gramming language systems use this initial program state to establish a standard
environment for their application programs. For example, a C program begins ex-

LOW-LEVEL SYSTEM INFORMATION 3-2 9

ecution at a function named main, conventionally declared as follows:

where argc is a non-negative argument count; argv is an array of argument strings,
with argv[argc]==0; and envp is an array of environment strings, also terminated
by a null pointer.

Although this section does not describe C program initialization, it does provide
the information necessary to implement a call to main or to the entry point for a
program in any other language.

Special Registers

As the architecture defines, two registers control and monitor the processor: the
status register (SR) and the floating-point control and status register (csr). Appli-
cations cannot access the SR directly; they run in user mode. Instructions to read
and write the SR are privileged. No fields in the SR affect user program behavior,
except that the program can assume that coprocessor 1 instructions work as docu-
mented and that the user program executes in user mode with the possibility that
interrupts are enabled. Nothing more should be inferred about the contents of the
SR.

Figure 3-25 lists the initial values of the floating-point control and status register
provided in the architecture

The ABI specifies that coprocessor 1 always exists and that coprocessor 1 instruc-
tions (floating-point instructions) work as documented. Programs that directly ex-

extern int main(int argc, char *argv[], char *envp[]);

Figure 3-25: Floating–Point Control and Status Register Fields

C 0 Condition
Bit Exceptions 0 No current exceptions
Trap Enables 0 Floating-point traps not enabled
Sticky Bits 0 No accrued exceptions
RM 0 Round to nearest

Field NoteValue

3-30 MIPS ABI SUPPLEMENT

ecute coprocessor 0, 2, or 3 instructions do not conform to the ABI. Individual sys-
tem implementations may use one of these coprocessors under control of the sys-
tem software, not the application.

Process Stack

When a process receives control, its stack holds the arguments and environment
from exec(BA_OS).Figure 3-26 shows the initial process stack.

Argument strings, environment strings, and auxiliary information do not appear
in a specific order with the information block. The system may leave an unspeci-
fied amount of memory between a null auxiliary vector entry and the beginning
of an information block.

Figure 3-26: Initial Process Stack

Information block, including
argument strings

environment strings
auxiliary information

...
(size varies)
Unspecified

Null auxiliary vector entry
Auxiliary vector

...
(2-word entries)

0 word
Environment pointers

. . .
(one word each)

0 word
Argument pointers

. . .
(Argument count words)$sp+0 Low addresses

High addressesUnspecified

LOW-LEVEL SYSTEM INFORMATION 3-31

Except as shown below, general integer and floating-point register values are un-
specified at process entry. Consequently, a program that requires specific register
values must set them explicitly during process initialization. It should not rely on
the operating system to set all registers to 0.

The registers listed below have the specified contents at process entry:

$2 A non-zero value specifies a function pointer the application should
register with atexit (BA_OS). If $2 contains zero, no action is required.

$sp The stack pointer holds the address of the bottom of the stack, which
must be doubleword (8 byte) aligned.

$31 The return address register is set to zero so that programs that search
backward through stack frames (stack backtracing) recognize the last
stack frame, that is, a stack frame with a zero in the saved $31 slot.

Every process has a stack, but the system does not define a fixed stack address.
Furthermore, a program’s stack address can change from one system to another
even from one process invocation to another. Thus the process initialization code
must use the stack address in $sp. Data in the stack segment at addresses below
the stack pointer contain undefined values.

Whereas the argument and environment vectors transmit information from one
application program to another, the auxiliary vector conveys information from the
operating system to the program. This vector is an array of the structures shown
in Figure 3-27, interpreted according to the a_type member.

Figure 3-27: Auxillary Vector

typedef struct
{

int a_type;
union {

long a_val;
void *a_ptr;
void (*a_fcn)();

} a_un;
} auxv_t;

3-32 MIPS ABI SUPPLEMENT

Figure 3-28: Auxillary Vector Types, a_type

The auxiliary vector types (a_type) shown in Figure 3-28 are explained in the para-
graphs below:

AT_NULL The auxiliary vector has no fixed length; instead the
a_type member of the last entry has this value.

AT_IGNORE This type indicates the entry has no meaning. The cor-
responding value of a_un is undefined.

AT_EXECFD As Chapter 5 describes, exec(BA_OS) can pass control to
an interpreter program. When this happens, the system plac-
es either an entry of type AT_EXECFD or type AT_PHDR in the
auxiliary vector. The entry for type AT_EXECFD uses the
a_val member to contain a file descriptor open to read the
application program object file.

AT_NULL 0 ignored
AT_IGNORE 1 ignored
AT_EXECFD 2 a_val
AT_PHDR 3 a_ptr
AT_PHENT 4 a_val
AT_PHNUM 5 a_val
AT_PAGESZ 6 a_val
AT_BASE 7 a_ptr
AT_FLAGS 8 a_val
AT_ENTRY 9 a_ptr
AT_NOTELF 10 a_val
AT_UID 11 a_val
AT_EUID 12 a_val
AT_GID 13 a_val
AT_EGID 14 a_val

Name Value a_un

LOW-LEVEL SYSTEM INFORMATION 3-33

AT_PHDR Under some conditions, the system creates the memory
image of the application program before passing control
to the interpreter program. When this happens, the
a_ptr member of the AT_PHDR entry tells the interpreter
where to find the program header table in the memory image.
If the AT_PHDR entry is present, entries of types
AT_PHENT, AT_PHNUM, and AT_ENTRY are also present. See
Chapter 5 in both the System V ABI and the processor supple-
ment for more information about the program header table.

AT_PHENT The a_val member of this entry holds the size, in bytes, of
one entry in the program header table to which the AT_PHDR
entry points.

AT_PHNUM The a_val member of this entry holds the number of entries
in the program header table to which the AT_PHDR entry
points.

AT_PAGESZ If present, the a_val member of this entry gives the system
page size, in bytes. The same information also is available
through sysconf(BA_OS) .

AT_BASE The a_ptr member of this entry holds the base address at
which the interpreter program was loaded into memory. See
‘‘Program Header’’ in the System V ABI for more information
about the base address.

AT_FLAGS If present, the a_val member of this entry holds one-bit
flags. Bits with undefined semantics are set to zero.

AT_ENTRY The a_ptr member of this entry holds the entry point of the
application program to which the interpreter program should
transfer control.

AT_NOTELF The a_val member of this entry is zero if the executable is
in ELF format as described in Chapter 4. It is non-zero if the
executable is in MIPS XCOFF format.

AT_UID If present, the a_val member of this entry holds the actual
user id of the current user.

AT_EUID If present, the a_val member of this entry holds the effective
user id of the current user.

AT_GID If present, the a_val member of this entry holds the actual

3-34 MIPS ABI SUPPLEMENT

group id of the current user.

AT_EGID If present, the a_val member of this entry holds the effective
group id of the current user.

Other auxiliary vector types are reserved. Currently, no flag definitions exist for
AT_FLAGS. Nonetheless, bits under the 0xff000000 mask are reserved for system
semantics.

 In the following example, the stack resides below 0x7fc00000, growing toward
lower addresses. The process receives three arguments:

■ cp

■ src

■ dst

It also inherits two environment strings. (The example does not show a fully con-
figured execution environment).

■ HOME=/home/dir

■ PATH=/home/dir/bin:/usr/bin:

Its auxiliary vector holds one non-null entry, a file descriptor for the executable
file.

■ 13

The initialization sequence preserves the stack pointer’s doubleword (8 byte)
alignment.

LOW-LEVEL SYSTEM INFORMATION 3-35

Figure 3-29: Example Process Stack

Environment vector

0
0

13
2
0

0x7fbfffe2
0x7fbfffd3

0
0x7fbfffcf
0x7fbfffcb
0x7fbfffc8

3

n : \0 pad
r / b i
: / u s
/ b i n
/ d i r
h o m e
T H = /
r \0 P A
e / d i
/ h o m
O M E =
s t \0 H
r c \0 d
c p \0 s

High addresses

Low addresses

Argument vector
Argument count

Auxiliary vector

$sp+0 0x7fbfff90

0x7fbfffa0

0x7fbfffb0

0x7fbfffc0

0x7fbfffd0

0x7fbfffe0

0x7fbffff0

3-36 MIPS ABI SUPPLEMENT

Coding Examples

This section discusses example code sequences for basic operations such as calling
functions, accessing static objects, and transferring control from one part of a pro-
gram to another. Previous sections discuss how a program uses the machine or
theoperating system, and specify what a program can or cannot assume about the
execution environment. Unlike the previous material, the information here illus-
trates how operations can be done, not how they must be done.

As before, examples use the ANSI C language. Other programming languages
may use the same conventions displayed below, but failure to do so does not pre-
vent a program from conforming to the ABI. Two main object code models are
available.

Absolute code
Instructions can hold absolute addresses under this model. To ex-
ecute properly, the program must be loaded at a specific virtual
address, making the program absolute addresses coincide with
the process virtual addresses.

Position-independent code
Instructions under this model hold relative addresses, not abso-
lute addresses. Consequently, the code is not tied to a specific load
address, allowing it to execute properly at various positions in vir-
tual memory.

The following sections describe the differences between absolute code and posi-
tion-independent code. Code sequences for the models (when different) appear to-
gether, allowing easier comparison

The examples below show code fragments with various simplifications. They are
intended to explain addressing modes, not to show optimal code sequences or to
reproduce compiler output or actual assembler syntax.

 NOTE

When other sections of this document show assembly language code
sequences, they typically show only the absolute versions. Information in this
section explains how position–independent code would alter the examples.

NOTE

LOW-LEVEL SYSTEM INFORMATION 3-3 7

Code Model Overview
When the system creates a process image, the executable file portion of the process
has fixed addresses, and the system chooses shared object library virtual addresses
to avoid conflicts with other segments in the process. To maximize text sharing,
shared objects conventionally use position-independent code, in which instruc-
tions contain no absolute addresses. Shared object text segments can be loaded at
various virtual addresses without changing the segment images. Thus multiple
processes can share a single shared object text segment, even though the segment
resides at a different virtual address in each process.

Position-independent code relies on two techniques:

■ Control transfer instructions hold addresses relative to the program
counter (PC). A PC-relative branch or function call computes its destina-
tion address in terms of the current program counter, not relative to any
absolute address. If the target location exceeds the allowable offset for PC-
relative addressing, the program requires an absolute address.

■ When the program requires an absolute address, it computes the desired
value. Instead of embedding absolute addresses in the the instructions,
the compiler generates code to calculate an absolute address during exe-
cution.

Because the processor architecture provides PC-relative call and branch instruc-
tions, compilers can easily satisfy the first condition.

A global offset table provides information for address calculation. Position-indepen-
dent object files (executable and shared object files) have a table in their data seg-
ment that holds addresses. When the system creates the memory image for an ob-
ject file, the table entries are relocated to reflect the absolute virtual addresses as-
signed for an individual process. Because data segments are private for each
process, the table entries can change - whereas text segments do not change be-
cause multiple processes share them.

Due to the 16-bit offset field of load and store instructions, the global offset table is
limited to 16,384 entries (65,536 bytes).

The 16-bit offset fields of instructions require two instructions to load a 32-bit ab-
solute value into a register. In the following code fragments wherever a 32-bit abso

lute value is loaded with a combination of lui and addiu instructions, the proper
correction was made to the high 16 bits before setting the most significant (sign) bit
of the low order 16 bits of the value.

3-38 MIPS ABI SUPPLEMENT

Position–Independent Function Prologue
This section describes the function prologue for position-independent code. A
function prologue first calculates the address of the global offset table, leaving the
value in register $28, hereafter referred to by its software name gp. This address
is also known as the context pointer. This calculation is a constant offset between
the text and data segments, known at the time the program is linked.

The offset between the start of a function and the global offset table (known be-
cause the global offset table is kept in the data segment) is added to the virtual ad-
dress of the function to derive the virtual address of the global offset table. This
value is maintained in the gp register throughout the function.

The virtual address of a called function is passed to the function in general register
$25, hereafter referred to by its software name t9. All callers of position indepen-
dent functions must place the address of the called function in t9.

After calculating the gp, a function allocates the local stack space and saves the gp
on the stack, so it can be restored after subsequent function calls. In other words,
the gp is a caller saved register.

The code in the following figure illustrates a position-independent function pro-
logue. _gp_disp represents the offset between the beginning of the function and
the global offset table.

Various optimizations are possible in this code example and the others that follow.
For example, the calculation of gp need not be done for a position-independent
function that is strictly local to an object module. However, the simplest, most gen-
eral examples are used to keep the complexity to a minimum.

Data Objects
This section describes data objects with static storage duration. The discussion ex-
cludes stack-resident objects, because programs always compute their virtual ad-
dresses relative to the stack pointer.

Although this section contains examples, an ABI compliant program must use
register t9 for the context register. The interface to the system library routines
described in Chapter 6 of the System V ABI relies on the address of the called
procedure being passed in t9.

NOTE

name:
la gp, _gp_disp
addu gp, gp, t9
addiu sp, sp, –64
sw gp, 32(sp)

LOW-LEVEL SYSTEM INFORMATION 3-39

In the MIPS architecture, only load and store instructions access memory. Because
instructions cannot directly hold 32-bit addresses, a program normally computes
an address into a register, using one instruction to load the high 16 bits of the ad-
dress and another instruction to add the low 16 bits of the address.

Figure 3-30: Absolute Load and Store

Position-independent instructions cannot contain absolute addresses. Instead, in-
structions that reference symbols hold the symbols’ offsets into the global offset ta-
ble. Combining the offset with the global offset table address in gp gives the abso-
lute address of the table entry holding the desired address .

In actual practice, most data references are performed by a single machine in-
struction using a gp relative address into the global data area (the global offset
table and the global data area are both addressed by gp in position–independent
code). However, those references are already position–independent and this
section illustrates the differences between absolute addressing and position in-
dependent addressing.

NOTE

C Assembly

extern int src; .globl src, dst, ptr
extern int dst;
extern int *ptr;
ptr = &dst; lui t6, dst >> 16

addiu t6, t6, dst & 0xffff
lui t7, ptr >> 16
sw t6, ptr & 0xffff(t7)

*ptr = src; lui t6, src >> 16
lw t6, src & 0xffff(t6)
lui t7, ptr >> 16
lw t7, ptr & 0xffff(t7)
sw t6, 0(t7)

3-40 MIPS ABI SUPPLEMENT

 Position-Independent Load and Store

Function Calls

Programs use the jump and link instruction, jal, to make direct function calls.
Since the jal instruction provides 28 bits of address and the program counter con-
tributes the four most significant bits, direct function calls are limited to the current
256 MByte chunk of the address space as defined by the four most significant bits
of pc.

The offset of data item name is represented as name_got_off in the global offset
table. This is only a convention and there is no actual assembler support for these
constructs.

NOTE

extern int src; globl src, dst, ptr
extern int dst;
extern int *ptr;
ptr = &dst; lw t7, dst_got_off(gp)

lw t6, ptr_got_off(gp)
nop
sw t7, 0(t6)

*ptr = src; lw t7, src_got_off(gp)
nop
lw t7, 0(t7)
lw t6, ptr_got_off(gp)
nop
lw t6, 0(t6)
nop
sw t7, 0(t6)

C Assembly

LOW-LEVEL SYSTEM INFORMATION 3-41

Figure 3-31: Absolute Di rect Function Ca ll

Calls to functions outside the 256 MByte range and other indirect function calls are
done by computing the address of the called function into a register and using the
jump and link register, jalr , instruction.

Figure 3-32: Absolute Indirect Function Call

Calling position independent code functions is always done with the jalr instruc-
tion. The global offset table holds the absolute addresses of all position indepen-
dent functions.

C Assembly

extern void function(); jal function
function(); nop

extern void (*ptr)();
extern void name();
ptr = name; lui t6, name >> 16

 addiu t6, t6, name & 0xffff
 lui t7, ptr >> 16
 sw t6, ptr & 0xffff(t7)

(*ptr)(); lui t6, ptr >> 16
 addiu t6, t6, ptr & 0xffff
 jalr ra, t6
 nop

C Assembly

Normally, the data area for the variable ptr is kept in the global data area and
is accessed relative to register gp . However, this example illustrates the differ-
ence between absolute data references and position–independent data refer-
ences.

NOTE

3-42 MIPS ABI SUPPLEMENT

Figure 3-33: Position-Independent Function Calls

Branching
Programs use branch instructions to control execution flow. As defined by the
architecture, branch instructions hold a PC-relative value with a 256 KByte range,
allowing a jump to locations up to 128 KBytes away in either direction.

gp must be restored on return because called position independent functions can
change it. gp is saved in the stack frame in the prologue of position–independent
code functions.

NOTE

extern void (*ptr)(); .global ptr, name
extern void name();
name(); lw t9, name_got_off(gp)

nop
jalr t9
nop
lw gp, 24(sp)
nop

ptr = name; lw t7, name_got_off(gp)
lw t6, ptr_got_off(gp)
nop
sw t7,0(t6) (*ptr)();
lw t7, ptr_got_off(gp)
nop
lw t9, 0(t7)
nop
jalr t9
nop
lw gp, 24(sp)
nop

C Assembly

LOW-LEVEL SYSTEM INFORMATION 3-43

Figure 3-34: Branch Instruction, All Models

C switch statements provide multiway selection. When case labels of a switch
statement satisfy grouping constraints, the compiler implements the selection with
an address table. The address table is placed in a .rdata section; this so the linker
can properly relocate the entries in the address table. Figures 3-36 and 3-37 use the
following conventions to hide irrelevant details:

■ The selection expression resides in register t7;

■ case label constants begin at zero;

■ case labels, default , and the address table use assembly names
.Lcase i, .Ldef , and .Ltab, respectively.

Address table entries for absolute code contain virtual addresses; the selection
code extracts the value of an entry and jumps to that address. Position-indepen-
dent table entries hold offsets; the selection code compute the absolute address of
a destination.

 C Assembly

label: $32:
.
goto label; b $32

nop

3-44 MIPS ABI SUPPLEMENT

Figure 3-35: Absolute switch Code

switch (j) sltiu at, t7, 4
{ beq at, zero, .Ldef
case 0: sll t7, t7, 2
 ... lui t6, .Ltab >> 16
case 2: addiu t6, .Ltab & 0xffff
 ... addu t6, t6, t7
case 3: lw t7, 0(t6)
 ... nop
default: jr t7
 ... nop
 } .Ltab: .word .Lcase0

.word .Ldef

.word .Lcase2

.word .Lcase3

 C Assembly

LOW-LEVEL SYSTEM INFORMATION 3-45

Figure 3-36: Position-independent switch Code

switch (j) sltiu at, t7, 4
{ beq at, zero, .Ldef
case 0: sll t7, t7, 2
 ... lw at, .Ltab_got_off(gp)
case 2: nop
 ... addu at, at, t7
case 3: lw t6, 0(at)
 ... nop
default: addu t6, t6, gp
 ... jr t6
 } nop

.rdata
.Ltab: .word .Lcase0_gp_off

.word .Ldef_gp_off

.word .Lcase2_gp_off

.word .Lcase3_gp_off

C Assembly

3-46 MIPS ABI SUPPLEMENT

C Stack Frame
Figure 3-37 shows the C stack frame organization.It conforms to the standard stack
frame with designated roles for unspecified areas in standard frame.

Figure 3-37: C Stack Frame

A C stack frame does not normally change size during execution. The exception is
dynamically allocated stack memory, discussed below. By convention, a function
allocates automatic (local) variables in the top of its frame and references them as
positive offsets from sp. Its incoming arguments reside in the previous frame, ref-
erenced as positive offsets from sp plus the size of the stack frame.

Variable Argument List
Previous sections describe the rules for passing arguments. Unfortunately, some
otherwise portable C programs depend on other argument passing schemes, im-
plicitly assuming that 1) all arguments reside on the stack, and 2) arguments ap-
pear in increasing order on the stack. Programs that make these assumptions never
have been portable, but they have worked on many machines. They do not work
on MIPS based systems because some arguments can reside in registers. Portable
C programs should use the facilities defined in the header files <stdarg.h> or
<varargs.h> to deal with variable argument lists (on MIPS and other machines as
well). A program implicitly uses <stdarg.h> when it specifies a prototype declara-
tion with an ellipsis (“...”) in the argument list. No prototype or a prototype with
no ellipsis causes <varargs.h> to be used.

When a function uses <stdarg.h>, the compiler modifies the argument passing

outgoing argument 4
. . .

outgoing argument 1

Base

local space:
automatic variables

. . .
compiler scratch space:

temporaries
register save area

Contents Frame

outgoing arguments 5$sp

$sp

High addresses

Low addresses

Current

16

0

Offset

LOW-LEVEL SYSTEM INFORMATION 3-47

rules described above. In the calling function, the compiler passes the first 4 32-bit
words of arguments in registers $4, $5, $6, and $7, regardless of data type. In par-
ticular, this means that floats and doubles are passed in the integer register. In the
called function, the compiler arranges that the argument registers are saved on the
stack in the locations reserved for incoming arguments. This allows the called
function to reference all incoming arguments from consecutive locations on the
stack.

When a function uses <varargs.h>, the situation is somewhat different. The calling
function uses the argument passing rules exactly as described in the the section on
argument passing rules. However, the called function allocates 32 bytes immedi-
ately adjacent to the space for incoming arguments in which to save incoming
floating-point argument values.

If va_list appears as the first argument, it spills the $f12/$f13, and $f14/$f15 register
pairs at -24 and -32 bytes respectively, relative to the increasing argument area. If
va_alist appears as the second argument, it spills the $f14/$f15 register pair at
-24 bytes relative to the incoming argument area.

3-48 MIPS ABI SUPPLEMENT

Figure 3-38: Called Function Stack Frame

The 30 most-significant bits of the va_list type locate the next address in the incom-
ing arguments to process with the va_arg macro. This address is calculated by the
rules given below. The two least significant bits encode whether the va_arg macro
will read floating-point values from the incoming argument area or from the float-
ing-point save area described in the previous paragraph.

The va_start() macro in <varargs.h> encodes the following states in the two least
significant bits of the va_list type:

■ If the va_list pointer points to the first argument, va_start subtracts
1 from the va_list pointer, leaving it completely misaligned.

■ If the va_list pointer points to the second argument, and the first ar-
gument was type double, va_start subtracts 2 from the va_list
pointer, leaving it 2-byte aligned.

■ For all other cases, va_start leaves the low-order bits of the va_list
pointer set to zero (leaving it 4-byte aligned).

Base Offset Contents Frame
unspecified High addresses

. . .
variable size
(if present)

incoming arguments Previous
+16 passed in stack frame

space for incoming
old $sp +0 arguments 1-4

16 bytes reserved
8 bytes to spill $f12/$f13
8 bytes to spill $f14/$f15

locals and
temporaries

general register
save area Current

floating-point
register save area

argument
$sp +0 build area Low addresses

LOW-LEVEL SYSTEM INFORMATION 3-49

The va_start() macro in <varargs.h> requires built-in compiler support to deter-
mine which position in the argument list the va_alist parameter appears.

The va_start()macro in <stdarg.h> always sets the two least significant bits of the
va_list type to zero.

If the second argument of the va_arg() macro is not the type double or the va_list
pointer is 4-byte aligned, it zeroes the two least significant bits of the va_list pointer
in calculating the next argument to return. It advances the value of the va_list
pointer by the size of the type passed to va_arg. This leaves the va_list pointer 4-
byte aligned.

If the second argument to va_arg() is type double and the va_list pointer’s least sig-
nificant bit is 1, it returns the value of the $f12/$f13 register pair saved 32 bytes be-
low the incoming argument. The address of the save area must be calculated by
subtracting 31 from the value of the va_list pointer. The va_arg macro advances
va_list pointer by 7 leaving it 2-byte aligned.

If the second argument to va_arg() is type double and the va_list pointer’s value is
2-byte aligned, it returns the value of the $f14/$f15 register pair saved 16 bytes be-
low the incoming argument area. The address of the save area must be calculated
by subtracting -30 from the value of the va_list pointer. The va_arg macro advanc-
es va_list pointer by 10 leaving it 4-byte aligned.

Dynamic Allocation of Stack Space
The C language does not require dynamic stack allocation within a stack frame.
Frames are allocated dynamically on the program stack, depending on program
execution. The architecture, standard calling sequence, and stack frame support
dynamic allocation for programming languages that require it. Thus languages
that need dynamic stack frame sizes can call C functions and vice versa.

When a function requires dynamically allocated stack space it manifests a frame
pointer on entry to the function. The frame pointer is kept in a callee-saved register
so that it is not changed across subsequent function calls. Dynamic stack allocation
requires the following steps.

1. On function entry, the function adjusts the stack pointer by the size of the
static stack frame. The frame pointer is then set to this initial sp value and
is used for referencing the static elements within the stack frame, perform-
ing the normal function of the stack pointer.

3-50 MIPS ABI SUPPLEMENT

2. Stack frames are doubleword (8 byte) aligned; dynamic allocation pre-
serves this property. Thus, the program rounds (up) the desired byte
count to a multiple of 8.

 3. To allocate dynamic stack space, the program decreases the stack pointer
by the rounded byte count, increasing its frame size. At this point, the new
space resides between the register save area and the argument build area
and the argument build area effectively moves down.

Even in the presence of signals, dynamic allocation is ‘‘safe.’’ If a signal interrupts
allocation, one of three things can happen.

■ The signal handler can return. The process resumes the dynamic alloca-
tion from the point of interruption.

■ The signal handler can execute a non-local goto, or longjmp [see set-
jmp (BA_LIB)]. This resets the process to a new context in a previous stack
frame, automatically discarding the dynamic allocation.

■ The process can terminate.

Regardless of when the signal arrives during dynamic allocation, the result is a
consistent (though possibly dead) process.

Existing stack objects reside at fixed offsets from the frame pointer; stack heap al-
location does not move them. No special code is needed to free dynamically allo-
cated stack memory. The function epilogue resets the stack pointer and removes
the entire stack frame, including the heap, from the stack. Naturally, a program
should not reference heap objects after they have gone out of scope.

Standard calling sequence rules require that any frame pointer manifest within a
function be initialized within the first basic block of the function. In other words,
it must be set before any branches or calls.

NOTE

OBJECT FILES 4-1

ELF Header

Machine Information
For file identification in e_ident[], MIPS requires the values listed in Figure 4-1.

Processor identification resides in the ELF header e_machine member and must
have the value 8, defined as the name EM_MIPS.

The ELF header e_flags member holds bit flags associated with the file, as listed
in Figure 4-2.

EF_MIPS_NOREORDER This bit is asserted when at least one .noreor-
der directive in an assembly language source
contributes to the object module.

EF_MIPS_PIC This bit is asserted when the file contains posi-
tion-independent code that can be relocated in
memory.

EF_MIPS_CPIC This bit is asserted when the file contains code
that follows standard calling sequence rules for
calling position-independent code. The code in
this file is not necessarily position independent.
The EF_MIPS_PIC and EF_MIPS_CPIC flags

Figure 4–1: MIPS Identification, e_ident[]

 Position Value

e_ident[EI_CLASS] ELFCLASS32
e_ident[EI_DATA] ELFDATA2MSB

Figure 4–2: Processor–Specific Flags, e_flags

 Name Value

0x00000001
0x00000002
0x00000004
0xf0000000

EF_MIPS_NOREORDER
EF_MIPS_PIC
EF_MIPS_CPIC
EF_MIPS_ARCH

4-2 MIPS ABI SUPPLEMENT

must be mutually exclusive.

EF_MIPS_ARCH The integer value formed by these four bits iden-
tify extensions to the basic MIPS I architecture.
An ABI compliant file must have the value zero in
these four bits. Non-zero values indicate the ob-
ject file or executable contains program text that
uses architectural extensions to the MIPS I archi-
tecture.

OBJECT FILES 4-3

Sections

Figure 4-3 lists the MIPS-defined special section index which is provided in addi-
tion to the standard special section indexes.

SHN_MIPS_ACOMMON Symbols defined relative to this section are com-
mon symbols which are defined and allocated. The
st_value member of such a symbol contains the vir-
tual address for that symbol. If the section must be
relocated, the alignment indicated by the virtual
address is preserved, up to modulo 65,536. Symbols
found in shared objects with section index
SHN_COMMON are not allocated in the shared ob-
ject. The dynamic linker must allocate space for
SHN_COMMON symbols that do not resolve to a
defined symbol.

SHN_MIPS_TEXT

SHN_MIPS_DATA Symbols defined relative to these two sections are
only present after a program has been rewritten by
the pixie code profiling program. Such rewritten
programs are not ABI-compliant. Symbols defined
relative to these two sections will never occur in an
ABI-compliant program.

SHN_MIPS_SCOMMON Symbols defined relative to this section are com-
mon symbols which can be placed in the global
data area (are gp-addressable). See "Global Data
Area" in this chapter. This section only occurs in re-
locatable object files.

Figure 4–3: Special Section Indexes

Name Value

SHN_MIPS_ACOMMON 0xff00 or (SHN_LOPROC + 0)
SHN_MIPS_TEXT 0xff01 or (SHN_LOPROC + 1)
SHN_MIPS_DATA 0xff02 or (SHN_LOPROC + 2)
SHN_MIPS_ SCOMMON 0xff03 or (SHN_LOPROC + 3)
SHN_MIPS_SUNDEFINED 0xff04 or (SHN_LOPROC + 4)

4-4 MIPS ABI SUPPLEMENT

SHN_MIPS_SUNDEFINED Undefined symbols with this special section index
in the st_shndx field can be placed in the global
data area (gp-addressable). See "Global Data
Area" in this chapter. This section only occurs in
relocatable object files.

Figure 4-4 lists the MIPS-defined section types in addition to the standard section
types.

SHT_MIPS_LIBLIST The section contains information about the set of dy-
namic shared object libraries used when statically
linking a program. Each entry contains information
such as the library name, timestamp, and version. See
"Quickstart" in Chapter 5 for details.

SHT_MIPS_CONFLICT The section contains a list of symbols in an executable
whose definitions conflict with shared-object defined
symbols. See "Quickstart" in Chapter 5 for details.

SHT_MIPS_GPTAB The section contains the global pointer table. The global
pointer table includes a list of possible global data
area sizes. The list allows the linker to provide the
user with information on the optimal size criteria to
use for gp register relative addressing. See "Global
Data Area" below for details.

Figure 4–4: Section Types, sh_type

 Name Value

SHT_MIPS_LIBLIST 0x70000000 or (SHT_LOPROC + 0)
SHT_MIPS_CONFLICT 0x70000002 or (SHT_LOPROC + 2)
SHT_MIPS_GPTAB 0x70000003 or (SHT_LOPROC + 3)
SHT_MIPS_UCODE 0x70000004 or (SHT_LOPROC + 4)
SHT_MIPS_DEBUG 0x70000005 or (SHT_LOPROC + 5)
SHT_MIPS_REGINFO 0x70000006 or (SHT_LOPROC + 6)

OBJECT FILES 4-5

SHT_MIPS_UCODE This section type is reserved and the contents are un-
specified. The section contents can be ignored.

SHT_MIPS_DEBUG The section contains debug information specific to
MIPS. An ABI-compliant application does not need
to have a section of this type.

SHT_MIPS_REGINFO The section contains information regarding register
usage information for the object file. See Register In-
formation for details.

A section header sh_flags member holds 1-bit flags that describe the attributes
of the section. In addition to the values defined in the System V ABI, Figure 4-5 lists
the MIPS-defined flag.

SHF_MIPS_GPREL The section contains data that must be part of the global
data area during program execution. Data in this area
is addressable with a gp relative address. Any section
with the SHF_MIPS_GPREL attribute must have a sec-
tion header index of one of the .gptab special sections in
the sh_link member of its section header table entry.
See "Global Data Area" below for details.

The static linker does not guarantee that a section with
the SHF_MIPS_GPREL attribute will remain in the glo-
bal data area after static linking.

Figure 4-6 lists the MIPS-defined section header sh_link and sh_info members
interpretation for the MIPS-specific section types.

Figure 4–5: Section Attribute Flags, sh_flags

SHF_MIPS_GPREL 0x10000000

 Name Value

4-6 MIPS ABI SUPPLEMENT

Special Sections
MIPS defines several additional special sections. Figure 4-7 lists their types and
 corresponding attributes.

Figure 4–6: sh_link and sh_info interpretation

sh_type sh_infosh_link

SHT_MIPS_LIBLIST The section header index of
the string table used by en-
tries in this section.

The number of entries in
this section.

SHT_MIPS_GPTAB not used The section header index
of the SHF_ALLOC +
SHF_WRITEsection. See
" Global Data Area" in this
chapter.

OBJECT FILES 4- 7

.text This section contains only executable instructions. The first two
instructions immediately preceding the first function in the sec-
tion must be a jump to return address instruction followed by a
nop. The stack traceback algorithm, described in Chapter 3, de-
pends on this.

.sdata This section holds initialized short data that contribute to the
program memory image. See "Global Data Area" below for de-
tails.

Figure 4–7: Special Sections
Name Type Attributes

.text SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.sdata SHT_PROGBITS SHF_ALLOC + SHF_WRITE + \
 SHF_MIPS_GPREL

.sbss SHT_NOBITS SHF_ALLOC + SHF_WRITE + \
 SHF_MIPS_GPREL

.lit4 SHT_PROGBITS SHF_ALLOC + SHF_WRITE + \
 SHF_MIPS_GPREL

.lit8 SHT_PROGBITS SHF_ALLOC + SHF_WRITE + \
 SHF_MIPS_GPREL

.reginfo SHT_MIPS_REGINFO SHF_ALLOC

.liblist SHT_MIPS_LIBLIST SHF_ALLOC

.conflict SHT_CONFLICT SHF_ALLOC

.gptab SHT_MIPS_GPTAB none

.got SHT_PROGBITS SHF_ALLOC + SHF_WRITE + \
 SHF_MIPS_GPREL

.ucode SHT_MIPS_UCODE none

.mdebug SHT_MIPS_DEBUG none

.dynamic SHT_DYNAMIC SHF_ALLOC

.rel.dyn SHT_REL SHF_ALLOC

A MIPS ABI compliant system must support the .sdata , .sbss , .lit4 ,
.lit8 , .reginfo , and .gptab sections. A MIPS ABI compliant system must
recognize, but may choose to ignore the contents of the .liblist or .con-
flict sections. However, if either of these optional sections is supported,
both must be supported.

NOTE

4-8 MIPS ABI SUPPLEMENT

.sbss This section holds uninitialized short data that contribute to the
program memory image. By definition, the system initializes
the data with zeros when the program begins to run. See "Glo-
bal Data Area" below for details.

.lit4 This section holds 4 byte read-only literals that contribute to the
program memory image. Its purpose is to provide a list of
unique 4-byte literals used by a program. See "Global Data
Area" below for details. Although this section has the
SHF_WRITE attribute, it is not expected to be written. Placing
this section in the data segment mandates the SHF_WRITE at-
tribute.

.lit8 This section holds 8 byte read-only literals that contribute to the
program memory image. Its purpose is to provide a list of
unique 8-byte literals used by a program. See "Global Data
Area" below for details. Although this section has the
SHF_WRITE attribute, it is not expected to be written. Placing
this section in the data segment mandates the SHF_WRITE at-
tribute.

.reginfo This section provides information on the program register us-
age to the system. See "Register Information" below for details.

.liblist This section contains information on each of the libraries used at
static link time as described in "Quickstart" in Chapter 5.

.conflict This section provides additional dynamic linking information
about symbols in an executable file that conflict with symbols
defined in the dynamic shared libraries with which the file is
linked. See "Quickstart" in Chapter 5 for details.

.gptab This section contains a global pointer table. The global pointer
table is described in "Global Data Area" in this chapter. The sec-
tion is named .gptab.sbss,.gptab.sdata, gptab.bss,
or .gptab.data depending on which data section the particu-
lar .gptab refers.

.ucode This section name is reserved and the contents of this type of
section are unspecified. The section contents can be ignored

OBJECT FILES 4- 9

.mdebug This section contains symbol table information as emitted by the
MIPS compilers. Its content is described in Chapter 10 of the
MIPS Assembly Language Programmer’s Guide, order number
ASM-01-DOC, (Copyright  1989, MIPS Computer Systems,
Inc.). The information in this section is dependent on the loca-
tion of other sections in the file; if an object is relocated, the sec-
tion must be updated. Discard this section if an object file is re-
located and the ABI compliant system does not update the sec-
tion.

.got This section holds the global offset table. See "Coding Exam-
ples" in Chapter 3 and " Global Offset Table" in Chapter 5 for
more information.

.dynamic This is the same as the generic ABI section of the same type, but
the MIPS-specific version does not include the SHF_WRITE at-
tribute.

.rel.dyn This relocation section contains run-time entries for the .data
and .sdata sections. See "Relocations" in Chapter 5 for more
information.

Sections that contribute to a loadable program segment must not contain over-
lapping virtual addresses.NOTE

4-10 MIPS ABI SUPPLEMENT

Symbol Table

Symbol Values

If an executable or shared object contains a reference to a function defined in one
of its associated shared objects, the symbol table section for that file will contain an
entry for that symbol. The st_shndx member of that symbol table entry contains
SHN_UNDEF. This signals to the dynamic linker that the symbol definition for that
function is not contained in the executable file. If there is a stub for that symbol in
the executable file and the st_value member for the symbol table entry is non-
zero, the value will contain the virtual address of the first instruction of that pro-
cedure’s stub. Otherwise, the st_value member contains zero. This stub calls
the dynamic linker at runtime for lazy text evaluation. See "Function Addresses"
in Chapter 5 for details.

OBJECT FILES 4-11

Global Data Area

The global data area is part of the data segment of an executable program. It con-
tains short data items which can be addressed by the gp register relative address-
ing mode. The global data area comprises all sections with the SHF_MIPS_GPREL
attribute.

The compilers generate "short-form", one machine instruction, gp relative ad-
dressing for all data items that are in any section with the SHF_MIPS_GPREL at-
tribute. The compilers must generate two machine instructions to load or store
data items outside the global data area. Placing more data items in the global data
area permits faster program execution.

However, the size of the global data area is limited by the addressing constraints
on gp relative addressing, namely plus or minus 32 KBytes relative to gp . This lim-
its the size of the global data area to 64 KBytes.

The compilers determine whether or not a data item is placed in the global data
area based on its size. All data items less than or equal to a specified size are placed
in the global data area. Initialized data items are placed in a .sdata section, un-
initialized data items are placed in a .sbss section, and floating-point literals are
placed in .lit4 and .lit8 sections. The .got section is also combined into the
global data area; its use is discussed in Chapters 3 and 5.

A compiler could choose 8 as the default size criterion for items placed in the glob-
bal data area. In this case, individual initialized data items of 8 bytes or smaller
would be placed in a .sdata section. Uninitialized data items of 8 bytes and
smaller would be placed in a .sbss section. However, when a linker builds the
final global data area by concatenating all gp-relative sections, the size of the glo-
bal data area might exceed 64 KBytes. In this case, some or all compilation units
would have to be recompiled with an explicit size criterion of less than 8.

To provide the user with information on the optimal size criteria for placement of
data items in the .sdata and .sbss sections, the linker maintains tables of pos-
sible global data area sizes for each of these sections. These tables are maintained
in .gptab sections. Each .gptab section contains both the actual value used as
the size criterion for an object file and a sorted list of possible short data and bss
area sizes based on different data item size selections.

The .gptab section consists an an array of Elf32_gptab entries.

4-12 MIPS ABI SUPPLEMENT

typedef union {
struct {

Elf32_Word gt_current_g_value;
Elf32_Word gt_unused;

} gt_header;
struct {

Elf32_Word gt_g_value;
Elf32_Word gt_bytes;

} gt_entry;
 } Elf32_gptab;

gt_header.gt_current_g_value
This member is the size criterion actually used for this object
file. Data items of this size or smaller are referenced with gp rel-
ative addressing and reside in a SHF_MIPS_GPRELsection.

gt_header.gt_unused
This member is not used in the first entry of the Elf32_gptab
array.

gt_entry.gt_g_value
This member is a hypothetical size criterion value.

gt_entry.gt_bytes
This member indicates the length of the global data area if the
corresponding gt_entry.gt_g_value were used.

The first element of the ELF_32_gptab array is alway of type gt_header ; this
entry must always exist. Additional elements of the array are of type gt_entry .

Each of the gt_entry.gt_g_value fields is the size of an actual data item en-
countered during compilation or assembly, including zero. Each separate size
criteria results in a overall size for the global data area. The various entries are

Figure 4–8: Global Pointer Table

OBJECT FILES 4-13

sorted and duplicates are removed. The resulting set of entries, including the actu-
al size criterion used, yields the .gptab section.

There are always at least two .gptab sections, one that corresponds to initialized
data and one that corresponds to unitialized data. The sh_info field specifies the
section index of the data section to which this .gptab section applies. Normally
the two .gptab sections apply to the .sdata and .sbss sections, but if one or
both of these sections do not exist, the .gptab applies to the .data and .bss sec-
tions. The four possible names of this type of section are .gptab.sbss, .gpt-
ab.sdata, .gptab.bss, or .gptab.data. If there are no initialized data sec-
tions, there are no .gptab.sdata or .gptab.data sections. If there are no un-
initialized data sections, there are no .gptab.sbss or .gptab.bss sections.

If a data item in one of the addressable sections is more than 32–Kbytes from
the gp register, the static linker requires the object module to be recompiled ei-
ther with a smaller size criterion to reduce the size of the global data area or so
that gp–relative addressing is not be used for that data item.

NOTE

4-14 MIPS ABI SUPPLEMENT

Register Information

The compilers and assembler collect information on the registers used by the code
in the object file. This information is communicated to the operating system kernel
using a .reginfo section. The operating system kernel can use this information
to decide what registers it does not need to save or which coprocessors the pro-
gram uses. The section also contains a field which specifies the initial value for the
gp register, based on the final location of the global data area in memory.

typedef struct {
Elf32_Word ri_gprmask;;
Elf32_Word ri_cprmask[4];
Elf32_SWord ri_gp_value;

 } ELF_RegInfo;

ri_gprmas k This member contains a bit-mask of general registers used by
the program. Each set bit indicates a general integer register
used by the program. Each clear bit indicates a general integer
register not used by the program. For instance, bit 31 set indi-
cates register $31 is used by the program; bit 27 clear indicates
register $27 is not used by the program.

ri_cprmask This member contains the bit-mask of co-processor registers
used by the program. The MIPS RISC architecture supports up
to four co-processors, each with 32 registers. Each array ele-
ment corresponds to one set of co-processor registers. Each of
the bits within the element corresponds to individual register
in the co-processor register set. The 32 bits of the words corre-
spond to the 32 registers, with bit number 31 corresponding to
register 31, bit number 30 to register 30, etc. Set bits indicate
the corresponding register is used by the program; clear bits
indicate the program does not use the corresponding register.

ri_gp_valu e This member contains the gp register value. In relocatable ob-
ject files it is used for relocation of the R_MIPS_GPREL and
R_MIPS_LITERAL relocation types.

Figure 4-9: Register Information Structure

OBJECT FILES 4-15

Only co–processor 1 can be used by ABI–compliant programs. This means that
only the ri_cprmask [1] array element can have a non–zero value.
ri_cpr-mask[0] , ri_cprmask[2] , and ri_cprmask[3] must all
be zero in an ABI–compliant program.

NOTE

4-16 MIPS ABI SUPPLEMENT

Relocation

Relocation Types
Relocation entries describe how to alter the following instruction and data fields
shown in Figure 4-10; bit numbers appear in the lower box corners.

Calculations below assume the actions are transforming a relocatable file into ei-
ther an executable or a shared object file. Conceptually, the linker merges one or
more relocatable files to form the output. It first determines how to combine and
locate the input files; then it updates the symbol values, and finally it performs the
relocation.

Figure 4–10: Relocatable Fields

half16

hi16

lo16

rel16

pc

word32

targ26

31

31

31

31

31

31

31

31

0

0

0

0

0

0

0

0

15

15

15

15

15

15

lit16

25

OBJECT FILES 4-1 7

Relocations applied to executable or shared object files are similar and accomplish
the same result. Descriptions below use the following notation.

A Represents the addend used to compute the value of the relocatable
field.

AHL Identifies another type of addend used to compute the value of the relo-
catable field. See the note below for more detail.

P Represents the place (section offset or address) of the storage unit being
relocated (computed using r_offset) .

S Represents the value of the symbol whose index resides in the relocation
entry, unless the the symbol is STB_LOCAL and is of type
STT_SECTION in which case S represents the original sh_addr minus
the final sh_addr .

G Represents the offset into the global offset table at which the address of
the relocation entry symbol resides during execution. See ‘‘Coding Ex-
amples’’ in Chapter 3 and ‘‘Global Offset Table’’ in Chapter 5 for more
information.

GP Represents the final gp value to be used for the relocatable, executable,
or shared object file being produced.

GP0 Represents the gp value used to create the relocatable object.

EA Represents the effective address of the symbol prior to relocation.

L Represents the .lit4 or .lit8 literal table offset. Prior to relocation
the addend field of a literal reference contains the offset into the global
data area. During relocation, each literal section from each contributing
file is merged and sorted, after which duplicate entries are removed and
the section compressed, leaving only unique entries. The relocation fac-
tor L is the mapping from the old offset of the original gp to the value
of gp used in the final file.

A relocation entry r_offset value designates the offset or virtual address of the
first byte of the affected storage unit. The relocation type specifies which bits to
change and how to calculate their values. Because MIPS uses only Elf32_Rel re-
location entries, the relocated field holds the addend.

The AHL addend is a composite computed from the addends of two consecutive re-
location entries. Each relocation type of R_MIPS_HI16 must have an associated
R_MIPS_LO16 entry immediately following it in the list of relocations.

4-18 MIPS ABI SUPPLEMENT

These relocation entries are always processed as a pair and both addend fields
contribute to the AHL addend. If AHI and ALO are the addends from the
paired R_MIPS_HI16 and R_MIPS_LO16 entries, then the addend AHL is com-
puted as (AHI << 16) + (short)ALO. R_MIPS_LO16 entries without an
R_MIPS_HI16 entry immediately preceding are orphaned and the previously de-
fined R_MIPS_HI16 is used for computing the addend.

The field names in Table 4–11 tell whether the relocation type checks for over-
flow. A calculated relocation value can be larger than the intended field, and a re-
location type can verify (V) the value fits or truncate (T) the result. As an example,
V–half16 means the computed value cannot have significant non–zero bits out-
side the half16 field.

NOTE

OBJECT FILES 4-1 9

Figure 4–11: Relocation Types

In the Symbol column in the table above, local refers to a symbol referenced by the
symbol table index in the relocation entry STB_LOCAL/STT_SECTION. Other-
wise, the relocation is considered an external relocation. See below for _gp_disp
relocations.

The R_MIPS_REL32 relocation type is the only relocation performed by the dy-
namic linker. The value EA used by the dynamic linker to relocate an

Name Value Field Symbol Calculation

R_MIPS_NONE 0 none local none

R_MIPS_16 1 V–half16 external S + sign–extend(A)

1 V–half16 local S + sign–extend(A)

R_MIPS_32 2 T–word32 external S + A

2 T–word32 local S + A

R_MIPS_REL32 3 T–word32 external A – EA + S

R_MIPS_REL32 3 T–word32 local A – EA + S

R_MIPS_26 4 T–targ26 local (((A << 2) | \

 (P & 0xf0000000) + S) >> 2

4 T–targ26 external (sign–extend(A < 2) + S) >> 2

R_MIPS_HI16 5 T–hi16 external ((AHL + S) – \

 (short)(AHL + S)) >> 16

5 T–hi16 local ((AHL + S) – \

 (short)(AHL + S)) >> 16

5 V–hi16 _gp_disp (AHL + GP – P) – (short) \

 (AHL + GP – P)) >> 16

R_MIPS_LO16 6 T–lo16 external AHL + S

6 T–lo16 local AHL + S

6 V–lo16 _gp_disp AHL + GP – P + 4

R_MIPS_GPREL16 7 V–rel16 external sign–extend(A) + S + GP

7 V–rel16 local sign–extend(A) + S + GP0 – GP

R_MIPS_LITERAL 8 V–lit16 local sign–extend(A) + L

R_MIPS_GOT16 9 V–rel16 external G

9 V–rel16 local see below

R_MIPS_PC16 10 V–pc16 external sign–extend(A) + S – P

R_MIPS_CALL16 11 V–rel16 external G

R_MIPS_GPREL32 12 T–word32 local A + S + GP0 – GP

R_MIPS_GOTHI16 21 T-hi16 external (G - (short)G) >> 16 + A

R_MIPS_GOTLO16 22 T-lo16 external G & 0xffff

R_MIPS_CALLHI16 30 T-hi16 external (G - (short)G) >> 16 + A

R_MIPS_CALLLO16 31 T-lo16 external G & 0xffff

4-20 MIPS ABI SUPPLEMENT

R_MIPS_REL32 relocation depends on its r_symndx value. If the relocation en-
try r_symndx is less than DT_MIPS_GOTSYM, the value of EA is the symbol
st_value p lus displacement. Otherwise, the value of EA is the value in the GOT
entry corresponding to the relocation entry r_symndx. The correspondence be-
tween the GOT and the dynamic symbol table is described in the "Global Offset Ta-
ble" section in Chapter 5.

If an R_MIPS_GOT16 refers to a locally defined symbol, then the relocation is done
differently than if it refers to an external symbol. In the local case, the
R_MIPS_GOT16must be followed immediately with a R_MIPS_LO16 relocation.
The AHL addend is extracted and the section in which the referenced data item re-
sides is determined (requiring that all sections in an object module have unique ad-
dresses and not overlap). From this address the final address of the data item is
calculated. If necessary, a global offset table entry is created to hold the high 16
bits of this address (an existing entry is used when possible). The rel16 field is re-
placed by the offset of this entry in the global offset table. The lo16 field in the fol-
lowing R_MIPS_LO16 relocation is replaced by the low 16 bits of the actual des-
tination address. This is meant for local data references in position-independent
code so that only one global offset table entry is necessary for every 64 KBytes of
local data.

The first instance of R_MIPS_GOT16, R_MIPS_CALL16, R_MIPS_GOT_HI16,
R_MIPS_CALL_HI16, R_MIPS_GOT_LO16, or R_MIPS_CALL_LO16. Relo-
cations cause the link editor to build a global offset table if one has not already been
built.

The symbol name _gp_disp is reserved. Only R_MIPS_HI16 and
R_MIPS_LO16 relocations are permitted with _gp_disp . These relocation en-
tries must appear consecutively in the relocation section and they must reference
consecutive relocation area addresses.

R_MIPS_CALL16, R_MIPS_CALL_HI16, and R_MIPS_CALL_LO16 reloca-
tion entries load function addresses from the global offset table and indicate that
the dynamic linker can perform lazy binding. See "Global Offset Table" in Chapter
5.

PROGRAM LOADING AND DYNAMIC LINKING 5-1

Program Loading

As the system creates or augments a process image, it logically copies a file seg-
ment to a virtual memory segment. When and if the system physically reads the
file depends on the program’s execution behavior, system load, etc. A process
does not require a physical page unless it references a logical page during execu-
tion. Processes commonly leave many pages unreferenced; therefore delaying
physical reads frequently obviates them, improving system performance. To ob-
tain this efficiency in practice, executable and shared object files must have seg-
ment images whose virtual addresses are zero, modulo the file system block size.

Virtual addresses and file offsets for MIPS segments are congruent modulo 64
KByte (0x10000) or larger powers of 2. Because 64 KBytes is the maximum page
size, the files are suitable for paging regardless of physical page size.

Figure 5-1: Example Executable File

File Offset File Virtual Address

0x2bf00

0x30d00

0x440cff

0x400100

0x42beff

0x43bf00

 0x100

Other information
. . .

0 Text Segment
ELF header

Program header table
Other information

Data segment
. . .

0x4e0s bytes

. . .
0x2be00 bytes

5-2 MIPS ABI SUPPLEMENT

Figure 5-2: Program Header Segments

Because the page size can be larger than the alignment restriction of a segment file
offset, up to four file pages can hold impure text or data (depending on page size
and file system block size).

■ The first text page contains the ELF header, the program header table, and
other information.

■ The last text page can hold a copy of the beginning of data.

■ The first data page can have a copy of the end of text.

■ The last data page can contain file information not relevant to the running
process.

Logically, the system enforces the memory permissions as if each segment were
complete and separate; segment addresses are adjusted to ensure each logical page
in the address space has a single set of permissions. In the example in Figure 5-1,
the file region holding the end of text and the beginning of data is mapped twice:
once at one virtual address for text and once at a different virtual address for data.

The end of the data segment requires special handling for uninitialized data which
the system defines to begin with zero values. Thus if the last data page of a file in-
cludes information not in the logical memory page, the extraneous data must be
set to zero, rather than the unknown contents of the executable file. ‘‘Impurities’’
in the other three pages are not logically part of the process image; whether the sys-
tem expunges them is unspecified.

There is one aspect of segment loading that differs between executable files and
shared objects. Executable file segments typically contain absolute code [see
‘‘Coding Examples’’ in Chapter 3]. To let the process execute correctly, the seg-
ments must reside at the virtual addresses used to build the executable file, with

Member Text Data
p_type PT_LOAD PT_LOAD
p_offset 0 0x2bf00
p_vaddr 400100 0x43bf00
p_paddr unspecified unspecified
p_filesz 0x2bf00 0x4e00
p_memsz 0x2bf00 0x5e24
p_flags PF_R+PF_X PF_R+PF_W+PF_X
p_align 0x10000 0x10000

PROGRAM LOADING AND DYNAMIC LINKING 5-3

the system using the p_vaddr values unchanged as virtual addresses.

Shared object segments typically contain position-independent code, allowing a
segment virtual address to change from one process to another without invalidat-
ing execution behavior. Though the system chooses virtual addresses for individ-
ual processes, it maintains the relative positions of the segments. Because position-
independent code uses relative addressing between segments, the difference be-
tween virtual addresses in memory must match the difference between virtual ad-
dresses in the file. The following table shows possible shared object virtual ad-
dress assignments for several processes, illustrating constant relative positioning.
The table also illustrates the base address computations.

Figure 5-3: Example Shared Object Segment Addresses

Source Text Data Base Address

File 0x200 0x2a400 0x0
Process 1 0x50000200 0x5002a400 0x50000000
Process 2 0x50010200 0x5003a400 0x50010000
Process 3 0x60020200 0x6004a400 0x60020000
Process 4 0x60030200 0x6005a400 0x60030000

In addition to maintaining the relative positionsof the segments, the system must
also ensure that relocations occur in 64 KByte increments; position–independent
code relies on this property.

NOTE

By convention, no more than one segment will occupy addresses in the same
chunk of memory, modulo 256 KBytes.NOTE

5-4 MIPS ABI SUPPLEMEN T

Program Header

 There is one program header type specific to this supplement.

Figure 5-4: MIPS Specific Segment Types, p_type

PT_MIPS_REGINFO Specifies register usage information for the executable or
shared object; it cannot occur more than once in a file. Its
presence is mandatory and it must precede any loadable
segment entry. It identifies one .reginfo type section.
See Register Information" in Chapter 4 for more informa-
tion.

Segment Contents
Figures 5-5 and 5-6 below illustrate typical segment contents for a MIPS executable
or shared object. The actual order and membership of sections within a segment
may alter the examples below.

 Name Value
PT_MIPS_REGINFO 0x70000000

PROGRAM LOADING AND DYNAMIC LINKING 5-5

Figure 5-5: Text Segment

Figure 5-6: Data Segment

.reginfo

.dynami

.liblist

.rel.dyn

.conflict

.dynstr

.dynsym

.hash

.rodata

.text

.got

.lit4

.lit8

.sdata

.data

.sbss

.bss

5-6 MIPS ABI SUPPLEMEN T

Dynamic Linking

Dynamic Section
Dynamic section entries give information to the dynamic linker. Some of this in-
formation is processor-specific, including the interpretation of some entries in the
dynamic structure.

Figure 5-7: Dynamic Array Tags d_tag

DT_MIPS_RLD_VERSION
This element holds a 32-bit version id for the Runtime
Linker Interface. This will start at integer value 1.

DT_MIPS_TIME_STAMP
This element holds a 32-bit time stamp.

DT_MIPS_ICHECKSUM
This element holds the sum of all external strings and
common sizes.

DT_MIPS_RLD_VERSION 0x70000001 d_val mandatory mandatory
DT_MIPS_TIME_STAMP 0x70000002 d_val optional optional
DT_MIPS_ICHECKSUM 0x70000003 d_val optional optional
DT_MIPS_IVERSION 0x70000004 d_val optional optional
DT_MIPS_FLAGS 0x70000005 d_val mandatory mandatory
DT_MIPS_BASE_ADDRESS 0x70000006 d_ptr mandatory mandatory
DT_MIPS_CONFLICT 0x70000008 d_ptr optional optional
DT_MIPS_LIBLIST 0x70000009 d_ptr optional optional
DT_MIPS_LOCAL_GOTNO 0x7000000A d_val mandatory mandatory
DT_MIPS_CONFLICTNO 0x7000000B d_val optional optional
DT_MIPS_LIBLISTNO 0x70000010 d_val optional optional
DT_MIPS_SYMTABNO 0x70000011 d_val mandatory mandatory
DT_MIPS_UNREFEXTNO 0x70000012 d_val optional optional
DT_MIPS_GOTSYM 0x70000013 d_val mandatory mandatory
DT_MIPS_HIPAGENO 0x70000014 d_val optional optional
DT_MIPS_RLD_MAP 0x70000016 d_ptr mandatory ignored
DT_PLTGOT 3 d_ptr mandatory mandatory
DT_RPATH 15 d_val optional optional

Shared
Name Value d_un Executable Object

PROGRAM LOADING AND DYNAMIC LINKING 5- 7

DT_MIPS_IVERSION
This element holds an index into the object file string
table. The version string is a series of version strings sep-
arated by colons (:). An index value of zero means no ver-
sion string was specified.

DT_MIPS_FLAGS This element holds a set of 1-bit flags. Flag definitions
appear below.

DT_MIPS_BASE_ADDRESS
This member holds the base address of the segment. That
is, it holds the virtual address of the segment as if the the
segment were actually loaded at the addressed specified
at static link time. It can be adjusted when the operating
system kernel actually maps segments. It is used to adjust
pointers based on the difference between the static link
time value and the actual address.

DT_MIPS_CONFLICT
This member holds the address of the .conflict sec-
tion.

DT_MIPS_LIBLIST
This member holds address of the .liblist section.

DT_MIPS_LOCAL_GOTNO
This member holds the number of local global offset table
entries.

DT_MIPS_CONFLICTNO
This member holds the number of entries in the
.conflict section. This field is mandatory if there is a
.conflict section.

DT_PLTGOT This member holds the address of the .got section.

DT_MIPS_SYMTABNO
This member holds the number of entries in the .dynsym
section.

DT_MIPS_LIBLISTNO
This member holds the number of entries in the
.liblist section.

DT_MIPS_UNREFEXTNO
This member holds the index into the dynamic symbol
table which is the entry of the first external symbol that is
not referenced within the same object.

5-8 MIPS ABI SUPPLEMENT

DT_MIPS_GOTSYM This member holds the index of the first dynamic symbol
table entry that corresponds to an entry in the global off-
set table. See "Global Offset Table" in this chapter.

DT_MIPS_HIPAGENO
This member holds the number of page table entries in the
global offset table. A page table entry here refers to a 64
Kb chunk of data space. This member is used by profiling
tools and is optional.

DT_RPATH This member optionally appears in a shared object. If it is
present in a shared object at static link time, it is propa-
gated to the final executable’s DT_RPATH.

DT_DEBUG This member is specifically disallowed.

DT_MIPS_RLD_MAP
This member is used by debugging. It contains the
address of a 32-bit word in the .data section which is
supplied by the compilation environment. The word’s
contents are not specified and programs using this value
are not ABI - compliant.

Figure 5-8: Dynamic section, DT_MIPS_FLAGS

The RHF_NO_LIBRARY_REPLACEMENT flag directs the dynamic linker to ignore
the LD_LIBRARY_PATH environment variable when searching for shared objects.

Shared Object Dependencies
The System V ABI defines the default library search path to be /usr/lib ; MIPS de-
fines the default library search path to be /lib:/usr/lib:/usr/lib/cmplrs/
cc.

Global Offset Table
In general, position-independent code cannot contain absolute virtual addresses.

Name Value Meaning

RHF_NONE 0x00000000 none
RHF_QUICKSTART 0x00000001 use shortcut pointers
RHF_NOTPOT 0x00000002 hash size not power of two
RHF_NO_LIBRARY_REPLACEMENT 0x00000004 ignore LD_LIBRARY_PATH

PROGRAM LOADING AND DYNAMIC LINKING 5- 9

Global offset tables (or GOTs) hold absolute addresses in private data, making the
addresses available without compromising position-independence and sharability
of a program text. A program references its global offset table using position-in-
dependent addressing and extracts absolute values, thus redirecting position-in-
dependent references to absolute locations.

The global offset table is split into two logically separate subtables: locals and ex-
ternals. Local entries reside in the first part of the global offset table. The value of
the dynamic tag DT_MIPS_LOCAL_GOTNO holds the number of local global offset
table entries. These entries only require relocation if they occur in a shared object
and the shared object memory load address differs from the virtual address of the
loadable segments of the shared object. As with defined external entries in the glo-
bal offset table, these local entries contain actual addresses.

External entries reside in the second part of the global offset table. Each entry in
the external section corresponds to an entry in the global offset table mapped part
of the .dynsym section (see "Symbols" below for a definition). The first symbol
in the .dynsym section corresponds to the first word of the global offset table; the
second symbol corresponds to the second word, and so on. Each word in the ex-
ternal entry part of the global offset table contains the actual address for its corre-
sponding symbol. The external entries for defined symbols must contain actual
addresses. If an entry corresponds to an undefined symbol and the global offset
table entry contains a zero, the entry must be resolved by the dynamic linker, even
if the dynamic linker is performing a quickstart. See "Quickstart" below for more
information.

The following table details the various possibilities for the initial state of the global
offset table mapped dynamic symbol table section and the global part of the global
offset table.

5-10 MIPS ABI SUPPLEMENT

Figure 5-9: Initial State, global GOT and .dynsym

QS stands for the Quickstart value of the symbol.

Comments:
1: had relocations related to taking the function’s address
2: only had call related relocations defined STT_FUNC
3: non-STT_FUNC defined globals

After the system creates memory segments for a loadable object file, the dynamic
linker can process the relocation entries. The only relocation entries remaining are
type R_MIPS_REL32 referring to data containing addresses. The dynamic linker
determines the associated symbol (or section) values, calculates their absolute ad-
dresses, and sets the proper values. Although the absolute addresses may be un-
known when the link editor builds an object file, the dynamic linker knows the ad-
dresses of all memory segments and can find the correct symbols, thus calculating
the absolute addresses contained therein.

The dynamic linker relocates the global offset table by first adding the difference
between the base where the shared object is loaded and the value of the dynamic
tag DT_MIPS_BASE_ADDRESS to all local global offset table entries. Next, the glo-
bal GOT entries are relocated. For each global GOT entry the following relocation
is performed:

Section Type st_value GOT Entry Comments

SHN_UNDEF

SHN_UNDEF

SHN_UNDEF
SHN_COMMON

all others

all others

STT_FUNC

STT_FUNC

STT_FUNC

any

0

stub addr

0/alignment

address

address

0/QS

0/QS

stub address/
 QS

stub address/
 address
address

1

2

2

3any

PROGRAM LOADING AND DYNAMIC LINKING 5-11

Figure 5-10: Global Offset Table Relocation Algorithm

Relocation:
1: resolve immediately or use Quickstart value
2: add run-time displacement to GOT entry
3: set GOT entry to stub address plus run-time displacement

Certain optimizations are possible with information from Quickstart. An ABI-
compliant system performing such optimizations guarantees that the values of the
GOT entries are the same as if the dynamic linker performed the relocation algo-
rithm described in Figure 5-10.

If a program requires direct access to the absolute address of a symbol, it uses the
appropriate global offset table entry. Because the executable file and shared ob-
jects have separate global offset tables, the address of a symbol can appear in sev-
eral tables. The dynamic linker processes all necessary relocations before giving
control to any code in the process image, thus ensuring the absolute addresses are
available during execution.

The zero entry in the global offset table is reserved to hold the address of the entry
point in the dynamic linker to call when lazy resolving text symbols. The dynamic
linker must always initialize this entry regardless of whether lazy binding is or is
not enabled.

The system can choose different memory segment addresses for the same shared
object in different programs; it can even choose different library addresses for dif-

Section Type st_value GOT Entry Relocation

SHN_UNDEF

SHN_UNDEF

SHN_UNDEF
SHN_COMMON

all others

all others

STT_FUNC

STT_FUNC

STT_FUNC

all others

0

stub addr

address

address

0/QS

stub addr

address

1

2

3

1

all others

STT_FUNCSHN_UNDEF stub addr != stub addr

2

1

any 0/QS

stub address
 != address*

* Stub address must be in this executable and can only be applied the first
time the GOT is modified.

5-12 MIPS ABI SUPPLEMENT

ferent executions of the same program. Nonetheless, memory segments do not
change addresses once the process image is established. As long as a process exists,
its memory segments reside at fixed virtual addresses.

Calling Position–Independent Functions
The global offset table is used to hold addresses of position-independent functions
as well as data addresses. It is not possible to resolve function calls from one exe-
cutable file or shared object to another at static link time, so all of the function ad-
dress entries in the global offset table are normally resolved at execution time. The
dynamic linker then resolves all of these undefined relocation entries at run-time.
Through the use of specially constructed pieces of code known as stubs, this run-
time resolution can be be deferred through a technique known as " binding, lazy
binding".

Using this technique, the link editor (or a combination of the compiler, assembler,
and link editor) builds a stub for each called function, and allocates a global offset
table entry that initially points to the stub. Because of the normal calling sequence
for position-independent code, the call ends up invoking the stub the first time the
call is made.

Figure 5-11: Sample Stub Code

stub_xyz: .
lw t9, 0(gp)
move t7, ra
jal t9
li t8, .dynsym_index # branch delay slot

In the example in Figure 5-11, the stub code loads register t9 with an entry from
the global offset table which contains a well-known entry point in the dynamic
linker; it also loads register t8 with the index into the .dynsym section of the ref-
erenced external. The code must save register ra in register t7 and transfer con-
trol to the dynamic linker.

The dynamic linker determines the correct address for the actual called function
and replaces the address of the stub in the global offset table with the address of
the function.

Most undefined text references can be handled by lazy text evaluation except
when the address of a function is relocated using relocations of type

R_MIPS_CALL16 or R_MIPS_26.

PROGRAM LOADING AND DYNAMIC LINKING 5-13

The LD_BIND_NOW environment variable can also change dynamic linking behav-
ior. If its value is non-null, the dynamic linker evaluates all symbol table entries of
type STT_FUNC, replacing their stub addresses in the global offset table with the
actual address of the referenced function.

Symbols
All externally visible symbols, both defined and undefined, must be hashed into
the hash table.

Undefined symbols of type STT_FUNC, which have been referenced only by
R_MIPS_CALL16 and R_MIPS_26 relocations, can contain non-zero values in the
their st_value field, denoting the stub address used for lazy evaluation for this
symbol. The run-time linker uses this to reset the global offset table entry for this
external to its stub address when unlinking a shared object. All other undefined
symbols must contain zero in their st_value fields.

The dynamic symbol table, like all ELF symbol tables, is divided into local and glo-
bal parts. The global part of the dynamic symbol table is further divided into two
parts: symbols that do not have GOT entries associated with them and symbols
that do have GOT entries associated with them. The part of the dynamic symbol
table with GOT entries is called the "global offset table mapped" part or "GOT
mapped" part. Symbols with GOT entries have a one-to-one mapping with the
global part of the GOT.

The value of the dynamic tag DT_MIPS_GOTSYM is the index of the first symbol
with a global offset table entry in the dynamic symbol table.

Relocations
There may be only one dynamic relocation section to resolve addresses in data. It
must be called .rel.dyn . Executables can contain normal relocation sections in

Lazy binding generally improves overall application performance because
unused symbols do not incur the dynamic linking overhead. Nevertheless,
two situations make lazy binding undesirable for some applications. First, the
initial reference to a shared object function takes longer than subsequent
calls, because the dynamic linker intercepts the call to resolve the symbol.
Some applications cannot tolerate this unpredictability. Second, if an error
occurs and the dynamic linker cannot resolve the symbol, the dynamic linker
terminates the program. Under lazy binding, this might occur at arbitrary
times. Once again, some applications cannot tolerate this unpredictability. By
turning off lazy binding, the dynamic linker forces the failure to occur during
process initialization, before the application receives control.

NOTE

5-14 MIPS ABI SUPPLEMENT

addition to a dynamic relocation section. The normal relocation sections may con-
tain resolutions for any absolute values in the main program. The dynamic linker
does not resolve these or relocate the main program.

As noted previously, only R_MIPS_REL32 relocation entries are supported in the
dynamic relocation section.

Because sufficient information is available in the .dynamic section, the GOT has
no relocation information. The relocation algorithm for the GOT is described
above.

The entries in the dynamic relocation section must be ordered by increasing
r_symndx value.

Ordering
To take advantage of Quickstart functionality, the .dynsym and .rel.dyn sec-
tions must obey ordering constraints. The GOT-mapped portion of the .dynsym
section must be ordered on increasing values in the st_value field. This requires
that the .got section have the same order, since it must correspond to the .dynsym
section.

The .rel.dyn section must have all local entries first, followed by the external en-
tries. Within these sub-sections, the entries must be ordered by symbol index.

PROGRAM LOADING AND DYNAMIC LINKING 5-15

Quickstart

The MIPS supplement to the ABI defines two sections which are useful for faster
start-up of programs when the programs have been linked with dynamic shared
objects. The group of structures defined in these sections allow the dynamic linker
to operate more efficiently than when these sections are not present. These addi-
tional sections are also used for more complete dynamic shared object version con-
trol.

Shared Object List
A shared object list section is an array of structures that contain information about
the various dynamic shared objects used to statically link this object file. Each sep-
arate shared object used generates one Elf32_Lib array element. The shared ob-
ject list is used for more complete shared object version control.

Figure 5-12: Shared Object Information Structure

typedef struct {
Elf32_Word l_name;
Elf32_Word l_time_stamp;
Elf32_Word l_checksum;
Elf32_Word l_version;
Elf32_Word l_flags;

} Elf32_Lib;

l_name This member specifies the name of a shared object. Its value
is a string table index. This name can be a trailing compo-
nent of the path to be used with RPATH + LD_LIBPATH or
a name containing ‘/’s, which is relative to ‘.’, or it can be a
full pathname.

l_time_stamp This member’s value is a 32 bit time stamp. It can be com-

An ABI compliant system can ignore the sections defined here, but if it supports
one of these sections, it must support both of them. If you relink or relocate the
object file on secondary storage and cannot process these sections, you must
delete them.

NOTE

5-16 MIPS ABI SUPPLEMENT

bined with the l_checksum value and the l_version
string to form an unique id for this shared object.

l_checksum This member’s value is the sum of all externally visible sym-
bol’s string names and common sizes.

l_version This member specifies the interface version. Its value is a
string table index. The interface version is a single string
containing no colons (:). It is compared against a colon sep-
arated string of versions pointed to by a dynamic section
entry of the shared object. Shared objects with matching
names are considered incompatible if the interface version
strings are deemed incompatible. An index value of zero
means no version string is specified.

flags This is a set of 1 bit flags. Flag definitions appear below.

Figure 5-13: Library Flags, l_flags

LL_EXACT_MATCH At run-time use a unique id composed of the
l_time_stamp , l_checksum , and l_version fields to
demand that the run-time dynamic shared library match
exactly the shared library used at static link time.

LL_IGNORE_INT_VER
At run-time, ignore any version incompatibilities
between the dynamic shared library and the library used
at static link time.

Normally, if neither LL_EXACT_MATCH nor LL_IGNORE_INT_VER bits are set, the
dynamic linker requires that the version of the dynamic shared library match at
least one of the colon separated version strings indexed by the l_version string
table index.

LL_EXACT_MATCH 0x00000001 require exact match
LL_IGNORE_INT_VER 0x00000002 ignore interface version

Name Value Meaning

PROGRAM LOADING AND DYNAMIC LINKING 5-17

Conflict Section
The .conflict section is an array of indexes into the .dynsym section. Each in-
dex identifies a symbol whose attributes conflict with a shared object on which it
depends, either in type or size such that this definition will preempt the shared ob-
ject’s definition. The dependent shared object is identified at static link time.

Figure 5-14: Conflict Section

typedef Elf32_Addr Elf32_Conflict;

5-18 MIPS ABI SUPPLEMENT

6-1 LIBRARIES

System Library

Additional Entry Points
The following routines are included in the libsys library to provide entry points
for the required source-level interfaces listed in the System V ABI. A description
and syntax summary for each function follows the table.

Figure 6-1: libsys Additional Required Entry Points

fxstat lxstat _xmknod xstat nuname nuname

int _ fxstat (int, int, struct stat *);

 The semantics of this function are identical to those of the fstat (BA
OS) function described in the System V Interface Definition,Third Edition.
Its only difference is that it requires an extra first argument whose value
must be 2.

int _lxstat (int, char *, struct stat *);

The semantics of this function are identical to those of the lstat (BA
OS) function described in the System V Interface Definition, Third Edition.
Its only difference is that it requires an extra first argument whose value
must be 2.

int _nuname (struct utsname *);

The semantics and syntax of this function are identical to those of the
uname(BA OS) function described in the System V Interface Definition,-
Third Edition. The symbol _nuname is also available with the same se-
mantics.

int _xmknod(int, char *, mode_t, dev_t);

The semantics and syntax of this function are identical to those of the
mknod(BA OS) function described in the System V Interface Definition,-
Third Edition. Its only difference is that it requires an extra first argu-
ment whose value must be 2.

int _xstat(int, char *, struct stat *);

The semantics of this function are identical to those of the
stat (BA_OS) function described in the System V Interface Definition,

6-2 MIPS ABI SUPPLEMENT

Third Edition. Its only difference is that it requires an extra first argu-
ment whose value must be 2.

Support Routines
Besides operating system services, libsys contains the following processor-specific
support routines.

Figure 6-2: libsys Support Routines

sbrk _sbrk _sqrt_s _sqrt_d _test_and_set _flush_cache

The routines listed below employ the standard calling sequence described in
Chapter 3, "Function Calling Sequence."

char *sbrk(int incr);

This function adds incr bytes to the break value and changes the al-
located space accordingly. Incr can be negative, in which case the
amount of allocated space is decreased. The break value is the address
of the first allocation beyond the end of the data segment. The amount
of allocated space increases as the break value increases. Newly allocat-
ed space is set to zero. If, however, the same memory is reallocated to
the same process, its contents are undefined. Upon successful comple-
tion, sbrk returns the old break value. Otherwise, it returns -1 and sets
errno to indicate the error. The symbol _sbrk is also available with the
same semantics. NOTE: mixing sbrk & malloc is hazardous to your
program’s health.

float _sqrt_s(float v)
This function computes using single-precision floating point arith-
metic and returns the resulting value. The result is rounded as if calcu-
lated to infinite precision and then rounded to single-precision accord-
ing to the current rounding modes specified by the floating point con-
trol/status register. If the value is -0, the result is -0. _sqrt_s can
trigger the floating point exceptions Invalid Operation when v is less
than 0 or Inexact.

double _sqrt_d(double v)
This function computes using double-precision floating point arith-
metic and returns the resulting value. The result is rounded as if calcu-
lated to infinite precision and then rounded to double-precision accord-
ing to the current rounding modes specified by the floating point con-

v

v

LIBRARIES 6-3

trol/status register. If the value is -0, the result is -0. _sqrt_d can
trigger the floating point exceptions Invalid Operation when v is less
than 0 or Inexact.

int _test_and_set(int *p, int v)
This function performs an atomic test and set operation on the integer
pointed to by p. It effectively performs the following operations, but
with a guarantee that no other process executing on the system can in-
terrupt the operation.

temp = *p;
*p = v;
return(temp);

int _flush_cache(char *addr, int nbytes, int cache)
This function flushes the contents of the associated cache(s) for user
program addresses in the range addr to addr + nbytes – 1 . Cache
can be:

ICACHE - Flush only the instruction cache.

DCACHE - Flush only the data cache.

BCACHE- Flush both instruction and data cache.

These definitions are in the include file <sys/cachectl.h >. The
function returns zero when no errors are detected and returns -1 other-
wise, with the error cause indicated in errno . On error, the two possi-
ble errno values are either EINVAL, indicating an invalid value for the
cache parameter, or EFAULT, indicating some part or all of the address
range specified is not accessable.

Global Data Symbols
The libsys library requires that some global external data objects be defined for the
routines to work properly. In addition to the corresponding data symbols listed in
the System V ABI, the following symbols must be provided in the system library on
all ABI-conforming systems implemented with the MIPS processor architecture.
Declarations for the data objects listed below can be found in the "Data Definitions"
section.

6-4 MIPS ABI SUPPLEMEN T

Figure 6-3: libsys , Global External Data Symbols

__huge_val

Application Constraints

As described above, libsys provides symbols for applications. In a few cases, how-
ever, an application must provide symbols for the library. In addition to the appli-
cation-provided symbols listed in this section of the System V ABI, conforming ap-
plications on the MIPS processor architecture are also required to provide the fol-
lowing symbols.

extern _end; This symbol refers neither to a routine nor to a location with
interesting contents. Instead, its address must correspond to
the beginning of the dynamic allocation area of a program,
called the heap. Typically, the heap begins immediately after
the data segment of the program executable file.

extern _gp; This symbol is defined by the link editor and provides the val-
ue used for the gp register for this executable or shared object
file.

extern const int _lib_version;
This variable’s value specifies the compilation and execution
mode for the program. If the value is zero, the program pre-
serves the semantics of older (pre-ANSI) C, where conflicts
exist with ANSI. Otherwise, the value is non-zero, and the
program requires ANSI C semantics.

extern _DYNAMIC_LINKING ;
This variable is a flag that the static linker sets to non-zero if
the object is dynamically linked and is capable of linking with
other dynamic shared objects at run time. The value is set to
zero otherwise.

LIBRARIES 6-5

System Data Interfaces

Data Definitions
This section contains standard header files that describe system data. These header
files are referred to by their names in angle brackets: <name.h> and <sys/name.h>.
Included in these header files are macro and data definitions.

The data objects described in this section are part of the interface between an ABI-
conforming application and the underlying ABI-conforming system where it runs.
While an ABI-conforming system must provide these interfaces, it is not required
to contain the actual header files referenced here.

ANSI C serves as the ABI reference programming language, and data definitions
are specificed in ANSI C format. The C language is used here as a convenient no-
tation. Using a C language description of these data objects does not preclude their
use by other programming languages.

Figure 6-4: <assert.h>

Figure 6-5: <sys/cachectl.h>

extern void __assert(const char *, const char *, int);
#define assert(EX) (void)((EX)||(__assert(#EX, __FILE__, __LINE__), 0))

#define ICACHE 0x1
#define DCACHE 0x2
#define BCACHE (ICACHE | DCACHE)

6-6 MIPS ABI SUPPLEMENT

Figure 6-6: <ctype.h>

#define _U 01
#define _L 02
#define _N 04
#define _S 010
#define _P 020
#define _C 040
#define _B 0100
#define _X 0200

extern unsigned char __ctype[];

#define isalpha(c) ((__ctype+1)[c]&(_U|_L))
#define isupper(c) ((__ctype+1)[c]&_U)
#define islower(c) ((__ctype+1)[c]&_L)
#define isdigit(c) ((__ctype+1)[c]&_N)
#define isxdigit(c) ((__ctype+1)[c]&_X)
#define isalnum(c) ((__ctype+1)[c]&(_U|_L|_N))
#define isspace(c) ((__ctype+1)[c]&_S)
#define ispunct(c) ((__ctype+1)[c]&_P)
#define isprint(c) ((__ctype+1)[c]&(_P|_U|_L|_N|_B))
#define isgraph(c) ((__ctype+1)[c]&(_P|_U|_L|_N))
#define iscntrl(c) ((__ctype+1)[c]&_C)
#define isascii(c) (!((c)& ~0177))
#define _toupper(c) ((__ctype+258)[c])
#define _tolower(c) ((__ctype+258)[c])
#define toascii(c) ((c)&0177)

LIBRARIES 6-7

Figure 6-7: <dirent.h>

typedef struct {
int dd_fd;
int dd_loc;
int dd_size;
char *dd_buf;

} DIR;

struct dirent {
ino_t d_ino;
off_t d_off;
unsigned short d_reclen;
char d_name[1];

};

6-8 MIPS ABI SUPPLEMENT

Figure 6-8: <errno.h>

extern int errno;

#define EPERM 1
#define ENOENT 2
#define ESRCH 3
#define EINTR 4
#define EIO 5
#define ENXIO 6
#define E2BIG 7
#define ENOEXEC 8
#define EBADF 9
#define ECHILD 10
#define EAGAIN 11
#define ENOMEM 12
#define EACCES 13
#define EFAULT 14
#define ENOTBLK 15
#define EBUSY 16
#define EEXIST 17
#define EXDEV 18
#define ENODEV 19
#define ENOTDIR 20
#define EISDIR 21
#define EINVAL 22
#define ENFILE 23
#define EMFILE 24
#define ENOTTY 25
#define ETXTBSY 26
#define EFBIG 27
#define ENOSPC 28
#define ESPIPE 29

LIBRARIES 6-9

Figure 6-8: <errno.h > (continued)

#define EROFS 30
#define EMLINK 31
#define EPIPE 32
#define EDOM 33
#define ERANGE 34
#define ENOMSG 35
#define EIDRM 36
#define ECHRNG 37
#define EL2NSYNC 38
#define EL3HLT 39
#define EL3RST 40
#define ELNRNG 41
#define EUNATCH 42
#define ENOCSI 43
#define EL2HLT 44
#define EDEADLK 45
#define ENOLCK 46
#define ENOSTR 60
#define ENODATA 61
#define ETIME 62
#define ENOSR 63
#define ENONET 64
#define ENOPKG 65
#define EREMOTE 66
#define ENOLINK 67
#define EADV 68
#define ESRMNT 69

6-10 MIPS ABI SUPPLEMENT

Figure 6-8: <errno.h> (continued)

#define ECOMM 70
#define EPROTO 71
#define EMULTIHOP 74
#define EBADMSG 77
#define ENAMETOOLONG 78
#define EOVERFLOW 79
#define ENOTUNIQ 80
#define EBADFD 81
#define EREMCHG 82
#define ENOSYS 89
#define ELOOP 90
#define ERESTART 91
#define ESTRPIPE 92
#define ENOTEMPTY 93
#define EUSERS 94
#define ECONNABORTED 130
#define ECONNRESET 131
#define ECONNREFUSED 146
#define ESTALE 151

LIBRARIES 6-11

Figure 6-9: <fcntl.h>

#define O_RDONLY 0
#define O_WRONLY 1
#define O_RDWR 2
#define O_APPEND 0x08
#define O_SYNC 0x10
#define O_NONBLOCK 0x80
#define O_CREAT 0x100
#define O_TRUNC 0x200
#define O_EXCL 0x400
#define O_NOCTTY 0x800

#define F_DUPFD 0
#define F_GETFD 1
#define F_SETFD 2
#define F_GETFL 3
#define F_SETFL 4
#define F_GETLK 14
#define F_SETLK 6
#define F_SETLKW 7

#define FD_CLOEXEC 1
#define O_ACCMODE 3

typedef struct flock {
short l_type;
short l_whence;
off_t l_start;
off_t l_len;
long l_sysid;
pid_t l_pid;
long pad[4];

} flock_t;

#define F_RDLCK 01
#define F_WRLCK 02
#define F_UNLCK 03

6-12 MIPS ABI SUPPLEMENT

Figure 6-10: <float.h>

extern int __flt_rounds;
#define FLT_ROUNDS __flt_rounds

LIBRARIES 6-13

Figure 6-11: <fmtmsg.h>

#define MM_NULL 0L

#define MM_HARD 0x00000001L
#define MM_SOFT 0x00000002L
#define MM_FIRM 0x00000004L
#define MM_RECOVER 0x00000100L
#define MM_NRECOV 0x00000200L
#define MM_APPL 0x00000008L
#define MM_UTIL 0x00000010L
#define MM_OPSYS 0x00000020L
#define MM_PRINT 0x00000040L
#define MM_CONSOLE 0x00000080L

#define MM_NOSEV 0
#define MM_HALT 1
#define MM_ERROR 2
#define MM_WARNING 3
#define MM_INFO 4

#define MM_NULLLBL ((char *) NULL)
#define MM_NULLSEV MM_NOSEV
#define MM_NULLMC MM_NULL
#define MM_NULLTXT ((char *) NULL)
#define MM_NULLACT ((char *) NULL)
#define MM_NULLTAG ((char *) NULL)

#define MM_NOTOK –1
#define MM_OK 0x00
#define MM_NOMSG 0x01
#define MM_NOCON 0x04

6-14 MIPS ABI SUPPLEMENT

Figure 6-12: <ftw.h>

Figure 6-13: <grp.h>

#define FTW_PHYS 01
#define FTW_MOUNT 02
#define FTW_CHDIR 04
#define FTW_DEPTH 0 10

#define FTW_F 0
#define FTW_D 1
#define FTW_DNR 2
#define FTW_NS 3
#define FTW_SL 4
#define FTW_DP 6

 struct FTW
 {

int quit;
int base;
int level;

};

struct group {
char *gr_name;
char *gr_passwd;
gid_t gr_gid;
char **gr_mem;

};

LIBRARIES 6-15

Figure 6-14: <sys/ipc.h>

 struct ipc_perm {
uid_t uid;
gid_t gid;
uid_t cuid;
gid_t cgid;
mode_t mode;
unsigned long seq;
key_t key;
long pad[4];

};

#define IPC_CREAT 0001000
#define IPC_EXCL 0002000
#define IPC_NOWAIT 0004000

#define IPC_PRIVATE (key_t)0

#define IPC_RMID 10
#define IPC_SET 11
#define IPC_STAT 12

6-16 MIPS ABI SUPPLEMENT

Figure 6-15: <langinfo.h>

#define DAY_1 1
#define DAY_2 2
#define DAY_3 3
#define DAY_4 4
#define DAY_5 5
#define DAY_6 6
#define DAY_7 7

#define ABDAY_1 8
#define ABDAY_2 9
#define ABDAY_3 10
#define ABDAY_4 11
#define ABDAY_5 12
#define ABDAY_6 13
#define ABDAY_7 14

#define MON_1 15
#define MON_2 16
#define MON_3 17
#define MON_4 18
#define MON_5 19
#define MON_6 20
#define MON_7 21
#define MON_8 22
#define MON_9 23
#define MON_10 24
#define MON_11 25
#define MON_12 26

LIBRARIES 6-17

Figure 6-15: < langinfo.h > (continued)

#define ABMON_1 27
#define ABMON_2 28
#define ABMON_3 29
#define ABMON_4 30
#define ABMON_5 31
#define ABMON_6 32
#define ABMON_7 33
#define ABMON_8 34
#define ABMON_9 35
#define ABMON_10 36
#define ABMON_11 37
#define ABMON_12 38

#define RADIXCHAR 39
#define THOUSEP 40
#define YESSTR 41
#define NOSTR 42
#define CRNCYSTR 43

#define D_T_FMT 44
#define D_FMT 45
#define T_FMT 46
#define AM_STR 47
#define PM_STR 48

6-18 MIPS ABI SUPPLEMENT

Figure 6-16: <limits.h>

#define MB_LEN_MAX 5

#define ARG_MAX *
#define CHILD_MAX *
#define MAX_CANON *
#define NGROUPS_MAX *
#define LINK_MAX *
#define NAME_MAX *
#define OPEN_MAX *
#define PASS_MAX *
#define PATH_MAX *
#define PIPE_MAX *
#define PIPE_BUF *
#define MAX_INPUT *

 /* starred values vary and should be
 retrieved using sysconf() or pathconf()
 */

#define NL_ARGMAX 9
#define NL_LANGMAX 14
#define NL_MSGMAX 32767
#define NL_NMAX 1
#define NL_SETMAX 255
#define NL_TEXTMAX 255
#define NZERO 20
#define TMP_MAX 17576
#define FCHR_MAX 2147483647

LIBRARIES 6-19

Figure 6-17: <locale.h>

struct lconv {
char *decimal_point;
char *thousands_sep;
char *grouping;
char *int_curr_symbol;
char *currency_symbol;
char *mon_decimal_point;
char *mon_thousands_sep;
char *mon_grouping;
char *positive_sign;
char *negative_sign;
char int_frac_digits;
char frac_digits;
char p_cs_precedes;
char p_sep_by_space;
char n_cs_precedes;
char n_sep_by_space;
char p_sign_posn;
char n_sign_posn;

};

#define LC_CTYPE 0
#define LC_NUMERIC 1
#define LC_TIME 2
#define LC_COLLATE 3
#define LC_MONETARY 4
#define LC_MESSAGES 5
#define LC_ALL 6
#define NULL 0

6-20 MIPS ABI SUPPLEMENT

Figure 6-18: <math.h>

Figure 6-19: <sys/mman.h>

typedef union _h_val {
unsigned long i[2];
double d;

} _h_val;

extern const _h_val __huge_val;
#define HUGE_VAL __huge_val.d

#define PROT_READ 0x1
#define PROT_WRITE 0x2
#define PROT_EXEC 0x4
#define PROT_NONE 0x0

#define MAP_SHARED 1
#define MAP_PRIVATE 2
#define MAP_FIXED 0x10

#define MS_SYNC 0x0
#define MS_ASYNC 0x1
#define MS_INVALIDATE 0x2

LIBRARIES 6-21

Figure 6-20: <sys/mount.h>

Figure 6-21: <sys/msg.h>

#define MS_RDONLY 0x01
#define MS_DATA 0x04
#define MS_NOSUID 0x10
#define MS_REMOUNT 0x20

struct msqid_ds {
struct ipc_perm msg_perm;
struct msg *msg_first;
struct msg *msg_last;
unsigned long msg_cbytes;
unsigned long msg_qnum;
unsigned long msg_qbytes;
pid_t msg_lspid;
pid_t msg_lrpid;
time_t msg_stime;
long msg_pad1;
time_t msg_rtime;
long msg_pad2;
time_t msg_ctime;
long msg_pad3;
long msg_pad4[4];

};

#define MSG_NOERROR 010000

6-22 MIPS ABI SUPPLEMENT

Figure 6-22: <netconfig.h>

struct netconfig{
char *nc_netid;
unsigned long nc_semantics;
unsigned long nc_flag;
char *nc_protofmly;
char *nc_proto;
char *nc_device;
unsigned long nc_nlookups;
char **nc_lookups;
unsigned long nc_unused[8];

};

#define NC_TPI_CLTS 1
#define NC_TPI_COTS 2
#define NC_TPI_COTS_ORD 3
#define NC_TPI_RAW 4
#define NC_NOFLAG 00
#define NC_VISIBLE 01

LIBRARIES 6-23

Figure 6-22: <netconfig.h> (continued)

#define NC_NOPROTOFMLY ”–”
#define NC_LOOPBACK ”loopback”
#define NC_INET ”inet”
#define NC_IMPLINK ”implink”
#define NC_PUP ”pup”
#define NC_CHAOS ”chaos”
#define NC_NS ”ns”
#define NC_NBS ”nbs”
#define NC_ECMA ”ecma”
#define NC_DATAKIT ”datakit”
#define NC_CCITT ”ccitt”
#define NC_SNA ”sna”
#define NC_DECNET ”decnet”
#define NC_DLI ”dli”
#define NC_LAT ”lat”
#define NC_HYLINK ”hylink”
#define NC_APPLETALK ”appletalk”
#define NC_NIT ”nit”
#define NC_IEEE802 ”ieee802”
#define NC_OSI ”osi”
#define NC_X25 ”x25”
#define NC_OSINET ”osinet”
#define NC_GOSIP ”gosip”
#define NC_NOPROTO ”–”
#define NC_TCP ”tcp”
#define NC_UDP ”udp”
#define NC_ICMP ”icmp”

6-24 MIPS ABI SUPPLEMENT

Figure 6-23: <netdir.h>

struct nd_addrlist{
int n_cnt;
struct netbuf *n_addrs;

};

 struct nd_hostservlist {
int h_cnt;
struct nd_hostserv *h_hostservs;

};

 struct nd_hostserv {
char *h_host;
char *h_serv;

};

#define ND_BADARG –2
#define ND_NOMEM –1
#define ND_OK 0
#define ND_NOHOST 1
#define ND_NOSERV 2
#define ND_NOSYM 3
#define ND_OPEN 4
#define ND_ACCESS 5
#define ND_UKNWN 6
#define ND_NOCTRL 7
#define ND_FAILCTRL 8
#define ND_SYSTEM 9

LIBRARIES 6-25

Figure 6-23: <netdir.h> (continued)

Figure 6-24: <nl_types.h>

#define ND_HOSTSERV 0
#define ND_HOSTSERVLIST 1
#define ND_ADDR 2
#define ND_ADDRLIST 3

#define HOST_SELF ”\\1”
#define HOST_ANY ”\\2”
#define HOST_BROADCAST ”\\3”

#define ND_SET_BROADCAST 1
#define ND_SET_RESERVEDPORT 2
#define ND_CHECK_RESERVEDPORT 3
#define ND_MERGEADDR 4

#define NL_SETD 1

typedef int nl_item ;
typedef void *nl_catd;

6-26 MIPS ABI SUPPLEMENT

Figure 6-25: <sys/param.h>

#define CANBSIZ 256
#define HZ 100

#define NGROUPS_UMIN 0

#define MAXPATHLEN 1024
#define MAXSYMLINKS 30
#define MAXNAMELEN 256

#define NADDR 13

#define NBBY 8
#define NBPSCTR 512

LIBRARIES 6-27

Figure 6-26: <poll.h>

struct pollfd {
int fd;
short events;
short revents;

};

#define POLLIN 0x0001
#define POLLPRI 0x0002
#define POLLOUT 0x0004
#define POLLRDNORM 0x0040
#define POLLWRNORM POLLOUT
#define POLLRDBAND 0x0080
#define POLLWRBAND 0x0100
#define POLLNORM POLLRDNORM

#define POLLERR 0x0008
#define POLLHUP 0x0010
#define POLLNVAL 0x0020

6-28 MIPS ABI SUPPLEMENT

Figure 6-27: <sys/procset.h>

#define P_INITPID 1
#define P_INITUID 0
#define P_INITPGID 0

typedef long id_t;

typedef enum idtype{
P_PID,
P_PPID,
P_PGID,
P_SID,
P_CID,
P_UID,
P_GID,
P_ALL

} idtype_t;

typedef enum idop {
POP_DIFF,
POP_AND,
POP_OR,
POP_XOR

} idop_t;

LIBRARIES 6-29

Figure 6-27: <sys/procset.h> (continued)

Figure 6-28: <pwd.h>

typedef struct procset{
idop_t p_op;
idtype_t p_lidtype;
id_t p_lid;
idtype_t p_ridtype;
id_t p_rid;

} procset_t;

#define P_MYID (–1)

struct passwd {
char *pw_name;
char *pw_passwd;
uid_t pw_uid;
gid_t pw_gid;
char *pw_age;
char *pw_comment;
char *pw_gecos;
char *pw_dir;
char *pw_shell;

};

6-30 MIPS ABI SUPPLEMENT

Figure 6-29: <sys/resource.h>

#define RLIMIT_CPU 0
#define RLIMIT_FSIZE 1
#define RLIMIT_DATA 2
#define RLIMIT_STACK 3
#define RLIMIT_CORE 4
#define RLIMIT_NOFILE 5
#define RLIMIT_VMEM 6
#define RLIMIT_AS RLIMIT_VMEM
#define ELIM_INFINITY 0x7fffffff

typedef unsigned long rlim_t;

struct rlimit{
rlim_t rlim_cur;
rlim_t rlim_max;

};

LIBRARIES 6-31

Figure 6-30: <rpc.h>

#define MAX_AUTH_BYTES 400
#define MAXNETNAMELEN 255
#define HEXKEYBYTES 48

 enum auth_stat{
AUTH_OK=0,
AUTH_BADCRED=1,
AUTH_REJECTEDCRED=2,
AUTH_BADVERF=3,
AUTH_REJECTEDVERF=4,
AUTH_TOOWEAK=5,
AUTH_INVALIDRESP=6,
AUTH_FAILED=7

};

 union des_block{
struct {
unsigned long high;
unsigned long low;
} key;
char c[8];

};
struct opaque_auth{

int oa_flavor;
char *oa_base;
unsigned int oa_length;

};

6-32 MIPS ABI SUPPLEMENT

Figure 6-30: <rpc.h> (continued)

typedef struct {
struct opaque_auth ah_cred;
struct opaque_auth ah_verf;
union des_block ah_key;
struct auth_ops {
void (*ah_nextverf)();
int (*ah_marshal)();
int (*ah_validate)();
int (*ah_refresh)();
void (*ah_destroy)();
} *ah_ops;
char *ah_private;

} AUTH;

struct authsys_parms{
unsigned long aup_time;
char *aup_machname;
uid_t aup_uid;
gid_t aup_gid;
unsigned int aup_len;
gid_t *aup_gids;

};
extern struct opaque_auth_null_auth;

#define AUTH_NONE 0
#define AUTH_NULL 0
#define AUTH_SYS 1
#define AUTH_UNIX AUTH_SYS
#define AUTH_SHORT 2
#define AUTH_DES 3

LIBRARIES 6-33

Figure 6-30: <rpc.h> (continued)

enum clnt_stat{
RPC_SUCCESS=0,
RPC_CANTENCODEARGS=1,
RPC_CANTDECODERES=2,
RPC_CANTSEND=3,
RPC_CANTRECV=4,
RPC_TIMEDOUT=5,
RPC_INTR=18,
RPC_UDERROR=23,
RPC_VERSMISMATCH=6,
RPC_AUTHERROR=7,
RPC_PROGUNAVAIL=8,
RPC_PROGVERSMISMATCH=9,
RPC_PROCUNAVAIL=10,
RPC_CANTDECODEARGS=11,
RPC_SYSTEMERROR=12,
RPC_UNKNOWNHOST=13,
RPC_UNKNOWNPROTO=17,
RPC_UNKNOWNADDR=19,
RPC_NOBROADCAST=21,
RPC_RPCBFAILURE=14,
RPC_PROGNOTREGISTERED=15,
RPC_N2AXLATEFAILURE=22,
RPC_TLIERROR=20,
RPC_FAILED=16

};

#define RPC_PMAPFAILURE RPC_RPCBFAILURE

6-34 MIPS ABI SUPPLEMENT

Figure 6-30: <rpc.h> (continued)

#define RPC_AYSOCK -1
#define RPC_ANYFD RPC_ANYSOCK

struct rpc_err{
enum clnt_stat re_status;
union {
struct {
int errno;
int t_errno;
} RE_err;
enum auth_stat RE_why;
struct {
unsigned long low;
unsigned long high;
} RE_vers;
struct {
long s1;
long s2;
} RE_lb;
} ru;

};

LIBRARIES 6-35

Figure 6-30: <rpc.h> (continued)

struct rpc_createerr{
enum clnt_stat cf_stat;
struct rpc_err cf_error;

};
typedef struct {

AUTH *cl_auth;
struct clnt_ops {

enum clnt_stat (*cl_call)();
void (*cl_abort)();
void (*cl_geterr)();
int (*cl_freeres)();
void (*cl_destroy)();
int (*cl_control)();

} *cl_ops;
char *cl_private;
char *cl_netid;
char *cl_tp;

} CLIENT;

#define FEEDBACK_REXMIT1 1
#define FEEDBACK_OK 2

#define CLSET_TIMEOUT 1
#define CLGET_TIMEOUT 2
#define CLGET_SERVER_ADDR 3
#define CLGET_FD 6
#define CLGET_SVC_ADDR 7
#define CLSET_FD_CLOSE 8
#define CLSET_FD_NCLOSE 9
#define CLSET_RETRY_TIMEOUT 4
#define CLGET_RETRY_TIMEOUT 5

6-36 MIPS ABI SUPPLEMENT

Figure 6-30: <rpc.h> (continued)

extern struct
rpc_createerr rpc_createerr;
enum xprt_stat{

XPRT_DIED,
XPRT_MOREREQS,
XPRT_IDLE

};

typedef struct {
int xp_fd;
unsigned short xp_port;
struct xp_ops {
int (*xp_recv)();
enum xprt_stat (*xp_stat)();
int (*xp_getargs)();
int (*xp_reply)();
int (*xp_freeargs)();
void (*xp_destroy)();
} *xp_ops;
int xp_addrlen;
char *xp_tp;
char *xp_netid;
struct netbuf xp_ltaddr;
struct netbuf xp_rtaddr;
char xp_raddr[16];
struct opaque_auth xp_verf;
char *xp_p1;
char *xp_p2;
char *xp_p3;

} SVCXPRT;

LIBRARIES 6-37

Figure 6-30: <rpc.h> (continued)

struct svc_req {
unsigned long rq_prog;
unsigned long rq_vers;
unsigned long rq_proc;
struct opaque_auth rq_cred;
char *rq_clntcred;
SVCXPRT *rq_xprt;

};

 typedef struct fdset{
long fds_bits[32];

} fd_set;
 extern fd_set svc_fdset;

 enum msg_type{
CALL=0,
REPLY=1

};

 enum reply_stat{
MSG_ACCEPTED=0,
MSG_DENIED=1

};

 enum accept_stat{
SUCCESS=0,
PROG_UNAVAIL=1,
PROG_MISMATCH=2,
PROC_UNAVAIL=3,
GARBAGE_ARGS=4,
SYSTEM_ERR=5

};

6-38 MIPS ABI SUPPLEMENT

Figure 6-30: <rpc.h> (continued)

enum reject_stat {
RPC_MISMATCH=0,
AUTH_ERROR=1

};

 struct accepted_reply{
struct opaque_auth ar_verf;
enum accept_stat ar_stat;
union {
 struct {

unsigned long low;
unsigned long high;

 } AR_versions;
 struct {

char *where;
xdrproc_t proc;

 } AR_results;
} ru;

};

struct rejected_reply{
enum reject_stat rj_stat;
union {
 struct {

unsigned long low;
unsigned long high;

 } RJ_versions;
 enum auth_stat RJ_why;
} ru;

};

LIBRARIES 6-39

Figure 6-30: <rpc.h> (continued)

struct reply_body{
enum reply_stat rp_stat;
union {
 struct accepted_reply RP_ar;
 struct rejected_reply RP_dr;
} ru;

};

 struct call_body{
unsigned long cb_rpcvers;
unsigned long cb_prog;
unsigned long cb_vers;
unsigned long cb_proc;
struct opaque_auth cb_cred;
struct opaque_auth cb_verf;

};

 struct rpc_msg{
unsigned long rm_xid;
enum msg_type rm_direction;
union {
 struct call_body RM_cmb;
 struct reply_body RM_rmb;
} ru;

};

 struct rpcb{
unsigned long r_prog;
unsigned long r_vers;
char *r_netid;
char *r_addr;
char *r_owner;

};

6-40 MIPS ABI SUPPLEMENT

Figure 6-30: <rpc.h> (continued)

struct rpcblist{
struct rpcb rpcb_map;
struct rpcblist *rpcb_next;

};

 enum xdr_op {
XDR_ENCODE=0,
XDR_DECODE=1,
XDR_FREE=2

};

 struct xdr_discrim{
int value;
xdrproc_t proc;

};
enum authdes_namekind {

ADN_FULLNAME,
ADN_NICKNAME

};

 struct authdes_fullname{
char *name;
union des_block key;
unsigned long window;

};

 struct authdes_cred{
enum authdes_namekind adc_namekind;
struct authdes_fullname adc_fullname;
unsigned long adc_nickname;

};

LIBRARIES 6-41

Figure 6-30: <rpc.h> (continued)

typedef struct {
enum xdr_op x_op;
struct xdr_ops{

int (*x_getlong)();
int (*x_putlong)();
int (*x_getbytes)();
int (*x_putbytes)();
unsigned int (*x_getpostn)();
int (*x_setpostn)();
long * (*x_inline)();
void (*x_destroy)();

} *x_ops;
char *x_public;
char *x_private;
char *x_base;
int x_handy;

} XDR;

typedef int (*xdrproc_t)()
#define NULL_xdrproc_t ((xdrproc_t)0)

6-42 MIPS ABI SUPPLEMENT

Figure 6-30: <rpc.h> (continued)

#define auth_destroy(auth)
((*((auth)–>ah_ops–>ah_destroy))(auth))

#define clnt_call(rh, proc, xargs, argsp, xres, resp, secs)
((*(rh)–>cl_ops–>cl_call)(rh, proc, xargs, \
argsp, xres, resp, secs))

#define clnt_freeres(rh,xres,resp)
((*(rh)–>cl_ops–>cl_freeres)(rh,xres,resp))

#define clnt_geterr(rh, errp)
((*(rh)–>cl_ops–>cl_geterr)(rh, errp))

#define clnt_control(cl, rq, in)
((*(cl)–>cl_ops–>cl_control)(cl, rq, in))

#define clnt_destroy(rh)
((*(rh)–>cl_ops–>cl_destroy)(rh))

#define svc_destroy(xprt)
(*(xprt)–>xp_ops–>xp_destroy)(xprt)

#define svc_freeargs(xprt, xargs, argsp)
(*(xprt)–>xp_ops–>xp_freeargs)((xprt), (xargs), (argsp))

#define svc_getargs(xprt, xargs, argsp)
(*(xprt)–>xp_ops–>xp_getargs)((xprt), (xargs), (argsp))

#define svc_getrpccaller(x)
(&(x)–>xp_rtaddr)

#define xdr_getpos(xdrs)
(*(xdrs)–>x_ops–>x_getpostn)(xdrs)

#define xdr_setpos(xdrs, pos)
(*(xdrs)–>x_ops–>x_setpostn)(xdrs, pos)

#define xdr_inline(xdrs, len)
(*(xdrs)–>x_ops–>x_inline)(xdrs, len)

#define xdr_destroy(xdrs)
(*(xdrs)–>x_ops–>x_destroy)(xdrs)

LIBRARIES 6-43

Figure 6-31: <search.h>

typedef struct entry { char *key; void *data;} ENTRY;
typedef enum { FIND, ENTER} ACTION;
typedef enum { preorder, postorder, endorder, leaf} VISIT;

6-44 MIPS ABI SUPPLEMENT

Figure 6-32: <sys/sem.h>

#define SEM_UNDO 010000

#define GETNCNT 3
#define GETPID 4
#define GETVAL 5
#define GETALL 6
#define GETZCNT 7
#define SETVAL 8
#define SETALL 9

 struct semid_ds {
struct ipc_perm sem_perm;
struct sem *sem_base;
unsigned short sem_nsems;
time_t sem_otime;
long sem_pad1;
time_t sem_ctime;
long sem_pad2;
long sem_pad3[4];

};

 struct sem {
unsigned short semval;
pid_t sempid;
unsigned short semncnt;
unsigned short semzcnt;

};

 struct sembuf {
unsigned short sem_num;
short sem_op;
short sem_flg;

};

LIBRARIES 6-45

Figure 6-33: <setjmp.h>

#define _JBLEN 28
#define _SIGJBLEN 128

typedef int jmp_buf[_JBLEN];
typedef int sigjmp_buf[_SIGJBLEN];

6-46 MIPS ABI SUPPLEMENT

Figure 6-34: <sys/shm.h>

struct shmid_ds{
struct ipc_perm shm_perm;
int shm_segsz;
char *shm_amp;
unsigned short shm_lkcnt;
pid_t shm_lpid;
pid_t shm_cpid;
unsigned long shm_nattch;
unsigned long shm_cnattch;
time_t shm_atime;
long shm_pad1;
time_t shm_dtime;
long shm_pad2;
time_t shm_ctime;
long shm_pad3;
long shm_pad4[4];

};

#define SHM_RDONLY 010000
#define SHM_RND 020000

LIBRARIES 6-47

Figure 6-35: <signal.h>

#define SIGHUP 1
#define SIGINT 2
#define SIGQUIT 3
#define SIGILL 4
#define SIGTRAP 5
#define SIGABRT 6
#define SIGEMT 7
#define SIGFPE 8
#define SIGKILL 9
#define SIGBUS 10
#define SIGSEGV 11
#define SIGSYS 12
#define SIGPIPE 13
#define SIGALRM 14
#define SIGTERM 15
#define SIGUSR1 16
#define SIGUSR2 17
#define SIGCHLD 18
#define SIGPWR 19
#define SIGWINCH 20
#define SIGURG 21
#define SIGPOLL 22
#define SIGSTOP 23
#define SIGTSTP 24
#define SIGCONT 25
#define SIGTTIN 26
#define SIGTTOU 27
#define SIGXCPU 30
#define SIGXFSZ 31

6-48 MIPS ABI SUPPLEMENT

Figure 6-35: <signal.h (continued)

#define SIG_BLOCK 1
#define SIG_UNBLOCK 2
#define SIG_SETMASK 3
#define SIG_ERR (void(*)())–1
#define SIG_IGN (void(*)())1
#define SIG_HOLD (void(*)())2
#define SIG_DFL (void(*)())0

#define SS_ONSTACK 0x00000001
#define SS_DISABLE 0x00000002
 struct sigaltstack {

char *ss_sp;
int ss_size;
int ss_flags;

};
typedef struct sigaltstackstack_t;
typedef struct { unsigned long sigbits[4];} sigset_t;

struct sigaction{
int sa_flags;
void (*sa_handler)();
sigset_t sa_mask;
int sa_resv[2];

};

#define SA_ONSTACK 0x00000001
#define SA_RESETHAND 0x00000002
#define SA_RESTART 0x00000004
#define SA_SIGINFO 0x00000008
#define SA_NOCLDWAIT 0x00010000
#define SA_NOCLDSTOP 0x00020000

LIBRARIES 6-49

Figure 6-36: <sys/siginfo.h>

#define ILL_ILLOPC 1
#define ILL_ILLOPN 2
#define ILL_ILLADR 3
#define ILL_ILLTRP 4
#define ILL_PRVOPC 5
#define ILL_PRVREG 6
#define ILL_COPROC 7
#define ILL_BADSTK 8

6-50 MIPS ABI SUPPLEMENT

Figure 6-36: <sys/siginfo.h> (continued)

#define FPE_INTDIV 1
#define FPE_INTOVF 2
#define FPE_FLTDIV 3
#define FPE_FLTOVF 4
#define FPE_FLTUND 5
#define FPE_FLTRES 6
#define FPE_FLTINV 7
#define FPE_FLTSUB 8
#define SEGV_MAPERR 1
#define SEGV_ACCERR 2
#define BUS_ADRALN 1
#define BUS_ADRERR 2
#define BUS_OBJERR 3
#define TRAP_BRKPT 1
#define TRAP_TRACE 2
#define CLD_EXITED 1
#define CLD_KILLED 2
#define CLD_DUMPED 3
#define CLD_TRAPPED 4
#define CLD_STOPPED 5
#define CLD_CONTINUED 6
#define POLL_IN 1
#define POLL_OUT 2
#define POLL_MSG 3
#define POLL_ERR 4
#define POLL_PRI 5
#define POLL_HUP 6
#define SI_MAXSZ 128
#define SI_PAD ((SI_MAXSZ/sizeof(int)) – 3)

LIBRARIES 6-51

Figure 6-36: <sys/siginfo.h> (continued)

typedef struct siginfo{
int si_signo;
int si_code;
int si_errno;
union {
 int _pad[SI_PAD];
 struct {

pid_t _pid;
union {
struct { uid_t _uid;} _kill;
struct {

clock_t _utime;
int _status;
clock_t _stime;

} _cld;
 } _pdata;
 } _proc;
 struct { char *_addr;} _fault;
 struct {

int _fd;
long _band;

 } _file;
} _data;

} siginfo_t;

#define si_pid _data._proc._pid
#define si_uid _data._proc._pdata._kill._uid
#define si_addr _data._fault._addr
#define si_stime _data._proc._pdata._cld._stime
#define si_utime _data._proc._pdata._cld._utime
#define si_status _data._proc._pdata._cld._status
#define si_band _data._file._band
#define si_fd _data._file._fd

6-52 MIPS ABI SUPPLEMENT

Figure 6-37: <sys/stat.h>

#define _ST_FTYPSZ 16

 struct stat {
dev_t st_dev;
long st_pad1[3];
ino_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;
long st_pad2[2];
off_t st_size;
long st_pad3;
timestruc_t st_atim;
timestruc_t st_mtim;
timestruc_t st_ctim;
long st_blksize;
long st_blocks;
char st_fstype[_ST_FSTYPSZ];
long st_pad4[8];

};

#define st_atime st_atim.tv_sec
#define st_mtime st_mtim.tv_sec
#define st_ctime st_ctim.tv_sec

LIBRARIES 6-53

Figure 6-37: <sys/stat.h> (continued)

#define S_IFMT 0xF000
#define S_IFIFO 0x1000
#define S_IFCHR 0x2000
#define S_IFDIR 0x4000
#define S_IFBLK 0x6000
#define S_IFREG 0x8000
#define S_IFLNK 0xA000
#define S_ISUID 04000
#define S_ISGID 02000
#define S_ISVTX 01000
#define S_IRWXU 00700
#define S_IRUSR 00400
#define S_IWUSR 00200
#define S_IXUSR 00100
#define S_IRWXG 00070
#define S_IRGRP 00040
#define S_IWGRP 00020
#define S_IXGRP 00010
#define S_IRWXO 00007
#define S_IROTH 00004
#define S_IWOTH 00002
#define S_IXOTH 00001

#define S_ISFIFO(mode) ((mode&S_IFMT) == S_IFIFO)
#define S_ISCHR(mode) ((mode&S_IFMT) == S_IFCHR)
#define S_ISDIR(mode) ((mode&S_IFMT) == S_IFDIR)
#define S_ISBLK(mode) ((mode&S_IFMT) == S_IFBLK)
#define S_ISREG(mode) ((mode&S_IFMT) == S_IFREG)

6-54 MIPS ABI SUPPLEMENT

Figure 6-38: <sys/statvfs.h>

#define FSTYPSZ 16

 typedef struct statvfs {
unsigned long f_bsize;
unsigned long f_frsize;
unsigned long f_blocks;
unsigned long f_bfree;
unsigned long f_bavail;
unsigned long f_files;
unsigned long f_ffree;
unsigned long f_favail;
unsigned long f_fsid;
char f_basetype[FSTYPSZ];
unsigned long f_flag;
unsigned long f_namemax;
char f_fstr[32];
unsigned long f_filler[16];

} statvfs_t;

#define ST_RDONLY 0 0x01
#define ST_NOSUID 0x02

LIBRARIES 6-55

Figure 6-39: <stdarg.h>

typedef void *va_list;
#define va_end(list) (void)0

#define va_start(list, name)\
 (void) (list = (void *)((char *) &. . .))
#define va_arg(list, mode)\
 ((mode *)(list = (char *) ((((int)list +\
 (__builtin_alignof(mode)<=4?3:7)) &\
 (__builtin_alignof(mode)<=4?-4:-8))+sizeof(mode))))[-1]

The construction &... is a syntactic extension to ANSI C and may not be
supported by all C compilers. The intended semantics are to set list to the
address on the stack of the first incoming argument in the variable part of
the argument list. See "Function Calling Sequence" in Chapter 3.

NOTE

6-56 MIPS ABI SUPPLEMENT

Figure 6-40: <stddef.h>

#define NULL 0
typedef int ptrdiff_t;
typedef unsigned int size_t;
typedef long wchar_t;

‡ The _file member of the FILE struct is moved to Level 2 as of Jan. 1, 1993.

LIBRARIES 6-57

Figure 6-41: <stdio.h>
typedef unsigned int size_t;
typedef long fpos_t;

#define _NFILE 100
#define NULL 0
#define BUFSIZ 4096
#define _IOFBF 0000
#define _IOLBF 0100
#define _IONBF 0004
#define _IOEOF 0020
#define _IOERR 0040
#define EOF (–1)
#define FOPEN_MAX 60
#define FILENAME_MAX 1024

#define stdin (&__iob[0])
#define stdout (&__iob[1])
#define stderr (&__iob[2])

#define clearerr(p) ((void)((p)–>_flag &= ~(_IOERR|_I-
OEOF)))†
#define feof(p) ((p)–>_flag & _IOEOF)
#define ferror(p) ((p)–>_flag & _IOERR)†
#define fileno(p) (p)–>_file
#define L_ctermid 9
#define L_cuserid 9
#define P_tmpdir ”/var/tmp/”

† These macro definitions are moved to Level 2 as of Jan. 1, 1993.

6-58 MIPS ABI SUPPLEMENT

Figure 6-41: <stdio.h> (continued)

typedef struct {
int _cnt;
unsigned char *_ptr;
unsigned char *_base;
unsigned char _flag;
unsigned char _file;‡

} FILE;

extern FILE __iob[_NFILE];

The macros clearerr , and fileno will be removed as a source interface
in a future release supporting multi-processing. Applications should transi-
tion to the function equivalents of these macros in libc. Binary portability
will be supported for existing applications.

NOTE

The constant _NFILE has been removed. It should still appear in stdio.h,
but may be removed in a future version of the header file. Applications
may not be able to depend on fopen() failing on an attempt to open more
than _NFILE files.

CAUTIO

LIBRARIES 6-59

Figure 6-42: <stdlib.h>

typedef struct {
int quot;
int rem;

} div_t;

typedef struct {
long quot;
long rem;

} ldiv_t;

typedef unsigned int size_t;

#define NULL 0
#define EXIT_FAILURE 1
#define EXIT_SUCCESS 0
#define RAND_MAX 32767

extern unsigned char __ctype[];
#define MB_CUR_MAX __ctype[520]

6-60 MIPS ABI SUPPLEMENT

Figure 6-43: <stropts.h>

#define SNDZERO 0x001
#define RNORM 0x000
#define RMSGD 0x001
#define RMSGN 0x002
#define RMODEMASK 0x003
#define RPROTDAT 0x004
#define RPROTDIS 0x008
#define RPROTNORM 0x010

#define FLUSHR 0x01
#define FLUSHW 0x02
#define FLUSHRW 0x03

#define S_INPUT 0x0001
#define S_HIPRI 0x0002
#define S_OUTPUT 0x0004
#define S_MSG 0x0008
#define S_ERROR 0x0010
#define S_HANGUP 0x0020
#define S_RDNORM 0x0040
#define S_WRNORM S_OUTPUT
#define S_RDBAND 0x0080
#define S_WRBAND 0x0100
#define S_BANDURG 0x0200

#define RS_HIPRI 1
#define MSG_HIPRI 0x01
#define MSG_ANY 0x02
#define MSG_BAND 0x04

#define MORECTL 1
#define MOREDATA 2

#define MUXID_ALL (–1)

LIBRARIES 6-61

Figure 6-43: <stropts.h> (continued)

#define STR (’S’<<8)
#define I_NREAD (STR|01)
#define I_PUSH (STR|02)
#define I_POP (STR|03)
#define I_LOOK (STR|04)
#define I_FLUSH (STR|05)
#define I_SRDOPT (STR|06)
#define I_GRDOPT (STR|07)
#define I_STR (STR|010)
#define I_SETSIG (STR|011)
#define I_GETSIG (STR|012)
#define I_FIND (STR|013)
#define I_LINK (STR|014)
#define I_UNLINK (STR|015)
#define I_PEEK (STR|017)
#define I_FDINSERT (STR|020)
#define I_SENDFD (STR|021)
#define I_RECVFD (STR|016)
#define I_SWROPT (STR|023)
#define I_GWROPT (STR|024)
#define I_LIST (STR|025)
#define I_PLINK (STR|026)
#define I_PUNLINK (STR|027)
#define I_FLUSHBAND (STR|034)
#define I_CKBAND (STR|035)
#define I_GETBAND (STR|036)
#define I_ATMARK (STR|037)
#define I_SETCLTIME (STR|040)
#define I_GETCLTIME (STR|041)
#define I_CANPUT (STR|042)

6-62 MIPS ABI SUPPLEMENT

Figure 6-43: <stropts.h> (continued)

struct strioctl {
int ic_cmd;
int ic_timout;
int ic_len;
char *ic_dp;

};

struct strbuf {
int maxlen;
int len;
char *buf;

};

struct strpeek {
struct strbuf ctlbuf;
struct strbuf databuf;
long flags;

};

struct strfdinsert {
struct strbuf ctlbuf;
struct strbuf databuf;
long flags;
int fildes;
int offset;

};

struct strrecvfd {
int fd;
uid_t uid;
gid_t gid;
char fill[8];

};

LIBRARIES 6-63

Figure 6-43: <stropts.h> (continued)

#define FMNAMESZ 8

 struct str_mlist{
char l_name[FMNAMESZ+1];

};

 struct str_list{
int sl_nmods;
struct str_mlist *sl_modlist;

};

#define ANYMARK 0x01
#define LASTMARK 0x02

 struct bandinfo{
unsigned char bi_pri;
int bi_flag;

};

6-64 MIPS ABI SUPPLEMENT

Figure 6-44: <termios.h>

#define NCCS 23
#define CTRL(c) ((c)&037)

#define IBSHIFT 16
#define _POSIX_VDISABLE 0

typedef unsigned long tcflag_t;
typedef unsigned char cc_t;
typedef unsigned long speed_t;

#define VINTR 0
#define VQUIT 1
#define VERASE 2
#define VKILL 3
#define VEOF 4
#define VEOL 5
#define VEOL2 6
#define VMIN 4
#define VTIME 5
#define VSWTCH 7
#define VSTART 8
#define VSTOP 9
#define VSUSP 10
#define VDSUSP 11
#define VREPRINT 12
#define VDISCARD 13
#define VWERASE 14
#define VLNEXT 15

Elements 16-22 of the C_CC array are undefined and reserved for future use.

LIBRARIES 6-65

Figure 6-44: <termios.h> (continued)

#define CNUL 0
#define CDEL 0377
#define CESC ’\\’
#define CINTR 0177
#define CQUIT 034
#define CERASE ’#’
#define CKILL ’@’
#define CEOT 04
#define CEOL 0
#define CEOL2 0
#define CEOF 04
#define CSTART 021
#define CSTOP 023
#define CSWTCH 032
#define CNSWTCH 0
#define CSUSP CTRL(’z’)
#define CDSUSP CTRL(’y’)
#define CRPRNT CTRL(’r’)
#define CFLUSH CTRL(’o’)
#define CWERASE CTRL(’w’)
#define CLNEXT CTRL(’v’)

#define IGNBRK 0000001
#define BRKINT 0000002
#define IGNPAR 0000004
#define PARMRK 0000010
#define INPCK 0000020
#define ISTRIP 0000040
#define INLCR 0000100
#define IGNCR 0000200
#define ICRNL 0000400
#define IUCLC 0001000
#define IXON 0002000
#define IXANY 0004000
#define IXOFF 0010000

6-66 MIPS ABI SUPPLEMENT

Figure 6-44: <termios.h> (continued)

#define OPOST 0000001
#define OLCUC 0000002
#define ONLCR 0000004
#define OCRNL 0000010
#define ONOCR 0000020
#define ONLRET 0000040
#define OFILL 0000100
#define OFDEL 0000200
#define NLDLY 0000400
#define NL0 0
#define NL1 0000400
#define CRDLY 0003000
#define CR0 0
#define CR1 0001000
#define CR2 0002000
#define CR3 0003000
#define TABDLY 0014000
#define TAB0 0
#define TAB1 0004000
#define TAB2 0010000
#define TAB3 0014000
#define BSDLY 0020000
#define BS0 0
#define BS1 0020000
#define VTDLY 0040000
#define VT0 0
#define VT1 0040000
#define FFDLY 0100000
#define FF0 0
#define FF1 0100000

LIBRARIES 6-67

Figure 6-44: <termios.h> (continued)

#define CBAUD 0000017
#define B0 0
#define B50 0000001
#define B75 0000002
#define B110 0000003
#define B134 0000004
#define B150 0000005
#define B200 0000006
#define B300 0000007
#define B600 0000010
#define B1200 0000011
#define B1800 0000012
#define B2400 0000013
#define B4800 0000014
#define B9600 0000015
#define B19200 0000016
#define EXTA 0000016
#define B38400 0000017
#define EXTB 0000017
#define CSIZE 0000060
#define CS5 0
#define CS6 0000020
#define CS7 0000040
#define CS8 0000060
#define CSTOPB 0000100
#define CREAD 0000200
#define PARENB 0000400
#define PARODD 0001000
#define HUPCL 0002000
#define CLOCAL 0004000

6-68 MIPS ABI SUPPLEMENT

Figure 6-44: <termios.h> (continued)

#define ISIG 0000001
#define ICANON 0000002
#define XCASE 0000004
#define ECHO 0000010
#define ECHOE 0000020
#define ECHOK 0000040
#define ECHONL 0000100
#define NOFLSH 0000200
#define TOSTOP 0100000
#define ECHOCTL 0001000
#define ECHOPRT 0002000
#define ECHOKE 0004000
#define FLUSHO 0020000
#define PENDIN 0040000
#define IEXTEN 0000400
#define TIOC (’T’<<8)

#define TCSANOW (TIOC|14)
#define TCSADRAIN (TIOC|15)
#define TCSAFLUSH (TIOC|16)

#define TCIFLUSH 0
#define TCOFLUSH 1
#define TCIOFLUSH 2
#define TCOOFF 0
#define TCOON 1
#define TCIOFF 2
#define TCION 3

LIBRARIES 6-69

Figure 6-44: <termios.h> (continued)

Figure 6-45: <sys/ticlts .h>

Figure 6-46: <sys/ticots.h>

struct termios{
tcflag_t c_iflag;
tcflag_t c_oflag;
tcflag_t c_cflag;
tcflag_t c_lflag;
cc_t c_cc[NCCS];

};

#define TCL_BADADDR 1
#define TCL_BADOPT 2
#define TCL_NOPEER 3
#define TCL_PEERBADSTATE 4

#define TCL_DEFAULTADDRSZ 4

#define TCO_NOPEER ECONNREFUSED
#define TCO_PEERNOROOMONQ ECONNREFUSED
#define TCO_PEERBADSTATE ECONNREFUSED
#define TCO_PEERINITIATED ECONNRESET
#define TCO_PROVIDERINITIATED ECONNABORTED

#define TCO_DEFAULTADDRSZ 4

6-70 MIPS ABI SUPPLEMENT

Figure 6-47: <sys/ticotsord.h>

#define TCOO_NOPEER 1
#define TCOO_PEERNOROOMONQ 2
#define TCOO_PEERBADSTATE 3
#define TCOO_PEERINITIATED 4
#define TCOO_PROVIDERINITIATED 5

#define TCOO_DEFAULTADDRSZ 4

LIBRARIES 6-71

Figure 6-48: <sys/time.h>

#define CLK_TCK *
#define CLOCKS_PER_SEC 1000000
#define NULL 0

typedef long clock_t;
typedef long time_t;

struct tm{
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};
struct timeval{

time_t tv_sec;
long tv_usec;

};

extern long timezone;
extern int daylight;
extern char *tzname[2];

typedef struct timestruc{
time_t tv_sec;
long tv_nsec;

} timestruc_t;

/* starred values may vary and should be
retrieved with sysconf() of pathconf() */

6-72 MIPS ABI SUPPLEMENT

Figure 6-49: <sys/times.h>

Figure 6-50: <sys/tiuser.h> , Service Types

Figure 6-51: <sys/tiuser.h> , Transport Interface States

 struct tms{
clock_t tms_utime;
clock_t tms_stime;
clock_t tms_cutime;
clock_t tms_cstime;

};

#define T_CLTS 3
#define T_COTS 1
#define T_COTS_ORD 2

#define T_DATAXFER 5
#define T_IDLE 2
#define T_INCON 4
#define T_INREL 7
#define T_OUTCON 3
#define T_OUTREL 6
#define T_UNBND 1
#define T_UNINIT 0

LIBRARIES 6-73

Figure 6-52: <sys/tiuser.h> , User–level Events

#define T_ACCEPT1 12
#define T_ACCEPT2 13
#define T_ACCEPT3 14
#define T_BIND 1
#define T_CLOSE 4
#define T_CONNECT1 8
#define T_CONNECT2 9
#define T_LISTN 11
#define T_OPEN 0
#define T_OPTMGMT 2
#define T_PASSCON 24
#define T_RCV 16
#define T_RCVCONNECT 10
#define T_RCVDIS1 19
#define T_RCVDIS2 20
#define T_RCVDIS3 21
#define T_RCVREL 23
#define T_RCVUDATA 6
#define T_RCVUDERR 7
#define T_SND 15
#define T_SNDDIS1 17
#define T_SNDDIS2 18
#define T_SNDREL 22
#define T_SNDUDATA 5
#define T_UNBIND 3

6-74 MIPS ABI SUPPLEMENT

Figure 6-53: <sys/tiuser.h> , Error Return Values

#define TACCES 3
#define TBADADDR 1
#define TBADDATA 10
#define TBADF 4
#define TBADFLAG 16
#define TBADOPT 2
#define TBADSEQ 7
#define TBUFOVFLW 11
#define TFLOW 12
#define TLOOK 9
#define TNOADDR 5
#define TNODATA 13
#define TNODIS 14
#define TNOREL 17
#define TNOTSUPPORT 18
#define TNOUDERR 15
#define TOUTSTATE 6
#define TSTATECHNG 19
#define TSYSERR 8

LIBRARIES 6-75

Figure 6-54: <sys/tiuser.h> , Transport Interface Data Structures

struct netbuf{
unsigned int maxlen;
unsigned int len;
char *buf;

};

struct t_bind{
struct netbuf addr;
unsigned int qlen;

};

 struct t_call{
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

};

 struct t_discon{
struct netbuf udata;
int reason;
int sequence;

};

6-76 MIPS ABI SUPPLEMENT

Figure 6-54: <sys/tiuser.h> , Transport Interface Data Structures
 (continued)

struct t_info {
long addr;
long options;
long tsdu;
long etsdu;
long connect;
long discon;
long servtype;

};
struct t_optmgmt{

struct netbuf opt;
long flags;

};

 struct t_uderr{
struct netbuf addr;
struct netbuf opt;
long error;

};

 struct t_unitdata{
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

};

LIBRARIES 6-77

Figure 6-55: <sys/tiuser.h> , Structure Types

Figure 6-56: <sys/tiuser.h> , Fields of Structures

Figure 6-57: <sys/tiuser.h> , Events Bitmasks

#define T_BIND 1
#define T_CALL 3
#define T_DIS 4
#define T_INFO 7
#define T_OPTMGMT 2
#define T_UDERROR 6
#define T_UNITDATA 5

#define T_ADDR 0x01
#define T_OPT 0x02
#define T_UDATA 0x04
#define T_ALL 0x07

#define T_LISTEN 0x01
#define T_CONNECT 0x02
#define T_DATA 0x04
#define T_EXDATA 0x08
#define T_DISCONNECT 0x10
#define T_ERROR 0x20
#define T_UDERR 0x40
#define T_ORDREL 0x80
#define T_EVENTS 0xff

6-78 MIPS ABI SUPPLEMENT

Figure 6-58: <sys/tiuser.h> , Flags

Figure 6-59: <sys/types.h>

#define T_MORE 0x01
#define T_EXPEDITED 0x02
#define T_NEGOTIATE 0x04
#define T_CHECK 0x08
#define T_DEFAULT 0x10
#define T_SUCCESS 0x20
#define T_FAILURE 0x40

typedef long time_t;
typedef long daddr_t;
typedef unsigned long dev_t;
typedef long gid_t;
typedef unsigned long ino_t;
typedef int key_t;
typedef long pid_t;
typedef unsigned long mode_t;
typedef unsigned long nlink_t;
typedef long off_t;
typedef long uid_t;
typedef long clock_t
typedef unsigned int size_t

LIBRARIES 6-79

Figure 6-60: <sys/ucontext.h>

typedef unsigned int greg_t;

#define NGREG 36

typedef greg_t gregset_t[NGREG];

typedef struct fpregset {
union {
double fp_dregs[16];
float fp_fregs [32];
unsigned int fp_regs[32];
} fp_r;
unsigned int fp_csr;
unsigned int fp_pad;

} fpregset_t;

 typedef struct {
gregset_t gregs;
fpregset_t fpregs;

} mcontext_t;

 typedef struct ucontext{
unsigned long uc_flags;
struct ucontext *uc_link;
sigset_t uc_sigmask;
stack_t uc_stack;
mcontext_t uc_mcontext;
long uc_filler[48];

} ucontext_t;

The size of the ucontext sruct is 128 words according to the alignment rules in
Chapter 3. Specifically, the fpregset struct is double word aligned, forcing the
mcontext_t and ucontext structures to also be double word aligned.

6-80 MIPS ABI SUPPLEMENT

Figure 6-60: <sys/ucontext.h> (continued)

#define CXT_R0 0
#define CXT_AT 1
#define CXT_V0 2
#define CXT_V1 3
#define CXT_A0 4
#define CXT_A1 5
#define CXT_A2 6
#define CXT_A3 7
#define CXT_T0 8
#define CXT_T1 9
#define CXT_T2 10
#define CXT_T3 11
#define CXT_T4 12
#define CXT_T5 13
#define CXT_T6 14
#define CXT_T7 15
#define CXT_S0 16
#define CXT_S1 17
#define CXT_S2 18
#define CXT_S3 19
#define CXT_S4 20
#define CXT_S5 21
#define CXT_S6 22
#define CXT_S7 23
#define CXT_T8 24
#define CXT_T9 25
#define CXT_K0 26
#define CXT_K1 27
#define CXT_GP 28
#define CXT_SP 29

LIBRARIES 6-81

Figure 6-60: <sys/ucontext.h> (continued)

Figure 6-61: <sys/uio.h>

Figure 6-62: <ulimit.h>

#define CXT_S8 30
#define CXT_RA 31
#define CXT_MDLO 32
#define CXT_MDHI 33
#define CXT_CAUSE 34
#define CXT_EPC 35

 typedef struct iovec{
char *iov_base;
int iov_len;

} iovec_t;

#define UL_GETFSIZE 1
#define UL_SETFSIZE 2

6-82 MIPS ABI SUPPLEMENT

Figure 6-63: <unistd.h>

#define R_OK 4
#define W_OK 2
#define X_OK 1
#define F_OK 0

#define F_ULOCK 0
#define F_LOCK 1
#define F_TLOCK 2
#define F_TEST 3

#define SEEK_SET 0
#define SEEK_CUR 1
#define SEEK_END 2

#define _POSIX_JOB_CONTROL 1
#define _POSIX_SAVED_IDS 1
#define _POSIX_VDISABLE *

#define _POSIX_VERSION *
#define _XOPEN_VERSION *

/* starred values vary and should be
 retrieved using sysconf() or pathconf() */

LIBRARIES 6-83

Figure 6-63: <unistd.h> (continued)

#define _SC_ARG_MAX 1
#define _SC_CHILD_MAX 2
#define _SC_CLK_TCK 3
#define _SC_NGROUPS_MAX 4
#define _SC_OPEN_MAX 5
#define _SC_JOB_CONTROL 6
#define _SC_SAVED_IDS 7
#define _SC_VERSION 8
#define _SC_PASS_MAX 9
#define _SC_PAGESIZE 11
#define _SC_XOPEN_VERSION 12

#define _PC_LINK_MAX 1
#define _PC_MAX_CANON 2
#define _PC_MAX_INPUT 3
#define _PC_NAME_MAX 4
#define _PC_PATH_MAX 5
#define _PC_PIPE_BUF 6
#define _PC_CHOWN_RESTRICTED 7
#define _PC_NO_TRUNC 8
#define _PC_VDISABLE 9

#define STDIN_FILENO 0
#define STDOUT_FILENO 1
#define STDERR_FILENO 2

6-84 MIPS ABI SUPPLEMENT

Figure 6-64: <utime.h>

Figure 6-65: <sys/utsname.h>

struct utimbuf{
time_t actime;
time_t modtime;

};

#define SYS_NMLN 257

struct utsname{
char sysname[SYS_NMLN];
char nodename[SYS_NMLN];
char release[SYS_NMLN];
char version[SYS_NMLN];
char machine[SYS_NMLN];
char m_type[SYS_NMLN];
char base_rel[SYS_NMLN];
char reserve5[SYS_NMLN];
char reserve4[SYS_NMLN];
char reserve3[SYS_NMLN];
char reserve2[SYS_NMLN];
char reserve1[SYS_NMLN];
char reserve0[SYS_NMLN];

};

The fields m_type , base_rel , reserve5 , reserve4 , reserve3 , reserve2,
reserve1 , and reserve0 are not defined in the SVID and are reserved for fu-
ture use.

LIBRARIES 6-85

Figure 6-66: <wait.h>

#define WEXITED 0001
#define WTRAPPED 0002
#define WSTOPPED 0004
#define WCONTINUED 0010
#define WUNTRACED WSTOPPED
#define WNOHANG 0100
#define WNOWAIT 0200

#define WSTOPFLG 0177
#define WCONTFLG 0177777
#define WCOREFLG 0200
#define WSIGMASK 0177

#define WWORD(stat) ((int)((stat))&0177777)

#define WIFEXITED(stat) ((int) ((stat)&0377)==0)
#define WIFSIGNALED(stat)\

(((int)((stat)&0377)>0)&&(((int)(((stat)>>8)&0377))==0))
#define WIFSTOPPED(stat)\

(((int)((stat)&0377)==WSTOPFLAG)&&(((int)(((stat)>>8)\
&0377))!=0))

#define WIFCONTINUED(stat) (WWORD(stat)==WCONTFLG)
#define WEXITSTATUS(stat) (((int)(((stat>>8)&0377))
#define WTERMSIG(stat) (((int)((stat)&0377)&WSIGMASK))
#define WSTOPSIG(stat) ((int)(((stat)>>8)&0377))
#define WCOREDUMP(stat) ((stat)&WCOREFLG)

6-86 MIPS ABI SUPPLEMENT

Figure 6-67: <varargs.h >

typedef char *va_list;
#define va_dcl int va_alist;
#define va_start(list) list = (char *) &va_alist
#define va_end(list)
#define va_arg(list, mode) ((mode *) (list =\
 (char *) ((((int)list + (__builtin_alignof(mode)\
 <=4?3:7)) &(__builtin_alignof(mode)\
 <=4?-4:-8))+sizeof(mode))))[-1]

LIBRARIES 6-87

X Window Data Definitions
This section is new, but will not be diffmarked.

This section contains standard data definitions that describe system data for the
optional X Window windowing libraries. These data definitions are referred to by
their names in angle brackets: <name.h> and <sys/name.h>. Included in these
data definitions are macro definitions and structure definitions. While an ABI-
conforming system may provide X11 and X Toolkit Intrinsics interfaces, it need not
contain the actual data definitions referenced here. Programmers should observe
that the sources of the structures defined in these data definitions are defined in
SVID or the appropriate X Consortium documentation (see chapter 10 in the Ge-
neric ABI).

NOTE

6-88 MIPS ABI SUPPLEMENT

Figure 6-1: <X11/Atom.h>

#define XA_PRIMARY ((Atom) 1)
#define XA_SECONDARY ((Atom) 2)
#define XA_ARC ((Atom) 3)
#define XA_ATOM ((Atom) 4)
#define XA_BITMAP ((Atom) 5)
#define XA_CARDINAL ((Atom) 6)
#define XA_COLORMAP ((Atom) 7)
#define XA_CURSOR ((Atom) 8)
#define XA_CUT_BUFFER0 ((Atom) 9)
#define XA_CUT_BUFFER1 ((Atom) 10)
#define XA_CUT_BUFFER2 ((Atom) 11)
#define XA_CUT_BUFFER3 ((Atom) 12)
#define XA_CUT_BUFFER4 ((Atom) 13)
#define XA_CUT_BUFFER5 ((Atom) 14)
#define XA_CUT_BUFFER6 ((Atom) 15)
#define XA_CUT_BUFFER7 ((Atom) 16)
#define XA_DRAWABLE ((Atom) 17)
#define XA_FONT ((Atom) 18)
#define XA_INTEGER ((Atom) 19)
#define XA_PIXMAP ((Atom) 20)
#define XA_POINT ((Atom) 21)
#define XA_RECTANGLE ((Atom) 22)
#define XA_RESOURCE_MANAGER ((Atom) 23)
#define XA_RGB_COLOR_MAP ((Atom) 24)
#define XA_RGB_BEST_MAP ((Atom) 25)
#define XA_RGB_BLUE_MAP ((Atom) 26)
#define XA_RGB_DEFAULT_MAP ((Atom) 27)
#define XA_RGB_GRAY_MAP ((Atom) 28)
#define XA_RGB_GREEN_MAP ((Atom) 29)
#define XA_RGB_RED_MAP ((Atom) 30)
#define XA_STRING ((Atom) 31)
#define XA_VISUALID ((Atom) 32)

LIBRARIES 6-89

Figure 6-1: <X11/Atom.h> (continued)

#define XA_WINDOW ((Atom) 33)
#define XA_WM_COMMAND ((Atom) 34)
#define XA_WM_HINTS ((Atom) 35)
#define XA_WM_CLIENT_MACHINE ((Atom) 36)
#define XA_WM_ICON_NAME ((Atom) 37)
#define XA_WM_ICON_SIZE ((Atom) 38)
#define XA_WM_NAME ((Atom) 39)
#define XA_WM_NORMAL_HINTS ((Atom) 40)
#define XA_WM_SIZE_HINTS ((Atom) 41)
#define XA_WM_ZOOM_HINTS ((Atom) 42)
#define XA_MIN_SPACE ((Atom) 43)
#define XA_NORM_SPACE ((Atom) 44)
#define XA_MAX_SPACE ((Atom) 45)
#define XA_END_SPACE ((Atom) 46)
#define XA_SUPERSCRIPT_X ((Atom) 47)
#define XA_SUPERSCRIPT_Y ((Atom) 48)
#define XA_SUBSCRIPT_X ((Atom) 49)
#define XA_SUBSCRIPT_Y ((Atom) 50)
#define XA_UNDERLINE_POSITION ((Atom) 51)
#define XA_UNDERLINE_THICKNESS ((Atom) 52)
#define XA_STRIKEOUT_ASCENT ((Atom) 53)
#define XA_STRIKEOUT_DESCENT ((Atom) 54)
#define XA_ITALIC_ANGLE ((Atom) 55)
#define XA_X_HEIGHT ((Atom) 56)
#define XA_QUAD_WIDTH ((Atom) 57)
#define XA_WEIGHT ((Atom) 58)
#define XA_POINT_SIZE ((Atom) 59)
#define XA_RESOLUTION ((Atom) 60)
#define XA_COPYRIGHT ((Atom) 61)
#define XA_NOTICE ((Atom) 62)
#define XA_FONT_NAME ((Atom) 63)
#define XA_FAMILY_NAME ((Atom) 64)

6-90 MIPS ABI SUPPLEMENT

Figure 6-1: <X11/Atom.h> (continued)

#define XA_FULL_NAME ((Atom) 65)
#define XA_CAP_HEIGHT ((Atom) 66)
#define XA_WM_CLASS ((Atom) 67)
#define XA_WM_TRANSIENT_FOR ((Atom) 68)
#define XA_LAST_PREDEFINED ((Atom) 68)

LIBRARIES 6-91

Figure 6-2: <X11/Composite.h>

Figure 6-3: <X11/Constraint.h>

Figure 6-4: <X11/Core.h>

extern WidgetClass compositeWidgetClass;

extern WidgetClass constraintWidgetClass;

extern WidgetClass coreWidgetClass;

6-92 MIPS ABI SUPPLEMENT

Figure 6-5: <X11/cursorfont.h>

#define XC_num_glyphs 154
#define XC_X_cursor 0
#define XC_arrow 2
#define XC_based_arrow_down 4
#define XC_based_arrow_up 6
#define XC_boat 8
#define XC_bogosity 10
#define XC_bottom_left_corner 12
#define XC_bottom_right_corner 14
#define XC_bottom_side 16
#define XC_bottom_tee 18
#define XC_box_spiral 20
#define XC_center_ptr 22
#define XC_circle 24
#define XC_clock 26
#define XC_coffee_mug 28
#define XC_cross 30
#define XC_cross_reverse 32
#define XC_crosshair 34
#define XC_diamond_cross 36
#define XC_dot 38
#define XC_dotbox 40
#define XC_double_arrow 42
#define XC_draft_large 44
#define XC_draft_small 46
#define XC_draped_box 48
#define XC_exchange 50
#define XC_fleur 52
#define XC_gobbler 54
#define XC_gumby 56
#define XC_hand1 58
#define XC_hand2 60

LIBRARIES 6-93

Figure 6-5: <X11/cursorfont.h> (continued)

#define XC_heart 62
#define XC_icon 64
#define XC_iron_cross 66
#define XC_left_ptr 68
#define XC_left_side 70
#define XC_left_tee 72
#define XC_leftbutton 74
#define XC_ll_angle 76
#define XC_lr_angle 78
#define XC_man 80
#define XC_middlebutton 82
#define XC_mouse 84
#define XC_pencil 86
#define XC_pirate 88
#define XC_plus 90
#define XC_question_arrow 92
#define XC_right_ptr 94
#define XC_right_side 96
#define XC_right_tee 98
#define XC_rightbutton 100
#define XC_rtl_logo 102
#define XC_sailboat 104
#define XC_sb_down_arrow 106
#define XC_sb_h_double_arrow 108
#define XC_sb_left_arrow 110
#define XC_sb_right_arrow 112
#define XC_sb_up_arrow 114
#define XC_sb_v_double_arrow 116
#define XC_shuttle 118
#define XC_sizing 120
#define XC_spider 122
#define XC_spraycan 124

6-94 MIPS ABI SUPPLEMENT

Figure 6-5: <X11/cursorfont.h> (continued)

#define XC_star 126
#define XC_target 128
#define XC_tcross 130
#define XC_top_left_arrow 132
#define XC_top_left_corner 134
#define XC_top_right_corner 136
#define XC_top_side 138
#define XC_top_tee 140
#define XC_trek 142
#define XC_ul_angle 144
#define XC_umbrella 146
#define XC_ur_angle 148
#define XC_watch 150
#define XC_xterm 152

LIBRARIES 6-95

Figure 6-6: <X11/Intrinsic.h>

typedef char *String;

#define XtNumber(arr)\
((Cardinal) (sizeof(arr) / sizeof(arr[0])))

typedef void Widget;
typedef Widget *WidgetList;
typedef void CompositeWidget;
typedef XtActionsRec XtActionList;

typedef void XtAppContext;
typedef unsigned long XtValueMask;
typedef unsigned long XtIntervalId;
typedef unsigned long XtInputId;
typedef unsigned long XtWorkProcId;
typedef unsigned int XtGeometryMask;
typedef unsigned long XtGCMask;
typedef unsigned long Pixel;
typedef int XtCacheType;
#define XtCacheNone 0x001
#define XtCacheAll 0x002
#define XtCacheByDisplay 0x003
#define XtCacheRefCount 0x100

typedef char Boolean;
typedef long XtArgVal;
typedef unsigned char XtEnum;

typedef unsigned int Cardinal;
typedef unsigned short Dimension;
typedef short Position;

typedef char *XtPointer;

6-96 MIPS ABI SUPPLEMENT

Figure 6-6: <X11/Intrinsic.h> (continued)

typedef void XtTranslations;
typedef void XtAccelerators;
typedef unsigned int Modifiers;

#define XtCWQueryOnly (1 << 7)
#define XtSMDontChange 5

typedef void XtCacheRef;
typedef void XtActionHookId;
typedef unsigned long EventMask;
typedef enum {XtListHead, XtListTail } XtListPosition;
typedef unsigned long XtInputMask;

typedef struct {
String string;
XtActionProc proc;

} XtActionsRec;

typedef enum {
XtAddress,
XtBaseOffset,
XtImmediate,
XtResourceString,
XtResourceQuark,
XtWidgetBaseOffset,
XtProcedureArg

} XtAddressMode;

typedef struct {
XtAddressMode address_mode;
XtPointer address_id;
Cardinal size;

} XtConvertArgRec, *XtConvertArgList;

LIBRARIES 6-97

Figure 6-6: <X11/Intrinsic.h> (continued)

#define XtInputNoneMask 0L
#define XtInputReadMask 1L<<0)
#define XtInputWriteMask (1L<<1)
#define XtInputExceptMask (1L<<2)

typedef struct {
XtGeometryMask request_mode;
Position x, y;
Dimension width, height, border_width;
Widget sibling;

} XtWidgetGeometry;

typedef struct {
String name;
XtArgVal value;

} Arg, *ArgList;

typedef XtPointer XtVarArgsList;

typedef struct {
XtCallbackProc callback;
XtPointer closure;

} XtCallbackRec, *XtCallbackList;

typedef enum {
XtCallbackNoList,
XtCallbackHasNone,
XtCallbackHasSome

} XtCallbackStatus;

typedef struct {
Widget shell_widget;
Widget enable_widget;

} XtPopdownIDRec, *XtPopdownID;

6-98 MIPS ABI SUPPLEMENT

Figure 6-6: <X11/Intrinsic.h> (continued)

typedef enum {
XtGeometryYes,
XtGeometryNo,
XtGeometryAlmost,
XtGeometryDone

} XtGeometryResult;

typedef enum {
XtGrabNone,
XtGrabNonexclusive,
XtGrabExclusive

} XtGrabKind;

typedef struct {
String resource_name;
String resource_class;
String resource_type;
Cardinal resource_size;
Cardinal resource_offset;
String default_type;
XtPointer default_addr;

} XtResource, *XtResourceList;

typedef struct {
char match;
String substitution;

} SubstitutionRec, *Substitution;

typedef Boolean (*XtFilePredicate);
typedef XtPointer XtRequestId;

extern XtConvertArgRec const colorConvertArgs[];
extern XtConvertArgRec const screenConvertArg[];

LIBRARIES 6-99

Figure 6-6: <X11/Intrinsic.h> (continued)

#define XtAllEvents ((EventMask) -1L)
#define XtIMXEvent 1
#define XtIMTimer 2
#define XtIMAlternateInput 4
#define XtIMAll (XtIMXEvent | XtIMTimer | XtIMAlternateInput)

#define XtOffsetOf(s_type,field) XtOffset(s_type*,field)
#define XtNew(type) ((type *) XtMalloc((unsigned sizeof(type)))
#define XT_CONVERT_FAIL (Atom)0x80000001

#define XtIsRectObj(object) \
(_XtCheckSubclassFlag(object,(XtEnum)0x02))

#define XtIsWidget(object) \
(_XtCheckSubclassFlag(object,(XtEnum)0x04))

#define XtIsComposite(widget) \
(_XtCheckSubclassFlag(widget,(XtEnum)0x08))

#define XtIsConstraint(widget) \
(_XtCheckSubclassFlag(widget,(XtEnum)0x10))

#define XtIsShell(widget) \
(_XtCheckSubclassFlag(widget,(XtEnum)0x20))

#define XtIsOverrideShell(widget) \
(_XtIsSubclassOf(widget,(Widge Class)overrideShellWidgetClass,\
(WidgetClass)shellWidgetClass, (XtEnum)0x20))

#define XtIsWMShell(widget) \
(_XtCheckSubclassFlag(widget,(XtEnum)0x40))

#define XtIsVendorShell(widget)\
(_XtIsSubclassOf(widget,(WidgetClass)vendorShellWidgetClass,
\#define XtIsTopLevelShell(widget)\
(_XtCheckSubclassFlag(widget, (XtEnum)0x80))

#define XtIsApplicationShell(widget)\
(_XtIsSubclassOf(widget,(WidgetClass)appliationShellWidgetClass,\
(WidgetClass)topLevelShellWidgetClass, (XtEum)0x80))

6-100 MIPS ABI SUPPLEMENT

Figure 6-6: <X11/Intrinsic.h> (continued)

Figure 6-7: <X11/Object.h>

#define XtSetArg(arg,n,d)\
((void)((arg).name = (n), (arg).value =

(XtArgVal)(d)))
#define XtOffset(p_type,field)\

((Cardinal) (((char *) (&(((p_type)NULL)-
>field)))\

 - ((char *) NULL)))

#define XtVaNestedList "XtVaNestedList"
#define XtVaTypedArg "XtVaTypedArg"
#define XtUnspecifiedPixmap ((Pixmap)2)
#define XtUnspecifiedShellInt (-1)
#define XtUnspecifiedWindow ((Window)2)
#define XtUnspecifiedWindowGroup ((Window)3)
#define XtDefaultForeground "XtDefaultForeground"
#define XtDefaultBackground "XtDefaultBackground"
#define XtDefaultFont "XtDefaultFont"
#define XtDefaultFontSet "XtDefaultFontSet"

extern WidgetClass objectClass;

LIBRARIES 6-101

Figure 6-8: <X11/RectObj.h>

Figure 6-9: <X11/Shell.h>

Figure 6-10: <X11/Vendor.h>

extern WidgetClass rectObjClass;

extern WidgetClass shellWidgetClass;
extern WidgetClass overrideShellWidgetClass;
extern WidgetClass wmShellWidgetClass;
extern WidgetClass transientShellWidgetClass;
extern WidgetClass topLevelShellWidgetClass;
extern WidgetClass applicationShellWidgetClass;

extern WidgetClass vendorShellWidgetClass;

6-102 MIPS ABI SUPPLEMENT

Figure 6-11: <X11/X.h>

typedef unsigned long XID;

typedef XID Window;
typedef XID Drawable;
typedef XID Font;
typedef XID Pixmap;
typedef XID Cursor;
typedef XID Colormap;
typedef XID GContext;
typedef XID KeySym;

typedef unsigned long Atom;
typedef unsigned long VisualID;
typedef unsigned long Time;
typedef unsigned char KeyCode;

#define AllTemporary 0L
#define AnyButton 0L
#define AnyKey 0L
#define AnyPropertyType 0L
#define CopyFromParent 0L
#define CurrentTime 0L
#define InputFocus 1L
#define NoEventMask 0L
#define None 0L
#define NoSymbol 0L
#define ParentRelative 1L
#define PointerWindow 0L
#define PointerRoot 1L

LIBRARIES 6-103

Figure 6-11: <X11/X.h> (continued)

#define KeyPressMask (1L<<0)
#define KeyReleaseMask (1L<<1)
#define ButtonPressMask (1L<<2)
#define ButtonReleaseMask (1L<<3)
#define EnterWindowMask (1L<<4)
#define LeaveWindowMask (1L<<5)
#define PointerMotionMask (1L<<6)
#define PointerMotionHintMask (1L<<7)
#define Button1MotionMask (1L<<8)
#define Button2MotionMask (1L<<9)
#define Button3MotionMask (1L<<10)
#define Button4MotionMask (1L<<11)
#define Button5MotionMask (1L<<12)
#define ButtonMotionMask (1L<<13)
#define KeymapStateMask (1L<<14)
#define ExposureMask (1L<<15)
#define VisibilityChangeMask (1L<<16)
#define StructureNotifyMask (1L<<17)
#define ResizeRedirectMask (1L<<18)
#define SubstructureNotifyMask (1L<<19)
#define SubstructureRedirectMask (1L<<20)
#define FocusChangeMask (1L<<21)
#define PropertyChangeMask (1L<<22)
#define ColormapChangeMask (1L<<23)
#define OwnerGrabButtonMask (1L<<24)

6-104 MIPS ABI SUPPLEMENT

Figure 6-11: <X11/X.h> (continued)

#define KeyPress 2
#define KeyRelease 3
#define ButtonPress 4
#define ButtonRelease 5
#define MotionNotify 6
#define EnterNotify 7
#define LeaveNotify 8
#define FocusIn 9
#define FocusOut 10
#define KeymapNotify 11
#define Expose 12
#define GraphicsExpose 13
#define NoExpose 14
#define VisibilityNotify 15
#define CreateNotify 16
#define DestroyNotify 17
#define UnmapNotify 18
#define MapNotify 19
#define MapRequest 20
#define ReparentNotify 21
#define ConfigureNotify 22
#define ConfigureRequest 23
#define GravityNotify 24
#define ResizeRequest 25
#define CirculateNotify 26
#define CirculateRequest 27
#define PropertyNotify 28
#define SelectionClear 29
#define SelectionRequest 30
#define SelectionNotify 31
#define ColormapNotify 32
#define ClientMessage 33
#define MappingNotify 34

LIBRARIES 6-105

Figure 6-11: <X11/X.h> (continued)

#define ShiftMask (1<<0)
#define LockMask (1<<1)
#define ControlMask (1<<2)
#define Mod1Mask (1<<3)
#define Mod2Mask (1<<4)
#define Mod3Mask (1<<5)
#define Mod4Mask (1<<6)
#define Mod5Mask (1<<7)

#define Button1Mask (1<<8)
#define Button2Mask (1<<9)
#define Button3Mask (1<<10)
#define Button4Mask (1<<11)
#define Button5Mask (1<<12)
#define AnyModifier (1<<15)

#define Button1 1
#define Button2 2
#define Button3 3
#define Button4 4
#define Button5 5

#define NotifyNormal 0
#define NotifyGrab 1
#define NotifyUngrab 2
#define NotifyWhileGrabbed 3
#define NotifyHint 1
#define NotifyAncestor 0
#define NotifyVirtual 1
#define NotifyInferior 2
#define NotifyNonlinear 3
#define NotifyNonlinearVirtual 4
#define NotifyPointer 5
#define NotifyPointerRoot 6
#define NotifyDetailNone 7

6-106 MIPS ABI SUPPLEMENT

Figure 6-11: <X11/X.h> (continued)

#define VisibilityUnobscured 0
#define VisibilityPartiallyObscured 1
#define VisibilityFullyObscured 2

#define PlaceOnTop 0
#define PlaceOnBottom 1

#define PropertyNewValue 0
#define PropertyDelete 1

#define ColormapUninstalled 0
#define ColormapInstalled 1

#define GrabModeSync 0
#define GrabModeAsync 1

#define GrabSuccess 0
#define AlreadyGrabbed 1
#define GrabInvalidTime 2
#define GrabNotViewable 3
#define GrabFrozen 4

#define AsyncPointer 0
#define SyncPointer 1
#define ReplayPointer 2
#define AsyncKeyboard 3
#define SyncKeyboard 4
#define ReplayKeyboard 5
#define AsyncBoth 6
#define SyncBoth 7

#define RevertToNone (int)None
#define RevertToPointerRoot (int)PointerRoot
#define RevertToParent 2

LIBRARIES 6-107

Figure 6-11: <X11/X.h> (continued)

#define Success 0
#define BadRequest 1
#define BadValue 2
#define BadWindow 3
#define BadPixmap 4
#define BadAtom 5
#define BadCursor 6
#define BadFont 7
#define BadMatch 8
#define BadDrawable 9
#define BadAccess 10
#define BadAlloc 11
#define BadColor 12
#define BadGC 13
#define BadIDChoice 14
#define BadName 15
#define BadLength 16
#define BadImplementation 17

#define InputOutput 1
#define InputOnly 2

#define CWBackPixmap (1L<<0)
#define CWBackPixel (1L<<1)
#define CWBorderPixmap (1L<<2)
#define CWBorderPixel (1L<<3)
#define CWBitGravity (1L<<4)
#define CWWinGravity (1L<<5)
#define CWBackingStore (1L<<6)
#define CWBackingPlanes (1L<<7)
#define CWBackingPixel (1L<<8)
#define CWOverrideRedirect (1L<<9)
#define CWSaveUnder (1L<<10)
#define CWEventMask (1L<<11)
#define CWDontPropagate (1L<<12)
#define CWColormap (1L<<13)
#define CWCursor (1L<<14)

6-108 MIPS ABI SUPPLEMENT

Figure 6-11: <X11/X.h> (continued)

#define CWX (1<<0)
#define CWY (1<<1)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<5)
#define CWStackMode (1<<6)

#define ForgetGravity 0
#define NorthWestGravity 1
#define NorthGravity 2
#define NorthEastGravity 3
#define WestGravity 4
#define CenterGravity 5
#define EastGravity 6
#define SouthWestGravity 7
#define SouthGravity 8
#define SouthEastGravity 9
#define StaticGravity 10
#define UnmapGravity 0

#define NotUseful 0
#define WhenMapped 1
#define Always 2

#define IsUnmapped 0
#define IsUnviewable 1
#define IsViewable 2

#define SetModeInsert 0
#define SetModeDelete 1

#define DestroyAll 0
#define RetainPermanent 1
#define RetainTemporary 2

LIBRARIES 6-109

Figure 6-11: <X11/X.h> (continued)

#define Above 0
#define Below 1
#define TopIf 2
#define BottomIf 3
#define Opposite 4
#define RaiseLowest 0
#define LowerHighest 1
#define PropModeReplace 0
#define PropModePrepend 1
#define PropModeAppend 2

#define GXclear 0x0
#define GXand 0x1
#define GXandReverse 0x2
#define GXcopy 0x3
#define GXandInverted 0x4
#define GXnoop 0x5
#define GXxor 0x6
#define GXor 0x7
#define GXnor 0x8
#define GXequiv 0x9
#define GXinvert 0xa
#define GXorReverse 0xb
#define GXcopyInverted 0xc
#define GXorInverted 0xd
#define GXnand 0xe
#define GXset 0xf

#define LineSolid 0
#define LineOnOffDash 1
#define LineDoubleDash 2
#define CapNotLast 0
#define CapButt 1
#define CapRound 2
#define CapProjecting 3

6-110 MIPS ABI SUPPLEMENT

Figure 6-11: <X11/X.h> (continued)

#define JoinMiter 0
#define JoinRound 1
#define JoinBevel 2

#define FillSolid 0
#define FillTiled 1
#define FillStippled 2
#define FillOpaqueStippled 3

#define EvenOddRule 0
#define WindingRule 1

#define ClipByChildren 0
#define IncludeInferiors 1

#define Unsorted 0
#define YSorted 1
#define YXSorted 2
#define YXBanded 3

#define CoordModeOrigin 0
#define CoordModePrevious 1

#define Complex 0
#define Nonconvex 1
#define Convex 2

#define ArcChord 0
#define ArcPieSlice 1

LIBRARIES 6-111

Figure 6-11: <X11/X.h> (continued)

#define GCFunction (1L<<0)
#define GCPlaneMask (1L<<1)
#define GCForeground (1L<<2)
#define GCBackground (1L<<3)
#define GCLineWidth (1L<<4)
#define GCLineStyle (1L<<5)
#define GCCapStyle (1L<<6)
#define GCJoinStyle (1L<<7)
#define GCFillStyle (1L<<8)
#define GCFillRule (1L<<9)
#define GCTile (1L<<10)
#define GCStipple (1L<<11)
#define GCTileStipXOrigin (1L<<12)
#define GCTileStipYOrigin (1L<<13)
#define GCFont (1L<<14)
#define GCSubwindowMode (1L<<15)
#define GCGraphicsExposures (1L<<16)
#define GCClipXOrigin (1L<<17)
#define GCClipYOrigin (1L<<18)
#define GCClipMask (1L<<19)
#define GCDashOffset (1L<<20)
#define GCDashList (1L<<21)
#define GCArcMode (1L<<22)

#define FontLeftToRight 0
#define FontRightToLeft 1

#define XYBitmap 0
#define XYPixmap 1
#define ZPixmap 2

#define AllocNone 0
#define AllocAll 1

#define DoRed (1<<0)
#define DoGreen (1<<1)
#define DoBlue (1<<2)

6-112 MIPS ABI SUPPLEMENT

Figure 6-11: <X11/X.h> (continued)

#define CursorShape 0
#define TileShape 1
#define StippleShape 2

#define AutoRepeatModeOff 0
#define AutoRepeatModeOn 1
#define AutoRepeatModeDefault 2

#define LedModeOff 0
#define LedModeOn 1

#define KBKeyClickPercent (1L<<0)
#define KBBellPercent (1L<<1)
#define KBBellPitch (1L<<2)
#define KBBellDuration (1L<<3)
#define KBLed (1L<<4)
#define KBLedMode (1L<<5)
#define KBKey (1L<<6)
#define KBAutoRepeatMode (1L<<7)

#define MappingSuccess 0
#define MappingBusy 1
#define MappingFailed 2

#define MappingModifier 0
#define MappingKeyboard 1
#define MappingPointer 2
#define DontPreferBlanking 0
#define PreferBlanking 1
#define DefaultBlanking 2

#define DontAllowExposures 0
#define AllowExposures 1
#define DefaultExposures 2

LIBRARIES 6-113

Figure 6-11: <X11/X.h> (continued)

#define ScreenSaverReset 0
#define ScreenSaverActive 1

#define EnableAccess 1
#define DisableAccess 0
#define StaticGray 0
#define GrayScale 1

#define StaticColor 2
#define PseudoColor 3
#define TrueColor 4
#define DirectColor 5

#define LSBFirst 0
#define MSBFirst 1

6-114 MIPS ABI SUPPLEMENT

Figure 6-12: <X11/Xcms.h>

#define XcmsFailure 0
#define XcmsSuccess 1
#define XcmsSuccessWithCompression 2

#define XcmsUndefinedFormat
(XcmsColorFormat)0x00000000

#define XcmsCIEXYZFormat
(XcmsColorFormat)0x00000001

#define XcmsCIEuvYFormat
(XcmsColorFormat)0x00000002

#define XcmsCIExyYFormat
(XcmsColorFormat)0x00000003

#define XcmsCIELabFormat
(XcmsColorFormat)0x00000004

#define XcmsCIELuvFormat
(XcmsColorFormat)0x00000005

#define XcmsTekHVCFormat
(XcmsColorFormat)0x00000006

#define XcmsRGBFormat
(XcmsColorFormat)0x80000000

#define XcmsRGBiFormat
(XcmsColorFormat)0x80000001

#define XcmsInitNone 0x00
#define XcmsInitSuccess 0x01

typedef unsigned int XcmsColorFormat;

typedef double XcmsFloat;

typedef struct {
unsigned short red;
unsigned short green;
unsigned short blue;

} XcmsRGB;

LIBRARIES 6-115

Figure 6-12: <X11/Xcms.h> (continued)

typedef struct {
XcmsFloat red;
XcmsFloat green;
XcmsFloat blue;

} XcmsRGBi;

typedef struct {
XcmsFloat X;
XcmsFloat Y;
XcmsFloat Z;

} XcmsCIEXYZ;

typedef struct {
XcmsFloat u_prime;
XcmsFloat v_prime;
XcmsFloat Y;

} XcmsCIEuvY;

typedef struct {
XcmsFloat x;
XcmsFloat y;
XcmsFloat Y;

} XcmsCIExyY;

typedef struct {
XcmsFloat L_star;
XcmsFloat a_star;
XcmsFloat b_star;

} XcmsCIELab;

6-116 MIPS ABI SUPPLEMENT

Figure 6-12: <X11/Xcms.h> (continued)

typedef struct {
XcmsFloat L_star;
XcmsFloat u_star;
XcmsFloat v_star;

} XcmsCIELuv;

typedef struct {
XcmsFloat H;
XcmsFloat V;
XcmsFloat C;

} XcmsTekHVC;

typedef struct {
XcmsFloat pad0;
XcmsFloat pad1;
XcmsFloat pad2;
XcmsFloat pad3;

} XcmsPad;

LIBRARIES 6-117

Figure 6-12: <X11/Xcms.h> (continued)

typedef struct {
union {

XcmsRGB RGB;
XcmsRGBi RGBi;
XcmsCIEXYZ CIEXYZ;
XcmsCIEuvY CIEuvY;
XcmsCIExyY CIExyY;
XcmsCIELab CIELab;
XcmsCIELuv CIELuv;
XcmsTekHVC TekHVC;
XcmsPad Pad;
spec;

unsigned long pixel;
XcmsColorFormat format;

} XcmsColor;

typedef struct {
XcmsColor screenWhitePt;
XPointer functionSet;
XPointer screenData;
unsigned char state;
char pad[3];

} XcmsPerScrnInfo;

typedef void *XcmsCCC;

typedef Status (*XcmsConversionProc)();
typedef XcmsConversionProc *XcmsFuncListPtr;

6-118 MIPS ABI SUPPLEMENT

Figure 6-12: <X11/Xcms.h> (continued)

typedef struct {
char *prefix;
XcmsColorFormat id;
XcmsParseStringProc parseString;
XcmsFuncListPtr to_CIEXYZ;
XcmsFuncListPtr from_CIEXYZ;
int inverse_flag;

} XcmsColorSpace;

typedef struct {
XcmsColorSpace **DDColorSpaces;
XcmsScreenInitProc screenInitProc;
XcmsScreenFreeProc screenFreeProc;

} XcmsFunctionSet;

LIBRARIES 6-119

Figure 6-13: <X11/Xlib.h>

Figure 6-13: <X11/Xlib.h> (continued)

typedef char *XPointer;

#define Bool int
#define Status int
#define True 1
#define False 0
#define QueuedAlready 0
#define QueuedAfterReading 1
#define QueuedAfterFlush 2

#define AllPlanes ((unsigned long)~0L)

typdef void XExtData;

typdef void XExtCodes;

typedef struct {
int depth;
int bits_per_pixel;
int scanline_pad;

} XPixmapFormatValues;

6-120 MIPS ABI SUPPLEMENT

Figure 6-13: <X11/Xlib.h> (continued)

typedef struct {
int function;
unsigned long plane_mask;
unsigned long foreground;
unsigned long background;
int line_width;
int line_style;
int cap_style;
int join_style;
int fill_style;
int fill_rule;
int arc_mode;
Pixmap tile;
Pixmap stipple;
int ts_x_origin;
int ts_y_origin;
Font font;
int subwindow_mode;
Bool graphics_exposures;
int clip_x_origin;
int clip_y_origin;
Pixmap clip_mask;
int dash_offset;
char dashes;

} XGCValues;

typedef void GC;

typedef void Visual;

LIBRARIES 6-121

Figure 6-13: <X11/Xlib.h> (continued)

typedef void Screen;

typedef struct {
Pixmap background_pixmap;
unsigned long background_pixel;
Pixmap border_pixmap;
unsigned long border_pixel;
int bit_gravity;
int win_gravity;
int backing_store;
unsigned long backing_planes;
unsigned long backing_pixel;
Bool save_under;
long event_mask;
long do_not_propagate_mask;
Bool override_redirect;
Colormap colormap;
Cursor cursor;

} XSetWindowAttributes;

6-122 MIPS ABI SUPPLEMENT

Figure 6-13: <X11/Xlib.h> (continued)

typedef struct {
XExtData *ext_data;
int depth;
int bits_per_pixel;
int scanline_pad;

} ScreenFormat;

typedef struct {
int x, y;
int width, height;
int border_width;
int depth;
Visual *visual;
Window root;
int class;
int bit_gravity;
int win_gravity;
int backing_store;
unsigned long backing_planes;
unsigned long backing_pixel;
Bool save_under;
Colormap colormap;
Bool map_installed;
int map_state;
long all_event_masks;
long your_event_mask;
long do_not_propagate_mask;
Bool override_redirect;
Screen *screen;

} XWindowAttributes;

LIBRARIES 6-123

Figure 6-13: <X11/Xlib.h> (continued)

typedef struct {
int family;
int length;
char *address;

} XHostAddress;

typedef struct _XImage {
int width, height;
int xoffset;
int format;
char *data;
int byte_order;
int bitmap_unit;
int bitmap_bit_order;
int bitmap_pad;
int depth;
int bytes_per_line;
int bits_per_pixel;
unsigned long red_mask;
unsigned long green_mask;
unsigned long blue_mask;
XPointer obdata;
struct funcs {

struct _XImage *(*create_image)();
int (*destroy_image)();
unsigned long (*get_pixel)();
int (*put_pixel)();
struct _XImage *(*sub_image)();
int (*add_pixel)();

} f;
} XImage;

6-124 MIPS ABI SUPPLEMENT

Figure 6-13: <X11/Xlib.h> (continued)

typedef struct {
int x, y;
int width, height;
int border_width;
Window sibling;
int stack_mode;

} XWindowChanges;

typedef struct {
unsigned long pixel;
unsigned short red, green, blue;
char flags;
char pad;

} XColor;

typedef struct {
short x1, y1, x2, y2;

} XSegment;

typedef struct {
short x, y;

} XPoint;

typedef struct {
short x, y;
unsigned short width, height;

} XRectangle;

typedef struct {
short x, y;
unsigned short width, height;
short angle1, angle2;

} XArc;

LIBRARIES 6-125

Figure 6-13: <X11/Xlib.h> (continued)

typedef struct {
int key_click_percent;
int bell_percent;
int bell_pitch;
int bell_duration;
int led;
int led_mode;
int key;
int auto_repeat_mode;

} XKeyboardControl;

typedef struct {
int key_click_percent;
int bell_percent;
unsigned int bell_pitch, bell_duration;
unsigned long led_mask;
int global_auto_repeat;
char auto_repeats[32];

} XKeyboardState;
typedef struct {

Time time;
short x, y;

} XTimeCoord;

typedef struct {
int max_keypermod;
KeyCode *modifiermap;

} XModifierKeymap;

typedef void Display;

6-126 MIPS ABI SUPPLEMENT

Figure 6-13: <X11/Xlib.h> (continued)

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
unsigned int state;
unsigned int keycode;
Bool same_screen;

} XKeyEvent;
typedef XKeyEvent XKeyPressedEvent;
typedef XKeyEvent XKeyReleasedEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
unsigned int state;
unsigned int button;
Bool same_screen;

} XButtonEvent;
typedef XButtonEvent XButtonPressedEvent;
typedef XButtonEvent XButtonReleasedEvent;

LIBRARIES 6-127

Figure 6-13: <X11/Xlib.h> (continued)

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
unsigned int state;
char is_hint;
Bool same_screen;

} XMotionEvent;
typedef XMotionEvent XPointerMovedEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
int mode;
int detail;
Bool same_screen;
Bool focus;
unsigned int state;

} XCrossingEvent;

6-128 MIPS ABI SUPPLEMENT

Figure 6-13: <X11/Xlib.h> (continued)

typedef XCrossingEvent XEnterWindowEvent;
typedef XCrossingEvent XLeaveWindowEvent;
typedef struct {

int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int mode;
int detail;

} XFocusChangeEvent;
typedef XFocusChangeEvent XFocusInEvent;
typedef XFocusChangeEvent XFocusOutEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
char key_vector[32];

} XKeymapEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int x, y;
int width, height;
int count;

} XExposeEvent;

LIBRARIES 6-129

Figure 6-13: <X11/Xlib.h> (continued)

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Drawable drawable;
int x, y;
int width, height;
int count;
int major_code;
int minor_code;

} XGraphicsExposeEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Drawable drawable;
int major_code;
int minor_code;

} XNoExposeEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int state;

} XVisibilityEvent;

6-130 MIPS ABI SUPPLEMENT

Figure 6-13: <X11/Xlib.h> (continued)

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window parent;
Window window;
int x, y;
int width, height;
int border_width;
Bool override_redirect;

} XCreateWindowEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;

} XDestroyWindowEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
Bool from_configure;

} XUnmapEvent;

LIBRARIES 6-131

Figure 6-13: <X11/Xlib.h> (continued)

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
Bool override_redirect;

} XMapEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window parent;
Window window;

} XMapRequestEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
Window parent;
int x, y;
Bool override_redirect;

} XReparentEvent;

6-132 MIPS ABI SUPPLEMENT

Figure 6-13: <X11/Xlib.h> (continued)

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
Bool override_redirect;

} XConfigureEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
int x, y;

} XGravityEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int width, height;

} XResizeRequestEvent;

LIBRARIES 6-133

Figure 6-13: <X11/Xlib.h> (continued)

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window parent;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
int detail;
unsigned long value_mask;

} XConfigureRequestEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
int place;

} XCirculateEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window parent;
Window window;
int place;

} XCirculateRequestEvent;

6-134 MIPS ABI SUPPLEMENT

Figure 6-13: <X11/Xlib.h> (continued)

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Atom atom;
Time time;
int state;

} XPropertyEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Atom selection;
Time time;

} XSelectionClearEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window owner;
Window requestor;
Atom selection;
Atom target;
Atom property;
Time time;

} XSelectionRequestEvent;

LIBRARIES 6-135

Figure 6-13: <X11/Xlib.h> (continued)

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window requestor;
Atom selection;
Atom target;
Atom property;
Time time;

} XSelectionEvent;

typedef struct {
int type;
Display *display;
XID resourceid;
unsigned long serial;
unsigned char error_code;
unsigned char request_code;
unsigned char minor_code;

} XErrorEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Atom message_type;
int format;
union {

char b[20];
short s[10];
long l[5];

} data;
} XClientMessageEvent;

6-136 MIPS ABI SUPPLEMENT

Figure 6-13: <X11/Xlib.h> (continued)

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Colormap colormap;
Bool new;
int state;

} XColormapEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int request;
int first_keycode;
int count;

} XMappingEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;

} XAnyEvent;

LIBRARIES 6-137

Figure 6-13: <X11/Xlib.h> (continued)

typedef union _XEvent {
int type;
XAnyEvent xany;
XKeyEvent xkey;
XButtonEvent xbutton;
XMotionEvent xmotion;
XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XExposeEvent xexpose;
XGraphicsExposeEvent xgraphicsexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibility;
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvent xunmap;
XMapEvent xmap;
XMapRequestEvent xmaprequest;
XReparentEvent xreparent;
XConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequest;
XCirculateEvent xcirculate;
XCirculateRequestEvent xcirculaterequest;
XPropertyEvent xproperty;
XSelectionClearEvent xselectionclear;
XSelectionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormap;
XClientMessageEvent xclient;
XMappingEvent xmapping;
XErrorEvent xerror;
XKeymapEvent xkeymap;

long pad[24];
} XEvent;

6-138 MIPS ABI SUPPLEMENT

Figure 6-13: <X11/Xlib.h> (continued)

#define XAllocID(dpy) ((*(dpy)->resource_alloc)((dpy)))

typedef struct {
short lbearing;
short rbearing;
short width;
short ascent;
short descent;
unsigned short attributes;

} XCharStruct;

typedef struct {
Atom name;
unsigned long card32;

} XFontProp;

typedef struct {
XExtData *ext_data;
Font fid;
unsigned direction;
unsigned min_char_or_byte2;
unsigned max_char_or_byte2;
unsigned min_byte1;
unsigned max_byte1;
Bool all_chars_exist;
unsigned default_char;
int n_properties;
XFontProp *properties;
XCharStruct min_bounds;
XCharStruct max_bounds;
XCharStruct *per_char;
int ascent;
int descent;

} XFontStruct;

LIBRARIES 6-139

Figure 6-13: <X11/Xlib.h> (continued)

typedef struct {
char *chars;
int nchars;
int delta;
Font font;

} XTextItem;

typedef struct {
unsigned char byte1;
unsigned char byte2;

} XChar2b;

typedef struct {
XChar2b *chars;
int nchars;
int delta;
Font font;

} XTextItem16;

typedef union {
Display *display;
GC gc;
Visual *visual;
Screen *screen;
ScreenFormat *pixmap_format;
XFontStruct *font;

} XEDataObject;

typedef struct {
XRectangle max_ink_extent;
XRectangle max_logical_extent;

} XFontSetExtents;

typedef void XFontSet;

6-140 MIPS ABI SUPPLEMENT

Figure 6-13: <X11/Xlib.h> (continued)

typedef struct {
char *chars;
int nchars;
int delta;
XFontSet *font_set;

} XmbTextItem;

typedef struct {
wchar_t *chars;
int nchars;
int delta;
XFontSet font_set;

} XwcTextItem;

typedef void (*XIMProc)();

typedef void XIM;
typedef void XIC;

typedef unsigned long XIMStyle;

typedef struct {
unsigned short count_styles;
XIMStyle *supported_styles;

} XIMStyles;

#define XIMPreeditArea 0x0001L
#define XIMPreeditCallbacks 0x0002L
#define XIMPreeditPosition 0x0004L
#define XIMPreeditNothing 0x0008L
#define XIMPreeditNone 0x0010L
#define XIMStatusArea 0x0100L
#define XIMStatusCallbacks 0x0200L
#define XIMStatusNothing 0x0400L
#define XIMStatusNone 0x0800L

LIBRARIES 6-141

Figure 6-13: <X11/Xlib.h> (continued)

#define XNVaNestedList "XNVaNestedList"
#define XNQueryInputStyle "queryInputStyle"
#define XNClientWindow "clientWindow"
#define XNInputStyle "inputStyle"
#define XNFocusWindow "focusWindow"
#define XNResourceName "resourceName"
#define XNResourceClass "resourceClass"
#define XNGeometryCallback "geometryCallback"
#define XNFilterEvents "filterEvents"
#define XNPreeditStartCallback "preeditStartCallback"
#define XNPreeditDoneCallback "preeditDoneCallback"
#define XNPreeditDrawCallback "preeditDrawCallback"
#define XNPreeditCaretCallback "preeditCaretCallback"
#define XNPreeditAttributes "preeditAttributes"
#define XNStatusStartCallback "statusStartCallback"
#define XNStatusDoneCallback "statusDoneCallback"
#define XNStatusDrawCallback "statusDrawCallback"
#define XNStatusAttributes "statusAttributes"
#define XNArea "area"
#define XNAreaNeeded "areaNeeded"
#define XNSpotLocation "spotLocation"
#define XNColormap "colorMap"
#define XNStdColormap "stdColorMap"
#define XNForeground "foreground"
#define XNBackground "background"
#define XNBackgroundPixmap "backgroundPixmap"
#define XNFontSet "fontSet"
#define XNLineSpace "lineSpace"
#define XNCursor "cursor"

6-142 MIPS ABI SUPPLEMENT

Figure 6-13: <X11/Xlib.h> (continued)

#define XBufferOverflow -1
#define XLookupNone 1
#define XLookupChars 2
#define XLookupKeySym 3
#define XLookupBoth 4

typedef XPointer XVaNestedList;

typedef struct {
XPointer client_data;
XIMProc callback;

} XIMCallback;

typedef unsigned long XIMFeedback;

#define XIMReverse 1
#define XIMUnderline (1<<1)
#define XIMHighlight (1<<2)
#define XIMPrimary (1<<5)
#define XIMSecondary (1<<6)
#define XIMTertiary (1<<7)

typedef struct _XIMText {
unsigned short length;
XIMFeedback *feedback;
Bool encoding_is_wchar;
union {

char *multi_byte;
wchar_t *wide_char;

} string;
} XIMText

LIBRARIES 6-143

Figure 6-13: <X11/Xlib.h> (continued)

typedef struct _XIMPreeditDrawCallbackStruct {
int caret;
int chg_first;
int chg_length;
XIMText *text;

} XIMPreeditDrawCallbackStruct;

typedef enum {
XIMForwardChar, XIMBackwardChar,
XIMForwardWord, XIMBackwardWord,
XIMCaretUp, XIMCaretDown,
XIMNextLine, XIMPreviousLine,
XIMLineStart, XIMLineEnd,
XIMAbsolutePosition,
XIMDontChange

} XIMCaretDirection;

typedef enum {
XIMIsInvisible,
XIMIsPrimary,
XIMIsSecondary

} XIMCaretStyle;

typedef struct _XIMPreeditCaretCallbackStruct {
int position;
XIMCaretDirection direction;
XIMCaretStyle style;

} XIMPreeditCaretCallbackStruct;

6-144 MIPS ABI SUPPLEMENT

Figure 6-14: <X11/Xlib.h> (continued)

typedef enum {
XIMTextType,
XIMBitmapType

} XIMStatusDataType;

typedef struct _XIMStatusDrawCallbackStruct {
XIMStatusDataType type;
union {

XIMText *text;
Pixmap bitmap;

} data;
} XIMStatusDrawCallbackStruct;

LIBRARIES 6-145

Figure 6-15: <X11/Xresource.h>

typedef int XrmQuark, *XrmQuarkList;
#define NULLQUARK ((XrmQuark) 0)

typedef enum {XrmBindTightly, XrmBindLoosely} \
XrmBinding, *XrmBindingList;

typedef XrmQuark XrmName;
typedef XrmQuarkList XrmNameList;
typedef XrmQuark XrmClass;
typedef XrmQuarkList XrmClassList;
typedef XrmQuark XrmRepresentation;

#define XrmStringToName(string)
XrmStringToQuark(string)

#define XrmStringToNameList(str, name) \
XrmStringToQuarkList(str, name)

#define XrmStringToClass(class)
XrmStringToQuark(class)

#define XrmStringToClassList(str,class) \
XrmStringToQuarkList(str, class)

#define XrmStringToRepresentation(string) \
XrmStringToQuark(string)

typedef struct {
unsigned int size;
XPointer addr;

} XrmValue, *XrmValuePtr;

typedef void XrmHashBucket;
typedef XrmHashBucket *XrmHashTable;
typedef XrmHashTable XrmSearchList[];
typedef void XrmDatabase;
#define XrmEnumAllLevels 0
#define XrmEnumOneLevel 1

6-146 MIPS ABI SUPPLEMENT

Figure 6-15: <X11/Xresource.h> (continued)

typedef enum {
XrmoptionNoArg,
XrmoptionIsArg,
XrmoptionStickyArg,
XrmoptionSepArg,
XrmoptionResArg,
XrmoptionSkipArg,
XrmoptionSkipLine,
XrmoptionSkipNArgs

} XrmOptionKind;

typedef struct {
char *option;
char *specifier;
XrmOptionKind argKind;
XPointer value;

} XrmOptionDescRec, *XrmOptionDescList;

LIBRARIES 6-147

Figure 6-16: <X11/Xutil.h>

#define NoValue 0x0000
#define XValue 0x0001
#define YValue 0x0002
#define WidthValue 0x0004
#define HeightValue 0x0008
#define AllValues 0x000F
#define XNegative 0x0010
#define YNegative 0x0020

typedef struct {
long flags;
int x, y;
int width, height;
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;
struct {

int x;
int y;

} min_aspect, max_aspect;
int base_width, base_height;
int win_gravity;

} XSizeHints;

#define USPosition (1L << 0)
#define USSize (1L << 1)
#define PPosition (1L << 2)
#define PSize (1L << 3)
#define PMinSize (1L << 4)
#define PMaxSize (1L << 5)
#define PResizeInc (1L << 6)
#define PAspect (1L << 7)
#define PBaseSize (1L << 8)
#define PWinGravity (1L << 9)
#define PAllHints (PPosition|PSize|PMinSize| \

PMaxSize|PResizeInc|PAspect)

6-148 MIPS ABI SUPPLEMENT

Figure 6-16: <X11/Xutil.h> (continued)

typedef struct {
long flags;
Bool input;
int initial_state;
Pixmap icon_pixmap;
Window icon_window;
int icon_x, icon_y;
Pixmap icon_mask;
XID window_group;

} XWMHints;

#define InputHint (1L << 0)
#define StateHint (1L << 1)
#define IconPixmapHint (1L << 2)
#define IconWindowHint (1L << 3)
#define IconPositionHint (1L << 4)
#define IconMaskHint (1L << 5)
#define WindowGroupHint (1L << 6)
#define AllHints (InputHint|StateHint|

IconPixmapHint|IconWindowHint|
IconPositionHint|Icon-

MaskHint|WindowGroupHint)

#define WithdrawnState 0
#define NormalState 1
#define IconicState 3

typedef struct {
unsigned char *value;
Atom encoding;
int format;
unsigned long nitems;

} XTextProperty;

#define XNoMemory -1
#define XLocaleNotSupported -2
#define XConverterNotFound -3

LIBRARIES 6-149

Figure 6-16: <X11/Xutil.h> (continued)

typedef int XContext;

typedef enum {
XStringStyle,
XCompoundTextStyle,
XTextStyle,
XStdICCTextStyle

} XICCEncodingStyle;

typedef struct {
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;

} XIconSize;

typedef struct {
char *res_name;
char *res_class;

} XClassHint;

#define XDestroyImage(ximage)
((*((ximage)->f.destroy_image))((ximage)))

#define XGetPixel(ximage, x, y)
((*((ximage)->f.get_pixel))((ximage), (x), (y)))

#define XPutPixel(ximage, x, y, pixel)
((*((ximage)->f.put_pixel))((ximage), (x),
(y), (pixel)))

#define XSubImage(ximage, x, y, width, height)
((*((ximage)->f.sub_image))((ximage),
(x), (y), (width), (height)))

#define XAddPixel(ximage, value)
((*((ximage)->f.add_pixel))((ximage),
(value)))

typedef struct _XComposeStatus {
XPointer compose_ptr;
int chars_matched;

} XComposeStatus;

6-150 MIPS ABI SUPPLEMENT

Figure 6-16: <X11/Xutil.h> (continued)

#define IsKeypadKey(keysym)
(((unsigned)(keysym) >= XK_KP_Space) && \
((unsigned)(keysym) <= XK_KP_Equal))

#define IsCursorKey(keysym)
(((unsigned)(keysym) >= XK_Home) && \
((unsigned)(keysym) < XK_Select))

#define IsPFKey(keysym)
(((unsigned)(keysym) >= XK_KP_F1) \
&& ((unsigned)(keysym) <= XK_KP_F4))

#define IsFunctionKey(keysym)
(((unsigned)(keysym) >= XK_F1) && \

((unsigned)(keysym) <= XK_F35))
#define IsMiscFunctionKey(keysym)

(((unsigned)(keysym) >= XK_Select) && \
((unsigned)(keysym) <= XK_Break))

#define IsModifierKey(keysym)
((((unsigned)(keysym) >= XK_Shift_L) \
&& ((unsigned)(keysym) <= XK_Hyper_R))
|| ((unsigned)(keysym) == XK_Mode_switch)
|| ((unsigned)(keysym) == XK_Num_Lock))

typedef void Region;

#define RectangleOut 0
#define RectangleIn 1
#define RectanglePart 2

typedef struct {
Visual *visual;
VisualID visualid;
int screen;
int depth;
int class;
unsigned long red_mask;
unsigned long green_mask;
unsigned long blue_mask;
int colormap_size;
int bits_per_rgb;

} XVisualInfo;

LIBRARIES 6-151

Figure 6-16: <X11/Xutil.h> (continued)

#define VisualNoMask 0x0
#define VisualIDMask 0x1
#define VisualScreenMask 0x2
#define VisualDepthMask 0x4
#define VisualClassMask 0x8
#define VisualRedMaskMask 0x10
#define VisualGreenMaskMask 0x20
#define VisualBlueMaskMask 0x40
#define VisualColormapSizeMask 0x80
#define VisualBitsPerRGBMask 0x100
#define VisualAllMask 0x1FF

typedef struct {
Colormap colormap;
unsigned long red_max;
unsigned long red_mult;
unsigned long green_max;
unsigned long green_mult;
unsigned long blue_max;
unsigned long blue_mult;
unsigned long base_pixel;
VisualID visualid;
XID killid;

} XStandardColormap;

#define ReleaseByFreeingColormap ((XID) 1L)
#define BitmapSuccess 0
#define BitmapOpenFailed 1
#define BitmapFileInvalid 2
#define BitmapNoMemory 3
#define XCSUCCESS 0
#define XCNOMEM 1
#define XCNOENT 2

6-152 MIPS ABI SUPPLEMENT

TCP/IP Data Definitions
This section is new, but will not be diffmarked.

LIBRARIES 6-153

Figure 6-17: <netinet/in.h>

NOTE
This section contains standard data definitions that describe system
data for the optional TCP/IP Interfaces. These data definitions are re-
ferred to by their names in angle brackets: <name.h> and <sys/name.h>.
Included in these data definitions are macro definitions and structure
definitions. While an ABI-conforming system may provide TCP/IP in-
terfaces, it need not contain the actual data definitions referenced here.
Programmers should observe that the sources of the structures defined
in these data definitions are defined in SVID.

#define INADDR_ANY (u_long)0x00000000
#define INADDR_LOOPBACK (u_long)0x7F000001
#define INADDR_BROADCAST (u_long)0xffffffff
#define IPPROTO_TCP 6
#define IPPROTO_IP 0
#define IP_OPTIONS 1

struct in_addr {
 union {
 struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b;
 struct { u_short s_w1,s_w2; } S_un_w;
 u_long S_addr;
 } S_un;

#define IN_SET_LOOPBACK_ADDR(a)\
{(a)->sin_addr.s_addr=htonl(INADDR_LOOPBACK);

struct sockaddr_in {
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

6-154 MIPS ABI SUPPLEMENT

Figure 6-18: <netinet/ip.h>

Figure 6-19: <X11/netinet/tcp.h>

#define IPOPT_EOL 0
#define IPOPT_NOP 1
#define IPOPT_LSRR 131
#define IPOPT_SSRR 137

#define TCP_NODELAY 0x01

DEVELOPMENT ENVIRONMENT 7-1

Development Environment

Development Commands

The Development Environment for MIPS implementations of System V Release 4
will contain all of the development commands required by the System V ABI,
namely;

Each command accepts all of the options required by the System V ABI, as defined
in the SD_CMD section of the System V Interface Definition, Third Edition.

PATH Access to Development Tools

The development environment for the MIPS System V implementations is accessi-
ble using the system default value for PATH. The default if no options are given
to the cc command is to use the libraries and object file formats that are required
for ABI compliance.

Software Packaging Tools
The development environment for MIPS implementations of the System V ABI
shall include each of the following commands as defined in the AS_CMD section
of the System V Interface Definition, Third Edition.

System Headers

Systems that do not have an ABI Development Environment may or may not have

THE FACILITIES AND INTERFACES DESCRIBED IN THIS SECTION ARE
OPTIONAL COMPONENTS OF THE System V Application Binary Interface.NOTE

This chapter is new, but will not be marked with diff-marks.NOTE

as cc ld
m4 lex yacc

pkgproto pkgtrans pkgmk

7-2 MIPS ABI SUPPLEMENT

system header files. If an ABI Development Environment is supported, system
header files will be included with the Development Environment. The primary
source for contents of header files is always the System V Interface Definition, Third
Edition. In those cases where SVID Third Edition doesn’t specify the contents of
system headers, Chapter 6 “Data Definitions” of this document shall define the as-
sociations of data elements to system headers for compilation. For greatest source
portability, applications should depend only on header file contents defined in
SVID.

Static Archives

Level 1 interfaces defined in System V Interface Definition, Third Edition, for each of
the following libraries, may be statically linked safely into applications. The result-
ing executable will not be made non-compliant to the ABI solely because of the
static linkage of such members in the executable.

The archive libm.a is located in /usr/lib on conforming MIPS development en-
vironments.

libm

EXECUTION ENVIRONMENT 8-1

Execution Environment

Application Environment

This section specifies the execution environment information available to applica-
tion programs running on a MIPS ABI-conforming computer.

The /dev Subtree

All networking device files described in the Generic ABI shall be supported on all
MIPS ABI-conforming computers. In addition, the following device files are re-
quired to be present on all MIPS ABI-conforming computers.

/dev/null This device file is a special "null" device that may be used to
test programs or provide a data sink. This file is writable by all
processes.

/dev/tty This device file is a special one that directs all output to the
controlling TTY of the current process group. This file is read-
able and writable by all processes.

/dev/sxtXX
/dev/ttyXX These device files, where XX represents a two-digit integer,

represent device entries for terminal sessions. All these device
files must be examined by the ttyname() call. Applications
must not have the device names of individual terminals hard-
coded within them. The sxt entries are optional in the system
but, if present must be included in the library routine’s search.

This chapter is new, but will not be marked with diff-marks.NOTE

8-2 MIPS ABI SUPPLEMENT

